
ZNS Documentation
Release 1.0.0

Richard Werner

Oct 03, 2018

Contents:

1 Set up project in JetBrains IDEA 1
1.1 Clone project . 1
1.2 Set up Idea . 1

2 Database description files structure and syntax 7
2.1 Folk knowledge base . 7
2.2 Rules knowledge base . 8
2.3 Semantic network knowledge base . 9
2.4 Uncertainty . 9

3 Function to be implemented 11
3.1 DataBase interface . 11
3.2 InferenceEngine . 11
3.3 KnowledgeBase . 11
3.4 UserInterface . 12
3.5 UncertaintyModule . 12
3.6 Main function . 12

4 Indices and tables 13

i

ii

CHAPTER 1

Set up project in JetBrains IDEA

There is short manual how to setup up project in JetBrains IDEA. Other ideas are not recommended, but you can use
them. This manual is written only for JetBrain IDEA.

1.1 Clone project

First step is clone project from GitLab to your folder. Open command line and go to location, where you want to have
Java project. To clone the project run these command:

$ git clone git@gitlab.fit.cvut.cz:BI-ZNS/framework.git

This will create folder for project. If git clone raise exception, that you don’t have right for clone this project, go to
FIT GitLab and set up your private key.

1.2 Set up Idea

Next start JetBrains IDEA and open folder with cloned project. First step is set up project settings.

1

ZNS Documentation, Release 1.0.0

1.2.1 1) Go to the File -> Project Structure

1.2.2 2) Set up project SDK and target folder

In the sub menu Project Select SDK. If you have installed Java with SDK, just select your version of Java from drop
down list. If your java installation is not listed, add path to your Java installation with new button. If you don’t have
Java installed, download Java from official webpage. In the same sub menu select the output directory. In this directory
will be located build files.

2 Chapter 1. Set up project in JetBrains IDEA

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

ZNS Documentation, Release 1.0.0

1.2.3 3) Setup source folder in modules

In the sub menu Modules go to the tab Sources. There select src folder in the tree view and mark this folder as source
folder with button on the top of the tree view (blue icon folder).

1.2. Set up Idea 3

ZNS Documentation, Release 1.0.0

1.2.4 4) Set up external libraries

Go to the sub menu Libraries and click on green plus button. From drop down menu select Java. In popup windows
select path to folder lib in your project and select file net.sf.tweety.tweety-full-1.10-with-dependencies.jar. Accept
selection with OK button.

4 Chapter 1. Set up project in JetBrains IDEA

ZNS Documentation, Release 1.0.0

1.2.5 5) Run compile and project

Now in the project files locate the main file src/expertsystemfw/ExpertSystemFW, right click on that file a select
Run ExpertSystemFW.main(). This should build java project and run that project in the console.

1.2. Set up Idea 5

ZNS Documentation, Release 1.0.0

6 Chapter 1. Set up project in JetBrains IDEA

CHAPTER 2

Database description files structure and syntax

All input files for this project are located at framework/src/expertsystemfw/KnowledgeBase/Files/. In this folder
are some examples of that files. You could use them as template for developing.

2.1 Folk knowledge base

This files define knowledge base based on first-order logic. Definition of knowledge base are based on Backus-Naur
form.

Backus-Naur form:

KB ::== SORTSDEC DECLAR FORMULAS
DECLAR ::== (PREDDEC)*
SORTSDEC ::==
(SORTNAME "=" "{" (CONSTANTNAME ("," CONSTANTNAME)*)? "}" "\n")*
PREDDEC ::==
"type" "(" PREDICATENAME ("(" SORTNAME ("," SORTNAME)* ")")? ")" "\n"
FORMULAS ::== ("\n" FORMULA)*
FORMULA ::== ATOM | "forall" VARIABLENAME ":" "(" FORMULA ")" |
"exists" VARIABLENAME ":" "(" FORMULA ")" |
"(" FORMULA ")" | FORMULA "&&" FORMULA |
FORMULA "||" FORMULA | "!" FORMULA | "+" | "-"
ATOM ::== PREDICATENAME ("(" TERM ("," TERM)* ")")?
TERM ::== VARIABLENAME | CONSTANTNAME

• Alfanumeric values starting with symbol „KB”

– SORTNAME - name of group of constants

– PREDICATE - name of predicate

– CONSTNAME - name of constant

– VARIABLENAME - name of variable

7

ZNS Documentation, Release 1.0.0

2.1.1 Example:

problem={gpuPowerCableDefect, monitorPowerSourceProblem, badDualMonitorSettings,
→˓videoCableNotProperlyPlugged, gpuNotSeatedWellOrDefective,
→˓ramNotSeatedWellOrDefective, damagedMonitorCable, defectiveMonitor, defectiveFan,
→˓gpuDefective}

type (system_powers_up(Problem))
type (live_screen(Problem))
type (monitor_LED_on(Problem))
type (NO_POWER_displayed(Problem))
type (NO_SIGNAL_displayed(Problem))
type (dual_monitors_HDTV(Problem))
type (hearing_a_string_of_beeps(Problem))
type (video_cable_secure(Problem))
type (GPU_seated_tested(Problem))
type (cable_damaged_or_bent_pins(Problem))
type (monitor_tested(Problem))
type (noisy_fan(Problem))
type (works_only_with_new_GPU(Problem))

forall Problem: (system_powers_up(Problem))

system_powers_up(monitorPowerSourceProblem)

live_screen(gpuPowerCableDefect)
NO_POWER_displayed(gpuPowerCableDefect)

monitor_LED_on(badDualMonitorSettings)
dual_monitors_HDTV(badDualMonitorSettings)

live_screen(videoCableNotProperlyPlugged)
monitor_LED_on(videoCableNotProperlyPlugged)
NO_SIGNAL_displayed(videoCableNotProperlyPlugged)

monitor_LED_on(gpuNotSeatedWellOrDefective)
hearing_a_string_of_beeps(gpuNotSeatedWellOrDefective)

2.2 Rules knowledge base

Knowledge base defined by rules IF <conclusion> THEN <formula> . In the rules could be used logical operators &&
and ||. With those easy rules could be defined whole behaviour of Knowledge base.

2.2.1 Example:

IF gpuPowerCableDefect THEN system_powers_up && NO_POWER_displayed && live_screen
IF monitorPowerSourceProblem THEN system_powers_up

8 Chapter 2. Database description files structure and syntax

ZNS Documentation, Release 1.0.0

2.3 Semantic network knowledge base

Semantic network knowledge base are file, that create semantic network based on rules. As the results of the expert
system (conclusions) can be taken, the nodes that have the input level of the vertex 0 (not entered in the back edge), ie
the node is the source. Each relation is define by one line in file. Syntax of the lines is:

node_from, relation, node_to

Delimiter could be comma or semicolon. White space will be ignored. Lines starting with # will be ignored. Relation
must be name based on enumeration at: expertsystemfw.KnowledgeBase.SemanticNetwork.Relation. Between two
nodes could be only one edge.

2.3.1 Example:

gpuPowerCableDefect, has_property, system_powers_up
gpuPowerCableDefect, has_property, live_screen
gpuPowerCableDefect, has_property, NO_POWER_displayed

2.4 Uncertainty

Uncertainty format must be specified by user. This format should be very simple, you just need specify certainty for
conclusions and predicates. For example one part of file should look like example.

2.4.1 Example:

monitor_tested, gpuDefective, 0.8
live_screen, defectiveFan, 0.76
live_screen, damagedMonitorCable, 0.91

2.3. Semantic network knowledge base 9

ZNS Documentation, Release 1.0.0

10 Chapter 2. Database description files structure and syntax

CHAPTER 3

Function to be implemented

In the project, there are many not implemented functions. This function need to be implemented by the user. The main
skeleton of the project are done and user need to implement decision part of the project.

3.1 DataBase interface

First part, which must be implemented is DataBase interface. This part is used for storing answers from the console.
User could implement this part as he want, for example you can use HashMap. You could add some support function
but don’t change interface. You need to implement functions:

• addAnswer - add new answer to database (based on object Answer)

• getAnswer - get answer from database based on predicate

• getAllAnswers - return list of all answers

• contains - check, if answer was already stored

3.2 InferenceEngine

In the template are not implemented inference engines. In the project is prepared interface for inference engine and also
templates for backward and forward chaining. You need to implement function startInference for each engine. You
could add any support function but don’t change interface of engine. You could only add some function to interface if
you need.

3.3 KnowledgeBase

Knowledge base is fully implemented in the project. You should use this in Inference engines. Only files, that you
need to edit are located in src/expertsystemfw/KnowledgeBase/Files. These files are used to load semantic network,

11

ZNS Documentation, Release 1.0.0

uncertainty model and knowledge base. In these files will be located all settings and informations need to decide
conclusion.

• FOLKnowledgeBase - In this file knowledge base are defined based on first-order logic

• RulesKnowledgeBase - In this files you can specify Knowledge base with IF . . . THEN . . . rules

• SemanticNetworkKnowledgeBase - In this file you can specify knowledge base as semantic network

• Uncertainty - In this files specify uncertainty of conclusions

3.4 UserInterface

In this package you need to specify and implement user interface. These function are used for communicate with the
user. All of them should be called from interference engine. For calling other function from askUser there is observer
pattern. There is prepared notifyWhy, notifyHow, notifyStart and notifyStop. If you notify one of those, you need to
overide update method in interference engine, which should call target function in interference engine (Backward or
Forward). There are located 4 main function for user interface

• conclude - Show user conclusion

• askUser - Ask user to some question and do something based on answer

• explainWhy - Based on the conclusion, explains what is the inference engine up for at the moment.

• explainHow - Based on the list of answers, explains how did the inference engine get to the point where it is
now.

3.5 UncertaintyModule

User need to implement uncertainty module. Only basic interface is prepared. User need to implement basic Bayes
uncertainty. THis module should be used by Inference engine, to get some certainty information about predicates and
conclusions.

3.6 Main function

In the file ExpertSystemFW is located main. You don’t need to change here anything. If you want to change
interference engine from backward to forward, change class that is created here.

12 Chapter 3. Function to be implemented

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

13

	Set up project in JetBrains IDEA
	Clone project
	Set up Idea

	Database description files structure and syntax
	Folk knowledge base
	Rules knowledge base
	Semantic network knowledge base
	Uncertainty

	Function to be implemented
	DataBase interface
	InferenceEngine
	KnowledgeBase
	UserInterface
	UncertaintyModule
	Main function

	Indices and tables

