

Zumo Segway’s Documentation

	Introduction

	Zumo32u4
	Inertial Management Unit

	Motors

	Encoders

	Segway Model
	System’s dynamics equations

	Model Adaptation

	Input Adaptation

	State Variable Model

	LQR Controller Design
	Physical parameters

	Model

	Controllability

	Observability

	Control Law

	Controller Simulation

	Further Features

	Controller Implementation
	SegwayLQR

	LQR

Introduction

This documentation features the implementation of the Segway behavior in a
Zumo32u4 board. The process started with the modeling of the system according
to the capabilities of the Zumo32u4. Therefore, a Zumo32u4
chapter was written with the relevant about the Zumo’s IMU, Zumo’s encoders
and Zumo’s motos.

Secondly a model from the literature was selected. The model in
[3] was firstly analyzed. The developed model in
[3] was develop upon simplifying and considering it as
a cart with an inverted pendulum installed on top. It defined the input as the
force applied to the cart. To use this model the force had to be written in
terms of the torque applied to the pendulum.

The model in [15] proved to be better applicable for
implementation on a Zumo32u4 since it was in already in terms of torque applied
to the pendulum system and the physical model upon the state variable model
was based could be easily mapped to the Zumo by simplifying it.

None of the model in [3] and [15] considered
a caterpillar driven system. Nevertheless, [15] considers
explicitly the inertia moment of the wheels which can be replaced by the inertia
moment of the caterpillar system.

Segway Model chapter presents how the model of
[15] was adapted to the Zumo32u4 considering also actuator’s
scaling factors.

Later, in LQR Controller Design chapter the design of the
control law using LQR method is presented. The design was done based on the
design done in [3] and [15].

After the designing the control law the
Controller Implementation chapter explains how the
controller was implemented.

As expected [3] nor [15] present a method to
obtain accurate friction coefficients, what makes the model also inaccurate. But
the inaccuracy of the model lead to unstable controlled system. Which showed the
need of add a scale factor in the controlling law.

Zumo32u4

The Zumo32U4 is a hardware development platform includes a built-in
Arduino-compatible ATmega32U4 microcontroller, an LCD, encoders for closed-loop
motor control, and proximity sensors for obstacle detection. It’s
high-performance motors and integrated sensors make it versatile enough to serve
as a general-purpose small robot. [1]. Fig. 1
shows the Zumo32u4 Robot.

[image: ../_images/0J6721.1200.jpg]
Fig. 1 Zumo32u4 Robot [1]

For the Segway implementation the Zumo32u4’s blades, line sensor array and top
most IR Proximity sensors were removed because the Zumo32u4 balances on the edge
where the blade is (top edge in Fig. 1). The opposite edge
can’t be used because the battery (not visible in the Fig. 1)
holder completely sits on the floor.

At the time of writing this documentation there are three different Zumo32u4
robots;

	Zumo32u4 robot with 50:1 HP motors

	Zumo32u4 robot with 75:1 HP motors

	Zumo32u4 robot with 100:1 HP motors

The main difference between the available configurations is the gear ration of
the motors. For this project the Zumo32u4 robot with 100:1 HP motors was used.

In the following subsections the relevant Zumo32u4 components will be described
in more detail.

	Inertial Management Unit
	Gyroscope

	Accelerometer

	Combine Gyroscope and Accelerometer

	ZumoIMU API

	Motors

	Encoders
	ZumoEncoders API

	1(1,2)

	Pololu. Zumo 32u4 robot. 2017. URL: https://www.pololu.com/category/170/zumo-32u4-robot.

Inertial Management Unit

The Zumo32U4 includes on-board inertial sensors that can be used in advanced
applications, such as helping our Zumo detect collisions and determine its own
orientation by implementing an inertial measurement unit (IMU).

Note

We used IMU as the main sensory-model for Segway.

We took the aid of following sensor components of IMU;

	Gyroscope : ST L3GD20H 3-axis gyroscope.

	Accelerometer : ST LSM303D compass module, which combines a 3-axis
accelerometer and 3-axis magnetometer.

Note

	Both sensor chips share an \(I^2C\) bus connected to the ATmega32U4’s
\(I^2C\) interface.

	Level shifters built into the main board allow the inertial sensors, which
operate at 3.3 V, to be connected to the ATmega32U4 (operating at 5 V).

Gyroscope

We consider the following aspects of Gyroscope for IMU sensory-model;

	Gyroscope provides the change in orientation of the Zumo (Roll, Yaw, Pitch).
Integration of result provides the position details.

	ST L3GD20H Gyroscope operation is based on angular momentum.

	ST L3GD20H provides;
* Selectable full-scale range of \(\pm245dps\)/\(\pm500dps\)/

\(\pm2000dps\), with the \(8.75\frac{mdps}{digit}\)/
\(17.5\frac{mdps}{digit}\)/\(70\frac{mdps}{digit}\) sensitivity,
respectively.

	Selectable data sampling rate.

	Low-Pass filter to reduce noise with selectable cut-off frequencies.

Listing 1 Gyroscope configuration [9]

// Set up the L3GD20H gyro.
gyro.init();

// 800 Hz output data rate,
// low-pass filter cutoff 100 Hz.
gyro.writeReg(L3G::CTRL1, 0b11111010);

// 2000 dps full scale.
gyro.writeReg(L3G::CTRL4, 0b00100000);

// High-pass filter disabled.
gyro.writeReg(L3G::CTRL5, 0b00000000);

Note

All other register were left with their default value. Review [13]
for more information regarding default values.

A more detailed descriptions of the configuration used is shown below;

	L3G::CTRL1.DR[1:0] = 0x3 selects the \(800 Hz\) data sampling
rate [13].

	L3G::CTRL1.BW[1:0] = 0x3 selects \(100 Hz\) gyroscope data
cut-off frequency [13].

	L3G::CTRL1.PD = 0x1 selects the normal mode disabling power mode,
so the signal will be always be sampled [13].

	L3G::CTRL1.XEN = 0x0, L3G::CTRL1.YEN = 0x1 and
L3G::CTRL1.ZEN = 0x0 enables only the needed gyroscope channel.

	L3G::CTRL4.FS[1:0] = 0x2 selects the full-scale of
\(\pm2000dps\) with a sensitivity of \(70mdps/digit\)
[13].

	L3G::CTRL5.HPen = 0x0 disable the High-Pass filter [13].

Accelerometer

We consider the following aspects of Accelerometer for IMU sensory-model;

	ST LSM303D Accelerometer provides the linear acceleration based on
vibration.

	By virtue of linear acceleration, Accelerometer provides 3-dimensional
position (X-,Y-,Z- axis). [14]

	ST LSM303D provides \(\pm2\)/\(\pm4\)/\(\pm6\)/\(\pm8\)/
\(\pm16\) selectable linear acceleration full-scale. [14]

	ST LSM303D provides \(3.125Hz\)/\(6.25Hz\)/\(12.5Hz\)/
\(25Hz\)/\(50Hz\)/\(100Hz\)/\(200Hz\)/\(400Hz\)/
\(800Hz\)/\(1600Hz\) selectable sampling rate. [14]

For the implementation of the Segway the sampling frequency, \(f_s = 50Hz\),
and full-scale range, \(acc_{range} = \pm8g\), were selected. Therefore,
the ST LSM303D configuration code is shown in Listing 2

Listing 2 Compass configuration [9]

// Set up the LSM303D accelerometer.
compass.init();

// 50 Hz output data rate
compass.writeReg(LSM303::CTRL1, 0x57);

// 8 g full-scale
compass.writeReg(LSM303::CTRL2, 0x18);

Note

All other register were left with their default value. Review [14]
for more information regarding default values.

A more detailed descriptions of the configuration used is shown below;

	LSM303::CTRL1.AODR[3:0] = 0x5 sets the \(f_s = 50Hz\).
[14]

	LSM303::CTRL1.BDU = 0x1 enables atomic update for the acceleration
read register. Meaning that the entire register will be written at once
[14].

	LSM303::CTRL1.AXEN = 0x1, LSM303::CTRL1.AYEN = 0x1 and
LSM303::CTRL1.AZEN = 0x1 enables all three acceleration channels.
[14]. All three are needed because the magnitude of the
acceleration vector is calculated to filter some measurement noise.
Listing 4 shows how the magnitude is used to filter the
noise.

	LSM303::CTRL2.AFS[2:0] = 0x3 sets \(acc_{range} = \pm8g\).

Combine Gyroscope and Accelerometer

Gyroscope gives angular position but has tendency to drift over the period of
time. Accelerometer gives Inertia, and ultimately position but it is slow.
Hence, Accelerometer output is used to correct position obtained from
Gyroscope on periodic interval of time.

First the Gyroscope is being sampled as frequently as possible. Then the data
of the Gyroscope is integrated and to give the current Zumo32u4’s angle as
fast as possible. Listing 3 shows how the sampling and integration
was performed;

Listing 3 Gyroscope angle sampling and integration [9]

/** Zumos Gyro */
L3G gyro;

/**
* Reads the Gyro changing rate and integrate it adding it to the angle
*/
void sampleGyro() {
 // Figure out how much time has passed since the last update.
 static uint16_t lastUpdate = 0;
 uint16_t m = micros();
 uint16_t dt = m - lastUpdate;
 float gyroAngularSpeed = 0;
 lastUpdate = m;

 gyro.read();
 // Obtain the angular speed out of the gyro. The gyro's
 // sensitivity is 0.07 dps per digit.
 gyroAngularSpeed = ((float)gyroOffsetY - (float)gyro.g.y) * 70 / 1000.0;

 // Calculate how much the angle has changed, in degrees, and
 // add it to our estimation of the current angle.
 angularPosition += gyroAngularSpeed * dt / 1000000.0;
}

The selected sampling frequency for all sensors was \(f_s=50Hz\) meaning
that every \(20ms\) the integrated angle from the gyroscope is corrected
with the angle given by the Accelerometer. Listing 4 shows
how the correction is performed.

Listing 4 Integrated gyroscope angle correction with accelerometer’s angle
[9]

/** Zumos Accelerometer */
LSM303 compass;

/**
 * Read the acceleormeter and adjust the angle
 */
void sampleAccelerometer() {
 static uint16_t lastUpdate = 0;
 uint16_t m = micros();
 uint16_t dt = m - lastUpdate;
 float gyroAngularSpeed = 0;

 lastUpdate = m;

 compass.read();
 accelerometerAngle = atan2(compass.a.z, -compass.a.x) * 180 / M_PI;

 // Calculate the magnitude of the measured acceleration vector,
 // in units of g.
 LSM303::vector<float> const aInG = {
 (float)compass.a.x / 4096,
 (float)compass.a.y / 4096,
 (float)compass.a.z / 4096}
 ;
 float mag = sqrt(LSM303::vector_dot(&aInG, &aInG));

 // Calculate how much weight we should give to the
 // accelerometer reading. When the magnitude is not close to
 // 1 g, we trust it less because it is being influenced by
 // non-gravity accelerations, so we give it a lower weight.
 float weight = 1 - 5 * abs(1 - mag);
 weight = constrain(weight, 0, 1);
 weight /= 10;

 // Adjust the angle estimation. The higher the weight, the
 // more the angle gets adjusted.
 angularPosition = weight * accelerometerAngle + (1 - weight) * angularPosition;
 angularSpeed = (angularPosition - prevAngularPosition) * 1000000.0 / dt;
 prevAngularPosition = angularPosition;

}

Note

	Note that angularPosition is derivated to get angularSpeed,
because both quantities are needed by the state variable model used. For
more information review the State Variable Model.

	The sign of the angle has been changed from the one in the original
balancing example [9] to match our reference framework.

	src/SegwayLQR/ZumoIMU.ino [https://github.com/pjcuadra/zumosegway/blob/master/src/SegwayLQR/ZumoIMU.ino]
holds the source code that handles the IMU.

Warning

All angles are given in degrees because during implementation it was proved
that it was easier to catch bugs if the angle was in degrees. One reason for
this was that degrees are scaled up with respect with radians it was easier
to catch integer divisions causing the angle to be zero. Furthermore the use
of degrees is a little more intuitive than radians.

ZumoIMU API

	
class ZumoIMU

	
	
float accelerometerAngle = 0

	Accelerometer angle

	
L3G gyro

	Zumo’s Gyro

	
LSM303 compass

	Zumo’ss Accelerometer

	
float gyroOffsetY

	Gyro’s bias

	
float prevAngularPosition = 0

	Previous Angular position

	
void setupIMU()

	Setup the Gyro and Accelerometer

	
void sampleGyro()

	Reads the Gyro changing rate and integrate it adding it to the angle

	
void sampleAccelerometer()

	Read the accelerometer and adjust the angle

	
void calibrateGyro()

	Calibrate the Gyroscope. Get the bias.

	9(1,2,3,4,5)

	Pololu. Zumolibrary’s balancing example code. URL: https://github.com/pololu/zumo-32u4-arduino-library/tree/master/examples/Balancing.

	13(1,2,3,4,5,6)

	STMicroelectronics. L3GD20H, MEMS motion sensor: three-axis digital output gyroscope. June 2012. URL: https://www.pololu.com/file/0J731/L3GD20H.pdf.

	14(1,2,3,4,5,6,7)

	STMicroelectronics. LSM303D, Ultra compact high performance e-Compass 3D accelerometer and 3D magnetometer module. June 2012. URL: https://www.pololu.com/file/0J703/LSM303D.pdf.

Motors

The Zumo32U4 includes a DRV8837 [2] as a dual motor driver.
The DRV8837 handles the current requirements for motors. It also provides
rotational direction control of the motors.

The Zumo Library [8] provides the following API to control the
motors’ speed.

	
class Zumo32U4Motors

	
Controls motor speed and direction on the Zumo 32U4.

	
void setSpeeds(int16_t leftSpeed, int16_t rightSpeed)

	Sets the speeds for both motors.

	
int16_t leftSpeed

	A number from -400 to 400 representing the speed and direction of the
left motor. Values of -400 or less result in full speed reverse, and
values of 400 or more result in full speed forward.

	
int16_t rightSpeed

	A number from -400 to 400 representing the speed and direction of the
right motor. Values of -400 or less result in full speed reverse, and
values of 400 or more result in full speed forward.

Zumo32U4Motors::setSpeeds() enables us to control both motors. For
instance a \(400\) value in leftSpeed will set the a 100% duty
cycle with level \(6V\) PWM between the left motor’s DRV8837’s outputs
(OUT1 and OUT2). Which results in applying full forward speed to the left motor.
A value of \(-200\) will set a 50% duty cycle with level of \(-6V\) PWM
between the left motor’s DRV8837’s outputs (OUT1 and OUT2).

The PWM duty cycle can be translated into a percentage of maximum current
applied to the motor \(I_{max}\). Table 1’s shows the value
of \(I_{max}\) which corresponds to the Stall Current at 6V. Additionally,
the torque of the motor is linearly related to the current is applied to it.
Therefore, the torque of the motors can be calculated by;

\[\tau_0 = \frac{\tau_s}{400} \times speed_{PWM}\]

Where \(\tau_s\) is the stall torque of the motor at 6V. In our case we used
\(\tau_t = 0.211846 Nm\).

Table 1 Motors’ Torque related information per Zumo32u4 model
 [11]

	Model

	Stall Torque @ 6V (\(Nm\))

	Free-run Speed @ 6V (\(RPM\))

	Stall Current @ 6V (\(A\))

	75:1

	\(0.105923\)

	\(625\)

	\(1.6\)

	50:1

	\(0.155354\)

	\(400\)

	\(1.6\)

	100:1

	\(0.211846\)

	\(320\)

	\(1.6\)

	2

	Texas Instruments. Texas Instruments DRV8837/DRV8838 motor driver datasheet. June 2012. URL: https://www.pololu.com/file/0J806/drv8838.pdf.

	8

	Pololu. Zumo library. URL: https://github.com/pololu/zumo-32u4-arduino-library.

	11

	Pololu. Zumo 32u4 robot (assembled with 100:1 hp motors). 2017. URL: https://www.pololu.com/product/3127.

Encoders

The Zumo32U4 includes on-board encoders for closed-loop motor control. In our
application we need to read the angular position and angular speed of the motors
because to the Segway model we used defines these quantities as state variables.
For more information review the State Variable Model.

The optical encoder [7] available in the Zumo32u4 uses the Sharp GP2S60
[12]. In the case of the encoders the Zumo Library
[8] abstracts all the needed configuration and read/write
operations. The only thing needed for implementation is the interpretation
of the count provided by the encounters.

According to [7] the optical encoder provides 12
CPR. Therefore its count can be interpreted
as shown in (1).

(1)\[cycles = \frac{encodersCount}{12 \times gearRatio}\]

According to [5], [6] and [4] the gear
ratio for the different Zumo modules are shown in
Table 2.

Table 2 Gear Ratio and Count to Degree per Zumo32u4 model

	Model

	Gear Ratio

	Count to Degree (\(^\circ\))

	50:1

	51.45

	\(0.58309^\circ\)

	75:1

	75.81

	\(0.39573^\circ\)

	100:1

	100.37

	\(0.29889^\circ\)

Furthermore we can convert number of cycles to degree with the conversion ratio
\(\frac{360^\circ}{1 \times cycle}\). Multiplying (1) by this
ratio;

\[motorAngularPosition = encodersCount \times countToDegrees\]

With;

\[countToDegrees = \frac{360}{12 \times gearRatio}\]

Note

Since the Zumo32u4 has one encoder per motor we decided to estimate the actual
motor:motorAngularPosition as the average of both motors’ angular position.

Listing 5 shows the implementation of the explained above. Note
that the \(motorAngularSpeed\) is obtained by derivating
\(motorAngularPosition\) both are needed by our state variable model. For
more information review the State Variable Model.

Listing 5 Encoders Code

/** Zumo 100:1 motor gear ratio */
const float gearRatio = 100.37;
/** Encoder count to cycle convertion constant */
const float countToDegrees = 360 / (float)(12.0 * gearRatio);

/** Zumo encoders */
Zumo32U4Encoders encoders;

/**
* Clear the counters of the encoder
*/
void clearEncoders() {
 encoders.getCountsAndResetLeft();
 encoders.getCountsAndResetRight();
}

/**
* Sample the encoders
*/
void sampleEncoders() {
 static float prevPosition = 0;
 static uint16_t lastUpdate = 0;
 static float leftPosition = 0;
 static float rightPosition = 0;
 uint16_t m = micros();
 uint16_t dt = m - lastUpdate;
 lastUpdate = m;

 leftPosition += (float)encoders.getCountsAndResetLeft() * countToDegrees;
 rightPosition += (float)encoders.getCountsAndResetRight() * countToDegrees;
 float motorAngularPosition = -(leftPosition + rightPosition) / 2.0;

 motorAngularSpeed = (motorAngularPosition - prevPosition) * 1000000.0 / dt;
 prevPosition = motorAngularPosition;
}

Note

	encoders.getCountsAndResetLeft() and
encoders.getCountsAndResetRight() get the actual count of the
respective motor and clear its counter.

	\(motorAngularPosition\) is the average of both speeds multiplied by
\(-1\) to match our reference frame.

	The source code of the Encoders can be reviewed at
src/SegwayLQR/ZumoEncoders.ino [https://github.com/pjcuadra/zumosegway/blob/master/src/SegwayLQR/ZumoEncoders.ino]

ZumoEncoders API

	
class ZumoEncoders

	
	
const float gearRatio = 100.37

	Zumo 100:1 motor gear ratio

	
const float countToDegrees = 360 / (float)(12.0 * gearRatio);

	Encoder count to cycle convertion constant

	
Zumo32U4Encoders encoders

	Zumo encoders

	
void clearEncoders()

	Clear the counters of the encoder

	
void sampleEncoders()

	Sample the encoders

	4

	Pololu. 100:1 micro metal gearmotor hp 6v with extended motor shaft. URL: https://www.pololu.com/product/2214.

	5

	Pololu. 50:1 micro metal gearmotor hp 6v with extended motor shaft. URL: https://www.pololu.com/product/2213.

	6

	Pololu. 75:1 micro metal gearmotor hp 6v with extended motor shaft. URL: https://www.pololu.com/product/2215.

	7(1,2)

	Pololu. Optical encoder pair kit for micro metal gearmotors. URL: https://www.pololu.com/product/2590.

	8

	Pololu. Zumo library. URL: https://github.com/pololu/zumo-32u4-arduino-library.

	12

	Sharp. GP2S60, SMT, Detecting Distance : 0.5mm, Phototransistor Output, Compact Reflective Photointerrupter. October 2005. URL: https://www.pololu.com/file/0J683/GP2S60_DS.pdf.

Segway Model

The model of the balancing robot proposed in [15] is derived from
the physical description of Fig. 2.

[image: ../_images/model_image.png]
Fig. 2 Segway’s relevant parameters [15]

Where;

	\(x\) is the horizontal position of the center of the wheel.

	\(\varphi\) is the clockwise rotation angle of the wheel from the
horizontal axis

	\(\theta\) is the clockwise rotation angle of the Zumo32u4 from the
horizontal axis

	\(m\) is the mass of the entire robot

	\(m_w\) is the mass of the wheel

	\(R\) radius of the wheel

	\(L\) length between the center of the wheel and the
COM

	\(\tau_0\) is the applied torque

	\(I\) inertia of the body part

	\(I_w\) inertia of the wheel

System’s dynamics equations

The obtained differential equations of the system in [15] are;

(2)\[\begin{split}E
\begin{bmatrix}
 \ddot{\varphi} \\
 \ddot{\theta}
\end{bmatrix} \
\
+ F
\begin{bmatrix}
 \dot{\varphi} \\
 \dot{\theta}
\end{bmatrix} \
\
+ G \theta = H\tau_0\end{split}\]

With,

\[\begin{split}E = \begin{bmatrix}
 I_w + (m_w + m)R^2 & mRL \\
 mRL & I + mL^2
\end{bmatrix}\end{split}\]

\[\begin{split}F = \begin{bmatrix}
 \beta_\gamma + \beta_m & -\beta_m \\
 -\beta_m & \beta_m
\end{bmatrix}\end{split}\]

\[\begin{split}G = \begin{bmatrix}
 0 \\
 -mgL
\end{bmatrix}\end{split}\]

\[\begin{split}H = \begin{bmatrix}
 1 \\
 -1
\end{bmatrix}\end{split}\]

Model Adaptation

In [15] they define \(L\) as in (3) with the variables
define as in Fig. 3.

(3)\[L = \frac{L_2}{2} + \frac{L_1 + L_2}{2}\frac{m_1}{m}\]

[image: ../_images/com_image.png]
Fig. 3 Center of Mass calculation [15]

Similarly [15] defines the inertia momentum of the robot as in
(4).

(4)\[I = m_1(\frac{L_1}{2}+L_2)^2 \frac{1}{12}m_2L_2^2\]

Given the geometry of the Zumo32u4 we consider that \(m_1 = 0\) and
\(L_1 = 0\). Therefore the distance to the COM
and the inertia momentum can be calculated \(L = \frac{L_2}{2}\) and
\(I = \frac{1}{12}m_2L_2^2\), respectively.

Furthermore, the model in [15] consider a normal wheel. In our
Zumo32u4 we have a caterpillar system. (5) shows how the
inertia moment of the caterpillar system was calculated.

(5)\[I_w = I_{w_1} + I_c + I_{w_2}\]

Where the \(I_{w_1}\) and \(I_{w_2}\) are the inertia moment of the
both wheels and \(I_c\) is the inertia moment of the caterpillar band. In
our case both wheels are equal and can be calculated as in (6)

(6)\[I_{w_i} = m_wR^2\]

Additionally the inertia of the caterpillar band can be calculated as shown in
(7). Where \(m_c\) is the mass of the caterpillar band.

(7)\[I_c = m_cR^2\]

Finally the inertia moment of the entire caterpillar system can be calculated
as in (8).

(8)\[I_w = (2\cdot m_w + m_c)R^2\]

Input Adaptation

The model in [15] defines the input to be the torque
\(\tau_0\). Since the actual input to our system is the PWM applied to the
motors we can use the equation defined in the subsection Motors of
the chapter Zumo32u4, shown in (9).

(9)\[\tau_0 = \frac{\tau_s}{400} \times speed_{PWM}\]

Merging (9) and (2) we obtain;

\[\begin{split}E
\begin{bmatrix}
 \ddot{\varphi} \\
 \ddot{\theta}
\end{bmatrix} \
\
+ F
\begin{bmatrix}
 \dot{\varphi} \\
 \dot{\theta}
\end{bmatrix} \
\
+ G \theta = H_1speed_{PWM}\end{split}\]

With;

\[H_1 = H * \frac{\tau_s}{400}\]

State Variable Model

Finally the state variable model of the system can be calculated as shown in
(10).

(10)\[\begin{align}\begin{aligned}\dot{x} = Ax + Bu\\y = Cx + D\end{aligned}\end{align} \]

With the state variable vector;

\[\begin{split}x = \begin{bmatrix}
 \varphi \\
 \theta \\
 \dot{\varphi} \\
 \dot{\theta}
\end{bmatrix}\end{split}\]

And the constant matrices;

\[\begin{split}A = \left[
\begin{array}{c|c|cc}
 \begin{matrix} 0 \\ 0 \end{matrix} & \begin{matrix} 0 \\ 0 \end{matrix} & \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \\
 \hline
 \begin{matrix} 0 \\ 0 \end{matrix} & -E^{-1}G & -E^{-1}F
\end{array}
\right]\end{split}\]

\[\begin{split}B = \left[
\begin{array}{c}
 \begin{matrix} 0 \\ 0 \end{matrix} \\
 \hline
 -E^{-1}H
\end{array}
\right]\end{split}\]

\[\begin{split}C = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}\end{split}\]

\[\begin{split}D = \begin{bmatrix}
 0 \\
 0 \\
 0 \\
 0
\end{bmatrix}\end{split}\]

	15(1,2,3,4,5,6,7,8)

	Mie Kunio Ye Ding, Joshua Gafford. Modeling, simulation and fabrication of a balancing robot. Technical Report, Harvard University, Massachusettes Institute of Technology, 2012.

LQR Controller Design

The controller to be implemented is a full-state feedback controller. The
LQR controller was selected. Fig. 4 shows the block
diagram of the entire system to be implemented.

[image: digraph { graph [rankdir=LR, splines=ortho, concentrate=true]; node [shape=polygon]; node[group=main]; System [label="Segway \n ẋ = Ax(t) + Bu(t)", rank=1]; i [shape=point]; x [shape=plaintext, label=""]; C [label="C"]; y [shape=plaintext, label=""]; System -> i [dir="none", label="x(t)"]; i -> C; C -> y [label="y(t)"]; node[group="feedback"]; Feedback [label="-K", rank=1]; Feedback -> System [label="u(t)"]; Feedback -> i [dir=back]; }]
Fig. 4 Full-state feedback block diagram

Physical parameters

All the parameters needed for the model can be seen in Listing 6

Listing 6 Physical constant script scripts/load_physical_constants.m
[1]

% Sampling constants
T_s = 20e-3;
f_s = 1/T_s;

% Constants (context)
m = 0.24200; % Mass of the zumo
m_1 = 0;
m_2 = m;
L_1 = 0;
L_2 = 0.062;
L = L_2/2 + (L_1 + L_2) * m_1/(2*m); % Height of the zumo
beta_m = 0.01;
beta_gamma = 0.01;

g = 9.8100; % Gravitational constant
R = 0.019; % Wheel radius

I = m_1*(L_1/2 + L_2)^2 + (m_2*L_2^2)/12; % Inertial momentum

m_w = 0.004; % Mass of the wheel
m_c = 0.009; % Mass of the caterpillar band

I_w_i = m_w*R^2; % Inertia momentum of wheels
I_c = m_c*R^2; % Inertia momentum of Caterpillar band
I_w = 2*I_w_i + I_c; % Inertia momentum of Caterpillar system

% Motor's constants
motor_stall_torque = 0.211846554999999; % According to specs 30 oz-in
pulse2torque = motor_stall_torque/400;

Note

For \(\beta_m\) and \(\beta_\gamma\) are set to a dummy value as in
[15].

Model

To setup the model the script in Listing 7 was used.

Listing 7 Get State Variable Model script scripts/get_ssmodel.m [1]

function model = get_ssmodel()

 % Consants (context)
 load_physical_constants

 E = [(I_w + (m_w + m)*R^2) m*R*L;
 m*R*L (I + m*L^2)];

 F = [(beta_gamma + beta_m) -beta_m;
 -beta_m beta_m];

 G = [0; -m*g*L];

 H_1 = [1; -1] * pulse2torque;

 states = size(E, 1);

 A = [zeros(states) eye(states);
 zeros(states, 1) -inv(E)*G -inv(E)*F];
 B = [zeros(states, 1);
 -inv(E)*H_1];
 C = [1 0 0 0;
 0 1 0 0;
 0 0 1 0;
 0 0 0 1];
 D = [0; 0; 0; 0];

 model = ss(A, B, C, D);

end

A second script, shown in Listing 8 was also added to get the model
that also obtains the transfer function \(H(s) = \frac{\Theta(s)}{S(s)}\).
Where, \(S(s)\) is the Laplace transform of the \(speed_{PWM}\)
function. This transfer function was used to further analysis not presented in
this documentation.

Listing 8 Get Model script scripts/get_model.m [1]

function [plant, model] = get_model()

 % Get the state variable model
 model = get_ssmodel();

 % Get the transfer function
 plant = tf(model);
 plant = plant(2);

end

Controllability

Before the actually designing the controller we need to check it’s
controllability. The controllability check done can be seen in
Listing 9.

Listing 9 Check controllability scripts/lqr_design.m [1]

% Check controlability
co = ctrb(model);
if (rank(co) > n_states)
 disp(" -> Error! System isn't controllable");
 return;
else
 disp(" -> Great! System is controllable");
end

Observability

Similarly, the system’s observability has to be also verified. This verification
is shown in Listing 10.

Listing 10 Check Observability scripts/lqr_design.m [1]

ob = obsv(model);
if (rank(ob) > n_states)
 disp(" -> Error! System isn't observable");
 return;
else
 disp(" -> Great! System is observable");
end

Control Law

To obtain the control law \(K\) the script in Listing 11.

Listing 11 Control Law Calculation scripts/lqr_design.m [1]

Q = eye(size(model.a,1));

R = 1

[K, X, P] = lqr(model, Q, R);

K_s = K*pi/180;

Note

	As in [15] equally weighted states and outputs were used.
Therefore, \(Q = I\) and \(R = 1\). Where, \(I\) is an identity
matrix with the size of \(A\).

	A scaled control law \(K_s\) is also calculated. The scale factor is
needed because the angles measured by accelerometer/gyro and encoders
was done in degrees.

The obtained control law is shown in (11). And the scaled
version in (12)

(11)\[K = \begin{bmatrix} 1 & 483.6133 & 10.0038 & 20.3053 \end{bmatrix}\]

(12)\[K_s = \begin{bmatrix} 0.0175 & 8.4406 & 0.1746 & 0.3544 \end{bmatrix}\]

Controller Simulation

After designing the control law the controller is simulated as shown in
Listing 12.

Listing 12 Controller simulation excerpt scripts/lqr_design.m [1]

Ac = model.a - model.b*K;
sys_cl = ss(Ac, model.b, model.c, model.d);
figure(1);
clf(1)
impulse(sys_cl);

The simulation results can be seen in Fig. 5. Since the
\(\frac{d\varphi}{dt}\) and \(\frac{d\theta}{dt}\) are faster variables
a zoomed result simulation result can also be seen in Fig. 6.

[image: ../_images/sim_results.png]
Fig. 5 LQR Design Simulation Results

[image: ../_images/zoomed_sim_results.png]
Fig. 6 LQR Design Zoomed Simulation Results

Further Features

Arduino Pretty Printing

For rapid deployment and testing the
scripts/lqr_design.m [https://github.com/pjcuadra/zumosegway/blob/master/scripts/lqr_design.m]
also prints the scaled control law in the Arduino language. An example output
can be seen in Listing 14 and the script excerpt that implement
this functionality in Listing 13.

Listing 13 Arduino Code control law generator scripts/lqr_design.m
[1]

disp("Control Law")
K_string = strcat("const float K[", num2str(size(model.a,1)), "] = {");
for k = 1:size(K, 2)
 if ~(k == 1)
 K_string = strcat(K_string, ", ");
 end
 K_string = strcat(K_string, num2str(K_s(k)));
end
K_string = strcat(K_string, "};");
disp("K")
disp(K_string)

Listing 14 Arduino Code control law generator output

Control Law
K
const float K[4] = {0.017453, 8.4406, 0.1746, 0.35439}

Closed-Loop Poles

scripts/lqr_design.m [https://github.com/pjcuadra/zumosegway/blob/master/scripts/lqr_design.m]
also print out the closed-loop poles. An example output can be seen in
Listing 15.

Listing 15 Closed-loop printing output example

P =

 1.0e+03 *

 -1.0872
 -0.0000
 -0.0083
 -0.0178

Full-compensator design

In scripts/lqr_design.m [https://github.com/pjcuadra/zumosegway/blob/master/scripts/lqr_design.m]
the full compensator design flow is implemented but since it’s not being
implements it’s was left out of this documentation.

	1(1,2,3,4,5,6,7,8)

	Pedro Cuadra Meghadoot Gardi. Pjcuadra/zumogetway. August 2017. URL: https://github.com/pjcuadra/zumosegway.

	15(1,2)

	Mie Kunio Ye Ding, Joshua Gafford. Modeling, simulation and fabrication of a balancing robot. Technical Report, Harvard University, Massachusettes Institute of Technology, 2012.

Controller Implementation

The implementation of the controller system was done using Arduino IDE.
The functionality was separated into files within the Arduino IDE project.
ZumoIMU and ZumoEncoders files where already explained in the sections
Inertial Management Unit and Encoders.

SegwayLQR

SegwayLQR API

Global Constants

	
const uint8_t samplingPeriodMS = 20

	Sampling Period in ms

	
const float samplingPeriod = samplingPeriodMS / 1000.0;

	Sampling Period in s

	
const float samplingFrequency = 1 / samplingPeriod

	Sampling frequency

	
const uint8_t statesNumber = 4

	Number states

Global Variables

	
float angularPositionLP = 0

	Low pass filter angular Position

	
float angularPosition = 0

	Zumo’s angular position

	
float correctedAngularPosition = 0

	Corrected angular position

	
float angularSpeed = 0

	Zumo’s angular speed

	
float motorAngularPosition = 0

	Motor’s angular position

	
float motorAngularSpeed = 0

	Motor’s angular speed

	
int32_t speed

	PWM signal applied to the motor’s driver 400 is 100% cycle and -400 is 100%
but inverse direction

	
Zumo32U4ButtonA buttonA

	A button of the zumo board

	
Zumo32U4Motors motors

	Zumo robot’s motors

Functions

	
class SegwayLQR

	
	
void setup()

	Segway’s setup function.

	
void loop()

	Segway’s loop function.

	
void setActuators()

	Set the values to the actuators.

SegwayLQR Details

src/SegwayLQR/SegwayLQR.ino [https://github.com/pjcuadra/zumosegway/blob/master/src/SegwayLQR/SegwayLQR.ino]
features the main loop and setup functions of the Arduino project.
Listing 16 shows the implementation of the setup function.
Firstly, it setups the IMU by calling ZumoIMU::setupIMU().
Then, calibrates the IMU’s gyro by calling
ZumoIMU::calibrateGyro(). After calibrating it starts a loop of
sampling the gyro as frequently as possible and the accelerometer every
samplingPeriod. When the buttonA is pressed the loop is exited and
before starts executing SegwayLQR::loop() the encoders counters
are cleared by calling ZumoEncoders::clearEncoders().

Listing 16 Setup function

/**
 * Setup Function
 */
void setup() {
 Wire.begin();

 Serial.begin(115200);

 // Setup the IMU
 setupIMU();

 // Calibrate the IMU (obtain the offset)
 calibrateGyro();

 // Display the angle until the user presses A.
 while (!buttonA.getSingleDebouncedRelease()) {
 // Update the angle using the gyro as often as possible.
 sampleGyro();

 // Sample accelerometer every sampling period
 static uint8_t lastCorrectionTime = 0;
 uint8_t m = millis();
 if ((uint8_t)(m - lastCorrectionTime) >= samplingPeriodMS)
 {
 lastCorrectionTime = m;
 sampleAccelerometer();
 }
 }
 delay(500);
 clearEncoders();
}

Listing 17 shows the loop function’s code. Basically does the
same as in the loop in SegwayLQR::setup() but every
samplingPeriod it;

	ZumoIMU::sampleAccelerometer() to obtain the corrected
estimation of the Zumo’s angle and angular speed, as explained in
Inertial Management Unit.

	ZumoEncoders::sampleEncoders() to obtain encoders position
and speed, as explained in Encoders.

	SegwayLQR::setActuators() calculates the new speed to be set
based on the current state variables’ state and the LQR designed control law.

Listing 17 Loop function

/**
 * Main loop Function
 */
void loop() {
 // Update the angle using the gyro as often as possible.
 sampleGyro();

 // Every 20 ms (50 Hz), correct the angle using the
 // accelerometer, print it, and set the motor speeds.
 static byte lastCorrectionTime = 0;
 byte m = millis();
 if ((byte)(m - lastCorrectionTime) >= 20)
 {
 lastCorrectionTime = m;
 sampleAccelerometer();
 sampleEncoders();
 setActuators();
 }
}

Listing 18 shows the SegwayLQR::setActuators()
function’s code. As a security measure when the angle is greater that
\(45^\circ\) the speed is set to zero. Furthermore, the angle is corrected
by the deviation of the COM from the actual horizontal
center of the Zumo32u4. Finally the LQR::lqr() is called to apply
the control law and generate the input of the system.

Listing 18 Set actuators function

/**
 * Control the actuators
 */
void setActuators() {
 const float targetAngle = 1.45;

 if (abs(angularPosition) > 45) {
 // If the robot is tilted more than 45 degrees, it is
 // probably going to fall over. Stop the motors to prevent
 // it from running away.
 speed = 0;
 } else {
 correctedAngularPosition = angularPosition - targetAngle;
 lqr();
 speed = constrain(speed, -400, 400);
 }

 motors.setSpeeds(speed, speed);
}

LQR

LQR API

	
class LQR

	
	
const float K[statesNumber] = {0.55192, 8.9867, 0.194, 0.39237}

	Control Law

	
const float scaleConst = 2.5

	Correction factor gain factor

	
void lqr()

	Apply LQR control law

LQR Details

Listing 19 shows how the LQR::lqr() is implemented.

Listing 19 Apply LQR designed control law

/**
 * LQR control law
 */
void lqr() {
 speed = 0;

 speed -= motorAngularPosition * K[0];
 speed -= correctedAngularPosition * K[1];
 speed -= motorAngularSpeed * K[2];
 speed -= angularSpeed * K[3];

 speed = speed*scaleConst;

}

Note

	The K values are multiplied by \(-1\) in according to
Fig. 4.

	An additional scale factor, \(scaleConst = 2.5\), is introduce to
compensate;

	Possible deviation of the actual Stall Torque with load.

	Bad estimation of the \(\beta_m\) and \(\beta_\gamma\) values.

Index

 A
 | B
 | C
 | L
 | M
 | S
 | Z

A

 	
 	angularPosition (C++ member)

 	
 	angularPositionLP (C++ member)

 	angularSpeed (C++ member)

B

 	
 	buttonA (C++ member)

C

 	
 	correctedAngularPosition (C++ member)

L

 	
 	LQR (C++ class)

 	LQR::K (C++ member)

 	
 	LQR::lqr (C++ function)

 	LQR::scaleConst (C++ member)

M

 	
 	motorAngularPosition (C++ member)

 	
 	motorAngularSpeed (C++ member)

 	motors (C++ member)

S

 	
 	samplingFrequency (C++ member)

 	samplingPeriodMS (C++ member)

 	SegwayLQR (C++ class)

 	SegwayLQR::loop (C++ function)

 	
 	SegwayLQR::setActuators (C++ function)

 	SegwayLQR::setup (C++ function)

 	speed (C++ member)

 	statesNumber (C++ member)

Z

 	
 	Zumo32U4Motors (C++ class)

 	Zumo32U4Motors::setSpeeds (C++ function)

 	Zumo32U4Motors::setSpeeds::leftSpeed (C++ member)

 	Zumo32U4Motors::setSpeeds::rightSpeed (C++ member)

 	ZumoEncoders (C++ class)

 	ZumoEncoders::clearEncoders (C++ function)

 	ZumoEncoders::encoders (C++ member)

 	ZumoEncoders::gearRatio (C++ member)

 	ZumoEncoders::sampleEncoders (C++ function)

 	
 	ZumoIMU (C++ class)

 	ZumoIMU::accelerometerAngle (C++ member)

 	ZumoIMU::calibrateGyro (C++ function)

 	ZumoIMU::compass (C++ member)

 	ZumoIMU::gyro (C++ member)

 	ZumoIMU::gyroOffsetY (C++ member)

 	ZumoIMU::prevAngularPosition (C++ member)

 	ZumoIMU::sampleAccelerometer (C++ function)

 	ZumoIMU::sampleGyro (C++ function)

 	ZumoIMU::setupIMU (C++ function)

 _static/comment-close.png

_static/comment.png

_static/com_image.png
Ly

m=my+m,

Shaft

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/model_image.png

_images/zoomed_sim_results.png
Amplitude

Impulse Response

0.002 0.004 0.006 0.008
Time (seconds)

0.01

_static/ajax-loader.gif

_images/model_image.png

_images/sim_results.png
Amplitude

0.05

To: ¢
o

-0.05
0.02

To: 6
o

S
u o
on

To: dg/dt

To: d6/dt

Impulse Response

Time (seconds)

.
0 01 0.2 03 04 05 06 07 08

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Zumo Segway’s Documentation

 		
 Introduction

 		
 Zumo32u4

 		
 Inertial Management Unit

 		
 Gyroscope

 		
 Accelerometer

 		
 Combine Gyroscope and Accelerometer

 		
 ZumoIMU API

 		
 Motors

 		
 Encoders

 		
 ZumoEncoders API

 		
 Segway Model

 		
 System’s dynamics equations

 		
 Model Adaptation

 		
 Input Adaptation

 		
 State Variable Model

 		
 LQR Controller Design

 		
 Physical parameters

 		
 Model

 		
 Controllability

 		
 Observability

 		
 Control Law

 		
 Controller Simulation

 		
 Further Features

 		
 Arduino Pretty Printing

 		
 Closed-Loop Poles

 		
 Full-compensator design

 		
 Controller Implementation

 		
 SegwayLQR

 		
 SegwayLQR API

 		
 SegwayLQR Details

 		
 LQR

 		
 LQR API

 		
 LQR Details

_images/com_image.png
Ly

m=my+m,

Shaft

_static/up-pressed.png

_images/graphviz-b85ebafd22aff9b1cfca84018b77de7945e226dc.png
u(t)

Segway
Ax(1) + Bu(t)

x(t)

¥

»

_static/up.png

_images/0J6721.1200.jpg
Pololu) ~

_static/sim_results.png
Amplitude

0.05

To: ¢
o

-0.05
0.02

To: 6
o

S
u o
on

To: dg/dt

To: d6/dt

Impulse Response

Time (seconds)

.
0 01 0.2 03 04 05 06 07 08

_static/zoomed_sim_results.png
Amplitude

Impulse Response

0.002 0.004 0.006 0.008
Time (seconds)

0.01

