
zstack Documentation
Release 0.6

zstack.org

March 15, 2016

Contents

1 Introduction 1

2 Chapters 3

i

ii

CHAPTER 1

Introduction

ZStack is an open source software that manages compute nodes, networks, and storage to provide infrastructure as a
service(IaaS) solution, written in Java and Python.

This documentation is a full reference of all ZStack features. If you haven’t installed ZStack and tried out several
tutorials, please visit our web site for installation and tutorials.

Chapters in this documentation are arranged in sections of:

• Overview: gives your a brief background of the topic.

• Inventory: explains the data model of the resource (e.g. zone, virtual machine), which usually starts with
a table listing properties of the resource, and is followed by detailed explanations of properties that are not
straightforward.

• Operations: explains every API manipulating the resource. APIs are explained in examples of ZStack command
tool that you will see in chapter 3.

• Global Configurations: explains every global configuration that can be applied to the resource, if there is any.

• System Tags: explains every system tag that can be applied to the resource, if there is any.

We recommend users to start with the chapter Introduction and read at least chapters Resource Model, Command Line
Tool, and Query all of which are important for your daily use of ZStack. For other chapters, you can use them as
references when you need, for example, looking up chapter Virtual Machine when you want to find out the command
for creating a VM.

1

http://zstack.org
http://zstack.org/installation
http://zstack.org/tutorials

zstack Documentation, Release 0.6

2 Chapter 1. Introduction

CHAPTER 2

Chapters

2.1 Introduction

Table of contents

• Introduction
– Overview

* The Setup of A Single Management Node
* A Deployment of Multiple Management Nodes
* ZStack’s World View of A Cloud

2.1.1 Overview

Depending on the scale of a cloud, a ZStack setup can be as simple as a single Linux machine running one ZStack
management node, or a cluster of Linux servers running multiple ZStack management nodes.

3

zstack Documentation, Release 0.6

The Setup of A Single Management Node

In the simplest setup, all ZStack software and third party dependencies are installed on a single Linux server. A typical
setup includes five parts:

• RabbitMQ Message Server: The central message bus ZStack services use for communication.

• MySQL Database: The database ZStack stores metadata for resources in the cloud.

• Ansible: The configuration management tool ZStack uses to remotely deploy and upgrade agents.

• ZStack Management Node: The main process encompassing all ZStack orchestration services.

• ZStack UI Server: A web server providing user interface for end users.

Besides, several python agents, which need deploying to local or remote machines at runtime, are packaged in the
WAR file of ZStack management node and are deployed using Ansible.

Because of ZStack’s asynchronous architecture, a single management node is normally enough to manage a big cloud
that may have tens of thousands of physical servers, hundreds of thousands of virtual machines(virtual machine is
referred as VM in future chapters), and tens of thousands of concurrent API requests. However, in case of high
availability and scaling out for a super large cloud, a setup of multiple management nodes is still valuable.

4 Chapter 2. Chapters

http://www.rabbitmq.com/
http://www.mysql.com/
http://www.ansible.com/home

zstack Documentation, Release 0.6

A Deployment of Multiple Management Nodes

In this multiple nodes setup, the RabbitMQ server and MySQL database server are moved out to dedicated Linux
machines; ZStack management nodes and Ansible are installed on every Linux server; multiple management nodes
share the same RabbitMQ message server and MySQL database. ZStack UI servers, which also send API requests to
management nodes through RabbitMQ, are deployed behind a load balancer which dispatches requests from users.

In terms of clustering RabbitMQ and MySQL, admin can setup two RabbitMQ servers and an additional slave MySQL
database server.

2.1. Introduction 5

zstack Documentation, Release 0.6

ZStack’s World View of A Cloud

IaaS software usually use some terms such as ‘zone’, ‘cluster’ to describe how facilities in a data center make up a
cloud, so does ZStack. To reduce the learning curve and to eliminate misunderstandings caused by self-created terms,
ZStack tries to use terminologies that have been well known in existing IaaS software and datacenters as much as
possible.

Below is a diagram that how ZStack maps facilities of datacenters into its own language.

A datacenter, in ZStack’s terms, is organized as follows:

• Zone:

A zone is a logic group of resources, such as clusters, L2 networks, primary storage. ZStacks uses zones to
define visibility boundary between resources. For example, a primary storage in zone A is not visible to a
cluster in zone B. In practice, zones can also be used as isolated domains for fault tolerance, just as Amazon
EC2 availability zones.

6 Chapter 2. Chapters

zstack Documentation, Release 0.6

• Cluster:

A cluster is a logic group of hosts. Hosts in the same cluster must have the same operating systems(hypervisor)
and network configurations. Clusters are also known as host aggregations or host pools in other IaaS software.

• Host:

A host is a physical server installed with an operating system(hypervisor) to run VMs.

• L2 Network:

A L2 network is an abstraction of a layer 2 broadcast domain. Any technology, as long as providing a layer 2
broadcast domain, can be a type of L2 Network in ZStack. For example, VLAN, VxLan, or SDN technologies
that create layer 2 overlay on layer 3 network.

• Primary Storage:

A primary storage provides disk spaces to store VMs’ volumes which will be accessed by VMs’ operating
system during running. Primary Storage can be either filesystem based like NFS or block storage based like
ISCSI.

• Backup Storage:

A backup Storage provides disk spaces to store images and volume snapshots both of which can be used to
create volumes. Files on backup storage are not directly accessible to VMs; before being used, they need to be
downloaded to primary storage. Backup Storage can either be filesystem based or object storage based.

ZStack uses a so-called ‘attaching strategy’ to describe relationships between resources, for example, a cluster can be
attached with multiple primary storage and L2 networks, vice versa. See related chapters(e.g. primary storage, L2
network) for details.

A data center can have one or more zones. A diagram of multiple zones looks like:

Note: For simplicity, the diagram omits some facilities like aggregation switches, core switches, routers, load bal-

2.1. Introduction 7

zstack Documentation, Release 0.6

ancer, firewalls and so on.

Besides above terms describing datacenter facilities, there are some other terms such as VM, instance offering, disk
offering, which describe virtual resources; check details in relevant chapters.

2.2 Resource Model

Table of contents

• Resource Model
– Resource Relationship
– Resource Properties
– Resource Operations

* Create Resources
* Read Resources
* Update Resources
* Delete Resources

ZStack is essentially a configuration management system for resources in the cloud. Resources can be physical re-
sources(e.g. hosts, networks, storage) or virtual resources(e.g. VMs). In this version, a full diagram of ZStack
resources is like:

Note: This diagram aims to give an overall idea that what ZStack resources look like. It neither exhibits exact

8 Chapter 2. Chapters

zstack Documentation, Release 0.6

relationship among resources nor shows amount of resources.

2.2.1 Resource Relationship

Resources have four relationships:

• Parent - Child:

A resource can be the parent or a child of another resource. For example, a cluster is a child resource of a zone,
while a zone is the parent resource of a cluster.

• Ancestor - Descendant:

A resource can be the lineal ancestor or a lineal descendant of another resource. For example, a zone is the
ancestor resource of VMs; a VM is a descendant resource of a zone.

• Sibling:

Resources sharing the same parent resource are siblings. For example, clusters, hosts, primary storage, L2
networks are sibling resources because all of them are child resources of zones.

• Friend:

Resources which don’t have above three relationships but still need to cooperate with each other in some sce-
narios are friends. For example, primary storage and backup storage are friends, because primary storage need
to download images from backup storage in order to create VMs.

Resources that don’t have any relationship are irrelevant resources; for example, security groups and clusters are
irrelevant resources.

Note: In this version, ZStack doesn’t have a concept of region, so zones and backup storage doesn’t have a parent
resource; however, they are still considered as siblings.

2.2.2 Resource Properties

There are four properties common to almost all resources:

• UUID:

ZStack uses UUIDv4 (Universally Unique Identifier) to uniquely identify a resource. Unlike regular
UUIDs which has four hyphens in string, the UUIDs ZStack use have hyphens stripped. For example,
80b5ca2c76154da298a1a248b975372a.

• Name:

Names are human readable strings with maximum 255 characters. Names can be duplicated, as ZStack doesn’t
use them as resource identifiers. Names can have any visible ASCII characters(e.g. %, #, ^, space); however,
putting symbols in a name may make query APIs hard to use. The best practice for naming a resource is only
using letters, digits, ‘-‘(hyphen), and ‘_’(underscore).

Note: Please avoid using ‘,’(comma) in names, though it’s legal. In query APIs, ZStack uses comma to split
a value into a list when the condition operator is ‘?=’(which means ‘in’). For example, querying VMs by a
condition ‘name’ and an operator ‘?=’ is like:

QueryVmInstance name?=vm1,vm2,vm3

2.2. Resource Model 9

http://en.wikipedia.org/wiki/Universally_unique_identifier

zstack Documentation, Release 0.6

what it does is: finding out VMs whose names are vm1 or vm2 or vm3. For people familiar with SQL, it is equal
to:

select * from VmInstance where name in ('vm1', 'vm2', 'vm3')

if you have a comma in VMs’ names, for example, ‘v,m1’, then the query becomes:

QueryVmInstance name?=v,m1,vm2,vm3

which turns out to find VMs whose names are in [’v’, ‘m1’, ‘vm2’, ‘vm3]

• Description:

Descriptions are human readable strings with maximum 2048 characters. Still, ZStack doesn’t enforces any
limited character set on descriptions.

• Created Date:

A immutable date indicating the time that resources were created.

• Last Operation Date:

A date indicating the last time resources were updated. The date changes every time after a update has been
performed on a resource; updates can be either from user operations or ZStack’s internal operations.

Note: Some resources may not have names and descriptions, for example, DNS, security group rules. These resources
are not considered as independent resources and must be with their parent resources.

Each resource may have its specific properties, for example, VMs have a property ‘hostUuid’. As ZStack uses JSON
in APIs, properties of resources are encompassed in a JSON map in most API responses. The JSON map is called
‘inventory’ in ZStack’s language. In following chapters, when talking about an inventory of a resource, we are referring
to the map containing the resource’s properties. Here is an example of VM inventory:

{
"inventory": {
"uuid": "94d991c631674b16be65bfdf28b9e84a",
"name": "TestVm",
"description": "Test",
"zoneUuid": "acadddc85a604db4b1b7358605cd6015",
"clusterUuid": "f6cd5db05a0d49d8b12721e0bf721b4c",
"imageUuid": "061141410a0449b6919b50e90d68b7cd",
"hostUuid": "908131845d284d7f821a74362fff3d19",
"lastHostUuid": "908131845d284d7f821a74362fff3d19",
"instanceOfferingUuid": "91cb47f1416748afa7e0d34f4d0731ef",
"rootVolumeUuid": "19aa7ec504a247d89b511b322ffa483c",
"type": "UserVm",
"hypervisorType": "KVM",
"createDate": "Jun 1, 2015 6:11:47 PM",
"lastOpDate": "Jun 1, 2015 6:11:47 PM",
"state": "Running",
"vmNics": [

{
"uuid": "6b58e6b2ba174ef4bce8a549de9560e8",
"vmInstanceUuid": "94d991c631674b16be65bfdf28b9e84a",
"usedIpUuid": "4ecc80a2d1d93d48b32680827542ddbb",
"l3NetworkUuid": "55f85b8fa9a647f1be251787c66550ee",
"ip": "10.12.140.148",
"mac": "fa:f0:08:8c:20:00",

10 Chapter 2. Chapters

zstack Documentation, Release 0.6

"netmask": "255.0.0.0",
"gateway": "10.10.2.1",
"deviceId": 0,
"createDate": "Jun 1, 2015 6:11:47 PM",
"lastOpDate": "Jun 1, 2015 6:11:47 PM"

},
{

"uuid": "889cfcab8c08409296c649611a4df50c",
"vmInstanceUuid": "94d991c631674b16be65bfdf28b9e84a",
"usedIpUuid": "8877537e11783ee0bfe8af0fcf7a6388",
"l3NetworkUuid": "c6134efd3af94db7b2928ddc5deba540",
"ip": "10.4.224.72",
"mac": "fa:e3:87:b1:71:01",
"netmask": "255.0.0.0",
"gateway": "10.0.0.1",
"deviceId": 1,
"createDate": "Jun 1, 2015 6:11:47 PM",
"lastOpDate": "Jun 1, 2015 6:11:47 PM"

},
{

"uuid": "cba0da7a12d44b2e878dd5803d078337",
"vmInstanceUuid": "94d991c631674b16be65bfdf28b9e84a",
"usedIpUuid": "f90d01a098303956823ced02438ae3ab",
"l3NetworkUuid": "c7e9e14f2af742c29c3e25d58f16a45f",
"ip": "10.29.42.155",
"mac": "fa:2d:31:08:da:02",
"netmask": "255.0.0.0",
"gateway": "10.20.3.1",
"deviceId": 2,
"createDate": "Jun 1, 2015 6:11:47 PM",
"lastOpDate": "Jun 1, 2015 6:11:47 PM"

}
],
"allVolumes": [

{
"uuid": "19aa7ec504a247d89b511b322ffa483c",
"name": "ROOT-for-TestVm",
"description": "Root volume for VM[uuid:94d991c631674b16be65bfdf28b9e84a]",
"primaryStorageUuid": "24931b95b45e41fb8e41a640302d4c00",
"vmInstanceUuid": "94d991c631674b16be65bfdf28b9e84a",
"rootImageUuid": "061141410a0449b6919b50e90d68b7cd",
"installUrl": "/opt/zstack/nfsprimarystorage/prim-24931b95b45e41fb8e41a640302d4c00/rootVolumes/acct-36c27e8ff05c4780bf6d2fa65700f22e/vol-19aa7ec504a247d89b511b322ffa483c/19aa7ec504a247d89b511b322ffa483c.qcow2",
"type": "Root",
"format": "qcow2",
"size": 3.221225472E10,
"deviceId": 0,
"state": "Enabled",
"status": "Ready",
"createDate": "Jun 1, 2015 6:11:47 PM",
"lastOpDate": "Jun 1, 2015 6:11:47 PM"

}
]

}
}

2.2. Resource Model 11

zstack Documentation, Release 0.6

2.2.3 Resource Operations

Resources support full or partial CRUD(Create, Read, Update, Delete) operations.

Create Resources

Every resource has own creational APIs. There is one parameter ‘resourceUuid’ common to all creational APIs. When
‘resourceUuid’ is not null, ZStack will use its value as the UUID for the resource being created; otherwise ZStack will
automatically generate a UUID.

Warning: When using ‘resourceUuid’, please make sure the UUID you provide is a UUIDv4 with hyphens
striped. Otherwise, ZStack will return an invalid argument error if it’s not a valid UUIDv4 with hyphens stripped,
or an internal error if there has been a resource of the same type with the same UUID in the database.

Here is an example of creating a cluster:

CreateCluster name=cluster1 description='awesome cluster' hypervisorType=KVM zoneUuid=061141410a0449b6919b50e90d68b7cd

or:

CreateCluster resourceUuid=f31e38309e2047beac588e111fa2051f name=cluster1 description='awesome cluster' hypervisorType=KVM zoneUuid=061141410a0449b6919b50e90d68b7cd

Read Resources

Every resource has own query API that returns a list of inventories for read. For details, see Query. Here is an example
of querying VMs:

QueryVmInstance allVolumes.type=Data allVolumes.size>1099511627776

The example does: finding out all VMs which have one or more data volumes with size greater than 1099511627776
bytes(1T)

Update Resources

A resource can be updated by various APIs. Updating a resource is actually performing an action to the resource. For
example, starting a VM, stopping a VM. Please refer to corresponding chapters for actions for resources. Here is an
example of starting a VM:

StartVmInstance uuid=94d991c631674b16be65bfdf28b9e84a

Most update APIs will return a resource inventory.

Delete Resources

A resource can be deleted. ZStack’s philosophy for deleting is: every resource should be deletable; and deleting a
resource should always be success unless user allows an expected failure; for example, a plugin may allow user to set
a ‘none-deletable’ tag on a VM, and throw an error when the VM is being deleted.

Deleting a resource is not always easy in IaaS, especially for a resource that has many descendants; some software
hard code to delete all descendant resources; some software simply throws an error when a resource being deleted still
has descendant resources alive.

ZStack handles deleting in an elegant way. When a resource is being deleted, a so-called Cascade Framework will
calculate relationships among this resource and rest resources in the cloud, and propagate proper actions to related

12 Chapter 2. Chapters

http://zstack.org/blog/cascade.html

zstack Documentation, Release 0.6

resources if necessary. For example, when deleting a zone, a deleting action will be spread to all descendants of the
zone, which means all descendant resources like VMs, hosts, clusters, L2 Networks in this zone will be deleted before
the zone deleted; and backup storage attached to the zone will be detached. With the cascade framework, deleting
resources in ZStack is easy and reliable.

Every resource has own deleting API. A parameter deleteMode which has options Permissive and Enforcing is com-
mon to all deleting APIs. When deleteMode is set to Permissive, ZStack will stop the deleting if an error happens, or
the deleting is not permitted; in this case, an error code with detailed reason will be returned. When deleteMode is set
to Enforcing, ZStack will ignore any errors and permissions but delete resources directly; in this case, a deleting will
always be success.

Here is an example of deleting a VM:

DestroyVmInstance uuid=94d991c631674b16be65bfdf28b9e84a

2.3 Command Line Tool

Table of contents

• Command Line Tool
– Overview
– Usage

* Connect to ZStack management node
* Modes
* LogIn
* LogOut
* Execute API Commands
* View Command History
* Export Command History

2.3.1 Overview

zstack-cli is the command line tool for users to execute all ZStack APIs. All API examples in this user manual are
demonstrated using zstack-cli.

As ZStack is built on SOA(Service Oriented Architecture), all ZStack APIs are essentially messages; for example,
you will see a CLI command called StartVmInstance in VM related chapter, which is actually mapping to the API
message: APIStartVmInstanceMsg; nevertheless, people are more familiar with HTTP calls than messages, so ZStack
ships a builtin HTTP server that wraps all API messages into HTTP post requests. zstack-cli is built on calling APIs
through the builtin HTTP server.

2.3.2 Usage

Connect to ZStack management node

zstack-cli is installed by default after you install a ZStack management node. You can launch it by simply typing
‘zstack-cli’ in a shell console:

2.3. Command Line Tool 13

zstack Documentation, Release 0.6

if no parameters are provided, zstack-cli will connect to 8080 port on localhost; to connect a remote ZStack manage-
ment node, you can use options ‘-s’ and ‘-p’ to specify IP and port:

Note: ZStack management nodes are running in Java servlet containers, for example, Tomcat, whose port numbers
are rarely changed; most of the time you only need to specify the IP by ‘-s’.

if you have a multi-node deployment, you can connect the zstack-cli to any management nodes.

Modes

zstack-cli can work in a command mode that receives parameters from shell, runs once, and prints results to the shell
console, for example:

14 Chapter 2. Chapters

zstack Documentation, Release 0.6

or an interactive shell mode that keeps a session for continuously executing, for example:

people usually prefer interactive mode for manual execution but command mode for script integration.

LogIn

In this ZStack version(0.6), the IAM(Identity and Access Management) system is not ready; only one account ‘admin’
with default password(‘password’) is available. Before executing any commands, you need to run the login command
‘LogInByAccount’ to get a session token which is automatically saved by zstack-cli to ~/.zstack/cli/session and you

2.3. Command Line Tool 15

zstack Documentation, Release 0.6

don’t need to keep it separately:

>>> LogInByAccount accountName=admin password=password

LogOut

Once you finish your work, you can use ‘LogOut’ to invalidate current session:

>>> LogOut

the LogOut command receives a parameter ‘sessionUuid’, but you don’t need to provide it as zstack-cli will retrieve it
from where it’s kept.

Execute API Commands

Every API is a command with several parameters, you can execute them in either command mode or interactive mode:

>>> StartVmInstance uuid=11be8ac6adad44c68ae02493cba29846

[root@localhost ~]# zstack-cli StartVmInstance uuid=11be8ac6adad44c68ae02493cba29846

Note: In interactive mode, you can use Tab key to auto-complete a command or remind you about candidate param-
eters.

View Command History

You can use ‘more’ command to view your command history, for example:

>>> more

or:

[root@localhost ~]# zstack-cli more

the result format is the same to Linux more command, you can scroll up/down and search.

to view the details of a command, use ‘more’ command following a command number:

16 Chapter 2. Chapters

zstack Documentation, Release 0.6

>>> more 6

or:

[root@localhost ~]# zstack-cli more 6

the result is like:

Note: Viewing command details is very useful when output of a command is larger than the screen size; for example,
the result of QueryVmInstance.

Export Command History

You can export command history by ‘save’ command, saving one history each time or multiple histories at once:

>>> save 1
Saved command: 1 result to file: /home/root/QueryZone-1.json

[root@localhost ~]# zstack-cli -s 192.168.0.212 save 1
Saved command: 1 result to file: /home/root/QueryZone-1.json

or:

>>>save 1,2,3
Saved command: 1 result to file: /home/root/QueryZone-1.json
Saved command: 2 result to file: /home/root/CreateZone-2.json
Saved command: 3 result to file: /home/root/LogInByAccount-3.json

[root@localhost ~]# zstack-cli -s 192.168.0.212 save 1,2,3
Saved command: 1 result to file: /home/root/QueryZone-1.json
Saved command: 2 result to file: /home/root/CreateZone-2.json
Saved command: 3 result to file: /home/root/LogInByAccount-3.json

by default results are saved to current working folder, you can specify a destination folder by supplying an extra
parameter of folder path:

>>> save 1 /tmp
save history command 1 result to /tmp/COMMAND-1.json

2.3. Command Line Tool 17

zstack Documentation, Release 0.6

2.4 Query

Table of contents

• Query
– Overview
– Architecture

* Query API Parameters
* Query Condition
* CLI Query Conditions
* Join(Expanded Query)
* Query List
* Query Tags
* Avoid Loop Query
* Use Query Efficiently

– Examples
* Normal Query
* Query Count
* Normal Query With Count
* Set Limit
* Set Start
* Select Fields
* Sort

2.4.1 Overview

A main challenge for users operating large clouds is to find wanted resources accurately and quickly. For example, to
find a VM which has an EIP (17.12.53.8) out of 100,000 VMs. ZStack provides comprehensive APIs that can query
every field of every resource. See The Query API for the architecture design.

2.4.2 Architecture

Every ZStack resource groups its properties as an inventory in JSON format; for example, a zone inventory:

{
"uuid": "b729da71b1c7412781d5de22229d5e17",
"name": "TestZone",
"description": "Test",
"state": "Enabled",
"type": "zstack",
"createDate": "Jun 1, 2015 6:04:52 PM",
"lastOpDate": "Jun 1, 2015 6:04:52 PM"

}

a resource inventory can include inventories of other resources; for example, a L3 network inventory contains IP range
inventories:

{
"createDate": "Nov 10, 2015 7:52:57 PM",
"dns": [

"8.8.8.8"
],

18 Chapter 2. Chapters

http://zstack.org/blog/query.html

zstack Documentation, Release 0.6

"ipRanges": [
{

"createDate": "Nov 10, 2015 7:52:58 PM",
"endIp": "192.168.0.190",
"gateway": "192.168.0.1",
"l3NetworkUuid": "95dede673ddf41119cbd04bcb5d73660",
"lastOpDate": "Nov 10, 2015 7:52:58 PM",
"name": "ipr-mmbj",
"netmask": "255.255.255.0",
"startIp": "192.168.0.180",
"uuid": "13238c8e0591444e9160df4d3636be82"

}
],
"l2NetworkUuid": "33107835aee84c449ac04c9622892dec",
"lastOpDate": "Nov 10, 2015 7:52:57 PM",
"name": "L3-SYSTEM-PUBLIC",
"networkServices": [],
"state": "Enabled",
"system": true,
"type": "L3BasicNetwork",
"uuid": "95dede673ddf41119cbd04bcb5d73660",
"zoneUuid": "3a3ed8916c5c4d93ae46f8363f080284"

}

there are two types of inventory fields: primitive field and nested field; a field is of primitive types of number, string,
boolean and date; in above example, uuid, name, system are primitive fields; a nested field is of composite types which
usually represent inventories of other resources; in above example, ipRanges is a nested fields.

Note: A nested field can only be queried by its sub-fields; for example, for the field ipRanges, you cannot do:

QueryL3Network ipRanges='[{"name":"ipr-mmbj""}]'

instead, you need to query its sub-field:

QueryL3Network ipRanges.name=ipr-mmbj

Every field of every inventory is queryable unless it’s explicitly stated as unqueryable; for an inventory, there is
a corresponding query API, for example, QueryZone, QueryHost, QueryVmInstance; the responses of query APIs
always carry a list of inventories, or an empty list if no matching result is found. A query response is like:

{
"inventories": [

{
"availableCpuCapacity": 13504,
"availableMemoryCapacity": 16824565760,
"clusterUuid": "b429625fe2704a3e94d698ccc0fae4fb",
"createDate": "Nov 10, 2015 6:32:43 PM",
"hypervisorType": "KVM",
"lastOpDate": "Nov 10, 2015 6:32:43 PM",
"managementIp": "192.168.0.212",
"name": "U1404-192.168.0.212",
"state": "Enabled",
"status": "Connected",
"totalCpuCapacity": 14400,
"totalMemoryCapacity": 16828235776,
"uuid": "d07066c4de02404a948772e131139eb4",
"zoneUuid": "3a3ed8916c5c4d93ae46f8363f080284"

2.4. Query 19

zstack Documentation, Release 0.6

}
],
"success": true

}

A query API consists of a list of query conditions and several helper parameters:

Query API Parameters

Name Description Optional Choices Since
conditions a list of QueryCondi-

tion
0.6

limit the maximum num-
ber of inventories re-
turned by the query
API; default to 1000

true 0.6

start the first inventory to
return; default to 0

true 0.6

count if true, the query
response will return
only count of in-
ventories; default to
false

• true
• false

0.6

replyWithCount if true, the query
response will return
both inventories and
count; default to false

• true
• false

0.6

sortBy the field by which the
result inventories will
be sorted. The field
must be a primitive
field

true 0.6

sortDirection if ‘sortBy’ is not null,
this field specifies the
sorting direction; de-
fault to ‘asc’

• asc
• desc

0.6

fields a list of primitive
fields; when specified,
the result inventory
will contain only
those fields.

true 0.6

Query Condition

Query APIs receive a list of query conditions which have properties as following:

20 Chapter 2. Chapters

zstack Documentation, Release 0.6

Name Description Optional Choices Since
name field name 0.6
op comparison operator • =

• !=
• >
• >=
• <
• <=
• in
• not in
• is null
• is not null
• like
• not like

0.6

value query value 0.6

a field name can be of a primitive field, or of a sub-field of a nested field, or of a sub-field of an expanded field(see
Join); ‘op’ are comparison operators which are from SQL language.

Note: for CLI tool, some operators have different forms from SQL, listed in column ‘CLI Form’

Op CLI
Form

Description

= = equal operator; case insensitive for string comparison
!= != not equal operator; case insensitive for string comparison
> > greater than operator; check MySQL specification for string comparison
>= >= greater than or equal operator; check MySQL specification for string comparison
< < less than; check MySQL specification for string comparison
<= <= less than or equal operator; check MySQL specification for string comparison
in ?= check whether a value is within a set of values
not in !?= check whether a value is NOT within a set of values
is null =null NULL value test
is not
null

!=null NOT NULL value test

like ~= simple pattern matching. Use % to match any number of characters, even zero characters; use
_ to matches exactly one character

not
like

!~= negation of simple pattern matching. Use % to match any number of characters, even zero
characters; use _ to matches exactly one character

The relation among conditions is logical AND, it’s the only relation supported in this ZStack version. For example:

QueryL3Network ipRanges.name=range1 name=L3Network1

is to find L3 networks whose names are ‘L3Network1’ AND which have one or more IP ranges with names ‘range1’.

CLI Query Conditions

There are two ways to write conditions in CLI, one is the original form of query API:

QueryHost conditions='[{"name":"name", "op":"=", "value":"KVM1"}]'

another is CLI form:

2.4. Query 21

zstack Documentation, Release 0.6

QueryHost name=KVM1

I am sure you will prefer the CLI form as it’s more intuitive and human readable. The CLI form always expresses
query conditions in formula of:

condition_name(no_space)CLI_comparison_operator(no_space)condition_value

Warning: please note there is no space between condition_name and CLI_comparison_operator and condi-
tion_value:

name=KVM1

is valid but:

name = KVM1

is INVALID. See CLI for more details.

When typing in CLI, you can use Tab key for auto-completion and reminding you about queryable fields including
primitive fields, nested fields, and expanded fields:

Join(Expanded Query)

Join is called expanded query in ZStack; it allows users to query a resource by fields that are neither primitive nor
nested but other resources’ fields that have relation to this resource; those fields are called expanded fields in ZStack’s
terms.

For example, to find the parent L3 network of a VM nic having an EIP with VIP 17.16.0.53:

QueryL3Network vmNic.eip.vipIp=17.16.0.53

here L3 network inventory has no field called ‘vmNic.eip.vipIp’; however, it has a relation to VM nic inventory that
has a relation to EIP inventory; so we can construct an expanded query that spans to three inventories: L3 network
inventory, VM nic inventory, and EIP inventory. Thanks for this nuclear weapon, ZStack has around four millions
query conditions and countless combinations of conditions. Let’s see a more complex and artificial example:

QueryVolumeSnapshot volume.vmInstance.vmNics.l3Network.l2Network.attachedClusterUuids?=13238c8e0591444e9160df4d3636be82

This complex query is to find volume snapshots created from volumes of VMs that have nics on L3 networks whose
parent L2 networks are attached to a cluster of uuid equal to 13238c8e0591444e9160df4d3636be82. Though users
will barely do such a query, it shows the power of the query APIs.

Note: Check query operations in each chapter for expanded queries a resource can make, or use CLI auto-completion
as a reminder.

Query List

When a field is a list, it can contain primitive types such as int, long, string or nested inventories. Querying list has
nothing special; we have this section to remind you that don’t incorrectly think you can only use ‘in’(?=) and ‘not
in’(!?=) when querying a list field; in fact, you can use all comparison operators; for example:

22 Chapter 2. Chapters

zstack Documentation, Release 0.6

QueryL3Network dns~=72.72.72.%

is to find all L3 networks that have DNS like 72.72.72.*:

QueryL3Network ipRanges.startIp=192.168.0.10

is to find all L3 networks whose IP ranges starting with IP 192.168.0.10.

Query Tags

In section tags you will see every resource can have user tags and system tags both of which can be a part of query
conditions. ZStack uses two special fields: __userTag__ and __systemTag__ for query; for example:

QueryVmInstance __userTag__?=web-tier-VMs

QueryHost __systemTag__?=os::distribution::Ubuntu managementIp=192.168.0.212

operators >, >=, <, <= only return resources that have tags matching specified conditions; ‘is not null’ returns resources
that have tags; ‘is null’ returns resources that have no tags; !=, ‘not in’, ‘not like’ return resources that have tags not
matching conditions as well as resources that have no tags.

Note: If you want to make negative comparison operators(!=, ‘not in’, ‘not like’) not to return resources that have no
tags, you can use them with ‘not null’. For example:

QueryVmInstance __userTag__!=database __userTag__!=null

is to find VMs that have user tags not equal to ‘database’.

Avoid Loop Query

Most ZStack resources have bi-direction expanded queries, for example, hosts have an expanded query to clusters and
clusters also have an expanded query to hosts. This makes it’s possible to query a resource from any directions, which
may also lead to loop queries. For example:

QueryHost vmInstance.vmNics.eip.vmNic.vmInstance.uuid=d40e459b97db5a63dedaffcd05cfe3c2

is a loop query, it does the thing equal to:

QueryHost vmInstance.uuid=d40e459b97db5a63dedaffcd05cfe3c2

Behaviors of loop queries is undefined; you may or may not get the correct results. Please avoid loop query in your
practice.

Use Query Efficiently

Query APIs are powerful that you can do the same thing by different routes. For example, to find VMs that are running
on the host of UUID e497e90ab1e64db099eea93f998d525b, you can either do:

QueryVmInstance hostUuid=e497e90ab1e64db099eea93f998d525b

or:

QueryVmInstance host.uuid=e497e90ab1e64db099eea93f998d525b

2.4. Query 23

zstack Documentation, Release 0.6

The first one is more efficient, because it queries a primitive field which only involves the VM table; the later one
is an expanded query which joins both VM table and host table. When your query condition is a UUID, it’s always
suggested querying the primitive field instead of the sub-field of an expanded field.

2.4.3 Examples

Normal Query

QueryL3Network name=L3-SYSTEM-PUBLIC

Query Count

QueryL3Network name=L3-SYSTEM-PUBLIC count=true

Normal Query With Count

QueryL3Network name=L3-SYSTEM-PUBLIC replyWithCount=true

Set Limit

QueryL3Network l2NetworkUuid=33107835aee84c449ac04c9622892dec limit=10

Set Start

QueryL3Network l2NetworkUuid=33107835aee84c449ac04c9622892dec start=10 limit=100

Note: Using start and limit, UI can implement pagination.

Select Fields

QueryL3Network fields=name,uuid l2NetworkUuid=33107835aee84c449ac04c9622892dec

Note: Only primitive fields can be selected.

Sort

QueryL3Network l2NetworkUuid=33107835aee84c449ac04c9622892dec sortBy=createDate sortDirection=desc

Note: Only primitive field can be used as sorted field.

24 Chapter 2. Chapters

zstack Documentation, Release 0.6

2.5 Global Configurations

Table of contents

• Global Configurations
– Overview
– Inventory

* Example
– Operations

* Update Global Configurations
– Other Configurations

* statistics.on
* node.heartbeatInterval
* node.joinDelay
* key.public
* key.private

2.5.1 Overview

Admins can use global configurations to configure a variety of features; all global configurations come with a default
value; updating a global configuration doesn’t require to restart the management node.

We arrange resource related global configurations in each chapter, for those configurations that don’t specifically
categorise in any resource we list them in this chapter.

2.5.2 Inventory

Name Description Optional Choices Since
category configuration category 0.6
description configuration description 0.6
name configuration name 0.6
defaultValue default value 0.6
value current value 0.6

Example

{
"category": "identity",
"defaultValue": "500",
"description": "Max number of sessions management server accepts. When this limit met, new session will be rejected",
"name": "session.maxConcurrent",
"value": "500"

}

2.5.3 Operations

Update Global Configurations

Admins can use UpdateGlobalConfig to update a global configuration. For example:

2.5. Global Configurations 25

zstack Documentation, Release 0.6

UpdateGlobalConfig category=host name=connection.autoReconnectOnError value=true

2.5.4 Other Configurations

For configurations that don’t categorise in individual chapter.

statistics.on

Name Category Default Value Choices
statistics.on cloudBus false • true

• false

Whether enables statistics that count time consuming of each message through JMX.

node.heartbeatInterval

Name Category Default Value Choices
node.heartbeatInterval managementServer 5 > 0

The interval that each management node writes heartbeat to database, in seconds.

node.joinDelay

Name Category Default Value Choices
node.joinDelay managementServer 0 >= 0

If non zero, each management node will delay random seconds from 0 to ‘node.joinDelay’ before publishing join
event on the message bus. This avoid storm of join event when a large number of management nodes start at the same
time.

key.public

Name Category Default Value Choices
key.public configuration see your database

ZStack will inject this public SSH key to Linux servers that need to deploy agents; in this version, the Linux servers
include KVM host, virtual router VMs, SFTP backup storage. After injecting, ZStack will use key.private when
needing SSH login.

key.private

Name Category Default Value Choices
key.private configuration see your database

The private SSH key ZStack uses to SSH login remote Linux servers; see key.public.

26 Chapter 2. Chapters

zstack Documentation, Release 0.6

2.6 Tags

Table of contents

• Tags
– Overview
– User Tags
– System Tags
– Name Convention
– Resource Type
– Operations

* Create Tags
· Parameters

* Delete Tag
· Parameters

* Query Tags

2.6.1 Overview

ZStack provides two types of tags to help users and plugins organize resources, introduce extra resource properties,
and instruct ZStack to perform specific business logic. For the architecture design of tags see The Tag System.

2.6.2 User Tags

Users can create user tags on resources they own, which is particular useful when aggregating a set of similar resources;
for example, users can put a tag ‘web’ on VMs that work as web servers:

CreateUserTag resourceType=VmInstanceVO resourceUuid=613af3fe005914c1643a15c36fd578c6 tag=web

CreateUserTag resourceType=VmInstanceVO resourceUuid=5eb55c39db015c1782c7d814900a9609 tag=web

CreateUserTag resourceType=VmInstanceVO resourceUuid=0cd1ef8c9b9e0ba82e0cc9cc17226a26 tag=web

and later on, use Query API with tags to retrieve those VMs:

QueryVmInstance __userTag__=web

Users can also use user tags cooperating with system tags to change ZStack’s business logic; for example, users may
want all VMs working as web servers to create their root volumes on a special primary storage which provides better
IO performance by SSD; to do so, users can create a user tag ‘forWebTierVM’ on the primary storage:

CreateUserTag tag=forWebTierVM resourceType=PrimaryStorageVO resourceUuid=6572ce44c3f6422d8063b0fb262cbc62

then create a system tag on an instance offering:

CreateSystemTag tag=primaryStorage::allocator::userTag::forWebTierVM resourceType=InstanceOfferingVO resourceUuid=8f69ef6c2c444cdf8c019fa0969d56a5

then, when users create a VM with the instance offering[uuid:8f69ef6c2c444cdf8c019fa0969d56a5], ZStack will make
sure the VM’s root volume will be created on only the primary storage with user tag ‘forWebTierVM’, in this case,
which is the primary storage with UUID 6572ce44c3f6422d8063b0fb262cbc62.

2.6. Tags 27

http://zstack.org/blog/tag.html

zstack Documentation, Release 0.6

2.6.3 System Tags

System tags have wider usage than user tags; users can use them to instruct ZStack to do some specific business logic,
like the example in the section above. Plugins, which extend ZStack’s functionality, can use system tags to introduce
additional resource properties, or to record metadata which tightly bind to resources.

for example, to carry out live migration or live snapshot on KVM hosts, ZStack needs to know KVM hosts’ libvirt
version and QEMU version all of which are treated as meta data, so ZStack records them as system tags of hosts. For
example, admins can view system tags of a KVM host by:

QuerySystemTag fields=tag resourceUuid=d07066c4de02404a948772e131139eb4

d07066c4de02404a948772e131139eb4 is the KVM host UUID, the output is like:

{
"inventories": [

{
"tag": "capability:liveSnapshot"

},
{

"tag": "qemu-img::version::2.0.0"
},
{

"tag": "os::version::14.04"
},
{

"tag": "libvirt::version::1.2.2"
},
{

"tag": "os::release::trusty"
},
{

"tag": "os::distribution::Ubuntu"
}

],
"success": true

}

this kind of system tags, which record meta data, are called inherent system tags; inherent system tags can only be
created by ZStack’s services or plugins, and cannot be deleted by DeleteTag API.

To add new functionality, a plugin usually needs to add new properties to a resource; though a plugin cannot change
a resource’s database schema to add a new column, it can create new properties as system tags of a resource. For
example, when creating a VM, users can specify the VM’s hostname for the default L3 network:

CreateVmInstance name=testTag systemTags=hostname::web-server-1 l3NetworkUuids=6572ce44c3f6422d8063b0fb262cbc62 instanceOfferingUuid=04b5419ca3134885be90a48e372d3895 imageUuid=f1205825ec405cd3f2d259730d47d1d8

this hostname is implemented by a system tag; if you look at VM inventory in chapter ‘Virtual Machine’, there is no
property called ‘hostname’; however, you can find it from the VM’s system tags:

QuerySystemTag fields=tag,uuid resourceUuid=76e119bf9e16461aaf3d1b47c645c7b7

{
"inventories": [

{
"tag": "hostname::web-server-1",
"uuid": "596070a6276746edbf0f54ef721f654e"

}
],

28 Chapter 2. Chapters

zstack Documentation, Release 0.6

"success": true
}

this kind of system tags are non-inherent, users can delete them by DeleteTag; for example, if users want to change
the hostname of the former VM to ‘web-server-nginx’, they can do:

DeleteTag uuid=596070a6276746edbf0f54ef721f654e

CreateSystemTag resourceType=VmInstanceVO tag=hostname::web-server-nginx resourceUuid=76e119bf9e16461aaf3d1b47c645c7b7

after stopping and starting the VM, the guest operating system will receive the new hostname as ‘web-server-nginx’.

Note: System tags are pre-defined by ZStack’s services and plugins; user cannot create a non-existing system tag on
a resource. You can find resources’ system tags in Tags section of every resource chapter.

2.6.4 Name Convention

Both user tags and system tags can have at most 2048 characters.

For user tags, there is no enforced name convention, but it’s recommended to use human readable and meaningful
strings.

For system tags, as defined by ZStack’s services and plugins, they follow the format that uses :: as delimiters.

2.6.5 Resource Type

When creating a tag, user must specify the resource type that the tag is associated with. In this version, a list of
resource types is showed as follows:

ZoneVO
ClusterVO
HostVO
PrimaryStorageVO
BackupStorageVO
ImageVO
InstanceOfferingVO
DiskOfferingVO
VolumeVO
L2NetworkVO
L3NetworkVO
IpRangeVO
VipVO
EipVO
VmInstanceVO
VmNicVO
SecurityGroupRuleVO
SecurityGroupVO
PortForwardingRuleVO
VolumeSnapshotTreeVO
VolumeSnapshotVO

Derived resources use their parent types; for example, SftpBackupStorage’s resourceType is ‘BackupStorageVO’. In
Tags section of every resource chapter, we will explain what resource types to use when creating tags.

2.6. Tags 29

zstack Documentation, Release 0.6

2.6.6 Operations

Create Tags

There are two ways to create tags; for resources that have been created, users can use command CreateUserTag or
CreateSystemTag to create a user tag or a system tag. For example:

CreateUserTag resourceType=DiskOfferingVO resourceUuid=50fcc61947f7494db69436ebbbefda34 tag=for-large-DB

CreateSystemTag resourceType=HostVO resourceUuid=50fcc61947f7494db69436ebbbefda34 tag=reservedMemory::1G

For a resource that is going to be created, as it’s not been created yet, there is no resource UUID that can be referred in
the CreateUserTag and CreateSystemTag commands; in this case, users can use userTags and systemTags fields, both
of which are of a list type that receives a list of tags, of every creational API command; for example:

CreateVmInstance name=testTag systemTags=hostname::web-server-1
userTags=in-super-data-center,has-public-IP,hot-fix-applied-2015-5-1
l3NetworkUuids=6572ce44c3f6422d8063b0fb262cbc62
instanceOfferingUuid=04b5419ca3134885be90a48e372d3895 imageUuid=f1205825ec405cd3f2d259730d47d1d8

Parameters

CreateUserTag and CreateSystemTag have the same API parameters:

Name Description Optional Since
resourceUuid resource UUID; for example, VM’s UUID uuid, instance offering’s UUID 0.6
resourceType resource type; see resource type 0.6
tag tag string 0.6

Delete Tag

Users can use DeleteTag to delete a user tag or a non-inherent system tag. For example:

DeleteTag uuid=7813d03bb85840c489789f8df3a5915b

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

uuid tag UUID 0.6

Query Tags

Users can use QueryUserTag to query user tags, for example:

QueryUserTag resourceUuid=0cd1ef8c9b9e0ba82e0cc9cc17226a26 tag~=web-server-%

or QuerySystemTag to query system tags, for example:

30 Chapter 2. Chapters

zstack Documentation, Release 0.6

QuerySystemTag resourceUuid=50fcc61947f7494db69436ebbbefda34

Note: When querying tags, as the resourceUuid has uniquely identified a resource, you don’t need to specify the
resource type; for example:

QueryUserTag resourceUuid=0cd1ef8c9b9e0ba82e0cc9cc17226a26 resourceType=VmInstanceVO

is redundant because ZStack knows resourceUuid 0cd1ef8c9b9e0ba82e0cc9cc17226a26 maps to type VmInstanceVO.

And don’t forget you can use __userTag__ and __systemTag__ to query resources with tags, see Query API with tags.

2.7 Zone

Table of contents

• Zone
– Overview
– Inventory

* Properties:
* Example
* State

– Operations
* Create Zone

· Parameters
* Delete Zone

· Parameters
* Change State

· Parameters
* Attach Backup Storage
* Detach Backup Storage
* Query Zone

· Primitive Fields of Query
· Nested And Expanded Fields of Query

– Tags
* System Tags

· Reserved Capacity

2.7.1 Overview

A zone is a logic group of resources such as primary storage, clusters, L2 networks; it defines a visibility boundary that
resources in the same zone can see each other and establish relationships, while resources in different zones cannot.
For example, a primary storage in zone A can be attached to a cluster also in zone A, but cannot be attached to a cluster
in zone B.

Zones’ child resources, including clusters, L2 Networks and primary Storage, are organized as follows:

2.7. Zone 31

zstack Documentation, Release 0.6

Descendant resources of zones are not listed in above diagram. For instance, a host in a cluster is a descendant resource
of the parent zone of the cluster.

As a logic resource, zones maps facilities in datacenters to logic groups. Though there is no enforcement on how
facilities must be mapped, some advices are given to make things simple and clear:

• Hosts in the same physical layer 2 broadcast domain should be in the same zone, grouped as one or more
clusters.

• Physical layer2 broadcast domains should not span multiple zones, and should be mapped as L2 networks in a
single zone.

• Physical storage that provide disk spaces for VM volumes, known as primary storage, should not span multiple
zones, and should be mapped as primary storage in a single zone.

• A datacenter can have multiple zones.

A zone can has one or more Backup Storage attached. Resources in a zone, for example primary storage, can only
access backup storage attached to the zone. Also, a backup storage can be detached from a zone; after detaching,
resources in the zone will not see the backup storage any more. Detaching backup storage is particularly useful when
network typology changes in a datacenter, if the changes cause backup storage no longer accessible to resources of a
zone.

32 Chapter 2. Chapters

zstack Documentation, Release 0.6

2.7.2 Inventory

Properties:

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

state see zone state
• Enabled
• Disabled

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

type reserved field 0.6

Example

{
"uuid": "b729da71b1c7412781d5de22229d5e17",
"name": "TestZone",
"description": "Test",
"state": "Enabled",
"type": "zstack",
"createDate": "Jun 1, 2015 6:04:52 PM",
"lastOpDate": "Jun 1, 2015 6:04:52 PM"

}

State

Zones have two states: Enabled and Disabled. When changing a zone’s state, the operation will be cascaded to all
clusters and hosts all of which belong to the zone. For example, disabling a zone will change states of all clusters
and hosts in this zone to Disabled. Because no VM can be created or started on a disabled host, putting a zone into
Disabled state can prevent any VM from being created or started in this zone.

Note: Admins can selectively enable hosts or clusters in a disabled zone or disable them in an enabled zone, in order
to have fine-grained state control.

2.7.3 Operations

Create Zone

Admins can use CreateZone command to create a new zone. For example:

2.7. Zone 33

zstack Documentation, Release 0.6

CreateZone name='San Jose Zone' description='this is a zone in San Jose datacenter'

Parameters

Name Description Optional Choices Since
name resource name, see Resource Properties 0.6
resourceUuid resource uuid, see Create Resources true 0.6
description resource description, see Resource Properties true 0.6
type reserved field, don’t evaluate it true 0.6
userTags user tags, see Create Tags; resource type is ZoneVO true 0.6
systemTags system tags, see Create Tags; resource type is ZoneVO true 0.6

Delete Zone

Admins can use DeleteZone command to delete a zone. For example:

DeleteZone uuid=28e94936284b45f99842ababfc3f976d

Danger: There is no way to recover a deleted zone.

Parameters

Name Description Optional Choices Since
uuid zone uuid 0.6
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

Change State

Admins can use ChangeZoneState command to change the state of a zone. For example:

ChangeZoneState stateEvent=enable uuid=737896724f2645de9372f11b13a48223

Parameters

Name Description Optional Choices Since
uuid zone uuid 0.6
stateEvent state trigger event.

• enable: change
state to Enabled

• disable: change
state to Dis-
abled

• enable
• disable

0.6

34 Chapter 2. Chapters

zstack Documentation, Release 0.6

Attach Backup Storage

see attach backup storage to zone.

Detach Backup Storage

see detach backup storage from zone.

Query Zone

Admins can use QueryZone to query zones. For example:

QueryZone name=zone1

QueryZone vmInstance.uuid=13238c8e0591444e9160df4d3636be82

Primitive Fields of Query

see zone inventory

Nested And Expanded Fields of Query

Field Inventory Description Since
vmInstance vm inventory VMs belonging to this zone 0.6
cluster cluster inventory clusters belonging to this zone 0.6
host host inventory hosts belonging to this zone 0.6
primaryStorage primary storage inventory primary storage belonging to this zone 0.6
l2Network L2 network inventory L2 networks belonging to this zone 0.6
l3Network L3 network inventory L3 networks belonging to this zone 0.6
backupStorage backup storage inventory backup storage belonging to this zone 0.6

2.7.4 Tags

Admins can create user tags on a zone with resourceType=ZoneVO. For example:

CreateUserTag resourceType=ZoneVO resourceUuid=0cd1ef8c9b9e0ba82e0cc9cc17226a26 tag=privateZone

System Tags

Reserved Capacity

Tag Description Example Since
host::reservedMemory::{capacity} see Host Capacity Reservation host::reservedMemory::1G 0.6

2.7. Zone 35

zstack Documentation, Release 0.6

2.8 Cluster

Table of contents

• Cluster
– Overview
– Inventory

* Properties
* Example
* Hypervisor Type
* State

– Operations
* Create Cluster

· Parameters
* Delete Cluster

· Parameters
* Change State

· Parameters
* Attach Primary Storage

· Parameters
* Detach Primary Storage

· Parameters
* Attach L2 Network

· Parameters
* Detach L2 Network

· Parameters
* Query Cluster

· Primitive Fields of Query
· Nested And Expanded Fields of Query

– Tags
* System Tags

· Reserved Capacity

2.8.1 Overview

A cluster is a logic group of analogy hosts. Hosts in the same cluster must be installed with the same operating
systems(hypervisor), have the same layer2 network connectivity, and can access the same primary storage. In real
datacenters, a cluster usually maps to a rack.

A typical cluster and its relationship to primary storage, L2 networks is shown in below diagram.

36 Chapter 2. Chapters

zstack Documentation, Release 0.6

A cluster can have one or more primary storage attached, as long as hosts in the cluster can all access these primary
storage. Also, a primary storage can be detached from a cluster; this is particularly useful when network typology
changes in datacenters, which causes the primary storage no longer accessible to hosts in the cluster.

A cluster can have one or more L2 networks attached, as long as hosts in the cluster are all in the physical layer2
broadcast domains those L2 networks represent. Also, a L2 network can be detached from a cluster, if network
typology changes in the datacenter cause hosts in the cluster no longer in the layer2 broadcast domain of the L2
network.

The size of a cluster, which is the maximum hosts the cluster can contain, is not enforced.

2.8. Cluster 37

zstack Documentation, Release 0.6

2.8.2 Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

hypervisorType see cluster hypervisor
type • KVM

0.6

state see cluster state
• Enabled
• Disabled

0.6

zoneUuid uuid of zone contain-
ing the cluster. See
zone.

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

type reserved field 0.6
userTags user tags, see Create

Tags
true 0.6

systemTags system tags, see Cre-
ate Tags

true 0.6

Example

{
"inventory": {
"uuid": "c1bd173d5cd84f0e9e7c47195ae27ec6",
"name": "cluster1",
"description": "test",
"state": "Enabled",
"zoneUuid": "1b830f5bd1cb469b821b4b77babfdd6f"
"hypervisorType": "KVM",
"lastOpDate": "Jun 1, 2015 5:54:09 PM",
"createDate": "Jun 1, 2015 5:54:09 PM",
"type": "zstack",

}
}

Hypervisor Type

Hypervisor type indicates what hypervisor(operating system) installed on hosts in the cluster. In this ZStack version,
the only supported hypervisor is KVM.

38 Chapter 2. Chapters

zstack Documentation, Release 0.6

State

Cluster has two states: Enabled and Disabled, just like zone. When changing the state of a cluster, the operation will
be spread to all hosts of the cluster; For example, disabling a cluster will disable all hosts in the cluster as well.

Note: Admins can selectively enable hosts in a disabled cluster or disable them in an enabled cluster, in order to have
fine-grained state control.

2.8.3 Operations

Create Cluster

Admins can use CreateCluster command to create a cluster. For example:

CreateCluster name=cluster1 hypervisorType=KVM zoneUuid=1b830f5bd1cb469b821b4b77babfdd6f

Parameters

Name Description Optional Choices Since
zoneUuid uuid of parent zone 0.6
name resource name, see Resource Properties 0.6
resourceUuid resource uuid, see Create Resources true 0.6
description resource description, see Resource Properties true 0.6
hypervisorType see cluster hypervisor type 0.6
type reserved field, don’t evaluate it true 0.6

Delete Cluster

Admins can use DeleteCluster to delete a cluster. For example:

DeleteCluster uuid=c1bd173d5cd84f0e9e7c47195ae27ec6

Danger: Deleting a cluster will delete hosts in the cluster; VMs will be migrated to other clusters or be stopped if
no available clusters to migrate; primary storage and L2 networks attached to the cluster will be detached. There
is no way to recover a deleted cluster.

Parameters

Name Description Optional Choices Since
uuid cluster uuid 0.6
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

2.8. Cluster 39

zstack Documentation, Release 0.6

Change State

Admins can use ChangeClusterState to change the state of a cluster. For example:

ChangeClusterState uuid=c1bd173d5cd84f0e9e7c47195ae27ec6 stateEvent=disable

Parameters

Name Description Optional Choices Since
uuid cluster uuid 0.6
stateEvent state trigger event

• enable: change
state to Enabled

• disable: change
state to Dis-
abled

• enable
• disable

0.6

Attach Primary Storage

Admins can use AttachPrimaryStorageToCluster command to attach a primary storage to a cluster. For example:

AttachPrimaryStorageToCluster clusterUuid=c1bd173d5cd84f0e9e7c47195ae27ec6 primaryStorageUuid=1b830f5bd1cb469b821b4b77babfdd6f

Note: Only sibling primary storage can be attached to a cluster. In other words, primary storage and clusters must be
in the same zone.

Parameters

Name Description Optional Choices Since
clusterUuid cluster uuid 0.6
primaryStorageUuid primary storage uuid 0.6

Detach Primary Storage

Admin cans use DetachPrimaryStorageFromCluster to detach a primary storage from a cluster. For example:

DetachPrimaryStorageFromCluster clusterUuid=c1bd173d5cd84f0e9e7c47195ae27ec6 primaryStorageUuid=1b830f5bd1cb469b821b4b77babfdd6f

Note: During detaching, VMs that have root volumes on the primary storage and that run in the cluster will be
stopped. Users can start those VMs again if the primary storage is still attached to some other clusters, or start them
after the primary storage is attached to a new cluster.

Detaching primary storage is useful when admin wants to make a primary storage on longer accessible to a cluster.
For example, in order to move VMs from a cluster equipped with aged hosts to a cluster with new, powerful hosts,
admins can detach the primary storage on which root volumes of VMs locate from the old cluster and attach it to the
new cluster, then start those stopped VMs; because the old cluster cannot access the primary storage anymore, ZStack
will choose the new cluster to start VMs.

40 Chapter 2. Chapters

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
clusterUuid cluster uuid 0.6
primaryStorageUuid primary storage uuid 0.6

Attach L2 Network

Admin can use AttachL2NetworkToCluster command to attach a L2 network to a cluster. For example:

AttachL2NetworkToCluster clusterUuid=c1bd173d5cd84f0e9e7c47195ae27ec6 l2NetworkUuid=1b830f5bd1cb469b821b4b77babfdd6f

Note: Only sibling L2 networks can be attached to a cluster. In other words, L2 networks and clusters must be in the
same zone.

Parameters

Name Description Optional Choices Since
clusterUuid cluster uuid 0.6
l2NetworkUuid L2 network uuid 0.6

Detach L2 Network

Admins can use DetachL2NetworkFromCluster command to detach a L2 network from a cluster. For example:

DetachL2NetworkFromCluster clusterUuid=c1bd173d5cd84f0e9e7c47195ae27ec6 l2NetworkUuid=1b830f5bd1cb469b821b4b77babfdd6f

Note: During detaching, VMs which run in the clusters and have nics on the L2 networks(through L3 networks) will
be stopped. Users can start those VMs again if the L2 networks are still attached to other clusters, or start them after
the L2 networks are attached to new clusters.

Detaching L2 networks can be useful when admins want to make network typology changes in datacenters. After
hosts in a cluster no longer connect to a physical layer2 network, admin can detach the L2 network representing the
physical layer2 network from the cluster.

Parameters

Name Description Optional Choices Since
clusterUuid cluster uuid 0.6
l2NetworkUuid L2 network uuid 0.6

Query Cluster

Admins can use QueryCluster to query clusters. For example:

QueryCluster hypervisorType=KVM

2.8. Cluster 41

zstack Documentation, Release 0.6

QueryCluster primaryStorage.availableCapacity>100000000

Primitive Fields of Query

see cluster inventory

Nested And Expanded Fields of Query

Field Inventory Description Since
zone see zone inventory parent zone 0.6
host see host inventory hosts belonging to this cluster 0.6
vmInstance see vm inventory VMs belonging to this cluster 0.6
l2Network see L2 network inventory L2 networks attached to this cluster 0.6
primaryStorage see primary storage inventory primary storage attached to this cluster 0.6

2.8.4 Tags

Admins can create user tags on a cluster with resourceType=ClusterVO. For example:

CreateUserTag resourceType=ClusterVO resourceUuid=80a979b9e0234564a22a4cca8c1dff43 tag=secureCluster

System Tags

Reserved Capacity

Tag Description Example Since
host::reservedMemory::{capacity} see Host Capacity Reservation host::reservedMemory::1G 0.6

2.9 Host

42 Chapter 2. Chapters

zstack Documentation, Release 0.6

Table of contents

• Host
– Overview
– Inventory

* Properties
* Example
* Management IP

· Management Network
* State

· Maintenance Mode
* Status
* State and Status

– Operations
* Add Host

· Add KVM Host
· Parameters
· KVM Credentials

* Delete Host
· Parameters

* Change Host State
· Parameters

* Reconnect Host
· Parameters

* Query Host
· Primitive Fields of Query
· Nested And Expanded Fields of Query

– Global Configurations
* load.all
* load.parallelismDegree
* ping.timeout
* ping.parallelismDegree
* connection.autoReconnectOnError
* maintenanceMode.ignoreError
* reservedCapacity.zoneLevel
* reservedCapacity.clusterLevel
* reservedCapacity.hostLevel
* vm.migrationQuantity
* reservedMemory
* dataVolume.maxNum
* host.syncLevel

– Tags
* System Tags

· Host Capacity Reservation
· Host Meta Data Information
· KVM Host Meta Data Information

2.9.1 Overview

A host is a physical server installed with an operating system(hypervisor).

2.9. Host 43

zstack Documentation, Release 0.6

In ZStack, a host is the smallest unit providing computing resources that run VMs. Zones and clusters, which usually
contain grouped hosts, are bigger units. Unlike its parent and ancestor both of which are logical resources, a host is a
physical resource; many operations, which are seemingly applied to zones or clusters, are actually delegated to hosts.
For example, when attaching a primary storage to a cluster, the real action performed might be mounting the primary
storage on every host in the cluster.

Note: In this ZStack version, KVM is the only supported host

44 Chapter 2. Chapters

zstack Documentation, Release 0.6

2.9.2 Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

zoneUuid uuid of ancestor zone.
see zone

0.6

clusterUuid uuid of parent cluster.
see cluster

0.6

managementIp see management ip 0.6
hypervisorType see cluster hypervisor

type
0.6

state see state
• Enabled
• Disabled
•

PreMaintenance
• Maintenance

0.6

status see status
• Connecting
• Connected
• Disconnected

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

Example

{
"inventory": {
"zoneUuid": "2893ce85c43d4a3a8d78f414da39966e",
"name": "host1-192.168.0.203",
"uuid": "43673938584447b2a29ab3d53f9d88d3",
"clusterUuid": "8524072a4274403892bcc5b1972c2576",
"description": "Test",
"managementIp": "192.168.0.203",
"hypervisorType": "KVM",
"state": "Enabled",
"status": "Connected",
"createDate": "Jun 1, 2015 6:49:24 PM",
"lastOpDate": "Jun 1, 2015 6:49:24 PM"

}
}

2.9. Host 45

zstack Documentation, Release 0.6

Management IP

The management IP is used by ZStack management nodes to reach the operating systems(hypervisor) of hosts; de-
pending on hypervisor types, it’s necessary or not. For example, in VMWare, the official way to reach an ESXi host is
through the VCenter Server, then the management IP is not necessary; however, in KVM, ZStack will deploy an agent
to the Linux operating system, then the management IP is necessary.

Note: A management IP can be either an IP address or a DNS name, as long as the DNS name can be resolved by the
operating systems on which ZStack management nodes run.

Note: In this ZStack version, as KVM is the only supported host, the management ip is a mandatory field.

Management Network

Though it’s not enforced, it is recommended to have one or more dedicated subnets used as management networks. The
Linux servers that run ZStack management nodes must be able to reach management networks, because management
nodes need to send commands to hosts and other appliances on the management networks. In future chapters, we will
see management network again when talking about appliance VMs, which are specific to virtual router in this ZStack
version.

Warning: Specific to KVM, it’s recommended to make all management IPs of hosts in the same zone be inter-
reachable. In this ZStack version, there are no dedicated networks for VM migration; ZStack essentially uses
management IPs to transfer data amid hosts during VM migrations. If hosts can not reach each other by manage-
ment IPs, even they can be reached by ZStack management nodes, VM migrations among them will still fail.

State

Hosts have four states:

• Enabled:

the state that allows VMs to be created, started, or migrated to

• Disabled:

the state that DOESN’T allow VMs to be created, started, or migrated to

• PreMaintenance:

the intermediate state indicating host is entering Maintenance state. See maintenance mode.

• Maintenance:

the state indicating host has been in maintenance mode.

A state transition diagram is like:

46 Chapter 2. Chapters

zstack Documentation, Release 0.6

Maintenance Mode

A host can be placed in maintenance mode when admins need to carry out maintenance work, for example, to install
more memory. When a host is in the maintenance mode, neither API operations nor ZStack internal tasks can be
performed to it. That is to say, tasks like starting VMs(API), stopping VMs(API), mounting primary storage(internal)
cannot be performed. ZStack defines maintenance mode in two states: PreMaintenance and Maintenance. The se-
quence a host enters maintenance mode is shown as follows:

1. Changing the host’s state to PreMaintenance. At this phase, ZStack will try to migrate all VMs running on the
host to other appropriate hosts. If migrations fail, ZStack will stop those VMs.

2. After VMs are properly migrated or stopped, ZStack will change the host’s state to Maintenance. Since now,
admins can do maintenance work to the host.

Admins can take a host out of maintenance mode by placing it in Enabled or Disabled state, after maintenance work
is done.

Note: When a host is in maintenance mode, admins can still attach primary storage or L2 networks to its parent
cluster. Once the host quits maintenance mode, ZStack will send a reconnect message which will instruct the host to
catch up work missed during it was in the maintenance mode; for example, mounting a NFS primary storage.

Status

A host’s status reflects the status of command channel between the host and a ZStack management node. Command
channels are the ways that ZStack management nodes communicate with hosts to perform operations. For example, in
KVM, command channels are the HTTP connections between ZStack management nodes and Python agents running
on hosts; in VMWare, command channels are connections between the VCenter Server and ESXi hosts.

2.9. Host 47

zstack Documentation, Release 0.6

Hosts have three status:

• Connecting:

A ZStack management node is trying to establish the command channel between itself and the host. No opera-
tions can be performed to the host.

• Connected

The Command channel has been successfully established between a ZStack management node and the host.
Operations can be performed to the host. This is the only status that a host can start or create VMs.

• Disconnected

The Command channel has lost between a ZStack management node and the host. No operations can be per-
formed to the host.

When booting, a ZStack management node will start the process of establishing the command channel to hosts it
manages; in this stage, hosts’s status are Connecting; after command channels are established, hosts’ status change
to Connected; if the management node fails to setup a command channel, or the command channel is detected as lost
later on, the status of the host to which the command channel connect changes to Disconnected.

ZStack management nodes will periodically send ping commands to hosts to check health of command channels; once
a host fails to respond, or a ping command times out, the host’s status changes to Disconnected.

Note: ZStack will keep sending ping commands to a disconnected host. Once the host recovers and responds to
the ping command, ZStack will reestablish the command channel and alter the host to Connected. So when a host
is physically removed from a cloud, please remember to delete it from ZStack, otherwise ZStack management nodes
will keep pinging it.

Note: No ping command will be sent if a host is in maintenance mode.

A status transition diagram is like:

48 Chapter 2. Chapters

zstack Documentation, Release 0.6

State and Status

There are no direct relations between states and status. States represent admin’s decisions to a host, while status
represents communication condition of a host.

2.9.3 Operations

Add Host

The commands adding a host varies for different hypervisors.

Add KVM Host

Admins can use AddKVMHost to add a KVM host. For example:

AddKVMHost clusterUuid=8524072a4274403892bcc5b1972c2576 managementIp=192.168.10.10 name=kvm1 username=root password=password

Parameters

Name Description Optional Choices Since
name resource name, see Resource Properties 0.6
resourceUuid resource uuid, see Create Resources true 0.6
description resource description, see Resource Properties true 0.6
clusterUuid uuid of parent cluster, see cluster 0.6
managementIp see management ip 0.6
username see kvm credentials 0.6
password see kvm credentials 0.6

KVM Credentials ZStack uses a Python agent called kvmagent to manage KVM hosts. To make things full au-
tomation, ZStack utilizes Ansible to configure target Linux operating systems and deploy kvmagents; and to bootstrap
Ansible on target Linux operating systems, ZStack needs SSH username/password of root user to inject SSH pub-
lic keys in KVM hosts in order to make Ansible work without prompting username/password. The root privilege is
required as both Ansible and kvmagent need full control of the system.

Delete Host

Admins can use DeleteHost command to delete a host. For example:

DeleteHost uuid=2893ce85c43d4a3a8d78f414da39966e

Danger: Deleting hosts will stop all VMs on the host. There is no way to recover a deleted host.

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

uuid host uuid 0.6

2.9. Host 49

http://www.ansible.com/home

zstack Documentation, Release 0.6

Change Host State

Admins can use ChangeHostState command to change a host’s state. For example:

ChangeHostState stateEvent=preMaintain uuid=2893ce85c43d4a3a8d78f414da39966e

Parameters

Name Description Optional Choices Since
uuid host uuid 0.6
stateEvent state trigger event.

See state

Note: The state trig-
ger event ‘maintain’
shown in state section
is used internally and
is not available in the
API.

• enable
• disable
• preMaintain

0.6

Reconnect Host

Admins can use ReconnectHost to re-establish the command channel between a ZStack management node and a host.
For example:

ReconnectHost uuid=2893ce85c43d4a3a8d78f414da39966e

See status for details.

Parameters

Name Description Optional Choices Since
uuid host uuid 0.6

Query Host

Admins can use QueryHost to query hosts. For example:

QueryHost managementIp=192.168.0.100

QueryHost vmInstance.vmNics.ip=10.21.100.2

Primitive Fields of Query

see host inventory

50 Chapter 2. Chapters

zstack Documentation, Release 0.6

Nested And Expanded Fields of Query

Field Inventory Description Since
zone zone inventory ancestor zone 0.6
cluster cluster inventory parent cluster 0.6
vmInstance VM inventory VMs running on this host 0.6

2.9.4 Global Configurations

load.all

Name Category Default Value Choices
load.all host true • true

• false

Whether to connect all hosts when management nodes boot. If set to true, management nodes will connect to all hosts
simultaneously during booting time, which may exhaust resources of the machines running management nodes if there
are a large number of hosts in the cloud; if set to false, accompanying with load.parallelismDegree, management nodes
will connect a portion of hosts each time and repeat until all hosts are connected.

load.parallelismDegree

Name Category Default Value Choices
load.parallelismDegree host 100 > 0

When load.all is set to false, this configuration defines the number of hosts that management nodes will connect
simultaneously during booting time.

ping.timeout

Name Category Default Value Choices
ping.interval host 60 > 0

The interval that management nodes periodically send ping commands to hosts in order to check connection status, in
seconds.

ping.parallelismDegree

Name Category Default Value Choices
ping.parallelismDegree host 100 > 0

The parallel degree that management nodes send ping commands. If the amount of hosts are larger than this value,
management nodes will repeat until all hosts are pinged. For example, ping first 100 hosts, then ping second 100 hosts
...

2.9. Host 51

zstack Documentation, Release 0.6

connection.autoReconnectOnError

Name Category Default Value Choices
connection.autoReconnectOnErrorhost true • true

• false

Whether to reconnect hosts when their status change from Connected to Disconnected. If set to true, management
nodes will reconnect hosts whose status change from Connected to Disconnected by ping commands, in order to catch
up with operations missed during hosts in disconnected; if set to false, management nodes will not automatically
reconnect them, admins may need to manually do it if necessary.

maintenanceMode.ignoreError

Name Category Default Value Choices
maintenanceMode.ignoreErrorhost false • true

• false

Whether to ignore errors happening during hosts enter maintenance mode. If set to true, errors are ignored and hosts
always successfully enter maintenance mode; if set to false, hosts will fail to enter maintenance mode if any error
happens, for example, failing to migrate a VM.

reservedCapacity.zoneLevel

Name Category Default Value Choices
reservedCapacity.zoneLevel hostAllocator true • true

• false

Whether to enable host capacity reservation at zone level; see host capacity reservation.

reservedCapacity.clusterLevel

Name Category Default Value Choices
reservedCapacity.clusterLevelhostAllocator true • true

• false

Whether to enable host capacity reservation at cluster level; see host capacity reservation.

reservedCapacity.hostLevel

Name Category Default Value Choices
reservedCapacity.hostLevel hostAllocator true • true

• false

Whether to enable host capacity reservation at host level; see host capacity reservation.

52 Chapter 2. Chapters

zstack Documentation, Release 0.6

vm.migrationQuantity

Name Category Default Value Choices
vm.migrationQuantity kvm 2 > 0

The number that how many VMs can be migrated in parallel when KVM hosts enter maintenance mode.

reservedMemory

Name Category Default Value Choices
reservedMemory kvm 512M >= 0

A string that memory capacity reserved on KVM hosts if reservedCapacity.hostLevel is set to true. The value is a
number followed by a unit character that can be one of B/K/M/G/T; if no unit character followed, the number is
treated as bytes.

dataVolume.maxNum

Name Category Default Value Choices
dataVolume.maxNum kvm 24 0 - 24

The max number of data volumes that can be attached to VMs of hypervisor type – KVM.

host.syncLevel

Name Category Default Value Choices
host.syncLevel kvm 10 > 2

The max number of concurrent commands that can be simultaneously executed on KVM hosts.

2.9.5 Tags

Admins can create user tags on a host with resourceType=HostVO. For example:

CreateUserTag tag=largeMemoryHost resourceUuid=0a9f95a659444848846b5118e15bff32 resourceType=HostVO

System Tags

Host Capacity Reservation

Admins can use system tags to reserve a portion of memory on hosts for system software. ZStack provides various
system tags and global configurations for fine-grained memory reservation policies:

• Hypervisor Global Level:

The global configuration reservedMemory applies to all KVM hosts if not overridden by settings of other levels.

• Zone Level:

See zone host::reservedMemory; the value of this system tag applies to all hosts in the zone if not overridden by
settings of other levels. This overrides global level.

2.9. Host 53

zstack Documentation, Release 0.6

• Cluster Level:

See cluster host::reservedMemory; the value of this system tag applies to all hosts in the cluster if not overridden
by the setting of host level. This overrides zone level and global level.

• Host Level:
Tag Description Example Since
reservedMemory::{capacity} reserved memory on this host. reservedMemory::1G 0.6

this overrides all above levels.

For example, assuming you have 3 KVM hosts in zone1->cluster1->{host1, host2, host3}; by default the memory
reservation is controlled by the global configuration reservedMemory that defaults to 512M; then you create a system
tag host::reservedMemory::1G on zone1, so memory reservation on all 3 hosts is 1G now; then you create a system
tag host::reservedMemory::2G on cluster1, memory reservation of 3 hosts changes to 2G; finally, you create a system
tag reservedMemory::3G on host1, then memory reservation is 3G on host1 but still 2G on host2 and host3.

Host Meta Data Information

Tag Description Example Since
capability:liveSnapshot if present, the host’s hypervisor supports live

volume snapshot
capabil-
ity:liveSnapshot

0.6

os::distribution::{distribution}OS distribution of the host os::distribution::Ubuntu0.6
os::release::{release} OS release of the host os::release::trusty 0.6
os::version::{version} OS version the host os::version::14.04 0.6

KVM Host Meta Data Information

Tag Description Example Since
qemu-
img::version::{version}

qemu-img version qemu-
img::version::2.0.0

0.6

lib-
virt::version::{version}

libvirt version lib-
virt::version::1.2.2

0.6

hvm::{flag} host hardware virtualization flag; vmx means Intel CPU;
svm means AMD CPU

hvm::vmx 0.6

2.10 Primary Storage

54 Chapter 2. Chapters

zstack Documentation, Release 0.6

Table of contents

• Primary Storage
– Overview
– Inventory

* Properties
* Example

· Capacity
· NFS Capacity
· URL
· NFS URL

* State
* Status
* State and Status
* Attaching Cluster

– Operations
* Add Primary Storage

· Add NFS Primary Storage
· Properties

* Delete Primary Storage
· Properties

* Change Primary Storage State
· Properties

* Attach Cluster
* Detach Cluster
* Query Primary Storage

· Primitive Fields of Query
· Nested And Expanded Fields of Query

– Global Configurations
* mount.base

– Tags
* System Tags

· Storage Volume Snapshot

2.10.1 Overview

A primary storage is the storage system in datacenter that stores disk volumes for VMs. Primary storage can be local
disks(e.g. hard drives of hosts) or network shared (e.g. NAS, SAN) storage.

2.10. Primary Storage 55

zstack Documentation, Release 0.6

A primary storage stores volumes for VMs running in clusters that have been attached to this primary storage.

A primary storage can be attached to only sibling clusters.

Note: In this ZStack version, NFS is the only supported primary storage

56 Chapter 2. Chapters

zstack Documentation, Release 0.6

2.10.2 Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

zoneUuid uuid of parent zone,
see zone

0.6

totalCapacity total disk capacity, in
bytes, see capacity

0.6

availableCapacity available disk capac-
ity, in bytes, see ca-
pacity

0.6

url see url 0.6
type primary storage type

• NFS
0.6

state see state
• Enabled
• Disabled

0.6

status see status
• Connecting
• Connected
• Disconnected

0.6

attachedClusterUuids a list of cluster uuid
to which the primary
storage has been
attached, see attach
cluster

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

Example

{
"inventory": {
"uuid": "f4ac0a3119c94c6fae844c2298615d27",
"zoneUuid": "f04caf351c014aa890126fc78193d063",
"name": "nfs",
"url": "192.168.0.220:/storage/nfs",
"description": "Test Primary Storage",
"totalCapacity": 10995116277768819,
"availableCapacity": 10995162768,
"type": "NFS",
"state": "Enabled",

2.10. Primary Storage 57

zstack Documentation, Release 0.6

"mountPath": "/opt/zstack/f4ac0a3119c94c6fae844c2298615d27",
"createDate": "Jun 1, 2015 2:42:51 PM",
"lastOpDate": "Jun 1, 2015 2:42:51 PM",
"attachedClusterUuids": [

"f23e402bc53b4b5abae87273b6004016",
"4a1789235a86409a9a6db83f97bc582f",
"fe755538d4e845d5b82073e4f80cb90b",
"1f45d6d6c02b43bfb6196dcacb5b8a25"

]
}

}

Capacity

ZStack keeps tracking disk capacities of primary storage in order to select suitable one to create volumes. The
capacities reported by different primary storage plugins may be different; for example, for those supporting over-
provisioning, the capacity reported may be larger than real; for those not supporting over-provisioning, the capacity
reported may be equal to or smaller than real.

NFS Capacity NFS doesn’t support over-provisioning, so the capacity is counted by volumes’ virtual sizes using
below formulas:

totalCapacity = NFS's total capacity
availableCapacity = totalCapacity - sum(volumes' virtual sizes)

Volumes’ virtual sizes will be discussed in chapter volume; for those impatient, a volume’s virtual size is the size when
a volume is fully filled; for example, when you created a volume with 1G capacity, before it’s fully filled, its real size
may be 10M because of thin-provisioning technology.

URL

A URL is a string that contains information needed by primary storage plugins for manipulating storage systems.
Although it’s named as URL, the certain format of the string is up to primary storage types and is not necessary to
strictly follow the URL convention, to give flexibilities to plugins to encode information that may not be able to fit in
the URL format.

NFS URL For NFS primary storage, the URL is encoded as:

ip-or-dns-name-of-nfs-server:/absolute-path-to-directory

For example:

192.168.0.220:/storage/nfs/

State

Primary storage has two states:

• Enabled:

the state that allows volumes to be created

58 Chapter 2. Chapters

zstack Documentation, Release 0.6

• Disabled:

the state that DOESN’T allow volumes to be created

Status

Like host status, primary storage status reflect the status of command channels amid ZStack management nodes and
primary storage. Command channels are the ways ZStack management nodes communicate with storage systems
that primary storage represent; depending on primary storage types, for example, it can be HTTP connections among
ZStack management nodes and primary storage agents or communication methods provided by storage SDKs.

There are three status:

• Connecting:

A ZStack management node is trying to establish the command channel between itself and the primary storage.
No operations can be performed to the primary storage.

• Connected

The command channel has been successfully established between a ZStack management node and the primary
storage. Operations can be performed to the primary storage.

• Disconnected

The command channel has lost between a ZStack management node and the primary storage. No operations can
be performed to the primary storage.

ZStack management nodes will try to establish command channels when booting and will periodically send ping
commands to primary storage to check health of command channels during running; once a primary storage fails to
respond, or a ping command times out, the command channel is considered as lost and the primary storage will be
placed in Disconnected.

Note: ZStack will keep sending ping commands when a primary storage is in status of Disconnected. Once the
primary storage recovers and responds to ping commands, ZStack will reestablish the command channel and place
the primary storage in status of Connected. So when a primary storage is physically removed from the cloud, please
delete it from ZStack, otherwise ZStack will keep pinging it.

Here is the transition diagram:

2.10. Primary Storage 59

zstack Documentation, Release 0.6

State and Status

There is no direct relations between states and status. States represent admin’s decisions to primary storage, while
status represent communication conditions of primary storage.

Attaching Cluster

Attaching clusters is to associate primary storage to sibling clusters, which provides a flexible way that manifests
relations between hosts and storage systems in a real datacenter. Let’s see a concreted example; assuming you have a
cluster (cluster A) attached to a NFS primary storage (NFS1), like below diagram:

60 Chapter 2. Chapters

zstack Documentation, Release 0.6

Some time later, the cluster A is running out of memory but the primary storage still have plenty of disk spaces, so
you decide to add another cluster (cluster B) which will also use NFS1; then you can create cluster B and attach NFS1
to it.

2.10. Primary Storage 61

zstack Documentation, Release 0.6

After running a while, the hardware of cluster A is getting outdated and you decide to retire them; you add a new
powerful cluster (cluster C) attached to NFS1 and place all hosts in cluster A into maintenance mode, so all VMs
running in cluster A are migrated to cluster B or cluster C; lastly, you detach NFS1 from cluster A and delete it. Now
the datacenter looks like:

62 Chapter 2. Chapters

zstack Documentation, Release 0.6

Finally, NFS1 starts running out of capacity, you add one more primary storage (NFS2), and attach it to both cluster B
and cluster C.

2.10. Primary Storage 63

zstack Documentation, Release 0.6

2.10.3 Operations

Add Primary Storage

The commands adding a primary storage varies for different types of primary storage.

Add NFS Primary Storage

Admins can use AddNfsPrimaryStorage to add a NFS primary storage. For example:

AddNfsPrimaryStorage name=nfs1 zoneUuid=1b830f5bd1cb469b821b4b77babfdd6f url=192.168.0.220:/storage/nfs

Properties

Name Description Optional Choices Since
name resource name, see Resource Properties 0.6
resourceUuid resource uuid, see Create Resources true 0.6
description resource description, see Resource Properties true 0.6
zoneUuid uuid of parent zone, see zone 0.6
url see url 0.6

Delete Primary Storage

Admins can use DeletePrimaryStorage to delete a primary storage. For example:

64 Chapter 2. Chapters

zstack Documentation, Release 0.6

DeletePrimaryStorage uuid=2c830f5bd1cb469b821b4b77babfdd6f

Danger: Deleting a primary storage will delete all volumes and volume snapshots it contains. VMs will be deleted
as results of deleting root volumes. There is no way to recover a deleted primary storage. Clusters attached will be
detached.

Properties

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

uuid primary storage uuid 0.6

Change Primary Storage State

Admins can use ChangePrimaryStorageState to change the state of a primary storage. For example:

ChangePrimaryStorageState stateEvent=enable uuid=2c830f5bd1cb469b821b4b77babfdd6f

Properties

Name Description Optional Choices Since
uuid primary storage uuid 0.6
stateEvent state trigger event

• enable: change
state to Enabled

• disable: change
state to Dis-
abled

• enable
• disable

0.6

Attach Cluster

See Attach Primary Storage.

Detach Cluster

See Detach Primary Storage.

Query Primary Storage

Admins can use QueryPrimaryStorage to query primary storage. For example:

QueryPrimaryStorage totalCapacity<100000000000

2.10. Primary Storage 65

zstack Documentation, Release 0.6

QueryPrimaryStorage volumeSnapshot.uuid?=13238c8e0591444e9160df4d3636be82,33107835aee84c449ac04c9622892dec

Primitive Fields of Query

see primary storage inventory

Nested And Expanded Fields of Query

Field Inventory Description Since
zone zone inventory parent zone 0.6
volume volume inventory volumes on this primary storage 0.6
volumeSnapshot volume snapshot inventory volume snapshots on this primary storage 0.6
cluster cluster inventory clusters the primary storage is attached to 0.6

2.10.4 Global Configurations

mount.base

Name Category Default Value Choices
mount.base nfsPrimaryStorage /opt/zstack/nfsprimarystorage absolute path that starts with ‘/’

The mount point that NFS primary storage is mounted on the KVM hosts.

Note: Changing this value only affect new NFS primary storage

2.10.5 Tags

Users can create user tags on a primary storage with resourceType=PrimaryStorageVO. For example:

CreateUserTag resourceType=PrimaryStorage tag=SSD resourceUuid=e084dc809fec4092ab0eff797d9529d5

System Tags

Storage Volume Snapshot

Tag Description Example Since
capabil-
ity:snapshot

if present, the primary storage supports storage volume
snapshot

capabil-
ity:snapshot

0.6

2.11 L2 Network

66 Chapter 2. Chapters

zstack Documentation, Release 0.6

Table of contents

• L2 Network
– Overview
– Inventory

* Properties
* Physical Interface
* Attaching Cluster
* L2NoVlanNetwork

· L2NoVlanNetwork KVM Specific
· L2NoVlanNetwork Inventory Example

* L2VlanNetwork
· L2VlanNetwork KVM Specific
· L2VlanNetwork Inventory Example

– Operations
* Create L2 Network
* Create L2NoVlanNetwork

· Parameters
* Delete L2 Network

· Parameters
* Attach Cluster
* Detach Cluster
* Query L2 Network

· Primitive Fields of Query
· Nested and Expanded Fields of Query

– Tags

2.11.1 Overview

A L2 network reflects a layer2 broadcast domain in a datacenter. That means, in addition to the traditional OSI data
link layer, all technologies that provide layer 2 isolation can be L2 networks in ZStack. For example, VLAN, VxLAN,
or SDNs that create layer 2 overlay networks. In ZStack, a L2 network is responsible for providing the layer 2 isolation
method to child L3 networks.

A L2 network can be attached to sibling clusters.

2.11. L2 Network 67

http://en.wikipedia.org/wiki/Broadcast_domain

zstack Documentation, Release 0.6

2.11.2 Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

zoneUuid uuid of parent zone,
see zone

0.6

physicalInterface see physical interface 0.6
type L2 network type •

L2NoVlanNetwork
•

L2VlanNetwork

0.6

attachedClusterUuids a list of cluster uuid
to which the L2 net-
work has attached, see
attach cluster

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

Physical Interface

The physical interface is a string that contains information needed by a L2 network plugin for manipulating network
system in a datacenter. The information encoded in physical interface is specific to L2 network types and hypervisor
types of clusters that L2 networks may attach. This sounds a little complex. The complexity is originated from
hypervisors using their own notations to describe L2 networks, and a L2 network can be attached to multiple clusters
of different hypervisor types. A real world example may help to understand this.

Let’s say your datacenter has a L2 network (l2Network A) which spans to two clusters, one is a KVM cluster, another
is a VMWare cluster. In KVM, the L2 network is realized by ethernet device in Linux operating system; in this
example, let’s assume each eth0 of KVM hosts connects to the L2 network. In the VMWare cluster, the L2 network is
realized by vswitch; in this example, let’s assume vswitch0 in the VMWare cluster connects to the L2 network; then
the typology is like:

As mentioned in section host, lots of operations seemingly applied to clusters are actually delegated to hosts; Here,
when attaching the L2 network A to the KVM cluster and the VMWare cluster, ZStack must understand what are

68 Chapter 2. Chapters

zstack Documentation, Release 0.6

notations describing the L2 network in those hypervisors of clusters; in this case, ZStack must know that on KVM
hosts, eth0 is the representation of the L2 network, but on VMWare hosts, vswitch0 is the representation. Physical
interface is the field that encodes those hypervisor specific information.

Note: As this ZStack version supports only KVM, we won’t discuss VMWare details for L2 networks. Above
example largely aims to help understand the design of the physical interface.

Attaching Cluster

Attaching cluster is to associate L2 networks to sibling clusters, which provides a flexible way that manifests relations
between hosts and layer 2 networks in a real datacenter. Let’s see a concrete example.

Let’s assume the network typology in your datacenter is as above diagram. Eth0 of hosts in all clusters are on the same
layer 2 network called L2 Network1; eth1 of cluster1 and cluster3 are on another layer 2 network called L2 network2.
To describe this typology in ZStack, you can attach L2 network1 to all three clusters but attach L2 network2 to only
cluster1 and cluster3.

A couple months later, the network typology needs changing because of business requirements, you unplug cables of
eth1 of hosts in cluster3 from the rack switch, so cluster3 is not with L2 network2 anymore; you can detach the L2
network2 from cluster3 to notify ZStack about the network typology change.

2.11. L2 Network 69

zstack Documentation, Release 0.6

L2NoVlanNetwork

L2NoVlanNetwork, whose properties are listed in properties is the base type of L2 Networks. The ‘NoVlan’ in the
name DOESN’T mean the network cannot use VLAN technology, it only denotes that ZStack itself will not use VLAN
to create a layer 2 broadcast domain in an active manner. To make it clear, take a look at below two diagrams:

70 Chapter 2. Chapters

zstack Documentation, Release 0.6

In this setup, two switch ports 5 and 12 are untagged with VLAN 10(access port with VLAN 10 in Cisco term), and
connect to eth0 on host1 and host2 respectively. This is a very valid setup matching to a L2NoVlanNetwork. Admin
cans create a L2NoVlanNetwork with ‘physicalInterface’ = ‘eth0’ and attach it to the cluster.

In this setup, two switch ports 5 and 12 are tagged with VLAN 10(trunk port with VLAN 10 in Cisco term), and
respectively connect to eth0.10 that is a pre-created VLAN device on host1 and host2. This is also a very valid setup
matching to a L2NoVlanNetwork. Admins can create a L2NoVlanNetwork with ‘physicalInterface’ = ‘eth0.10’ and
attach it to the cluster.

Now it should be understood that a L2NoVlanNetwork maps to a pre-created layer 2 broadcast domain; ZStack won’t
create any new broadcast domain for L2NoVlanNetwork.

L2NoVlanNetwork KVM Specific

When attaching a L2NoVlanNetwork to a KVM cluster, the physicalInterface should be the ethernet device name in
the Linux operating system; for example, eth0, eth0.10, em1. ZStack will use ‘physicalInterface’ as device name when
creating a bridge using brctl. The pseudo operations are like:

Assuming physicalInterface = eth0

brctl create br_eth0
brctl addif br_eth0 eth0

Note: If you have multiple clusters of hosts whose ethernet devices connect to the same L2 network, and you want to
attach that L2 network to those clusters, please make sure names of all ethernet devices are the same among all Linux

2.11. L2 Network 71

zstack Documentation, Release 0.6

operating systems on hosts. For example, all ethernet devices are named as eth0. The best practice is installing the
same Linux system on hosts of those clusters, or using udev to make all device names same.

L2NoVlanNetwork Inventory Example

{
"inventory": {
"uuid": "f685ff94513542bbb8e814027f8deb13",
"name": "l2-basic",
"description": "Basic L2 Test",
"zoneUuid": "45a2864b6ddf4d2fb9b4c3736a923dcb",
"physicalInterface": "eth0",
"type": "L2NoVlanNetwork",
"createDate": "Jun 1, 2015 12:58:35 PM",
"lastOpDate": "Jun 1, 2015 12:58:35 PM",
"attachedClusterUuids": []

}
}

L2VlanNetwork

A L2VlanNetwork is a L2 network that ZStack will actively use a VLAN to create a layer 2 broadcast domain. The
ways that ZStack create layer 2 broadcast domains depend on hypervisor types of clusters, to which L2 networks are
going to attach. In addition to properties, a L2VlanNetwork has one more property:

Name Description Optional Choices Since
vlan VLAN id used to create layer 2 broadcast domain [0, 4095] 0.6

When attaching a L2VlanNetwork to a cluster, ZStack uses ‘vlan’ collaborating with ‘physicalInterface’ to create vlan
devices on hosts in the cluster; in order to make this work, the switch ports to which ethernet devices identified by
‘physicalInterface’ connect must be tagged with ‘vlan’. For example:

72 Chapter 2. Chapters

zstack Documentation, Release 0.6

In this setup, switch ports 5 and 12 have been tagged with VLAN 10, then admins can create a L2VlanNetwork with
‘physicalInterface’ = ‘eth0’ and ‘vlan’ = 10 and attach it to the cluster.

L2VlanNetwork KVM Specific

When attaching a L2VlanNetwork to a KVM cluster, ZStack will create VLAN devices on all hosts in the cluster then
create bridges. The pseudo operations are like:

Assuming physicalInterface = eth0, vlan = 10

vconfig add eth0 10
brctl create br_eth0_10
brctl addif br_eth0_10 eth0.10

Note: Like L2NoVlanNetwork, please make sure ethernet device names of all hosts in clusters to which a
L2VlanNetwork is about to attach are the same.

L2VlanNetwork Inventory Example

{
"inventory": {

"vlan": 10,

2.11. L2 Network 73

zstack Documentation, Release 0.6

"uuid": "14a01b0978684b2ea6e5a355c7c7fd73",
"name": "TestL2VlanNetwork",
"description": "Test",
"zoneUuid": "c74f8ff8a4c5456b852713b82c034074",
"physicalInterface": "eth0",
"type": "L2VlanNetwork",
"createDate": "Jun 1, 2015 4:31:47 PM",
"lastOpDate": "Jun 1, 2015 4:31:47 PM",
"attachedClusterUuids": []

}
}

2.11.3 Operations

Create L2 Network

The commands creating L2 networks vary for different L2 network types.

Create L2NoVlanNetwork

Admins can use CreateL2NoVlanNetwork to create a L2NoVlanNetwork. For example:

CreateL2NoVlanNetwork name=management-network physicalInterface=eth0 zoneUuid=9a94e647a9f64bb392afcdc5396cc1e4

Parameters

Name Description Optional Choices Since
name resource name, see Resource Properties 0.6
resourceUuid resource uuid, see Create Resources true 0.6
description resource description, see Resource Properties true 0.6
zoneUuid uuid of parent zone, see zone 0.6
physicalInterface see physical interface 0.6

Delete L2 Network

Admins can use DeleteL2Network to delete a L2 network. For example:

DeleteL2Network uuid=a5535531eb7346ce89cfd7e643ad1ef8

Danger: Deleting a L2 network will cause its child L3 network to be deleted. For consequences of deleting L3
networks, see Delete L3 Network. There is no way to recover a deleted L2 network.

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

uuid L2 network uuid 0.6

74 Chapter 2. Chapters

zstack Documentation, Release 0.6

Attach Cluster

See Attach L2 Network.

Detach Cluster

See Detach L2 Network.

Query L2 Network

Admins can use QueryL2Network to query L2 networks. For example:

QueryL2Network physicalInterface=eth0

QueryL2Network l3Network.ipRanges.startIp=192.168.0.2

Primitive Fields of Query

see L2 network inventory.

Nested and Expanded Fields of Query

Field Inventory Description Since
l3Network L3 network inventory L3 networks belonging to this L2 network 0.6
cluster cluster inventory clusters this L2 network is attached to 0.6
zone zone inventory parent zone 0.6

2.11.4 Tags

Admins can create user tags on a L2 network with resourceType=L2NetworkVO. For example:

CreateUserTag resourceType=L2NetworkVO tag=publicL2 resourceUuid=cff4be8694174b0fb831a9fe53b1d62b

2.12 L3 Network

2.12. L3 Network 75

zstack Documentation, Release 0.6

Table of contents

• L3 Network
– Overview

* Subnet
* Network Services

– Inventory
* Properties
* Example
* State
* DNS Domain
* IP Range

· Inventory
· Properties
· Example

* DNS
* L2 Networks and L3 Networks
* Network Service References

· Inventory
· Properties
· Example

– Network Typology
– Operations

* Create L3 Network
· Parameters

* Type
* System L3 Network
* Delete L3 Network

· Parameters
* Add IP Ranges

· Add Split Ranges
· Parameters
· Add CIDR
· Parameters

* Delete IP Range
· Parameters

* Add DNS
· Parameters

* Attach Network Service
· Parameters

* Query L3 Network
· Primitive Fields of Query
· Nested And Expanded Fields of Query

– L3 Network Tags
– IP Range Tags

2.12.1 Overview

A L3 network is a logic network that contains a subnet and a set of network services, and that is built up on a L2
network that is responsible for providing isolation method. Network services, which are provided by network service
providers associated with the underlying L2 network, are usually software that implement protocols spanning from
OSI layer 3 to OSI layer 7.

76 Chapter 2. Chapters

zstack Documentation, Release 0.6

Subnet

In a L3 network, the subnet can have a single consecutive IP range or multiple split IP ranges. The split IP ranges are
typically useful when a portion of IP addresses needs to be reserved from the subnet. For example, let’s say you are
going to create a L3 network as a management network that has a subnet 192.168.0.0/24; however, IP addresses of
192.168.0.50 ~ 192.168.0.100 have been occupied by some network devices and you don’t want ZStack to use them,
then you can create two split IP ranges:

IP Range1

start IP: 192.168.0.2
end IP: 192.168.0.49
gateway: 192.168.0.1
netmask: 255.255.255.0

IP Range2

start IP: 192.168.0.101
end IP: 192.168.0.254
gateway: 192.168.0.1
netmask: 255.255.255.0

You can create split IP ranges as many as you want, as long as they all belong to the same CIDR.

Network Services

Network services implementing OSI layer 3 ~ layer 7 protocols aim to serve VMs on a L3 network. Network services
are provided by network services providers that are associated to the parent L2 network of a L3 network. A type of
network service can have multiple providers, and a provider can provide several types of different services. After a
L3 network is created, users can attach network services to it and choose network services providers. In this ZStack
version, a table of supported services/providers is shown as follows:

Network Service Provider Attachable L2 Network Since
DHCP Virtual Router

• L2NoVlanNetwork
• L2VlanNetwork

0.6

DNS Virtual Router
• L2NoVlanNetwork
• L2VlanNetwork

0.6

Source NAT (SNAT) Virtual Router
• L2NoVlanNetwork
• L2VlanNetwork

0.6

Port Forwarding Virtual Router
• L2NoVlanNetwork
• L2VlanNetwork

0.6

Elastic IP (EIP) Virtual Router
• L2NoVlanNetwork
• L2VlanNetwork

0.6

Security Group Security Group
• L2NoVlanNetwork
• L2VlanNetwork

0.6

2.12. L3 Network 77

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

zstack Documentation, Release 0.6

In the table, the column ‘Attachable L2 Network’ indicates what L2 networks providers can attach. If a provider
cannot attach to a L2 network, it cannot provide services to child L3 networks of the L2 network.

2.12.2 Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

zoneUuid uuid of ancestor zone,
see zone

0.6

l2NetworkUuid uuid of parent L2 net-
work, see L2 network

0.6

state see state
• Enabled
• Disabled

0.6

dnsDomain see domain true 0.6
ipRanges a list of IP ranges 0.6
dns a list of DNS 0.6
networkServices a list of network ser-

vices references
0.6

type L3 network type •
L3BasicNetwork

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

Example

{
"inventory": {
"uuid": "f73926eb4f234f8195c61c33d8db419d",
"name": "GuestNetwork",
"description": "Test",
"type": "L3BasicNetwork",
"zoneUuid": "732fbb4383b24b019f60d862995976bf",
"l2NetworkUuid": "f1a092c6914840c9895c564abbc55375",
"state": "Enabled",
"createDate": "Jun 1, 2015 11:07:24 PM",
"lastOpDate": "Jun 1, 2015 11:07:24 PM",
"dns": [],
"ipRanges": [

{
"uuid": "78b43f4b0a9745fab49c967e1c35beb1",
"l3NetworkUuid": "f73926eb4f234f8195c61c33d8db419d",

78 Chapter 2. Chapters

zstack Documentation, Release 0.6

"name": "TestIpRange",
"description": "Test",
"startIp": "10.10.2.100",
"endIp": "10.20.2.200",
"netmask": "255.0.0.0",
"gateway": "10.10.2.1",
"createDate": "Jun 1, 2015 11:07:24 PM",
"lastOpDate": "Jun 1, 2015 11:07:24 PM"

}
],
"networkServices": [

{
"l3NetworkUuid": "f73926eb4f234f8195c61c33d8db419d",
"networkServiceProviderUuid": "bbb525dc4cc8451295d379797e092dba",
"networkServiceType": "DHCP"

}
]

}
}

State

L3 networks have two states:

• Enabled

The state that allows new VMs to be created

• Disabled

The state that DOESN’T allow new VMs to be created

Note: Existing VMs on disabled L3 networks can still be stopped, started, rebooted, and deleted.

DNS Domain

The DNS domain is used to expand hostnames of VMs on the L3 network to FQDNs(Full Qualified Domain Name);
for example, if the hostname of a VM is ‘vm1’ and the DNS domain of the L3 network is ‘zstack.org’, the final
hostname will be expanded to ‘vm1.zstack.org’.

IP Range

In this ZStack version, only IPv4 IP range is supported.

Inventory

2.12. L3 Network 79

zstack Documentation, Release 0.6

Properties

Name Description Optional Choices Since
uuid see Resource Properties 0.6
name see Resource Properties 0.6
description see Resource Properties true 0.6
startIp the first IP in range 0.6
endIp the last IP in range 0.6
netmask netmask of subnet 0.6
gateway gateway of subnet 0.6
createDate see Resource Properties 0.6
lastOpDate see Resource Properties 0.6

Example
{

"inventory": {
"uuid": "b1cfcdeca4024d13ac82edbe8d959720",
"l3NetworkUuid": "50e637dc68b7480291ba87cbb81d94ad",
"name": "TestIpRange",
"description": "Test",
"startIp": "10.0.0.100",
"endIp": "10.10.1.200",
"netmask": "255.0.0.0",
"gateway": "10.0.0.1",
"createDate": "Jun 1, 2015 4:30:23 PM",
"lastOpDate": "Jun 1, 2015 4:30:23 PM"

}
}

DNS

A L3 network can have one or more DNS that take effect when the DNS network service is enabled.

Note: In this ZStack version, only IPv4 DNS is supported

L2 Networks and L3 Networks

As a layer2 broadcast domain can contain multiple subnets, nothing will stop you from creating multiple L3 networks
on the same L2 network; however, those L3 networks are not isolated and network snooping can happen; please use
on your own risks.

Network Service References

Network service references exhibit network services enabled on the L3 network and their providers.

Inventory

80 Chapter 2. Chapters

zstack Documentation, Release 0.6

Properties

Name Description Optional Choices Since
l3NetworkUuid L3 network Uuid 0.6
networkServiceProviderUuidnetwork service

provider UUID
0.6

networkServiceType network service type
• DHCP
• DNS
• SNAT
• PortForwarding
• EIP
• SecurityGroup

0.6

Example
{

"l3NetworkUuid": "f73926eb4f234f8195c61c33d8db419d",
"networkServiceProviderUuid": "bbb525dc4cc8451295d379797e092dba",
"networkServiceType": "PortForwarding"

}

2.12.3 Network Typology

The most common network typologies in IaaS software managed clouds are:

• Flat Network or Shared Network:

In this typology, all tenants share a single subnet; IaaS software only provides DHCP, DNS services; the router
of datacenter is responsible for routing

• Private Network or Isolated Network:

In this typology, each tenant has own subnet; IaaS software is responsible for providing routers for all subnets,
which usually have DHCP, DNS, and NAT services.

2.12. L3 Network 81

zstack Documentation, Release 0.6

• Virtual Private Network (VPC):

In this typology, each tenant can have multiple subnets; IaaS software is responsible for providing a router co-
ordinating all subnets; tenants can configure the routing table of the router to control connectivity amid subnets.

Besides, typical typologies can be combined to new typologies; for example, a flat network and a private network can
be put together, as:

82 Chapter 2. Chapters

zstack Documentation, Release 0.6

In ZStack, all those typologies can be implemented by assembling L2 networks, L3 networks and network services.
For example, to create a flat network, users can create a L3 network with only DHCP, DNS enabled; to create a private
network, users can create a L3 network on a L2VlanNetwork with DHCP, DNS, SNAT enabled.

Note: In this ZStack version, VPC is not supported yet.

2.12.4 Operations

Create L3 Network

Users can use CreateL3Network to create a L3 network. For example:

CreateL3Network l2NetworkUuid=f1a092c6914840c9895c564abbc55375 name=GuestNetwork

Parameters

Name Description Optional Choices Since
name resource name, see

Resource Properties
0.6

resourceUuid resource uuid, see
Create Resources

true 0.6

description resource description,
see Resource Proper-
ties

true 0.6

l2NetworkUuid uuid of parent L2 net-
work, see L2 network

0.6

dnsDomain a DNS domain, see
domain

true 0.6

type L3 network type, see
type

true •
L3BasicNetwork

0.6

system indicates whether this
is a system L3 net-
work, see System L3
Network

true • true
• false

0.6

2.12. L3 Network 83

zstack Documentation, Release 0.6

Type

In this ZStack version, the only L3 network type is L3BasicNetwork. Users can leave field ‘type’ alone when calling
CreateL3Network.

System L3 Network

A system L3 network is reserved for ZStack and cannot be used to create user VMs. System L3 networks are typically
used for public networks and management networks. Usually, user VMs in a cloud should not have nics on a public
network and a management network, but appliance VMs (e.g router VM) do need have nics on those networks; then
the management network and the public network can be created as system L3 networks.

Note: Management networks and public networks can also be created as non-system L3 networks, which allows user
VMs to use them. This is normally seen in private clouds; for example, creating a user VM with a public IP directly.

Delete L3 Network

Users can use DeleteL3Network to delete a L3 network. For example:

DeleteL3Network uuid=f73926eb4f234f8195c61c33d8db419d

Parameters

Name Description Optional Choices Since
uuid L3 network uuid 0.6
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

Danger: Deleting a L3 network will stop all VMs that have nics on it and will delete the nics from VMs; if the
nic on the L3 network is the only nic of a VM, the VM will be deleted as well. There is no way to recover a deleted
L3 network.

Add IP Ranges

Add Split Ranges

Users can use AddIpRange to add an IP range to a L3 network; this is useful for adding split IP ranges. For example:

AddIpRange name=ipr1 startIp=192.168.0.2 endIp=192.168.0.100 netmask=255.255.255.0 gateway=192.168.0.1 resourceUuid=50e637dc68b7480291ba87cbb81d94ad

84 Chapter 2. Chapters

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
name resource name, see Resource Properties 0.6
resourceUuid resource uuid, see Create Resources true 0.6
description resource description, see Resource Properties true 0.6
l3NetworkUuid uuid of parent L3 network 0.6
startIp the first IP in range 0.6
endIp the last IP in range 0.6
netmask netmask of subnet 0.6
gateway gateway of subnet 0.6

Add CIDR

Users can also use AddIpRangeByNetworkCidr to add an IP range. For example:

AddIpRangeByNetworkCidr name=ipr1 l3NetworkUuid=50e637dc68b7480291ba87cbb81d94ad networkCidr=10.0.1.0/24

Parameters

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

l3NetworkUuid uuid of parent L3 net-
work

0.6

networkCidr network CIDR; it
must be in format of:
network-number/prefix-length

0.6

Delete IP Range

Users can use DeleteIpRange to delete an IP range. For example:

DeleteIpRange uuid=b1cfcdeca4024d13ac82edbe8d959720

Warning: Deleting a IP range will stop all VMs that have IP addresses in the range. There is no way to recover a
deleted IP range.

Parameters

Name Description Optional Choices Since
uuid IP range uuid 0.6
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

2.12. L3 Network 85

zstack Documentation, Release 0.6

Add DNS

Users can use AddDnsToL3Network to add a DNS to a L3 network. For example:

AddDnsToL3Network l3NetworkUuid=50e637dc68b7480291ba87cbb81d94ad dns=8.8.8.8

Parameters

Name Description Optional Choices Since
l3NetworkUuid uuid of parent L3 network 0.6
dns dns IPv4 address 0.6

Attach Network Service

After creating a L3 network and before creating any VMs on it, users can use AttachNetworkServiceToL3Network
to attach network services to the L3 network. If a network service is attached to a L3 network that already has VMs
running, the existing VMs can not use the network service until they are rebooted.

Note: In this ZStack version, detaching a network service from a L3 network is not supported.

For example:

AttachNetworkServiceToL3Network l3NetworkUuid=50e637dc68b7480291ba87cbb81d94ad networkServices='{"1d1d5ff248b24906a39f96aa3c6411dd": ["DHCP", "DNS", "SNAT", "EIP"]}'

Parameters

Name Description Op-
tional

Choices Since

l3NetworkUuidL3 network uuid 0.6
network-
Services

A map whose key is network service provider UUID and value is a
list of network service types

0.6

Note: You can use QueryNetworkServiceProvider to get the UUID of a network service provider, for example:

QueryNetworkServiceProvider fields=uuid name=VirtualRouter

If you want to view network services a provider provides, omit the parameter ‘field’, for example:

QueryNetworkServiceProvider name=VirtualRouter

Query L3 Network

Users can use QueryL3Network to query L3 networks. For example:

QueryL3Network dnsDomain=zstack.org

QueryL3Network vmNic.ip=192.168.10.2

86 Chapter 2. Chapters

zstack Documentation, Release 0.6

Primitive Fields of Query

see L3 network inventory

Nested And Expanded Fields of Query

Field Inventory Description Since
ipRanges IP range inventory IP ranges this L3 network contains 0.6
network-
Services

l3Network network
service reference

network services attached to this L3 network 0.6

l2Network L2 network parent L2 network 0.6
vmNic VM nic inventory VM nics on this L3 network 0.6
service-
Provider

network service provider
inventory

network service providers that provides network services
attached to this L3 network

0.6

zone zone inventory ancestor zone 0.6

2.12.5 L3 Network Tags

Users can create user tags on a L3 network with resourceType=L3NetworkVO. For example:

CreateUserTag resourceType=L3NetworkVO tag=web-tier-l3 resourceUuid=f6be73fa384a419986fc6d1b92f95be9

2.12.6 IP Range Tags

Users can create user tags on an IP range with resourceType=IpRangeVO. For example:

CreateUserTag resourceType=IpRangeVO tag=web-tier-IP resourceUuid=8191d946954940428b7d003166fa641e

2.13 Image

2.13. Image 87

zstack Documentation, Release 0.6

Table of contents

• Image
– Overview
– Inventory

* Properties
* Example
* State
* Status
* URL
* Media Type
* Platform
* System Image
* Format
* Backup Storage Reference

· Example
– Operations

* Add Image
· Parameters

* Delete Image
· Parameters

* Change State
· Parameters

* Create RootVolumeTemplate From Root Volume
· Parameters
· Backup Storage UUIDs

* Create RootVolumeTemplate From Volume Snapshot
· Parameters
· Backup Storage Uuids

* Create DataVolumeTemplate From Volume
· Parameters
· Backup Storage Uuids

* Query Image
· Primitive Fields of Query
· Nested And Expanded Fields of Query

– Tags

2.13.1 Overview

Images provide templates for virtual machine file systems. Images can be RootVolumeTemplate that provide templates
for VMs’ root volumes where VMs’ operating systems install; or DataVolumeTemplate that provide templates for
VMs’ data volumes that usually contain non operating system data; or ISO that can be used to install operating
systems to blank root volumes.

Images are stored on backup storage. Prior to starting a VM, if the image to create VM root volume is not in primary
storage‘s image cache, it will be downloaded to the cache first. So when creating a VM with an image at the first time,
it takes longer than normal because the downloading process.

ZStack uses thin provisioning to create root volumes. Root volumes from the same image share the same base in
primary storage’s image cache, and any changes made to the root volumes do not affect the base image.

88 Chapter 2. Chapters

http://en.wikipedia.org/wiki/Thin_provisioning

zstack Documentation, Release 0.6

2.13. Image 89

zstack Documentation, Release 0.6

2.13.2 Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

state see state
• Enabled
• Disabled

0.6

status see status
• Creating
• Downloading
• Ready

0.6

size image size, in bytes 0.6
url url the image regis-

tered from, see url
0.6

mediaType image’s media type,
see media type

•
RootVolumeTemplate

•
DataVolumeTemplate

• ISO

0.6

guestOsType a string for user
records VM’s operat-
ing system type

true 0.6

platform indicates platform of
VM’s operating sys-
tem, see platform

• Linux
• Windows
•

Paravirtualization
• Other

0.6

system see system image 0.6
format see format

• qcow2
• raw

0.6

md5Sum image’s md5sum

Note: MD5 sum is
not calculated at this
ZStack version

0.6

type reserved field
• zstack

0.6

backupStorageRefs a list of backup stor-
age reference

0.6

90 Chapter 2. Chapters

zstack Documentation, Release 0.6

Example

{
"backupStorageRefs": [

{
"backupStorageUuid": "8b99641a4d644820932e0ec5ada78eed",
"createDate": "Jun 1, 2015 6:17:48 PM",
"imageUuid": "b395386bdb4a4ff1b1850a457c949c5e",
"installPath": "/export/backupStorage/sftp/templates/acct-36c27e8ff05c4780bf6d2fa65700f22e/b395386bdb4a4ff1b1850a457c949c5e/centos_400m_140925.template",
"lastOpDate": "Jun 1, 2015 6:17:48 PM"

}
],
"createDate": "Jun 1, 2015 6:17:40 PM",
"description": "Test Image Template for network test",
"format": "qcow2",
"guestOsType": "unknown",
"lastOpDate": "Jun 1, 2015 6:17:40 PM",
"md5Sum": "not calculated",
"mediaType": "RootVolumeTemplate",
"name": "image_for_sg_test",
"platform": "Linux",
"size": 419430400,
"state": "Enabled",
"status": "Ready",
"system": false,
"type": "zstack",
"url": "http://172.16.0.220/templates/centos_400m_140925.img",
"uuid": "b395386bdb4a4ff1b1850a457c949c5e"

},

State

Images have two states:

• Enabled:

The state that allows VMs to be created from this image

• Disabled:

The state that DOESN’T allow VMs to be created from this image

Status

Status indicates images’ lifecycle:

• Creating:

The image is in process of creating from a volume or a volume snapshot; not ready to use.

• Downloading:

The image is in process of downloading from a url; not ready to use.

• Ready:

The image is on backup storage and ready to use.

2.13. Image 91

zstack Documentation, Release 0.6

URL

Depending on how an image was created on a backup storage, the url has different meanings; when an image was
downloaded from a web server, the url is the HTTP/HTTPS link; when an image was created from a volume or a
volume snapshot, the url is a string encoding UUID of the volume or the volume snapshot, like:

volume://b395386bdb4a4ff1b1850a457c949c5e
volumeSnapshot://b395386bdb4a4ff1b1850a457c949c5e

Note: In this ZStack version, the only way to register an image to backup storage is providing a URL that is a
HTTP/HTTPS link and calling AddImage.

Media Type

A media type indicates the image’s usage.

• RootVolumeTemplate:

The image is used to create root volumes.

• DataVolumeTemplate:

The image is used to create data volumes.

• ISO:

The image is used to install operating systems to blank root volumes.

Platform

Platform gives ZStack a hint that whether to use paravirtualization for VMs created from this image.

Use paravirtualization
• Linux
• Paravirtualization

Not to use paravirtualization
• Windows
• Other

System Image

System images are images used only for appliance VMs but not for user VMs. This is normally used for virtual router
image in this ZStack version.

Format

Format exhibits relationships between hypervisors and images. For example, images of format qcow2 can only be
used for VMs of KVM. In this ZStack version, as KVM is the only supported hypervisor, the relationship table is like:

92 Chapter 2. Chapters

http://en.wikipedia.org/wiki/Paravirtualization

zstack Documentation, Release 0.6

Hypervisor Type Format
KVM

• qcow2
• raw

Volumes will inherit formats of images from which they are created; for example, root volumes created from images
of format qcow2 will have format qcow2 too. Format ‘raw’ is an exception, volumes created from ‘raw’ images will
have the format qcow2 because ZStack will thin-clone it using qcow2 format.

Backup Storage Reference

An image can be stored on more than one backup storage. For every backup storage, the image has a backup storage
reference encompassing backup storage UUID and image’s installation path.

Name Description Optional Choices Since
imageUuid image uuid 0.6
backupStorageUuid backup storage uuid, see backup storage 0.6
installPath installation path on backup storage 0.6
createDate see Resource Properties 0.6
lastOpDate see Resource Properties 0.6

Example

{
"backupStorageUuid": "8b99641a4d644820932e0ec5ada78eed",
"imageUuid": "b395386bdb4a4ff1b1850a457c949c5e",
"installPath": "/export/backupStorage/sftp/templates/acct-36c27e8ff05c4780bf6d2fa65700f22e/b395386bdb4a4ff1b1850a457c949c5e/centos_400m_140925.template",
"createDate": "Jun 1, 2015 6:17:48 PM",
"lastOpDate": "Jun 1, 2015 6:17:48 PM"

}

2.13.3 Operations

Add Image

Admins can use AddImage to add an image. For example:

AddImage name=CentOS7 format=qcow2 backupStorageUuids=8b99641a4d644820932e0ec5ada78eed url=http://172.16.0.220/templates/centos7_400m_140925.img mediaType=RootVolumeTemplate platform=Linux

2.13. Image 93

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
name resource name, see

Resource Properties
0.6

resourceUuid resource uuid, see
Create Resources

true 0.6

description resource description,
see Resource Proper-
ties

true 0.6

url HTTP/HTTPS url, see
url

0.6

mediaType image media type, see
media type. Default is
RootVolumeTemplate

true •
RootVolumeTemplate

•
DataVolumeTemplate

• ISO

0.6

guestOsType a string that indicates
VM’s operating sys-
tem type, for example,
CentOS7

true 0.6

system indicates whether this
is a system image, see
system image. Default
is false

true • true
• false

0.6

format image format, see for-
mat • qcow2

• raw

0.6

platform image platform, see
platform. Default is
Linux

true
• Linux
• Windows
• Other
•

Paravirtualization

0.6

backupStorageUuids a list of backup stor-
age uuid to which the
image is going to add

0.6

type reserved field, leave it
alone

true
• zstack

0.6

An image can be added to multiple backup storage by providing a list of backup storage UUID in ‘backupStorageU-
uids’; The AddImage command succeeds as long as the image is successfully added to one backup storage, and fails if
the image fails on all backup storage. Backup storage that successfully added the image can be retrieved from image
backup storage reference of the image inventory in the API response.

Delete Image

Admins can use DeleteImage to delete an image from specified backup storage or all backup storage. For example:

94 Chapter 2. Chapters

zstack Documentation, Release 0.6

DeleteImage uuid=b395386bdb4a4ff1b1850a457c949c5e backupStorageUuids=c310386bdb4a4ff1b1850a457c949c5e,f295386bdb4a4ff1b1850a457c949c5e

Parameters

Name Description Optional Choices Since
uuid image uuid 0.6
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

backupStorageUuids a list of backup stor-
age storing the image;
if omitted, the image
will be deleted from
all backup storage it’s
on.

0.6

An image is considered as deleted only if it is deleted from all backup storage; otherwise, its copy get deleted on some
specific backup storage.

Danger: There is no way to recover an image if it has been deleted from all backup storage.

Change State

Admins can use ChangeImageState to change the state of an image. For example:

ChangeImageState stateEvent=enable uuid=b395386bdb4a4ff1b1850a457c949c5e

Parameters

Name Description Optional Choices Since
uuid image uuid 0.6
stateEvent state trigger event

• enable: change
state to Enabled

• disable: change
state to Dis-
abled

• enable
• disable

0.6

Create RootVolumeTemplate From Root Volume

Users can create an RootVolumeTemplate image from a root volume. For example:

CreateRootVolumeTemplateFromRootVolume name=CentOS7 rootVolumeUuid=1ab2386bdb4a4ff1b1850a457c949c5e backupStorageUuids=backupStorageUuids,f295386bdb4a4ff1b1850a457c949c5e

2.13. Image 95

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
name resource name, see

Resource Properties
0.6

resourceUuid resource uuid, see
Create Resources

true 0.6

description resource description,
see Resource Proper-
ties

true 0.6

backupStorageUuids a list of backup stor-
age uuid on which the
image is going to cre-
ated, see backup stor-
age uuids

true 0.6

rootVolumeUuid uuid of root volume
from which the image
is going to create

0.6

platform image platform, see
platform; default to
Linux

true
• Linux
• Windows
• Other
•

Paravirtualization

0.6

guestOsType a string that indicates
VM’s operating sys-
tem type, for example,
CentOS7

true 0.6

system indicates whether this
is system image, see
system image; default
to false

true • true
• false

0.6

Backup Storage UUIDs

When calling CreateRootVolumeTemplateFromRootVolume, users can provide a list of backup storage UUIDs to
specify where the image is going to create; if this field is omitted, a random backup storage will be chosen.

Create RootVolumeTemplate From Volume Snapshot

Users can use CreateRootVolumeTemplateFromVolumeSnapshot to create a RootVolumeTemplate from a volume
snapshot. For example:

96 Chapter 2. Chapters

zstack Documentation, Release 0.6

CreateRootVolumeTemplateFromVolumeSnapshot name=CentOS7 snapshotUuid=1ab2386bdb4a4ff1b1850a457c949c5e

Parameters

Name Description Optional Choices Since
name resource name, see

Resource Properties
0.6

resourceUuid resource uuid, see
Create Resources

true 0.6

description resource description,
see Resource Proper-
ties

true 0.6

snapshotUuid uuid of volume snap-
shot, see volume snap-
shot

0.6

backupStorageUuids a list of backup stor-
age uuid on which the
image is going to cre-
ated, see backup stor-
age uuids

true 0.6

platform image platform, see
platform. Default to
Linux

true
• Linux
• Windows
• Other
•

Paravirtualization

0.6

guestOsType a string that indicates
VM’s operating sys-
tem type, for example,
CentOS7

true 0.6

system indicates whether this
is system image, see
system image. Default
is false

true • true
• false

0.6

Backup Storage Uuids

When calling CreateRootVolumeTemplateFromVolumeSnapshot, users can provide a list of backup storage UUIDs to
specify where the image is going to create; if this field is omitted, a random backup storage will be chosen.

Create DataVolumeTemplate From Volume

Users can use CreateDataVolumeTemplateFromVolume to create a DataVolumeTemplate from a volume. For example:

CreateDataVolumeTemplateFromVolume name=data volumeUuid=1ab2386bdb4a4ff1b1850a457c949c5e

The volume can be either root volume or data volume. This provides a way to create a data volume from a root
volume. Users can firstly create a DataVolumeTemplate from a root volume, then create a data volume from the
DataVolumeTemplate.

2.13. Image 97

zstack Documentation, Release 0.6

Parameters

Name Description Op-
tional

Choices Since

name resource name, see Resource Properties 0.6
resourceUuid resource uuid, see Create Resources true 0.6
description resource description, see Resource Properties true 0.6
volumeUuid uuid of volume, see volume 0.6
backup-
StorageUuids

a list of backup storage uuid on which the image is going to
created, see backup storage uuids

true 0.6

Backup Storage Uuids

When calling CreateDataVolumeTemplateFromVolume, users can provide a list of backup storage UUIDs to specify
where the image is going to create; if this field is omitted, a random backup storage will be chosen.

Query Image

Users can use QueryImage to query images. For example:

QueryImage status=Ready system=true

QueryImage volume.vmInstanceUuid=85ab231e392d4dfb86510191278e9fc3

Primitive Fields of Query

see image inventory

Nested And Expanded Fields of Query

Field Inventory Description Since
backupStorage backup storage inventory backup storage this image is on 0.6
volume volume inventory volumes created from this image 0.6
backupStorageRef backup storage reference reference used to query by backup storage install path 0.6

2.13.4 Tags

Users can create user tags on an image with resourceType=ImageVO. For example:

CreateUserTag resourceType=ImageVO tag=golden-image resourceUuid=ff7c04c4e2874a21a3e795501f1bc516

2.14 Backup Storage

98 Chapter 2. Chapters

zstack Documentation, Release 0.6

Table of contents

• Backup Storage
– Overview
– Inventory

* Properties
· Example
· URL
· SFTP Backup Storage URL
· Capacity
· State
· Status

– SFTP Backup Storage
* Example

– Operations
* Add Backup Storage

· Add SFTP Backup Storage
· Parameters

* Delete Backup Storage
· Parameters

* Change State
· Parameters

* Attach Zone
· Parameters

* Detach Zone
· Parameters

* Query Backup Storage
· Primitive Fields of Query
· Nested And Expanded Fields of Query

* Query SFTP Backup Storage
· Primitive Fields of Query
· Nested and Expanded Fields of Query

– Global Configurations
* ping.interval
* ping.parallelismDegree

– Tags

2.14.1 Overview

A backup Storage is a storage system that stores images for creating volumes. Backup storage can be filesystem
based storage(e.g. NFS) or object store based storage(e.g. OpenStack swift), as long as the storage is network shared
storage. Besides providing templates for creating volumes, backup storage also allow users to backup entities including
volumes and volume snapshots.

A backup storage must be attached to a zone before the zone’s descendant resources can access it. Admins can take
this advantage to share images across multiple zones, for example:

2.14. Backup Storage 99

zstack Documentation, Release 0.6

In the early stage of a cloud, there may be only one zone(Zone1) with a single backup storage. In pace with business
development, admins may decide to create another zone(Zone2) but still use existing images for VMs; then admins
can attach the backup storage to Zone2, so both Zone1 and Zone2 share the same images.

100 Chapter 2. Chapters

zstack Documentation, Release 0.6

Note: In this ZStack version, the only supported backup storage is SFTP backup storage

2.14. Backup Storage 101

zstack Documentation, Release 0.6

2.14.2 Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

url see url 0.6
totalCapacity total disk capacity in

bytes, see capacity
0.6

availableCapacity available disk capac-
ity in bytes, see ca-
pacity

0.6

type backup storage type •
SftpBackupStorage

0.6

state see state
• Enabled
• Disabled

0.6

status see status
• Connecting
• Connected
• Disconnected

0.6

attachedZoneUuids a list of zone UUID
the backup storage has
been attached

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

Example

{
"attachedZoneUuids": [

"36de66d82f424639af67215a465418f6"
],
"availableCapacity": 1258407346176,
"name": "sftp",
"state": "Enabled",
"status": "Connected",
"totalCapacity": 1585341214720,
"type": "SftpBackupStorage",
"url": "/export/backupStorage/sftp",
"uuid": "33a35f75885f45ab96ea2626ce9c05a6",
"lastOpDate": "Jun 1, 2015 3:42:26 PM",
"createDate": "Jun 1, 2015 3:42:26 PM"

}

102 Chapter 2. Chapters

zstack Documentation, Release 0.6

URL

URL is a string that contains information needed by backup storage plugins for manipulating storage systems. Al-
though it’s named as URL, the certain format of the string is up to backup storage types and is not necessary to strictly
follow the URL convention, to give flexibilities to plugins to encode information that may not be able to fit in the URL
format.

SFTP Backup Storage URL For SFTP backup storage, the URL is the absolute path of a directory in the filesystem.
For example, /storage/sftp.

Capacity

ZStack keeps tracking disk capacities of backup storage in order to select suitable one when allocating space for storing
images. The capacity is calculated by below formulas:

totalCapacity = backup storage's total capacity
availableCapacity = totalCapacity - sum(images' real sizes)

State

Backup storage have two states:

• Enabled:

The state that allows images to be registered, backup, and downloaded

• Disabled:

The state that DOESN’T allow images to be registered, backup, and downloaded. Especially, if an image is only
stored on a disabled backup storage, and if that image is not downloaded to image caches of primary storage
yet, no VMs can be created from that image.

Status

Status reflects the status of command channels amid ZStack management nodes and backup storage.

• Connecting:

A ZStack management node is trying to establish the command channel between itself and a backup storage.
No operations can be performed to the backup storage.

• Connected

The command channel has been successfully established between a ZStack management node and a backup
storage. Operations can be performed to the backup storage.

• Disconnected

The command channel has lost between a ZStack management node and a backup storage. No operations can
be performed to the backup storage.

2.14. Backup Storage 103

zstack Documentation, Release 0.6

ZStack management nodes will try to setup command channels every time when they boot, and will periodically send
ping commands to backup storage to check the health of command channels. Once a backup storage fails to respond,
or a ping command times out, the command channel is considered as lost and the backup storage will be placed in the
status of Disconnected.

Here is the transition diagram:

2.14.3 SFTP Backup Storage

SFTP backup storage is a Linux server that stores images in native filesystem and uses OpenSSH server/client to
transfer images. ZStack uses a python agent (SftpBackupStorageAgent) to manage the Linux server; images are
uploaded/downloaded to/from the server by SCP. Besides properties in backup storage inventory, SFTP backup storage
has an extra property:

Name Description Optional Choices Since
hostname the IP address or DNS name of the SFTP backup storage 0.6

Example

{
"attachedZoneUuids": [

"36de66d82f424639af67215a465418f6"
],
"availableCapacity": 1258407346176,
"hostname": "172.16.0.220",
"name": "sftp",
"state": "Enabled",
"status": "Connected",
"totalCapacity": 1585341214720,
"type": "SftpBackupStorage",
"url": "/export/backupStorage/sftp",
"uuid": "33a35f75885f45ab96ea2626ce9c05a6",
"lastOpDate": "Jun 1, 2015 3:42:26 PM",

104 Chapter 2. Chapters

http://en.wikipedia.org/wiki/Secure_copy

zstack Documentation, Release 0.6

"createDate": "Jun 1, 2015 3:42:26 PM"
}

2.14.4 Operations

Add Backup Storage

The commands to add a backup storage vary for different backup storage types.

Add SFTP Backup Storage

Admins can use AddSftpBackupStorage to add a new backup storage. For example:

AddSftpBackupStorage name=sftp1 url=/storage/sftp1 hostname=192.168.0.220 username=root password=password

Parameters

Name Description Optional Choices Since
name resource name, see Resource Properties 0.6
resourceUuid resource uuid, see Create Resources true 0.6
description resource description, see Resource Properties true 0.6
url see url 0.6
hostname the IP address or DNS name of the SFTP backup storage 0.6
username the user root root 0.6
password the SSH password for user root 0.6

Delete Backup Storage

Admins can use DeleteBackupStorage to delete a backup storage. For example:

DeleteBackupStorage uuid=1613b627cb2e4ffcb30e7e59935064be

Warning: When deleting, a backup storage will be detached from attached zones. Copies of images and of volume
snapshots on the backup storage will be deleted; if a copy is the only copy of an image or a volume snapshot, the
image or the volume snapshot will be deleted as well. There is no way to recover a deleted backup storage.

Parameters

Name Description Optional Choices Since
uuid backup storage uuid 0.6
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

Change State

Admins can use ChangeBackupStorageState to change the state of a backup storage. For example:

2.14. Backup Storage 105

zstack Documentation, Release 0.6

ChangeBackupStorageState uuid=33a35f75885f45ab96ea2626ce9c05a6 stateEvent=enable

Parameters

Name Description Optional Choices Since
uuid backup storage uuid 0.6
stateEvent state trigger event

• enable: change
the state to En-
abled

• disable: change
the state to Dis-
abled

• enable
• disable

0.6

Attach Zone

Admins can use AttachBackupStorageToZone to attach a backup storage to a zone. For example:

AttachBackupStorageToZone backupStorageUuid=d086c30f33914c98a6078269bab7bc8f zoneUuid=d086c30f33914c98a6078269bab7bc8f

Parameters

Name Description Optional Choices Since
backupStorageUuid the backup storage uuid 0.6
zoneUuid the zone uuid 0.6

Detach Zone

Admins can use DetachBackupStorageFromZone to detach a backup storage from a zone. For example:

DetachBackupStorageFromZone backupStorageUuid=d086c30f33914c98a6078269bab7bc8f zoneUuid=d086c30f33914c98a6078269bab7bc8f

Parameters

Name Description Optional Choices Since
backupStorageUuid the backup storage uuid 0.6
zoneUuid the zone uuid 0.6

Query Backup Storage

Admins can use QueryBackupStorage to query backup storage. For example:

QueryBackupStorage state=Enabled

QueryBackupStorage image.platform=Linux

106 Chapter 2. Chapters

zstack Documentation, Release 0.6

Primitive Fields of Query

see backup storage inventory

Nested And Expanded Fields of Query

Field Inventory Description Since
zone zone inventory zones this backup storage is attached to 0.6
image image inventory images this backup storage contains 0.6
volumeSnapshot volume snapshot inventory volume snapshots this backup storage contains 0.6

Query SFTP Backup Storage

Admins can use QuerySftpBackupStorage to query SFTP backup storage:

QuerySftpBackupStorage name=sftp

Primitive Fields of Query

see SFTP backup storage inventory

Nested and Expanded Fields of Query

see backup storage nested and expanded fields

2.14.5 Global Configurations

ping.interval

Name Category Default Value Choices
ping.interval backupStorage 60 > 0

The interval that management nodes send ping commands to backup storage, in seconds.

ping.parallelismDegree

Name Category Default Value Choices
ping.parallelismDegree backupStorage 50 > 0

The max number of backup storage that management nodes will ping in parallel.

2.14.6 Tags

Admins can create user tags on a backup storage with resourceType=BackupStorageVO. For example:

CreateUserTag tag=lab1 resourceType=BackupStorageVO resourceUuid=2906471068802c501773d3ee55b7766e

2.14. Backup Storage 107

zstack Documentation, Release 0.6

2.15 Volume

Table of contents

• Volume
– Overview
– Inventory

* Properties
· Example
· Attached VM
· Format
· Device ID
· State
· Status

– Operations
* Create a Data Volume

· From a Disk Offering
· Parameters
· From an Image
· Parameters
· From a Volume Snapshot
· Parameters

* Delete Data Volume
· Parameters

* Change State
· Parameters

* Attach VM
· Parameters

* Detach VM
· Parameters

* Query Volume
· Primitive Fields of Query
· Nested And Expanded Fields of Query

– Tags

2.15.1 Overview

Volumes provide storage to guest VMs. A volume can be of type of root or data, depending on the role it plays. A root
volume is a disk where the VM operating system is installed, for example, C: or sda; a data volume which provides
additional storage is like an extra hard drive, for example: D: or sdb.

Volumes are hypervisor specific; that is to say, a volume created for one hypervisor may not be able to get attached
to VMs of other hypervisor types; for example, a volume for KVM VMs cannot be attached to VMWare VMs. The
hypervisor attribute of volumes is implied by the field format, which is similar to image format except the image
format has an extra value ‘ISO’ that volumes don’t have.

Because of thin provisioning, a volume can has two sizes: real size and virtual size. The real size is the size that a
volume actually occupies in storage system; the virtual size is the size a volume claims for, which is the max size a
volume can have when it is fully filled. The virtual size is always greater than or equal to the real size.

Volumes on primary storage can be directly accessed by VMs. A volume can only be attached to one VM at any given
time. A root volume is always attached to its owner VM and cannot be detached; a data volume, on the contrary, can

108 Chapter 2. Chapters

http://en.wikipedia.org/wiki/Thin_provisioning

zstack Documentation, Release 0.6

be attached/detached to/from different VMs of the same hypervisor type, as long as the VMs can access the primary
storage on which the data volume locates.

2.15. Volume 109

zstack Documentation, Release 0.6

2.15.2 Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

primaryStorageUuid the uuid of primary
storage the volume lo-
cates on, see primary
storage

0.6

vmInstanceUuid uuid of the VM the
volume is attached, or
NULL if not attached;
see attach VM

true 0.6

diskOfferingUuid the uuid of disk offer-
ing, if the volume is
created from a disk of-
fering

true 0.6

rootImageUuid the uuid of image, if
the volume is created
from an image

true 0.6

installPath the path where the
volume is installed on
the primary storage

0.6

type volume type
• Root
• Data

0.6

format see format
• qcow2

0.6

size the volume’s virtual
size, in bytes

0.6

deviceId see device id true 0.6
state see state

• Enabled
• Disabled

0.6

status see status
• Creating
• Ready
• NotInstantiated

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

110 Chapter 2. Chapters

zstack Documentation, Release 0.6

Example

{
"description": "Root volume for VM[uuid:1a2b197060eb4593bf5bbf2a83b3d625]",
"deviceId": 0,
"format": "qcow2",
"installPath": "/opt/zstack/nfsprimarystorage/prim-302055ec45794423af7f5d3c5081bc87/rootVolumes/acct-36c27e8ff05c4780bf6d2fa65700f22e/vol-f7bbb3ae1c674ecda3b0f4c025e333f9/f7bbb3ae1c674ecda3b0f4c025e333f9.qcow2",
"createDate": "Jun 1, 2015 3:45:44 PM",
"lastOpDate": "Jun 1, 2015 3:45:44 PM",
"name": "ROOT-for-virtualRouter.l3.1b7f47f5350c488c99e8f54142ddffbd",
"primaryStorageUuid": "302055ec45794423af7f5d3c5081bc87",
"rootImageUuid": "178c662bfcdd4145920682c58ebcbed4",
"size": 1364197376,
"state": "Enabled",
"status": "Ready",
"type": "Root",
"uuid": "f7bbb3ae1c674ecda3b0f4c025e333f9",
"vmInstanceUuid": "1a2b197060eb4593bf5bbf2a83b3d625"

}

Attached VM

A data volume can be attached to a Running or Stopped VM, but can only be attached to one VM at any given time;
after being attached, the VM’s UUID is shown up in the field ‘vmInstanceUuid’. A data volume can also be detached
from one VM and be re-attached to another VM, as long as VMs are of the same hypervisor type. A root volume is
always attached to its owner VM and can never be detached.

Format

Format reveals relationship between a volume and a hypervisor type, indicating what VMs of which hypervisor type
a volume can be attached. Volume format is similar to image format. In this ZStack version, as KVM is the only
supported hypervisor type, the only volume format is ‘qcow2’.

Device ID

Device ID shows the order that volumes are attached to a VM. Because the root volume is always the first volume
attached, it has a fixed device ID 0; data volumes may have device IDs 1, 2, 3 ... N, depending on the sequence they
are attached to the VM. The device ID can be used to identify the disk letter of the volume in guest operating system;
for example, in Linux, 0 usually means /dev/xvda, 1 usually means /dev/xvdb and so fourth.

State

Volumes have two states:

• Enabled:

The state that allows volumes to be attached to VMs.

• Disabled:

The state that DOESN’t allow volumes to be attached to VMs; however, an attached data volume can always be
detached even if in state of Disabled.

2.15. Volume 111

zstack Documentation, Release 0.6

Note: Root volumes always have the state of Enabled as they cannot be detached.

Status

Status shows lifecycle of volumes:

• NotInstantiated:

A specific status for only data volumes. Data volumes of this status are only allocated in database and have not
been instantiated on any primary storage yet; that is to say, they are just database records. Data volumes in status
of NotInstantiated can be attached to VMs of any hypervisor types; and will be instantiated to concrete binaries
on primary storage, with hypervisor types of VMs they are being attached. After being attached, data volumes’
hypervisorType fields will be evaluated to hypervisor types of VMs, status will be changed to Ready; and since
then they can only be re-attached to VMs of the same hypervisor types.

• Ready:

Volumes are already instantiated on primary storage and are ready for operations.

• Creating:

Volumes are in process of being created from images or volume snapshots; not ready for operations.

The status transition diagram is like:

Note: Root volume is always in status of Ready.

2.15.3 Operations

Create a Data Volume

Note: Root volumes are created automatically when creating VMs; there is no API to create root volumes.

112 Chapter 2. Chapters

zstack Documentation, Release 0.6

From a Disk Offering

Users can use CreateDataVolume to create a data volume from a disk offering. For example:

CreateDataVolume name=data1 diskOfferingUuid=fea135f1d1de40b4915a19aa155983b3

Parameters

Name Description Optional Choices Since
name resource name, see Resource Properties 0.6
resourceUuid resource uuid, see Create Resources true 0.6
description resource description, see Resource Properties true 0.6
diskOfferingUuid disk offering uuid, see disk offering 0.6

From an Image

Users can use CreateDataVolumeFromVolumeTemplate to create a data volume from an image. For example:

CreateDataVolumeFromVolumeTemplate name=data1 imageUuid=ee6fa27ade8c42a2bdda8f9b1eee8c93 primaryStorageUuid=302055ec45794423af7f5d3c5081bc87

The image can be of media type of RootVolumeTemplate or DataVolumeTemplate.

Parameters

Name Description Optional Choices Since
name resource name, see

Resource Properties
0.6

resourceUuid resource uuid, see
Create Resources

true 0.6

description resource description,
see Resource Proper-
ties

true 0.6

imageUuid image uuid, see image 0.6
primaryStorageUuid

uuid of primary
storage where the
data volume is going
to be created; the
primary storage must
be accessible to VMs
that the data volume
is planned to be
attached; otherwise
you may create a
dangling data volume
that cannot be
attached
to VMs you want.
see primary storage.

0.6

From a Volume Snapshot

Users can use CreateDataVolumeFromVolumeSnapshot to create a data volume from a volume snapshot. For example:

2.15. Volume 113

zstack Documentation, Release 0.6

CreateDataVolumeFromVolumeSnapshot name=data1 primaryStorageUuid=302055ec45794423af7f5d3c5081bc87 volumeSnapshotUuid=178c662bfcdd4145920682c58ebcbed4

Parameters

Name Description Optional Choices Since
name resource name, see

Resource Properties
0.6

resourceUuid resource uuid, see
Create Resources

true 0.6

description resource description,
see Resource Proper-
ties

true 0.6

volumeSnapshotUuid volume snapshot uuid,
see volume snapshot

0.6

primaryStorageUuid

uuid of primary
storage where the
data volume is going
to be created; the
primary storage must
be accessible to VMs
that the data volume
is planned to be
attached; otherwise
you may create a
dangling data volume
that cannot be
attached
to VMs you want.
see primary storage.

0.6

Delete Data Volume

Users can use DeleteDataVolume to delete a data volume. For example:

DeleteDataVolume uuid=178c662bfcdd4145920682c58ebcbed4

Note: Root volumes, which are deleted when deleting VMs, cannot be deleted by APIs.

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

uuid volume uuid 0.6

Danger: There is no way to recover a deleted data volume.

114 Chapter 2. Chapters

zstack Documentation, Release 0.6

Change State

Users can use ChangeVolumeState to change the state of a data volume. For example:

ChangeVolumeState uuid=be19ce415bbe44539b0bd276633470e0 stateEvent=enable

Note: States of root volumes are unchangeable.

Parameters

Name Description Optional Choices Since
uuid volume uuid 0.6
stateEvent state trigger event

• enable: change
the state to En-
abled

• disable: change
the state ot Dis-
abled

• enable
• disable

0.6

Attach VM

Users can use AttachDataVolumeToVm to attach a data volume to a VM. For example:

AttachDataVolumeToVm volumeUuid=178c662bfcdd4145920682c58ebcbed4 vmInstanceUuid=c5b443a20341418b9120c7e3b3cd34f5

Parameters

Name Description Optional Choices Since
volumeUuid volume uuid 0.6
vmInstanceUuid VM uuid, see VM 0.6

Detach VM

Users can use DetachDataVolumeFromVm to detach a data volume from a VM. For example:

DetachDataVolumeFromVm uuid=178c662bfcdd4145920682c58ebcbed4

Parameters

Name Description Optional Choices Since
uuid volume uuid 0.6

Warning: Please flush all changes in VM operating system to disk before detaching a data volume and make sure
no applications are accessing it; otherwise data in the data volume may crash. Imagine the process of detaching a
data volume as hot unplugging a hard drive from a computer.

2.15. Volume 115

zstack Documentation, Release 0.6

Query Volume

Users can use QueryVolume to query volumes. For example:

QueryVolume type=Data vmInstanceUuid=71f5376ef53a46a9abddd59c942cf45f

QueryVolume diskOffering.name=small primaryStorage.uuid=8db7eb2ccdab4c4eb4784e46895bb016

Primitive Fields of Query

see volume inventory

Nested And Expanded Fields of Query

Field Inventory Description Since
vmInstance VM inventory the VM the volume is attached to 0.6
snapshot volume snapshot inventory volume snapshots that are created from this volume 0.6
diskOffering disk offering inventory disk offering that the volume is created from 0.6
primaryStorage primary storage inventory primary storage that the volume is on 0.6
image image inventory image that the volume is create from 0.6

2.15.4 Tags

Users can create user tags on a volume with resourceType=VolumeVO. For example:

CreateUserTag resourceType=VolumeVO tag=goldenVolume resourceUuid=f97b8cb9bccc4872a723c8b7785d9a12

2.16 Disk Offering

116 Chapter 2. Chapters

zstack Documentation, Release 0.6

Table of contents

• Disk Offering
– Overview
– Inventory

* Properties
· Disk Size
· State
· Allocator Strategy

– Operations
* Create Disk Offering

· Parameters
* Change State

· Parameters
* Delete Disk Offering

· Parameters
* Query Disk Offering

· Primitive Fields of Query
· Nested And Expanded Fields of Query

– Tags
* System Tags

· Dedicated Primary Storage

2.16.1 Overview

A disk offering is a specification of a volume, which defines a volume’s size and how it will be created. Disk offerings
can be used to create both root volumes and data volumes.

Note: There is no API to create a root volume; but if you provision a VM with an ISO image, you need to specify
a disk offering that defines size and allocator strategy for the VM’s root volume, which is the only way that creates a
root volume from a disk offering.

2.16. Disk Offering 117

zstack Documentation, Release 0.6

2.16.2 Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

diskSize the size of volume in
bytes, see disk size

0.6

state see state
• Enabled
• Disabled

0.6

type reserved field
• zstack

0.6

allocatorStrategy see allocator strategy •
DefaultPrimaryStorageAllocationStrategy

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

Disk Size

DiskSize defines a volume’s virtual size. As mentioned in volume, virtual size is the max size a volume can occupy in
storage system after it is fully filled. Putting in a straight way, it’s the size you want for the volume.

State

Disk offerings have two states:

• Enabled:

The state that allows volumes to be created from this disk offering

• Disabled:

The state that DOESN’T allow volumes to be created from this disk offering

Allocator Strategy

Allocator strategy defines how ZStack selects a primary storage when creating a new volume. Currently the only
supported strategy is DefaultPrimaryStorageAllocationStrategy that finds a primary storage satisfying conditions:

1. state is Enabled
2. status is Connected
3. availableCapacity is greater than disk offering's diskSize
4. has been attached to the cluster that runs the VM to which the volume will be attached

118 Chapter 2. Chapters

zstack Documentation, Release 0.6

Note: A volume created from a disk offering is only instantiated on primary storage when it’s being attached to a
VM. See volume status NotInstantiated.

2.16.3 Operations

Create Disk Offering

Users can use CreateDiskOffering create a disk offering. For example:

CreateDiskOffering name=small diskSize=1073741824

Parameters

Name Description Optional Choices Since
name resource name, see

Resource Properties
0.6

resourceUuid resource uuid, see
Create Resources

true 0.6

description resource description,
see Resource Proper-
ties

true 0.6

diskSize disk size in bytes, see
size

0.6

allocationStrategy see allocator strategy true •
DefaultPrimaryStorageAllocationStrategy

0.6

type reserved filed, leave it
alone

true 0.6

Change State

Users can use ChangeDiskOfferingState to change the state of a disk offering. For example:

ChangeDiskOfferingState uuid=178c662bfcdd4145920682c58ebcbed4 stateEvent=enable

Parameters

Name Description Optional Choices Since
uuid disk offering uuid 0.6
stateEvent state trigger event

• enable: change
state to Enabled

• disable: change
state to Dis-
abled

• enable
• disable

0.6

2.16. Disk Offering 119

zstack Documentation, Release 0.6

Delete Disk Offering

Users can use DeleteDiskOffering to delete a disk offering. For example:

DeleteDiskOffering uuid=178c662bfcdd4145920682c58ebcbed4

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

uuid disk offering uuid 0.6

Query Disk Offering

Users can use QueryDiskOffering to query disk offerings. For example:

QueryDiskOffering diskSize>=10000000

QueryDiskOffering volume.name=data1

Primitive Fields of Query

see disk offering inventory

Nested And Expanded Fields of Query

Field Inventory Description Since
volume volume inventory volumes that are created from this disk offering 0.6

2.16.4 Tags

Users can create user tags on a disk offering with resourceType=DiskOfferingVO. For example:

CreateUserTag tag=smallDisk resourceType=DiskOfferingVO resourceUuid=d6c49e73927d40abbfcf13852dc18367

System Tags

Dedicated Primary Storage

When creating volumes from disk offerings, users can use a system tag to specify primary storage on which the
volumes will be created.

120 Chapter 2. Chapters

zstack Documentation, Release 0.6

Tag Description Example Since
primaryStorage::allocator::uuid::{uuid}

if present, volumes created
from this disk offering will
be
allocated on the primary
storage of uuid;
an allocation failure will be
raised if the specified
primary storage
doesn’t exist or doesn’t
have enough capacity.

primaryStorage::allocator::uuid::b8398e8b7ff24527a3b81dc4bc64d9740.6

primaryStorage::allocator::userTag::{tag}::required

if present, volumes created
from this disk offering will
be
allocated on the primary
storage having user tag tag;
an allocation failure will be
raised if no primary storage
has the tag or primary
storage having the tag
doesn’t
have enough capacity.

primaryStorage::allocator::userTag::SSD::required0.6

primaryStorage::allocator::userTag::{tag}

if present, volumes created
from this disk offering will
be primarily allocated on
the primary storage having
user tag tag,
if there is any; no failure
will be raised if no primary
storage
has the tag or primary
storage having the tag
doesn’t
have enough capacity,
instead, a random primary
storage will be chosen
for the volume.

primaryStorage::allocator::userTag::SSD0.6

if more than one above system tags present on a disk offering, the precedent order is:

primaryStorage::allocator::uuid::{uuid} > primaryStorage::allocator::userTag::{tag}::required > primaryStorage::allocator::userTag::{tag}

2.17 Instance Offering

2.17. Instance Offering 121

zstack Documentation, Release 0.6

Table of contents

• Instance Offering
– Overview
– Inventory

* Properties
· CPU Capacity
· KVM CPU Speed
· Type
· Allocator Strategy
· DefaultHostAllocatorStrategy
· Input Parameters
· Algorithm
· DesignatedHostAllocatorStrategy
· Input Parameters
· Algorithm
· State

– Operations
* Create Instance Offering

· Parameters
* Delete Instance Offering

· Parameters
* Change State

· Parameters
* Query Instance Offering

· Primitive Fields of Query
· Nested and Expanded Fields of Query

– Tags
* System Tags

· Dedicated Primary Storage

2.17.1 Overview

An instance offering is a specification of VM’s memory, CPU, and host allocation algorithm; it defines the volume of
computing resource a VM can have.

122 Chapter 2. Chapters

zstack Documentation, Release 0.6

2.17.2 Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

cpuNum VCPU number, see
CPU capacity

0.6

cpuSpeed VCPU speed, see
CPU capacity

0.6

memorySize memory size, in bytes 0.6
type instance offering type,

default is UserVm,
see type

true
• UserVm
• VirtualRouter

0.6

allocatorStrategy host allocator strategy,
see allocator strategy

•
DefaultHostAllocatorStrategy

•
DesignatedHostAllocatorStrategy

0.6

state see state
• Enabled
• Disabled

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

CPU Capacity

Instance offerings use cpuNum and cpuSpeed to define a VM’s CPU capacity. cpuNum, very straightforward, means
the number of VCPU that a VM has; cpuSpeed is a little special; as a VM’s VCPU always has the frequency same to
the host’s physical CPU, cpuSpeed here actually means VCPU weight in hypervisors. Depending on hypervisor types,
the use and implementation of cpuSpeed vary.

KVM CPU Speed In KVM, ZStack will set the result of ‘cpuSpeed * cpuNum’ to VM’s XML configuration to
libvirt:

<cputune>
<shares>128</shares>

</cputune>

shares = cpuNum * cpuSpeed

2.17. Instance Offering 123

zstack Documentation, Release 0.6

Type

The type of instance offering; currently there are two types:

• UserVm: instance offering for creating user VMs.

• VirtualRouter: instance offering for creating virtual router VMs; see virtual router.

Allocator Strategy

Allocator strategy defines the algorithm of selecting destination hosts for creating VMs.

DefaultHostAllocatorStrategy DefaultHostAllocatorStrategy uses below algorithm:

Input Parameters

Name Description
image image used to create the VM
L3 network L3 networks the VM will have nics on
instance offering instance offering
tags tags for host allocation

Algorithm
l2_networks = get_parent_l2_networks(l3_networks)
host_set1 = find_hosts_in_cluster_that_have_attached_to_l2_networks()
check_if_backup_storage_having_image_have_attached_to_zone_of_hosts(host_set1)
host_set2 = remove_hosts_not_having_state_Enabled_and_status_Connected(host_set1)
host_set3 = remove_hosts_not_having_capacity_required_by_instance_offering(host_set2)
primary_storage = find_Enabled_Connected_primary_storage_having_enough_capacity_for_root_volume_and_attached_to_clusters_of_hosts(image, host_set3)
host_set4 = remove_hosts_that_cannot_access_primary_storage(host_set3)
host_set5 = remove_avoided_hosts(host_set4)
host_set6 = call_tag_plugin(tags, host_set5)

return randomly_pick_one_host(host_set6)

DesignatedHostAllocatorStrategy DesignatedHostAllocatorStrategy uses algorithm:

Input Parameters

Name Description Optional
image image used to create the VM
L3 network L3 networks the VM will have nics on
instance offering instance offering
tags tags for host allocation
zone the zone the VM wants to run true
cluster the cluster the VM wants to run true
host the host the VM wants to run true

Algorithm
l2_networks = get_parent_l2_networks(l3_networks)
host_set1 = find_hosts_in_cluster_that_have_attached_to_l2_networks()
check_if_backup_storage_having_image_have_attached_to_zone_of_hosts(host_set1)

if host is not null:

124 Chapter 2. Chapters

zstack Documentation, Release 0.6

host_set2 = list(find_host_in_host_set1(host))
else if cluster is not null:

host_set2 = find_host_in_cluster_and_host_set1(cluster)
else if zone is not null:

host_set2 = find_host_in_zone_and_host_set1(zone)

host_set3 = remove_hosts_not_having_state_Enabled_and_status_Connected(host_set2)
host_set4 = remove_hosts_not_having_capacity_required_by_instance_offering(host_set3)
primary_storage = find_Enabled_Connected_primary_storage_having_enough_capacity_for_root_volume_and_attached_to_clusters_of_hosts(image, host_set4)
host_set5 = remove_hosts_that_cannot_access_primary_storage(host_set4)
host_set6 = remove_avoided_hosts(host_set5)
host_set7 = call_tag_plugin(tags, host_set6)

return randomly_pick_one_host(host_set7)

Note: DesignatedHostAllocatorStrategy is a little special of not being specified in instance offerings; when a zoneU-
uid or a clusterUuid or a hostUuid is specified in CreateVmInstance, DesignatedHostAllocatorStrategy automatically
overrides the strategy in instance offering.

State

Instance offerings have two states:

• Enabled:

The state that allows VMs to be created from this instance offering

• Disabled:

The state that DOESN’T allows VMs to be created from this instance offering

2.17.3 Operations

Create Instance Offering

Users can use CreateInstanceOffering to create an instance offering. For example:

CreateInstanceOffering name=small cpuNum=1 cpuSpeed=1000 memorySize=1073741824

2.17. Instance Offering 125

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
name resource name, see

Resource Properties
0.6

resourceUuid resource uuid, see
Create Resources

true 0.6

description resource description,
see Resource Proper-
ties

true 0.6

cpuNum VCPU num, see CPU
capacity

0.6

cpuSpeed VCPU speed, see
CPU capacity

0.6

memorySize memory size, in bytes 0.6
type type, default is

UserVm, see type
true

• UserVm
• VirtualRouter

0.6

Delete Instance Offering

Users can use DeleteInstanceOffering to delete an instance offering. For example:

DeleteInstanceOffering uuid=1164a094fea34f1e8265c802a8048bae

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

uuid instance offering uuid 0.6

Change State

Users can use ChangeInstanceOfferingState to change a state of instance offering. For example:

126 Chapter 2. Chapters

zstack Documentation, Release 0.6

ChangeInstanceOfferingState uuid=1164a094fea34f1e8265c802a8048bae stateEvent=enable

Parameters

Name Description Optional Choices Since
stateEvent state trigger event

• enable: change
state to Enabled

• disable: change
state to Dis-
abled

• enable
• disable

0.6

uuid instance offering uuid 0.6

Query Instance Offering

Users can use QueryInstanceOffering to query instance offerings. For example:

QueryInstanceOffering cpuSpeed=512 cpuNum>2

QueryInstanceOffering vmInstance.state=Stopped

Primitive Fields of Query

see instance offering inventory

Nested and Expanded Fields of Query

Field Inventory Description Since
vmInstance VM inventory VMs that are created from this instance offering 0.6

2.17.4 Tags

Users can create user tags on an instance offering with resourceType=InstanceOfferingVO. For example:

CreateUserTag resourceType=InstanceOfferingVO tag=web-server-offering resourceUuid=45f909969ce24865b1bbca4adb66710a

System Tags

Dedicated Primary Storage

When creating VMs, users can use a system to specify primary storage on which root volumes will be created.

2.17. Instance Offering 127

zstack Documentation, Release 0.6

Tag Description Example Since
primaryStorage::allocator::uuid::{uuid}

if present, the VM’s root
volume will be allocated on
the primary storage whose
uuid is uuid;
an allocation failure will be
raised if the specified
primary storage
doesn’t exist or doesn’t
have enough capacity.

primaryStorage::allocator::uuid::b8398e8b7ff24527a3b81dc4bc64d9740.6

primaryStorage::allocator::userTag::{tag}::required

if present, the VM’s root
volume will be allocated on
the
primary storage which has
user tag tag;
an allocation failure will be
raised if no primary storage
has
the tag or primary storage
having the tag doesn’t
have enough capacity

primaryStorage::allocator::userTag::SSD::required0.6

primaryStorage::allocator::userTag::{tag}

if present, the VM’s root
volume will be allocated on
the primary storage
which has user tag tag, if
there is any;
NO failure will be raised if
no primary storage has the
tag or
primary storage having the
tag doesn’t
have enough capacity,
instead, a random primary
storage will be chosen.

primaryStorage::allocator::userTag::SSD0.6

if more than one above system tags present on a disk offering, the precedent order is:

primaryStorage::allocator::uuid::{uuid} > primaryStorage::allocator::userTag::{tag}::required > primaryStorage::allocator::userTag::{tag}

2.18 Virtual Machine

128 Chapter 2. Chapters

zstack Documentation, Release 0.6

Table of contents

• Virtual Machine
– Overview
– Inventory

* Properties
· Example
· Location
· Networks
· VM Nic Inventory
· Example
· Volumes
· Hypervisor Type
· State

– Operations
* Create VM

· Parameters
· rootDiskOfferingUuid
· dataDiskOfferingUuids

* Stop VM
· Parameters

* Start VM
· Parameters

* Reboot VM
· Parameters

* Destroy VM
· Parameters

* Migrate VM
· Parameters

* Attach Data Volume
* Detach Data volume
* Query VM

· Primitive Fields of Query
· Nested And Expanded Fields of Query

* Query VM Nic
· Primitive Fields of Query Nic
· Nested And Expanded Fields of Query Nic

– Global Configurations
* dataVolume.deleteOnVmDestroy

– Tags
* System Tags

· HostName

2.18.1 Overview

A virtual machine(VM) consumes datacenter resources of computing, storage, and network.

2.18. Virtual Machine 129

zstack Documentation, Release 0.6

130 Chapter 2. Chapters

zstack Documentation, Release 0.6

2.18.2 Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

zoneUuid uuid of ancestor zone,
see Zone and location

true 0.6

clusterUuid uuid of ancestor clus-
ter, see Cluster and lo-
cation

true 0.6

hostUuid uuid of parent host the
VM is currently run-
ning, see Host and lo-
cation

true 0.6

lastHostUuid uuid of parent host the
VM was running last
time, see Host and lo-
cation

true 0.6

imageUuid uuid of image from
which the VM’s root
volume is created, see
Image

0.6

instanceOfferingUuid uuid of instance offer-
ing, see Instance Of-
fering

0.6

rootVolumeUuid uuid of VM’s root vol-
ume, see Volume

0.6

defaultL3NetworkUuid uuid of VM’s default
L3 network, see L3
network and networks

0.6

type VM type
• UserVm: cre-

ated by users
• ApplianceVm:

created by
ZStack to help
manage the
cloud

• UserVm
• ApplianceVm

0.6

hypervisorType VM’s hypervisor type,
see Host and hypervi-
sor type

• KVM
0.6

state VM’s state, see state
• Created
• Starting
• Running
• Stopping
• Stopped
• Rebooting
• Destroying
• Destroyed
• Migrating
• Unknown

0.6

vmNics a list of nic inventory,
see networks

0.6

allVolumes a list of volume inven-
tory, see volumes

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

2.18. Virtual Machine 131

zstack Documentation, Release 0.6

Example

{
"allVolumes": [

{
"createDate": "Dec 2, 2015 5:53:42 PM",
"description": "Root volume for VM[uuid:d92a03ed745a0d32fe63dc30051d3862]",
"deviceId": 0,
"format": "qcow2",
"installPath": "/opt/zstack/nfsprimarystorage/prim-a82b75ee064a48708960f42b800bd910/rootVolumes/acct-36c27e8ff05c4780bf6d2fa65700f22e/vol-e9555324042542288ec20a67797d476c/e9555324042542288ec20a67797d476c.qcow2",
"lastOpDate": "Dec 2, 2015 5:53:42 PM",
"name": "ROOT-for-vm-4-vlan10",
"primaryStorageUuid": "a82b75ee064a48708960f42b800bd910",
"rootImageUuid": "f1205825ec405cd3f2d259730d47d1d8",
"size": 419430400,
"state": "Enabled",
"status": "Ready",
"type": "Root",
"uuid": "e9555324042542288ec20a67797d476c",
"vmInstanceUuid": "d92a03ed745a0d32fe63dc30051d3862"

}
],
"clusterUuid": "b429625fe2704a3e94d698ccc0fae4fb",
"createDate": "Dec 2, 2015 5:53:42 PM",
"defaultL3NetworkUuid": "6572ce44c3f6422d8063b0fb262cbc62",
"hostUuid": "d07066c4de02404a948772e131139eb4",
"hypervisorType": "KVM",
"imageUuid": "f1205825ec405cd3f2d259730d47d1d8",
"instanceOfferingUuid": "04b5419ca3134885be90a48e372d3895",
"lastHostUuid": "d07066c4de02404a948772e131139eb4",
"lastOpDate": "Dec 2, 2015 5:53:42 PM",
"name": "vm-4-vlan10",
"rootVolumeUuid": "e9555324042542288ec20a67797d476c",
"state": "Running",
"type": "UserVm",
"uuid": "d92a03ed745a0d32fe63dc30051d3862",
"vmNics": [

{
"createDate": "Dec 2, 2015 5:53:42 PM",
"deviceId": 0,
"gateway": "10.0.0.1",
"ip": "10.0.0.218",
"l3NetworkUuid": "6572ce44c3f6422d8063b0fb262cbc62",
"lastOpDate": "Dec 2, 2015 5:53:42 PM",
"mac": "fa:ef:34:5c:6c:00",
"netmask": "255.255.255.0",
"uuid": "fb8404455cf84111958239a9ec19ca28",
"vmInstanceUuid": "d92a03ed745a0d32fe63dc30051d3862"

}
],
"zoneUuid": "3a3ed8916c5c4d93ae46f8363f080284"

}

132 Chapter 2. Chapters

zstack Documentation, Release 0.6

Location

As ZStack arranges computing resources by zones, clusters, and hosts, a VM’s location can be identified by zoneUuid,
clusterUuid, and hostUuid. After a VM is running, those UUIDs will be set to values that represent the VM’s current
location; after stopped, the hostUuid is set to NULL, zoneUuid and clusterUuid are unchanged. The lastHostUuid is
special, as it represents the host the VM run last time; for a new created VM, the lastHostUuid is NULL; once the VM
is stopped, it’s set to the previous value of the hostUuid.

The algorithms of selecting hosts for new created VMs are elaborated in host allocator strategy. In later of this chapter,
strategies for starting VMs and migrating VMs will be demonstrated.

Networks

VMs can be on one or more L3 networks; vm nics encompass information like IP address, netmask, MAC of every
L3 network. If a VM has more than one L3 networks, a default L3 network to provide default routing, DNS, and
hostname must be specified; if a VM has only one L3 network, the one becomes the default L3 network automatically.

An example may help understand what is the default L3 network. Assuming you have a user vm like below picture:

The VM is on three L3 networks all providing SNAT service, and the default L3 network is 10.10.1.0/24:

CIDR: 10.10.1.0/24
Gateway: 10.10.1.1
DNS domain: web.tier.mycompany.com

then the VM’s routing table is like:

default via 10.10.1.1 dev eth0
10.10.1.0/24 dev eth0 proto kernel scope link src 10.10.1.99
192.168.0.0/24 dev eth1 proto kernel scope link src 192.168.0.10
172.16.0.0/24 dev eth0 proto kernel scope link src 172.16.0.55

see the default routing is pointing to 10.10.1.1 that is the gateway of the default L3 network; and the VM’s
/etc/resolv.conf is like:

search web.tier.mycompany.com
nameserver 10.10.1.1

the DNS domain is from the default L3 network too; and the DNS name server is also the gateway 10.10.1.1 because
the default L3 network provides the DNS server; at last, the FQDN(Full Qualified Domain Name) of the VM is like:

2.18. Virtual Machine 133

zstack Documentation, Release 0.6

vm2.web.tier.mycompany.com

which is expanded by the DNS domain.

VM Nic Inventory

Name Description Op-
tional

ChoicesSince

uuid see Resource Properties 0.6
vmIn-
stanceU-
uid

uuid of parent VM 0.6

l3NetworkUuiduuid of l3 network the nic is on 0.6
ip IP address 0.6
mac MAC address 0.6
netmask netmask 0.6
gateway gateway 0.6
meta-
Data

reserved field for internal use true 0.6

deviceId an integer that identifies nic’s order in guest operating system’s ethernet
device list. For example, 0 usually means eth0, 1 usually means eth1.

0.6

In this ZStack version, once an IP is assigned to a VM nic, it will be with the nic through the entire life of the VM
until the VM is destroyed.

Example
{

"createDate": "Dec 2, 2015 5:53:42 PM",
"deviceId": 0,
"gateway": "10.0.0.1",
"ip": "10.0.0.218",
"l3NetworkUuid": "6572ce44c3f6422d8063b0fb262cbc62",
"lastOpDate": "Dec 2, 2015 5:53:42 PM",
"mac": "fa:ef:34:5c:6c:00",
"netmask": "255.255.255.0",
"uuid": "fb8404455cf84111958239a9ec19ca28",
"vmInstanceUuid": "d92a03ed745a0d32fe63dc30051d3862"

}

Volumes

Field allVolumes is a list of volume inventory that contains the root volume and data volumes. To find out the root
volume, users can iterate the list, either by checking if a volume’s type is Root or using the field ‘rootVolumeUuid’ to
match volumes’ UUIDs. A root volume will be with the VM through its entire life until it’s destroyed.

Hypervisor Type

VM’s hypervisor type is inherited from image’s hypervisor type or host’s hypervisor type, depending on how the VM
is created.

• from a RootVolumeTemplate:

as the image already has operating system installed, the VM will be created on a host of the same hypervisor
type to the image, so the VM’s hypervisor type is inherited from the image.

134 Chapter 2. Chapters

zstack Documentation, Release 0.6

• from an ISO: as the ISO will be used to install the VM’s blank root volume, the VM can be created on hosts of
any hypervisor types, then the VM’s hypervisor type is inherited from the host it’s created.

State

VMs have 10 states representing life cycles.

• Created

The VM is just created as a record in database, but has not been started on any host. The state only exists when
creating a new VM.

• Starting

The VM is starting on a host

• Running

The VM is running on a host

• Stopping

The VM is stopping on a host

• Stopped

The VM is stopped and not running on any host

• Rebooting

The VM is rebooting on the host it’s running previously

• Destroying

The VM is being destroyed

• Migrating

The VM is being migrated to another host

• Unknown

For some reason, for example, losing connection to the host, ZStack fails to detect the VM’s state

2.18. Virtual Machine 135

zstack Documentation, Release 0.6

ZStack uses a VmTracer to periodically track VMs’ states; the default interval is 60s. A VM’s state may be changed
outside ZStack, for example, a host power outage will make all VMs stop on the host; once the VmTracer detects a
mismatch between the real state of a VM and the record in database, it will update database to catch up the real state.
If the VmTracer fails to detect a VM’s state, for example, because of losing connection between a ZStack management
node and a host, it will place the VM into state Unknown; once the VmTracer successfully detects the VM’s state
again, for example, after connection recovers between the ZStack management node and the host, it will update the
VM to the real state.

2.18.3 Operations

Create VM

Users can use CreateVmInstance to create a new VM. For example:

CreateVmInstance name=vm imageUuid=d720ff0c60ee48d3a2e6263dd3e12c33 instanceOfferingUuid=76789b62aeb542a5b4b8b8488fbaced2 l3NetworkUuids=37d3c4a1e2f14a1c8316a23531e62988,05266285f96245f096f3b7dce671991d defaultL3NetworkUuid=05266285f96245f096f3b7dce671991d

136 Chapter 2. Chapters

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
name resource name, see

Resource Properties
0.6

resourceUuid resource uuid, see
Create Resources

true 0.6

description resource description,
see Resource Proper-
ties

true 0.6

instanceOfferingUuid uuid of instance offer-
ing

0.6

imageUuid uuid of image. Image
can only be type of
RootVolumeTemplate
or ISO

0.6

l3NetworkUuids a list of L3 network
uuid

0.6

type reserved field, default
is UserVm • UserVm

• ApplianceVm

0.6

rootDiskOfferingUuid uuid of disk offering
for root volume, see
rootDiskOfferingUuid

true 0.6

dataDiskOfferingUuids a list of disk offering
uuid, see dataDiskOf-
feringUuids

true 0.6

zoneUuid if not null, the VM
will be created in the
specified zone; this
field can be overrid-
den by clusterUuid or
hostUuid

true 0.6

clusterUuid if not null, the VM
will be created in the
specified cluster; this
field can be overrid-
den by hostUuid

true 0.6

hostUuid if not null, the VM
will be created on the
specified host

true 0.6

defaultL3NetworkUuid if l3NetworkUuids in-
cludes more than one
L3 network UUIDs,
this field indicates
which L3 network is
the default L3 net-
work. leave it alone if
l3NetworkUuids has
only one L3 network
uuid.

true 0.6q

2.18. Virtual Machine 137

zstack Documentation, Release 0.6

rootDiskOfferingUuid If a VM is created from an ISO image, users must specify a disk offering by rootDiskOf-
feringUuid so ZStack knows the disk size of the root volume; if the VM is created from an RootVolumeTemplate
image, this field is ignored.

dataDiskOfferingUuids By providing a list of disk offering UUIDs in dataDiskOfferingUuids, users can create a
VM with multiple data volumes attached. If a data volume failed to be created, the whole VM creation fails.

Stop VM

Users can use StopVmInstance to stop a running VM. For example:

StopVmInstance uuid=76789b62aeb542a5b4b8b8488fbaced2

Parameters

Name Description Optional Choices Since
uuid VM uuid 0.6

Start VM

Users can use StartVmInstance to start a stopped VM. For example:

StartVmInstance uuid=76789b62aeb542a5b4b8b8488fbaced2

Parameters

Name Description Optional Choices Since
uuid VM uuid 0.6

When starting a VM, ZStack uses LastHostPreferredAllocatorStrategy algorithm that will start the VM on the host
it previously run if possible; otherwise, start the VM on a new host using the algorithm of DesignatedHostAlloca-
torStrategy.

Reboot VM

Users can use RebootVmInstance to reboot a running VM. For example:

RebootVmInstance uuid=76789b62aeb542a5b4b8b8488fbaced2

Parameters

Name Description Optional Choices Since
uuid VM uuid 0.6

138 Chapter 2. Chapters

zstack Documentation, Release 0.6

Destroy VM

Users can use DestroyVmInstance to destroy a VM. For example:

DestroyVmInstance uuid=76789b62aeb542a5b4b8b8488fbaced2

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

uuid VM uuid 0.6

Warning: There is no way to recover a destroyed VM; once a VM is destroyed, its root volume will be deleted;
if global configuration dataVolume.deleteOnVmDestroy is true, attached data volumes will be deleted as well;
otherwise, data volumes will be detached.

Migrate VM

Admins can use MigrateVm to live migrate a running VM from the current host to another host. For example:

MigrateVm vmInstanceUuid=76789b62aeb542a5b4b8b8488fbaced2 hostUuid=37d3c4a1e2f14a1c8316a23531e62988

Parameters

Name Description Op-
tional

Choices Since

vmIn-
stanceUuid

VM uuid 0.6

hostUuid target host uuid; if omitted, ZStack will try to find a proper host
automatically

true 0.6

A VM can migrate between two hosts only if their OS versions are exactly matching. For KVM, OS versions are
determined by three system tags: os::distribution, os::release, and os::version.

When migrating, OS versions are checked by MigrateVmAllocatorStrategy which uses a similar algorithm of Desig-
natedHostAllocatorStrategy to choose target migration host.

Warning: For KVM, if you use customized libvirt and qemu rather than those builtin ones, migration may fail
even OS versions match on two hosts. Please make sure OS version, libvirt version, and qemu version are all the
same on two hosts for migration.

Attach Data Volume

See attach volume to vm.

2.18. Virtual Machine 139

zstack Documentation, Release 0.6

Detach Data volume

See detach volume from vm.

Query VM

Users can use QueryVmInstance to query VMs. For example:

QueryVmInstance state=Running hostUuid=33107835aee84c449ac04c9622892dec

QueryVmInstance vmNics.eip.guestIp=10.23.109.23

Primitive Fields of Query

see VM inventory

Nested And Expanded Fields of Query

Field Inventory Description Since
vmNics VM nic inventory VM nics belonging to this VM 0.6
allVolumes volume inventory volumes belonging to this VM 0.6
zone zone inventory ancestor zone 0.6
cluster cluster inventory ancestor cluster 0.6
host host inventory parent host 0.6
image image inventory image this VM is created from 0.6
instanceOffering instance offering inventory instance offering this VM is created from 0.6
rootVolume volume inventory root volume belonging to this VM 0.6

Query VM Nic

Users can use QueryVmNic to query VM nics. For example:

QueryVmNic gateway=10.1.1.1

QueryVmNic eip.guestIp=11.168.2.13

Primitive Fields of Query Nic

see VM nic inventory

Nested And Expanded Fields of Query Nic

Field Inventory Since
vmInstance VM inventory 0.6
l3Network L3 network inventory 0.6
eip EIP inventory 0.6
portForwarding port forwarding inventory 0.6
securityGroup security group inventory 0.6

140 Chapter 2. Chapters

zstack Documentation, Release 0.6

2.18.4 Global Configurations

dataVolume.deleteOnVmDestroy

Name Category Default Value Choices
dataVolume.deleteOnVmDestroyvm false • true

• false

If true, data volumes attached to the VM will be deleted as well when the VM is being deleted; otherwise, the data
volumes will be detached.

2.18.5 Tags

Users can create user tags on a VM with resourceType=VmInstanceVO. For example:

CreateUserTag tag=web-server-vm resourceType=VmInstanceVO resourceUuid=a12b3cc9ee4440dfb00d41c1d2f72d08

System Tags

HostName

Users can specify a hostname for a VM’s default L3 network. This tag is usually specified in systemTags parameter
when calling CreateVmInstance; if the default L3 network has a DNS domain, the hostname that VM’s operating
system receives will be automatically expanded with the DNS domain. For example, assuming the hostname is ‘web-
server’ and DNS domain of the default L3 network is ‘zstack.org’, the final hostname will be ‘web-server.zstack.org’.

Tag Description Example Since
hostname::{hostname} hostname for VM’s default L3 network hostname::web-server 0.6

For example:

CreateVmInstance name=vm systemTags=hostname::vm1 imageUuid=d720ff0c60ee48d3a2e6263dd3e12c33 instanceOfferingUuid=76789b62aeb542a5b4b8b8488fbaced2 l3NetworkUuids=37d3c4a1e2f14a1c8316a23531e62988,05266285f96245f096f3b7dce671991d defaultL3NetworkUuid=05266285f96245f096f3b7dce671991d

2.19 Security Group

2.19. Security Group 141

zstack Documentation, Release 0.6

Table of contents

• Security Group
– Overview
– Security Group Inventory

* Properties
* Example

– Security Group Rule Inventory
* Properties

· Traffic Type
· Allowed CIDR

* Example
– Security Group And L3 Network
– Operations

* Create Security Group
· Parameters

* Add Rules To Security Group
· Parameters
· SecurityGroupRuleAO

* Delete Rules From Security Group
· Parameters

* Add VM Nics Into Security Group
· Parameters

* Remove VM Nics from Security Group
· Parameters

* Attach Security Group To L3 Network
· Parameters

* Detach Security Group From L3 Network
· Parameters

* Delete Security Group
· Parameters

* Query Security Group
· Primitive Fields
· Nested And Expanded Fields

– Global Configurations
* ingress.defaultPolicy
* egress.defaultPolicy

– Tags

2.19.1 Overview

A security group acts as a virtual firewall that controls networking traffics of VMs. Depending on the isolation method
a L2 network takes, users can use security group as firewalls or as a layer 3 isolation method. For example, if multiple
tenants share a L3 network, every tenant can create a security group to protect their VMs from being accessed by other
tenants. Tenants can also use security group along with EIP to control ports open to the public.

A security group consists of a set of rules that control ports’ accessibility. A security group can be attached to one
or more L3 networks; VM nics on attached L3 networks can join those security groups. A VM nic can join multiple
security groups, rules applied to the nic will be merged.

142 Chapter 2. Chapters

zstack Documentation, Release 0.6

The implementation of security group is hypervisor specific; not all hypervisors will support security group. In this
ZStack version, security group is supported in KVM hypervisor by using IPTables.

Note: A large number of security group rules may hurt network performance because the hypervisor needs to check
all rules against every network packet. ZStack will try to condense security group rules as much as possible; for
example, if you specify two rules for two consecutive ports, they will be merged into one IPTable(for KVM) rule
using a port range match.

To use security group, a L3 network must enable security group service using AttachNetworkServiceToL3Network, for
example:

AttachNetworkServiceToL3Network l3NetworkUuid=50e637dc68b7480291ba87cbb81d94ad networkServices='{"1d1d5ff248b24906a39f96aa3c6411dd": ["SecurityGroup"]}'

For VMs having multiple nics, all nics can join security groups.

The security group is essentially a distributed firewall; every rule change or nic join/leave event may lead firewall rules
to be refreshed on multiple hosts. Given this fact, some security group APIs are implemented in an asynchronous
manner, which may return before rules take effect on hosts. If there are more than one rules for a specific port, the
most permissive rule takes effect. For example, if a rule1 allows traffic from 12.12.12.12 to access port 22 but a rule2
allows everyone to access port 22, the rule2 takes precedence.

2.19. Security Group 143

zstack Documentation, Release 0.6

2.19.2 Security Group Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

state security group state;
not implemented in
this ZStack version

• Enabled
• Disabled

0.6

rules a list of security group
rule inventory

0.6

attachedL3NetworkUuidsa list of uuid of L3 net-
works that this secu-
rity group has been at-
tached

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

For an empty security group, there are default polices for ingress traffics and egress traffics; for ingress traffics, the
default policy is to deny, which means all inbound traffics to the nics in this empty security group are blocked; for
egress traffics, the default policy is to allow, which means all outbound traffics from the nics in this empty secu-
rity group are allowed. To change default policies, admin can change global configuration ingress.defaultPolicy and
egress.defaultPolicy.

Example

{
"attachedL3NetworkUuids": [

"0b48770e593e400c8f54e71fd4e7f514"
],
"createDate": "Nov 16, 2015 1:02:22 AM",
"lastOpDate": "Nov 16, 2015 1:02:22 AM",
"name": "sg-in",
"rules": [

{
"allowedCidr": "0.0.0.0/0",
"createDate": "April 29, 2015 9:57:10 PM",
"state": "Enabled",
"endPort": 22,
"lastOpDate": "Nov 29, 2015 9:57:10 PM",
"protocol": "TCP",
"securityGroupUuid": "9e0a72fe64814900baa22f78a1b9d235",
"startPort": 22,
"type": "Ingress",
"uuid": "a338d11be18d4e288223597682964dc8"

}
],

144 Chapter 2. Chapters

zstack Documentation, Release 0.6

"state": "Enabled",
"uuid": "9e0a72fe64814900baa22f78a1b9d235"

}

2.19.3 Security Group Rule Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

securityGroupUuid uuid of parent security
group

0.6

type see traffic type
• Ingress
• Egress

0.6

protocol traffic protocol type
• TCP
• UDP
• ICMP

0.6

startPort when protocol is
TCP/UDP, it’s the
start of port range;
when protocol is
ICMP, it’s ICMP type

• for TCP/UDP:
0 - 65535

• for ICMP: see
ICMP type and
code , use ‘-1’
to represent all
types.

0.6

endPort when protocol is
TCP/UDP, it’s the end
of port range; when
protocol is ICMP, it’s
ICMP code

• for TCP/UDP:
0 - 65535

• for ICMP: see
ICMP type and
code, use ‘-1’
to represent all
types.

0.6

allowedCidr see allowedCidr 0.6
state rule state, not imple-

mented in this version • Enabled
• Disabled

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

Traffic Type

There are two types of traffics:

2.19. Security Group 145

http://www.nthelp.com/icmp.html
http://www.nthelp.com/icmp.html
http://www.nthelp.com/icmp.html
http://www.nthelp.com/icmp.html

zstack Documentation, Release 0.6

• Ingress

Inbound traffics that access a VM nic

• Egress

Outbound traffics that leave from a VM nic

Allowed CIDR

Depending on traffic types, allowed CIDR has different meanings; its format is:

ipv4_address/network_prefix

for example: 12.12.12.12/24

if the traffic type is Ingress, allowed CIDR is a source CIDR that’s allowed to reach VM nics; for example, a rule:

startPort: 22
endPort: 22
protocol: TCP
type: Ingress
allowedCidr: 12.12.12.12/32

means only TCP traffic from IP(12.12.12.12) is allowed to access port 22.

if the traffic type is Egress, allowed CIDR is a destination CIDR that’s allowed to leave VM nics; for example, a rule:

startPort: 22
endPort: 22
protocol: TCP
type: Egress
allowedCidr: 12.12.12.12/32

means only TCP traffic to port 22 of IP 12.12.12.12 is allowed to leave.

The special CIDR 0.0.0.0/0 means all IP addresses.

Note: Allowed CIDR only controls IPs outside a security group. Rules are automatically applied to IPs of VM
nics that are on the same L3 network and in the same security group. For example, if two nics: nic1(10.10.1.5) and
nic2(10.10.1.6) are in the same security group which has a rule:

startPort: 22
endPort: 22
protocol: TCP
type: Ingress
allowedCidr: 12.12.12.12/32

nic1 and nic2 can reach port 22 of each other in spite of allowedCidr is set to 12.12.12.12/32.

Example

{
"allowedCidr": "0.0.0.0/0",
"state": "Enabled",
"startPort": 22,
"endPort": 22,

146 Chapter 2. Chapters

zstack Documentation, Release 0.6

"protocol": "TCP",
"type": "Ingress",
"createDate": "Nov 29, 2015 9:57:10 PM",
"lastOpDate": "Nov 29, 2015 9:57:10 PM",
"uuid": "a338d11be18d4e288223597682964dc8"
"securityGroupUuid": "9e0a72fe64814900baa22f78a1b9d235",

}

2.19.4 Security Group And L3 Network

As having said, a security group can be attached to multiple L3 networks. The design consideration is that a security
group is a set of firewall rules and can be applied to any L3 networks. For example, two different L3 networks may
have the same set of firewall rules which make much sense to be put into the same security group.

VM nics from different L3 networks in the same security group are irrelevant. As mentioned in Allowed CIDR, VM
nics of the same L3 network in a security group are not affected by rules’ allowedCIDR, they can always reach ports
opened of each other. However, if two nics in a security group are from different L3 networks, then the allowedCIDR
will take effect when they try to reach each other.

If you find it’s confusing to have a security group attached to multiple L3 networks, you can always create a security
group per each L3 network.

2.19.5 Operations

Create Security Group

Users can use CreateSecurityGroup to create a security group. For example:

CreateSecurityGroup name=web

2.19. Security Group 147

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
name resource name, see Resource Properties 0.6
resourceUuid resource uuid, see Create Resources true 0.6
description resource description, see Resource Properties true 0.6

Add Rules To Security Group

Users can use AddSecurityGroupRule to add rules to a security group. For example:

AddSecurityGroupRule securityGroupUuid=29a0f801f77b4b4f866fb4c9503d0fe9 rules="[{'type':'Ingress', 'protocol':'TCP', 'startPort':'22', 'endPort':'22', 'allowedCidr':'0.0.0.0/0'}]"

This command executes asynchronously, it may return before rules are applied to all VM nics.

Parameters

Name Description Optional Choices Since
securityGroupUuid uuid of security group 0.6
rules a list of SecurityGroupRuleAO 0.6

SecurityGroupRuleAO

Name Description Optional Choices Since
type traffic type, see traffic

type • Ingress
• Egress

0.6

startPort start port or ICMP
type • port: 0 - 65535

• ICMP type: see
ICMP type and
code

0.6

endPort end port or ICMP
code • port: 0 - 65535

• ICMP code: see
ICMP type and
code

0.6

protocol protocol type
• TCP
• UDP
• ICMP

0.6

allowedCidr see allowed CIDR; de-
fault to 0.0.0.0/0

true 0.6

Delete Rules From Security Group

User can uses DeleteSecurityGroupRule to delete rules from a security group. For example:

DeleteSecurityGroupRule ruleUuids=a338d11be18d4e288223597682964dc8,9e0a72fe64814900baa22f78a1b9d235

This command executes asynchronously, it may return before rules are refreshed on all hosts.

148 Chapter 2. Chapters

http://www.nthelp.com/icmp.html
http://www.nthelp.com/icmp.html
http://www.nthelp.com/icmp.html
http://www.nthelp.com/icmp.html

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
ruleUuids a list of uuid of rule inventory 0.6

Add VM Nics Into Security Group

Users can use AddVmNicToSecurityGroup to add VM nics to a security group. For example:

AddVmNicToSecurityGroup securityGroupUuid=0b48770e593e400c8f54e71fd4e7f514 vmNicUuids=b429625fe2704a3e94d698ccc0fae4fb,6572ce44c3f6422d8063b0fb262cbc62,d07066c4de02404a948772e131139eb4

This command executes asynchronously, it may return before rules are applied on those nics.

Note: VM nics can only join security groups that have been attached to their L3 networks.

Parameters

Name Description Optional Choices Since
securityGroupUuid security group uuid 0.6
vmNicUuids a list of uuid of vm nic inventory 0.6

Remove VM Nics from Security Group

Users can use DeleteVmNicFromSecurityGroup to delete VM nics from a security group. For example:

DeleteVmNicFromSecurityGroup securityGroupUuid=0b48770e593e400c8f54e71fd4e7f514 vmNicUuids=b429625fe2704a3e94d698ccc0fae4fb,6572ce44c3f6422d8063b0fb262cbc62,d07066c4de02404a948772e131139eb4

This command executes asynchronously, it may return before rules are refreshed on nics in the security group.

Parameters

Name Description Optional Choices Since
securityGroupUuid security group uuid 0.6
vmNicUuids a list of uuid of vm nic inventory 0.6

Attach Security Group To L3 Network

Users can use AttachSecurityGroupToL3Network to attach a security group to a L3 network. For example:

AttachSecurityGroupToL3Network securityGroupUuid=0b48770e593e400c8f54e71fd4e7f514 l3NetworkUuid=95dede673ddf41119cbd04bcb5d73660

Note: A security group can only be attached to L3 networks that have security group network service enabled

2.19. Security Group 149

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
securityGroupUuid security group uuid 0.6
l3NetworkUuid L3 network uuid 0.6

Detach Security Group From L3 Network

Users can use DetachSecurityGroupFromL3Network to detach a security group from a L3 network:

DetachSecurityGroupFromL3Network securityGroupUuid=0b48770e593e400c8f54e71fd4e7f514 l3NetworkUuid=95dede673ddf41119cbd04bcb5d73660

After detaching, all rules will be removed from VM nics of the L3 network and in this security group. This command
executes asynchronously, it may return before rules are refreshed on those nics.

Parameters

Name Description Optional Choices Since
securityGroupUuid security group uuid 0.6
l3NetworkUuid L3 network uuid 0.6

Delete Security Group

Users can use DeleteSecurityGroup to delete a security group. For example:

DeleteSecurityGroup uuid=0b48770e593e400c8f54e71fd4e7f514

After deleting, all rules will be removed from VM nics in this security group. This command executes asynchronously,
it may return before rules are refreshed on those VM nics.

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

uuid security group uuid 0.6

Query Security Group

Users can use QuerySecurityGroup to query security groups. For example:

QuerySecurityGroup rules.startPort=22 rules.type=Ingress rules.protocol=TCP

QuerySecurityGroup vmNic.ip=192.168.0.205

Primitive Fields

see security group inventory.

150 Chapter 2. Chapters

zstack Documentation, Release 0.6

Nested And Expanded Fields

Field Inventory Description Since
rules security group rule inventory rules the security group has 0.6
vmNic VM nic inventory VM nics that have joined this security group 0.6
l3Network L3 network inventory L3 networks this security group is attached 0.6

2.19.6 Global Configurations

ingress.defaultPolicy

Name Category Default Value Choices
ingress.defaultPolicy securityGroup deny

• deny
• accept

The default ingress policy for empty security groups.

egress.defaultPolicy

Name Category Default Value Choices
egress.defaultPolicy securityGroup accept

• deny
• accept

The default egress policy for empty security groups.

2.19.7 Tags

Users can create user tags on a security group with resourceType=SecurityGroupVO. For example:

CreateUserTag tag=web-tier-security-group resourceType=SecurityGroupVO resourceUuid=f25a28fdb21147f8b183296550a98799

2.20 Network Services And Virtual Router

2.20. Network Services And Virtual Router 151

zstack Documentation, Release 0.6

Table of contents

• Network Services And Virtual Router
– Overview
– Network typology
– Virtual Router Network Services
– Inventory

* Properties
* Example

– Virtual Router Offering
* Inventory

· Properties
· Example
· Default Offering
· Image
· Management Network and Public Network

– Operations
* Create Virtual Router Offering

· Parameters
* Delete Virtual Router Offering
* Reconnect Virtual Router Agent

· Parameters
* Start Virtual Router VM
* Reboot Virtual Router VM
* Stop Virtual Router VM
* Destroy Virtual Router VM
* Migrate Virtual Router VM
* Create Virtual Router VM
* Query Virtual Router VM

· Primitive Fields
· Nested And Expanded Fields

* Query Virtual Router Offering
· Primitive Fields
· Nested And Expanded Fields

– Global Configurations
* agent.deployOnStart
* command.parallelismDegree
* connect.timeout
* agent.deployOnStart

– Tags
* System Tags

· Parallel Command Level
· Guest L3 Network

2.20.1 Overview

ZStack supports a couple of OSI layer 4 ~ 7 network services: DHCP, DNS, SNAT, EIP, and PortForwarding. A L3
network can enable network services supplied by providers attached to its parent L2 network. Check Network Services
for a list of supported network services.

ZStack comes with a builtin network service provider – Virtual Router Provider, which uses customized Linux VMs
to implement network services. When creating a new VM on a L3 network that has network services attached from
the virtual router provider, a virtual router VM known as appliance VM will be created if there isn’t one yet.

152 Chapter 2. Chapters

zstack Documentation, Release 0.6

Computing capacity(CPU, Memory) of a virtual router VM is defined by a special instance offering called virtual
router offering. Besides CPU and memory, several extra parameters like image, management L3 network, public L3
network can be defined in a virtual router offering; details can be found in virtual router offering inventory.

Though the virtual router provider is the only network service provider(except security group provider) in current
ZStack version, the network services framework is highly pluggable that vendors can easily add their implementation
by implementing small plugins.

2.20.2 Network typology

A virtual router VM typically has three L3 networks:

• Management Network:

The network that ZStack management nodes communicate to virtual router agents; eth0 is the nic on the man-
agement network.

• Public Network:

The network that provides internet access, and provides public IPs for user VMs that use EIP, port forwarding,
and source NAT; eth1 is the nic on the public network.

Note: A RFC 1918 private subnet can be used as a public network as long as it can reach internet.

• Guest Network

The network where user VMs connect. eth2 is the nic on the guest network.

In a normal setup, all three networks should be separate L3 networks; however, two or even three networks can be
combined to one network, depending on what network typology you want.

For a flat network, a virtual router VM provides only DHCP and DNS services, the network typologies can be:

• Combined public network and guest network; a separate management network

2.20. Network Services And Virtual Router 153

zstack Documentation, Release 0.6

• Combined all of public network, guest network, and management network

For a private network or isolated network, a virtual router VM provides DHCP, DNS, SNAT; and may provide EIP
and Port Forwarding too, depending on users’ choices; the network typologies can be:

• Combined public network and management network; a separate guest network

• Separate public network, management network, and guest network

154 Chapter 2. Chapters

zstack Documentation, Release 0.6

Note: Because SSH port 22 is open on the management network, combining management network with other net-
works may lead to security issues. It’s highly recommended to use a separate management network.

Note: VPC is not supported in this ZStack version.

2.20.3 Virtual Router Network Services

In this ZStack version, the virtual router provider provides five network services: DHCP, DNS, SNAT, EIP, and Port-
Forwarding; we will talk about EIP and Port Forwarding in dedicated chapters because they have own APIs.

• DHCP

The virtual router VM acts as a DHCP server on the guest L3 network; the virtual router DHCP server uses
static IP-MAC mapping so user VMs always get the same IP address.

• DNS

The virtual router VM, no matter the DNS service is enabled or not, is always the DNS server of the guest L3
network. If the DNS service is enabled, DNS of the guest L3 network will be set as upstream DNS servers of
the virtual router VM. See L3 network for how to add DNS to a L3 network.

• SNAT

The virtual router VM acts as a router and provides source NAT to user VMs.

2.20.4 Inventory

Besides properties included in the VM instance inventory, the virtual router VM has some extra properties.

2.20. Network Services And Virtual Router 155

zstack Documentation, Release 0.6

Properties

Name Description Optional Choices Since
applianceVmType appliance VM type

• VirtualRouter
0.6

managementNetworkUuidthe management L3
network uuid

0.6

defaultRouteL3NetworkUuidthe uuid of L3 net-
work which provides
default routing in the
virtual router VM

0.6

publicNetworkUuid the public L3 network
uuid

0.6

status virtual router agent
status • Connecting

• Connected
• Disconnected

0.6

Example

{
"allVolumes": [

{
"createDate": "August 2, 2015 5:54:12 PM",
"description": "Root volume for VM[uuid:f1e76cb2ef0c4dfa87f3b807eb4d7437]",
"deviceId": 0,
"format": "qcow2",
"installPath": "/opt/zstack/nfsprimarystorage/prim-a82b75ee064a48708960f42b800bd910/rootVolumes/acct-36c27e8ff05c4780bf6d2fa65700f22e/vol-2acccd875e364b53824def6248c94a51/2acccd875e364b53824def6248c94a51.qcow2",
"lastOpDate": "Dec 2, 2015 5:54:12 PM",
"name": "ROOT-for-virtualRouter.l3.8db7eb2ccdab4c4eb4784e46895bb016",
"primaryStorageUuid": "a82b75ee064a48708960f42b800bd910",
"rootImageUuid": "b4fe2ebbc4522e199d36985012254d7d",
"size": 462945280,
"state": "Enabled",
"status": "Ready",
"type": "Root",
"uuid": "2acccd875e364b53824def6248c94a51",
"vmInstanceUuid": "f1e76cb2ef0c4dfa87f3b807eb4d7437"

}
],
"applianceVmType": "VirtualRouter",
"clusterUuid": "b429625fe2704a3e94d698ccc0fae4fb",
"createDate": "Dec 2, 2015 5:54:12 PM",
"defaultRouteL3NetworkUuid": "95dede673ddf41119cbd04bcb5d73660",
"hostUuid": "d07066c4de02404a948772e131139eb4",
"hypervisorType": "KVM",
"imageUuid": "b4fe2ebbc4522e199d36985012254d7d",
"instanceOfferingUuid": "f50a232a1448401cb8d049aad9c3860b",
"lastHostUuid": "d07066c4de02404a948772e131139eb4",
"lastOpDate": "Dec 2, 2015 5:54:12 PM",
"managementNetworkUuid": "95dede673ddf41119cbd04bcb5d73660",
"name": "virtualRouter.l3.8db7eb2ccdab4c4eb4784e46895bb016",
"rootVolumeUuid": "2acccd875e364b53824def6248c94a51",
"publicNetworkUuid": "95dede673ddf41119cbd04bcb5d73660",

156 Chapter 2. Chapters

zstack Documentation, Release 0.6

"state": "Running",
"status": "Connected",
"type": "ApplianceVm",
"uuid": "f1e76cb2ef0c4dfa87f3b807eb4d7437",
"vmNics": [

{
"createDate": "Dec 2, 2015 5:54:12 PM",
"deviceId": 1,
"gateway": "10.1.1.1",
"ip": "10.1.1.155",
"l3NetworkUuid": "8db7eb2ccdab4c4eb4784e46895bb016",
"lastOpDate": "Dec 2, 2015 5:54:12 PM",
"mac": "fa:99:e7:31:98:01",
"metaData": "4",
"netmask": "255.255.255.0",
"uuid": "30bd463b926e4299a1326293ee75ae13",
"vmInstanceUuid": "f1e76cb2ef0c4dfa87f3b807eb4d7437"

},
{

"createDate": "Dec 2, 2015 5:54:12 PM",
"deviceId": 0,
"gateway": "192.168.0.1",
"ip": "192.168.0.188",
"l3NetworkUuid": "95dede673ddf41119cbd04bcb5d73660",
"lastOpDate": "Dec 2, 2015 5:54:12 PM",
"mac": "fa:74:3f:40:cb:00",
"metaData": "3",
"netmask": "255.255.255.0",
"uuid": "dc02fee25e9244ad8cbac151657a7b34",
"vmInstanceUuid": "f1e76cb2ef0c4dfa87f3b807eb4d7437"

}
],
"zoneUuid": "3a3ed8916c5c4d93ae46f8363f080284"

}

2.20.5 Virtual Router Offering

A virtual router offering is an instance offering with some extra properties.

Inventory

Besides properties in instance offering inventory, the virtual router offering has below additional properties:

Properties

managementNet-
workUuid

management L3 network uuid 0.6

publicNetworkUuid public L3 network uuid 0.6
zoneUuid uuid of ancestor zone. A virtual router VM will only be created from a

virtual router offering in the same zone.
0.6

isDefault see :default offering 0.6
imageUuid virtual router image uuid, see image 0.6

2.20. Network Services And Virtual Router 157

zstack Documentation, Release 0.6

Example

{
"allocatorStrategy": "DefaultHostAllocatorStrategy",
"cpuNum": 1,
"cpuSpeed": 128,
"createDate": "Nov 30, 2015 3:31:43 PM",
"imageUuid": "b4fe2ebbc4522e199d36985012254d7d",
"isDefault": true,
"lastOpDate": "Nov 30, 2015 3:31:43 PM",
"managementNetworkUuid": "95dede673ddf41119cbd04bcb5d73660",
"memorySize": 536870912,
"name": "VROFFERING5",
"publicNetworkUuid": "95dede673ddf41119cbd04bcb5d73660",
"sortKey": 0,
"state": "Enabled",
"type": "VirtualRouter",
"uuid": "f50a232a1448401cb8d049aad9c3860b",
"zoneUuid": "3a3ed8916c5c4d93ae46f8363f080284"

}

Default Offering When creating a virtual router VM on a L3 network, ZStack needs to decide what virtual router
offering to use; the strategy is:

1. use a virtual router offering if it has a system tag guestL3Network that includes the L3 network’s uuid.

2. use the default virtual router offering if nothing found in step 1.

for every zone, there must be a default virtual router offering.

Image A virtual router VM uses a customized Linux image that can be download from
http://download.zstack.org/templates/zstack-virtualrouter-0.6.qcow2. The root credential of the Linux operating
system is:

username: root
password: password

users who have console access to the virtual router VM can use this credential to login.

Before creating a virtual router offering, users need to add the image to a backup storage using command add image;
to prevent creating user VMs from this image, users can set parameter ‘system’ to true.

Note: In future ZStack version, there will be a feature that generates random passwords for the root account, which
makes the virtual router VM more secure.

Management Network and Public Network Before creating a virtual router offering, users must create those L3
networks using command create L3 network. To prevent creating user VMs on those networks, users can set parameter
‘system’ to true.

158 Chapter 2. Chapters

http://download.zstack.org/templates/zstack-virtualrouter-0.6.qcow2

zstack Documentation, Release 0.6

2.20.6 Operations

Create Virtual Router Offering

Users can use CreateVirtualRouterOffering to create a virtual router offering. For example:

CreateVirtualRouterOffering name=small cpuNum=1 cpuSpeed=1000 memorySize=1073741824 isDefault=true
managementNetworkUuid=95dede673ddf41119cbd04bcb5d73660 publicNetworkUuid=8db7eb2ccdab4c4eb4784e46895bb016 zoneUuid=3a3ed8916c5c4d93ae46f8363f080284
imageUuid=95dede673ddf41119cbd04bcb5d73660

Besides parameters that CreateInstanceOffering has, there are additional parameters:

Parameters

Name Description Op-
tional

Choices Since

managementNet-
workUuid

uuid of management L3 network 0.6

publicNetworkUuid uuid of public L3 network; default to
managementNetworkUuid.

true 0.6

zoneUuid uuid of ancestor zone 0.6
imageUuid image uuid 0.6

Delete Virtual Router Offering

see DeleteInstanceOffering

Reconnect Virtual Router Agent

As mentioned before, there is a Python virtual router agent inside the virtual router VM. Users can use ReconnectVir-
tualRouter to reinitialize a connection process from a ZStack management node to a virtual router VM, which will:

1. Upgrade the virtual router agent if the md5sum of the agent binary doesn’t match the md5sum of the one in the
management node’s agent repository.

2. Restart the agent

3. Reapply all network services configurations including DHCP, DNS, SNAT, EIP, and PortForwarding to the
virtual router VM.

A command example is like:

ReconnectVirtualRouter vmInstanceUuid=bd1652b1e44144e6b9b5b286b82edb69

Parameters

Name Description Optional Choices Since
vmInstanceUuid virtual router VM uuid 0.6

Start Virtual Router VM

see StartVmInstance. While starting, the virtual router VM will perform agent connection process described in Recon-
nectVirtualRouter.

2.20. Network Services And Virtual Router 159

zstack Documentation, Release 0.6

Reboot Virtual Router VM

see RebootVmInstance. While rebooting, the virtual router VM will perform agent connection process described in
ReconnectVirtualRouter.

Stop Virtual Router VM

see StopVmInstance.

Warning: After the virtual router VM stops, user VMs on the guest L3 network served by the virtual router VM
may lose their network functions.

Destroy Virtual Router VM

see DestroyVmInstance.

Warning: After the virtual router VM is destroyed, user VMs on the guest L3 network served by the virtual router
VM may lose their network functions.

Migrate Virtual Router VM

see MigrateVm.

Create Virtual Router VM

Though there is no ready API to create a virtual router VM manually, users can trigger an automatic creation by
creating or staring a user VM on the guest L3 network. If the L3 network doesn’t have a virtual router VM running,
creating, or stopping/starting a user VM will trigger the creation of a virtual router VM.

Query Virtual Router VM

Users can use QueryVirtualRouterVm to query virtual router VMs. For example:

QueryVirtualRouterVm defaultRouteL3NetworkUuid=95dede673ddf41119cbd04bcb5d73660

QueryVirtualRouterVm vmNics.mac=fa:d9:af:a1:38:01

Primitive Fields

see appliance vm inventory.

160 Chapter 2. Chapters

zstack Documentation, Release 0.6

Nested And Expanded Fields

Field Inventory Description Since
vmNics VM nic inventory VM nics of the virtual router VM 0.6
allVolumes volume inventory volumes of the virtual router VM 0.6
host host inventory host the virtual router VM is running 0.6
cluster cluster inventory cluster the virtual router VM belongs 0.6
image image inventory image from which the virtual router VM is

created
0.6

zone zone inventory zone the virtual router VM belongs 0.6
rootVolume volume inventory root volume of the virtual router VM 0.6
virtualRouterOffer-
ing

virtual router offering
inventory

0.6

eip EIP inventory EIP that the virtual router VM serves 0.6
vip VIP inventory VIP that the virtual router VM serves 0.6
portForwarding port forwarding rule

inventory
port forwarding rule that the virtual router VM
serves

0.6

Query Virtual Router Offering

Users can use QueryVirtualRouterOffering to query virtual router offerings. For example:

QueryVirtualRouterOffering managementNetworkUuid=a82b75ee064a48708960f42b800bd910 imageUuid=6572ce44c3f6422d8063b0fb262cbc62

QueryVirtualRouterOffering managementL3Network.name=systemL3Network image.name=newVirtualRouterImage

Primitive Fields

see virtual router offering inventory.

Nested And Expanded Fields

Field Inventory Description Since
image image inventory image the offering contains 0.6
managementL3Network L3 network inventory management L3 network the offering contains 0.6
publicL3Network L3 network inventory public L3 network the offering contains 0.6
zone zone inventory zone the offering belongs to 0.6

2.20.7 Global Configurations

agent.deployOnStart

Name Category Default Value Choices
agent.deployOnStart virtualRouter false • true

• false

Whether to deploy a virtual router agent when a virtual router VM starts/stops/reboots; as the virtual router agent is
builtin in the virtual router VM, this value should only be set to true when users want to upgrade the agent.

2.20. Network Services And Virtual Router 161

zstack Documentation, Release 0.6

command.parallelismDegree

Name Category Default Value Choices
command.parallelismDegree virtualRouter 100 > 0

The max number of concurrent commands that can be executed by the virtual router agent.

connect.timeout

Name Category Default Value Choices
connect.timeout applianceVm 300 > 0

The connecting timeout of SSH connection when management nodes connect virtual router agents, in seconds. If a
management node cannot establish a SSH connection to a virtual router VM within the given timeout, an error will be
raised.

agent.deployOnStart

Name Category Default Value Choices
agent.deployOnStart applianceVm false • true

• false

Whether to deploy an appliance VM agent when an appliance VM starts/stops/reboots; as the agent is builtin in the
appliance VM, this value should only be set to true when users need to upgrade the agent.

Note: There are actually two agents in virtual router VM, one is virtual router agent and another is appliance VM
agent. They work for different purposes, users normally don’t need to care about them.

2.20.8 Tags

Users can create user tags on a virtual router offering or a virtual router VM using the same way mentioned in chapter
of instance offering and chapter of virtual macine.

System Tags

Parallel Command Level

Admins can limit max number of commands that can be executed in parallel in a virtual router VM.

Tag Description Example Since
commandsParallelismDe-
gree::{parallelismDegree}

the max number of commands that can be
executed in parallel in a virtual router VM

commandsParal-
lelismDegree::100

0.6

This tag can be created on a virtual router offering or a virtual router VM; if it’s on a virtual router offering, virtual
router VMs created form the offering will inherit the tag. Please use resourceType=InstanceOfferingVO for virtual
router offerings, resourceType=VmInstanceVO for virtual router VMs.

162 Chapter 2. Chapters

zstack Documentation, Release 0.6

Guest L3 Network

Admins can bind a virtual router offering to a guest L3 network, in order to specify which virtual router offering to
use when creating a virtual router VM on the guest L3 network.

Tag Description Example Since
guestL3Network::{guestL3NetworkUuid}the uuid of guest L3

network
guestL3Network::dd56c5c209a74b669b3fe6115a611d570.6

For example:

CreateSystemTag resourceType=InstanceOfferingVO resourceUuid=YOUR_VR_OFFERING_UUID tag=guestL3Network::YOUR_L3_NETWORK_UUID

2.21 Virtual IP Address

Table of contents

• Virtual IP Address
– Overview
– Inventory

* Properties
* Example

– Operations
* Create VIP

· Parameters
· RequiredIp

* Delete VIP
* Query VIP

· Primitive Fields
· Nested And Expanded Fields

– Tags

2.21.1 Overview

When bridging communication between two networks, many network services such as Port Forwarding, EIP, VPN,
Load Balancing need virtual Ip addresses (VIP); incoming packets are sent to VIPs and are routed to private network
IPs.

2.21. Virtual IP Address 163

zstack Documentation, Release 0.6

In real world cases, VIPs are usually public IPs that can be reached by the internet, routing traffics to behind private
IPs which are often on a private network not visible to the internet.

In this ZStack version, a VIP must be allocated before creating a port forwarding rule or an EIP. For this time being,
as the virtual router provider is the only network service provider, a VIP should be created from a virtual router VM’s
public network(see virtual router offering) in order to route traffics to the guest network.

164 Chapter 2. Chapters

zstack Documentation, Release 0.6

2.21.2 Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

ipRangeUuid uuid of IP range the
VIP is allocated

0.6

l3NetworkUuid uuid of L3 network
the VIP is allocated

0.6

ip IP address 0.6
state VIP state, not imple-

mented in this version • Enabled
• Disabled

0.6

gateway gateway 0.6
netmask netmask 0.6
serviceProvider name of service

provider that uses this
VIP

true 0.6

peerL3NetworkUuid uuid of L3 network to
which this VIP routes
traffic

0.6

useFor the service name
which uses the VIP

true
• EIP
• PortForwarding

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

Example

{
"createDate": "Nov 28, 2015 6:52:01 PM",
"gateway": "192.168.0.1",
"ip": "192.168.0.189",
"l3NetworkUuid": "95dede673ddf41119cbd04bcb5d73660",
"lastOpDate": "Nov 28, 2015 6:52:01 PM",
"name": "vip-905d8a5c191c6e30173037e9d4c0ec56",
"netmask": "255.255.255.0",
"peerL3NetworkUuid": "6572ce44c3f6422d8063b0fb262cbc62",
"serviceProvider": "VirtualRouter",
"state": "Enabled",
"useFor": "Eip",
"uuid": "429106d5a63a4995911c2c5f14299b85"

}

2.21. Virtual IP Address 165

zstack Documentation, Release 0.6

2.21.3 Operations

Create VIP

Users can use CreateVip to create a VIP. For example:

CreateVip name=vip1 l3NetworkUuid=95dede673ddf41119cbd04bcb5d73660

Parameters

Name Description Optional Choices Since
name resource name, see

Resource Properties
0.6

resourceUuid resource uuid, see
Create Resources

true 0.6

description resource description,
see Resource Proper-
ties

true 0.6

l3NetworkUuid uuid of the L3 net-
work that the VIP will
be allocated

0.6

requiredIp the IP address you
want to acquire, see
requiredIp

0.6

allocatorStrategy the algorithm of allo-
cating a VIP

•
RandomIpAllocatorStrategy

0.6

RequiredIp Users can instruct ZStack to allocate a specific VIP by specifying ‘requiredIp’, as long as the IP is still
available on the target L3 network.

Delete VIP

Users can use DeleteVip to delete a VIP. For example:

DeleteVip uuid=429106d5a63a4995911c2c5f14299b85

Warning: If there is a network service bound to the VIP, for example, an EIP; the network service entity(an EIP
or a port forwarding rule) will be deleted automatically as well.

Query VIP

Users can use QueryVip to query a VIP. For example:

QueryVip ip=17.16.89.2 serviceProvider!=null

QueryVip eip.guestIp=10.256.99.2

166 Chapter 2. Chapters

zstack Documentation, Release 0.6

Primitive Fields

see VIP inventory

Nested And Expanded Fields

Field Inventory Description Since
eip EIP inventory the EIP that the VIP is bound to 0.6
portForwarding port forwarding rule inventory the port forwarding rule that the VIP is bound to 0.6

2.21.4 Tags

Users can create user tags on a VIP with resourceType=VipVO. For example:

CreateUserTag tag=web-tier-vip resourceType=VipVO resourceUuid=c3206d0e29074e21984c584074c63920

2.22 Elastic Port Forwarding

Table of contents

• Elastic Port Forwarding
– Overview
– Port Forwarding Rule Inventory

* Properties
* Example

– Operations
* Create Port Forwarding Rule

· Parameters
* Delete Port Forwarding Rule

· Parameters
* Attach Port Forwarding Rule

· Parameters
* Detach Port Forwarding Rule

· Parameters
* Query Port Forwarding Rule

· Primitive Fields
· Nested And Expanded Fields

– Global Configurations
* snatInboundTraffic

– Tags

2.22.1 Overview

When user VMs are on a private network or isolated network with SNAT service enabled, they can reach outside
network but cannot be reached by outside network, which is the nature of SNAT. Users can create port forwarding rules
to allow outside network to reach specific ports of user VMs behind SNAT. ZStack supports elastic port forwarding
rules, which means rules can be attached/detached to/from VMs on demand.

2.22. Elastic Port Forwarding 167

zstack Documentation, Release 0.6

As the virtual router provider is the only network service provider in this ZStack version, a port forwarding rule is
actually created between a virtual router VM’s public network and guest network.

A VIP can be used for multiple port forwarding rules, as long as rules’ port ranges don’t overlap; for example:

168 Chapter 2. Chapters

zstack Documentation, Release 0.6

2.22.2 Port Forwarding Rule Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

vipIp IP address of VIP 0.6
guestIp IP address of VM nic true 0.6
vipUuid uuid of VIP 0.6
vipPortStart the start port of VIP 1 ~ 65535 0.6
vipPortEnd the end port of VIP 1 ~ 65535 0.6
privatePortStart the start port of guest

IP
1 ~ 65535 0.6

privatePortEnd the end port of guest
IP

1 ~ 65535 0.6

vmNicUuid uuid of guest VM nic true 0.6
protocolType protocol type of net-

work traffic • TCP
• UDP

0.6

state rule state, not imple-
mented in this version • Enabled

• Disabled

0.6

allowedCidr source CIDR; the port
forwarding rule only
applies to traffics with
this source CIDR

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

Example

{
"allowedCidr": "0.0.0.0/0",
"createDate": "Dec 6, 2015 3:04:34 PM",
"guestIp": "10.0.0.244",
"lastOpDate": "Dec 6, 2015 3:04:34 PM",
"name": "pf-9uf4",
"privatePortEnd": 33,
"privatePortStart": 33,
"protocolType": "TCP",
"state": "Enabled",
"uuid": "310a6cd618144ca683d78d74307f16a4",
"vipIp": "192.168.0.187",
"vipPortEnd": 33,
"vipPortStart": 33,

2.22. Elastic Port Forwarding 169

zstack Documentation, Release 0.6

"vipUuid": "433769b59a7c42199d762af01e08ec16",
"vmNicUuid": "4b9c27321b794679a9ba8c18239bbb0d"

}

2.22.3 Operations

Create Port Forwarding Rule

Users can use CreatePortForwardingRule to create a port forwarding rule, with or without attaching to a VM nic. For
example:

CreatePortForwardingRule name=pf1 vipPortStart=22 vipUuid=433769b59a7c42199d762af01e08ec16 protocolType=TCP vmNicUuid=4b9c27321b794679a9ba8c18239bbb0d

A unattached rule can be attached to a VM nic later.

Parameters

Name Description Optional Choices Since
name resource name, see

Resource Properties
0.6

resourceUuid resource uuid, see
Create Resources

true 0.6

description resource description,
see Resource Proper-
ties

true 0.6

vipUuid VIP UUID 0.6
vipPortStart the start port of VIP 1 - 65535 0.6
vipPortEnd the end port of VIP; if

omitted, it’s set to vip-
PortStart.

true 1 - 65535 0.6

privatePortStart the start port of guest
IP (VM nic’s IP); if
omitted, it’s set to vip-
PortStart

true 1 - 65535 0.6

privatePortEnd the end port for guest
IP (VM nic’s IP); if
omitted, it’s set to vip-
PortEnd

true 1 - 65535 0.6

protocolType network traffic proto-
col type • TCP

• UDP

0.6

vmNicUuid uuid of VM nic this
port forwarding rule
will be attached to

true 0.6

allowedCidr source CIDR; the port
forwarding rule only
applies to traffics hav-
ing this source CIDR;
if omitted, it’s set to
0.0.0.0/0

true 0.6

170 Chapter 2. Chapters

zstack Documentation, Release 0.6

Delete Port Forwarding Rule

Users can use DeletePortForwardingRule to delete a port forwarding rule. For example:

DeletePortForwardingRule uuid=310a6cd618144ca683d78d74307f16a4

The VIP is recycled for other network services to use, if no more port forwarding rules bound to it.

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

uuid rule uuid 0.6

Attach Port Forwarding Rule

Users can use AttachPortForwardingRule to attach a rule to a VM nic. For example:

AttachPortForwardingRule ruleUuid=310a6cd618144ca683d78d74307f16a4 vmNicUuid=4b9c27321b794679a9ba8c18239bbb0d

Parameters

Name Description Optional Choices Since
ruleUuid rule uuid 0.6
vmNicUuid VM nic uuid 0.6

Detach Port Forwarding Rule

Users can use DetachPortForwardingRule to detach a rule from a VM nic. For example:

DetachPortForwardingRule uuid=310a6cd618144ca683d78d74307f16a4

Parameters

Name Description Optional Choices Since
uuid rule uuid 0.6

Query Port Forwarding Rule

Users can use QueryPortForwardingRule to query rules. For example:

QueryPortForwardingRule vipPortStart=22 vipIp=17.200.20.6

QueryPortForwardingRule vmNic.l3Network.name=database-tier

2.22. Elastic Port Forwarding 171

zstack Documentation, Release 0.6

Primitive Fields

see port forwarding rule inventory

Nested And Expanded Fields

Field Inventory Description Since
vip VIP inventory VIP this rule is bound 0.6
vmNic VM nic inventory VM nic this rule is attached 0.6

2.22.4 Global Configurations

snatInboundTraffic

Name Category Default Value Choices
snatInboundTraffic portForwarding false • true

• false

Whether to source NAT inbound traffic of a port forwarding rule. If true, the traffics reaching portForward-
ingRule.guestIp will have a source IP equal to portForwardingRule.vipIp; this is useful when a VM has multiple
port forwarding rules attached; it forces a VM to reply incoming traffics through VIPs where traffics come from,
rather than replying through the default route.

2.22.5 Tags

Users can create user tags on a port forwarding rule with resourceType=PortForwardingRuleVO. For example:

CreateUserTag resourceType=PortForwardingRuleVO tag=ssh-rule resourceType=e960a93b7f974690bb779808f3c12a33

2.23 Elastic IP Address

172 Chapter 2. Chapters

zstack Documentation, Release 0.6

Table of contents

• Elastic IP Address
– Overview
– Inventory

* Properties
* Example

– Operations
* Create EIP

· Parameters
* Delete EIP

· Parameters
* Attach EIP

· Parameters
* Detach EIP

· Parameters
* Query EIP

· Primitive Fields
· Nested And Expanded Fields

– Global Configurations
* snatInboundTraffic

– Tags

2.23.1 Overview

An elastic IP(EIP) provides a way that allows outside network to reach a L3 network behind a source nat. EIP is based
on network address translation(NAT) that maps an IP address of one network(usually a public network) to an IP address
of another network(usually a private network); as being called elastic IP address, an EIP can be attached/detached
to/from VMs dynamically.

2.23. Elastic IP Address 173

zstack Documentation, Release 0.6

2.23.2 Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

vmNicUuid uuid of VM nic the
EIP is bound

true 0.6

vipUuid VIP uuid 0.6
state EIP state, not imple-

mented in this version • Enabled
• Disabled

0.6

vipIp VIP IP address 0.6
guestIp IP of VM nic true 0.6
createDate see Resource Proper-

ties
0.6

lastOpDate see Resource Proper-
ties

0.6

Example

{
"createDate": "Nov 28, 2015 6:52:14 PM",
"guestIp": "10.0.0.170",
"lastOpDate": "Nov 28, 2015 6:52:14 PM",
"name": "eip-vlan10",
"state": "Enabled",
"uuid": "76b9231c94cd4a3aac497200bb26a643",
"vipIp": "192.168.0.189",
"vipUuid": "429106d5a63a4995911c2c5f14299b85",
"vmNicUuid": "70cac1fd0c2f4940ba32645e09d3e22f"

}

2.23.3 Operations

Create EIP

Users can use CreateEip to create an EIP. For example:

CreateEip name=eip1 vipUuid=429106d5a63a4995911c2c5f14299b85 vmNicUuid=70cac1fd0c2f4940ba32645e09d3e22f

174 Chapter 2. Chapters

zstack Documentation, Release 0.6

Parameters

Name Description Op-
tional

Choices Since

name resource name, see Resource Properties 0.6
resourceU-
uid

resource uuid, see Create Resources true 0.6

description resource description, see Resource Properties true 0.6
vipUuid VIP uuid 0.6
vmNicUuid VM nic uuid; if omitted, the EIP is created without attaching to

any VM nic.
true 0.6

Delete EIP

Users can use DeleteEip to delete an EIP. For example:

DeleteEip uuid=76b9231c94cd4a3aac497200bb26a643

After deleting, the VIP to which this EIP bound is recycled so other network services can reuse it.

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

uuid EIP uuid 0.6

Attach EIP

Users can use AttachEip to attach an EIP to a VM nic. For example:

AttachEip eipUuid=76b9231c94cd4a3aac497200bb26a643 vmNicUuid=70cac1fd0c2f4940ba32645e09d3e22f

Parameters

Name Description Optional Choices Since
eipUuid EIP uuid 0.6
vmNicUuid VM nic uuid 0.6

Detach EIP

Users can use DetachEip to detach an EIP from the VM nic. For example:

DetachEip uuid=76b9231c94cd4a3aac497200bb26a643

2.23. Elastic IP Address 175

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
uuid EIP uuid 0.6

Query EIP

Users can use QueryEip to query EIPs. For example:

QueryEip vipIp=191.13.10.2

QueryEip vmNic.vmInstance.state=Running

Primitive Fields

see EIP inventory

Nested And Expanded Fields

Field Inventory Description Since
vip VIP inventory VIP this EIP is bound 0.6
vmNic VM nic inventory VM nic is EIP is attached 0.6

2.23.4 Global Configurations

snatInboundTraffic

Name Category Default Value Choices
snatInboundTraffic eip false • true

• false

Whether to source NAT inbound traffics of an EIP. If true, the traffics reaching eip.guestIp will have a source IP equal
to eip.vipIp; this is useful when a VM has multiple EIP attached; it forces a VM to reply incoming traffic through the
EIP where the traffic comes from, rather than replying through the default route.

2.23.5 Tags

Users can create user tags on an EIP with resourceType=EipVO. For example:

CreateUserTag resourceType=EipVO tag=web-public-ip resourceUuid=29fa6c2830c441aaa388d8165b80c24c

2.24 Volume Snapshot

176 Chapter 2. Chapters

zstack Documentation, Release 0.6

Table of contents

• Volume Snapshot
– Overview

* Snapshot Type
* Snapshot Tree
* Delete Snapshot

– Volume Snapshot Tree Inventory
* Properties

· Example
· Current
· SnapshotLeafInventory
· Properties

– Volume Snapshot Inventory
* Properties

· Example
· State
· Status
· VolumeSnapshotBackupStorageRefInventory
· Properties

– Operations
* Create Snapshot

· Parameters
* Delete Snapshot

· Parameters
* Revert Volume From Snapshot

· Parameters
* Backup Snapshot

· Parameters
* Delete Snapshot Backup

· Parameters
* Create RootVolumeTemplate From Snapshot
* Create Data Volume From Snapshot
* Query Volume Snapshot

· Primitive Fields
· Nested And Expanded Fields

– Global Configurations
* incrementalSnapshot.maxNum
* delete.parallelismDegree
* backup.parallelismDegree

– Tags

2.24.1 Overview

A volume snapshot is a point-in-time capture of a VM’s volume; memory and CPU state are not captured. Snapshots
can be taken on root volumes and data volumes, and are arranged in a chain manner that the initial snapshot is usually
a full snapshot containing all contents of a volume, and subsequent snapshots are delta snapshots only containing
changes since the last snapshot. A volume can be restored to its old contents by reverting to a snapshot; images and
volumes can be created from snapshots.

As volume snapshots only capture volumes’ states, users need to flush changes in memory to file system in VMs’
operating system before taking snapshots.

2.24. Volume Snapshot 177

zstack Documentation, Release 0.6

Snapshot Type

There are two ways to create volume snapshots; one is hypervisor based that snapshots are created by hypervisors
from VMs’ volumes; another is storage based that snapshots are created by storage systems that store VMs’ volumes.
In this ZStack version, only hypervisor based snapshot is supported.

Snapshot Tree

Volume snapshots are normally arranged as a chain like:

however, once a volume is reverted to a snapshot and takes a snapshot again, the snapshot chain will grow as a tree
where every chain is a branch:

178 Chapter 2. Chapters

zstack Documentation, Release 0.6

Current volume is always following the last snapshot; when a snapshot chain has too many delta snapshots, it may hurt
the volume’s disk IO performance, so ZStack sets max length of a snapshot chain to 16 by default; a new snapshot
chain will be created after taking 16 snapshots.

2.24. Volume Snapshot 179

zstack Documentation, Release 0.6

The max length of a snapshot chain can be configured by incrementalSnapshot.maxNum.

Delete Snapshot

When deleting a snapshot, if it’s not a leaf that is the last one in a snapshot chain, all it’s descendants will be deleted
as well. For example:

180 Chapter 2. Chapters

zstack Documentation, Release 0.6

after deleting Snapshot1, the Snapshot2, Snapshot3, Snapshot1.1, and Snapshot1.2 will deleted too, and the snapshot
chain turns to be:

2.24. Volume Snapshot 181

zstack Documentation, Release 0.6

Note: When deleting a volume, all snapshots taken from this volume will be deleted from primary storage.

2.24.2 Volume Snapshot Tree Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

volumeUuid the uuid of volume the
snapshot tree is cre-
ated

0.6

current see current • true
• false

0.6

tree a tree of Snap-
shotLeafInventory

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

Example

{
"createDate": "Dec 7, 2015 11:45:02 PM",
"current": true,

182 Chapter 2. Chapters

zstack Documentation, Release 0.6

"lastOpDate": "Dec 7, 2015 11:45:02 PM",
"tree": {

"children": [
{

"children": [
{

"children": [],
"inventory": {

"backupStorageRefs": [],
"createDate": "Dec 7, 2015 11:45:16 PM",
"format": "qcow2",
"lastOpDate": "Dec 7, 2015 11:45:16 PM",
"latest": true,
"name": "sp3",
"parentUuid": "3a859e89a39645018772e4d92ca02a09",
"primaryStorageInstallPath": "/opt/zstack/nfsprimarystorage/prim-a82b75ee064a48708960f42b800bd910/rootVolumes/acct-36c27e8ff05c4780bf6d2fa65700f22e/vol-2ad40ef516c540eeb138b7da24105f2e/snapshots/3a859e89a39645018772e4d92ca02a09.qcow2",
"primaryStorageUuid": "a82b75ee064a48708960f42b800bd910",
"size": 197120,
"state": "Enabled",
"status": "Ready",
"treeUuid": "acca6784c70b47fda68de18e2f8380d1",
"type": "Hypervisor",
"uuid": "b4d673e29f724320bb283c6dc4a59225",
"volumeType": "Root",
"volumeUuid": "2ad40ef516c540eeb138b7da24105f2e"

},
"parentUuid": "3a859e89a39645018772e4d92ca02a09"

}
],
"inventory": {

"backupStorageRefs": [],
"createDate": "Dec 7, 2015 11:45:10 PM",
"format": "qcow2",
"lastOpDate": "Dec 7, 2015 11:45:10 PM",
"latest": false,
"name": "sp2",
"parentUuid": "b885d1e6549c49caab97322243827ca1",
"primaryStorageInstallPath": "/opt/zstack/nfsprimarystorage/prim-a82b75ee064a48708960f42b800bd910/rootVolumes/acct-36c27e8ff05c4780bf6d2fa65700f22e/vol-2ad40ef516c540eeb138b7da24105f2e/snapshots/b885d1e6549c49caab97322243827ca1.qcow2",
"primaryStorageUuid": "a82b75ee064a48708960f42b800bd910",
"size": 197120,
"state": "Enabled",
"status": "Ready",
"treeUuid": "acca6784c70b47fda68de18e2f8380d1",
"type": "Hypervisor",
"uuid": "3a859e89a39645018772e4d92ca02a09",
"volumeType": "Root",
"volumeUuid": "2ad40ef516c540eeb138b7da24105f2e"

},
"parentUuid": "b885d1e6549c49caab97322243827ca1"

}
],
"inventory": {

"backupStorageRefs": [],
"createDate": "Dec 7, 2015 11:45:02 PM",
"format": "qcow2",
"lastOpDate": "Dec 7, 2015 11:45:02 PM",
"latest": false,
"name": "sp1",

2.24. Volume Snapshot 183

zstack Documentation, Release 0.6

"primaryStorageInstallPath": "/opt/zstack/nfsprimarystorage/prim-a82b75ee064a48708960f42b800bd910/rootVolumes/acct-36c27e8ff05c4780bf6d2fa65700f22e/vol-2ad40ef516c540eeb138b7da24105f2e/2ad40ef516c540eeb138b7da24105f2e.qcow2",
"primaryStorageUuid": "a82b75ee064a48708960f42b800bd910",
"size": 4718592,
"state": "Enabled",
"status": "Ready",
"treeUuid": "acca6784c70b47fda68de18e2f8380d1",
"type": "Hypervisor",
"uuid": "b885d1e6549c49caab97322243827ca1",
"volumeType": "Root",
"volumeUuid": "2ad40ef516c540eeb138b7da24105f2e"

}
},
"uuid": "acca6784c70b47fda68de18e2f8380d1",
"volumeUuid": "2ad40ef516c540eeb138b7da24105f2e"

}

Current

A current tree is a snapshot tree to which the volume currently links.

SnapshotLeafInventory

SnapshotLeafInventory is the leaf structure of snapshot tree; a snapshot tree always starts with a root SnapshotLeafIn-
ventory.

Properties

Name Description Op-
tional

Choices Since

inventory the volume snapshot inventory, see volume snapshot inventory 0.6
parentU-
uid

uuid of volume snapshot inventory of parent leaf; if null, this leaf is
the root leaf

true 0.6

children a list of SnapshotLeafInventory which are child leafs 0.6

184 Chapter 2. Chapters

zstack Documentation, Release 0.6

2.24.3 Volume Snapshot Inventory

Properties

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.6

name see Resource Proper-
ties

0.6

description see Resource Proper-
ties

true 0.6

type see type
• Hypervisor
• Storage

0.6

volumeUuid uuid of volume the
snapshot is created

0.6

treeUuid the uuid of tree this
snapshot belongs

0.6

parentUuid uuid of parent snap-
shot in chain

0.6

primaryStorageUuid uuid of primary stor-
age this snapshot lo-
cates

true 0.6

primaryStorageInstallPaththe path of this snap-
shot on primary stor-
age

true 0.6

volumeType the type of volume
this snapshot is cre-
ated

• Root
• Data

0.6

size the snapshot size in
bytes

0.6

state snapshot state, see
state • Enabled

• Disabled

0.6

status snapshot status, see
status • Creating

• Ready
• Deleting

0.6

backupStorageRefs a list of VolumeS-
napshotBackupStor-
ageRefInventory

0.6

createDate see Resource Proper-
ties

0.6

lastOpDate see Resource Proper-
ties

0.6

2.24. Volume Snapshot 185

zstack Documentation, Release 0.6

Example

{
"backupStorageRefs": [],
"createDate": "Dec 7, 2015 11:45:02 PM",
"format": "qcow2",
"lastOpDate": "Dec 7, 2015 11:45:02 PM",
"latest": false,
"name": "sp1",
"primaryStorageInstallPath": "/opt/zstack/nfsprimarystorage/prim-a82b75ee064a48708960f42b800bd910/rootVolumes/acct-36c27e8ff05c4780bf6d2fa65700f22e/vol-2ad40ef516c540eeb138b7da24105f2e/2ad40ef516c540eeb138b7da24105f2e.qcow2",
"primaryStorageUuid": "a82b75ee064a48708960f42b800bd910",
"size": 4718592,
"state": "Enabled",
"status": "Ready",
"treeUuid": "acca6784c70b47fda68de18e2f8380d1",
"type": "Hypervisor",
"uuid": "b885d1e6549c49caab97322243827ca1",
"volumeType": "Root",
"volumeUuid": "2ad40ef516c540eeb138b7da24105f2e"

}

State

Volume snapshots have two states:

• Enabled

The state allows operations to be proceeded

• Disabled

The state that forbids operations; snapshots in this state cannot be used to revert volumes and create tem-
plates/volumes; and cannot be backup.

Status

Volume snapshots have following status:

• Creating

The snapshot is being created from a volume

• Ready

The snapshot is ready for any operations

• Deleting

The snapshot is being deleted

VolumeSnapshotBackupStorageRefInventory

VolumeSnapshotBackupStorageRefInventory encompasses information about a copy of a snapshot on a backup stor-
age.

186 Chapter 2. Chapters

zstack Documentation, Release 0.6

Properties

Name Description Optional Choices Since
volumeSnapshotUuid snapshot uuid 0.6
backupStorageUuid backup storage uuid 0.6
installPath the install path of snapshot copy on backup storage 0.6

2.24.4 Operations

Create Snapshot

Users can use CreateVolumeSnapshot to create a volume snapshot. For example:

CreateVolumeSnapshot name=sp1 volumeUuid=2ad40ef516c540eeb138b7da24105f2e

Parameters

Name Description Optional Choices Since
name resource name, see Resource Properties 0.6
resourceUuid resource uuid, see Create Resources true 0.6
description resource description, see Resource Properties true 0.6
volumeUuid volume uuid the snapshot is going to create 0.6

Delete Snapshot

Users can use DeleteVolumeSnapshot to delete a snapshot. For example:

DeleteVolumeSnapshot uuid=b885d1e6549c49caab97322243827ca1

Warning: All descendant snapshots will deleted as well. see delete snapshot

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

uuid snapshot uuid 0.6

Revert Volume From Snapshot

Users can use RevertVolumeFromSnapshot to revert a volume to a snapshot; after reverting, the volume will have
contents when the snapshot was created. For example:

RevertVolumeFromSnapshot uuid=b885d1e6549c49caab97322243827ca1

the volume is the one where the snapshot is created.

2.24. Volume Snapshot 187

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
uuid snapshot uuid 0.6

Backup Snapshot

Users can use BackupVolumeSnapshot to backup a snapshot to a backup storage. For example:

BackupVolumeSnapshot uuid=b885d1e6549c49caab97322243827ca1 backupStorageUuid=a82b75ee064a48708960f42b800bd910

ancestor snapshots not backup on any backup storage will be backup as well.

Parameters

Name Description Op-
tional

Choices Since

uuid snapshot uuid 0.6
backupStorageU-
uid

backup storage uuid; if omitted, ZStack will find a proper
one.

true 0.6

Delete Snapshot Backup

Users can use DeleteVolumeSnapshotFromBackupStorage to delete a copy of snapshot from backup storage. For
example:

DeleteVolumeSnapshotFromBackupStorage uuid=b885d1e6549c49caab97322243827ca1 backupStorageUuid=a82b75ee064a48708960f42b800bd910,b885d1e6549c49caab97322243827ca1

if the copy is the only copy of this snapshot on backup storage, all copies of descendant snapshots of this snapshot will
be deleted as well;

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.6

uuid snapshot uuid 0.6
backupStorageUuids a list of uuid of

backup storage from
which to delete the
snapshot’s copy

0.6

Create RootVolumeTemplate From Snapshot

see Create RootVolumeTemplate From Volume Snapshot.

188 Chapter 2. Chapters

zstack Documentation, Release 0.6

Create Data Volume From Snapshot

see create data volume from volume snapshot.

Query Volume Snapshot

Users can use QueryVolumeSnapshot to query volume snapshots. For example:

QueryVolumeSnapshot primaryStorageUuid=6572ce44c3f6422d8063b0fb262cbc62

QueryVolumeSnapshot volume.vmInstance.uuid=bd1652b1e44144e6b9b5b286b82edb69

Primitive Fields

see volume snapshot inventory

Nested And Expanded Fields

Field Inventory Description Since
volume volume inventory the volume the volume snapshot is created 0.6
tree volume snapshot tree inventory the parent volume snapshot tree 0.6
primaryStorage primary storage inventory primary storage the volume snapshot

locates
0.6

backupStor-
ageRef

VolumeSnapshotBackupStorageRefIn-
ventory

the backup storage reference 0.6

backupStorage backup storage inventory backup storage that the volume snapshot
locates

0.6

2.24.5 Global Configurations

incrementalSnapshot.maxNum

Name Category Default Value Choices
incrementalSnapshot.maxNum volumeSnapshot 16 > 0

The max length of a snapshot chain.

delete.parallelismDegree

Name Category Default Value Choices
delete.parallelismDegree volumeSnapshot 1 > 0

The number of snapshots that can be deleted in parallel when deleting a snapshot or a snpashot tree.

backup.parallelismDegree

Name Category Default Value Choices
backup.parallelismDegree volumeSnapshot 5 > 0

The number of snapshots that can be backup in parallel when backup snapshots.

2.24. Volume Snapshot 189

zstack Documentation, Release 0.6

2.24.6 Tags

Users can create user tags on a volume snapshot with resourceType=VolumeSnapshotVO. For example:

CreateUserTag resourceType=VolumeSnapshotVO tag=firstSnapshot resourceUuid=fae9a6f43c8e4017b0e2a251d67d650d

and create user tags on a volume snapshot tree with resourceType=VolumeSnapshotTreeVO. For example:

CreateUserTag resourceType=VolumeSnapshotVO tag=devops-tree resourceUuid=d6c49e73927d40abbfcf13852dc18367

2.25 Identity

190 Chapter 2. Chapters

zstack Documentation, Release 0.6

Table of contents

• Identity
– Overview

* Account
· Account Inventory
· Example

* Users
· User Inventory
· Example

* Groups
· Group Inventory
· Example

* Policies
· Policy Inventory
· Example
· Statements:
· Statement Inventory

* Quota
– Permission Control

* Using users and groups
* Permission Evaluation
* Default Read Policy

– Admin Account
– Shared Resources
– Operations

* Create Account
· Parameters

* Create Users
· Parameters

* Create Groups
· Parameters

* Create Polices
· Parameters

* Add Users into Groups
· Parameters

* Attach Polices to Groups
· Parameters

* Attach Polices to Users
· Parameters

* Detach Polices from Groups
· Parameters

* Detach Polices from Users
· Parameters

* Reset Account Password
· Parameters

* Reset User Password
· Parameters

* Delete Groups
· Parameters

* Delete Users
· Parameters

* Delete Policies
· Parameters

* Delete Accounts
· Parameters

* Update Account Quota
· Parameters

* Share Resources
· Parameters

* Revoke Shared Resources
· Parameters

* Query Accounts
* Query Users
* Query Policy
* Query Groups

– Reference
* Admin-only APIs
* Non-admin APIs
* API Identities
* Default Quotas

2.25. Identity 191

zstack Documentation, Release 0.6

2.25.1 Overview

ZStack’s identity service provides access control to ZStack resources for users. The system consists of concepts of
account, user, group, policy, and quota. A global picture of the identity system is like:

Account

To manipulate resources, people need to create accounts that are the root identity to own all their resources. There
are two types of accounts: admin and normal. Admin accounts, which have unlimited permissions, are owned by
administrators. Normal accounts, which have only permissions to VM, instance offerings, disk offerings, L3 networks,
images and so on, are created by admin accounts to allow people to manipulate those resources.

APIs are categorized in to admin-only APIs and non-admin APIs. A list of admin-only APIs can be found at admin-
only APIs, and a list of non-admin APIs can be found at non-admin APIs.

Account Inventory

Name Description Optional Choices Since
uuid see Resource Properties 0.8
name account name. see Resource Properties 0.8
description see Resource Properties true 0.8
createDate see Resource Properties 0.8
lastOpDate see Resource Properties 0.8

Note: The password will not be shown in the API returns for security reason.

192 Chapter 2. Chapters

zstack Documentation, Release 0.6

Example

{
"inventory": {

"createDate": "Jul 22, 2015 10:18:34 AM",
"lastOpDate": "Jul 22, 2015 10:18:34 AM",
"name": "frank",
"uuid": "3153a08ab21f46ca9e8b40ecfeec4255"

}
}

Users

As an non-admin account has unlimited permissions to all resources it owns, people may create users to have finely-
grained permission control. Users can only perform APIs assigned by policies.

User Inventory

Name Description Optional Choices Since
uuid see Resource Properties 0.8
name user name, see Resource Properties 0.8
description see Resource Properties true 0.8
accountUuid uuid of the owner account 0.8
createDate see Resource Properties 0.8
lastOpDate see Resource Properties 0.8

Note: The password will not be shown in the API returns for security reason.

Example

{
"inventory": {

"accountUuid": "36c27e8ff05c4780bf6d2fa65700f22e",
"createDate": "Jul 22, 2015 10:21:50 AM",
"lastOpDate": "Jul 22, 2015 10:21:50 AM",
"name": "user1",
"uuid": "68ebcf6260c94adab9dcce9e059e0025"

}
}

Groups

Accounts can create groups to aggregate users. By assigning policies to groups, accounts can grant the same permis-
sions to a group of users.

2.25. Identity 193

zstack Documentation, Release 0.6

Group Inventory

Name Description Optional Choices Since
uuid see Resource Properties 0.8
name group name, see Resource Properties 0.8
description see Resource Properties true 0.8
accountUuid uuid of the owner account 0.8
createDate see Resource Properties 0.8
lastOpDate see Resource Properties 0.8

Example

{
"inventory": {

"accountUuid": "36c27e8ff05c4780bf6d2fa65700f22e",
"createDate": "Jul 22, 2015 10:23:02 AM",
"name": "group1",
"uuid": "0939fc6f772d44d6a8f9d45c89c2a716"

}
}

Policies

Polices are permissions that define what APIs users can perform. A policy consists of an array of statements each of
which defines permissions to APIs.

Policy Inventory

Name Description Optional Choices Since
uuid see Resource Properties 0.8
name policy name, see Resource Properties 0.8
description see Resource Properties true 0.8
accountUuid uuid of the owner account, see account 0.8
statements a list of statements defining API permissions 0.8
createDate see Resource Properties 0.8
lastOpDate see Resource Properties 0.8

Example

{
"inventories": [

{
"accountUuid": "3153a08ab21f46ca9e8b40ecfeec4255",
"name": "DEFAULT-READ-3153a08ab21f46ca9e8b40ecfeec4255",
"statements": [

{
"actions": [

".*:read"
],
"effect": "Allow",

194 Chapter 2. Chapters

zstack Documentation, Release 0.6

"name": "read-permission-for-account-3153a08ab21f46ca9e8b40ecfeec4255"
}

],
"uuid": "b5169828533b47988a0d09f262b5769c"

}
]

}

Statements:

A statement is a JSON text, containing a list of string matching API identities and an effect: Allow or Deny. A
statement looks like:

{
"actions": [

".*:read",
"instance:APICreateVmInstanceMsg"

],
"effect": "Allow",
"name": "read-permission-for-account-3153a08ab21f46ca9e8b40ecfeec4255"

}

actions is a list of action strings that match one or more API identities. An API identity is a string in for-
mat of *api_category:api_name* that uniquely identifies an API. An action string can be a full identity like in-
stance:APICreateVmInstanceMsg that only matches one API, or a regular expression that matches multiple APIs, for
example, *instance:.** will match all APIs under the category *instance*. Most of APIs have only one identity that
is *api_category:api_name*; some APIs have more identities so people can use regular expressions to match a group
of APIs.

effect tells the decision when a action string matches an API call, allow or deny.

Note: In this version, all *read* APIs have an extra identity in format of *api_category:read*, for example,
instance:read. The read APIs are those not performing operations but getting information from ZStack. For ex-
ample, all query APIs are read APIs; for example, the API APIQueryVmInstanceMsg has a default identity in-
stance:APIQueryVmInstanceMsg and an extra identity instance:read.

A category may have many read APIs. For example, the VM category(‘instance’) has APIQueryVmInstanceMsg,
APIQueryVmNicMsg, APIGetVmAttachableDataVolumeMsg and so forth. They all have an API identity *in-
stance:read*. So a statement containing such action string can grant all read APIs in VM category to users and
groups.

A list of API identities can be found at API identities.

Statement Inventory

Name Description Optional Choices Since
name statement name 0.8
effect permission decision

• Allow
• Deny

0.8

actions a list of strings to
match API identities

0.8

2.25. Identity 195

zstack Documentation, Release 0.6

Quota

Admin accounts can use quotas to limit how many resources non-admin accounts can create. When creating a non-
admin account, ZStack automatically assigns default quotas to it, and admins can change them by the API Update-
Quota. A list of default quotas can be found at default quotas.

2.25.2 Permission Control

The most exciting thing of identity system is that you can control API permissions, deciding what people can call what
APIs. When people login into ZStack, depending on the way they login, they can get different permissions regarding
APIs.

Administrators: When login as an admin account, the people can call any APIs.

Non-admin Account: When login as a non-admin account, the people can perform any non-admin APIs.

User: When login as a user under an account, the people can only perform APIs granted by polices attached to the
user or groups the user is in.

Using users and groups

The best way to limit people’s permission in ZStack is only allowing they to login as users. Let’s say you are a manager
in a team that needs to apply some VMs in your company’s IT infrastructure managed by ZStack. The first thing is to
ask ZStack administrators in your company to create a non-admin account for you; once you get the account, you can
create multiple users and groups with proper polices attached; then you can give those users to your team members ,
who can manipulate ZStack resources under the permissions you granted by polices.

An example helps to understand all those stuff, say you want to create below organization for your team:

In this organization, you have an infrastructure group responsible for managing VMs; the group has three members:
David, Tony, Frank; you have another operation group for operating the VMs, which also has three users: Lucy, Arhbi,
Jeff. The infrastructure group has permissions to manage VMs’ lifecycle while the operation group can only use VMs

196 Chapter 2. Chapters

zstack Documentation, Release 0.6

by accessing their consoles. In addition, you as the manager have all API permissions of your team’s account(ops-
team). To create such an organization:

Create the account ops-team:

>>>CreateAccount name=ops-team password=password

Note: make sure you login as the admin account to create the account

Login using the account ops-team:

>>>LogInByAccount accountName=ops-team password=password

Create users:

>>>CreateUser name=david password=password

repeat the step to create all users (tony, frank, lucy, arhbi, jeff, mgr)

Create groups:

>>>CreateUserGroup name=infra

repeat the step to create another group(ops)

Add users to groups:

>>>AddUserToGroup userUuid=d7646ae8af2140c0a3ccef2ad8da816d groupUuid=92c523a43651442489f8d2d598c7c3da

Note: The userUuid and groupUuid are printed on the screen when you create users and groups

repeat the step to add users into proper groups. infra group(david, tony, frank), ops group(lucy, arhbi, jeff).

Create polices

create the first policy allowing to call all VM related APIs:

>>>CreatePolicy name=vm-management statements='[{"actions":["instance:.*"], "effect":"Allow"}]'

create the second policy only allowing to access VM’s console:

>>>CreatePolicy name=vm-console statements='[{"actions":["instance:APIRequestConsoleAccessMsg"], "effect":"Allow"}]'

create the third policy allowing all APIs:

>>>CreatePolicy name=all statements='[{"actions":[".*"], "effect":"Allow"}]'

Warning: Please note the statements field is a JSON string encompassed by single quotes, and its contents are
using double quotes. Please follow this convention otherwise the JSON string may not be able to be correctly
parsed.

Attach policies to groups

attach the policy vm-management to the infrastructure group:

>>>AttachPolicyToUserGroup groupUuid=92c523a43651442489f8d2d598c7c3da policyUuid=afb3bfbb911a42e0a662286728e49891

attach the policy vm-console to the operation group:

2.25. Identity 197

zstack Documentation, Release 0.6

>>>AttachPolicyToUserGroup groupUuid=0939fc6f772d44d6a8f9d45c89c2a716 policyUuid=3bddf41e2ba6469881a65287879e5d58

Note: The policyUuid and groupUuid are printed on the screen when you create groups and policies

Attach policies to user manager(mgr)

attach the policy all to the manager(user: mgr):

>>>AttachPolicyToUser userUuid=d55c5fba4d1b4533961db9952dc15b00 policyUuid=36c27e8ff05c4780bf6d2fa65700f22e

Note: The policyUuid and userUuid are printed on the screen when you create the policy and the user

Now your organization is created successfully, your team members can use user credentials to login.

Permission Evaluation

A policy consists of a list of statements each of which defines permissions(Allow or Deny) to APIs; users can have
multiple polices attached either to themselves or to groups they are in. When users call APIs, it always evaluates from
their polices then to group polices until a decision is made(Allow or Deny). If there is no policy matching an API, the
API will be denied by default.

198 Chapter 2. Chapters

zstack Documentation, Release 0.6

Default Read Policy

When creating a user, a default read policy (action: .*:read, effect: Allow) is attached to the new user so the user can
query resources(e.g. VMs, L3 networks).

2.25.3 Admin Account

After installing ZStack, an admin account(account name: admin, password: password) is created by default. Admin-
istrators can use this account to create admin users which will have unlimited permissions just like the admin account,
in order to allow different administrators to use own credentials to login. The password of the admin account can be
changed by the API UpdateAccount.

2.25.4 Shared Resources

An account can share resources to other accounts. This is particularly useful in public clouds that the admin ac-
count can pre-defined some templates (e.g. images, instance offerings, disk offerings, l3 networks) so non-admin
accounts(usually registered by customers) can use those templates to create VMs. See API ShareResource.

Resources can be shared to specified accounts or all accounts. When the API ShareResource is called with the param-
eter toPublic set to true, the resources specified in resourceUuids are shared to all accounts, otherwise they are shared
to accounts specified in accountUuids. When you revoke the shared resources by the API RevokeSharing, you can
specify accountUuids to revoke resources from certain accounts, or can set toPublic to true to revoke resources that
have been shared to all accounts.

Note: In this version as the concept role has not been supported, other accounts can only read shared resources. That
is to say, other accounts can query shared resources and use them (e.g. use images to create VMs) but cannot perform
operations on them, for example, other accounts cannot delete a shared image.

2.25.5 Operations

Create Account

After login, the admin account can use CreateAccount create non-admin accounts. For example:

CreateAccount name=frank password=123456

Parameters

Name Description Optional Choices Since
name resource name, see Resource Properties 0.8
resourceUuid resource uuid, see Create Resources true 0.8
description resource description, see Resource Properties true 0.8
name account name 0.8
password account password 0.8

Create Users

An account can user CreateUser to create a user. For example:

2.25. Identity 199

zstack Documentation, Release 0.6

>>>CreateUser name=david password=123456

Parameters

Name Description Optional Choices Since
name resource name, see Resource Properties 0.8
resourceUuid resource uuid, see Create Resources true 0.8
description resource description, see Resource Properties true 0.8
name user name 0.8
password user password 0.8

Create Groups

An account can use CreateUserGroup to create a group. For example:

>>>CreateUserGroup name=group

Parameters

Name Description Optional Choices Since
name resource name, see Resource Properties 0.8
resourceUuid resource uuid, see Create Resources true 0.8
description resource description, see Resource Properties true 0.8
name group name 0.8

Create Polices

An account can use CreatePolicy to create a policy. For example:

>>>CreatePolicy name=all statements='[{"actions":[".*"], "effect":"Allow"}]'

Parameters

Name Description Optional Choices Since
name resource name, see Resource Properties 0.8
resourceUuid resource uuid, see Create Resources true 0.8
name policy name 0.8
statements a JSON string representing statements 0.8

Add Users into Groups

An account can use AddUserToGroup to add a user into a group. For example:

>>>AddUserToGroup userUuid=d7646ae8af2140c0a3ccef2ad8da816d groupUuid=92c523a43651442489f8d2d598c7c3da

200 Chapter 2. Chapters

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
userUuid user uuid 0.8
groupUuid group uuid 0.8

Attach Polices to Groups

An account can use AttachPolicyToUserGroup to attach a policy to a group. For example:

>>>AttachPolicyToUserGroup groupUuid=92c523a43651442489f8d2d598c7c3da policyUuid=afb3bfbb911a42e0a662286728e49891

Parameters

Name Description Optional Choices Since
groupUuid group uuid 0.8
policyUuid policy uuid 0.8

Attach Polices to Users

An account can use AttachPolicyToUser to attach a policy to a user. For example:

>>>AttachPolicyToUser userUuid=d55c5fba4d1b4533961db9952dc15b00 policyUuid=36c27e8ff05c4780bf6d2fa65700f22e

Parameters

Name Description Optional Choices Since
userUuid user uuid 0.8
policyUuid policy uuid 0.8

Detach Polices from Groups

An account can use DetachPolicyFromUserGroup to detach a policy from a group. For example:

>>>DetachPolicyFromUserGroup groupUuid=f1a092c6914840c9895c564abbc55375 policyUuid=afb3bfbb911a42e0a662286728e49891

Parameters

Name Description Optional Choices Since
groupUuid group uuid 0.8
policyUuid policy uuid 0.8

Detach Polices from Users

An account can use DetachPolicyFromUser to detach a policy from a user. For example:

2.25. Identity 201

zstack Documentation, Release 0.6

>>>DetachPolicyFromUser policyUuid=36c27e8ff05c4780bf6d2fa65700f22e userUuid=d7646ae8af2140c0a3ccef2ad8da816d

Parameters

Name Description Optional Choices Since
policyUuid policy uuid 0.8
userUuid user uuid 0.8

Reset Account Password

An account can use UpdateAccount to reset its password. For example:

>>>UpdateAccount password=password

Parameters

Name Description Op-
tional

ChoicesSince

pass-
word

the new password 0.8

uuid the uuid of account to reset the password. It’s mainly used by the admin account to
reset passwords of other accounts. For non-admin accounts, this field is ignored as
ZStack can figure out the account uuid by the current session.

true 0.8

Reset User Password

An account or a user can use UpdateUser to reset the password. For example:

>>>UpdateUser password=password

Parameters

Name Description Op-
tional

ChoicesSince

pass-
word

the new password 0.8

uuid the user uuid. It’s mainly used by the account to change passwords of users. For
user changing own password, this field is ignored as ZStack can figure out the user
uuid by the current session.

true 0.8

Delete Groups

An account can use DeleteUserGroup to delete a group. For example:

>>>DeleteUserGroup uuid=bb0e50fe0cfa4ec1af1835f9c210ae8e

202 Chapter 2. Chapters

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.8

uuid group uuid 0.8

Delete Users

An account can use DeleteUser to delete a user. For example:

>>>DeleteUser uuid=fa4ec1af1835f9c210ae8e

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.8

uuid user uuid 0.8

Delete Policies

An account can use DeletePolicy to delete a policy. For example:

>>>DeletePolicy uuid=bb0e50fe0cfa4ec1af1835f9c210ae8e

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.8

uuid policy uuid 0.8

Delete Accounts

The admin account can use DeleteAccount to delete an non-admin account. For example:

>>>DeleteAccount uuid=bb0e50fe0cfa4ec1af1835f9c210ae8e

2.25. Identity 203

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.8

uuid account uuid 0.8

Warning: After deleting, all resources owned by the account will be deleted as well

Update Account Quota

The admin account can use UpdateQuota to update an account’s quotas. For example:

>>>UpdateQuota identityUuid=bb0e50fe0cfa4ec1af1835f9c210ae8e name=vm.num value=100

Parameters

Name Description Optional Choices Since
identityUuid the account uuid 0.8
name quota name

• vip.num
•

securityGroup.num
• l3.num
•

portForwarding.num
• vm.num
• vm.cpuNum
•

vm.memorySize
•

volume.data.num
•

volume.capacity
• eip.num

0.8

Share Resources

An account can use ShareResource to share resources to other accounts. For example:

ShareResource accountUuids=bb0e50fe0cfa4ec1af1835f9c210ae8e,bb0e50fe0cfa4ec1af1835f9c210ae8e resourceUuids=b0662d80cc4945f8abaf6d1096da9eb5,d55c5fba4d1b4533961db9952dc15b00

204 Chapter 2. Chapters

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
accountUuids a list of account uuids

to which the resources
are shared. If omitted,
the toPublic must be
set to true

true 0.8

resourceUuids a list of resource uuids 0.8
toPublic if set to true, resources

are shared to all ac-
counts

true • true
• false

0.8

Revoke Shared Resources

An account can use RevokeResourceSharing to revoke shared resources from accounts. For example:

RevokeResourceSharing accountUuids=bb0e50fe0cfa4ec1af1835f9c210ae8e resourceUuids=b0662d80cc4945f8abaf6d1096da9eb5,d55c5fba4d1b4533961db9952dc15b00

RevokeResourceSharing all=true accountUuids=bb0e50fe0cfa4ec1af1835f9c210ae8e

RevokeResourceSharing resourceUuids=b0662d80cc4945f8abaf6d1096da9eb5 toPublic=true

Parameters

Name Description Optional Choices Since
accountUuids the accounts from

which the shared
resources are revoked.
When field all is set,
this field is ignored,
as the resources will
be revoked from all
accounts to which the
resources have been
shared.

true 0.6

resourceUuids resources to be re-
voked from accounts

0.6

all if set, the resources
will be revoked from
all accounts to which
the resources have
been shared.

true • true
• false

0.6

toPublic if the resources are
shared with ‘toPublic
= true’ when calling
ShareResource, this
field must be also set
to true when revoking.

true • true
• false

0.6

2.25. Identity 205

zstack Documentation, Release 0.6

Query Accounts

An account can use QueryAccount query its own, or the admin account can query all accounts. For example:

>>>QueryAccount name=test

>>>QueryAccount group.name=group1

see account inventory

Field Inventory Description Since
group group inventory child group 0.6
user user inventory child user 0.6
policy policy inventory child policy 0.6
quota child quota 0.6

Query Users

An account can use QueryUser to query users. For example:

>>>QueryUser name=frank

>>>QueryUser name=frank policy.name=allow

see user inventory

Field Inventory Description Since
account see account inventory the parent account 0.6
group see group inventory the group the user is in 0.6
policy see policy inventory the policy attached to the user 0.6

Query Policy

An account can use QueryPolicy to query policies. For example:

>>>QueryPolicy name=vm-management

>>>QueryPolicy user.name=frank

see policy inventory

Field Inventory Description Since
account see account inventory the parent account 0.6
group see group inventory groups the policy attached 0.6
user see user inventory users the policy attached 0.6

Query Groups

An account can use QueryUserGroup to query groups. For example:

>>>QueryUserGroup name=group1

>>>QueryUserGroup user.name=frank

206 Chapter 2. Chapters

zstack Documentation, Release 0.6

see group inventory

Field Inventory Description Since
account see account inventory the parent account 0.6
user see user inventory users in the group 0.6
policy see policy inventory the policy attached to the group 0.6

2.25.6 Reference

Admin-only APIs

QueryGlobalConfig
GetGlobalConfig
UpdateGlobalConfig
GetHostAllocatorStrategies
GetCpuMemoryCapacity
ChangeInstanceOffering
IsReadyToGo
GetPrimaryStorageTypes
AttachPrimaryStorageToCluster
GetPrimaryStorageCapacity
UpdatePrimaryStorage
QueryPrimaryStorage
ChangePrimaryStorageState
SyncPrimaryStorageCapacity
DeletePrimaryStorage
ReconnectPrimaryStorage
DetachPrimaryStorageFromCluster
GetPrimaryStorageAllocatorStrategies
GetVolumeSnapshotTree
QueryBackupStorage
AttachBackupStorageToZone
GetBackupStorageTypes
ChangeBackupStorageState
GetBackupStorageCapacity
DetachBackupStorageFromZone
UpdateBackupStorage
DeleteBackupStorage
AddNetworkServiceProvider
AttachNetworkServiceProviderToL2Network
DetachNetworkServiceProviderFromL2Network
AttachL2NetworkToCluster
QueryL2VlanNetwork
CreateL2VlanNetwork
DetachL2NetworkFromCluster
DeleteL2Network
CreateL2NoVlanNetwork
UpdateL2Network
GetL2NetworkTypes
DeleteSearchIndex
SearchGenerateSqlTrigger
CreateSearchIndex
QueryManagementNode
CreateMessage
QueryCluster
DeleteCluster
UpdateCluster

2.25. Identity 207

zstack Documentation, Release 0.6

CreateCluster
ChangeClusterState
CreateAccount
LogInByUser
SessionMessage
UpdateQuota
QueryAccount
LogInByAccount
ValidateSession
LogOut
UpdateZone
DeleteZone
CreateZone
QueryZone
ChangeZoneState
ChangeHostState
ReconnectHost
UpdateHost
DeleteHost
GetHypervisorTypes
QueryHost
QueryApplianceVm
AddIscsiFileSystemBackendPrimaryStorage
QueryIscsiFileSystemBackendPrimaryStorage
UpdateIscsiFileSystemBackendPrimaryStorage
AddLocalPrimaryStorage
UpdateKVMHost
AddKVMHost
AddNfsPrimaryStorage
QuerySftpBackupStorage
ReconnectSftpBackupStorage
UpdateSftpBackupStorage
AddSftpBackupStorage

Non-admin APIs

UpdateVmInstance
GetVmAttachableL3Network
MigrateVm
StopVmInstance
GetVmAttachableDataVolume
QueryVmNic
AttachL3NetworkToVm
DestroyVmInstance
GetVmMigrationCandidateHosts
QueryVmInstance
DetachL3NetworkFromVm
RebootVmInstance
CreateVmInstance
StartVmInstance
ChangeImageState
UpdateImage
DeleteImage
CreateDataVolumeTemplateFromVolume
CreateRootVolumeTemplateFromRootVolume
QueryImage
CreateRootVolumeTemplateFromVolumeSnapshot

208 Chapter 2. Chapters

zstack Documentation, Release 0.6

AddImage
RequestConsoleAccess
BackupDataVolume
AttachDataVolumeToVm
UpdateVolume
QueryVolume
CreateDataVolumeFromVolumeSnapshot
CreateDataVolumeFromVolumeTemplate
DetachDataVolumeFromVm
CreateDataVolume
GetDataVolumeAttachableVm
GetVolumeFormat
DeleteDataVolume
CreateVolumeSnapshot
ChangeVolumeState
DeleteDiskOffering
QueryInstanceOffering
UpdateInstanceOffering
CreateInstanceOffering
CreateDiskOffering
DeleteInstanceOffering
ChangeInstanceOfferingState
QueryDiskOffering
UpdateDiskOffering
ChangeDiskOfferingState
QueryVolumeSnapshotTree
DeleteVolumeSnapshot
UpdateVolumeSnapshot
DeleteVolumeSnapshotFromBackupStorage
QueryVolumeSnapshot
RevertVolumeFromSnapshot
BackupVolumeSnapshot
AddDnsToL3Network
CreateL3Network
GetFreeIp
UpdateL3Network
DeleteIpRange
ChangeL3NetworkState
AddIpRange
GetL3NetworkTypes
AddIpRangeByNetworkCidr
QueryIpRange
RemoveDnsFromL3Network
GetIpAddressCapacity
DeleteL3Network
UpdateIpRange
QueryL3Network
AttachNetworkServiceToL3Network
QueryNetworkServiceL3NetworkRef
QueryNetworkServiceProvider
GetNetworkServiceTypes
QueryL2Network
QueryUserTag
QuerySystemTag
DeleteTag
CreateUserTag
CreateSystemTag
QueryTag

2.25. Identity 209

zstack Documentation, Release 0.6

AttachPolicyToUserGroup
RemoveUserFromGroup
AttachPolicyToUser
UpdateUser
AddUserToGroup
QueryQuota
ShareResource
DeleteAccount
CreateUserGroup
CreateUser
DetachPolicyFromUserGroup
QueryPolicy
QueryUser
DeletePolicy
RevokeResourceSharing
UpdateAccount
DeleteUser
DeleteUserGroup
CreatePolicy
DetachPolicyFromUser
QueryUserGroup
ReconnectVirtualRouter
QueryVirtualRouterOffering
CreateVirtualRouterOffering
QueryVirtualRouterVm
AttachPortForwardingRule
DetachPortForwardingRule
GetPortForwardingAttachableVmNics
ChangePortForwardingRuleState
UpdatePortForwardingRule
CreatePortForwardingRule
QueryPortForwardingRule
DeletePortForwardingRule
DetachEip
GetEipAttachableVmNics
UpdateEip
QueryEip
ChangeEipState
DeleteEip
CreateEip
AttachEip
ChangeSecurityGroupState
DetachSecurityGroupFromL3Network
DeleteSecurityGroupRule
CreateSecurityGroup
QueryVmNicInSecurityGroup
QuerySecurityGroup
AddSecurityGroupRule
QuerySecurityGroupRule
DeleteSecurityGroup
UpdateSecurityGroup
DeleteVmNicFromSecurityGroup
GetCandidateVmNicForSecurityGroup
AttachSecurityGroupToL3Network
AddVmNicToSecurityGroup
DeleteVip
UpdateVip
ChangeVipState

210 Chapter 2. Chapters

zstack Documentation, Release 0.6

CreateVip
QueryVip

API Identities

ReconnectVirtualRouter: virtualRouter:APIReconnectVirtualRouterMsg

GetNetworkServiceProvider: l2Network:read, l2Network:APIGetNetworkServiceProviderMsg

AddDnsToL3Network: l3Network:APIAddDnsToL3NetworkMsg

DeleteSecurityGroup: securityGroup:APIDeleteSecurityGroupMsg

AddImage: image:APIAddImageMsg

QueryUser: identity:read, identity:APIQueryUserMsg

GetL3NetworkTypes: l3Network:read, l3Network:APIGetL3NetworkTypesMsg

ShareResource: identity:APIShareResourceMsg

QueryVirtualRouterOffering: virtualRouter:read, virtualRouter:APIQueryVirtualRouterOfferingMsg

QueryIpRange: l3Network:read, l3Network:APIQueryIpRangeMsg

AttachDataVolumeToVm: volume:APIAttachDataVolumeToVmMsg

QueryUserGroup: identity:read, identity:APIQueryUserGroupMsg

QueryVmNicInSecurityGroup: securityGroup:read, securityGroup:APIQueryVmNicInSecurityGroupMsg

CreateSystemTag: tag:APICreateSystemTagMsg

CreateVip: vip:APICreateVipMsg

DeleteDiskOffering: configuration:APIDeleteDiskOfferingMsg

StartVmInstance: instance:APIStartVmInstanceMsg

GetVmAttachableL3Network: instance:read, instance:APIGetVmAttachableL3NetworkMsg

DeleteVip: vip:APIDeleteVipMsg

GetDataVolumeAttachableVm: volume:read, volume:APIGetDataVolumeAttachableVmMsg

QuerySystemTag: tag:read, tag:APIQuerySystemTagMsg

AttachL3NetworkToVm: instance:APIAttachL3NetworkToVmMsg

CreateUserTag: tag:APICreateUserTagMsg

CreateVmInstance: instance:APICreateVmInstanceMsg

CreateSecurityGroup: securityGroup:APICreateSecurityGroupMsg

UpdateVolumeSnapshot: volumeSnapshot:APIUpdateVolumeSnapshotMsg

2.25. Identity 211

zstack Documentation, Release 0.6

QueryDiskOffering: configuration:read, configuration:APIQueryDiskOfferingMsg

StopVmInstance: instance:APIStopVmInstanceMsg

CreateEip: eip:APICreateEipMsg

ChangePortForwardingRuleState: portForwarding:APIChangePortForwardingRuleStateMsg

UpdateL3Network: l3Network:APIUpdateL3NetworkMsg

ChangeDiskOfferingState: configuration:APIChangeDiskOfferingStateMsg

MigrateVm: instance:APIMigrateVmMsg

ChangeVipState: vip:APIChangeVipStateMsg

AddIpRange: l3Network:APIAddIpRangeMsg

CreateDataVolume: volume:APICreateDataVolumeMsg

CreateDataVolumeFromVolumeSnapshot: volume:APICreateDataVolumeFromVolumeSnapshotMsg

UpdateImage: image:APIUpdateImageMsg

QueryVmNic: instance:read, instance:APIQueryVmNicMsg

QueryTag: tag:read, tag:APIQueryTagMsg

GetPortForwardingAttachableVmNics: portForwarding:APIGetPortForwardingAttachableVmNicsMsg

DeleteInstanceOffering: configuration:APIDeleteInstanceOfferingMsg

AttachPortForwardingRule: portForwarding:APIAttachPortForwardingRuleMsg

DeletePortForwardingRule: portForwarding:APIDeletePortForwardingRuleMsg

CreatePortForwardingRule: portForwarding:APICreatePortForwardingRuleMsg

UpdateIpRange: l3Network:APIUpdateIpRangeMsg

GetFreeIp: l3Network:read, l3Network:APIGetFreeIpMsg

ChangeL3NetworkState: l3Network:APIChangeL3NetworkStateMsg

QueryVip: vip:read, vip:APIQueryVipMsg

UpdateEip: eip:APIUpdateEipMsg

QueryVolumeSnapshotTree: volumeSnapshot:read, volumeSnapshot:APIQueryVolumeSnapshotTreeMsg

DetachDataVolumeFromVm: volume:APIDetachDataVolumeFromVmMsg

RebootVmInstance: instance:APIRebootVmInstanceMsg

UpdateInstanceOffering: configuration:APIUpdateInstanceOfferingMsg

DestroyVmInstance: instance:APIDestroyVmInstanceMsg

212 Chapter 2. Chapters

zstack Documentation, Release 0.6

UpdateUser: identity:APIUpdateUserMsg

QueryNetworkServiceL3NetworkRef: l3Network:read, l3Network:APIQueryNetworkServiceL3NetworkRefMsg

CreateL3Network: l3Network:APICreateL3NetworkMsg

GetNetworkServiceTypes: l3Network:read, l3Network:APIGetNetworkServiceTypesMsg

GetVmAttachableDataVolume: instance:read, instance:APIGetVmAttachableDataVolumeMsg

QueryL3Network: l3Network:read, l3Network:APIQueryL3NetworkMsg

CreateDataVolumeTemplateFromVolume: image:APICreateDataVolumeTemplateFromVolumeMsg

DeleteSecurityGroupRule: securityGroup:APIDeleteSecurityGroupRuleMsg

QueryUserTag: tag:read, tag:APIQueryUserTagMsg

DeleteVolumeSnapshotFromBackupStorage: volumeSnapshot:APIDeleteVolumeSnapshotFromBackupStorageMsg

CreateDiskOffering: configuration:APICreateDiskOfferingMsg

QuerySecurityGroup: securityGroup:read, securityGroup:APIQuerySecurityGroupMsg

QueryVolumeSnapshot: volumeSnapshot:read, volumeSnapshot:APIQueryVolumeSnapshotMsg

QueryPortForwardingRule: portForwarding:read, portForwarding:APIQueryPortForwardingRuleMsg

UpdateDiskOffering: configuration:APIUpdateDiskOfferingMsg

GetCandidateVmNicForSecurityGroup: securityGroup:read, securityGroup:APIGetCandidateVmNicForSecurityGroupMsg

QueryPolicy: identity:read, identity:APIQueryPolicyMsg

GetEipAttachableVmNics: eip:APIGetEipAttachableVmNicsMsg

CreateInstanceOffering: configuration:APICreateInstanceOfferingMsg

AddIpRangeByNetworkCidr: l3Network:APIAddIpRangeByNetworkCidrMsg

UpdateVmInstance: instance:APIUpdateVmInstanceMsg

QueryVirtualRouterVm: virtualRouter:read, virtualRouter:APIQueryVirtualRouterVmMsg

RequestConsoleAccess: console:APIRequestConsoleAccessMsg

ChangeEipState: eip:APIChangeEipStateMsg

QuerySecurityGroupRule: securityGroup:read, securityGroup:APIQuerySecurityGroupRuleMsg

DetachSecurityGroupFromL3Network: securityGroup:APIDetachSecurityGroupFromL3NetworkMsg

CreateDataVolumeFromVolumeTemplate: volume:APICreateDataVolumeFromVolumeTemplateMsg

DeleteDataVolume: volume:APIDeleteDataVolumeMsg

AddVmNicToSecurityGroup: securityGroup:APIAddVmNicToSecurityGroupMsg

2.25. Identity 213

zstack Documentation, Release 0.6

DeleteVolumeSnapshot: volumeSnapshot:APIDeleteVolumeSnapshotMsg

DetachEip: eip:APIDetachEipMsg

DetachPortForwardingRule: portForwarding:APIDetachPortForwardingRuleMsg

CreateVirtualRouterOffering: virtualRouter:APICreateVirtualRouterOfferingMsg

RevertVolumeFromSnapshot: volumeSnapshot:APIRevertVolumeFromSnapshotMsg

DeleteIpRange: l3Network:APIDeleteIpRangeMsg

UpdateVip: vip:APIUpdateVipMsg

AttachNetworkServiceToL3Network: l3Network:APIAttachNetworkServiceToL3NetworkMsg

DeleteTag: tag:APIDeleteTagMsg

RemoveDnsFromL3Network: l3Network:APIRemoveDnsFromL3NetworkMsg

DeleteL3Network: l3Network:APIDeleteL3NetworkMsg

UpdatePortForwardingRule: portForwarding:APIUpdatePortForwardingRuleMsg

ChangeVolumeState: volume:APIChangeVolumeStateMsg

QueryVmInstance: instance:read, instance:APIQueryVmInstanceMsg

GetVmMigrationCandidateHosts: instance:read, instance:APIGetVmMigrationCandidateHostsMsg

UpdateVolume: volume:APIUpdateVolumeMsg

QueryL2Network: l2Network:read, l2Network:APIQueryL2NetworkMsg

BackupVolumeSnapshot: volumeSnapshot:APIBackupVolumeSnapshotMsg

QueryQuota: identity:read, identity:APIQueryQuotaMsg

QueryImage: image:read, image:APIQueryImageMsg

RevokeResourceSharing: identity:APIRevokeResourceSharingMsg

UpdateSecurityGroup: securityGroup:APIUpdateSecurityGroupMsg

ChangeImageState: image:APIChangeImageStateMsg

AddSecurityGroupRule: securityGroup:APIAddSecurityGroupRuleMsg

QueryVolume: volume:read, volume:APIQueryVolumeMsg

AttachSecurityGroupToL3Network: securityGroup:APIAttachSecurityGroupToL3NetworkMsg

DeleteEip: eip:APIDeleteEipMsg

QueryEip: eip:read, eip:APIQueryEipMsg

DeleteImage: image:APIDeleteImageMsg

214 Chapter 2. Chapters

zstack Documentation, Release 0.6

GetIpAddressCapacity: l3Network:read, l3Network:APIGetIpAddressCapacityMsg

ChangeInstanceOfferingState: configuration:APIChangeInstanceOfferingStateMsg

DeleteVmNicFromSecurityGroup: securityGroup:APIDeleteVmNicFromSecurityGroupMsg

CreateVolumeSnapshot: volumeSnapshot:APICreateVolumeSnapshotMsg

CreateRootVolumeTemplateFromRootVolume: image:APICreateRootVolumeTemplateFromRootVolumeMsg

GetVolumeFormat: volume:read, volume:APIGetVolumeFormatMsg

BackupDataVolume: volume:APIBackupDataVolumeMsg

CreateRootVolumeTemplateFromVolumeSnapshot: image:APICreateRootVolumeTemplateFromVolumeSnapshotMsg

QueryInstanceOffering: configuration:read, configuration:APIQueryInstanceOfferingMsg

ChangeSecurityGroupState: securityGroup:APIChangeSecurityGroupStateMsg

QueryNetworkServiceProvider: l3Network:read, l3Network:APIQueryNetworkServiceProviderMsg

AttachEip: eip:APIAttachEipMsg

DetachL3NetworkFromVm: instance:APIDetachL3NetworkFromVmMsg

Default Quotas

Name Description Value Since
vip.num max number of VIPs 20 0.8
security-
Group.num

max number of security groups 20 0.8

l3.num max number of L3 networks 20 0.8
portForward-
ing.num

max number of port forwarding rules 20 0.8

vm.num max number of VMs 20 0.8
vm.cpuNum max number of VCPU cores 80 0.8
vm.memorySize total size of memory 85899345920 bytes

(80G)
0.8

volume.data.num max number of data volumes 40 0.8
volume.capacity total volume capacity of both data volumes and root

volumes
10995116277760 bytes
(10T)

0.8

eip.num max number of EIPs 20 0.8

2.26 Elastic Load Balancer

2.26. Elastic Load Balancer 215

zstack Documentation, Release 0.6

Table of contents

• Elastic Load Balancer
– Overview
– Load Balancer

* Inventory
* Example

– Listener
* Inventory
* Protocol
* Example

– Backend VM Nics
* Nic Reference Inventory

– A Full Example
– Operations

* Create Load Balancer
· Parameters

* Delete Load Balancer
· Parameters

* Create Listener
· Parameters

* Delete Listener
· Parameters

* Add VM Nic to Load Balancer
· Parameters

* Remove VM Nic from Load Balancer
· Parameters

* Query Load Balancer
· Primitive Fields of Query
· Nested And Expanded Fields of Query

* Query Listener
· Primitive Fields of Query
· Nested And Expanded Fields of Query

– Tags
* System Tags

· Separate Virtual Router
· Listener Configurations
· Healthy Threshold
· Health Check Interval
· Unhealthy Threshold
· Connection Idle Timeout
· Max Connections
· Balancing Algorithm

– Global Configurations
* Connection Idle Timeout
* Healthy Threshold
* Unhealthy Threshold
* Health Check Interval
* Max Connection
* Balancing Algorithm

216 Chapter 2. Chapters

zstack Documentation, Release 0.6

2.26.1 Overview

Elastic Load Balancing automatically distributes your incoming application traffic across multiple VM instances. It
detects unhealthy instances and reroutes traffic to healthy instances until the unhealthy instances have been restored.

2.26.2 Load Balancer

A load balancer consists of a VIP to which incoming traffics visit, a set of listeners that defines a variety of properties
such as load balancer port, instance port, health-check configurations, and a group of VM nics where the incoming
traffics will be routed.

2.26. Elastic Load Balancer 217

zstack Documentation, Release 0.6

Inventory

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.9

name see Resource Proper-
ties

0.9

description see Resource Proper-
ties

true 0.9

state reserved in 0.9 ver-
sion, always Enabled • Enabled

• Disabled

0.9

vipUuid uuid of VIP 0.9
listeners a list of listener 0.9
createDate see Resource Proper-

ties
0.9

lastOpDate see Resource Proper-
ties

0.9

Example

{
"listeners": [

{
"createDate": "Aug 20, 2015 2:54:14 PM",
"instancePort": 80,
"lastOpDate": "Aug 20, 2015 2:54:14 PM",
"loadBalancerPort": 80,
"loadBalancerUuid": "0188cec6635845e0b2526a8e7e090e2a",
"name": "80",
"protocol": "http",
"uuid": "ba5f192472ab4fc4b36e5af873f0fec5",
"vmNicRefs": [

{
"createDate": "Aug 20, 2015 2:55:49 PM",
"id": 18,
"lastOpDate": "Aug 20, 2015 2:55:49 PM",
"listenerUuid": "ba5f192472ab4fc4b36e5af873f0fec5",
"status": "Active",
"vmNicUuid": "35b8aadef2f847d9836bdf06121e1c29"

},
{

"createDate": "Aug 20, 2015 2:55:49 PM",
"id": 19,
"lastOpDate": "Aug 20, 2015 2:55:49 PM",
"listenerUuid": "ba5f192472ab4fc4b36e5af873f0fec5",
"status": "Active",
"vmNicUuid": "df7d40a47cb640a9b40001f2f318989a"

}
]

},
{

"createDate": "Aug 20, 2015 5:29:39 AM",
"instancePort": 22,
"lastOpDate": "Aug 20, 2015 5:29:39 AM",

218 Chapter 2. Chapters

zstack Documentation, Release 0.6

"loadBalancerPort": 22,
"loadBalancerUuid": "0188cec6635845e0b2526a8e7e090e2a",
"name": "ssh",
"protocol": "tcp",
"uuid": "2901fd13765c492b9a3d004e806a0beb",
"vmNicRefs": [

{
"createDate": "Aug 20, 2015 5:30:07 AM",
"id": 15,
"lastOpDate": "Aug 20, 2015 5:30:07 AM",
"listenerUuid": "2901fd13765c492b9a3d004e806a0beb",
"status": "Active",
"vmNicUuid": "35b8aadef2f847d9836bdf06121e1c29"

},
{

"createDate": "Aug 20, 2015 5:30:07 AM",
"id": 16,
"lastOpDate": "Aug 20, 2015 5:30:07 AM",
"listenerUuid": "2901fd13765c492b9a3d004e806a0beb",
"status": "Active",
"vmNicUuid": "df7d40a47cb640a9b40001f2f318989a"

}
]

}
],
"name": "lb",
"state": "Enabled",
"uuid": "0188cec6635845e0b2526a8e7e090e2a",
"vipUuid": "df6a73601f1741fd847cf5456b0d42ac"

}

2.26.3 Listener

A listener defines how the load balancer routes incoming traffics from a VIP port(called loadBalancer port) to a
backend port(called instancePort) of VM instances, and a set of properties that how the load balancer should handle
stuff like connection timeout, health-check threshold.

From users’ perspective, they create a listener whenever they want to load balance traffics from a frontend
port(loadBalancerPort) on the load balancer to a backend port(instancePort) of VM instances running on a private
network.

A load balancer can have many listeners each of which defines a mapping between a load balancer port and an instance
port.

A variety of properties used to control behaviors of listeners are defined as system tags, including idle connection
timeout, max connections, healthy threshold, unhealthy threshold and so on. Details can be found in load balancer
system tags.

2.26. Elastic Load Balancer 219

zstack Documentation, Release 0.6

Inventory

Name Description Optional Choices Since
uuid see Resource Proper-

ties
0.9

name see Resource Proper-
ties

0.9

description see Resource Proper-
ties

true 0.9

loadBalancerUuid load balancer uuid 0.9
loadBalancerPort the frontend port

where the incoming
traffics visit; it’s bond
to the VIP of the load
balancer

1 ~ 65536 0.9

instancePort the backend port
where the incoming
traffics are routed; it’s
bound to VM nics on
the private network

1 ~ 65336 0.9

protocol see protocol
• http
• tcp

0.9

vmNicRefs see nic reference 0.9
createDate see Resource Proper-

ties
0.9

lastOpDate see Resource Proper-
ties

0.9

Protocol

The protocol defines how the load balancer should route incoming traffic. There are two modes: tcp(layer 4) and
http(layer 7). When the protocol is tcp which is the default mode, the load balancer will work in pure TCP mode; a
full-duplex connection will be established between clients and servers. When the protocol is http, connections from
clients to the load balancer and from the load balancer to your back-end instance are established respectively,

Example

{
"createDate": "Aug 20, 2015 2:54:14 PM",
"instancePort": 80,
"lastOpDate": "Aug 20, 2015 2:54:14 PM",
"loadBalancerPort": 80,
"loadBalancerUuid": "0188cec6635845e0b2526a8e7e090e2a",
"name": "80",
"protocol": "http",
"uuid": "ba5f192472ab4fc4b36e5af873f0fec5",
"vmNicRefs": [

{
"createDate": "Aug 20, 2015 2:55:49 PM",
"id": 18,
"lastOpDate": "Aug 20, 2015 2:55:49 PM",

220 Chapter 2. Chapters

zstack Documentation, Release 0.6

"listenerUuid": "ba5f192472ab4fc4b36e5af873f0fec5",
"status": "Active",
"vmNicUuid": "35b8aadef2f847d9836bdf06121e1c29"

},
{

"createDate": "Aug 20, 2015 2:55:49 PM",
"id": 19,
"lastOpDate": "Aug 20, 2015 2:55:49 PM",
"listenerUuid": "ba5f192472ab4fc4b36e5af873f0fec5",
"status": "Active",
"vmNicUuid": "df7d40a47cb640a9b40001f2f318989a"

}
]

},

2.26.4 Backend VM Nics

Users can add a VM instance to a load balancer by joining its nic to the load balancer’s listeners. Once the nic
joined, the load balancer routes incoming traffics from the loadBalancerPort of the VIP to the instancePort of the nic
according listeners’ balancing algorithm. A nic can join different listeners of different load balancers; it’s applications’
responsibilities to handle traffics from various load balancers.

The load balancer listener encompasses information of joined VM nics into an inventory called nic reference, which
has properties as following:

Nic Reference Inventory

Name Description Optional Choices Since
id id of the reference 0.9
listenerUuid listener uuid 0.9
vmNicUuid VM nic uuid 0.9
status when the nic’s owner

VM is running, the
status is active; other-
wise it’s inactive

• Active
• Inactive

0.9

After a VM nic joins a load balancer listener, stopping the VM will change the nic status to Inactive; starting the VM
will change the nic status to Active; Destroying the VM will remove the nic from the listener.

2.26.5 A Full Example

Let’s say you are about to create a load balancer which routes incoming traffics from port 80 and 22 on the public VIP
to two backend VMs.

2.26. Elastic Load Balancer 221

zstack Documentation, Release 0.6

Public L3 Network UUID see Resource Properties
VM1 nic UUId 35b8aadef2f847d9836bdf06121e1c29
VM2 nic UUID df7d40a47cb640a9b40001f2f318989a

Create a VIP

:: >>>CreateVip l3NetworkUuid=db6379182e524c06bc8d3ec900ab78d4

Create LB

:: >>>CreateLoadBalancer name=lb vipUuid=df6a73601f1741fd847cf5456b0d42ac

Create listeners

CreateLoadBalancerListener loadBalancerUuid=0188cec6635845e0b2526a8e7e090e2a loadBalancerPort=22 instancePort=22 name=ssh protocol=tcp

222 Chapter 2. Chapters

zstack Documentation, Release 0.6

CreateLoadBalancerListener loadBalancerUuid=0188cec6635845e0b2526a8e7e090e2a loadBalancerPort=80 instancePort=80 name=80 protocol=http

Add nics to listeners

>>>AddVmNicToLoadBalancer listenerUuid=2901fd13765c492b9a3d004e806a0beb vmNicUuids=35b8aadef2f847d9836bdf06121e1c29,df7d40a47cb640a9b40001f2f318989a

>>>AddVmNicToLoadBalancer listenerUuid=4be2244667d948e286722a4a32e02e65 vmNicUuids=35b8aadef2f847d9836bdf06121e1c29,df7d40a47cb640a9b40001f2f318989a

2.26.6 Operations

Create Load Balancer

Users can use CreateLoadBalancer to create a load balancer. For example:

>>>CreateLoadBalancer name=lb vipUuid=df6a73601f1741fd847cf5456b0d42ac

Parameters

Name Description Optional Choices Since
name resource name, see Resource Properties 0.9
resourceUuid resource uuid, see Create Resources true 0.9
description resource description, see Resource Properties true 0.9
vipUuid VIP uuid 0.9
userTags user tags, see Create Tags; resource type is true 0.9
systemTags system tags, see Create Tags; resource type is true 0.9

Delete Load Balancer

Users can use DeleteLoadBalancer to delete a load balancer. For example:

>>>DeleteLoadBalancer uuid=4be2244667d948e286722a4a32e02e65

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.9

uuid load balancer uuid 0.9

Create Listener

Users can use CreateLoadBalancerListener to create a load balancer listener. For example:

CreateLoadBalancerListener loadBalancerUuid=0188cec6635845e0b2526a8e7e090e2a loadBalancerPort=22 instancePort=22 name=ssh protocol=tcp

2.26. Elastic Load Balancer 223

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
name resource name, see

Resource Properties
0.9

resourceUuid resource uuid, see
Create Resources

true 0.9

description resource description,
see Resource Proper-
ties

true 0.9

loadBalancerUuid load balancer uuid 0.9
loadBalancerPort frontend load balancer

port
0.9

instancePort backend instance port.
If omitted, use load-
BalancerPort as in-
stancePort

true 0.9

protocol see load balancer pro-
tocol

• tcp
• http

0.9

userTags user tags, see Create
Tags; resource type is

true 0.9

systemTags system tags, see
Create Tags; resource
type is

true 0.9

Delete Listener

Users can use DeleteLoadBalancerListener to delete a listener. For example:

>>DeleteLoadBalancerListener uuid=0188cec6635845e0b2526a8e7e090e2a

Parameters

Name Description Optional Choices Since
deleteMode see Delete Resources true

• Permissive
• Enforcing

0.9

uuid listener uuid 0.9

Add VM Nic to Load Balancer

Users can use AddVmNicToLoadBalancer to add VM nics to a load balancer. For example:

>>>AddVmNicToLoadBalancer listenerUuid=2901fd13765c492b9a3d004e806a0beb vmNicUuids=35b8aadef2f847d9836bdf06121e1c29,df7d40a47cb640a9b40001f2f318989a

224 Chapter 2. Chapters

zstack Documentation, Release 0.6

Parameters

Name Description Optional Choices Since
listenerUuid listener uuid 0.9
vmNicUuids a list of VM nic uuid 0.9

Remove VM Nic from Load Balancer

Users can use RemoveVmNicFromLoadBalancer to remove VM nics from a load balancer. For example:

>>>RemoveVmNicFromLoadBalancer listenerUuid=2901fd13765c492b9a3d004e806a0beb vmNicUuids=35b8aadef2f847d9836bdf06121e1c29,df7d40a47cb640a9b40001f2f318989a

Parameters

Name Description Optional Choices Since
listenerUuid listener uuid 0.9
vmNicUuids a list of VM nic uuid 0.9

Query Load Balancer

Users can use QueryLoadBalancer to query load balancers. For example:

>>>QueryLoadBalancer name=lb

>>>QueryLoadBalancer listeners.vmNic.vmInstance.name=web

Primitive Fields of Query

see load balancer inventory

Nested And Expanded Fields of Query

Field Inventory Description Since
listeners see load balancer listener inventory child listeners 0.9
vip see vip inventory bound VIP 0.9

Query Listener

Users can use QueryLoadBalancerListener to query load balancer listeners. For example:

>>>QueryLoadBalancerListener loadBalancerPort=80

>>>QueryLoadBalancerListener loadBalancer.vip.ip=192.168.0.10

Primitive Fields of Query

see load balancer listener inventory

2.26. Elastic Load Balancer 225

zstack Documentation, Release 0.6

Nested And Expanded Fields of Query

Field Inventory Description Since
loadBalancer see load balancer inventory parent load balancer 0.9
vmNic see vm nic inventory joined VM nics 0.9

2.26.7 Tags

Users can create user tags on a load balancer with resourceType=LoadBalancerVO. For example:

CreateUserTag tag=web-lb resourceUuid=0a9f95a659444848846b5118e15bff32 resourceType=LoadBalancerVO

Users can create user tags on a load balancer listener with resourceType=LoadBalancerListenerVO. For example:

CreateUserTag tag=web-lb-80 resourceUuid=0a9f95a659444848846b5118e15bff32 resourceType=LoadBalancerListenerVO

System Tags

Separate Virtual Router

In this version(0.9), the load balancer service is provided by the virtual router provider. Normally users may need only
one virtual router VM providing services like SNAT, EIP, port forwarding and load balancer. However, users can use
a system tag to instruct ZStack to spawn an individual virtual router VM for a load balancer. That is to say, creating a
virtual router VM dedicated to a load balancer.

Tag Example Since
separateVirtualRouterVm separateVirtualRouterVm 0.9

>>>CreateLoadBalancer name=lb vipUuid=df6a73601f1741fd847cf5456b0d42ac systemTags=separateVirtualRouterVm

Listener Configurations

A set of system tags can be used to configure a load balancer listener, controlling various listener behaviors such as
max connections, idle connection timeout, balancing algorithm and so on. Users can specify those system tags when
creating a listener, or ignore them to let ZStack choose default values.

Healthy Threshold The number of consecutive health checks successes required before moving the VM nic to the
healthy state.

Tag Example Since
healthyThreshold::{healthyThreshold} healthyThreshold::2 0.9

Health Check Interval The approximate interval, in seconds, between health checks of an individual VM nic

Tag Example Since
healthCheckInterval::{healthCheckInterval} healthCheckInterval::5 0.9

Unhealthy Threshold The number of consecutive health check failures required before moving the instance to the
unhealthy state.

Tag Example Since
unhealthyThreshold::{unhealthyThreshold} unhealthyThreshold::2 0.9

226 Chapter 2. Chapters

zstack Documentation, Release 0.6

Connection Idle Timeout The amount of time, in seconds, during the load balancer closes idle connections on both
server and client side.

Tag Example Since
connectionIdleTimeout::{connectionIdleTimeout} 60 0.9

Max Connections The max concurrent connections

Tag Example Since
maxConnection::{maxConnection} maxConnection::5000 0.9

Balancing Algorithm The algorithm the load balancer routes incoming traffic; valid choices are: roundrobin, least-
conn, source

Tag Example Since
balancerAlgorithm::{balancerAlgorithm} balancerAlgorithm::leastconn 0.9

CreateLoadBalancerListener loadBalancerUuid=0188cec6635845e0b2526a8e7e090e2a loadBalancerPort=22 instancePort=22 name=ssh protocol=tcp
systemTags=maxConnection::10000,balancerAlgorithm::source,healthyThreshold::5

2.26.8 Global Configurations

Connection Idle Timeout

The default value of system tag Connection Idle Timeout.

Name Category Default Value Choices
connectionIdleTimeout loadBalancer 60

Healthy Threshold

The default value of system tag Healthy Threshold.

Name Category Default Value Choices
healthyThreshold loadBalancer 2

Unhealthy Threshold

The default value of system tag Unhealthy Threshold.

Name Category Default Value Choices
unhealthyThreshold loadBalancer 2

Health Check Interval

The default value of system tag Health Check Interval.

Name Category Default Value Choices
healthCheckInterval loadBalancer 5

2.26. Elastic Load Balancer 227

zstack Documentation, Release 0.6

Max Connection

The default value of system tag Max Connection.

Name Category Default Value Choices
maxConnection loadBalancer 5000

Balancing Algorithm

The default value of system tag Balancing Algorithm.

Name Category Default Value Choices
balancerAlgorithm loadBalancer roundrobin

• roundrobin
• leastconn
• source

228 Chapter 2. Chapters

	Introduction
	Chapters

