
Zucchini Documentation
Release 2.1.1

Zucchini Team

Jan 21, 2023

Contents

1 Zucchini 3
1.1 Installation . 3
1.2 Getting Started with Development . 3
1.3 Features . 3
1.4 Credits . 4

2 Installation 5
2.1 Stable release . 5
2.2 From sources . 5

3 Usage 7
3.1 Grading an Assignment . 7
3.2 Creating an Assignment . 8

3.2.1 Anatomy of an Assignment . 8
3.2.2 Weights . 10
3.2.3 Assignment Configuration . 10
3.2.4 Farms . 12

4 Config File Format 13

5 Config File Samples 15
5.1 Open File and Logisim Sample . 15
5.2 Two-Component LC3Test Sample . 16
5.3 Libcheck Assignment Sample . 16

6 The Zucchini Architecture 19
6.1 Overview of the Zucchini Architecture . 19

6.1.1 How Farms Work . 19
6.1.2 How Loading Works . 19
6.1.3 How Grading Works . 19
6.1.4 How Exporting Works . 20

6.2 The Zucchini CLI . 20
6.3 The Farm Manager . 21
6.4 The Loading Layer . 21

6.4.1 The Loader Interface . 21
6.4.2 The Sakai Loader . 21
6.4.3 The Canvas Loader . 21

i

6.5 The Grading Layer . 21
6.5.1 The LC3Test Grader . 21

6.6 The Export Layer . 21
6.6.1 The CSV Exporter . 21

7 Contributing 23
7.1 Types of Contributions . 23

7.1.1 Report Bugs . 23
7.1.2 Fix Bugs . 23
7.1.3 Implement Features . 23
7.1.4 Write Documentation . 24
7.1.5 Submit Feedback . 24

7.2 Get Started! . 24
7.3 Pull Request Guidelines . 25
7.4 Tips . 25

8 Credits 27
8.1 Development Lead . 27
8.2 Contributors . 27

9 History 29
9.1 0.1.0 (2017-12-17) . 29

10 Indices and tables 31

ii

Zucchini Documentation, Release 2.1.1

Contents:

Contents 1

Zucchini Documentation, Release 2.1.1

2 Contents

CHAPTER 1

Zucchini

Zucchini is an automatic grader tool for use in grading programming assignments.

• Free software: Apache Software License 2.0

• Documentation: https://zucchini.readthedocs.io.

1.1 Installation

$ pip install --user zucchini
$ zucc --help

1.2 Getting Started with Development

After cloning this repo and installing virtualenv, run

$ virtualenv -p python3 venv
$. venv/bin/activate
$ pip install -r requirements.txt
$ pip install -r requirements_dev.txt
$ zucc --help

1.3 Features

• Unified grading infrastructure: eliminates maintenance load of ad-hoc per-assignment graders

3

https://pypi.python.org/pypi/zucchini
https://travis-ci.com/zucchini/zucchini
https://zucchini.readthedocs.io/en/latest/?badge=latest
https://zucchini.readthedocs.io

Zucchini Documentation, Release 2.1.1

• Separates test results from computed grades: graders provide test results which are stored on disk, and then
zucchini calculates grade based on the weight of each test. That is, graders do not perform grade calculation;
they only gather information about students’ work

• Simple configuration: update one YAML file and store your graders in git repositories for all your TAs

• Relative weighting: no more twiddling with weights to get them to add up to 100

• Import submissions from Gradescope, Canvas Assignments, or Canvas Quizzes

• No more copy-and-pasting grades and commments: automated upload of Canvas grades and gradelogs

• Flatten (extract) archived submissions

• Gradescope integration: generate a Gradescope autograder tarball for an assignment with one command

1.4 Credits

• Austin Adams (@ausbin) for creating lc3grade, which eventually became zucchini

• Cem Gokmen (@skyman) for suggesting converting lc3grade into a generalized autograder for more than just
C and LC-3 homeworks, and creating the initial structure of zucchini

• Patrick Tam (@pjztam) for implementing a bunch of graders, gradelogs, and gradelog upload

• Kexin Zhang (@kexin-zhang) for exploring Canvas bulk submission downloads and for creating the demo down-
loader, which changed our lives

• Travis Adams (@travis-adams) for nothing

4 Chapter 1. Zucchini

CHAPTER 2

Installation

2.1 Stable release

To install Zucchini, run this command in your terminal:

$ pip install zucchini

This is the preferred method to install Zucchini, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for Zucchini can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/zucchini/zucchini

Or download the tarball:

$ curl -OL https://github.com/zucchini/zucchini/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

5

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/zucchini/zucchini
https://github.com/zucchini/zucchini/tarball/master

Zucchini Documentation, Release 2.1.1

6 Chapter 2. Installation

CHAPTER 3

Usage

Before following this guide, make sure you’ve installed zucchini as described in Installation.

3.1 Grading an Assignment

The following section is written as a zucchini workflow that would be used by a TA in a course that already has
a zucchini farm set up (as an example, we will use the sample zucchini farm), that an instructor or TA has already
prepared the assignment and linked to it on the farm (as an example, we will use the sample zucchini JUnit assignment),
and that student submissions are available in directory (as an example, we will use sample submissions on a git repo).

Note that this tutorial expects that you are on either Linux or OSX, that you have access to the terminal (Terminal.app
on OSX), that you have installed a Python distribution that’s >=3.4 (we recommend Anaconda for beginners), that you
have git installed, that you have JDK 1.8 or higher installed and linked to your path, and that you have gradle installed.

Let’s start by installing zucchini

pip install zucchini

We set up our workspace by entering our identity details:

zucc setup

Then we add the farm for the metadata repository created by our instructor. We name it cs1337-fall1970:

zucc farm add https://github.com/zucchini/sample-farm.git cs1337-fall1970

Then we make a new directory for our grading and change into it.

mkdir zuccsample && cd zuccsample

We list the assignments on our farms to find the one we’re looking for:

zucc list

7

Zucchini Documentation, Release 2.1.1

From the output of this, we find that our assignment is called junit/stacks-queues. We use zucc init to
make zucchini pull the assignment configuration into a new directory which will have the assignment’s name. We use
our farm’s name as well as the assignment’s name on the farm. Note that detailed information about this assignment,
which tests a Stack and Queue implementation using JUnit, can be found on the repository page for the assignment.

zucc init cs1337-fall1970/junit/stacks-queues

Then, we download the sample submissions:

git clone https://github.com/zucchini/sample-assignment-submissions.git

Now we change into our assignment directory, and make zucchini load the submissions we just downloaded. Note
that in a real workflow, submissions would likely be loaded through LMS integration modules such as Canvas. Also
note that the -d flag for the path loader is used to make zucchini use the directory name (e.g. Alice) as the submitting
student’s name as well.

cd stacks-queues
zucc load path -d ../sample-assignment-submissions/Alice
zucc load path -d ../sample-assignment-submissions/Bob
zucc load path -d ../sample-assignment-submissions/Charlie
zucc load path -d ../sample-assignment-submissions/Dave
zucc load path -d ../sample-assignment-submissions/Eve

Then, we start the grading process. This will grade each submission separately and save their results in their folders
into the submissions’ meta.json files. Once the grading is done, a text editor will open to show the newly updated
grades. Hit :q close it.

zucc grade

Now that we’re done grading, we want to exports the grades our students received. Note that in a real workflow,
this would also likely be done through LMS integration modules such as Canvas, which allow for grades to be saved
directly onto students’ accounts.

zucc export csv > grades.csv

And we’re done! The grades can be found in the CSV file.

3.2 Creating an Assignment

3.2.1 Anatomy of an Assignment

A Zucchini assignment consists of a list of components, each of which itself consists of a list of parts. Like this:

8 Chapter 3. Usage

https://github.com/zucchini/sample-assignment

Zucchini Documentation, Release 2.1.1

Assignment

Component Component Component

Part Part Part Part Part Part Part Part Part

Zucchini aims to streamline the process of converting a student’s submission to a grade in the gradebook, and an
assignment instructs Zucchini how to perform this conversion. Indeed, Zucchini downloads submissions, posts grades,
and checks due dates for entire assignments, even if they consist of multiple components.

Components represent the smallest pieces of an assignment that Zucchini can grade independently. Usually, this means
each independent file in the submission has its own component. Examples of components:

• A test class which tests a particular class in the submission in a JUnit-based grader

• A test suite in a Libcheck-based grader

• A subcircuit in a CircuitSim circuit

• A set of prompts in a prompt grader

Parts represent the smallest result in grading a component that deserves its own weight. We generalized parts because
we noticed all of our backends had them. Examples of parts:

• A test method in a JUnit-based grader

• A test in a test suite in a Libcheck-based grader

• A test of a subcircuit in a CircuitSim circuit

• A prompt in a prompt grader

Now, here is a concrete example of the diagram above for a homework with a CircuitSim circuit fsm.sim and a Java
file BitVector.java:

Homework 8

fsm.sim (One-hot subcircuit) fsm.sim (Reduced subcircuit) BitVector.java

transitions outputs transitions outputs gateCount coolness set clear isSet

3.2. Creating an Assignment 9

Zucchini Documentation, Release 2.1.1

3.2.2 Weights

Zucchini weights components and parts relatively. That is, a component 𝑖 is worth weight𝑖∑︀
𝑘 weight𝑘

of the grade.

So for the following assignment:

Homework 8

fsm.sim (One-hot subcircuit)
weight: 3

fsm.sim (Reduced subcircuit)
weight: 1

BitVector.java
weight: 2

the rubric is actually:

Component Percent
fsm.sim (One-hot subcircuit) 50%
fsm.sim (Reduced subcircuit) 16.67%
BitVector.java 33.33%

Parts have the same relationship with their parent components. So a part 𝑗 of a component 𝑖 is worth weight𝑖∑︀
𝑘 weight𝑘

×
weight𝑗∑︀
𝑙 weight𝑙

of the grade.

Don’t let the decimal points above mislead you: Zucchini calculates grades with rational numbers internally, so you
you don’t need to worry about floating point screwing up or perfect submissions getting a 99.99 or anything like that
(lc3grade had this problem).

We added relative weighting because we didn’t enjoy twiddling with weights until they summed to 100. If you do,
you can make all the weights add up to 100:

Homework 8

fsm.sim (One-hot subcircuit)
weight: 50

fsm.sim (Reduced subcircuit)
weight: 16

BitVector.java
weight: 34

3.2.3 Assignment Configuration

The directory structure for an assignment my_assignment looks like:

10 Chapter 3. Usage

Zucchini Documentation, Release 2.1.1

my_assignment/
zucchini.yml
grading-files/

some-grader-jar.jar
some-grader-file.sh

submissions/
Sood, Sanjay/

meta.json
gradelog.txt
files/

fsm.sim
Lin, Michael/

meta.json
gradelog.txt
files/

fsm.sim

You need to create only zucchini.yml and optionally grading-files/. Zucchini will generate
submissions/. zucchini.yml looks like

name: Homework X # required
author: Michael Lin # required
due-date: 2018-06-24T18:00:00-04:00
canvas:

course-id: 2607
assignment-id: 8685

penalties:
- name: LATE

backend: LatePenalizer
backend-options:
penalties:
- after: 1h

penalty: 25pts
components: # required
- name: Finite State Machine # required
weight: 2 # required
backend: CircuitSimGrader # required
backend-options:
grader-jar: hwX-tester.jar
test-class: FsmTests

files: [fsm.sim]
grading-files: [hwX-tester.jar]
parts: # required
- {test: clockConnected, weight: 1}
- {test: resetConnected, weight: 1}
- {test: enableConnected, weight: 1}
- {test: outputA, weight: 5}
- {test: transition, weight: 10}

- name: Fully reduced
weight: 1
backend: CommandGrader
backend-options:
command: "java -cp hwX-tester.jar com.ra4king.circuitsim.gui.CircuitSim fsm.sim"

files: [fsm.sim]
grading-files: [hwX-tester.jar]
parts:
- text: "banned gates?"

(continues on next page)

3.2. Creating an Assignment 11

Zucchini Documentation, Release 2.1.1

(continued from previous page)

answer-type: bool
weight: 2

- text: "number of incorrect SOP expressions"
answer-type: int
answer-range: [0, 5]
weight: 3

You can find a full list of graders at zucchini.graders.

3.2.4 Farms

Before Zucchini, grading for us meant hunting down the grader archive on either Slack, Google Drive, or GitHub.
Adding to the confusion, sometimes these different sources would get out of sync, forcing TAs to regrade their section
all over again. Zucchini offers a solution to this you’re probably already comfortable with: git.

TODO: Finish

12 Chapter 3. Usage

CHAPTER 4

Config File Format

Configuration files need to be valid YAML files that contain the following fields:

name: # Friendly name for the assignment
author: # Author's name (and email if possible)
components:

- name: # Friendly name for the component
weight: # Weight of the component (integer)
files: # Files that need to be copied from the submission folder
grading-files: # Files that need to be copied from the grading folder
backend: # Name of the Python class for the grader (e.g. PromptGrader)
backend-options:

The grader backend's options come here - these are listed on the grader's docs

13

Zucchini Documentation, Release 2.1.1

14 Chapter 4. Config File Format

CHAPTER 5

Config File Samples

Contents:

5.1 Open File and Logisim Sample

This assignment features two components: a headshot photo which will be opened by the grader and confirmed, as
well as a

Sample configuration:

name: Headshot and XOR Homework
author: Austin Adams
canvas:

course-id: 1
assignment-id: 1

components:
- name: Headshot image
weight: 1
files: headshot.jpg
backend: OpenFileGrader
backend-options:

file-name: headshot.jpg
prompts:

- text: Is the image an acceptable image of the student?
type: boolean
weight: 1

- name: XOR circuit
weight: 3
files: xor.circ
grading-files: [hw1checker.jar, brandonsim.jar]
backend: LogisimGrader
backend-options:

(continues on next page)

15

Zucchini Documentation, Release 2.1.1

(continued from previous page)

logisim-jar: brandonsim.jar
circuit-file: xor.circ
prompts:

- question: Has the student used any banned components?
type: boolean
weight: 5

- question: Has the student successfully connected the inputs to the output?
type: boolean
weight: 2

- question: Does the circuit produce the intended result?
type: boolean
weight: 5

5.2 Two-Component LC3Test Sample

This assignment features two components, both of which are assembly code files that can be graded using provided
lc3test configurations.

Sample configuration:

name: LC3 Assembly Homework with Two Components
author: Austin Adams
canvas:

course-id: 1
assignment-id: 1

components:
- name: LC-3 Factorial implementation
weight: 1
files: factorial.asm
grader-files: factorial_test.xml
backend: LC3TestGrader
backend-options:

assembly-file: factorial.asm
test-file: factorial_test.xml
runs: 128

- name: LC-3 Bitvector implementation
weight: 1
files: bitvector.asm
grader-files: bitvector_test.xml
backend: LC3TestGrader
backend-options:

assembly-file: bitvector.asm
test-file: bitvector_test.xml
runs: 128

5.3 Libcheck Assignment Sample

This assignment has a single .c file being graded using libcheck tests which are individually weighted.

The tests are run on a separate docker container for each student to prevent arbitrary code execution on the
grader’s computer.

16 Chapter 5. Config File Samples

Zucchini Documentation, Release 2.1.1

Sample configuration:

name: Malloc Homework
author: Austin Adams
canvas:

course-id: 1
assignment-id: 1

components:
- name: malloc()
weight: 2
files: my_math.c
grading-files: tests/*
backend: DockerWrapperGrader
backend-options:

components:
backend: LibCheckGrader
backend-options:
timeout: 5
build-cmd: make
run-cmd: ./tests {test} {logfile}
valgrind-cmd: valgrind --quiet --leak-check=full --error-exitcode=1 --show-

→˓leak-kinds=all --errors-for-leak-kinds=all ./tests {test} {logfile}
tests:
- name: test_malloc_malloc_initial

weight: 3
- name: test_malloc_malloc_initial_sbrked

weight: 3
- name: test_malloc_malloc_sbrk_merge

weight: 3
- name: test_malloc_malloc_perfect1

weight: 3
- name: test_malloc_malloc_perfect2

weight: 3
- name: test_malloc_malloc_perfect3

weight: 3
- name: test_malloc_malloc_split1

weight: 3
- name: test_malloc_malloc_split2

weight: 3
- name: test_malloc_malloc_split3

weight: 3
- name: test_malloc_malloc_waste1

weight: 3
- name: test_malloc_malloc_waste2

weight: 3
- name: test_malloc_malloc_waste3

weight: 3
- name: test_malloc_malloc_zero

weight: 3
- name: test_malloc_malloc_toobig

weight: 3
- name: test_malloc_malloc_oom

weight: 3
- name: test_malloc_free_null

weight: 2
- name: test_malloc_free_bad_meta_canary

weight: 2
- name: test_malloc_free_bad_trailing_canary

(continues on next page)

5.3. Libcheck Assignment Sample 17

Zucchini Documentation, Release 2.1.1

(continued from previous page)

weight: 2
- name: test_malloc_free_empty_freelist

weight: 2
- name: test_malloc_free_no_merge1

weight: 2
- name: test_malloc_free_no_merge2

weight: 2
- name: test_malloc_free_left_merge1

weight: 2
- name: test_malloc_free_left_merge2

weight: 2
- name: test_malloc_free_left_merge3

weight: 2
- name: test_malloc_free_right_merge1

weight: 2
- name: test_malloc_free_right_merge2

weight: 2
- name: test_malloc_free_right_merge3

weight: 2
- name: test_malloc_free_double_merge1

weight: 2
- name: test_malloc_free_double_merge2

weight: 2
- name: test_malloc_free_double_merge3

weight: 2
- name: test_malloc_calloc_initial

weight: 1
- name: test_malloc_calloc_zero

weight: 1
- name: test_malloc_calloc_clobber_errno

weight: 1
- name: test_malloc_calloc_actually_zeroed

weight: 0
- name: test_malloc_realloc_initial

weight: 1
- name: test_malloc_realloc_zero

weight: 1
- name: test_malloc_realloc_copy

weight: 1
- name: test_malloc_realloc_copy_smaller

weight: 1
- name: test_malloc_realloc_free

weight: 1
- name: test_malloc_realloc_toobig

weight: 1
- name: test_malloc_realloc_bad_meta_canary

weight: 1
- name: test_malloc_realloc_bad_trailing_canary

weight: 1

18 Chapter 5. Config File Samples

CHAPTER 6

The Zucchini Architecture

Contents:

6.1 Overview of the Zucchini Architecture

6.1.1 How Farms Work

Right now, zucchini supports grading through two methods - with a locally available configuration file and test suite,
or using “farms” - git repos that contain metadata about graders and configurations.

For a given class, for example, the instructor may choose to maintain a single Git repo - a farm - that will contain
metadata about all of the course’s assignments. Once graders tap into this farm, they will be able to fetch grading
configurations and grading files using git automatically and start grading right away without having to download or
update any assignment files.

This behavior is managed by the [[Farm Manager|farm-manager]] and the only method of tapping is through Git.

6.1.2 How Loading Works

For grading to be possible, zucchini requires the assignment submissions to be in a precise directory structure. More
information about this requirement is available in the [[Directory Structure|directory-structure]] page.

As a result, loaders that implement the [[Loader Interface|loading/loader-interface]]are required to go from arbitrary
data sources, like Git and zip / tar archive files, to the zucchini directory structure.

Loaders that are currently available include: * [[Sakai Loader|loading/sakai-loader]] * [[Canvas
Loader|loading/canvas-loader]]

6.1.3 How Grading Works

The grading process is managed by the [[Grading Manager|grading/grading-manager]] class, with each rubric item
being delegated to a Grader that implements the [[Grader Interface|grading/grader-interface]].

19

Zucchini Documentation, Release 2.1.1

Current implementations of the Grader Interface include:

• [[Prompt Grader|grading/prompt-grader]]

• [[Open-File Grader|grading/open-file-grader]]

• [[LC3Test Grader|grading/lc3test-grader]]

• [[LibCheck Grader|grading/libcheck-grader]]

• [[JUnit Grader|grading/junit-grader]]

• [[Docker Wrapper Grader|grading/docker-wrapper-grader]]

6.1.4 How Exporting Works

Once grading is done, you will need to export your grades. The export process is managed by the [[Export
Manager|exporting/export-manager]] class, which gathers the submissions’ grades from individual folders into a sin-
gle dictionary for use by the exporter backends, which have to implement the [[Exporter Interface|exporting/exporter-
interface]]. Currently, the supported exporter backends are as follows:

• [[CSV Exporter|exporting/csv-exporter]]

• [[TXT Exporter|exporting/txt-exporter]]

6.2 The Zucchini CLI

Set the user configuration: what’s your name? etc. and reset if necessary. Run by default on first run.

zucc setup

Tap into a Git repo to be able to use configs from it using the tap name that you set:

zucc farm add <git-repo-url> <tap-name>
zucc farm remove <tap-name>
zucc farm recache <tap-name> # Equivalent to untapping tap-name and then
tapping its URL again as tap-name

List the assignments available for grading

zucc list [<tap-name>]

Update the taps

zucc update [<tap-name>]

Load submissions using a loader:

zucc load <loader-name> [<loader-parameters>]

Example with the Sakai loader:
zucc load sakai bulk_download.zip

Start grading using a config found on one of the taps (this will automatically update the tap)

zucc grade <tap-name>/<assignment-name>

Export existing grading results using one of the exporters:

20 Chapter 6. The Zucchini Architecture

Zucchini Documentation, Release 2.1.1

zucc export <exporter-name> [<exporter-parameters>]

Example with the CSV exporter:
zucc export csv hw11.csv

6.3 The Farm Manager

There is just a single farm implementation: Git.

6.4 The Loading Layer

Contents:

6.4.1 The Loader Interface

What are our loaders?

6.4.2 The Sakai Loader

How does it work?

6.4.3 The Canvas Loader

How does it work?

6.5 The Grading Layer

Contents:

6.5.1 The LC3Test Grader

How does it work? Config options?

6.6 The Export Layer

Contents:

6.6.1 The CSV Exporter

How does it work?

6.3. The Farm Manager 21

Zucchini Documentation, Release 2.1.1

22 Chapter 6. The Zucchini Architecture

CHAPTER 7

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

7.1 Types of Contributions

7.1.1 Report Bugs

Report bugs at https://github.com/zucchini/zucchini/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

7.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

7.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

23

https://github.com/zucchini/zucchini/issues

Zucchini Documentation, Release 2.1.1

7.1.4 Write Documentation

Zucchini could always use more documentation, whether as part of the official Zucchini docs, in docstrings, or even
on the web in blog posts, articles, and such.

7.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/zucchini/zucchini/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

7.2 Get Started!

Ready to contribute? Here’s how to set up zucchini for local development.

1. Fork the zucchini repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/zucchini.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv zucchini
$ cd zucchini/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 zucchini tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

24 Chapter 7. Contributing

https://github.com/zucchini/zucchini/issues

Zucchini Documentation, Release 2.1.1

7.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.4-3.8, and for PyPy. Check https://travis-ci.org/zucchini/zucchini/
pull_requests and make sure that the tests pass for all supported Python versions.

7.4 Tips

To run a subset of tests:

$ python -m unittest tests.test_zucchini

7.3. Pull Request Guidelines 25

https://travis-ci.org/zucchini/zucchini/pull_requests
https://travis-ci.org/zucchini/zucchini/pull_requests

Zucchini Documentation, Release 2.1.1

26 Chapter 7. Contributing

CHAPTER 8

Credits

8.1 Development Lead

• Zucchini Team <team@zucc.io>

8.2 Contributors

None yet. Why not be the first?

27

mailto:team@zucc.io

Zucchini Documentation, Release 2.1.1

28 Chapter 8. Credits

CHAPTER 9

History

9.1 0.1.0 (2017-12-17)

• First release on PyPI.

29

Zucchini Documentation, Release 2.1.1

30 Chapter 9. History

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

31

	Zucchini
	Installation
	Getting Started with Development
	Features
	Credits

	Installation
	Stable release
	From sources

	Usage
	Grading an Assignment
	Creating an Assignment
	Anatomy of an Assignment
	Weights
	Assignment Configuration
	Farms

	Config File Format
	Config File Samples
	Open File and Logisim Sample
	Two-Component LC3Test Sample
	Libcheck Assignment Sample

	The Zucchini Architecture
	Overview of the Zucchini Architecture
	How Farms Work
	How Loading Works
	How Grading Works
	How Exporting Works

	The Zucchini CLI
	The Farm Manager
	The Loading Layer
	The Loader Interface
	The Sakai Loader
	The Canvas Loader

	The Grading Layer
	The LC3Test Grader

	The Export Layer
	The CSV Exporter

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started!
	Pull Request Guidelines
	Tips

	Credits
	Development Lead
	Contributors

	History
	0.1.0 (2017-12-17)

	Indices and tables

