

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Ziffect 0.0.1 documentation

Welcome to Ziffect’s documentation

Contents:

	Introduction
	Motivation

	Coding with effect
	TypeDispatchers are just classes

	Coding with ziffect
	Summary

	Future Work

	API
	ziffect

	ziffect.matchers

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ziffect 0.0.1 documentation

Introduction

Motivation

The motivation for ziffect was an inner sensation that
effect [https://effect.readthedocs.org/] was slightly incomplete, and with the
help of zope.interface [http://docs.zope.org/zope.interface/] and
pyrsistent [https://pyrsistent.readthedocs.org/] it could be made a lot
better.

In order to justify this library I will attempt to write the same bit of code
using pure Effect and using pure ziffect

 Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ziffect 0.0.1 documentation

Coding with effect

Let’s walk through an example to illustrate my grievances with the effect
library. For starters, let’s say we are using effect to interact with a
database. Reading values from and writing values to a database are certainly
operations that have side-effects, so we believe this to be a good candidate
use case for our new toy.

Aside

Apologies for this rather long example, I just wanted to walk through a
sufficiently complex scenario as a matter of proving to myself that this
library adds value.

For sake of example I will assume we are using a simple revision-based document
store (perhaps a wrapper on CouchDB). This document store has a simple
synchronous python API that consists of merely db.get(doc_id, rev=LATEST)
and db.put(doc_id, rev, doc). As this is a fictional API, rather than
giving a full spec, I will demonstrate how it works with a simple demo of
functionality:

>>> # Make a new db.
>>> db = DB()
>>> # Create an id for a doc we'll work with.
>>> my_id = uuid4()

>>> # Getting a doc that doesn't exist is an error:
>>> db.get(my_id)
DB Response<NOT_FOUND>

>>> # Putting revision 0 for a doc that doesn't exist succeeds:
>>> db.put(my_id, 0, {'cat': 0})
DB Response<OK rev=0>

>>> # `get`ing a doc gets the latest version:
>>> db.get(my_id)
DB Response<OK rev=0 {"cat": 0}>

>>> # Attempting to put a document at existant revision is an error:
>>> db.put(my_id, 0, {'cat': 12})
DB Response<CONFLICT>

>>> # Instead `put` it at the next revision:
>>> db.put(my_id, 1, {'cat': 12})
DB Response<OK rev=1>

>>> # `get`ing a doc gets the latest version:
>>> db.get(my_id)
DB Response<OK rev=1 {"cat": 12}>

>>> # But old revisions can still be gotten:
>>> db.get(my_id, 0)
DB Response<OK rev=0 {"cat": 0}>

Using this system, we will try to implement a piece of code that will execute a
change on a document in the database. This code should take as inputs:

	A DB instance where the document is stored.

	The doc_id of the document that is to be changed within the database.

	A pure function to execute on the document.

The code will get the document from the database, execute the pure function on
the document, and put it back in the database. If the put fails, then the
code should get the latest version of the document, execute the pure function
on the latest version of the document, attempt to put it again, and repeat
until it succeeds.

For good measure, this code can return the final version of the document.

So let’s take a stab at implementing this piece of code. We are using effect,
so I guess that means we want to put db.get and db.put behind intents
and performers, and then we want to create a function that returns an “effect
generator” that can be performed by a dispatcher.

Aside

I’m still pretty new to effect, and playing around with how to do
good design in this paradigm. You may notice this in my tenative design
desisions. If you have any recommendations on how I could do it better, tell
me on github as an issue filed against
ziffect [https://github.com/sarum90/ziffect/issues].

from effect import TypeDispatcher, sync_performer

class GetIntent(object):
 def __init__(self, doc_id, rev=LATEST):
 self.doc_id = doc_id
 self.rev = rev

def get_performer_generator(db):
 def get(dispatcher, intent):
 return db.get(intent.doc_id, intent.rev)
 return get

class UpdateIntent(object):
 def __init__(self, doc_id, rev, doc):
 """
 Slightly different API that the DB gives us, because we need to update a
 document below rather than just put a new doc into the DB.

 :param doc_id: The document id of the document to put in the database.
 :param rev: The last revision gotten from the database for the document.
 This update will put revision rev + 1 into the db.
 :param doc: The new document to send to the server.
 """
 self.doc_id = doc_id
 self.rev = rev
 self.doc = doc

def update_performer_generator(db):
 def update(dispatcher, intent):
 intent.rev += 1
 return db.put(intent.doc_id, intent.rev, intent.doc)
 return update

def db_dispatcher(db):
 return TypeDispatcher({
 GetIntent: sync_performer(get_performer_generator(db)),
 UpdateIntent: sync_performer(update_performer_generator(db)),
 })

Okay, so now we have the Effect -ive building blocks that we can use to
create our implementation:

from effect import Effect
from effect.do import do

@do
def execute_function(doc_id, pure_function):
 result = yield Effect(GetIntent(doc_id=doc_id))
 new_doc = pure_function(result.doc)
 yield Effect(UpdateIntent(doc_id, result.rev, new_doc))

We still don’t technically have what we set out for, as this effect generator
only takes two arguments, not the underlying db. So we’ll add one more
convenience function that we can play around with on the interpreter:

from effect import (
 sync_perform, ComposedDispatcher, base_dispatcher
)

def sync_execute_function(db, doc_id, function):
 dispatcher = ComposedDispatcher([
 db_dispatcher(db),
 base_dispatcher
])
 sync_perform(
 dispatcher,
 execute_function(
 doc_id, function
)
)

The implementation of execute_function should fairly obviously have bugs,
but it’s a good enough implementation that we can convince ourselves that the
happy case works:

>>> db = DB()
>>> doc_id = uuid4()
>>> doc = {"cat": "mouse", "count": 10}
>>> db.put(doc_id, 0, doc)
DB Response<OK rev=0>

>>> def increment(doc_id):
... return sync_execute_function(
... db,
... doc_id,
... lambda x: dict(x, count=x.get('count', 0) + 1)
...)

>>> increment(doc_id)
>>> db.get(doc_id)
DB Response<OK rev=1 {"cat": "mouse", "count": 11}>

>>> increment(doc_id)
>>> db.get(doc_id)
DB Response<OK rev=2 {"cat": "mouse", "count": 12}>

>>> increment(doc_id)
>>> db.get(doc_id)
DB Response<OK rev=3 {"cat": "mouse", "count": 13}>

In the interest of test driven development, at this point we want to write our
unit tests. They should fail, then we’ll fix the implementation of
execute_function, write more unit tests, etc.

from effect.testing import perform_sequence

class DBExecuteFunctionTests(TestCase):

 def test_happy_case(self):
 doc_id = uuid4()
 doc_1 = {"test": "doc", "a": 1}
 doc_1_u = {"test": "doc", "a": 2}
 seq = [
 (GetIntent(doc_id),
 lambda _: DBResponse(status=DBStatus.OK, rev=0, doc=doc_1)),

 (UpdateIntent(doc_id, 0, doc_1_u),
 lambda _: DBResponse(status=DBStatus.OK)),
]
 perform_sequence(seq, execute_function(
 doc_id, lambda x: dict(x, a=x.get("a", 0) + 1)
)
)

 def test_sad_case(self):
 doc_id = uuid4()
 doc_1 = {"test": "doc", "a": 1}
 doc_1_u = {"test": "doc", "a": 2}
 doc_2 = {"test": "doc2", "a": 5}
 doc_2_u = {"test": "doc2", "a": 6}
 seq = [
 (GetIntent(doc_id),
 lambda _: DBResponse(status=DBStatus.OK, rev=0, doc=doc_1)),

 (UpdateIntent(doc_id, 0, doc_1_u),
 lambda _: DBResponse(status=DBStatus.CONFLICT)),

 (GetIntent(doc_id),
 lambda _: DBResponse(status=DBStatus.OK, rev=1, doc=doc_2)),

 (UpdateIntent(doc_id, 1, doc_2_u),
 lambda _: DBResponse(status=DBStatus.OK)),
]
 perform_sequence(seq, execute_function(
 doc_id, lambda x: dict(x, a=x.get("a", 0) + 1)
)
)

Now a few iterations of TDD:

>>> run_test(DBExecuteFunctionTests)
FAILURE(test_happy_case)
Traceback (most recent call last):
 File "<interactive-shell>", line 17, in test_happy_case
 File "effect/testing.py", line 115, in perform_sequence
 return sync_perform(dispatcher, eff)
 File "effect/_sync.py", line 34, in sync_perform
 six.reraise(*errors[0])
 File "effect/_base.py", line 78, in guard
 return (False, f(*args, **kwargs))
 File "effect/do.py", line 121, in <lambda>
 error=lambda e: _do(e, generator, True))
 File "effect/do.py", line 98, in _do
 val = generator.throw(*result)
 File "<interactive-shell>", line 6, in execute_function
 File "effect/_base.py", line 150, in _perform
 performer = dispatcher(effect.intent)
 File "effect/testing.py", line 108, in dispatcher
 intent, fmt_log()))
AssertionError: Performer not found: <GetIntent object at 0x7fff0000>! Log follows:
{{{
NOT FOUND: <GetIntent object at 0x7fff0000>
NEXT EXPECTED: <GetIntent object at 0x7fff0001>
}}}
...

First bug: Intents need to have valid __eq__ implementations. Also let’s give
them a __repr__ that makes them slightly less hard to work with.

class GetIntent(object):
 def __init__(self, doc_id, rev=LATEST):
 self.doc_id = doc_id
 self.rev = rev

 def __eq__(self, other):
 return (
 type(self) == type(other) and
 self.doc_id == other.doc_id and
 self.rev == other.rev
)

 def __repr__(self):
 return 'GetIntent<%s, %s>' % (
 rev_render(self.rev), self.doc_id)

class UpdateIntent(object):
 def __init__(self, doc_id, rev, doc):
 self.doc_id = doc_id
 self.rev = rev
 self.doc = doc

 def __eq__(self, other):
 return (
 type(self) == type(other) and
 self.doc_id == other.doc_id and
 self.rev == other.rev and
 self.doc == other.doc
)

 def __repr__(self):
 return 'UpdateIntent<%s, %s, %s>' % (
 rev_render(self.rev),
 self.doc_id,
 repr(self.doc)
)

Rerun the tests:

>>> run_test(DBExecuteFunctionTests)
FAILURE(test_sad_case)
Traceback (most recent call last):
 File "<interactive-shell>", line 41, in test_sad_case
 File "effect/testing.py", line 115, in perform_sequence
 return sync_perform(dispatcher, eff)
 File "effect/testing.py", line 463, in consume
 [x[0] for x in self.sequence]))
AssertionError: Not all intents were performed: [GetIntent<LATEST, f456150c-d4ba-5b09-a3fc-7ce3a7dbe905>, UpdateIntent<1, f456150c-d4ba-5b09-a3fc-7ce3a7dbe905, {'a': 6, 'test': 'doc2'}>]
...

Cool, now that we have a failing test, lets improve our implementation to
handle the case where the DB was updated while we were running:

@do
def execute_function(doc_id, pure_function):
 done = False
 while not done:
 original_doc = yield Effect(GetIntent(doc_id=doc_id))
 new_doc = pure_function(original_doc.doc)
 update_result = yield Effect(
 UpdateIntent(doc_id, original_doc.rev, new_doc))
 done = (update_result.status == DBStatus.OK)

Rerun the tests:

>>> run_test(DBExecuteFunctionTests)
[OK]

Okay, so that all seems reasonable. This style of testing reminds me a lot of
mocks. I am creating a canned sequence of expected inputs and return values for
my dependencies, and running my code under test using this canned dependency.

Aside

I’m sure you can search the internet for debates of mocks versus fakes and
find out more about the issues that some people have with mocks. In my view,
two of the best arguments against mocks are:

	Does the mock sufficiently behave like a real implementation so that the
test is meaningful? This is particularly pertinent in python, because
something simple like, “your mock does not return the correct type of
value” might mean that your unit test fails to catch a TypeError that
will always happen with the real implementation.

	Mocks create tests that are tightly tied to the implementation of the code
under test; if the implementation is changed, the test must also be
modified. Consider, for instance, if we add a 2nd GetIntent to the
beginning of the implementation, it should not change the correctness, but
the test would now fail without modification. Specifically the sequence
that is passed to perform_sequence would need a second GetIntent call at
the beginning of the sequence.

Personally, I think mocks do have a place in unit tests like the one above.
Specifically you are interfacing with an API that can return different values
for the same inputs, and you need to force some external state change at a
specific time in order to force the different inputs.

There are other strategies to do similar testing, but as long as you have a
solid, simple interface to mock, I believe that form of testing gets the most
bang for your buck.

Let’s build on our existing implementation. Let’s say after using this code for
awhile we realize that the DB commands can also return a NETWORK_ERROR.
We are going to take the simple policy of retrying any attempt that results in
a NETWORK_ERROR. We are not going to bother with exponential back-off or
any other nice-to-have right now, just a dead simply retry.

Aside

Assuming that NETWORK_ERRORS can happen before or after an operation is
complete, this has some interesting ramifications. Our implementation of
execute_function() will be an at-least-once implementation, where it
guarantees that the function you specified will have occured at least once on
the doc_id specified. A poorly timed NETWORK_ERROR after a successful
update will cause our code to retry the update, get a conflict, and cycle
through the code again.

In response to some of the fears about using mocks, lets utilize an
InMemoryDB fake and a NetoworkErrorDB fake in the next implementation.
This will force our tests to actually test in the performers in conjunction
with the other code. We are still using perform_sequence to inject the
fakes in a mock-like manner mind you.

class NetworkErrorDB(object):
 def get(self, doc_id, rev=LATEST):
 return DBResponse(status=DBStatus.NETWORK_ERROR)

 def put(self, doc_id, rev, doc):
 return DBResponse(status=DBStatus.NETWORK_ERROR)

class DBExecuteNetworkErrorTests(TestCase):

 def test_network_error(self):
 doc_id = uuid4()

 db = InMemoryDB()
 update_performer = update_performer_generator(db)
 get_performer = get_performer_generator(db)

 bad_db = NetworkErrorDB()
 bad_update_performer = update_performer_generator(bad_db)
 bad_get_performer = get_performer_generator(bad_db)

 db.put(doc_id, 0, {"test": "doc", "a": 1})
 doc_1 = {"test": "doc", "a": 1}
 doc_1_u = {"test": "doc", "a": 2}
 seq = [
 (GetIntent(doc_id), lambda i: bad_get_performer(None, i)),

 (GetIntent(doc_id), lambda i: get_performer(None, i)),

 (UpdateIntent(doc_id, 0, doc_1_u),
 lambda i: bad_update_performer(None, i)),

 (UpdateIntent(doc_id, 0, doc_1_u),
 lambda i: update_performer(None, i)),
]
 perform_sequence(seq, execute_function(
 doc_id, lambda x: dict(x, a=x.get("a", 0) + 1)
)
)

Test Failure:

>>> run_test(DBExecuteNetworkErrorTests)
ERROR(test_network_error)
Traceback (most recent call last):
 File "<interactive-shell>", line 36, in test_network_error
 File "effect/testing.py", line 115, in perform_sequence
 return sync_perform(dispatcher, eff)
 File "effect/_sync.py", line 34, in sync_perform
 six.reraise(*errors[0])
 File "effect/_base.py", line 78, in guard
 return (False, f(*args, **kwargs))
 File "effect/do.py", line 120, in <lambda>
 return val.on(success=lambda r: _do(r, generator, False),
 File "effect/do.py", line 100, in _do
 val = generator.send(result)
 File "<interactive-shell>", line 6, in execute_function
 File "<interactive-shell>", line 36, in <lambda>
AttributeError: 'NoneType' object has no attribute 'get'
...

The NETWORK_ERROR on the get is causing issues...

@do
def execute_function(doc_id, pure_function):
 done = False
 while not done:
 original_doc = None
 while original_doc is None:
 original_doc = yield Effect(GetIntent(doc_id=doc_id))
 if original_doc.status == DBStatus.NETWORK_ERROR:
 original_doc = None
 new_doc = pure_function(original_doc.doc)
 update_result = yield Effect(
 UpdateIntent(doc_id, original_doc.rev, new_doc))
 done = (update_result.status == DBStatus.OK)

Run the test again:

>>> run_test(DBExecuteNetworkErrorTests)
FAILURE(test_network_error)
Traceback (most recent call last):
 File "<interactive-shell>", line 36, in test_network_error
 File "effect/testing.py", line 115, in perform_sequence
 return sync_perform(dispatcher, eff)
 File "effect/_sync.py", line 34, in sync_perform
 six.reraise(*errors[0])
 File "effect/_base.py", line 78, in guard
 return (False, f(*args, **kwargs))
 File "effect/do.py", line 121, in <lambda>
 error=lambda e: _do(e, generator, True))
 File "effect/do.py", line 98, in _do
 val = generator.throw(*result)
 File "<interactive-shell>", line 7, in execute_function
 File "effect/_base.py", line 150, in _perform
 performer = dispatcher(effect.intent)
 File "effect/testing.py", line 108, in dispatcher
 intent, fmt_log()))
AssertionError: Performer not found: GetIntent<LATEST, 9515f7cf-8e34-c0f0-49ab-ddee515684b5>! Log follows:
{{{
sequence: GetIntent<LATEST, 9515f7cf-8e34-c0f0-49ab-ddee515684b5>
sequence: GetIntent<LATEST, 9515f7cf-8e34-c0f0-49ab-ddee515684b5>
sequence: UpdateIntent<1, 9515f7cf-8e34-c0f0-49ab-ddee515684b5, {'a': 2, 'test': 'doc'}>
NOT FOUND: GetIntent<LATEST, 9515f7cf-8e34-c0f0-49ab-ddee515684b5>
NEXT EXPECTED: UpdateIntent<0, 9515f7cf-8e34-c0f0-49ab-ddee515684b5, {'a': 2, 'test': 'doc'}>
}}}
...

The NETWORK_ERROR on the update is causing issues...

@do
def execute_function(doc_id, pure_function):
 done = False
 while not done:
 original_doc = None
 get_intent = GetIntent(doc_id=doc_id)
 while original_doc is None:
 original_doc = yield Effect(get_intent)
 if original_doc.status == DBStatus.NETWORK_ERROR:
 original_doc = None
 new_doc = pure_function(original_doc.doc)
 update_result = None
 update_intent = UpdateIntent(doc_id, original_doc.rev, new_doc)
 while update_result is None:
 update_result = yield Effect(update_intent)
 if update_result.status == DBStatus.NETWORK_ERROR:
 update_result = None
 done = (update_result.status == DBStatus.OK)

>>> run_test(DBExecuteNetworkErrorTests)
FAILURE(test_network_error)
Traceback (most recent call last):
 File "<interactive-shell>", line 36, in test_network_error
 File "effect/testing.py", line 115, in perform_sequence
 return sync_perform(dispatcher, eff)
 File "effect/_sync.py", line 34, in sync_perform
 six.reraise(*errors[0])
 File "effect/_base.py", line 78, in guard
 return (False, f(*args, **kwargs))
 File "effect/do.py", line 121, in <lambda>
 error=lambda e: _do(e, generator, True))
 File "effect/do.py", line 98, in _do
 val = generator.throw(*result)
 File "<interactive-shell>", line 15, in execute_function
 File "effect/_base.py", line 150, in _perform
 performer = dispatcher(effect.intent)
 File "effect/testing.py", line 108, in dispatcher
 intent, fmt_log()))
AssertionError: Performer not found: UpdateIntent<1, c2d99fe7-48e7-9846-a601-ce405b5baedf, {'a': 2, 'test': 'doc'}>! Log follows:
{{{
sequence: GetIntent<LATEST, c2d99fe7-48e7-9846-a601-ce405b5baedf>
sequence: GetIntent<LATEST, c2d99fe7-48e7-9846-a601-ce405b5baedf>
sequence: UpdateIntent<1, c2d99fe7-48e7-9846-a601-ce405b5baedf, {'a': 2, 'test': 'doc'}>
NOT FOUND: UpdateIntent<1, c2d99fe7-48e7-9846-a601-ce405b5baedf, {'a': 2, 'test': 'doc'}>
NEXT EXPECTED: UpdateIntent<0, c2d99fe7-48e7-9846-a601-ce405b5baedf, {'a': 2, 'test': 'doc'}>
}}}
...

For those of you who are familiar with Effect, you probably noticed pretty
early in this post what the error is about. My implementation of the
update_performer modifies the intent that is passed in when it is called.
Specifically it increments the revision of the intent in place before passing
it to the underlying call to db.put. With this implementation of how we
handle NETWORK_ERRORS we are re-using the same intent with the next performance
of update. The second run of update is unaware that the first one already
incremented rev, so it is incremented a second time. This is the source of
our bug.

Effect recommends against mutating intents, but there is not any mechanism that
enforces it. Luckily, depending on your code it might be sort of rare to re-use
intents. If you do happen to re-use intents though, and you have not been
diligent about never mutating them, you might be vulnerable to some pretty
pesky bugs to track down.

The quick fix is simply not to modify intent in the function:

def update_performer_generator(db):
 def update(dispatcher, intent):
 return db.put(intent.doc_id, intent.rev + 1, intent.doc)
 return update

>>> run_test(DBExecuteNetworkErrorTests)
[OK]

This for now pretty much wraps up my implementation using pure Effect, but
there is one last observation I’d like to make:

TypeDispatchers are just classes

Look at db_dispatcher:

def db_dispatcher(db):
 return TypeDispatcher({
 GetIntent: sync_performer(get_performer_generator(db)),
 UpdateIntent: sync_performer(update_performer_generator(db)),
 })

This is a chunk of python that describes what functions to execute when a
certain identifier (type of intent) occurs. At some later point during the
program some values will be passed to one of the code chucks associated with
one of the identifiers.

It is sort of a funny way of describing it, but to me this describes a class
definition. The intents are bundles of arguments, the type of the intents are
the names of the methods, and the TypeDispatcher instance represents an
object that is an instance of that type.

Think about attempting to create a TypeDispatcher that can perform the same
effects as the objects returned by db_dispatcher, but rather than
performing db interactions just writes an object to a file or reads an object
from a file:

_FILEPATH = '/tmp/datastore'

def _get_stored_obj():
 return json.load(open(_FILEPATH, "r"))

def _store_obj(obj):
 return json.dump(obj, open(_FILEPATH, "w"))

def file_update_performer(intent):
 file_store = _get_stored_obj()
 obj_revs = file_store.get(intent.doc_id, [])
 if len(obj_revs) != intent.rev:
 return DBResponse(status=DBStatus.CONFLICT)
 file_store[doc_id] = obj_revs
 obj_revs.push(intent.doc)
 _store_obj(file_store)

def file_get_performer(dispatcher, intent):
 file_store = _get_stored_obj()
 if intent.rev < LATEST:
 return DBResponse(status=DBStatus.BAD_REQUEST)
 try:
 return DBResponse(
 status=DBStatus.OK,
 rev=intent.rev,
 doc=file_store[intent.doc_id][intent.rev]
)
 except KeyError:
 return DBResponse(
 status=DBStatus.NOT_FOUND
)
 except IndexError:
 return DBResponse(
 status=DBStatus.NOT_FOUND
)

def file_dispatcher():
 return TypeDispatcher({
 GetIntent: sync_performer(file_get_performer),
 UpdateIntent: sync_performer(file_update_performer),
 })

This feels a lot like implementing another class that implements the same
interface. It is just writing performers for a specific intent types
(GetIntent and UpdateIntent) rather than writing methods with specific
names.

If you put a bunch of dispatchers together using a ComposedDispatcher it
is similar to subclassing, in that you are adding more performers to the same
namespace, just like adding more methods to the same class. There even is the
ability to overload since ComposedDispatchers prefer earlier dispatchers over
later dispatchers.

 Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ziffect 0.0.1 documentation

Coding with ziffect

The ziffect takes the idea of TypeDispatchers as a core part of the
design. Similar to zope interfaces, you start coding with ziffect by specifying
an interface that you will implement. It also builds upon pyrsistent
PClass s, and thus adds type-checking at intent creation time.

from uuid import UUID
from six import text_type
import ziffect

@ziffect.interface
class DBInterface(object):

 def get(doc_id=ziffect.argument(type=UUID),
 rev=ziffect.argument(type=int, default=LATEST)):
 pass

 def update(doc_id=ziffect.argument(type=UUID),
 rev=ziffect.argument(type=int),
 doc=ziffect.argument(type=dict)):
 pass

This specifies the interface to the DB that we intend to implement. So when we
write performers, we just write a class that implements the interface:

@ziffect.implements(DBInterface)
class ZiffectDB(object):
 def __init__(self, db):
 """
 :param db: The underlying db to make calls to.
 """
 self.db = db

 def get(self, doc_id, rev):
 return self.db.get(doc_id, rev)

 def update(self, doc_id, rev, doc):
 rev += 1
 return self.db.put(doc_id, rev, doc)

Note that this bit of code is supposed to encompass both the TypeDispatcher
as well as the performers from earlier.

Then when we go to actually implement our function, we need to be able to
create effects representing the methods on our interface. To do that we use
ziffect.effects. When you pass ziffect.effects a ziffect interface it
returns an object that has all the same methods as the interface and generates
effects representing the intent of having those methods called on some other
implementation:

from effect.do import do

@do
def execute_function(doc_id, pure_function):
 db_effects = ziffect.effects(DBInterface)
 result = yield db_effects.get(doc_id=doc_id)
 new_doc = pure_function(result.doc)
 yield db_effects.update(doc_id=doc_id,
 rev=result.rev,
 doc=new_doc)

Again we need a nice little wrapper if we are going to attempt to use this tool
interactively. Note that ziffect also can create dispatchers for you. The
ziffect dispatcher is created using ziffect.dispatcher. It takes a dict
that maps ziffect interfaces to objects that provide that interface. This
is effectively choosing the implementation of the interface that will be used
to perform effects created from ziffect.effects -style effect generators.

from effect import (
 sync_perform, ComposedDispatcher, base_dispatcher
)

def sync_execute_function(db, doc_id, function):
 dispatcher = ComposedDispatcher([
 ziffect.dispatcher({
 DBInterface: ZiffectDB(db)
 }),
 base_dispatcher
])
 sync_perform(
 dispatcher,
 execute_function(
 doc_id, function
)
)

Running the same interactive test that we ran on our effect implementation:

>>> db = DB()
>>> doc_id = uuid4()
>>> doc = {"cat": "mouse", "count": 10}
>>> db.put(doc_id, 0, doc)
DB Response<OK rev=0>

>>> def increment(doc_id):
... return sync_execute_function(
... db,
... doc_id,
... lambda x: dict(x, count=x.get('count', 0) + 1)
...)

>>> increment(doc_id)
>>> db.get(doc_id)
DB Response<OK rev=1 {"cat": "mouse", "count": 11}>

>>> increment(doc_id)
>>> db.get(doc_id)
DB Response<OK rev=2 {"cat": "mouse", "count": 12}>

>>> increment(doc_id)
>>> db.get(doc_id)
DB Response<OK rev=3 {"cat": "mouse", "count": 13}>

Again the happy case works right out of the box. Once again we’ll continue with
test-driven development. For starters, I’ll demonstrate directly how we can use
the same tools we used when testing effect to test with ziffect .

from effect.testing import perform_sequence

class DBExecuteFunctionTests(TestCase):

 def test_happy_case(self):
 db_intents = ziffect.intents(DBInterface)
 doc_id = uuid4()
 doc_1 = {"test": "doc", "a": 1}
 doc_1_u = {"test": "doc", "a": 2}
 seq = [
 (db_intents.get(doc_id=doc_id),
 lambda _: DBResponse(status=DBStatus.OK, rev=0, doc=doc_1)),

 (db_intents.update(doc_id=doc_id,
 rev=0,
 doc=doc_1_u),
 lambda _: DBResponse(status=DBStatus.OK)),
]
 perform_sequence(seq, execute_function(
 doc_id, lambda x: dict(x, a=x.get("a", 0) + 1)
)
)

 def test_sad_case(self):
 db_intents = ziffect.intents(DBInterface)
 doc_id = uuid4()
 doc_1 = {"test": "doc", "a": 1}
 doc_1_u = {"test": "doc", "a": 2}
 doc_2 = {"test": "doc2", "a": 5}
 doc_2_u = {"test": "doc2", "a": 6}
 seq = [
 (db_intents.get(doc_id=doc_id),
 lambda _: DBResponse(status=DBStatus.OK, rev=0, doc=doc_1)),

 (db_intents.update(doc_id=doc_id, rev=0, doc=doc_1_u),
 lambda _: DBResponse(status=DBStatus.CONFLICT)),

 (db_intents.get(doc_id=doc_id),
 lambda _: DBResponse(status=DBStatus.OK, rev=1, doc=doc_2)),

 (db_intents.update(doc_id=doc_id, rev=1, doc=doc_2_u),
 lambda _: DBResponse(status=DBStatus.OK)),
]
 perform_sequence(seq, execute_function(
 doc_id, lambda x: dict(x, a=x.get("a", 0) + 1)
)
)

Now to run the test and fix as needed:

>>> run_test(DBExecuteFunctionTests)
FAILURE(test_sad_case)
Traceback (most recent call last):
 File "<interactive-shell>", line 45, in test_sad_case
 File "effect/testing.py", line 115, in perform_sequence
 return sync_perform(dispatcher, eff)
 File "effect/testing.py", line 463, in consume
 [x[0] for x in self.sequence]))
AssertionError: Not all intents were performed: [_Intent(doc_id=UUID('3a80d1fb-b1b0-35b7-bd12-39ccdbbc9f69'), rev=-1), _Intent(doc={'a': 6, 'test': 'doc2'}, doc_id=UUID('3a80d1fb-b1b0-35b7-bd12-39ccdbbc9f69'), rev=1)]
...

We have the expected error of not doing a get in the case of receiving a
conflict notification.

Aside

Obviously the fact that all of those intents are named _Intent is less than
desireable. ziffect is a work in progress, and long term I hope to make
all of the meta attributes (__name__ and the like) on the auto-generated
intents much more usable.

Fixing the error by doing a full implementation:

@do
def execute_function(doc_id, pure_function):
 db_effects = ziffect.effects(DBInterface)
 done = False
 while not done:
 original = yield db_effects.get(doc_id=doc_id)
 new_doc = pure_function(original.doc)
 result = yield db_effects.update(doc_id=doc_id,
 rev=original.rev,
 doc=new_doc)
 done = (result.status == DBStatus.OK)

>>> run_test(DBExecuteFunctionTests)
[OK]

Okay, so already we have had a marginally easier time working with ziffect.
We did not have to write quite as much boiler plate code defining intents and
creating dispatchers, and the intents that ziffect created for us had
reasonable __repr__ and __eq__ implementations so we did not have to
deal with that ourselves.

For completeness, we’ll continue on with the addition of the NETWORK_ERROR
retries as we have done previously.

#@ziffect.implements(DBInterface)
class NetworkErrorDB(object):
 def get(self, doc_id, rev=LATEST):
 return DBResponse(status=DBStatus.NETWORK_ERROR)

 def put(self, doc_id, rev, doc):
 return DBResponse(status=DBStatus.NETWORK_ERROR)

class DBExecuteNetworkErrorTests(TestCase):

 def test_network_error(self):
 doc_id = uuid4()
 db_intents = ziffect.intents(DBInterface)

 db = InMemoryDB()
 bad_db = NetworkErrorDB()

 good_impl = ZiffectDB(db)
 bad_impl = ZiffectDB(bad_db)

 db.put(doc_id, 0, {"test": "doc", "a": 1})
 doc_1 = {"test": "doc", "a": 1}
 doc_1_u = {"test": "doc", "a": 2}
 seq = [
 (db_intents.get(doc_id=doc_id), bad_impl.get),

 (db_intents.get(doc_id=doc_id), good_impl.get),

 (db_intents.update(doc_id=doc_id, rev=0, doc=doc_1_u),
 bad_impl.update),

 (db_intents.update(doc_id=doc_id, rev=0, doc=doc_1_u),
 good_impl.update),
]
 ziffect.perform_sequence_destructed_args(
 seq, execute_function(
 doc_id, lambda x: dict(x, a=x.get("a", 0) + 1)
)
)

Note

>>> run_test(DBExecuteNetworkErrorTests)
ERROR(test_network_error)
Traceback (most recent call last):
 File "<interactive-shell>", line 38, in test_network_error
 File "<interactive-shell>", line 294, in perform_sequence_destructed_args
 effect_generator)
 File "effect/testing.py", line 115, in perform_sequence
 return sync_perform(dispatcher, eff)
 File "effect/_sync.py", line 34, in sync_perform
 six.reraise(*errors[0])
 File "effect/_base.py", line 78, in guard
 return (False, f(*args, **kwargs))
 File "effect/do.py", line 120, in <lambda>
 return val.on(success=lambda r: _do(r, generator, False),
 File "effect/do.py", line 100, in _do
 val = generator.send(result)
 File "<interactive-shell>", line 7, in execute_function
 File "<interactive-shell>", line 38, in <lambda>
AttributeError: 'NoneType' object has no attribute 'get'
...

So we have to actually add the retries on NETWORK_ERROR s:

@do
def execute_function(doc_id, pure_function):
 db_effects = ziffect.effects(DBInterface)
 done = False
 while not done:
 original = None
 while original is None:
 original = yield db_effects.get(doc_id=doc_id)
 if original.status == DBStatus.NETWORK_ERROR:
 original = None
 new_doc = pure_function(original.doc)
 result = None
 while result is None:
 result = yield db_effects.update(doc_id=doc_id,
 rev=original.rev,
 doc=new_doc)
 if result.status == DBStatus.NETWORK_ERROR:
 result = None
 done = (result.status == DBStatus.OK)

And we’ve completed our implementation:

>>> run_test(DBExecuteNetworkErrorTests)
[OK]

Summary

Hopefully, that example was sufficient to demonstrate the benifits of using
ziffect instead of effect directly, although there certainly is some
room for criticism:

	
	*Most of the benefits of ziffect come fro using pyrsistent to make

	intents. If you just have a codebase-wide policy of using pyrsistent to
make intents, you would not have to add the dependency on ziffect.* This

is probably true, and it certainly is the case the ziffect has made some
decisions in favor of ease-of-use over flexability. Nonetheless, I think
ziffect also comes with a model of code that is cleaner and easier to
maintain long term. Specifically, sandboxing performers behind interfaces
makes it easier to identify which performers concern a specific system of
side effects, and provide a clear interface to fake out if you want a fake
implementation for testing.

	``ziffect`` peformers do not get a ``dispatcher`` argument, how am I
supposed to write performers that dispatch other ``Events``. This is
certainly true, ziffect does not allow for as flexible performers
because it does not pass the dispatcher in. I’m still trying to figure out
how to think about the dispatcher argument, and processing ideas of what the
API should look like.

Sometimes dispatcher feels like dependency injection to me. For
instance, if you are writing a performer and you want to ensure that
something is logged before and after you do some operation, you might use
the dispatcher that is handed in to dispatch some Log events. You just
want to ensure the Log intent is handled, but the implementation is
determined at runtime by what dispatcher you have.

Other times, dispatcher is just providing an interface for performers
that are schedulers. For instance, you could have an in_parallel intent,
which would simply use the dispatcher to dispatch all of the events at once,
and then aggregate the events to a single event before concluding the event
they are performing. This feels subtly different than the other use of
dispatcher to me.

As I figure out how to reconcile these two uses of dispatcher and
determine if they are fundamentally different or effectively the same, I’ll
be extending the ziffect API to support these performers.

Future Work

	Lots of error handling tests. I’d like to add tests for common coding
mistakes, and ensure the errors raised are actionable for the programmer.

	Actual integration with zope.interface, presently the test matcher is a
lie, and actually integrating with zope.interface would allow for the
creation of proxy implementations.

	Utilities, like a function that takes a ziffect interface and a provider
of that interface, and returns an implementation of that interface that logs
before and after that function finishes.

	txziffect or equivalent.

 Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Ziffect 0.0.1 documentation

API

ziffect

The ziffect module.

	
ziffect.interface(wrapped_class)[source]

	Class decorator to wrap ziffect interfaces.

	Parameters:	wrapped_class – The class to wrap.

	Returns:	The newly created wrapped class.

	
ziffect.effects(interface)[source]

	Method to get an object that implements interface by just returning effects
for each method call.

	Parameters:	interface – The interface for which to create a provider.

	Returns:	A class with method names equal to the method names of the
interface. Each method on this class will generate an Effect for use
with the Effect library.

	
class ziffect.argument[source]

	Argument type

TODO(mewert): fill the rest of this in.

ziffect.matchers

The ziffect.matchers module, filled with convenient testtools matchers for use
with ziffect.

	
ziffect.matchers.Provides(interface)[source]

	Matches if interface is provided by the matchee.

 Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Ziffect 0.0.1 documentation

 Python Module Index

 z

 			

 		
 z	

 	[image: -]
 	
 ziffect	

 	
 	
 ziffect.matchers	

 Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Ziffect 0.0.1 documentation

Index

 A
 | E
 | I
 | P
 | Z

A

 	

 	argument (class in ziffect)

E

 	

 	effects() (in module ziffect)

I

 	

 	interface() (in module ziffect)

P

 	

 	Provides() (in module ziffect.matchers)

Z

 	

 	ziffect (module)

 	

 	ziffect.matchers (module)

 Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

 _modules/ziffect/matchers.html

 Navigation

 		
 index

 		
 modules |

 		Ziffect 0.0.1 documentation »

 		Module code »

 		ziffect »

 Source code for ziffect.matchers

"""
The ziffect.matchers module, filled with convenient testtools matchers for use
with ziffect.
"""

from testtools.matchers import Not, Is

[docs]def Provides(interface):
 """
 Matches if interface is provided by the matchee.
 """
 return Not(Is(None))

 © Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

_static/up.png

_static/plus.png

_static/comment-close.png

_static/file.png

_static/comment.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Ziffect 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Ziffect 0.0.1 documentation »

 All modules for which code is available

		ziffect

		ziffect.matchers

 © Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

_modules/ziffect.html

 Navigation

 		
 index

 		
 modules |

 		Ziffect 0.0.1 documentation »

 		Module code »

 Source code for ziffect

"""
The ziffect module.
"""

from __future__ import unicode_literals

from effect import TypeDispatcher, Effect, sync_performer
from effect.testing import perform_sequence
from pyrsistent import PClass, field, PClassMeta
from six import add_metaclass, iteritems
from funcsigs import signature

try:
 from collections import OrderedDict
except ImportError:
 from ordereddict import OrderedDict

__all__ = [
 'interface',
 'effects',
 'argument'
]

_TOKEN = object()

[docs]class argument(PClass):
 """
 Argument type

 TODO(mewert): fill the rest of this in.
 """
 type = field(type=type)
 default = field(initial=_TOKEN)

def _make_intent_from_args(args):
 """
 Create an intent type for a given set of arguments.

 :param args: a dict with keys as the names of arguments and values as
 :class:`argument`s.

 :returns: A new type that can hold all of the data to call a function that
 has the given arguments.
 """
 class _Intent(PClass):
 _ziffect_fields = sorted(args.keys())

 def _to_dict(self):
 return OrderedDict(
 (a, getattr(self, a)) for a in
 sorted(list(k for k in self._ziffect_fields))
)

 for name, arg in iteritems(args):
 if arg.default is _TOKEN:
 setattr(_Intent, name, field(type=arg.type))
 else:
 setattr(_Intent, name, field(type=arg.type,
 initial=arg.default))

 _PIntent = add_metaclass(PClassMeta)(_Intent)

 return _PIntent

def _iterate_methods(interface):
 """
 A generator to iterate over the methods of an interface.

 :param interface: A ziffect interface.

 :yields: names of methods.
 """
 for operator_name in dir(interface):
 if not operator_name.startswith('_'):
 yield operator_name

def _get_method_argspecs(interface):
 """
 A generator to get the argspecs of methods on an interface.

 :param interface: The ziffect interface to inspect.

 :yields: tuples of method name and dictionaries that map name of
 argument to :class:`argument` instances.
 """
 for method_name in _iterate_methods(interface):
 method = getattr(interface, method_name)
 sig = signature(method)
 args = dict(
 (name, arg.default)
 for name, arg in iteritems(sig.parameters)
)
 yield method_name, args

def _make_intents(argspecs):
 """
 Constructs intents for each of the argspecs passed in.

 :param argspecs: A dict with keys as method names, and values as
 dicts that map name of argument to :class:`argument` instances.

 :return: An intent class that has methods that return intents for each of
 the methods.
 """
 def _Intents(object):
 pass

 intents = dict(
 (method_name, _make_intent_from_args(args))
 for method_name, args in iteritems(argspecs)
)

 for k, v in iteritems(intents):
 setattr(_Intents, k, v)
 return _Intents

def _make_effect_method(intent):
 """
 Turn an intent into a method that creates an effect.

 :param intent: The class for the intent.

 :returns Effect: An effect that describes the given intent.
 """
 def _method(self, **kwargs):
 return Effect(intent(**kwargs))
 return _method

def _make_effects(intents, method_names):
 """
 Creates a class that has methods that generate effects for the given
 intents.

 :param intents: Corresponding _Intents object.
 :param method_names: list of the method_names of the interface.

 :returns: A new class with method names equal to the keys of the input.
 Each method on this class will generate an Effect for use with the
 Effect library.
 """
 class _Effects(object):
 pass

 for method_name in method_names:
 intent = getattr(intents, method_name)
 method = _make_effect_method(intent)
 setattr(_Effects, method_name, method)

 return _Effects()

[docs]def interface(wrapped_class):
 """
 Class decorator to wrap ziffect interfaces.

 :param wrapped_class: The class to wrap.

 :returns: The newly created wrapped class.
 """
 wrapped_class._ziffect_argspecs = dict(
 (key, value)
 for key, value in _get_method_argspecs(wrapped_class)
)
 wrapped_class._ziffect_intents = _make_intents(
 wrapped_class._ziffect_argspecs)
 wrapped_class._ziffect_effects = _make_effects(
 wrapped_class._ziffect_intents,
 wrapped_class._ziffect_argspecs.keys()
)
 return wrapped_class

def intents(interface):
 """
 Method to get an object that implements interface by just returning intents
 for each method call.

 :param interface: The interface for which to create a provider.

 :returns: A class with method names equal to the method names of the
 interface. Each method on this class will generate an Intent for use
 with the Effect library.
 """
 return interface._ziffect_intents

[docs]def effects(interface):
 """
 Method to get an object that implements interface by just returning effects
 for each method call.

 :param interface: The interface for which to create a provider.

 :returns: A class with method names equal to the method names of the
 interface. Each method on this class will generate an Effect for use
 with the Effect library.
 """
 return interface._ziffect_effects

def implements(interface):
 """
 Class decorator to indicate that wrapped_class implements the interface.

 :param interface: The interface that is implemented by the class.

 :returns: decorator for the wrapped class.
 """
 def _implements_decorator(wrapped_class):
 return wrapped_class
 return _implements_decorator

def _destruct_intent(intent):
 """
 Destructs an intent into a dict that can be used as keyword arguments to a
 ``ziffect`` style performer.
 """

def _make_performer(method, arg_keys):
 """
 Constructs a performer for that calls a specific method. This involves
 unpacking the intent into keyword arguments for the method.

 Note that this presently does not pass the dispatcher down to the
 underlying method. Thus, ziffect interface implementations presently cannot
 perform other effects that have side effects.

 :param method: The underlying method to call. Should be a method bound to
 an object that provides a ziffect interface.
 :param arg_keys: Iterable of strings that are both the keyword arguments of
 the method and the names of the attributes of the intent.

 :returns: An Effect performer that calls method with the arguments in the
 intent.
 """
 @sync_performer
 def _perform(dispatcher, intent):
 return method(**intent._to_dict())
 return _perform

def dispatcher(interface_map):
 """
 Creates a dispatcher for a number of interfaces.

 :param interface_map: A map from ziffect interface to a provider of the
 interface.

 :returns: An Effect dispatcher that will use the passed in interfaces to
 perform Effects that have been generated from the
 ``ziffect.effect(interface).method()`` implementation.
 """
 typemap = {}
 for interface, provider in iteritems(interface_map):
 intents = interface._ziffect_intents
 argspecs = interface._ziffect_argspecs
 for method_name in _iterate_methods(interface):
 method = getattr(provider, method_name)
 intent = getattr(intents, method_name)
 typemap[intent] = _make_performer(method,
 argspecs[method_name].keys())
 return TypeDispatcher(typemap)

def _i(fun):
 def b(i):
 return fun(**i._to_dict())
 return b

def perform_sequence_destructed_args(sequence, effect_generator):
 """
 Expect a sequence of intents and call a list of functions on those intents.
 Destruct the intents into keyword arguments. This enables testing of
 ``ziffect`` -style performers.

 :param sequence: A list of (intent, bound-ziffect-provider-method) tuples.
 :param effect_generator: The effect to perform.
 """
 return perform_sequence(
 list((intent, _i(function))
 for intent, function in sequence),
 effect_generator)

 © Copyright 2016, Marcus Henry Ewert.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/down.png

_static/minus.png

