

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Ziffect 0.0.1 documentation

Welcome to Ziffect’s documentation

Contents:

	Introduction
	Motivation

	Using Effect and Limitations

	API
	ziffect

	ziffect.matchers

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ziffect 0.0.1 documentation

Introduction

Motivation

The motivation for ziffect was an inner sensation that
effect [https://effect.readthedocs.org/] was slightly incomplete, and with the
help of zope.interface [http://docs.zope.org/zope.interface/] and
pyrsistent [https://pyrsistent.readthedocs.org/] it could be made a lot
better.

Using Effect and Limitations

Let’s walk through an example to illustrate my grievances with the effect
library. For starters, lets say we are using effect to interact with a
database. Reading values from and writing values to a database are certainly
operations that have side-effects, so we believe this to be a good candidate
use case for our new toy.

Aside

Apologies for this rather long example, I just wanted to walk through a
sufficiently complex scenario as a matter of proving to myself that this
library adds value.

For sake of example I will assume we are using a simple revision-based document
store (perhaps a wrapper on CouchDB). This document store has a simple
synchronous python API that consists of merely db.get(doc_id, rev=LATEST)
and db.put(doc_id, rev, doc). As this is a fictional API, rather than
giving a full spec, I will demonstrate how it works with a simple demo of
functionality:

>>> # Make a new db.
>>> db = DB()
>>> # Create an id for a doc we'll work with.
>>> my_id = uuid4()

>>> # Getting a doc that doesn't exist is an error:
>>> db.get(my_id)
DB Response<NOT_FOUND>

>>> # Putting revision 0 for a doc that doesn't exist succeeds:
>>> db.put(my_id, 0, {'cat': 0})
DB Response<OK rev=0>

>>> # `get`ing a doc gets the latest version:
>>> db.get(my_id)
DB Response<OK rev=0 {"cat": 0}>

>>> # Attempting to put a document at existant revision is an error:
>>> db.put(my_id, 0, {'cat': 12})
DB Response<CONFLICT>

>>> # Instead `put` it at the next revision:
>>> db.put(my_id, 1, {'cat': 12})
DB Response<OK rev=1>

>>> # `get`ing a doc gets the latest version:
>>> db.get(my_id)
DB Response<OK rev=1 {"cat": 12}>

>>> # But old revisions can still be gotten:
>>> db.get(my_id, 0)
DB Response<OK rev=0 {"cat": 0}>

Using this system, we will try to implement a piece of code that will execute a
change on a document in the database. This code should take as inputs:

	A DB instance where the document is stored.

	The doc_id of the document that is to be changed within the database.

	A pure function to execute on the document.

The code will get the document from the database, execute the pure function on
the document, and put it back in the database. If the put fails, then the
code should get the latest version of the document, execute the pure function
on the latest version of the document, attempt to put it again, and repeat
until it succeeds.

For good measure, this code can return the final version of the document.

So let’s take a stab at implementing this piece of code. We are using effect,
so I guess that means we want to put db.get and db.put behind intents
and performers, and then we want to create a function that returns an “effect
generator” that can be performed by a dispatcher.

Aside

I’m still pretty new to effect, and playing around with how to do
good design in this paradigm. You may notice this in my tenative design
desisions. If you have any recommendations on how I could do it better, tell
me on github as an issue filed against
ziffect [https://github.com/sarum90/ziffect/issues].

from effect import Effect, sync_performer, TypeDispatcher

class GetIntent(object):
 def __init__(self, doc_id, rev=LATEST):
 self.doc_id = doc_id
 self.rev = rev

def get_performer_generator(db):
 @sync_performer
 def get(dispatcher, intent):
 return db.get(intent.doc_id, intent.rev)
 return get

class UpdateIntent(object):
 def __init__(self, doc_id, rev, doc):
 """
 Slightly different API that the DB gives us, because we need to update a
 document below rather than just put a new doc into the DB.

 :param doc_id: The document id of the document to put in the database.
 :param rev: The last revision gotten from the database for the document.
 This update will put revision rev + 1 into the db.
 :param doc: The new document to send to the server.
 """
 self.doc_id = doc_id
 self.rev = rev
 self.doc = doc

def update_performer_generator(db):
 @sync_performer
 def update(dispatcher, intent):
 intent.rev += 1
 return db.put(intent.doc_id, intent.rev, intent.doc)
 return update

def db_dispatcher(db):
 return TypeDispatcher({
 GetIntent: get_performer_generator(db),
 UpdateIntent: update_performer_generator(db),
 })

Okay, so now we have the Effect -ive building blocks that we can use to
create our implementation:

from effect import sync_perform, ComposedDispatcher, base_dispatcher
from effect.do import do

@do
def execute_function(doc_id, pure_function):
 result = yield Effect(GetIntent(doc_id=doc_id))
 new_doc = pure_function(result.doc)
 yield Effect(UpdateIntent(doc_id, result.rev, new_doc))

def sync_execute_function(db, doc_id, function):
 """
 Convenience wrapper to perform :func:`execute_function` on a database from
 an interactive terminal.
 """
 dispatcher = ComposedDispatcher([
 db_dispatcher(db),
 base_dispatcher
])
 sync_perform(
 dispatcher,
 execute_function(
 doc_id, function
)
)

The implementation of execute_function should fairly obviously have bugs,
but it’s a good enough implementation that we can convince ourselves that the
happy case works:

>>> db = DB()
>>> doc_id = uuid4()
>>> doc = {"cat": "mouse", "count": 10}
>>> db.put(doc_id, 0, doc)
DB Response<OK rev=0>

>>> def increment(doc_id):
... return sync_execute_function(
... db,
... doc_id,
... lambda x: dict(x, count=x.get('count', 0) + 1)
...)

>>> increment(doc_id)
>>> db.get(doc_id)
DB Response<OK rev=1 {"cat": "mouse", "count": 11}>

>>> increment(doc_id)
>>> db.get(doc_id)
DB Response<OK rev=2 {"cat": "mouse", "count": 12}>

>>> increment(doc_id)
>>> db.get(doc_id)
DB Response<OK rev=3 {"cat": "mouse", "count": 13}>

In the interest of test driven development, at this point we want to write our
unit tests. They should fail, then we’ll fix the implementation of
execute_function, write more unit tests, etc.

 Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Ziffect 0.0.1 documentation

API

ziffect

The ziffect module.

	
ziffect.interface(wrapped_class)[source]

	Class decorator to wrap ziffect interfaces.

	Parameters:	wrapped_class – The class to wrap.

	Returns:	The newly created wrapped class.

	
ziffect.effects(interface)[source]

	Method to get an object that implements interface by just returning effects
for each method call.

	Parameters:	interface – The interface for which to create a provider.

	Returns:	A class with method names equal to the method names of the
interface. Each method on this class will generate an Effect for use
with the Effect library.

	
class ziffect.argument[source]

	Argument type

TODO(mewert): fill the rest of this in.

ziffect.matchers

The ziffect.matchers module, filled with convenient testtools matchers for use
with ziffect.

	
ziffect.matchers.Provides(interface)[source]

	Matches if interface is provided by the matchee.

 Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Ziffect 0.0.1 documentation

 Python Module Index

 z

 			

 		
 z	

 	[image: -]
 	
 ziffect	

 	
 	
 ziffect.matchers	

 Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Ziffect 0.0.1 documentation

Index

 A
 | E
 | I
 | P
 | Z

A

 	

 	argument (class in ziffect)

E

 	

 	effects() (in module ziffect)

I

 	

 	interface() (in module ziffect)

P

 	

 	Provides() (in module ziffect.matchers)

Z

 	

 	ziffect (module)

 	

 	ziffect.matchers (module)

 Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

 _static/down.png

_static/minus.png

_static/comment-close.png

_static/up.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Ziffect 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_modules/ziffect.html

 Navigation

 		
 index

 		
 modules |

 		Ziffect 0.0.1 documentation »

 		Module code »

 Source code for ziffect

"""
The ziffect module.
"""

from __future__ import unicode_literals

from effect import TypeDispatcher, Effect, sync_performer
from pyrsistent import PClass, field, PClassMeta
from six import add_metaclass, iteritems
from funcsigs import signature

__all__ = [
 'interface',
 'effects',
 'argument'
]

[docs]class argument(PClass):
 """
 Argument type

 TODO(mewert): fill the rest of this in.
 """
 type = field(type=type)

def _make_intent_from_args(args):
 """
 Create an intent type for a given set of arguments.

 :param args: a dict with keys as the names of arguments and values as
 :class:`argument`s.

 :returns: A new type that can hold all of the data to call a function that
 has the given arguments.
 """
 class _Intent(PClass):
 pass

 for name, arg in iteritems(args):
 setattr(_Intent, name, field(type=arg.type))

 _PIntent = add_metaclass(PClassMeta)(_Intent)

 return _PIntent

def _iterate_methods(interface):
 """
 A generator to iterate over the methods of an interface.

 :param interface: A ziffect interface.

 :yields: names of methods.
 """
 for operator_name in dir(interface):
 if not operator_name.startswith('_'):
 yield operator_name

def _get_method_argspecs(interface):
 """
 A generator to get the argspecs of methods on an interface.

 :param interface: The ziffect interface to inspect.

 :yields: tuples of method name and dictionaries that map name of
 argument to :class:`argument` instances.
 """
 for method_name in _iterate_methods(interface):
 method = getattr(interface, method_name)
 sig = signature(method)
 args = dict(
 (name, arg.default)
 for name, arg in iteritems(sig.parameters)
)
 yield method_name, args

def _make_intents(argspecs):
 """
 Constructs intents for each of the argspecs passed in.

 :param argspecs: A dict with keys as method names, and values as
 dicts that map name of argument to :class:`argument` instances.

 :return: dict that maps method_name to intent class.
 """
 return dict(
 (method_name, _make_intent_from_args(args))
 for method_name, args in iteritems(argspecs)
)

def _make_effect_method(intent):
 """
 Turn an intent into a method that creates an effect.

 :param intent: The class for the intent.

 :returns Effect: An effect that describes the given intent.
 """
 def _method(self, **kwargs):
 return Effect(intent(**kwargs))
 return _method

def _make_effects(intents):
 """
 Creates a class that has methods that generate effects for the given
 intents.

 :param intents: dict mapping names of intents to their classes.

 :returns: A new class with method names equal to the keys of the input.
 Each method on this class will generate an Effect for use with the
 Effect library.
 """
 class _Effects(object):
 pass

 for method_name, intent in iteritems(intents):
 method = _make_effect_method(intent)
 setattr(_Effects, method_name, method)

 return _Effects()

[docs]def interface(wrapped_class):
 """
 Class decorator to wrap ziffect interfaces.

 :param wrapped_class: The class to wrap.

 :returns: The newly created wrapped class.
 """
 wrapped_class._ziffect_argspecs = dict(
 (key, value)
 for key, value in _get_method_argspecs(wrapped_class)
)
 wrapped_class._ziffect_intents = _make_intents(
 wrapped_class._ziffect_argspecs)
 wrapped_class._ziffect_effects = _make_effects(
 wrapped_class._ziffect_intents)
 return wrapped_class

[docs]def effects(interface):
 """
 Method to get an object that implements interface by just returning effects
 for each method call.

 :param interface: The interface for which to create a provider.

 :returns: A class with method names equal to the method names of the
 interface. Each method on this class will generate an Effect for use
 with the Effect library.
 """
 return interface._ziffect_effects

def implements(interface):
 """
 Class decorator to indicate that wrapped_class implements the interface.

 :param interface: The interface that is implemented by the class.

 :returns: decorator for the wrapped class.
 """
 def _implements_decorator(wrapped_class):
 return wrapped_class
 return _implements_decorator

def _make_performer(method, arg_keys):
 """
 Constructs a performer for that calls a specific method. This involves
 unpacking the intent into keyword arguments for the method.

 Note that this presently does not pass the dispatcher down to the
 underlying method. Thus, ziffect interface implementations presently cannot
 perform other effects that have side effects.

 :param method: The underlying method to call. Should be a method bound to
 an object that provides a ziffect interface.
 :param arg_keys: Iterable of strings that are both the keyword arguments of
 the method and the names of the attributes of the intent.

 :returns: An Effect performer that calls method with the arguments in the
 intent.
 """
 @sync_performer
 def _perform(dispatcher, intent):
 args = dict(
 (k, getattr(intent, k))
 for k in arg_keys
)
 return method(**args)
 return _perform

def dispatcher(interface_map):
 """
 Creates a dispatcher for a number of interfaces.

 :param interface_map: A map from ziffect interface to a provider of the
 interface.

 :returns: An Effect dispatcher that will use the passed in interfaces to
 perform Effects that have been generated from the
 ``ziffect.effect(interface).method()`` implementation.
 """
 typemap = {}
 for interface, provider in iteritems(interface_map):
 intents = interface._ziffect_intents
 argspecs = interface._ziffect_argspecs
 for method_name in _iterate_methods(interface):
 method = getattr(provider, method_name)
 intent = intents[method_name]
 typemap[intent] = _make_performer(method,
 argspecs[method_name].keys())
 return TypeDispatcher(typemap)

 © Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

_modules/ziffect/matchers.html

 Navigation

 		
 index

 		
 modules |

 		Ziffect 0.0.1 documentation »

 		Module code »

 		ziffect »

 Source code for ziffect.matchers

"""
The ziffect.matchers module, filled with convenient testtools matchers for use
with ziffect.
"""

from testtools.matchers import Not, Is

[docs]def Provides(interface):
 """
 Matches if interface is provided by the matchee.
 """
 return Not(Is(None))

 © Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Ziffect 0.0.1 documentation »

 All modules for which code is available

		ziffect

		ziffect.matchers

 © Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

