

Welcome to ZNS’s documentation!

Contents:

	Set up project in JetBrains IDEA
	Clone project

	Set up Idea

	Database description files structure and syntax
	Folk knowledge base

	Rules knowledge base

	Semantic network knowledge base

	Uncertainty

	Function to be implemented
	DataBase interface

	InferenceEngine

	KnowledgeBase

	UserInterface

	UncertaintyModule

	Main function

Indices and tables

	Index

	Module Index

	Search Page

Set up project in JetBrains IDEA

There is short manual how to setup up project in JetBrains IDEA. Other ideas are not recommended, but you can use them.
This manual is written only for JetBrain IDEA.

Clone project

First step is clone project from GitLab to your folder. Open command line and go to location, where you want to have Java project.
To clone the project run these command:

$ git clone git@gitlab.fit.cvut.cz:BI-ZNS/framework.git

This will create folder for project. If git clone raise exception, that you don’t have right for clone this project, go to FIT
GitLab and set up your private key.

Set up Idea

Next start JetBrains IDEA and open folder with cloned project. First step is set up project settings.

1) Go to the File -> Project Structure

[image: _images/menu.png]

2) Set up project SDK and target folder

In the sub menu Project Select SDK. If you have installed Java with SDK, just select your version of Java from drop down list.
If your java installation is not listed, add path to your Java installation with new button. If you don’t have Java installed,
download Java from official webpage [http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html].
In the same sub menu select the output directory. In this directory will be located build files.

[image: _images/project_structure_1.png]

3) Setup source folder in modules

In the sub menu Modules go to the tab Sources. There select src folder in the tree view and mark this folder as source folder
with button on the top of the tree view (blue icon folder).

[image: _images/modules.png]

4) Set up external libraries

Go to the sub menu Libraries and click on green plus button. From drop down menu select Java. In popup windows select path
to folder lib in your project and select file net.sf.tweety.tweety-full-1.10-with-dependencies.jar. Accept selection with OK
button.

[image: _images/libraries.png]

5) Run compile and project

Now in the project files locate the main file src/expertsystemfw/ExpertSystemFW, right click on that file a select
Run ExpertSystemFW.main(). This should build java project and run that project in the console.

[image: _images/console.png]

Database description files structure and syntax

All input files for this project are located at framework/src/expertsystemfw/KnowledgeBase/Files/. In this folder are
some examples of that files. You could use them as template for developing.

Folk knowledge base

This files define knowledge base based on first-order logic. Definition of knowledge base are based on Backus-Naur form.

Backus-Naur form:

KB ::== SORTSDEC DECLAR FORMULAS
DECLAR ::== (PREDDEC)*
SORTSDEC ::==
(SORTNAME "=" "{" (CONSTANTNAME ("," CONSTANTNAME)*)? "}" "\n")*
PREDDEC ::==
"type" "(" PREDICATENAME ("(" SORTNAME ("," SORTNAME)* ")")? ")" "\n"
FORMULAS ::== ("\n" FORMULA)*
FORMULA ::== ATOM | "forall" VARIABLENAME ":" "(" FORMULA ")" |
"exists" VARIABLENAME ":" "(" FORMULA ")" |
"(" FORMULA ")" | FORMULA "&&" FORMULA |
FORMULA "||" FORMULA | "!" FORMULA | "+" | "-"
ATOM ::== PREDICATENAME ("(" TERM ("," TERM)* ")")?
TERM ::== VARIABLENAME | CONSTANTNAME

	
	Alfanumeric values starting with symbol ,,KB”

	
	SORTNAME - name of group of constants

	PREDICATE - name of predicate

	CONSTNAME - name of constant

	VARIABLENAME - name of variable

Example:

problem={gpuPowerCableDefect, monitorPowerSourceProblem, badDualMonitorSettings, videoCableNotProperlyPlugged, gpuNotSeatedWellOrDefective, ramNotSeatedWellOrDefective, damagedMonitorCable, defectiveMonitor, defectiveFan, gpuDefective}

type (system_powers_up(Problem))
type (live_screen(Problem))
type (monitor_LED_on(Problem))
type (NO_POWER_displayed(Problem))
type (NO_SIGNAL_displayed(Problem))
type (dual_monitors_HDTV(Problem))
type (hearing_a_string_of_beeps(Problem))
type (video_cable_secure(Problem))
type (GPU_seated_tested(Problem))
type (cable_damaged_or_bent_pins(Problem))
type (monitor_tested(Problem))
type (noisy_fan(Problem))
type (works_only_with_new_GPU(Problem))

forall Problem: (system_powers_up(Problem))

system_powers_up(monitorPowerSourceProblem)

live_screen(gpuPowerCableDefect)
NO_POWER_displayed(gpuPowerCableDefect)

monitor_LED_on(badDualMonitorSettings)
dual_monitors_HDTV(badDualMonitorSettings)

live_screen(videoCableNotProperlyPlugged)
monitor_LED_on(videoCableNotProperlyPlugged)
NO_SIGNAL_displayed(videoCableNotProperlyPlugged)

monitor_LED_on(gpuNotSeatedWellOrDefective)
hearing_a_string_of_beeps(gpuNotSeatedWellOrDefective)

Rules knowledge base

Knowledge base defined by rules IF <conclusion> THEN <formula> . In the rules could be used logical operators && and ||.
With those easy rules could be defined whole behaviour of Knowledge base.

Example:

IF gpuPowerCableDefect THEN system_powers_up && NO_POWER_displayed && live_screen
IF monitorPowerSourceProblem THEN system_powers_up

Semantic network knowledge base

Semantic network knowledge base are file, that create semantic network based on rules.
As the results of the expert system (conclusions) can be taken, the nodes that have the input level of the vertex 0
(not entered in the back edge), ie the node is the source. Each relation is define by one line in file.
Syntax of the lines is:

node_from, relation, node_to

Delimiter could be comma or semicolon. White space will be ignored. Lines starting with # will be ignored.
Relation must be name based on enumeration at: expertsystemfw.KnowledgeBase.SemanticNetwork.Relation.
Between two nodes could be only one edge.

Example:

gpuPowerCableDefect, has_property, system_powers_up
gpuPowerCableDefect, has_property, live_screen
gpuPowerCableDefect, has_property, NO_POWER_displayed

Uncertainty

Uncertainty format must be specified by user. This format should be very simple, you just need specify
certainty for conclusions and predicates. For example one part of file should look like example.

Example:

monitor_tested, gpuDefective, 0.8
live_screen, defectiveFan, 0.76
live_screen, damagedMonitorCable, 0.91

Function to be implemented

In the project, there are many not implemented functions. This function need to be implemented by the user.
The main skeleton of the project are done and user need to implement decision part of the project.

DataBase interface

First part, which must be implemented is DataBase interface. This part is used for storing answers from the console.
User could implement this part as he want, for example you can use HashMap. You could add some support function
but don’t change interface. You need to implement functions:

	addAnswer - add new answer to database (based on object Answer)

	getAnswer - get answer from database based on predicate

	getAllAnswers - return list of all answers

	contains - check, if answer was already stored

InferenceEngine

In the template are not implemented inference engines. In the project is prepared interface for inference engine and also
templates for backward and forward chaining. You need to implement function startInference for each engine.
You could add any support function but don’t change interface of engine. You could only add some function to
interface if you need.

KnowledgeBase

Knowledge base is fully implemented in the project. You should use this in Inference engines. Only files, that you need to edit
are located in src/expertsystemfw/KnowledgeBase/Files. These files are used to load semantic network, uncertainty model and
knowledge base. In these files will be located all settings and informations need to decide conclusion.

	FOLKnowledgeBase - In this file knowledge base are defined based on first-order logic

	RulesKnowledgeBase - In this files you can specify Knowledge base with IF … THEN … rules

	SemanticNetworkKnowledgeBase - In this file you can specify knowledge base as semantic network

	Uncertainty - In this files specify uncertainty of conclusions

UserInterface

In this package you need to specify and implement user interface. These function are used for communicate with the user.
All of them should be called from interference engine. For calling other function from askUser there is observer pattern.
There is prepared notifyWhy, notifyHow, notifyStart and notifyStop. If you notify one of those, you need to overide
update method in interference engine, which should call target function in interference engine (Backward or Forward).
There are located 4 main function for user interface

	conclude - Show user conclusion

	askUser - Ask user to some question and do something based on answer

	explainWhy - Based on the conclusion, explains what is the inference engine up for at the moment.

	explainHow - Based on the list of answers, explains how did the inference engine get to the point where it is now.

UncertaintyModule

User need to implement uncertainty module. Only basic interface is prepared. User need to implement basic Bayes
uncertainty. THis module should be used by Inference engine, to get some certainty information about predicates and conclusions.

Main function

In the file ExpertSystemFW is located main. You don’t need to change here anything. If you want to change interference
engine from backward to forward, change class that is created here.

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/artifact.png
« + —
Add
Project @ JAR >
Modules # Web Application: Exploded
Libraries & Web Application: Archive
Facets 4 JavaEE Application: Exploded

D ATGREE I FJavaEe Appiication: Archive

i EJB Application: Exploded
i EJB Application: Archive

SDKs
Global Libraries | % dm Bundle
& dm Platform Archive
Problems @ dm Plan
& dm Configuration
“ Android Application

Project Structu
b framework Type: | 4 JavaFx Application v
lit directory: | /home/wilson/Programovani/java/bachelor-thesis/framework/out/artifacts/fram

clude in project build

lut Layout Pre-processing Post-processing Java FX

+ i Avallable Elements ?
tput root> v Bz framework
ramework jar lli net.sf.tweety.tweety-full-1.10-with-dependent

/2 framework’ compile output

o platon 5 gty

4 JavaFx Preloader
< Other

_static/console.png
172.4343.14/b:

vaagent : /home/wilson/Prograny/idea-IU-172.4343.14/1ib/idea_rt.]jar=41187:/home/wilson/Prograny/id
live screen?

le.encoding=UTF-8

Is it true, that your animal:
Answer:

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/down.png

_images/menu.png
& Open...
Open URL...
Open Recent
Close Project

% settings.

[

1

Other Settings
Import Settings...
Export Settings...
Export to Eclipse...
Settings Repository...
Save All

synchronize

Invalidate Caches / Restart...

Export to HTML...
Print...
Add to Favorites

Line Separators
Make Directory Read-only

Power Save Mode
Exit

Cri+Alt+S

ctri+s
Cri+Alt+Y

1 ['S ExpertSystemFW ¥

ECHE A

> ¥ ¥

package ex

Jxx

*

* @author

*/

public enu
is a(
a_kind
has_pri
does(

privat:
privat:

privat

th;
th;

}
public

public

_images/modules.png
t Structu:

& +-B

Name: | framework_blank
; framework_blank

Project aths Dependencles
_“hla“es Language level: [Project defauit (9 - Modules, private methods In Interfaces etc.) | v
faces est Resources B Excluded
Artifacts
v B /home/wilson/Programovani/java/bachelor-thesis/framew + Add Content Root
e v uidea 1..bachelor-thesis/framework_blankx
Global Libraries DIERIEES Source Folders
B InspectionProfiles - X
Problems CITT= Excluded Folders
LG Jidea x
v B build
> s production
mib
v B nbproject
= configs
> M private

B src

> Em expertsystemfw.

Exclude files:

oK Cancel

_images/console.png
172.4343.14/b:

vaagent : /home/wilson/Prograny/idea-IU-172.4343.14/1ib/idea_rt.]jar=41187:/home/wilson/Prograny/id
live screen?

le.encoding=UTF-8

Is it true, that your animal:
Answer:

_images/libraries.png
Project
Modules

Facets

Artifacts

SDKs

Global Libraries

Problems

+ -
llln net.sf.tweety.tweety-|

t Structu

Name: | net.sf.tweety.tweety-full-1.10-with-dependencies

Bean Validation library
DI library

+ te e —
v % Classes

| /home/wilson/Programovani/java/bachelor-thesis/framework/lib/net.sf.tweety.tweety-full-1.10-wit]
v Busources

| /home/wilson/Programovani/java/bachelor-thesis/framework/lib/net.sf.tweety.tweety-full-1.10-wit]

_images/project_structure_1.png
Project Structur

Project name:
framework

IS ... sox:

MEEE This SDK I default for all project modules.
Libraries A module specific SDK can be configured for each of the modules as required.
Facets

m=9.0 v New...
Artifacts

Project language level:
SDKs This language level Is default for all project modules.

Global Libraries A module specific language level can be configured for each of the modules as required.

9 - Modules, private methods In Interfaces etc. v
Problems
Project compiler output:
This path Is used to store all project compllation results.
A directory corresponding to each module Is created under this path.

This directory contains two subdirectories: Production and Test for production code and test sources, respectively.
A module specific compiler output path can be configured for each of the modules as required.

/home/wilson/Programovani/Java/bachelor-thesis/framework/build

? oK cancel

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to ZNS’s documentation!

 		
 Set up project in JetBrains IDEA

 		
 Clone project

 		
 Set up Idea

 		
 1) Go to the File -> Project Structure

 		
 2) Set up project SDK and target folder

 		
 3) Setup source folder in modules

 		
 4) Set up external libraries

 		
 5) Run compile and project

 		
 Database description files structure and syntax

 		
 Folk knowledge base

 		
 Example:

 		
 Rules knowledge base

 		
 Example:

 		
 Semantic network knowledge base

 		
 Example:

 		
 Uncertainty

 		
 Example:

 		
 Function to be implemented

 		
 DataBase interface

 		
 InferenceEngine

 		
 KnowledgeBase

 		
 UserInterface

 		
 UncertaintyModule

 		
 Main function

_static/minus.png

_static/modules.png
t Structu:

& +-B

Name: | framework_blank
; framework_blank

Project aths Dependencles
_“hla“es Language level: [Project defauit (9 - Modules, private methods In Interfaces etc.) | v
faces est Resources B Excluded
Artifacts
v B /home/wilson/Programovani/java/bachelor-thesis/framew + Add Content Root
e v uidea 1..bachelor-thesis/framework_blankx
Global Libraries DIERIEES Source Folders
B InspectionProfiles - X
Problems CITT= Excluded Folders
LG Jidea x
v B build
> s production
mib
v B nbproject
= configs
> M private

B src

> Em expertsystemfw.

Exclude files:

oK Cancel

_static/libraries.png
Project
Modules

Facets

Artifacts

SDKs

Global Libraries

Problems

+ -
llln net.sf.tweety.tweety-|

t Structu

Name: | net.sf.tweety.tweety-full-1.10-with-dependencies

Bean Validation library
DI library

+ te e —
v % Classes

| /home/wilson/Programovani/java/bachelor-thesis/framework/lib/net.sf.tweety.tweety-full-1.10-wit]
v Busources

| /home/wilson/Programovani/java/bachelor-thesis/framework/lib/net.sf.tweety.tweety-full-1.10-wit]

_static/menu.png
& Open...
Open URL...
Open Recent
Close Project

% settings.

[

1

Other Settings
Import Settings...
Export Settings...
Export to Eclipse...
Settings Repository...
Save All

synchronize

Invalidate Caches / Restart...

Export to HTML...
Print...
Add to Favorites

Line Separators
Make Directory Read-only

Power Save Mode
Exit

Cri+Alt+S

ctri+s
Cri+Alt+Y

1 ['S ExpertSystemFW ¥

ECHE A

> ¥ ¥

package ex

Jxx

*

* @author

*/

public enu
is a(
a_kind
has_pri
does(

privat:
privat:

privat

th;
th;

}
public

public

_static/up-pressed.png

_static/plus.png

_static/project_structure_1.png
Project Structur

Project name:
framework

IS ... sox:

MEEE This SDK I default for all project modules.
Libraries A module specific SDK can be configured for each of the modules as required.
Facets

m=9.0 v New...
Artifacts

Project language level:
SDKs This language level Is default for all project modules.

Global Libraries A module specific language level can be configured for each of the modules as required.

9 - Modules, private methods In Interfaces etc. v
Problems
Project compiler output:
This path Is used to store all project compllation results.
A directory corresponding to each module Is created under this path.

This directory contains two subdirectories: Production and Test for production code and test sources, respectively.
A module specific compiler output path can be configured for each of the modules as required.

/home/wilson/Programovani/Java/bachelor-thesis/framework/build

? oK cancel

_static/up.png

