

Welcome to LSA’s ZZ-Gripper

About the Gripper

[image: _images/zz-gripper-turtle-rasp.jpg]
[image: _images/zz-gripper-turtle.jpg]
This is the oficial documentation for Inteligent Gripper for Turtlebot based on Raspberry Pi 3.
It was made in the autonomous systems laboratory, LSA, of FACIN at PUCRS.

Summary

	Setting Up the Hardware
	Hardware Specification

	Setting Up the Software
	Installing the OS
	Pre Built Image

	Prepare yourself the Image

	Setting Up the OS

	Installing ROS
	About ROS

	How to install the driver and its depedencies

	Hooking Up Peripherals to the Rpi board
	Installing the Raspicam

	Installing the ADC - Analog digital converter

	Installing the ADC sensor

	LSA Contributors

Disclaimer

The purpose of this document is for the use of LSA [https://lsa-pucrs.github.io/] group only, but we open it in case it can be usefull for someone else.
Thus, we dont fill obliged to give any technical support, although we might help in some special situations.

Everything you find here is without absolutly no waranty and I’m not responsible for any inconveniences or issues that might occurs.

Feedback

Don’t hesitate to ask about some additional info or next guides and also if you find some mistakes, please let me know.
This can be done by submitting an issue or a push request on github.

Setting Up the Hardware

Gripper robot was designed with microprocessor Raspberry Pi version 3 [https://www.raspberrypi.org/].
You will find a guide to setting up the hardware: Raspberry Pi and circuit schematic.

Warning

@ To be done !!! place here the fritzing schematics and

[image: ../../_images/schematics.jpg]

Hardware Specification

	Microprocessador: Raspberry Pi 3

	Raspberry Pi Camera version 2

	Motor Driver: TB6612-Dual Motor Driver

	2 Servos motores Tower PRO 996R

	1 Dc Motor Pololu 50:1 37Dx54L

	1 Ultrasonic sensor HC-SR04

	1 Sensor Força FSR 406

	1 Current sensor ACS712

	1 Analog-Diginal converter with 4 channels ADS1115

Setting Up the Software

This session We’ll presente details about each topic.

	Installing the OS
	Pre Built Image

	Prepare yourself the Image

	Setting Up the OS

	Installing ROS
	About ROS

	How to install the driver and its depedencies
	Install ROS

	Hooking Up Peripherals to the Rpi board
	Installing the Raspicam

	Installing the ADC - Analog digital converter

	Installing the ADC sensor

Installing the OS

The OS version used on Raspberry Pi 3 is Ubuntu MATE 16.04.2.
The ROS version is Kinetic Kame. Kinetic was released early last year and is compatible with Ubuntu Mate 16.04 [https://ubuntu-mate.org/raspberry-pi/].

Pre Built Image

There is a prebuilt image with Ubuntu MATE 16.04.2 and ROS Kinetic at the German Robot webpage [http://www.german-robot.com/2016/05/26/raspberry-pi-sd-card-image/], made in February 2017. This is the fastest way to get the job done.

Prepare yourself the Image

If you want to do it yourself, then follow these steps:

	Download Ubuntu Mate image [https://ubuntu-mate.org/download/] for raspiberry 2/3 - Version 16.04 (Xenial)

	Use Etcher <https://etcher.io/> or Win32 Disk Imager <https://sourceforge.net/projects/win32diskimager/> _ to burn the image to the SD card.

	how to the partitioning (to be completed)

	you might need to resize the image if your disk is larger then 8GB. You can easily do it with raspi-config or gparted.

	plug the SD card and HDMI cable, then power on the board.

Setting Up the OS

It might be required to setup the OS (TO BE DONE)

	which basics packages to install

	how to setup the wireless

	main depedencies to intall

	setup automatic login

	how to enable the rpi pins and protocols (i2c, gpio, pwm, spi,camera etc)

Image is ready ! let’s install ROS!

Installing ROS

About ROS

ROS (Robot Operating System) <http://wiki.ros.org/>`_ provides libraries and tools to help software developers create robot applications. It provides hardware abstraction, device drivers, libraries, visualizers, message-passing, package management, and more. ROS is licensed under an open source, BSD license.

How to install the driver and its depedencies

Install ROS

The first step in installing ROS on Raspberry Pi 3 is :
- Followed the steps on the download page, and within minutes I managed to have a Pi 3 running Ubuntu Mate.

	Step 1: Go to System -> Administration -> Software & Updates

	Step 2: Check the checkboxes to repositories to allow “restricted,” “universe,” and “multiverse.”

	Step 3: Setup your sources.list

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'

	Step 4: Setup your keys

wget http://packages.ros.org/ros.key -O - | sudo apt-key add -

	Step 5: To be sure that your Ubuntu Mate package index is up to date, type the following

sudo apt-get update

	Step 6: Install ros-kinetic-desktop-full

sudo apt-get install ros-kinetic-desktop-full

	Step 7: Initialize rosdep

sudo rosdep init
rosdep update

	Step 8: Setting up the ROS environment variables

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc
source ~/.bashrc

	Step 9: Create and initialize the catkin workspace

sudo apt-get update
mkdir -p ~/catkin_workspace/src
cd catkin_workspace/src
catkin_init_workspace
cd ~/catkin_workspace/
catkin_make

	Step 10: Add the catkin_workspace to your ROS environment

source ~/catkin_workspace/devel/setup.bash
echo “source ~/catkin_workspace/devel/setup.bash” >> ~/.bashrc

	Step 11: Check the ROS environment variables

export | grep ROS

Hooking Up Peripherals to the Raspberry Pi

This section shows how to add the following peripherals to the RPi board

Installing the Raspicam

The v2 Camera Module has a Sony IMX219 8-megapixel sensor (compared to the 5-megapixel OmniVision OV5647 sensor of the original camera).

	
	You can buy the Raspberry Pi Camera Module v2 on oficial website

	oficial website [https://www.raspberrypi.org/products/camera-module-v2/]

	The lab LSA has the camera module V2 `Thisavailable to prototype https://lsa-pucrs.github.io/resources/>`_

	Power supply is provided by board, you just need to plug

	The require material is only flat cable to connect the camera into raspberry

	You need only to enable the camera setup

Installing the ADC - Analog digital converter

The ADS1115 4-channel digital analog converter is a suitable component for circuits where the microcontroller does not have an ADC (Analog Digital Converter) built-in, or when you need a high-precision converter in your design.

This converter operates with voltages between 2 and 5.5VDC, and the maximum voltage on the analog pins is equal to the supply voltage. Analog pins can be programmed as 4 independent pins, or two differential channels.

The communication interface used by the board is I2C, easy to connect to boards such as Arduino, Raspberry Pi, Beaglebone, etc.

	
	You can buy the Analog digital converter on

	
	fillipeflop website [https://www.filipeflop.com/produto/conversor-analogico-digital-4-canais-ads1115/]

Installing the ADC sensor

You just need to :

$ sudo pip install adafruit-ads1x15

LSA Contributors

The list of contributors to this document.

	@Alexandre Amory [https://amamory.github.io/]

	@Guilherme Marques [https://github.com/marquesgh2m]

	@Desiree Santos [https://github.com/desireesantos]

Index

Making Raspberry Pi usable

Introduction

After 8 months of using RPi, I decided to make second version of this tutorial for same
people as I’m - who looks for easy, understandable way to make RPi as
awesome as possible. Several things have changed since last realease of this tutorial, so I decided to rewrite some parts and also to delete some parts which are not necessary today.

In this tutorial I will walk you through whole process of making from
Raspberry Pi secure, reliable, efficient, fast and easy to maintain
server for variable purposes as is FTP, web hosting, sharing… All
that thanks to Arch Linux ARM operating system. The device will be
“headless” - it means, there will be no fancy windows etc., just command
line. Don’t be scared, I will walk you through and you’ll thank me then
:) . You don’t need some special knowledge about computers and linux
systems.

What you get

From “bare” RPi you’ll get:

	Safely to connect to your RPi from anywhere

	Possibility of hosting web pages, files, etc.

	Readable and reliable system (it will do what you want and nothing
more)

What you will need

	Raspberry Pi (doesn’t matter which model) with power supply

	SD Card as a main hardisk for RPi

	SD Card reader on computer with internet access

	Ethernet LAN cable or USB Wi-Fi bundle

	Other computer (preferably with linux, but nevermind if you use
Windows or Mac)

	Possibility to physically get to your router and know credentials to
login to it (or have contact to your network administrator :))

	Few hours of work

What you don’t need

	Monitor or ability to connect RPi to some monitor

	Keyboard or mouse connected to your RPi

Start

So you have just bare RPi, SD card, power supply, ethernet cable
(RJ-45). So let’s start! There are houndreds of guides, but I haven’t
found them satisfaing.

Installing Arch Linux ARM to SD card

Go here [http://ArchLinuxarm.org/platforms/armv6/raspberry-pi], choose installation and
make first 3 steps. That’s it! You have done it. You have you Arch Linux
ARM SD card :)

Little networking

I guess you probably have some of “home router” (“box with internet”)
and when you want to connect e.g by Wi-Fi with your laptop or mobile
phone, it just connects (after inserting password). You need to test
first what happens, when you try to connect by ethernet cable, for
example with your laptop. Turn off Wi-Fi and check it. Did your computer
connects to the network (or even internet) as usuall?

If yes, it is great! You can procced. It is what we need - we need RPi,
when it boots up, to automatically connect to the network. Then we will
able to connect to it. You will need one more thing to find out - which
IP address does router assign to you when you connect by cable - it is very
probable that RPi will get very similiar. Don’t be afraid - it
is easy to get IP address [http://apple.stackexchange.com/questions/19783/how-do-i-know-the-ip-addresses-of-other-computers-in-my-network]. On modern systems,
one command :) .

Ok, now you have to insert SD card to RPi and connect it to your router
with ethernet cable and then turn RPi on by inserting power supply. The
diods start flashing. Now back to your computer and we will try to
connect it using SSH. SSH is just “magic power” which enables to
connect to another computer.

RPi is already ready and waits for SSH connection. How to use SSH is supereasy - you will
find a tons of tutorials on the internet (keywords: how to use ssh). IP
address is the probably the one you assigned before. It will be
something like this: 192.168.0.x, 10.0.0.14x or similar. Next
thing you need is username. It’s just “root” (and password also).

If your RPi haven’t got this address (ssh is not working), than there
are two options.

	You will login to your router settings and find out list of all
connected devices with IP addresses and try them.

	Use
nmap [http://www.cyberciti.biz/networking/nmap-command-examples-tutorials/]
to find active devices in your network.

Example You have this address assigned: 192.168.0.201. Then you
have to type (in linux): ssh root@192.168.0.201.

You should now end up in RPi console.

Enough of networking for now. We’ll set a proper network configuration later in this guide, but first some musthaves.

First setup

This is covered over the internet, so I will just redirect you.
elinux [http://elinux.org/ArchLinux_Install_Guide] - from this guide
finish these parts (in RPi console):

	Change root password

	Modify system files

	Mount extra partitions (if you don’t know what it is, nevermind)

	Update system

	Install sudo

	Create regular user account

My usuall procedure (which is strongly related to my needs!):

passwd # change root password to something important
rm -rf /etc/localtime # dont care about this
ln -s /usr/share/zoneinfo/Europe/Prague /etc/localtime # set appropriate timezone
echo "my_raspberry" > /etc/hostname # set name of your RPi

useradd -m -aG wheel -s /usr/bin/bash common_user #
groupadd webdata # for sharing
useradd -M -aG webdata -s /usr/bin/false nginx
usermod -aG webdata common_user

visudo # uncomment this line: %wheel ALL=(ALL) ALL

pacman -Syu

That’s enough for now. Logout from ssh (type exit) and connect
again, but as user who was created. Similiar to previous:
ssh common_user@ip.address. From now, you’ll need to type “sudo” in
front of every command, which is possibly danger. I will warn you in
next chapter.

We must be sure that after reboot RPi will reconnect.

Now try if you are connected to the internet. Type ping 8.8.8.8. If
you don’t see ping: unknown host 8.8.8.8 it’s good! If you do, your
internet connection is not working. Try to find out why - unfortunately
it is not possible to solve it here.

Warning Try also ping google.com. It may not work even pinging
8.8.8.8 worked. The reason is bad DNS servers (doesn’t matter what it
is). To solve this you have to find “DNS servers of your IPS”. Try to
google it. If you find them, add them to resolv.conf.

Reboot you rpi using systemctl reboot. You must be able to connect
to it again after one minute. If not, somthing is wrong… In that case,
you need to find out why connection stoped working - if you have
keyboard and monitor, you can repair it. If not, you can try to edit
mistake on other computer by inserting SD card. Otherwise, reinstall…

Installing some sugar candy

For our purpouses we will install usefull things, which will help as
maintaing the system. So, run this:
pacman -S vim zsh wget ranger htop lynx

Do you see:

error: you cannot perform this operation unless you are root.

Then you need to type sudo pacman -S I will not write it in
future and it is not in other guides. So sometimes you might be confused
whel you’ll read some tutorials and autor implicitly use sudo without
mentioning it.

We will also need these in next chapters:
pacman -S nginx sshguard vsftpd

You can notice that is really few packages! And thats true! Isn’t it
great? No needs of tons of crap in your device.

What are these? Just short summary - you can find more about it in
manual pages (man <name_of_pacakge>) or find something usefull on
the internet. * vim - powerfull text editor (that’s what you will
do 99% of time). First few days are horrible, but keep using it :) .
* zsh - doesn’t matter. Just install it and install
this [https://github.com/robbyrussell/oh-my-zsh] * wget - just
for downloading things without browser * ranger - file manager (you
can browse files, folders…) * htop - task manager - you can see
what tasks are running, how much CPU/MEM is used, kill processes and so
on * lynx - browser - no kidding :)

Some configurations

I assume you installed zsh with oh-my-zsh (changed your shell)
and also vim. You are connected as created user (from now, I will name
him bob). You are in Bob’s home directory - check it with typing
pwd. It will print /home/bob.

Make vim usable

Edit .vimrc file: vim .vimrc and insert this:

syntax on
set number
set ruler
set nocompatible
set ignorecase
set backspace=eol,start,indent
set whichwrap+=<,>,h,l
set smartcase
set hlsearch
set incsearch
set magic
set showmatch
set mat=2
set expandtab
set smarttab
set shiftwidth=4
set tabstop=4
set lbr
set tw=500
set ai
set si
set wrap
set paste
set background=dark
vnoremap <silent> * :call VisualSelection('f')<CR>
vnoremap <silent> # :call VisualSelection('b')<CR>

it will customize vim a bit, so it will be easier to edit files in it.

Journaling

Journaling is one of the most important things you need to have. It just
record everything systemd does. It is part of systemd quite
customizable. We will save journals in memory, because of limited wear
of SD cards. We will also compress them and then limit size for them on
40 MB.

Open file /etc/system/journal.conf and uncomment these lines:

[Journal]
Storage=volatile
Compress=yes
...
RuntimeMaxUse=40M

Network configuration

For reasons I will mention in future, we need to set RPi to connect with
static ip. This will assure that the IP address of RPi will be still
the same and you can connect it. Right now is probably getting
automatically assigned IP address from router (it’s called dhcp).

We will use systemd-networkd.

Type ip addr. It should shows something like this:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
2: ifb0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN group default qlen 32
 link/ether 22:2b:20:5b:8e:b0 brd ff:ff:ff:ff:ff:ff
3: ifb1: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN group default qlen 32
 link/ether 6a:68:fb:64:2f:c3 brd ff:ff:ff:ff:ff:ff
4: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
 link/ether b8:27:eb:2d:25:18 brd ff:ff:ff:ff:ff:ff
 inet 192.168.0.201/24 brd 192.168.0.255 scope global eth0
 valid_lft forever preferred_lft forever

you are interested just in name eth0. If it is there, it is ok. In
future versions of system it can change to something other, for example
enp0s1. Don’t be afraid of it and just use that instead in next
chapters.

In this part you’ll need to get address of your router. How to obtain
it [http://compnetworking.about.com/od/workingwithipaddresses/f/getrouteripaddr.htm]?

And how to choose static address? As you know your
router is assigning IP address automatically (it is called DHCP). But
not randomly in full range. It has some range of IP addresses which it
can assign. Standard is this: router has standard IP adress
192.168.0.1 and assign addresses from 192.168.0.2 to
192.168.0.254. Second standard is 10.0.0.138 for router and it
assignes addresses from 10.0.0.139 to 10.0.0.254. But it can
be anything else.

Interesting - and what the hell should you do that? I suggest to set one
the address on the end from this range. You can notice, that my “eth0”
has IP address 192.168.0.201.

Open this file /etc/systemd/network/ethernet_static.network (how?
just use vim as in the previous - but don’t forgot to use sudo
in front of vim, or you’ll not be able to save it!) and paste this:

[Match]
Name=eth0

[Network]
Address=the.static.address.rpi/24
Gateway=your.router.ip.address

my example:

[Match]
Name=eth0

[Network]
Address=192.168.0.111/24
Gateway=192.168.0.1

Now you need to remove old non-static default profile /etc/systemd/network/eth0.network. Move it to your home folder just to be safe if something didn’t work.

Try to restart RPi and try to SSH again. If you just can’t connect, try to find out if RPi hadn’t connected at all or it just doesn’t use IP specified IP address (try to ssh to old IP, look into your router DHCP table, nmap…). If you want to get it back, just turn off RPi (plug off the power cable), take out SD card, plug in to your PC, move eth0.network from home directory to /etc/systemd/network/, turn RPi back and try it again.

If you successfuly connected, check how is systemd-networkd doing. To find out, type: systemctl status systemd-networkd. Does it
shows “active (running)” and something like gained carrier?

â systemd-networkd.service - Network Service
 Loaded: loaded (/usr/lib/systemd/system/systemd-networkd.service; enabled)
 Active: active (running) since Wed 2014-06-11 18:42:13 CEST; 2 weeks 1 days ago
 Docs: man:systemd-networkd.service(8)
 Main PID: 213 (systemd-network)
 Status: "Processing requests..."
 CGroup: /system.slice/systemd-networkd.service
 ââ213 /usr/lib/systemd/systemd-networkd

Jun 17 17:52:01 smecpi systemd-networkd[213]: eth0: lost carrier
Jun 17 17:52:02 smecpi systemd-networkd[213]: eth0: gained carrier

Timesynchronization

You’ve maybe noticed that time is quite weird on your RPi. It is beacuse
it does not have real hardware clock. Every time RPi is waken up, it
thinks that is June 1970. You don’t have to care about it, but after
boot it would be fine that time is correctly set. You can do it by using
really great part of systemd. Go ahead and check service that
takes care about that: systemctl status systemd-timesyncd.

Configuring SSH

We will open RPi to world and in that case we need to secure it a bit.
Service, which takes care about SSH is called sshd. “Where” it is?
It is runned by systemd, so systemctl status sshd will show you some
info :). We will configure it a bit. This is not necessary, but highly
recommended! Brutal force attacks are really common (hundreds every day
on my little unimportant server).

Open file /etc/ssh/sshd_config and edit or add these lines as
follows:

Port 1234
PermitRootLogin no
PubkeyAuthentication yes

that’t enough. Restart sshd systemctl restart sshd.

Since now, you cannot login as a root by ssh and thats good. Also - we
changed the port of ssh. Think about “port” as a tunnel, which is used
for ssh. There are about 60 thousands of them and you can choose
whatever you want. As default there is port 22 used for ssh. We now
changed that to (example) 1234. It is because on port 22 there is to big
chance that someone will try to brutal force your credentials.

Since now, only ssh bob@ipadress is not enough. You will have to add
port which should be used (in default is assumed port 22).
ssh -p 1234 bob@ip.address will do it for you :) .

If you want to be really safe, the next thing you want to do is set up sshguard. More about it
here [https://wiki.ArchLinux.org/index.php/Sshguard]. You don’t need
more :) . Just remember to use your port (in my case 1234) for settings. Personally I stopped to use it, since just changing port what SSH use was enough to reduce uninvited connections.

It is anoying still typing same username and password when we want to
connect to RPi. And now, we have to add “-p 1234” also. We will make it
automatic. Here [http://www.linuxproblem.org/art_9.html] is quite
good guide how to do it. On PC from which you are connecting (no RPi),
edit ~/.ssh/config to this:

Host my_superpc
 HostName ipaddressofRPi
 IdentityFile /home/yourusername/.ssh/name_of_identityfile
 User bob
 port 1234

since now, when you wan’t to connect to RPi you can just type
ssh my_superpc and it will take care about rest.

Screen

You can live without that, but you shouldn’t! It makes you
more productive and you don’t need to be afraid of some mishmash caused
by accidently closing terminal during update or lossing connection.
Learn more about what the screen is
(here [http://www.tecmint.com/screen-command-examples-to-manage-linux-terminals/],
here [https://wiki.ArchLinux.org/index.php/GNU_Screen] and
here [http://www.thegeekstuff.com/2010/07/screen-command-examples/]),
install it (pacman -S screen), use it and love it.

It can be handy to automatically ssh into screen sesion. For that I use
this command (from PC I want to connect to RPi):

ssh my_superpc -t screen -dRS "mainScreen". You can make some alias
to something shorter (for example adding this to
alias ssh_connect_RPI="ssh my_superpc -t screen -dRUS mainScreen"
in .zshrc). Now all you need to do is type ssh_connect_RPI - it here
is now screen created, it will create new one. If it is, it will attach
it.

Speeding RPi up

Arch Linux ARM for RPi is prepared to be tweaked. And now it is possible
to speed RPi up by overclocking it’s processor without avoiding your
waranty. How to do it? Just edit file /boot/config.txt and find this
part:

##None
arm_freq=700
core_freq=250
sdram_freq=400
over_voltage=0

now comment it out. That means to add “#” in front of every line.
From now, it will be treated as text and not command. It will look like
this:

##None
#arm_freq=700
#core_freq=250
#sdram_freq=400
#over_voltage=0

and now uncoment this:

##Turbo
arm_freq=1000
core_freq=500
sdram_freq=500
over_voltage=6

After next boot your RPi will be able to get even to the 1000 MHz. That
means it is faster.

Other tweaks of /boot/config.txt

Since you don’t need any of gpu memory - which cares about shiny things
like windows etc., you can disable it in favor of the rest of memory
which we use. Don’t do this if you want to use monitor.

gpu_mem=16
#gpu_mem_512=316
#gpu_mem_256=128
#cma_lwm=16
#cma_hwm=32
#cma_offline_start=16

Making RPi visible from outside

Now we need to configure access from outside. You will need to configure
you router. You have to make a “port forwarding”. Remember port from
ssh? I told you to think about them as a tunnels. These tunnels are also
handy when you need to find out what is on there end.

What we will do here is this: We want to be able from anywhere on the
internet connect to our RPi server.

Example? ssh -p 1234 bob@what.the.hell.is.here. You know? There is
definetely not your local address (the one with 192.168…). There must
be your “public” IP address (more about this in Domains - take a
look there). But this public address points to your router (if you are
lucky). Where does it go next?

With every request there is also a port. With command ssh smt, you
are sending username, port (standard 22, if not otherwise stated) and IP
address. Ip address redirect it to router. Now router takes port and
looks to it’s internal database. In this database are pairs: port -
internal_ipaddress. For some port there is IP address, which it
redirects to. In another worlds: if router gets some request from
specific port (say, 1234) and it has in it’s database IP address

to which it has to redirect, it redirects this request there. In our
case, we need to redirect these ports we want (for example 1234 for ssh)
to RPi. So find a port forwarding settings for your router
(this [http://portforward.com/] might be helpful) and set there port
forward from port you setted for ssh to RPi. You can check if your port
is open (it means it accepts requests
here [http://www.yougetsignal.com/tools/open-ports/].

Since now, you can ssh from anywhere.

Webserver

Setting up nginx

Similiar to ssh handling sshish requests, Nginx is handling almost
everything else and even… WebServers! Install nginx with
pacman -S nginx. For security reasons create special user for it,
for example using: useradd -m -G wheel -s /usr/bin/zsh nginx and
also group groupadd webdata. Now create some folder for it. It can
be mkdir /var/www/ and now make them owners
chown nginx:webdata /var/www. Of course, enable and start nginx.

systemctl enable nginx. It will start after boot.

Now port forward port number 80 to RPi on your router.

Open /etc/nginx/nginx.conf, it can looks like this:

user nginx;
worker_processes 1;

error_log /var/log/nginx/error.log warn;

events {
 worker_connections 1024;
}

http {
 include mime.types;
 default_type application/octet-stream;
 server_names_hash_bucket_size 64;

 sendfile on;

 keepalive_timeout 15;

 server{
 listen 80;
 server_name ~^xxx.xxx.xxx.xxx(.*)$;

 location / {
 root /var/www/$1;
 index index.html index.htm;
 }
 }

}

next, create /var/www/test/index.html:

<html>
 <head>
 <title>Sample "Hello, World" Application</title>
 </head>
 <body bgcolor=white>

 <table border="0" cellpadding="10">
 <tr>
 <td>
 <h1>Sample "Hello, World" Application</h1>
 </td>
 </tr>
 </table>

 <p>This is the home page for the HelloWorld Web application. </p>
 <p>To prove that they work, you can execute either of the following links:

 To a JSP page.
 To a servlet.

 </body>
</html>

where xxx.xxx.xxx.xxx should be your public address. This will do this:
when you type in your browser “youripaddress/test:80”, you should see
index Hello world example. Try that without :80 - it will do the
same! Default port for webpages is 80 (similiar to 22 for SSH). So
it can be omited.

FTP

This will cover the most easy solution for FTP. Don’t use this
configuration in real, just for test purpouses. If you didn’t download
vsftp, do it now by pacman -S vsftp. Now we will create some
directory where all files and users will end up after connecting. Let it
be in /var/www/test. Now edit /etc/vsftpd.conf and add on the
top this line:

anon_root=/var/www/test

and make sure that this line is uncommented:

anonymous_enable=YES

and just start it: systemctl start vsftpd.

Now we’ll tell nginx about that. Add this to servers confs in
/etc/nginx/nginx.conf.

server{
 listen 80;
 server_name ~^123.123.32.13(.*)$;
 location / {
 ssi on;
 root /var/www/$1;
 index index.html index.htm;
 }
}

where you need to replace IP address in server_name directive to
your public IP.

What this little configuration does? It’s simple. Every time you type to
your brower your IP address and somthing behind it, it will transfer you
to this “something” in /var/www/.

Example I created index.html here /var/www/example/index.html. I
now type 123.123.32.13/test to my browser and voila!

This nginx configuration isn’t neccessary in our ftp example (it could
be simpler), but I just like it…

You can now connect to ftp by typing this in your browser:
ftp://your_ip_address or use your favorite FTP client (e.g.
filezilla).

CAUTION - again, don’t use this settings as default. There are great
guides on the internet how to grant access only some users, password
protected etc.

System analyzing and cleaning

Use your friend systemd-analyze. It will show you which units
load really long time. Also systemctl status is great for finding failed
units.

Disable things that you dont need

I guess you don’t use ipv6 (if you don’t know what it is, you don’t need
it :D). systemctl disable ip6tables. In case you use sshguard, you
need also edit file /cat /usr/lib/systemd/system/sshguard.service
and from Wants delete ip6tables.service.

Usefull utilites

Simple to use, just install them and run:

	nmon - for internet usage

	htop - for disk usage

Torrents

Your RPi is maybe running 24/7, so why not to use it for torrents? But
how, when there is no GUI? It’s pretty simple. We will use transmission
- popular torrent client. Install it by pacman -S transmission-cli
Installation should create a new user and group, called transmission. To
check that, you can take a look to /etc/passwd and /etc/group.
transmission will be runned by systemd. Let’s see it it’s
service file is configured properly. Check
/usr/lib/systemd/system/transmission.service:

[Unit]
Description=Transmission BitTorrent Daemon
After=network.target

[Service]
User=transmission
Type=notify
ExecStart=/usr/bin/transmission-daemon -f --log-error
ExecReload=/bin/kill -s HUP $MAINPID

[Install]
WantedBy=multi-user.target

User=transmission is important here (for security reasons). Next
thing we need to do is check, if transmission has place where it will
live. By default it is in /var/lib/transmission(-daemon). In this
dir should be also config file settings.json. There lays
configuration for it.Edit it ass you wish. It is covered
here [https://trac.transmissionbt.com/wiki/ConfigFiles] and
here [https://trac.transmissionbt.com/wiki/EditConfigFiles]. Maybe
you’ll need to forward ports as we did in previous chapters, you should
make that again without problems :) . No we can run transmission
daemon by systemctl start transmission. Now you can give it commands
using transmission-remote . The most usefull (and that’s all I need to
know and use :)) are these:

	transmission-remote <port> -a "magnetlink/url" - adds torrent and
starts download it

	transmission-remote <port> -l - list all torrents that are
currently running

files should be stored in /var/lib/transmission/Downloads. It can be
configured in config file :) .

Backups

For backups I choosed rdiff-backup. It’s so stupid but works
(almost) as expected. More about it’s usage you can find in it’s manual
pages. For my example I’ll redirect you to dir with configs in this
repo. These are inserted to cron (you have it by default installed)
to do SSH backup every day in 4AM. If I’m on local network I also do
backup to my disc on other PC.

Final

That’s all for now! I will see if this is used by someone and than I
will see if I will continue.

Troubleshooting

	RPi don’t boot - unplug everything from USB ports (there may be not
enough of power to boot up and supply USB)

Making Raspberry Pi usable

Introduction

After 8 months of using RPi, I decided to make second version of this tutorial for same
people as I’m - who looks for easy, understandable way to make RPi as
awesome as possible. Several things have changed since last realease of this tutorial, so I decided to rewrite some parts and also to delete some parts which are not necessary today.

In this tutorial I will walk you through whole process of making from
Raspberry Pi secure, reliable, efficient, fast and easy to maintain
server for variable purposes as is FTP, web hosting, sharing… All
that thanks to Arch Linux ARM operating system. The device will be
“headless” - it means, there will be no fancy windows etc., just command
line. Don’t be scared, I will walk you through and you’ll thank me then
:) . You don’t need some special knowledge about computers and linux
systems.

What you get

From “bare” RPi you’ll get:

	Safely to connect to your RPi from anywhere

	Possibility of hosting web pages, files, etc.

	Readable and reliable system (it will do what you want and nothing
more)

What you will need

	Raspberry Pi (doesn’t matter which model) with power supply

	SD Card as a main hardisk for RPi

	SD Card reader on computer with internet access

	Ethernet LAN cable or USB Wi-Fi bundle

	Other computer (preferably with linux, but nevermind if you use
Windows or Mac)

	Possibility to physically get to your router and know credentials to
login to it (or have contact to your network administrator :))

	Few hours of work

What you don’t need

	Monitor or ability to connect RPi to some monitor

	Keyboard or mouse connected to your RPi

Start

So you have just bare RPi, SD card, power supply, ethernet cable
(RJ-45). So let’s start! There are houndreds of guides, but I haven’t
found them satisfaing.

Installing Arch Linux ARM to SD card

Go here [http://ArchLinuxarm.org/platforms/armv6/raspberry-pi], choose installation and
make first 3 steps. That’s it! You have done it. You have you Arch Linux
ARM SD card :)

Little networking

I guess you probably have some of “home router” (“box with internet”)
and when you want to connect e.g by Wi-Fi with your laptop or mobile
phone, it just connects (after inserting password). You need to test
first what happens, when you try to connect by ethernet cable, for
example with your laptop. Turn off Wi-Fi and check it. Did your computer
connects to the network (or even internet) as usuall?

If yes, it is great! You can procced. It is what we need - we need RPi,
when it boots up, to automatically connect to the network. Then we will
able to connect to it. You will need one more thing to find out - which
IP address does router assign to you when you connect by cable - it is very
probable that RPi will get very similiar. Don’t be afraid - it
is easy to get IP address [http://apple.stackexchange.com/questions/19783/how-do-i-know-the-ip-addresses-of-other-computers-in-my-network]. On modern systems,
one command :) .

Ok, now you have to insert SD card to RPi and connect it to your router
with ethernet cable and then turn RPi on by inserting power supply. The
diods start flashing. Now back to your computer and we will try to
connect it using SSH. SSH is just “magic power” which enables to
connect to another computer.

RPi is already ready and waits for SSH connection. How to use SSH is supereasy - you will
find a tons of tutorials on the internet (keywords: how to use ssh). IP
address is the probably the one you assigned before. It will be
something like this: 192.168.0.x, 10.0.0.14x or similar. Next
thing you need is username. It’s just “root” (and password also).

If your RPi haven’t got this address (ssh is not working), than there
are two options.

	You will login to your router settings and find out list of all
connected devices with IP addresses and try them.

	Use
nmap [http://www.cyberciti.biz/networking/nmap-command-examples-tutorials/]
to find active devices in your network.

Example You have this address assigned: 192.168.0.201. Then you
have to type (in linux): ssh root@192.168.0.201.

You should now end up in RPi console.

Enough of networking for now. We’ll set a proper network configuration later in this guide, but first some musthaves.

First setup

This is covered over the internet, so I will just redirect you.
elinux [http://elinux.org/ArchLinux_Install_Guide] - from this guide
finish these parts (in RPi console):

	Change root password

	Modify system files

	Mount extra partitions (if you don’t know what it is, nevermind)

	Update system

	Install sudo

	Create regular user account

My usuall procedure (which is strongly related to my needs!):

passwd # change root password to something important
rm -rf /etc/localtime # dont care about this
ln -s /usr/share/zoneinfo/Europe/Prague /etc/localtime # set appropriate timezone
echo "my_raspberry" > /etc/hostname # set name of your RPi

useradd -m -aG wheel -s /usr/bin/bash common_user #
groupadd webdata # for sharing
useradd -M -aG webdata -s /usr/bin/false nginx
usermod -aG webdata common_user

visudo # uncomment this line: %wheel ALL=(ALL) ALL

pacman -Syu

That’s enough for now. Logout from ssh (type exit) and connect
again, but as user who was created. Similiar to previous:
ssh common_user@ip.address. From now, you’ll need to type “sudo” in
front of every command, which is possibly danger. I will warn you in
next chapter.

We must be sure that after reboot RPi will reconnect.

Now try if you are connected to the internet. Type ping 8.8.8.8. If
you don’t see ping: unknown host 8.8.8.8 it’s good! If you do, your
internet connection is not working. Try to find out why - unfortunately
it is not possible to solve it here.

Warning Try also ping google.com. It may not work even pinging
8.8.8.8 worked. The reason is bad DNS servers (doesn’t matter what it
is). To solve this you have to find “DNS servers of your IPS”. Try to
google it. If you find them, add them to resolv.conf.

Reboot you rpi using systemctl reboot. You must be able to connect
to it again after one minute. If not, somthing is wrong… In that case,
you need to find out why connection stoped working - if you have
keyboard and monitor, you can repair it. If not, you can try to edit
mistake on other computer by inserting SD card. Otherwise, reinstall…

Installing some sugar candy

For our purpouses we will install usefull things, which will help as
maintaing the system. So, run this:
pacman -S vim zsh wget ranger htop lynx

Do you see:

error: you cannot perform this operation unless you are root.

Then you need to type sudo pacman -S I will not write it in
future and it is not in other guides. So sometimes you might be confused
whel you’ll read some tutorials and autor implicitly use sudo without
mentioning it.

We will also need these in next chapters:
pacman -S nginx sshguard vsftpd

You can notice that is really few packages! And thats true! Isn’t it
great? No needs of tons of crap in your device.

What are these? Just short summary - you can find more about it in
manual pages (man <name_of_pacakge>) or find something usefull on
the internet. * vim - powerfull text editor (that’s what you will
do 99% of time). First few days are horrible, but keep using it :) .
* zsh - doesn’t matter. Just install it and install
this [https://github.com/robbyrussell/oh-my-zsh] * wget - just
for downloading things without browser * ranger - file manager (you
can browse files, folders…) * htop - task manager - you can see
what tasks are running, how much CPU/MEM is used, kill processes and so
on * lynx - browser - no kidding :)

Some configurations

I assume you installed zsh with oh-my-zsh (changed your shell)
and also vim. You are connected as created user (from now, I will name
him bob). You are in Bob’s home directory - check it with typing
pwd. It will print /home/bob.

Make vim usable

Edit .vimrc file: vim .vimrc and insert this:

syntax on
set number
set ruler
set nocompatible
set ignorecase
set backspace=eol,start,indent
set whichwrap+=<,>,h,l
set smartcase
set hlsearch
set incsearch
set magic
set showmatch
set mat=2
set expandtab
set smarttab
set shiftwidth=4
set tabstop=4
set lbr
set tw=500
set ai
set si
set wrap
set paste
set background=dark
vnoremap <silent> * :call VisualSelection('f')<CR>
vnoremap <silent> # :call VisualSelection('b')<CR>

it will customize vim a bit, so it will be easier to edit files in it.

Journaling

Journaling is one of the most important things you need to have. It just
record everything systemd does. It is part of systemd quite
customizable. We will save journals in memory, because of limited wear
of SD cards. We will also compress them and then limit size for them on
40 MB.

Open file /etc/system/journal.conf and uncomment these lines:

[Journal]
Storage=volatile
Compress=yes
...
RuntimeMaxUse=40M

Network configuration

For reasons I will mention in future, we need to set RPi to connect with
static ip. This will assure that the IP address of RPi will be still
the same and you can connect it. Right now is probably getting
automatically assigned IP address from router (it’s called dhcp).

We will use systemd-networkd.

Type ip addr. It should shows something like this:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
2: ifb0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN group default qlen 32
 link/ether 22:2b:20:5b:8e:b0 brd ff:ff:ff:ff:ff:ff
3: ifb1: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN group default qlen 32
 link/ether 6a:68:fb:64:2f:c3 brd ff:ff:ff:ff:ff:ff
4: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
 link/ether b8:27:eb:2d:25:18 brd ff:ff:ff:ff:ff:ff
 inet 192.168.0.201/24 brd 192.168.0.255 scope global eth0
 valid_lft forever preferred_lft forever

you are interested just in name eth0. If it is there, it is ok. In
future versions of system it can change to something other, for example
enp0s1. Don’t be afraid of it and just use that instead in next
chapters.

In this part you’ll need to get address of your router. How to obtain
it [http://compnetworking.about.com/od/workingwithipaddresses/f/getrouteripaddr.htm]?

And how to choose static address? As you know your
router is assigning IP address automatically (it is called DHCP). But
not randomly in full range. It has some range of IP addresses which it
can assign. Standard is this: router has standard IP adress
192.168.0.1 and assign addresses from 192.168.0.2 to
192.168.0.254. Second standard is 10.0.0.138 for router and it
assignes addresses from 10.0.0.139 to 10.0.0.254. But it can
be anything else.

Interesting - and what the hell should you do that? I suggest to set one
the address on the end from this range. You can notice, that my “eth0”
has IP address 192.168.0.201.

Open this file /etc/systemd/network/ethernet_static.network (how?
just use vim as in the previous - but don’t forgot to use sudo
in front of vim, or you’ll not be able to save it!) and paste this:

[Match]
Name=eth0

[Network]
Address=the.static.address.rpi/24
Gateway=your.router.ip.address

my example:

[Match]
Name=eth0

[Network]
Address=192.168.0.111/24
Gateway=192.168.0.1

Now you need to remove old non-static default profile /etc/systemd/network/eth0.network. Move it to your home folder just to be safe if something didn’t work.

Try to restart RPi and try to SSH again. If you just can’t connect, try to find out if RPi hadn’t connected at all or it just doesn’t use IP specified IP address (try to ssh to old IP, look into your router DHCP table, nmap…). If you want to get it back, just turn off RPi (plug off the power cable), take out SD card, plug in to your PC, move eth0.network from home directory to /etc/systemd/network/, turn RPi back and try it again.

If you successfuly connected, check how is systemd-networkd doing. To find out, type: systemctl status systemd-networkd. Does it
shows “active (running)” and something like gained carrier?

â systemd-networkd.service - Network Service
 Loaded: loaded (/usr/lib/systemd/system/systemd-networkd.service; enabled)
 Active: active (running) since Wed 2014-06-11 18:42:13 CEST; 2 weeks 1 days ago
 Docs: man:systemd-networkd.service(8)
 Main PID: 213 (systemd-network)
 Status: "Processing requests..."
 CGroup: /system.slice/systemd-networkd.service
 ââ213 /usr/lib/systemd/systemd-networkd

Jun 17 17:52:01 smecpi systemd-networkd[213]: eth0: lost carrier
Jun 17 17:52:02 smecpi systemd-networkd[213]: eth0: gained carrier

Timesynchronization

You’ve maybe noticed that time is quite weird on your RPi. It is beacuse
it does not have real hardware clock. Every time RPi is waken up, it
thinks that is June 1970. You don’t have to care about it, but after
boot it would be fine that time is correctly set. You can do it by using
really great part of systemd. Go ahead and check service that
takes care about that: systemctl status systemd-timesyncd.

Configuring SSH

We will open RPi to world and in that case we need to secure it a bit.
Service, which takes care about SSH is called sshd. “Where” it is?
It is runned by systemd, so systemctl status sshd will show you some
info :). We will configure it a bit. This is not necessary, but highly
recommended! Brutal force attacks are really common (hundreds every day
on my little unimportant server).

Open file /etc/ssh/sshd_config and edit or add these lines as
follows:

Port 1234
PermitRootLogin no
PubkeyAuthentication yes

that’t enough. Restart sshd systemctl restart sshd.

Since now, you cannot login as a root by ssh and thats good. Also - we
changed the port of ssh. Think about “port” as a tunnel, which is used
for ssh. There are about 60 thousands of them and you can choose
whatever you want. As default there is port 22 used for ssh. We now
changed that to (example) 1234. It is because on port 22 there is to big
chance that someone will try to brutal force your credentials.

Since now, only ssh bob@ipadress is not enough. You will have to add
port which should be used (in default is assumed port 22).
ssh -p 1234 bob@ip.address will do it for you :) .

If you want to be really safe, the next thing you want to do is set up sshguard. More about it
here [https://wiki.ArchLinux.org/index.php/Sshguard]. You don’t need
more :) . Just remember to use your port (in my case 1234) for settings. Personally I stopped to use it, since just changing port what SSH use was enough to reduce uninvited connections.

It is anoying still typing same username and password when we want to
connect to RPi. And now, we have to add “-p 1234” also. We will make it
automatic. Here [http://www.linuxproblem.org/art_9.html] is quite
good guide how to do it. On PC from which you are connecting (no RPi),
edit ~/.ssh/config to this:

Host my_superpc
 HostName ipaddressofRPi
 IdentityFile /home/yourusername/.ssh/name_of_identityfile
 User bob
 port 1234

since now, when you wan’t to connect to RPi you can just type
ssh my_superpc and it will take care about rest.

Screen

You can live without that, but you shouldn’t! It makes you
more productive and you don’t need to be afraid of some mishmash caused
by accidently closing terminal during update or lossing connection.
Learn more about what the screen is
(here [http://www.tecmint.com/screen-command-examples-to-manage-linux-terminals/],
here [https://wiki.ArchLinux.org/index.php/GNU_Screen] and
here [http://www.thegeekstuff.com/2010/07/screen-command-examples/]),
install it (pacman -S screen), use it and love it.

It can be handy to automatically ssh into screen sesion. For that I use
this command (from PC I want to connect to RPi):

ssh my_superpc -t screen -dRS "mainScreen". You can make some alias
to something shorter (for example adding this to
alias ssh_connect_RPI="ssh my_superpc -t screen -dRUS mainScreen"
in .zshrc). Now all you need to do is type ssh_connect_RPI - it here
is now screen created, it will create new one. If it is, it will attach
it.

Speeding RPi up

Arch Linux ARM for RPi is prepared to be tweaked. And now it is possible
to speed RPi up by overclocking it’s processor without avoiding your
waranty. How to do it? Just edit file /boot/config.txt and find this
part:

##None
arm_freq=700
core_freq=250
sdram_freq=400
over_voltage=0

now comment it out. That means to add “#” in front of every line.
From now, it will be treated as text and not command. It will look like
this:

##None
#arm_freq=700
#core_freq=250
#sdram_freq=400
#over_voltage=0

and now uncoment this:

##Turbo
arm_freq=1000
core_freq=500
sdram_freq=500
over_voltage=6

After next boot your RPi will be able to get even to the 1000 MHz. That
means it is faster.

Other tweaks of /boot/config.txt

Since you don’t need any of gpu memory - which cares about shiny things
like windows etc., you can disable it in favor of the rest of memory
which we use. Don’t do this if you want to use monitor.

gpu_mem=16
#gpu_mem_512=316
#gpu_mem_256=128
#cma_lwm=16
#cma_hwm=32
#cma_offline_start=16

Making RPi visible from outside

Now we need to configure access from outside. You will need to configure
you router. You have to make a “port forwarding”. Remember port from
ssh? I told you to think about them as a tunnels. These tunnels are also
handy when you need to find out what is on there end.

What we will do here is this: We want to be able from anywhere on the
internet connect to our RPi server.

Example? ssh -p 1234 bob@what.the.hell.is.here. You know? There is
definetely not your local address (the one with 192.168…). There must
be your “public” IP address (more about this in Domains - take a
look there). But this public address points to your router (if you are
lucky). Where does it go next?

With every request there is also a port. With command ssh smt, you
are sending username, port (standard 22, if not otherwise stated) and IP
address. Ip address redirect it to router. Now router takes port and
looks to it’s internal database. In this database are pairs: port -
internal_ipaddress. For some port there is IP address, which it
redirects to. In another worlds: if router gets some request from
specific port (say, 1234) and it has in it’s database IP address

to which it has to redirect, it redirects this request there. In our
case, we need to redirect these ports we want (for example 1234 for ssh)
to RPi. So find a port forwarding settings for your router
(this [http://portforward.com/] might be helpful) and set there port
forward from port you setted for ssh to RPi. You can check if your port
is open (it means it accepts requests
here [http://www.yougetsignal.com/tools/open-ports/].

Since now, you can ssh from anywhere.

Webserver

Setting up nginx

Similiar to ssh handling sshish requests, Nginx is handling almost
everything else and even… WebServers! Install nginx with
pacman -S nginx. For security reasons create special user for it,
for example using: useradd -m -G wheel -s /usr/bin/zsh nginx and
also group groupadd webdata. Now create some folder for it. It can
be mkdir /var/www/ and now make them owners
chown nginx:webdata /var/www. Of course, enable and start nginx.

systemctl enable nginx. It will start after boot.

Now port forward port number 80 to RPi on your router.

Open /etc/nginx/nginx.conf, it can looks like this:

user nginx;
worker_processes 1;

error_log /var/log/nginx/error.log warn;

events {
 worker_connections 1024;
}

http {
 include mime.types;
 default_type application/octet-stream;
 server_names_hash_bucket_size 64;

 sendfile on;

 keepalive_timeout 15;

 server{
 listen 80;
 server_name ~^xxx.xxx.xxx.xxx(.*)$;

 location / {
 root /var/www/$1;
 index index.html index.htm;
 }
 }

}

next, create /var/www/test/index.html:

<html>
 <head>
 <title>Sample "Hello, World" Application</title>
 </head>
 <body bgcolor=white>

 <table border="0" cellpadding="10">
 <tr>
 <td>
 <h1>Sample "Hello, World" Application</h1>
 </td>
 </tr>
 </table>

 <p>This is the home page for the HelloWorld Web application. </p>
 <p>To prove that they work, you can execute either of the following links:

 To a JSP page.
 To a servlet.

 </body>
</html>

where xxx.xxx.xxx.xxx should be your public address. This will do this:
when you type in your browser “youripaddress/test:80”, you should see
index Hello world example. Try that without :80 - it will do the
same! Default port for webpages is 80 (similiar to 22 for SSH). So
it can be omited.

FTP

This will cover the most easy solution for FTP. Don’t use this
configuration in real, just for test purpouses. If you didn’t download
vsftp, do it now by pacman -S vsftp. Now we will create some
directory where all files and users will end up after connecting. Let it
be in /var/www/test. Now edit /etc/vsftpd.conf and add on the
top this line:

anon_root=/var/www/test

and make sure that this line is uncommented:

anonymous_enable=YES

and just start it: systemctl start vsftpd.

Now we’ll tell nginx about that. Add this to servers confs in
/etc/nginx/nginx.conf.

server{
 listen 80;
 server_name ~^123.123.32.13(.*)$;
 location / {
 ssi on;
 root /var/www/$1;
 index index.html index.htm;
 }
}

where you need to replace IP address in server_name directive to
your public IP.

What this little configuration does? It’s simple. Every time you type to
your brower your IP address and somthing behind it, it will transfer you
to this “something” in /var/www/.

Example I created index.html here /var/www/example/index.html. I
now type 123.123.32.13/test to my browser and voila!

This nginx configuration isn’t neccessary in our ftp example (it could
be simpler), but I just like it…

You can now connect to ftp by typing this in your browser:
ftp://your_ip_address or use your favorite FTP client (e.g.
filezilla).

CAUTION - again, don’t use this settings as default. There are great
guides on the internet how to grant access only some users, password
protected etc.

System analyzing and cleaning

Use your friend systemd-analyze. It will show you which units
load really long time. Also systemctl status is great for finding failed
units.

Disable things that you dont need

I guess you don’t use ipv6 (if you don’t know what it is, you don’t need
it :D). systemctl disable ip6tables. In case you use sshguard, you
need also edit file /cat /usr/lib/systemd/system/sshguard.service
and from Wants delete ip6tables.service.

Usefull utilites

Simple to use, just install them and run:

	nmon - for internet usage

	htop - for disk usage

Torrents

Your RPi is maybe running 24/7, so why not to use it for torrents? But
how, when there is no GUI? It’s pretty simple. We will use transmission
- popular torrent client. Install it by pacman -S transmission-cli
Installation should create a new user and group, called transmission. To
check that, you can take a look to /etc/passwd and /etc/group.
transmission will be runned by systemd. Let’s see it it’s
service file is configured properly. Check
/usr/lib/systemd/system/transmission.service:

[Unit]
Description=Transmission BitTorrent Daemon
After=network.target

[Service]
User=transmission
Type=notify
ExecStart=/usr/bin/transmission-daemon -f --log-error
ExecReload=/bin/kill -s HUP $MAINPID

[Install]
WantedBy=multi-user.target

User=transmission is important here (for security reasons). Next
thing we need to do is check, if transmission has place where it will
live. By default it is in /var/lib/transmission(-daemon). In this
dir should be also config file settings.json. There lays
configuration for it.Edit it ass you wish. It is covered
here [https://trac.transmissionbt.com/wiki/ConfigFiles] and
here [https://trac.transmissionbt.com/wiki/EditConfigFiles]. Maybe
you’ll need to forward ports as we did in previous chapters, you should
make that again without problems :) . No we can run transmission
daemon by systemctl start transmission. Now you can give it commands
using transmission-remote . The most usefull (and that’s all I need to
know and use :)) are these:

	transmission-remote <port> -a "magnetlink/url" - adds torrent and
starts download it

	transmission-remote <port> -l - list all torrents that are
currently running

files should be stored in /var/lib/transmission/Downloads. It can be
configured in config file :) .

Backups

For backups I choosed rdiff-backup. It’s so stupid but works
(almost) as expected. More about it’s usage you can find in it’s manual
pages. For my example I’ll redirect you to dir with configs in this
repo. These are inserted to cron (you have it by default installed)
to do SSH backup every day in 4AM. If I’m on local network I also do
backup to my disc on other PC.

Final

That’s all for now! I will see if this is used by someone and than I
will see if I will continue.

Troubleshooting

	RPi don’t boot - unplug everything from USB ports (there may be not
enough of power to boot up and supply USB)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to LSA’s ZZ-Gripper

 		
 Setting Up the Hardware

 		
 Hardware Specification

 		
 Setting Up the Software

 		
 Installing the OS

 		
 Pre Built Image

 		
 Prepare yourself the Image

 		
 Setting Up the OS

 		
 Installing ROS

 		
 About ROS

 		
 How to install the driver and its depedencies

 		
 Hooking Up Peripherals to the Rpi board

 		
 Installing the Raspicam

 		
 Installing the ADC - Analog digital converter

 		
 Installing the ADC sensor

 		
 LSA Contributors

_images/zz-gripper-turtle-rasp.jpg

_images/zz-gripper-turtle.jpg

_images/schematics.jpg
Conversor ADC
Adafruit #1085

®
EEEEE0
Lo] S

.
.
.
o
.
.
.
.
.
.
.
.

T oo‘iO oo Cl.

GPIO

o GEEEEED ¢ ¢ ¢ o

e o o
e o0 00
e o0 00
e o 0 00

Raspberry Pi Model B+ V1.2
© Raspberry Pi 2014

.

Flex sensor

12V 1A

Motor DC Pololu 50

~
2]
4
a
=
=
m
o
>

ETHERNET

fritzing

