

 Navigation

 	
 index

 	
 modules |

 	zyklop 0.5 documentation

Zyklop ◎

This program is a wrapper around rsync. It will help you:

	if you need to sync files from remote server frequently

	No need to keep the location of the file in your mind. It finds
them for you.

Requirements

	Python >= 2.6 (Python >= 2.7 for tests)

	rsync installed

	locate installed with up-to-date database on the remote system

First Steps

If you are new to ssh, setup an ssh configuration first. If you are
dealing with a lot of servers, giving them an alias makes it easier to
remember.

	Create an ssh configuration in your SSH home, e.g.:

vim ~/.ssh/config

You can use the following example as a starter:

Host spameggs
Hostname 12.112.11.122
Compression yes
CompressionLevel 9
User guido

but be sure to check the documentation [https://duckduckgo.com/?q=ssh+config+documentation&t=canonical]
or the man page (5) for ssh_config

	Make the config only readable for the owner:

chmod 600 ~/.ssh/config

	Test if you can login to your configured host using only your
alias:

ssh spameggs

	Test if locate works on the remote server by searching for a test
directory (here called findmesomething):

locate findmesomething

	Now you can copy/sync findmesomething with zyklop:

zyklop spameggs:findmesomething .

Examples

	Syncing a ZODB from remote server configured in ~/.ssh/config
as spameggs. We choose not the first database, but the second:

$ zyklop spameggs:Data.fs .
Use /opt/otherbuildout/var/filestorage/Data.fs? Y(es)/N(o)/A(bort) n
Use /opt/buildout/var/filestorage/Data.fs? Y(es)/N(o)/A(bort) y

	Syncing a directory providing a path segment:

$ zyklop spameggs:buildout/var/filestorage$.

	Syncing a directory which ends with blobstorage`, excluding any
other blobstorage directories with postfixes in the name (e.g.
blobstorage.old):

$ zyklop spameggs:blobstorage$.

	Use an absolute path if you know exactly where to copy from:

$ zyklop spameggs:/tmp/Data.fs .

	Syncing a directory which needs higher privileges. We use the
-s argument:

$ zyklop -s spameggs:blobstorage$.

	Dry run prints out all found remote paths and just exits:

$ zyklop -d spameggs:blobstorage$.
/opt/otherbuildout/var/blobstorage
/opt/otherbuildout/var/blobstorage.old
/opt/buildout/var/blobstorag

	Sync the first result zyklop finds automatically without
prompting:

$ zyklop -y spameggs:blobstorage$.

Known Problems

	Zyklop just hangs

	This can be caused by paramiko and a not sufficient SSH setup. Make
sure you can login without problems by simply issuing a:

ssh myhost

If that does not solve your problem, try to provide an absolute path
from the source. Sometimes users don’t have many privileges on the
remote server and the paramiko just waits for the output of a remote
command:

zyklop myhost:/path/to/file .

Motivation

I’m dealing with Zope servers most of my time. Some of them have a
huge Data.fs - an object oriented database. I do have in 99% of the
cases an older version of the clients database on my PC. Copying the
whole database will take me ages. Using rsync and simply downloading a
binary patch makes updating my local database a quick thing.

To summarize, with zyklop I’d like to address two things:

	Downloading large ZODBs takes a long time and
bandwidth. I simply don’t want to wait that long and download that
much.

	Most of the time I can not remember the exact path where the item
to copy is on the remote server.

Non Goals

Zyklop is not:

	a Backup Solution

TODO

	tty support: sometimes needed if SSH is configured to only allow
tty’s to connect.

	Don’t hang if only password auth is configured for SSH

Development

If you’re interested in hacking, clone zyklop on github:

https://github.com/romanofski/zyklop

CHANGES

0.6 (2013-03-01)

	Documentation and testcoverage improvements.

0.5.2 (2013-02-12)

	Bugfix: use one function to retrieve the username.

0.5.1 (2013-02-12)

	Command line utility now shows version information.

	Bugfix: now uses the ‘user’ configured in the ssh config and falls
back to the environment user

0.5 (2013-02-06)

	Added -d or –dry-run switch to only print out found
remote paths by zyklop

	Added -y or –assume-yes switch to sync the first result found.

	Fixed b0rked README.rst

0.4 (2013-02-05)

	Improved documentation

	Fixed bug, which lead to a hanging command when issuing a remote
command in order to find the target path

0.3 (2013-01-14)

	Changed host, match parameters: Now you can specify the source
host and path match in one parameter delimited by a column,
similar to scp (e.g. foohost:/path)

	Allow to provide an absolute path to the file you’d like to copy.

0.2 (2012-03-08)

	Added basic support for using sudo in finding and syncing (rsync)

	Added argparse as dependency as Python 2.6 won’t have it

	New positional argument to provide destination to copy
file/directory

API

SSH

Implemented Search

	
class zyklop.search.TreeNode(name='/', parent=None)[source]

	A node in an abstract directory tree.

The tree will degrade to a linked list and is not balanced, nor
weightened. All nodes are inserted based on their name.
Duplicates are not inserted.

Top most node is labeled with /.

The TreeNode supports access to children via the
__getitem__ method and comparisons with __contains__.

	
traverse(segms)[source]

	Traverses the given segments and appends each directory to
the tree as a TreeNode (leaf). A leaf is not appended
if it already exists.

The path should be already split into segments, eg.
/foo/bar should be passed as: ['foo', 'bar']

	
traverse_path(path)[source]

	Traverses given path and appends them to the tree as
TreeNodes.
This is a wrapper method for traverse().

	
zyklop.search.absolute_path(node)[source]

	Helper function to traverse a given TreeNode and returns an
absolute path.

	
zyklop.search.absolute_path_helper(node, segments=None)[source]

	Returns the traversed node segments to create an absolute path
in reverse order.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Roman Joost.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	zyklop 0.5 documentation

 Python Module Index

 z

 			

 		
 z	

 	[image: -]
 	
 zyklop	

 	
 	
 zyklop.search	

 Copyright 2012, Roman Joost.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	zyklop 0.5 documentation

Index

 A
 | T
 | Z

A

 	

 	absolute_path() (in module zyklop.search)

 	

 	absolute_path_helper() (in module zyklop.search)

T

 	

 	traverse() (zyklop.search.TreeNode method)

 	traverse_path() (zyklop.search.TreeNode method)

 	

 	TreeNode (class in zyklop.search)

Z

 	

 	zyklop (module)

 	

 	zyklop.search (module)

 Copyright 2012, Roman Joost.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_modules/zyklop/search.html

 Navigation

 		
 index

 		
 modules |

 		zyklop 0.5 documentation »

 		Module code »

 Source code for zyklop.search

Copyright (C) 2011-2012, Roman Joost <roman@bromeco.de>
#
This library is free software: you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
#
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
#
You should have received a copy of the GNU Lesser General Public
License along with this library. If not, see
<http://www.gnu.org/licenses/>.
import collections
import logging
import os
import re

class SearchResult(object):

 def __init__(self, path, level, children=None, visited=None):
 self.path = path
 self.level = level
 self.children = children is not None and children or collections.deque()
 self.visited = visited is not None and visited or []

 def __repr__(self):
 return '<{0} object {1}>'.format(
 self.__class__.__name__, self.path)

[docs]def absolute_path(node):
 """ Helper function to traverse a given :obj:`TreeNode` and returns an
 absolute path.
 """
 segms = absolute_path_helper(node)
 segms.reverse()
 return os.path.join(*[x.name for x in segms])

[docs]def absolute_path_helper(node, segments=None):
 """ Returns the traversed node segments to create an absolute path
 in reverse order.
 """
 if segments is None:
 segments = [node]

 parent = node.parent
 if parent is None:
 return segments
 else:
 segments.append(parent)
 absolute_path_helper(parent, segments)

 return segments

[docs]class TreeNode(object):
 """ A node in an abstract directory tree.

 The tree will degrade to a linked list and is not balanced, nor
 weightened. All nodes are inserted based on their name.
 Duplicates are not inserted.

 Top most node is labeled with :attr:`/`.

 The :class:`TreeNode` supports access to children via the
 ``__getitem__`` method and comparisons with ``__contains__``.
 """

 def __init__(self, name="/", parent=None):
 self.name = name == "" and "/" or name
 self.parent = parent
 self.children = []

[docs] def traverse(self, segms):
 """ Traverses the given segments and appends each directory to
 the tree as a :obj:`TreeNode` (leaf). A leaf is not appended
 if it already exists.

 The path should be already split into segments, eg.
 ``/foo/bar`` should be passed as: ``['foo', 'bar']``
 """
 segms = collections.deque(segms)

 while (segms):
 nname = segms.popleft()
 node = TreeNode(nname, self)
 try:
 node = self[node.name]
 except KeyError:
 pass

 if not node.name in self:
 self.children.append(node)

 return node.traverse(segms)

[docs] def traverse_path(self, path):
 """ Traverses given path and appends them to the tree as
 :obj:`TreeNodes`.
 This is a wrapper method for :meth:`traverse`.
 """
 result = path.split('/')
 if os.path.isabs(path):
 result = result[1:]
 return self.traverse(result)

 def __repr__(self):
 return '<{0} object {1}@{2}>'.format(
 self.__class__.__name__, self.name, len(self.children))

 def __getitem__(self, key):
 item = [x for x in self.children if x.name == key]
 if not item:
 raise KeyError
 return item[0]

 def __contains__(self, item):
 return item in [x.name for x in self.children]

class Search(object):

 maxdepth = 30

 def __init__(self, top, regexp, childnodeprovider):
 self.top = top
 self.regexp = re.compile(regexp)
 self.childnodeprovider = childnodeprovider
 self.logger = logging.getLogger('zyklop')

 def find(self, children=None, visited=None, level=0):
 """ Performs a BFS and matches every child with the provided
 regular expression to find the goal node.
 """
 if not children:
 children = collections.deque(
 self.childnodeprovider.get_children(self.top))
 if level == self.maxdepth or not children:
 return
 if visited is None:
 visited = []

 while children:
 child = children.pop()
 self.logger.debug("Searching {0}.".format(child))
 if child in visited:
 continue
 if self.regexp.search(child):
 visited.append(child)
 return SearchResult(child, level, children, visited)
 visited.append(child)

 for c in visited:
 children.extendleft(
 self.childnodeprovider.get_children(c))

 level += 1
 return self.find(children, visited, level=level)

 def findall(self):
 """ Generator to yield all absolute paths."""
 children = None
 visited = None
 while 1:
 result = self.find(children=children,
 visited=visited)
 if result is None:
 break
 children = result.children
 visited = result.visited
 yield result

class DirectoryChildNodeProvider(object):

 def get_children(self, abspath):
 if not abspath.startswith('/'):
 raise ValueError(
 "abspath parameter needs to be an absolute path: {0}".format(
 abspath))
 return self._get_children_helper(abspath)

 def _get_children_helper(self, abspath):
 """ Helper function which returns a list of children. """
 raise NotImplementedError("Must be implemented in sublcasses.")

class ParamikoChildNodeProvider(DirectoryChildNodeProvider):

 def __init__(self, sftpclient):
 self.sftpclient = sftpclient

 def _get_children_helper(self, abspath):
 try:
 result = [os.path.join(abspath, c) for c in\
 self.sftpclient.listdir(abspath)]
 except IOError:
 result = []

 return result

 © Copyright 2012, Roman Joost.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		zyklop 0.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Roman Joost.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		zyklop 0.5 documentation »

 All modules for which code is available

		zyklop.search

 © Copyright 2012, Roman Joost.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

