
ZhuSuan Documentation
Release 0.4.0

ZhuSuan contributors

Aug 05, 2019

Contents

1 Installation 3
1.1 Variational Autoencoders . 3
1.2 Basic Concepts in ZhuSuan . 10
1.3 Bayesian Neural Networks . 14
1.4 Logistic Normal Topic Models . 20
1.5 zhusuan.distributions . 28
1.6 zhusuan.framework . 66
1.7 zhusuan.variational . 76
1.8 zhusuan.hmc . 85
1.9 zhusuan.sgmcmc . 87
1.10 zhusuan.evaluation . 90
1.11 zhusuan.transform . 91
1.12 zhusuan.diagnostics . 91
1.13 zhusuan.utils . 92
1.14 zhusuan.legacy . 92
1.15 Contributing . 143

2 Indices and tables 145

Bibliography 147

Python Module Index 149

Index 151

i

ii

ZhuSuan Documentation, Release 0.4.0

ZhuSuan is a python probabilistic programming library for Bayesian deep learning, which conjoins the complimen-
tary advantages of Bayesian methods and deep learning. ZhuSuan is built upon Tensorflow. Unlike existing deep
learning libraries, which are mainly designed for deterministic neural networks and supervised tasks, ZhuSuan pro-
vides deep learning style primitives and algorithms for building probabilistic models and applying Bayesian inference.
The supported inference algorithms include:

• Variational inference with programmable variational posteriors, various objectives and advanced gradient esti-
mators (SGVB, REINFORCE, VIMCO, etc.).

• Importance sampling for learning and evaluating models, with programmable proposals.

• Hamiltonian Monte Carlo (HMC) with parallel chains, and optional automatic parameter tuning.

Contents 1

https://www.tensorflow.org

ZhuSuan Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Installation

ZhuSuan is still under development. Before the first stable release (1.0), please clone the GitHub repository and run

pip install .

in the main directory. This will install ZhuSuan and its dependencies automatically. ZhuSuan also requires Tensorflow
version 1.13.0 or later. Because users should choose whether to install the cpu or gpu version of Tensorflow, we do
not include it in the dependencies. See Installing Tensorflow.

If you are developing ZhuSuan, you may want to install in an “editable” or “develop” mode. Please refer to the
Contributing section in README.

After installation, open your python console and type:

>>> import zhusuan as zs

If no error occurs, you’ve successfully installed ZhuSuan.

1.1 Variational Autoencoders

Variational Auto-Encoders (VAE) [VAEKW13] is one of the most widely used deep generative models. In
this tutorial, we show how to implement VAE in ZhuSuan step by step. The full script is at exam-
ples/variational_autoencoders/vae.py.

The generative process of a VAE for modeling binarized MNIST data is as follows:

𝑧 ∼ N(𝑧|0, 𝐼)

𝑥𝑙𝑜𝑔𝑖𝑡𝑠 = 𝑓𝑁𝑁 (𝑧)

𝑥 ∼ Bernoulli(𝑥|sigmoid(𝑥𝑙𝑜𝑔𝑖𝑡𝑠))

This generative process is a stereotype for deep generative models, which starts with a latent representation (𝑧) sampled
from a simple distribution (such as standard Normal). Then the samples are forwarded through a deep neural network
(𝑓𝑁𝑁) to capture the complex generative process of high dimensional observations such as images. Finally, some

3

https://github.com/thu-ml/zhusuan
https://www.tensorflow.org/install/
https://github.com/thu-ml/zhusuan/blob/master/README.md#contribution
https://github.com/thu-ml/zhusuan/blob/master/examples/variational_autoencoders/vae.py
https://github.com/thu-ml/zhusuan/blob/master/examples/variational_autoencoders/vae.py
https://www.tensorflow.org/get_started/mnist/beginners

ZhuSuan Documentation, Release 0.4.0

noise is added to the output to get a tractable likelihood for the model. For binarized MNIST, the observation noise is
chosen to be Bernoulli, with its parameters output by the neural network.

1.1.1 Build the model

In ZhuSuan, a model is constructed using BayesianNet, which describes a directed graphical model, i.e., Bayesian
networks. The suggested practice is to wrap model construction into a function (we shall see the meanings of these
arguments soon):

import zhusuan as zs

def build_gen(x_dim, z_dim, n, n_particles=1):
bn = zs.BayesianNet()

Following the generative process, first we need a standard Normal distribution to generate the latent representations
(𝑧). As presented in our graphical model, the data is generated in batches with batch size n, and for each data, the
latent representation is of dimension z_dim. So we add a stochastic node by bn.normal to generate samples of
shape [n, z_dim]:

z ~ N(z|0, I)
z_mean = tf.zeros([n, z_dim])
z = bn.normal("z", z_mean, std=1., group_ndims=1, n_samples=n_particles)

The method bn.normal is a helper function that creates a Normal distribution and adds a stochastic node that
follows this distribution to the BayesianNet instance. The returned z is a StochasticTensor, which is Tensor-
like and can be mixed with Tensors and fed into almost any Tensorflow primitives.

Note: To learn more about Distribution and BayesianNet. Please refer to Basic Concepts in ZhuSuan.

The shape of z_mean is [n, z_dim], which means that we have [n, z_dim] independent inputs fed into the
univariate Normal distribution. Because the input parameters are allowed to broadcast to match each other’s shape,
the standard deviation std is simply set to 1. Thus the shape of samples and probabilities evaluated at this node should
be of shape [n, z_dim]. However, what we want in modeling MNIST data, is a batch of [n] independent events,
with each one producing samples of z that is of shape [z_dim], which is the dimension of latent representations.
And the probabilities in every single event in the batch should be evaluated together, so the shape of local probabilities
should be [n] instead of [n, z_dim]. In ZhuSuan, the way to achieve this is by setting group_ndims‘, as we do in
the above model definition code. To help understand this, several other examples can be found in Distribution tutorial.
n_samples is the number of samples to generate. It is None by default, in which case a single sample is generated
without adding a new dimension.

Then we build a neural network of two fully-connected layers with 𝑧 as the input, which is supposed to learn the
complex transformation that generates images from their latent representations:

x_logits = f_NN(z)
h = tf.layers.dense(z, 500, activation=tf.nn.relu)
h = tf.layers.dense(h, 500, activation=tf.nn.relu)
x_logits = tf.layers.dense(h, x_dim)

Next, we add an observation distribution (noise) that follows the Bernoulli distribution to get a tractable likelihood
when evaluating the probability of an image:

x ~ Bernoulli(x|sigmoid(x_logits))
bn.bernoulli("x", x_logits, group_ndims=1)

4 Chapter 1. Installation

https://docs.scipy.org/doc/numpy-1.12.0/user/basics.broadcasting.html

ZhuSuan Documentation, Release 0.4.0

Note: The Bernoulli distribution accepts log-odds of probabilities instead of probabilities. This is designed
for numeric stability reasons. Similar tricks are used in Categorical , which accepts log-probabilities instead of
probabilities.

Putting together, the code for constructing a VAE is:

def build_gen(x_dim, z_dim, n, n_particles=1):
bn = zs.BayesianNet()
z_mean = tf.zeros([n, z_dim])
z = bn.normal("z", z_mean, std=1., group_ndims=1, n_samples=n_particles)
h = tf.layers.dense(z, 500, activation=tf.nn.relu)
h = tf.layers.dense(h, 500, activation=tf.nn.relu)
x_logits = tf.layers.dense(h, x_dim)
bn.bernoulli("x", x_logits, group_ndims=1)

1.1.2 Reuse the model

Unlike common deep learning models (MLP, CNN, etc.), which is for supervised tasks, a key difficulty in designing
programing primitives for generative models is their inner reusability. This is because in a probabilistic graphical
model, a stochastic node can have two kinds of states, observed or latent. Consider the above case, if z is a tensor
sampled from the prior, how about when you meet the condition that z is observed? In common practice of tensorflow
programming, one has to build another computation graph from scratch and reuse the Variables (weights here). If there
are many stochastic nodes in the model, this process will be really painful.

We provide a solution for this. To observe any stochastic nodes, pass a dictionary mapping of (name, Tensor)
pairs when constructing BayesianNet. This will assign observed values to corresponding StochasticTensor
s. For example, to observe a batch of images x_batch, write:

bn = zs.BayesianNet(observed={"x": x_batch})

Note: The observation passed must have the same type and shape as the StochasticTensor.

However, we usually need to pass different configurations of observations to the same BayesianNet more than
once. To achieve this, ZhuSuan provides a new class called MetaBayesianNet to represent the meta version of
BayesianNet which can repeatedly produce BayesianNet objects by accepting different observations. The rec-
ommended way to construct a MetaBayesianNet is by wrapping the function with a meta_bayesian_net()
decorator:

@zs.meta_bayesian_net(scope="gen")
def build_gen(x_dim, z_dim, n, n_particles=1):

...
return bn

model = build_gen(x_dim, z_dim, n, n_particles)

which transforms the function into returning a MetaBayesianNet instance:

>>> print(model)
<zhusuan.framework.meta_bn.MetaBayesianNet object at ...

so that we can observe stochastic nodes in this way:

1.1. Variational Autoencoders 5

ZhuSuan Documentation, Release 0.4.0

no observation
bn1 = model.observe()

observe x
bn2 = model.observe(x=x_batch)

Each time the function is called, a different observation assignment is used to construct a BayesianNet instance.
One question you may have in mind is that if there are Tensorflow Variables created in the above function, will them
be reused across these bn s? The answer is no by default, but you can enable this by switching on the reuse_variables
option in the decorator:

@zs.meta_bayesian_net(scope="gen", reuse_variables=True)
def build_gen(x_dim, z_dim, n, n_particles=1):

...
return bn

model = build_gen(x_dim, z_dim, n, n_particles)

Then bn1 and bn2 will share the same set of Tensorflow Variables.

Note: This only shares Tensorflow Variables across different BayesianNet instances generated by the same
MetaBayesianNet through the observe() method. Creating multiple MetaBayesianNet objects will recre-
ate the tensorflow Variables, for example, in

m = build_gen(x_dim, z_dim, n, n_particles)
bn = m.observe()

m_new = build_gen(x_dim, z_dim, n, n_particles)
bn_new = m_new.observe()

bn and bn_new will use a different set of Tensorflow Variables.

Since reusing Tensorflow Variables in repeated function calls is a typical need, we provide another decorator
reuse_variables() for the more general cases. Any function decorated by reuse_variables() will auto-
matically create Tensorflow Variables the first time they are called and reuse them thereafter.

1.1.3 Inference and learning

Having built the model, the next step is to learn it from binarized MNIST images. We conduct Maximum Likelihood
learning, that is, we are going to maximize the log likelihood of data in our model:

max
𝜃

log 𝑝𝜃(𝑥)

where 𝜃 is the model parameter.

Note: In this variational autoencoder, the model parameter is the network weights, in other words, it’s the Tensorflow
Variables created in the fully_connected layers.

However, the model we defined has not only the observation (𝑥) but also latent representation (𝑧). This makes it hard
for us to compute 𝑝𝜃(𝑥), which we call the marginal likelihood of 𝑥, because we only know the joint likelihood of the
model:

𝑝𝜃(𝑥, 𝑧) = 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)

6 Chapter 1. Installation

https://www.tensorflow.org/api_docs/python/tf/Variable
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

ZhuSuan Documentation, Release 0.4.0

while computing the marginal likelihood requires an integral over latent representation, which is generally intractable:

𝑝𝜃(𝑥) =

∫︁
𝑝𝜃(𝑥, 𝑧) 𝑑𝑧

The intractable integral problem is a fundamental challenge in learning latent variable models like VAEs. Fortunately,
the machine learning society has developed many approximate methods to address it. One of them is Variational
Inference. As the intuition is very simple, we briefly introduce it below.

Because directly optimizing log 𝑝𝜃(𝑥) is infeasible, we choose to optimize a lower bound of it. The lower bound is
constructed as

log 𝑝𝜃(𝑥) ≥ log 𝑝𝜃(𝑥)−KL(𝑞𝜑(𝑧|𝑥)‖𝑝𝜃(𝑧|𝑥))

= E𝑞𝜑(𝑧|𝑥) [log 𝑝𝜃(𝑥, 𝑧)− log 𝑞𝜑(𝑧|𝑥)]

= ℒ(𝜃, 𝜑)

where 𝑞𝜑(𝑧|𝑥) is a user-specified distribution of 𝑧 (called variational posterior) that is chosen to match the true
posterior 𝑝𝜃(𝑧|𝑥). The lower bound is equal to the marginal log likelihood if and only if 𝑞𝜑(𝑧|𝑥) = 𝑝𝜃(𝑧|𝑥), when the
Kullback–Leibler divergence between them (KL(𝑞𝜑(𝑧|𝑥)‖𝑝𝜃(𝑧|𝑥))) is zero.

Note: In Bayesian Statistics, the process represented by the Bayes’ rule

𝑝(𝑧|𝑥) =
𝑝(𝑧)(𝑥|𝑧)

𝑝(𝑥)

is called Bayesian Inference, where 𝑝(𝑧) is called the prior, 𝑝(𝑥|𝑧) is the conditional likelihood, 𝑝(𝑥) is the marginal
likelihood or evidence, and 𝑝(𝑧|𝑥) is known as the posterior.

This lower bound is usually called Evidence Lower Bound (ELBO). Note that the only probabilities we need to
evaluate in it is the joint likelihood and the probability of the variational posterior.

In variational autoencoder, the variational posterior (𝑞𝜑(𝑧|𝑥)) is also parameterized by a neural network (𝑔), which
accepts input 𝑥, and outputs the mean and variance of a Normal distribution:

𝜇𝑧(𝑥;𝜑), log 𝜎𝑧(𝑥;𝜑) = 𝑔𝑁𝑁 (𝑥)

𝑞𝜑(𝑧|𝑥) = N(𝑧|𝜇𝑧(𝑥;𝜑), 𝜎2
𝑧(𝑥;𝜑))

In ZhuSuan, the variational posterior can also be defined as a BayesianNet . The code for above definition is:

@zs.reuse_variables(scope="q_net")
def build_q_net(x, z_dim, n_z_per_x):

bn = zs.BayesianNet()
h = tf.layers.dense(tf.cast(x, tf.float32), 500, activation=tf.nn.relu)
h = tf.layers.dense(h, 500, activation=tf.nn.relu)
z_mean = tf.layers.dense(h, z_dim)
z_logstd = tf.layers.dense(h, z_dim)
bn.normal("z", z_mean, logstd=z_logstd, group_ndims=1, n_samples=n_z_per_x)
return bn

variational = build_q_net(x, z_dim, n_particles)

Having both model and variational, we can build the lower bound as:

lower_bound = zs.variational.elbo(
model, {"x": x}, variational=variational, axis=0)

1.1. Variational Autoencoders 7

https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Bayesian_inference

ZhuSuan Documentation, Release 0.4.0

The returned lower_bound is an EvidenceLowerBoundObjective instance, which is also Tensor-like and
can be evaluated directly. However, optimizing this lower bound objective needs special care. The easiest way is
to do stochastic gradient descent (SGD), which is very common in deep learning literature. However, the gradient
computation here involves taking derivatives of an expectation, which needs Monte Carlo estimation. This often
induces large variance if not properly handled.

Note: Directly using auto-differentiation to compute the gradients of EvidenceLowerBoundObjective often
gives you the wrong results. This is because auto-differentiation is not designed to handle expectations.

Many solutions have been proposed to estimate the gradient of some type of variational lower bound (ELBO
or others) with relatively low variance. To make this more automatic and easier to handle, ZhuSuan
has wrapped these gradient estimators all into methods of the corresponding variational objective (e.g., the
EvidenceLowerBoundObjective). These functions don’t return gradient estimates but a more convenient sur-
rogate cost. Applying SGD on this surrogate cost with respect to parameters is equivalent to optimizing the corre-
sponding variational lower bounds using the well-developed low-variance estimator.

Here we are using the Stochastic Gradient Variational Bayes (SGVB) estimator from the original paper of variational
autoencoders [VAEKW13]. This estimator takes benefits of a clever reparameterization trick to greatly reduce the
variance when estimating the gradients of ELBO. In ZhuSuan, one can use this estimator by calling the method
sgvb() of the class:~zhusuan.variational.exclusive_kl.EvidenceLowerBoundObjective instance. The code for this
part is:

the surrogate cost for optimization
cost = tf.reduce_mean(lower_bound.sgvb())

the lower bound value to print for monitoring convergence
lower_bound = tf.reduce_mean(lower_bound)

Note: For readers who are interested, we provide a detailed explanation of the sgvb() estimator used here, though
this is not required for you to use ZhuSuan’s variational functionality.

The key of SGVB estimator is a reparameterization trick, i.e., they reparameterize the random variable 𝑧 ∼ 𝑞𝜑(𝑧|𝑥) =
N(𝑧|𝜇𝑧(𝑥;𝜑), 𝜎2

𝑧(𝑥;𝜑)), as

𝑧 = 𝑧(𝜖;𝑥, 𝜑) = 𝜖𝜎𝑧(𝑥;𝜑) + 𝜇𝑧(𝑥;𝜑), 𝜖 ∼ N(0, 𝐼)

In this way, the expectation can be rewritten with respect to 𝜖:

ℒ(𝜑, 𝜃) = E𝑧∼𝑞𝜑(𝑧|𝑥) [log 𝑝𝜃(𝑥, 𝑧)− log 𝑞𝜑(𝑧|𝑥)]

= E𝜖∼N(0,𝐼) [log 𝑝𝜃(𝑥, 𝑧(𝜖;𝑥, 𝜑))− log 𝑞𝜑(𝑧(𝜖;𝑥, 𝜑)|𝑥)]

Thus the gradients with variational parameters 𝜑 can be directly moved into the expectation, enabling an unbiased
low-variance Monte Carlo estimator:

∇𝜑𝐿(𝜑, 𝜃) = E𝜖∼N(0,𝐼)∇𝜑 [log 𝑝𝜃(𝑥, 𝑧(𝜖;𝑥, 𝜑))− log 𝑞𝜑(𝑧(𝜖;𝑥, 𝜑)|𝑥)]

≈ 1

𝑘

𝑘∑︁
𝑖=1

∇𝜑 [log 𝑝𝜃(𝑥, 𝑧(𝜖𝑖;𝑥, 𝜑))− log 𝑞𝜑(𝑧(𝜖𝑖;𝑥, 𝜑)|𝑥)]

where 𝜖𝑖 ∼ N(0, 𝐼)

Now that we have had the cost, the next step is to do the stochastic gradient descent. Tensorflow provides many
advanced optimizers that improves the plain SGD, among which Adam [VAEKB14] is probably the most popular one
in deep learning society. Here we are going to use Tensorflow’s Adam optimizer to do the learning:

8 Chapter 1. Installation

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://www.tensorflow.org/api_guides/python/train

ZhuSuan Documentation, Release 0.4.0

optimizer = tf.train.AdamOptimizer(0.001)
infer_op = optimizer.minimize(cost)

1.1.4 Generate images

What we’ve done above is to define and learn the model. To see how it performs, we would like to let it generate some
images in the learning process. To improve the visual quality of generation, we remove the observation noise, i.e., the
Bernoulli distribution. We do this by using the direct output of the neural network (x_logits):

@zs.meta_bayesian_net(scope="gen", reuse_variables=True)
def build_gen(x_dim, z_dim, n, n_particles=1):

bn = zs.BayesianNet()
...

x_logits = tf.layers.dense(h, x_dim)
...

and adding a sigmoid function to it to get a “mean” image. After that, we add a deterministic node in bn to keep track
of the Tensor x_mean:

@zs.meta_bayesian_net(scope="gen", reuse_variables=True)
def build_gen(x_dim, z_dim, n, n_particles=1):

bn = zs.BayesianNet()
...

x_logits = tf.layers.dense(h, x_dim)
bn.deterministic("x_mean", tf.sigmoid(x_logits))

...

so that we can easily access it from a BayesianNet instance. For random generations, no observation about the
model is made, so we construct the corresponding BayesianNet by:

bn_gen = model.observe()

Then the generated samples can be fetched from the x_mean node of bn_gen:

x_gen = tf.reshape(bn_gen["x_mean"], [-1, 28, 28, 1])

1.1.5 Run gradient descent

Now, everything is good before a run. So we could just open the Tensorflow session, run the training loop, print
statistics, and write generated images to disk:

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

for epoch in range(1, epochs + 1):
time_epoch = -time.time()
np.random.shuffle(x_train)
lbs = []
for t in range(iters):

x_batch = x_train[t * batch_size:(t + 1) * batch_size]
_, lb = sess.run([infer_op, lower_bound],

feed_dict={x_input: x_batch,
n_particles: 1,

(continues on next page)

1.1. Variational Autoencoders 9

ZhuSuan Documentation, Release 0.4.0

(continued from previous page)

n: batch_size})
lbs.append(lb)

time_epoch += time.time()
print("Epoch {} ({:.1f}s): Lower bound = {}".format(

epoch, time_epoch, np.mean(lbs)))

if epoch % save_freq == 0:
images = sess.run(x_gen, feed_dict={n: 100, n_particles: 1})
name = os.path.join(result_path,

"vae.epoch.{}.png".format(epoch))
save_image_collections(images, name)

Below is a sample image of random generations from the model. Keep watching them and have fun :)

References

1.2 Basic Concepts in ZhuSuan

1.2.1 Distribution

Distributions are basic functionalities for building probabilistic models. The Distribution class is the base class
for various probabilistic distributions which support batch inputs, generating batches of samples and evaluate proba-
bilities at batches of given values.

The list of all available distributions can be found on these pages:

• univariate distributions

• multivariate distributions

We can create a univariate Normal distribution in ZhuSuan by:

>>> import zhusuan as zs
>>> a = zs.distributions.Normal(mean=0., logstd=0.)

The typical input shape for a Distribution is like batch_shape + input_shape, where input_shape
represents the shape of a non-batch input parameter; batch_shape represents how many independent inputs are fed
into the distribution. In general, distributions support broadcasting for inputs.

Samples can be generated by calling sample() method of distribution objects. The shape is ([n_samples] +
)batch_shape + value_shape. The first additional axis is omitted only when passed n_samples is None (by
default), in which case one sample is generated. value_shape is the non-batch value shape of the distribution. For
a univariate distribution, its value_shape is [].

10 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

An example of univariate distributions (Normal):

>>> import tensorflow as tf
>>> _ = tf.InteractiveSession()

>>> b = zs.distributions.Normal([[-1., 1.], [0., -2.]], [0., 1.])

>>> b.batch_shape.eval()
array([2, 2], dtype=int32)

>>> b.value_shape.eval()
array([], dtype=int32)

>>> tf.shape(b.sample()).eval()
array([2, 2], dtype=int32)

>>> tf.shape(b.sample(1)).eval()
array([1, 2, 2], dtype=int32)

>>> tf.shape(b.sample(10)).eval()
array([10, 2, 2], dtype=int32)

and an example of multivariate distributions (OnehotCategorical):

>>> c = zs.distributions.OnehotCategorical([[0., 1., -1.],
... [2., 3., 4.]])

>>> c.batch_shape.eval()
array([2], dtype=int32)

>>> c.value_shape.eval()
array([3], dtype=int32)

>>> tf.shape(c.sample()).eval()
array([2, 3], dtype=int32)

>>> tf.shape(c.sample(1)).eval()
array([1, 2, 3], dtype=int32)

>>> tf.shape(c.sample(10)).eval()
array([10, 2, 3], dtype=int32)

There are cases where a batch of random variables are grouped into a single event so that their probabilities can be com-
puted together. This is achieved by setting group_ndims argument, which defaults to 0. The last group_ndims number
of axes in batch_shape are grouped into a single event. For example, Normal(..., group_ndims=1) will
set the last axis of its batch_shape to a single event, i.e., a multivariate Normal with identity covariance matrix.

The log probability density (mass) function can be evaluated by passing given values to log_prob() method of
distribution objects. In that case, the given Tensor should be broadcastable to shape (... +)batch_shape +
value_shape. The returned Tensor has shape (... +)batch_shape[:-group_ndims]. For example:

>>> d = zs.distributions.Normal([[-1., 1.], [0., -2.]], 0.,
... group_ndims=1)

>>> d.log_prob(0.).eval()
array([-2.83787704, -3.83787727], dtype=float32)

>>> e = zs.distributions.Normal(tf.zeros([2, 1, 3]), 0.,

(continues on next page)

1.2. Basic Concepts in ZhuSuan 11

ZhuSuan Documentation, Release 0.4.0

(continued from previous page)

... group_ndims=2)

>>> tf.shape(e.log_prob(tf.zeros([5, 1, 1, 3]))).eval()
array([5, 2], dtype=int32)

1.2.2 BayesianNet

In ZhuSuan we support building probabilistic models as Bayesian networks, i.e., directed graphical models. Below we
use a simple Bayesian linear regression example to illustrate this. The generative process of the model is

𝑤 ∼ 𝑁(0, 𝛼2𝐼)

𝑦 ∼ 𝑁(𝑤⊤𝑥, 𝛽2)

where 𝑥 denotes the input feature in the linear regression. We apply a Bayesian treatment and assume a Normal prior
distribution of the regression weights 𝑤. Suppose the input feature has 5 dimensions. For simplicity we define the
input as a placeholder and fix the hyper-parameters:

x = tf.placeholder(tf.float32, shape=[5])
alpha = 1.
beta = 0.1

To define the model, the first step is to construct a BayesianNet instance:

bn = zs.BayesianNet()

A Bayesian network describes the dependency structure of the joint distribution over a set of random variables as
directed graphs. To support this, a BayesianNet instance can keep two kinds of nodes:

• Stochastic nodes. They are random variables in graphical models. The w node can be constructed as:

w = bn.normal("w", tf.zeros([x.shape[-1]], std=alpha)

Here w is a StochasticTensor that follows the Normal distribution:

>>> print(w)
<zhusuan.framework.bn.StochasticTensor object at ...

For any distribution available in zhusuan.distributions, we can find a method of BayesianNet for
creating the corresponding stochastic node. The returned StochasticTensor instances are Tensor-like,
which means that you can mix them with almost any Tensorflow primitives, for example, the predicted mean of
the linear regression is an inner product between w and the input x:

y_mean = tf.reduce_sum(w * x, axis=-1)

• Deterministic nodes. As the above code shows, deterministic nodes can be constructed directly with Tensorflow
operations, and in this way BayesianNet does not keep track of them. However, in some cases it’s convenient
to enable the tracking by the deterministic() method:

y_mean = bn.deterministic("y_mean", tf.reduce_sum(w * x, axis=-1))

This allows you to fetch the y_mean Tensor from bn whenever you want it.

The full code of building a Bayesian linear regression model is like:

12 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

def bayesian_linear_regression(x, alpha, beta):
bn = zs.BayesianNet()
w = bn.normal("w", mean=0., std=alpha)
y_mean = tf.reduce_sum(w * x, axis=-1)
bn.normal("y", y_mean, std=beta)
return bn

A unique feature of graphical models is that stochastic nodes are allowed to have undetermined behaviour (i.e., being
latent), and we can observe them at any time (then they are fixed to the observations). In ZhuSuan, the BayesianNet
can be initialized with a dictionary argument observed to assign observations to certain stochastic nodes, for example:

bn = zs.BayesianNet(observed={"w": w_obs})

will cause the random variable 𝑤 to be observed as w_obs. The result is that in bn, y_mean is computed from the
observed value of w (w_obs). For stochastic nodes that are not given observations, their samples will be used when the
corresponding StochasticTensor is involved in computation with Tensors or fed into Tensorflow operations. In
this example it means that if we don’t pass any observation to bn, the samples of w will be used to compute y_mean.

Although the above approach allows assigning observations to stochastic nodes, in most common cases, it is more
convenient to first define the graphical model, and then pass observations whenever needed. Besides, the model
should allow queries with different configurations of observations. To enable this workflow, we introduce a new
class MetaBayesianNet. Conceptually we can view MetaBayesianNet instances as the original model and
BayesianNet as the result of certain observations. As we shall see, BayesianNet instances can be lazily con-
structed from its meta class instance.

We made it very easy to define the model as a MetaBayesianNet. There is no change to the above code but just
adding a decorator to the function:

@zs.meta_bayesian_net(scope="model")
def bayesian_linear_regression(x, alpha, beta):

bn = zs.BayesianNet()
w = bn.normal("w", mean=0., std=alpha)
y_mean = tf.reduce_sum(w * x, axis=-1)
bn.normal("y", y_mean, std=beta)
return bn

The function decorated by zs.meta_bayesian_net() will return a MetaBayesianNet instead of the original
BayesianNet instance:

>>> model = bayesian_linear_regression(x, alpha, beta)

>>> print(model)
<zhusuan.framework.meta_bn.MetaBayesianNet object at ...

As we have mentioned, MetaBayesianNet can allow different configurations of observations. This is achieved
by its observe() method. We could pass observations as named arguments, and it will return a corresponding
BayesianNet instance, for example:

bn = model.observe(w=w_obs)

will set w to be observed in the returned BayesianNet instance bn. Calling the above function with different named
arguments instantiates the BayesianNet with different observations, which resembles the common behaviour of
probabilistic graphical models.

Note: The observation passed must have the same type and shape as the StochasticTensor.

1.2. Basic Concepts in ZhuSuan 13

ZhuSuan Documentation, Release 0.4.0

If there are tensorflow Variables created in a model construction function, you may want to reuse them
for BayesianNet instances with different observations. There is another decorator in ZhuSuan named
reuse_variables() to make this convenient. You could add it to any function that creates Tensorflow variables:

@zs.reuse_variables(scope="model")
def build_model(...):

bn = zs.BayesianNet()
...
return bn

or equivalently, switch on the reuse_variables option in the zs.meta_bayesian_net() decorator:

@zs.meta_bayesian_net(scope="model", reuse_variables=True)
def build_model(...):

bn = zs.BayesianNet()
...
return bn

Up to now we know how to construct a model and reuse it for different observations. After construction,
BayesianNet supports queries about the current state of the network, such as:

get named node(s)
w = bn["w"]
w, y = bn.get(["w", "y"])

get log probabilities of stochastic nodes conditioned on the current
value of other StochasticTensors.
log_pw, log_py = bn.cond_log_prob(["w", "y"])

get log joint probability given the current values of all stochastic
nodes
log_joint_value = bn.log_joint()

By default the log joint probability is computed by summing over conditional log probabilities at all stochastic nodes.
This requires that the distribution batch shapes of all stochastic nodes are correctly aligned. If not, the returned value
can be arbitrary. Most of the time you can adjust the group_ndims parameter of the stochastic nodes to fix this. If that’s
not the case, we still allow customizing the log joint probability function by rewriting it in the MetaBayesianNet
instance like:

meta_bn = build_linear_regression(x, alpha, beta)

def customized_log_joint(bn):
return tf.reduce_sum(

bn.cond_log_prob("w"), axis=-1) + bn.cond_log_prob("y")

meta_bn.log_joint = customized_log_joint

then all BayesianNet instances constructed from this meta_bn will use the provided customized function to
compute the result of bn.log_joint().

1.3 Bayesian Neural Networks

Note: This tutorial assumes that readers have been familiar with ZhuSuan’s basic concepts.

14 Chapter 1. Installation

https://www.tensorflow.org/api_docs/python/tf/Variable

ZhuSuan Documentation, Release 0.4.0

Recent years have seen neural networks’ powerful abilities in fitting complex transformations, with successful appli-
cations on speech recognition, image classification, and machine translation, etc. However, typical training of neural
networks requires lots of labeled data to control the risk of overfitting. And the problem becomes harder when it comes
to real world regression tasks. These tasks often have smaller amount of training data to use, and the high-frequency
characteristics of these data often makes neural networks easier to get trapped in overfitting.

A principled approach for solving this problem is Bayesian Neural Networks (BNN). In BNN, prior distributions
are put upon the neural network’s weights to consider the modeling uncertainty. By doing Bayesian inference on the
weights, one can learn a predictor which both fits to the training data and reasons about the uncertainty of its own
prediction on test data. In this tutorial, we show how to implement BNNs in ZhuSuan. The full script for this tutorial
is at examples/bayesian_neural_nets/bnn_vi.py.

We use a regression dataset called Boston housing. This has 𝑁 = 506 data points, with 𝐷 = 13 dimensions. The
generative process of a BNN for modeling multivariate regression is as follows:

𝑊𝑖 ∼ N(𝑊𝑖|0, 𝐼), 𝑖 = 1 · · ·𝐿.
𝑦𝑚𝑒𝑎𝑛 = 𝑓𝑁𝑁 (𝑥, {𝑊𝑖}𝐿𝑖=1)

𝑦 ∼ N(𝑦|𝑦𝑚𝑒𝑎𝑛, 𝜎
2)

This generative process starts with an input feature (𝑥), which is forwarded through a deep neural network (𝑓𝑁𝑁) with
𝐿 layers, whose parameters in each layer (𝑊𝑖) satisfy a factorized multivariate standard Normal distribution. With
this forward transformation, the model is able to learn complex relationships between the input (𝑥) and the output (𝑦).
Finally, some noise is added to the output to get a tractable likelihood for the model, which is typically a Gaussian
noise in regression problems. A graphical model representation for bayesian neural network is as follows.

1.3.1 Build the model

We start by the model building function (we shall see the meanings of these arguments later):

@zs.meta_bayesian_net(scope="bnn", reuse_variables=True)
def build_bnn(x, layer_sizes, n_particles):

bn = zs.BayesianNet()

Following the generative process, we need standard Normal distributions to generate the weights ({𝑊𝑖}𝐿𝑖=1) in each
layer. For a layer with n_in input units and n_out output units, the weights are of shape [n_out, n_in + 1]
(one additional column for bias). To support multiple samples (useful in inference and prediction), a common practice
is to set the n_samples argument to a placeholder, which we choose to be n_particles here:

1.3. Bayesian Neural Networks 15

https://github.com/thu-ml/zhusuan/blob/master/examples/bayesian_neural_nets/bnn_vi.py
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

ZhuSuan Documentation, Release 0.4.0

h = tf.tile(x[None, ...], [n_particles, 1, 1])
for i, (n_in, n_out) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):

w = bn.normal("w" + str(i), tf.zeros([n_out, n_in + 1]), std=1.,
group_ndims=2, n_samples=n_particles)

Note that we expand x with a new dimension and tile it to enable computation with multiple particles of weight
samples. To treat the weights in each layer as a whole and evaluate the probability of them together, group_ndims
is set to 2. If you are unfamiliar with this property, see Distribution for details.

Then we write the feed-forward process of neural networks, through which the connection between output y and input
x is established:

for i, (n_in, n_out) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
w = bn.normal("w" + str(i), tf.zeros([n_out, n_in + 1]), std=1.,

group_ndims=2, n_samples=n_particles)
h = tf.concat([h, tf.ones(tf.shape(h)[:-1])[..., None]], -1)
h = tf.einsum("imk,ijk->ijm", w, h) / tf.sqrt(

tf.cast(tf.shape(h)[2], tf.float32))
if i < len(layer_sizes) - 2:

h = tf.nn.relu(h)

Next, we add an observation distribution (noise) to get a tractable likelihood when evaluating the probability:

y_mean = bn.deterministic("y_mean", tf.squeeze(h, 2))
y_logstd = tf.get_variable("y_logstd", shape=[],

initializer=tf.constant_initializer(0.))
bn.normal("y", y_mean, logstd=y_logstd)

Putting together and adding model reuse, the code for constructing a BNN is:

@zs.meta_bayesian_net(scope="bnn", reuse_variables=True)
def build_bnn(x, layer_sizes, n_particles):

bn = zs.BayesianNet()
h = tf.tile(x[None, ...], [n_particles, 1, 1])
for i, (n_in, n_out) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):

w = bn.normal("w" + str(i), tf.zeros([n_out, n_in + 1]), std=1.,
group_ndims=2, n_samples=n_particles)

h = tf.concat([h, tf.ones(tf.shape(h)[:-1])[..., None]], -1)
h = tf.einsum("imk,ijk->ijm", w, h) / tf.sqrt(

tf.cast(tf.shape(h)[2], tf.float32))
if i < len(layer_sizes) - 2:

h = tf.nn.relu(h)

y_mean = bn.deterministic("y_mean", tf.squeeze(h, 2))
y_logstd = tf.get_variable("y_logstd", shape=[],

initializer=tf.constant_initializer(0.))
bn.normal("y", y_mean, logstd=y_logstd)
return bn

1.3.2 Inference

Having built the model, the next step is to infer the posterior distribution, or uncertainty of weights given the training
data.

𝑝(𝑊 |𝑥1:𝑁 , 𝑦1:𝑁) ∝ 𝑝(𝑊)

𝑁∏︁
𝑛=1

𝑝(𝑦𝑛|𝑥𝑛,𝑊)

16 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Because the normalizing constant is intractable, we cannot directly compute the posterior distribution of network
parameters ({𝑊𝑖}𝐿𝑖=1). In order to solve this problem, we use Variational Inference, i.e., using a variational distribution
𝑞𝜑({𝑊𝑖}𝐿𝑖=1) =

∏︀𝐿
𝑖=1 𝑞𝜑𝑖

(𝑊𝑖) to approximate the true posterior. The simplest variational posterior (𝑞𝜑𝑖
(𝑊𝑖)) we can

specify is factorized (also called mean-field) Normal distribution parameterized by its mean and log standard deviation.

𝑞𝜑𝑖
(𝑊𝑖) = N(𝑊𝑖|𝜇𝑖, 𝜎𝑖

2)

The code for above definition is:

@zs.reuse_variables(scope="variational")
def build_mean_field_variational(layer_sizes, n_particles):

bn = zs.BayesianNet()
for i, (n_in, n_out) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):

w_mean = tf.get_variable(
"w_mean_" + str(i), shape=[n_out, n_in + 1],
initializer=tf.constant_initializer(0.))

w_logstd = tf.get_variable(
"w_logstd_" + str(i), shape=[n_out, n_in + 1],
initializer=tf.constant_initializer(0.))

bn.normal("w" + str(i), w_mean, logstd=w_logstd,
n_samples=n_particles, group_ndims=2)

return bn

In Variational Inference, to make 𝑞𝜑(𝑊) approximate 𝑝(𝑊 |𝑥1:𝑁 , 𝑦1:𝑁) well. We need to maximize a lower bound of
the marginal log probability (log 𝑝(𝑦|𝑥)):

log 𝑝(𝑦1:𝑁 |𝑥1:𝑁) ≥ log 𝑝(𝑦1:𝑁 |𝑥1:𝑁)−KL(𝑞𝜑(𝑊)‖𝑝(𝑊 |𝑥1:𝑁 , 𝑦1:𝑁))

= E𝑞𝜑(𝑊) [log(𝑝(𝑦1:𝑁 |𝑥1:𝑁 ,𝑊)𝑝(𝑊))− log 𝑞𝜑(𝑊)]

, ℒ(𝜑)

The lower bound is equal to the marginal log likelihood if and only if 𝑞𝜑(𝑊) = 𝑝(𝑊 |𝑥1:𝑁 , 𝑦1:𝑁), for 𝑖 in 1 · · ·𝐿,
when the Kullback–Leibler divergence between them (KL(𝑞𝜑(𝑊)‖𝑝(𝑊 |𝑥1:𝑁 , 𝑦1:𝑁)) is zero.

This lower bound is usually called Evidence Lower Bound (ELBO). Note that the only probabilities we need to
evaluate in it is the joint likelihood and the probability of the variational posterior. The log conditional likelihood is

log 𝑝(𝑦1:𝑁 |𝑥1:𝑁 ,𝑊) =

𝑁∑︁
𝑛=1

log 𝑝(𝑦𝑛|𝑥𝑛,𝑊)

Computing log conditional likelihood for the whole dataset is very time-consuming. In practice, we sub-sample a
minibatch of data to approximate the conditional likelihood

log 𝑝(𝑦1:𝑁 |𝑥1:𝑁 ,𝑊) ≈ 𝑁

𝑀

𝑀∑︁
𝑚=1

log 𝑝(𝑦𝑚|𝑥𝑚,𝑊)

Here {(𝑥𝑚, 𝑦𝑚)}𝑚=1:𝑀 is a subset including 𝑀 random samples from the training set {(𝑥𝑛, 𝑦𝑛)}𝑛=1:𝑁 . 𝑀 is called
the batch size. By setting the batch size relatively small, we can compute the lower bound above efficiently.

Note: Different from models like VAEs, BNN’s latent variables {𝑊𝑖}𝐿𝑖=1 are global for all the data, therefore we
don’t explicitly condition 𝑊 on each data in the variational posterior.

We optimize this lower bound by stochastic gradient descent. As we have done in the VAE tutorial, the Stochastic
Gradient Variational Bayes (SGVB) estimator is used. The code for this part is:

1.3. Bayesian Neural Networks 17

https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Stochastic_gradient_descent

ZhuSuan Documentation, Release 0.4.0

model = build_bnn(x, layer_sizes, n_particles)
variational = build_mean_field_variational(layer_sizes, n_particles)

def log_joint(bn):
log_pws = bn.cond_log_prob(w_names)
log_py_xw = bn.cond_log_prob('y')
return tf.add_n(log_pws) + tf.reduce_mean(log_py_xw, 1) * n_train

model.log_joint = log_joint

lower_bound = zs.variational.elbo(
model, {'y': y}, variational=variational, axis=0)

cost = lower_bound.sgvb()

optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
infer_op = optimizer.minimize(cost)

1.3.3 Evaluation

What we’ve done above is to define the model and infer the parameters. The main purpose of doing this is to predict
about new data. The probability distribution of new data (𝑦) given its input feature (𝑥) and our training data (𝐷) is

𝑝(𝑦|𝑥,𝐷) =

∫︁
𝑊

𝑝(𝑦|𝑥,𝑊)𝑝(𝑊 |𝐷)

Because we have learned the approximation of 𝑝(𝑊 |𝐷) by the variational posterior 𝑞(𝑊), we can substitute it into
the equation

𝑝(𝑦|𝑥,𝐷) ≃
∫︁
𝑊

𝑝(𝑦|𝑥,𝑊)𝑞(𝑊)

Although the above integral is still intractable, Monte Carlo estimation can be used to get an unbiased estimate of it
by sampling from the variational posterior

𝑝(𝑦|𝑥,𝐷) ≃ 1

𝑀

𝑀∑︁
𝑖=1

𝑝(𝑦|𝑥,𝑊 𝑖) 𝑊 𝑖 ∼ 𝑞(𝑊)

We can choose the mean of this predictive distribution to be our prediction on new data

𝑦𝑝𝑟𝑒𝑑 = E𝑝(𝑦|𝑥,𝐷) 𝑦 ≃
1

𝑀

𝑀∑︁
𝑖=1

E𝑝(𝑦|𝑥,𝑊 𝑖) 𝑦 𝑊 𝑖 ∼ 𝑞(𝑊)

The above equation can be implemented by passing the samples from the variational posterior as observations into
the model, and averaging over the samples of y_mean from the resulting BayesianNet. The trick here is that the
procedure of observing 𝑊 as samples from 𝑞(𝑊) has been implemented when constructing the evidence lower bound,
and we can fetch the intermediate BayesianNet instance by lower_bound.bn:

prediction: rmse & log likelihood
y_mean = lower_bound.bn["y_mean"]
y_pred = tf.reduce_mean(y_mean, 0)

The predictive mean is given by y_mean. To see how this performs, we would like to compute some quantitative
measurements including Root Mean Squared Error (RMSE) and log likelihood.

18 Chapter 1. Installation

https://en.wikipedia.org/wiki/Root-mean-square_deviation
https://en.wikipedia.org/wiki/Likelihood_function#Log-likelihood

ZhuSuan Documentation, Release 0.4.0

RMSE is defined as the square root of the predictive mean square error, smaller RMSE means better predictive accu-
racy:

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑛=1

(𝑦𝑝𝑟𝑒𝑑𝑛 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡𝑛)2

Log likelihood (LL) is defined as the natural logarithm of the likelihood function, larger LL means that the learned
model fits the test data better:

𝐿𝐿 = log 𝑝(𝑦|𝑥,𝐷)

≃ log

∫︁
𝑊

𝑝(𝑦|𝑥,𝑊)𝑞(𝑊)

This can also be computed by Monte Carlo estimation

𝐿𝐿 ≃ log
1

𝑀

𝑀∑︁
𝑖=1

𝑝(𝑦|𝑥,𝑊 𝑖) 𝑊 𝑖 ∼ 𝑞(𝑊)

To be noted, as we usually standardized the data to make them have unit variance at beginning (check the full script
examples/bayesian_neural_nets/bnn_vi.py), we need to count its effect in our evaluation formulas. RMSE is propor-
tional to the amplitude, therefore the final RMSE should be multiplied with the standard deviation. For log likelihood,
it needs to be subtracted by a log term. All together, the code for evaluation is:

prediction: rmse & log likelihood
y_mean = lower_bound.bn["y_mean"]
y_pred = tf.reduce_mean(y_mean, 0)
rmse = tf.sqrt(tf.reduce_mean((y_pred - y) ** 2)) * std_y_train
log_py_xw = lower_bound.bn.cond_log_prob("y")
log_likelihood = tf.reduce_mean(zs.log_mean_exp(log_py_xw, 0)) - tf.log(

std_y_train)

1.3.4 Run gradient descent

Again, everything is good before a run. Now add the following codes to run the training loop and see how your BNN
performs:

Run the inference
with tf.Session() as sess:

sess.run(tf.global_variables_initializer())
for epoch in range(1, epochs + 1):

perm = np.random.permutation(x_train.shape[0])
x_train = x_train[perm, :]
y_train = y_train[perm]
lbs = []
for t in range(iters):

x_batch = x_train[t * batch_size:(t + 1) * batch_size]
y_batch = y_train[t * batch_size:(t + 1) * batch_size]
_, lb = sess.run(

[infer_op, lower_bound],
feed_dict={n_particles: lb_samples,

x: x_batch, y: y_batch})
lbs.append(lb)

print('Epoch {}: Lower bound = {}'.format(epoch, np.mean(lbs)))

(continues on next page)

1.3. Bayesian Neural Networks 19

https://github.com/thu-ml/zhusuan/blob/master/examples/bayesian_neural_nets/bnn_vi.py

ZhuSuan Documentation, Release 0.4.0

(continued from previous page)

if epoch % test_freq == 0:
test_rmse, test_ll = sess.run(

[rmse, log_likelihood],
feed_dict={n_particles: ll_samples,

x: x_test, y: y_test})
print('>> TEST')
print('>> Test rmse = {}, log_likelihood = {}'

.format(test_rmse, test_ll))

1.4 Logistic Normal Topic Models

The full script for this tutorial is at examples/topic_models/lntm_mcem.py.

1.4.1 An introduction to topic models and Latent Dirichlet Allocation

Nowadays it is much easier to get large corpus of documents. Even if there are no suitable labels with these docu-
ments, much information can be extracted. We consider designing a probabilistic model to generate the documents.
Generative models can bring more benefits than generating more data. One can also fit the data under some specific
structure through generative models. By inferring the parameters in the model (either return a most probable value or
figure out its distribution), some valuable information may be discovered.

For example, we can model documents as arising from multiple topics, where a topic is defined to be a distribution
over a fixed vocabulary of terms. The most famous model is Latent Dirichlet Allocation (LDA) [LNTMBNJ03].
First we describe the notations. Following notations differ from the standard notations in two places for consistence
with our notations of LNTM: The topics is denoted �⃗� instead of 𝛽, and the scalar Dirichlet prior of topics is 𝛿 instead
of 𝜂. Suppose there are 𝐷 documents in the corpus, and the 𝑑th document has 𝑁𝑑 words. Let 𝐾 be a specified number
of topics, 𝑉 the size of vocabulary, �⃗� a positive 𝐾 dimension-vector, and 𝛿 a positive scalar. Let Dir𝐾(�⃗�) denote a 𝐾-
dimensional Dirichlet with vector parameter �⃗� and Dir𝑉 (𝛿) denote a 𝑉 -dimensional Dirichlet with scalar parameter
𝛿. Let Catg(𝑝) be a categorical distribution with vector parameter 𝑝 = (𝑝1, 𝑝2, ..., 𝑝𝑛)𝑇 (

∑︀𝑛
𝑖=1 𝑝𝑖 = 1) and support

{1, 2, ..., 𝑛}.

Note: Sometimes, the categorical and multinomial distributions are conflated, and it is common to speak of a “multi-
nomial distribution” when a “categorical distribution” would be more precise. These two distributions are distin-
guished in ZhuSuan.

The generative process is:

�⃗�𝑘 ∼ Dir𝑉 (𝛿), 𝑘 = 1, 2, ...,𝐾

𝜃𝑑 ∼ Dir𝐾(�⃗�), 𝑑 = 1, 2, ..., 𝐷

𝑧𝑑𝑛 ∼ Catg(𝜃𝑑), 𝑑 = 1, 2, ..., 𝐷, 𝑛 = 1, 2, ..., 𝑁𝑑

𝑤𝑑𝑛 ∼ Catg(�⃗�𝑧𝑑𝑛), 𝑑 = 1, 2, ..., 𝐷, 𝑛 = 1, 2, ..., 𝑁𝑑

In more detail, we first sample 𝐾 topics {�⃗�𝑘}𝐾𝑘=1 from the symmetric Dirichlet prior with parameter 𝛿, so each topic
is a 𝐾-dimensional vector, whose components sum up to 1. These topics are shared among different documents.
Then for each document, suppose it is the 𝑑th document, we sample a topic proportion vector 𝜃𝑑 from the Dirichlet
prior with parameter �⃗�, indicating the topic proportion of this document, such as 70% topic 1 and 30% topic 2. Next
we start to sample the words in the document. Sampling each word 𝑤𝑑𝑛 is a two-step process: first, sample the
topic assignment 𝑧𝑑𝑛 from the categorical distribution with parameter 𝜃𝑑; secondly, sample the word 𝑤𝑑𝑛 from the

20 Chapter 1. Installation

https://github.com/thu-ml/zhusuan/blob/master/examples/topic_models/lntm_mcem.py

ZhuSuan Documentation, Release 0.4.0

categorical distribution with parameter �⃗�𝑧𝑑𝑛 . The range of 𝑑 is 1 to 𝐷, and the range of 𝑛 is 1 to 𝑁𝑑 in the 𝑑th
document. The model is shown as a directed graphical model in the following figure.

Note: Topic {𝜑𝑘}, topic proportion {𝜃𝑑}, and topic assignment {𝑧𝑑𝑛} have very different meaning. Topic means
some distribution over the words in vocabulary. For example,a topic consisting of 10% “game”, 5% “hockey”, 3%
“team”, . . . , possibly means a topic about sports. They are shared among different documents. A topic proportion
belongs to a document, roughly indicating the probability distribution of topics in the document. A topic assignment
belongs to a word in a document, indicating when sampling the word, which topic is sampled first, so the word
is sampled from this assigned topic. Both topic, topic proportion, and topic assignment are latent variables which
we have not observed. The only observed variable in the generative model is the words {𝑤𝑑𝑛}, and what Bayesian
inference needs to do is to infer the posterior distribution of topic {𝜑𝑘}, topic proportion {𝜃𝑑}, and topic assignment
{𝑧𝑑𝑛}.

The key property of LDA is conjugacy between the Dirichlet prior and likelihood. We can write the joint probability
distribution as follows:

𝑝(𝑤1:𝐷,1:𝑁 , 𝑧1:𝐷,1:𝑁 , 𝜃1:𝐷, �⃗�1:𝐾 ; �⃗�, 𝛿) =

𝐾∏︁
𝑘=1

𝑝(�⃗�𝑘; 𝛿)

𝐷∏︁
𝑑=1

{𝑝(𝜃𝑑; �⃗�)

𝑁𝑑∏︁
𝑛=1

[𝑝(𝑧𝑑𝑛|𝜃𝑑)𝑝(𝑤𝑑𝑛|𝑧𝑑𝑛, �⃗�1:𝐾)]}

Here 𝑝(𝑦|𝑥) means conditional distribution in which 𝑥 is a random variable, but 𝑝(𝑦;𝑥) means distribution parameter-
ized by 𝑥, while 𝑥 is a fixed value.

We denote Θ = (𝜃1, 𝜃2, ..., 𝜃𝐷)𝑇 , Φ = (�⃗�1, �⃗�2, ..., �⃗�𝐾)𝑇 . Then Θ is a 𝐷 × 𝐾 matrix with each row representing
topic proportion of one document, while Φ is a 𝐾 × 𝑉 matrix with each row representing a topic. We also denote
z = 𝑧1:𝐷,1:𝑁 and w = 𝑤1:𝐷,1:𝑁 for convenience.

Our goal is to do posterior inference from the joint distribution. Since there are three sets of latent variables in the joint
distribution: Θ, Φ and z, inferring their posterior distribution at the same time will be difficult, but we can leverage the
conjugacy between Dirichlet prior such as 𝑝(𝜃𝑑; �⃗�) and the multinomial likelihood such as

∏︀𝑁𝑑

𝑛=1 𝑝(𝑧𝑑𝑛|𝜃𝑑) (here the
multinomial refers to a product of a bunch of categorical distribution, i.e. ignore the normalizing factor of multinomial
distribution).

Two ways to leverage this conjugacy are:

(1) Iterate by fixing two sets of latent variables, and do conditional computing for the remaining set. The examples
are Gibbs sampling and mean-field variational inference. For Gibbs sampling, each iterating step is fixing the value
of samples of two sets, and sample from the conditional distribution of the remaining set. For mean-field variational
inference, we often optimize by coordinate ascent: each iterating step is fixing the variational distribution of two sets,
and updating the variational distribution of the remaining set based on the parameters of the variational distribution of
the two sets. Thanks to the conjugacy, both conditional distribution in Gibbs sampling and conditional update of the
variational distribution in variational inference are tractable.

(2) Alternatively, we can integrate out some sets of latent variable before doing further inference. For example, we can
integrate out Θ and Φ, remaining the joint distribution 𝑝(w, z; �⃗�, 𝛿) and do Gibbs sampling or variational Bayes on z.
After having a estimation to z, we can extract some estimation about Φ as the topic information too. These methods
are called respectively collapsed Gibbs sampling, and collapsed variational Bayesian inference.

1.4. Logistic Normal Topic Models 21

ZhuSuan Documentation, Release 0.4.0

However, conjugacy requires the model being designed carefully. Here, we use a more direct and general method to
do Bayesian inference: Monte-Carlo EM, with HMC [LNTMN+11] as the Monte-Carlo sampler.

1.4.2 Logistic Normal Topic Model in ZhuSuan

Integrating out Θ and Φ requires conjugacy, or the integration is intractable. But integrating z is always tractable since
z is discrete. Now we have:

𝑝(𝑤𝑑𝑛 = 𝑣|𝜃𝑑,Φ) =

𝐾∑︁
𝑘=1

(𝜃𝑑)𝑘Φ𝑘𝑣

More compactly,

𝑝(𝑤𝑑𝑛|𝜃𝑑,Φ) = Catg(Φ𝑇 𝜃𝑑)

which means when sampling the words in the 𝑑th document, the word distribution is the weighted average of all topics,
and the weights are the topic proportion of the document.

In LDA we implicitly use the bag-of-words model, and here we make it explicit. Let �⃗�𝑑 be a 𝑉 -dimensional vector,
�⃗�𝑑 =

∑︀𝑁𝑑

𝑛=1 one_hot(𝑤𝑑𝑛). That is, for 𝑣 from 1 to 𝑉 , (�⃗�𝑑)𝑣 represents the occurence count of the 𝑣th word in the
document. Denote X = (�⃗�1, �⃗�2, ..., �⃗�𝐷)𝑇 , which is a 𝐷 × 𝑉 matrix. You can verify the following concise formula:

log 𝑝(X|Θ,Φ) = −CE(X,ΘΦ)

Here, CE means cross entropy, which is defined for matrices as CE(A,B) = −
∑︀

𝑖,𝑗 𝐴𝑖𝑗 log𝐵𝑖𝑗 . Note that
𝑝(X|Θ,Φ) is not a proper distribution; It is a convenient term representing the likelihood of parameters. What we
actually means is log 𝑝(𝑤1:𝐷,1:𝑁 |Θ,Φ) = −CE(X,ΘΦ).

A intuitive demonstration of Θ, Φ and ΘΦ is shown in the following picture. Θ is the document-topic matrix, Φ is
the topic-word matrix, and then ΘΦ is the document-word matrix, which contains the word sampling distribution of
each document.

As minimizing the cross entropy encourages X and ΘΦ to be similar, this may remind you of low-rank matrix
factorization. It is natural since topic models can be interpreted as learning “document-topics” parameters and “topic-
words” parameters. In fact one of the earliest topic models are solved using SVD, a standard algorithm for low-rank
matrix factorization. However, as a probabilistic model, our model is different from matrix factorization by SVD (e.g.
the loss function is different). Probabilistic model is more interpretable and can be solved by more algorithms, and
Bayesian model can bring the benefits of incorporating prior knowledge and inferring with uncertainty.

After integrating z, only Θ and Φ are left, and there is no conjugacy any more. Even if we apply the “conditional
computing” trick like Gibbs sampling, no closed-form updating process can be obtained. However, we can adopt the
gradient-based method such as HMC and gradient ascent. Note that each row of Θ and Φ lies on a probability simplex,
which is bounded and embedded. It is not common for HMC or gradient ascent to deal with constrained sampling or
constrained optimzation. Since we do not nead conjugacy now, we replace the Dirichlet prior with logistic normal
prior. Now the latent variables live in the whole space R𝑛.

22 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

One may ask why to integrate the parameters z and lose the conjugacy. That is because our inference technique can
also apply to other models which do not have conjugacy from the beginning, such as Neural Variational Document
Model ([LNTMMYB16]).

The logistic normal topic model can be described as follows, where 𝛽𝑘 is 𝑉 -dimensional and �⃗�𝑑 is 𝐾-dimensional:

𝛽𝑘 ∼ 𝒩 (⃗0, 𝛿2I), 𝑘 = 1, 2, ...,𝐾

�⃗�𝑘 = softmax(𝛽𝑘), 𝑘 = 1, 2, ...,𝐾

�⃗�𝑑 ∼ 𝒩 (�⃗�,diag(�⃗�2)), 𝑑 = 1, 2, ..., 𝐷

𝜃𝑑 = softmax(�⃗�𝑑), 𝑑 = 1, 2, ..., 𝐷

𝑧𝑑𝑛 ∼ Catg(𝜃𝑑), 𝑑 = 1, 2, ..., 𝐷, 𝑛 = 1, 2, ..., 𝑁𝑑

𝑤𝑑𝑛 ∼ Catg(�⃗�𝑧𝑑𝑛), 𝑑 = 1, 2, ..., 𝐷, 𝑛 = 1, 2, ..., 𝑁𝑑

The graphical model representation is shown in the following figure.

Since 𝜃𝑑 is a deterministic function of �⃗�𝑑, we can omit one of them in the probabilistic graphical model representation.
Here 𝜃𝑑 is omitted because �⃗�𝑑 has a simpler prior. Similarly, we omit �⃗�𝑘 and keep 𝛽𝑘.

Note: Called Logistic Normal Topic Model, maybe this reminds you of correlated topic models. However, in our
model the normal prior of �⃗�𝑑 has a diagonal covariance matrix diag(�⃗�2), so it cannot model the correlations be-
tween different topics in the corpus. However, logistic normal distribution can approximate Dirichlet distribution (see
[LNTMSS17]). Hence our model is roughly the same as LDA, while the inference techniques are different.

We denote H = (�⃗�1, �⃗�2, ..., �⃗�𝐷)𝑇 , B = (𝛽1, 𝛽2, ..., 𝛽𝐾)𝑇 . Then Θ = softmax(H), and Φ = softmax(B). Recall
our notation that X = (�⃗�1, �⃗�2, ..., �⃗�𝐷)𝑇 where �⃗�𝑑 =

∑︀𝑁𝑑

𝑛=1 one_hot(𝑤𝑑𝑛). After integrating {𝑧𝑑𝑛}, the last two lines
of the generating process:

𝑧𝑑𝑛 ∼ Catg(𝜃𝑑), 𝑤𝑑𝑛 ∼ Catg(�⃗�𝑧𝑑𝑛)

become log 𝑝(X|Θ,Φ) = −CE(X,ΘΦ). So we can write the joint probability distribution as follows:

𝑝(X,H,B; �⃗�, �⃗�, 𝛿) = 𝑝(B; 𝛿)𝑝(H; �⃗�, �⃗�)𝑝(X|H,B)

where both 𝑝(B; 𝛿) and 𝑝(H; �⃗�, �⃗�) are Gaussian distribution and 𝑝(X|H,B) = −CE(X, softmax(H)softmax(B)).

In ZhuSuan, the code for constructing such a model is:

@zs.meta_bayesian_net(scope='lntm')
def lntm(n_chains, n_docs, n_topics, n_vocab, eta_mean, eta_logstd):

bn = zs.BayesianNet()
eta_mean = tf.tile(tf.expand_dims(eta_mean, 0), [n_docs, 1])
eta = bn.normal('eta', eta_mean, logstd=eta_logstd, n_samples=n_chains,

group_ndims=1)
theta = tf.nn.softmax(eta)

(continues on next page)

1.4. Logistic Normal Topic Models 23

ZhuSuan Documentation, Release 0.4.0

(continued from previous page)

beta = bn.normal('beta', tf.zeros([n_topics, n_vocab]),
logstd=log_delta, group_ndims=1)

phi = tf.nn.softmax(beta)
doc_word: Document-word matrix
doc_word = tf.matmul(tf.reshape(theta, [-1, n_topics]), phi)
doc_word = tf.reshape(doc_word, [n_chains, n_docs, n_vocab])
bn.unnormalized_multinomial('x', tf.log(doc_word), normalize_logits=False,

dtype=tf.float32)
return bn

where eta_mean is �⃗�, eta_logstd is log �⃗�, eta is H (H is the uppercase letter of 𝜂), theta is Θ =
softmax(H), beta is B (B is the uppercase letter of 𝛽), phi is Φ = softmax(B), doc_word is ΘΦ, x is X.

Q: What does UnnormalizedMultinomial distribution means?

A: UnnormalizedMultinomial distribution is not a proper distribution. It means the likelihood of “bags
of categorical”. To understand this, let’s talk about multinomial distribution first. Suppose there are 𝑘 events
{1, 2, ..., 𝑘} with the probabilities 𝑝1, 𝑝2, ..., 𝑝𝑘, and we do 𝑛 trials, and the count of result being 𝑖 is 𝑥𝑖. Denote
�⃗� = (𝑥1, 𝑥2, ..., 𝑥𝑘)𝑇 and 𝑝 = (𝑝1, 𝑝2, ..., 𝑝𝑘)𝑇 . Then �⃗� follows multinomial distribution: 𝑝(�⃗�; 𝑝) = 𝑛!

𝑥1!...𝑥𝑘!
𝑝𝑥1
1 ...𝑝𝑥𝑘

𝑘 ,
so log 𝑝(�⃗�; 𝑝) = log 𝑛!

𝑥1!...𝑥𝑘!
− CE(�⃗�, 𝑝). However, when we want to optimize the parameter 𝑝, we do not care

the first term. On the other hand, if we have a sequence of results �⃗�, and the result counts are summarized in
�⃗�. Then log 𝑝(�⃗�; 𝑝) = −CE(�⃗�, 𝑝). The normalizing constant also disappears. Since sometimes we only have
access to �⃗� instead of the actual sequence of results, when we want to optimize w.r.t. the parameters, we can
write �⃗� ∼ UnnormalizedMultinomial(𝑝), although it is not a proper distribution and we cannot sample from it.
UnnormalizedMultinomial just means 𝑝(�⃗�; 𝑝) = −CE(�⃗�, 𝑝). In the example of topic models, the situation is
also like this.

Q: The shape of eta in the model is n_chains*n_docs*n_topics. Why we need the first dimension to store
its different samples?

A: After introducing the inference method, we should know eta is a latent variable which we need to integrate
w.r.t. its distribution. In many cases the integration is intractable, so we replace the integration with Monte-Carlo
methods, which requires the samples of the latent variable. Therefore we need to construct our model, calculate the
joint likelihood and do inference all with the extra dimension storing different samples. In this example, the extra
dimension is called “chains” because we utilize the extra dimension to initialize multiple chains and perform HMC
evolution on each chain, in order to do parallel sampling and to get independent samples from the posterior.

1.4.3 Inference

Let’s analyze the parameters and latent variables in the joint distribution. 𝛿 controls the sparsity of the words included
in each topic, and larger 𝛿 leads to more sparsity. We leave it as a given tunable hyperparameter without the need
to optimize. The parameters we need to optimize is �⃗� and �⃗�2, whose element represents the mean and variance of
topic proportion in documents; and B, which represents the topics. For �⃗� and �⃗�, we want to find their maximum
likelihood (MLE) solution. Unlike �⃗� and �⃗�, B has a prior, so we could treat it as a random variable and infer its
posterior distribution. But here we just find its maximum a posterior (MAP) estimation, so we treat it as a parameter
and optimize it by gradient ascent instead of inference via HMC. H is the latent variable, so we want to integrate it
out before doing optimization.

Therefore, after integrating H, our optimization problem is:

max
B,�⃗�,�⃗�

log 𝑝(X,B; �⃗�, �⃗�, 𝛿)

24 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

where

log 𝑝(X,B; �⃗�, �⃗�, 𝛿) = log 𝑝(X|B; �⃗�, �⃗�) + log 𝑝(B; 𝛿)

= log

∫︁
H

𝑝(X,H|B; �⃗�, �⃗�)𝑑H + log 𝑝(B; 𝛿)

The term log 𝑝(X|B; �⃗�, �⃗�) = log
∫︀
H
𝑝(X,H|B; �⃗�, �⃗�)𝑑H is evidence of the observed data X, given the model with

parameters B, �⃗�, �⃗�. Computing the integration is intractable, let alone maximize it w.r.t. the parameters. Fortunately,
this is the standard form of which we can write an lower bound called evidence lower bound (ELBO):

log 𝑝(X|B; �⃗�, �⃗�) ≥ log 𝑝(X|B; �⃗�, �⃗�)−KL(𝑞(H)||𝑝(H|X,B; �⃗�, �⃗�))

= E𝑞(H)[log 𝑝(X,H|B; �⃗�, �⃗�)− log 𝑞(H)]

= ℒ(𝑞,B, �⃗�, �⃗�)

Therefore,

log 𝑝(X,B; �⃗�, �⃗�, 𝛿) ≥ ℒ(𝑞,B, �⃗�, �⃗�) + log 𝑝(B; 𝛿)

When 𝑞(H) = 𝑝(H|X,B; �⃗�, �⃗�), the lower bound is tight. To do optimization, we can apply coordinate ascent to the
lower bound, i.e. expectation-maximization (EM) algorithm: We iterate between E-step and M-step.

In E-step, let

𝑞(H)← max
𝑞
ℒ(𝑞,B, �⃗�, �⃗�) = 𝑝(H|X,B; �⃗�, �⃗�)

In M-step, let

B, �⃗�, �⃗� ← max
B,�⃗�,�⃗�

[ℒ(𝑞,B, �⃗�, �⃗�) + log 𝑝(B; 𝛿)]

= max
B,�⃗�,�⃗�

{E𝑞(H)[log 𝑝(X,H|B; �⃗�, �⃗�)] + log 𝑝(B; 𝛿)}

However, both the posterior 𝑝(H|X,B; �⃗�, �⃗�) in the E step and the integration E𝑞(H)[log 𝑝(X,H|B; �⃗�, �⃗�)] in the M
step are intractable. It seems that we have turned an intractable problem into another intractable problem.

We have solutions indeed. Since the difficulty lies in calculating and using the posterior, we can use the whole set of
tools in Bayesian inference. Here we use sampling methods, to draw a series of samples H(1),H(2), ...,H(𝑆) from
𝑝(H|X,B; �⃗�, �⃗�). Then we let 𝑞(H) be the empirical distribution of these samples, as an approximation to the true
posterior. Then the M-step becomes:

B, �⃗�, �⃗� ← max
B,�⃗�,�⃗�

[E𝑞(H)[log 𝑝(X,H|B; �⃗�, �⃗�)] + log 𝑝(B; 𝛿)]

= max
B,�⃗�,�⃗�

[
1

𝑆

𝑆∑︁
𝑠=1

log 𝑝(X,H(𝑠)|B; �⃗�, �⃗�) + log 𝑝(B; 𝛿)]

Now the objective function is tractable to compute. This variant of EM algorithm is called Monte-Carlo EM.

We analyze the E-step and M-step in more detail. What sampling method should we choose in E-step? One of the
workhorse sampling methods is Hamiltonian Monte Carlo (HMC) [LNTMN+11]. Unlike Gibbs sampling which
needs a sampler of the conditional distribution, HMC is a black-box method which only requires access to the gradient
of log joint distribution at any position, which is almost always tractable as long as the model is differentiable and the
latent variable is unconstrained.

To use HMC in ZhuSuan, first define the HMC object with its parameters:

hmc = zs.HMC(step_size=1e-3, n_leapfrogs=20, adapt_step_size=True,
target_acceptance_rate=0.6)

Then write the log joint probability log 𝑝(X,H|B; �⃗�, �⃗�) = log 𝑝(X|B,H) + 𝑝(H; �⃗�, �⃗�):

1.4. Logistic Normal Topic Models 25

ZhuSuan Documentation, Release 0.4.0

def e_obj(bn):
return bn.cond_log_prob('eta') + bn.cond_log_prob('x')

Given the following defined tensor,

x = tf.placeholder(tf.float32, shape=[batch_size, n_vocab], name='x')
eta = tf.Variable(tf.zeros([n_chains, batch_size, n_topics]), name='eta')
beta = tf.Variable(tf.zeros([n_topics, n_vocab]), name='beta')

we can define the sampling operator of HMC:

model = lntm(n_chains, batch_size, n_topics, n_vocab, eta_mean, eta_logstd)
model.log_joint = e_obj
sample_op, hmc_info = hmc.sample(model,

observed={'x': x, 'beta': beta},
latent={'eta': eta})

When running the session, we can run sample_op to update the value of eta. Note that the first parameter of
hmc.sample is a MetaBayesianNet instance corresponding to the generative model. It could also be a function
accepting a Python dictionary containing values of both the observed and latent variables as its argument, and returning
the log joint probability. hmc_info is a struct containing information about the sampling iteration executed by
sample_op, such as the acceptance rate.

In the M-step, since log 𝑝(X,H|B; �⃗�, �⃗�) = log 𝑝(X|B,H) + 𝑝(H; �⃗�, �⃗�), we can write the updating formula in more
detail:

�⃗�, �⃗� ← max
�⃗�,�⃗�

[
1

𝑆

𝑆∑︁
𝑠=1

log 𝑝(H(𝑠); �⃗�, �⃗�)]

B← max
B

[
1

𝑆

𝑆∑︁
𝑠=1

log 𝑝(X|H(𝑠),B) + log 𝑝(B; 𝛿)]

Then �⃗� and �⃗� have closed solution by taking the samples of H as observed data and do maximum likelihood estimation
of parameters in Gaussian distribution. B, however, does not have a closed-form solution, so we do optimization using
gradient ascent.

The gradient ascent operator of B can be defined as follows:

bn = model.observe(eta=eta, x=x, beta=beta)
log_p_beta, log_px = bn.cond_log_prob(['beta', 'x'])
log_p_beta = tf.reduce_sum(log_p_beta)
log_px = tf.reduce_sum(tf.reduce_mean(log_px, axis=0))
log_joint_beta = log_p_beta + log_px
learning_rate_ph = tf.placeholder(tf.float32, shape=[], name='lr')
optimizer = tf.train.AdamOptimizer(learning_rate_ph)
infer = optimizer.minimize(-log_joint_beta, var_list=[beta])

Since when optimizing B, the samples of H is fixed, var_list=[beta] in the last line is necessary.

In the E-step, 𝑝(H|X,B; �⃗�, �⃗�) could factorise as
∏︀𝐷

𝑑=1 𝑝(�⃗�𝑑|�⃗�𝑑,B; �⃗�, �⃗�), so we can do sampling for a mini-batch of
data given some value of global parameters B, �⃗�, and �⃗�. Since the update of B requires calculating gradients and
has a relatively large time cost, we use stochastic gradient ascent to optimize it. That is, after a mini-batch of latent
variables are sampled, we do a step of gradient ascent as M-step for B using the mini-batch chosen in the E-step.

Now we have both the sampling operator for the latent variable eta and optimizing operator for the parameter beta,
while the optimization w.r.t. eta_mean and eta_logstd is straightforward. Now we can run the EM algorithm.

First, the definition is as follows:

26 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

iters = X_train.shape[0] // batch_size
Eta = np.zeros((n_chains, X_train.shape[0], n_topics), dtype=np.float32)
Eta_mean = np.zeros(n_topics, dtype=np.float32)
Eta_logstd = np.zeros(n_topics, dtype=np.float32)

eta_mean = tf.placeholder(tf.float32, shape=[n_topics], name='eta_mean')
eta_logstd = tf.placeholder(tf.float32, shape=[n_topics],

name='eta_logstd')
eta_ph = tf.placeholder(tf.float32, shape=[n_chains, batch_size, n_topics],

name='eta_ph')
init_eta_ph = tf.assign(eta, eta_ph)

The key code in an epoch is:

time_epoch = -time.time()
lls = []
accs = []
for t in range(iters):

x_batch = X_train[t*batch_size: (t+1)*batch_size]
old_eta = Eta[:, t*batch_size: (t+1)*batch_size, :]

E step
sess.run(init_eta_ph, feed_dict={eta_ph: old_eta})
for j in range(num_e_steps):

_, new_eta, acc = sess.run(
[sample_op, hmc_info.samples['eta'],
hmc_info.acceptance_rate],

feed_dict={x: x_batch,
eta_mean: Eta_mean,
eta_logstd: Eta_logstd})

accs.append(acc)
Store eta for the persistent chain
if j + 1 == num_e_steps:

Eta[:, t*batch_size: (t+1)*batch_size, :] = new_eta

M step
_, ll = sess.run(

[infer, log_px],
feed_dict={x: x_batch,

eta_mean: Eta_mean,
eta_logstd: Eta_logstd,
learning_rate_ph: learning_rate})

lls.append(ll)

Update hyper-parameters
Eta_mean = np.mean(Eta, axis=(0, 1))
Eta_logstd = np.log(np.std(Eta, axis=(0, 1)) + 1e-6)

time_epoch += time.time()
print('Epoch {} ({:.1f}s): Perplexity = {:.2f}, acc = {:.3f}, '

'eta mean = {:.2f}, logstd = {:.2f}'
.format(epoch, time_epoch,

np.exp(-np.sum(lls) / np.sum(X_train)),
np.mean(accs), np.mean(Eta_mean),
np.mean(Eta_logstd)))

We run num_e_steps times of E-step before M-step to make samples of HMC closer to the desired equilibrium
distribution. We print the mean acceptance rate of HMC to diagnose whether HMC is working properly. If it is too

1.4. Logistic Normal Topic Models 27

ZhuSuan Documentation, Release 0.4.0

close to 0 or 1, the quality of samples will often be poor. Moreover, when HMC works properly, we can also tune
the acceptance rate to a value for better performance, and the value is usually between 0.6 and 0.9. In the example
we set adapt_step_size=True and target_acceptance_rate=0.6 to HMC, so the outputs of actual
acceptance rates should be close to 0.6.

Finally we can output the optimized value of phi = softmax(beta), eta_mean and eta_logstd to show the
learned topics and their proportion in the documents of the corpus:

p = sess.run(phi)
for k in range(n_topics):

rank = list(zip(list(p[k, :]), range(n_vocab)))
rank.sort()
rank.reverse()
sys.stdout.write('Topic {}, eta mean = {:.2f} stdev = {:.2f}: '

.format(k, Eta_mean[k], np.exp(Eta_logstd[k])))
for i in range(10):

sys.stdout.write(vocab[rank[i][1]] + ' ')
sys.stdout.write('\n')

1.4.4 Evaluation

The log_likelihood used to calculate the perplexity may be confusing. Typically, the “likelihood” should refer to
the evidence of the observed data given some parameter value, i.e. 𝑝(X|B; �⃗�, �⃗�), with the latent variable H integrated.
However, it is even more difficult to compute the marginal likelihood than to do posterior inference. In the code, the
likelihood is actually 𝑝(X|H,B), which is not the marginal likelihood; we should integrate it w.r.t. the prior of H to
get marginal likelihood. Hence the perplexity output during the training process will be smaller than the actual value.

After training the model and outputing the topics, the script will run Annealed Importance Sampling (AIS) to
estimate the marginal likelihood more accurately. It may take some time, and you could turn on the verbose mode of
AIS to see its progress. Then our script will output the estimated perplexity which is relatively reliable. We do not
introduce AIS here. Readers who are interested could refer to [LNTMNea01].

1.5 zhusuan.distributions

1.5.1 Base class

class Distribution(dtype, param_dtype, is_continuous, is_reparameterized,
use_path_derivative=False, group_ndims=0, **kwargs)

Bases: object

The Distribution class is the base class for various probabilistic distributions which support batch inputs,
generating batches of samples and evaluate probabilities at batches of given values.

The typical input shape for a Distribution is like batch_shape + input_shape. where
input_shape represents the shape of non-batch input parameter, batch_shape represents how many in-
dependent inputs are fed into the distribution.

Samples generated are of shape ([n_samples]+)batch_shape + value_shape. The first addi-
tional axis is omitted only when passed n_samples is None (by default), in which case one sample is gen-
erated. value_shape is the non-batch value shape of the distribution. For a univariate distribution, its
value_shape is [].

There are cases where a batch of random variables are grouped into a single event so that their probabilities
should be computed together. This is achieved by setting group_ndims argument, which defaults to 0. The last
group_ndims number of axes in batch_shape are grouped into a single event. For example, Normal(...,

28 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

group_ndims=1) will set the last axis of its batch_shape to a single event, i.e., a multivariate Normal
with identity covariance matrix.

When evaluating probabilities at given values, the given Tensor should be broadcastable to
shape (... +)batch_shape + value_shape. The returned Tensor has shape (... +
)batch_shape[:-group_ndims].

See also:

For more details and examples, please refer to Basic Concepts in ZhuSuan.

For both, the parameter dtype represents type of samples. For discrete, can be set by user. For continuous,
automatically determined from parameter types.

The value type of prob and log_prob will be param_dtype which is deduced from the parameter(s) when initial-
izating. And dtype must be among int16, int32, int64, float16, float32 and float64.

When two or more parameters are tensors and they have different type, TypeError will be raised.

Parameters

• dtype – The value type of samples from the distribution.

• param_dtype – The parameter(s) type of the distribution.

• is_continuous – Whether the distribution is continuous.

• is_reparameterized – A bool. Whether the gradients of samples can and are allowed
to propagate back into inputs, using the reparametrization trick from (Kingma, 2013).

• use_path_derivative – A bool. Whether when taking the gradients of the log-
probability to propagate them through the parameters of the distribution (False meaning
you do propagate them). This is based on the paper “Sticking the Landing: Simple, Lower-
Variance Gradient Estimators for Variational Inference”

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their
probabilities are calculated together. Default is 0, which means a single value is an event.
See above for more detailed explanation.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

1.5. zhusuan.distributions 29

ZhuSuan Documentation, Release 0.4.0

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

1.5.2 Univariate distributions

class Normal(mean=0.0, _sentinel=None, std=None, logstd=None, group_ndims=0,
is_reparameterized=True, use_path_derivative=False, check_numerics=False, **kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate Normal distribution. See Distribution for details.

Warning: The order of arguments logstd/std has changed to std/logstd since 0.3.1. Please use named
arguments: Normal(mean, std=..., ...) or Normal(mean, logstd=..., ...).

30 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Parameters

• mean – A float Tensor. The mean of the Normal distribution. Should be broadcastable to
match std or logstd.

• _sentinel – Used to prevent positional parameters. Internal, do not use.

• std – A float Tensor. The standard deviation of the Normal distribution. Should be positive
and broadcastable to match mean.

• logstd – A float Tensor. The log standard deviation of the Normal distribution. Should be
broadcastable to match mean.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this distribution
are allowed to propagate into inputs, using the reparametrization trick from (Kingma, 2013).

• use_path_derivative – A bool. Whether when taking the gradients of the log-
probability to propagate them through the parameters of the distribution (False meaning
you do propagate them). This is based on the paper “Sticking the Landing: Simple, Lower-
Variance Gradient Estimators for Variational Inference”

• check_numerics – Bool. Whether to check numeric issues.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

1.5. zhusuan.distributions 31

ZhuSuan Documentation, Release 0.4.0

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

logstd
The log standard deviation of the Normal distribution.

mean
The mean of the Normal distribution.

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

std
The standard deviation of the Normal distribution.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

class FoldNormal(mean=0.0, _sentinel=None, std=None, logstd=None, group_ndims=0,
is_reparameterized=True, use_path_derivative=False, check_numerics=False,
**kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate FoldNormal distribution. See Distribution for details.

Warning: The order of arguments logstd/std has changed to std/logstd since 0.3.1. Please use named
arguments: FoldNormal(mean, std=..., ...) or FoldNormal(mean, logstd=..., ..
.).

Parameters

• mean – A float Tensor. The mean of the FoldNormal distribution. Should be broadcastable
to match std or logstd.

32 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

• _sentinel – Used to prevent positional parameters. Internal, do not use.

• std – A float Tensor. The standard deviation of the FoldNormal distribution. Should be
positive and broadcastable to match mean.

• logstd – A float Tensor. The log standard deviation of the FoldNormal distribution.
Should be broadcastable to match mean.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this distribution
are allowed to propagate into inputs, using the reparametrization trick from (Kingma, 2013).

• use_path_derivative – A bool. Whether when taking the gradients of the log-
probability to propagate them through the parameters of the distribution (False meaning
you do propagate them). This is based on the paper “Sticking the Landing: Simple, Lower-
Variance Gradient Estimators for Variational Inference”

• check_numerics – Bool. Whether to check numeric issues.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

logstd
The log standard deviation of the FoldNormal distribution.

1.5. zhusuan.distributions 33

ZhuSuan Documentation, Release 0.4.0

mean
The mean of the FoldNormal distribution.

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

std
The standard deviation of the FoldNormal distribution.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

class Bernoulli(logits, dtype=tf.int32, group_ndims=0, **kwargs)
Bases: zhusuan.distributions.base.Distribution

The class of univariate Bernoulli distribution. See Distribution for details.

Parameters

• logits – A float Tensor. The log-odds of probabilities of being 1.

logits = log
𝑝

1− 𝑝

• dtype – The value type of samples from the distribution. Can be int (tf.int16, tf.int32,
tf.int64) or float (tf.float16, tf.float32, tf.float64). Default is int32.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

34 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

logits
The log-odds of probabilities of being 1.

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

1.5. zhusuan.distributions 35

ZhuSuan Documentation, Release 0.4.0

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

class Categorical(logits, dtype=tf.int32, group_ndims=0, **kwargs)
Bases: zhusuan.distributions.base.Distribution

The class of univariate Categorical distribution. See Distribution for details.

Parameters

• logits – A N-D (N >= 1) float32 or float64 Tensor of shape (. . . , n_categories). Each
slice [i, j,. . . , k, :] represents the un-normalized log probabilities for all categories.

logits ∝ log 𝑝

• dtype – The value type of samples from the distribution. Can be float32, float64, int32, or
int64. Default is int32.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

A single sample is a (N-1)-D Tensor with tf.int32 values in range [0, n_categories).

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

36 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

logits
The un-normalized log probabilities.

n_categories
The number of categories in the distribution.

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

Discrete
alias of zhusuan.distributions.univariate.Categorical

class Uniform(minval=0.0, maxval=1.0, group_ndims=0, is_reparameterized=True,
check_numerics=False, **kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate Uniform distribution. See Distribution for details.

Parameters

1.5. zhusuan.distributions 37

ZhuSuan Documentation, Release 0.4.0

• minval – A float Tensor. The lower bound on the range of the uniform distribution. Should
be broadcastable to match maxval.

• maxval – A float Tensor. The upper bound on the range of the uniform distribution. Should
be element-wise bigger than minval.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this distribution
are allowed to propagate into inputs, using the reparametrization trick from (Kingma, 2013).

• check_numerics – Bool. Whether to check numeric issues.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

maxval
The upper bound on the range of the uniform distribution.

minval
The lower bound on the range of the uniform distribution.

param_dtype
The parameter(s) type of the distribution.

38 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

class Gamma(alpha, beta, group_ndims=0, check_numerics=False, **kwargs)
Bases: zhusuan.distributions.base.Distribution

The class of univariate Gamma distribution. See Distribution for details.

Parameters

• alpha – A float Tensor. The shape parameter of the Gamma distribution. Should be
positive and broadcastable to match beta.

• beta – A float Tensor. The inverse scale parameter of the Gamma distribution. Should be
positive and broadcastable to match alpha.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• check_numerics – Bool. Whether to check numeric issues.

alpha
The shape parameter of the Gamma distribution.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

beta
The inverse scale parameter of the Gamma distribution.

1.5. zhusuan.distributions 39

ZhuSuan Documentation, Release 0.4.0

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

40 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

class Beta(alpha, beta, group_ndims=0, check_numerics=False, **kwargs)
Bases: zhusuan.distributions.base.Distribution

The class of univariate Beta distribution. See Distribution for details.

Parameters

• alpha – A float Tensor. One of the two shape parameters of the Beta distribution. Should
be positive and broadcastable to match beta.

• beta – A float Tensor. One of the two shape parameters of the Beta distribution. Should
be positive and broadcastable to match alpha.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• check_numerics – Bool. Whether to check numeric issues.

alpha
One of the two shape parameters of the Beta distribution.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

beta
One of the two shape parameters of the Beta distribution.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

1.5. zhusuan.distributions 41

ZhuSuan Documentation, Release 0.4.0

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

class Poisson(rate, dtype=tf.int32, group_ndims=0, check_numerics=False, **kwargs)
Bases: zhusuan.distributions.base.Distribution

The class of univariate Poisson distribution. See Distribution for details.

Parameters

• rate – A float Tensor. The rate parameter of Poisson distribution. Must be positive.

• dtype – The value type of samples from the distribution. Can be int (tf.int16, tf.int32,
tf.int64) or float (tf.float16, tf.float32, tf.float64). Default is int32.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• check_numerics – Bool. Whether to check numeric issues.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.

42 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

rate
The rate parameter of Poisson.

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

1.5. zhusuan.distributions 43

ZhuSuan Documentation, Release 0.4.0

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

class Binomial(logits, n_experiments, dtype=tf.int32, group_ndims=0, check_numerics=False,
**kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate Binomial distribution. See Distribution for details.

Parameters

• logits – A float Tensor. The log-odds of probabilities.

logits = log
𝑝

1− 𝑝

• n_experiments – A 0-D int32 Tensor. The number of experiments for each sample.

• dtype – The value type of samples from the distribution. Can be int (tf.int16, tf.int32,
tf.int64) or float (tf.float16, tf.float32, tf.float64). Default is int32.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• check_numerics – Bool. Whether to check numeric issues.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

44 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

logits
The log-odds of probabilities.

n_experiments
The number of experiments.

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

class InverseGamma(alpha, beta, group_ndims=0, check_numerics=False, **kwargs)
Bases: zhusuan.distributions.base.Distribution

The class of univariate InverseGamma distribution. See Distribution for details.

Parameters

• alpha – A float Tensor. The shape parameter of the InverseGamma distribution. Should
be positive and broadcastable to match beta.

• beta – A float Tensor. The scale parameter of the InverseGamma distribution. Should be
positive and broadcastable to match alpha.

1.5. zhusuan.distributions 45

ZhuSuan Documentation, Release 0.4.0

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• check_numerics – Bool. Whether to check numeric issues.

alpha
The shape parameter of the InverseGamma distribution.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

beta
The scale parameter of the InverseGamma distribution.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

46 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

class Laplace(loc, scale, group_ndims=0, is_reparameterized=True, use_path_derivative=False,
check_numerics=False, **kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate Laplace distribution. See Distribution for details.

Parameters

• loc – A float Tensor. The location parameter of the Laplace distribution. Should be broad-
castable to match scale.

• scale – A float Tensor. The scale parameter of the Laplace distribution. Should be positive
and broadcastable to match loc.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this distribution
are allowed to propagate into inputs, using the reparametrization trick from (Kingma, 2013).

• use_path_derivative – A bool. Whether when taking the gradients of the log-
probability to propagate them through the parameters of the distribution (False meaning
you do propagate them). This is based on the paper “Sticking the Landing: Simple, Lower-
Variance Gradient Estimators for Variational Inference”

• check_numerics – Bool. Whether to check numeric issues.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

1.5. zhusuan.distributions 47

ZhuSuan Documentation, Release 0.4.0

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

loc
The location parameter of the Laplace distribution.

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

scale
The scale parameter of the Laplace distribution.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

48 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

class BinConcrete(temperature, logits, group_ndims=0, is_reparameterized=True,
use_path_derivative=False, check_numerics=False, **kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate BinConcrete distribution from (Maddison, 2016). It is the binary case of Concrete.
See Distribution for details.

See also:

Concrete and ExpConcrete

Parameters

• temperature – A 0-D float Tensor. The temperature of the relaxed distribution. The
temperature should be positive.

• logits – A float Tensor. The log-odds of probabilities of being 1.

logits = log
𝑝

1− 𝑝

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this distribution
are allowed to propagate into inputs, using the reparametrization trick from (Kingma, 2013).

• use_path_derivative – A bool. Whether when taking the gradients of the log-
probability to propagate them through the parameters of the distribution (False meaning
you do propagate them). This is based on the paper “Sticking the Landing: Simple, Lower-
Variance Gradient Estimators for Variational Inference”

• check_numerics – Bool. Whether to check numeric issues.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

1.5. zhusuan.distributions 49

ZhuSuan Documentation, Release 0.4.0

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

logits
The log-odds of probabilities.

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

temperature
The temperature of BinConcrete.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

BinGumbelSoftmax
alias of zhusuan.distributions.univariate.BinConcrete

50 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

1.5.3 Multivariate distributions

class MultivariateNormalCholesky(mean, cov_tril, group_ndims=0, is_reparameterized=True,
use_path_derivative=False, check_numerics=False,
**kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of multivariate normal distribution, where covariance is parameterized with the lower triangular matrix
𝐿 in Cholesky decomposition 𝐿𝐿𝑇 = Σ.

See Distribution for details.

Parameters

• mean – An N-D float Tensor of shape [. . . , n_dim]. Each slice [i, j, . . . , k, :] represents the
mean of a single multivariate normal distribution.

• cov_tril – An (N+1)-D float Tensor of shape [. . . , n_dim, n_dim]. Each slice [i, . . . , k,
:, :] represents the lower triangular matrix in the Cholesky decomposition of the covariance
of a single distribution.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this distribution
are allowed to propagate into inputs, using the reparametrization trick from (Kingma, 2013).

• use_path_derivative – A bool. Whether when taking the gradients of the log-
probability to propagate them through the parameters of the distribution (False meaning
you do propagate them). This is based on the paper “Sticking the Landing: Simple, Lower-
Variance Gradient Estimators for Variational Inference”

• check_numerics – Bool. Whether to check numeric issues.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

cov_tril
The lower triangular matrix in the cholosky decomposition of the covariance.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

1.5. zhusuan.distributions 51

ZhuSuan Documentation, Release 0.4.0

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

mean
The mean of the normal distribution.

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

class Multinomial(logits, n_experiments, normalize_logits=True, dtype=tf.int32, group_ndims=0,
**kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of Multinomial distribution. See Distribution for details.

Parameters

• logits – A N-D (N >= 1) float Tensor of shape [. . . , n_categories]. Each slice [i, j,
. . . , k, :] represents the log probabilities for all categories. By default (when normal-

52 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

ize_logits=True), the probabilities could be un-normalized.

logits ∝ log 𝑝

• n_experiments – A 0-D int32 Tensor or None. When it is a 0-D int32 integer, it repre-
sents the number of experiments for each sample, which should be invariant among samples.
In this situation _sample function is supported. When it is None, _sample function is not
supported, and when calculating probabilities the number of experiments will be inferred
from given, so it could vary among samples.

• normalize_logits – A bool indicating whether logits should be normalized when com-
puting probability. If you believe logits is already normalized, set it to False to speed up.
Default is True.

• dtype – The value type of samples from the distribution. Can be int (tf.int16, tf.int32,
tf.int64) or float (tf.float16, tf.float32, tf.float64). Default is int32.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

A single sample is a N-D Tensor with the same shape as logits. Each slice [i, j, . . . , k, :] is a vector of counts
for all categories.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

1.5. zhusuan.distributions 53

ZhuSuan Documentation, Release 0.4.0

logits
The un-normalized log probabilities.

n_categories
The number of categories in the distribution.

n_experiments
The number of experiments for each sample.

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

class UnnormalizedMultinomial(logits, normalize_logits=True, dtype=tf.int32, group_ndims=0,
**kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of UnnormalizedMultinomial distribution. UnnormalizedMultinomial distribution calculates proba-
bilities differently from Multinomial: It considers the bag-of-words given as a statistics of an ordered result
sequence, and calculates the probability of the (imagined) ordered sequence. Hence it does not multiply the
term (︂

𝑛

𝑘1, 𝑘2, . . .

)︂
=

𝑛!∏︀
𝑖 𝑘𝑖!

See Distribution for details.

Parameters

• logits – A N-D (N >= 1) float Tensor of shape [. . . , n_categories]. Each slice [i, j,
. . . , k, :] represents the log probabilities for all categories. By default (when normal-

54 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

ize_logits=True), the probabilities could be un-normalized.

logits ∝ log 𝑝

• normalize_logits – A bool indicating whether logits should be normalized when com-
puting probability. If you believe logits is already normalized, set it to False to speed up.
Default is True.

• dtype – The value type of samples from the distribution. Can be int (tf.int16, tf.int32,
tf.int64) or float (tf.float16, tf.float32, tf.float64). Default is int32.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

A single sample is a N-D Tensor with the same shape as logits. Each slice [i, j, . . . , k, :] is a vector of counts
for all categories.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

logits
The un-normalized log probabilities.

n_categories
The number of categories in the distribution.

1.5. zhusuan.distributions 55

ZhuSuan Documentation, Release 0.4.0

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

BagofCategoricals
alias of zhusuan.distributions.multivariate.UnnormalizedMultinomial

class OnehotCategorical(logits, dtype=tf.int32, group_ndims=0, **kwargs)
Bases: zhusuan.distributions.base.Distribution

The class of one-hot Categorical distribution. See Distribution for details.

Parameters

• logits – A N-D (N >= 1) float Tensor of shape (. . . , n_categories). Each slice [i, j, . . . , k,
:] represents the un-normalized log probabilities for all categories.

logits ∝ log 𝑝

• dtype – The value type of samples from the distribution. Can be int (tf.int16, tf.int32,
tf.int64) or float (tf.float16, tf.float32, tf.float64). Default is int32.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

A single sample is a N-D Tensor with the same shape as logits. Each slice [i, j, . . . , k, :] is a one-hot vector of
the selected category.

56 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

logits
The un-normalized log probabilities.

n_categories
The number of categories in the distribution.

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new

1.5. zhusuan.distributions 57

ZhuSuan Documentation, Release 0.4.0

sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

OnehotDiscrete
alias of zhusuan.distributions.multivariate.OnehotCategorical

class Dirichlet(alpha, group_ndims=0, check_numerics=False, **kwargs)
Bases: zhusuan.distributions.base.Distribution

The class of Dirichlet distribution. See Distribution for details.

Parameters

• alpha – A N-D (N >= 1) float Tensor of shape (. . . , n_categories). Each slice [i, j, . . . , k,
:] represents the concentration parameter of a Dirichlet distribution. Should be positive.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

A single sample is a N-D Tensor with the same shape as alpha. Each slice [i, j, . . . , k, :] of the sample is a vector
of probabilities of a Categorical distribution [x_1, x_2, . . .], which lies on the simplex∑︁

𝑖

𝑥𝑖 = 1, 0 < 𝑥𝑖 < 1

alpha
The concentration parameter of the Dirichlet distribution.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

58 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

n_categories
The number of categories in the distribution.

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

class ExpConcrete(temperature, logits, group_ndims=0, is_reparameterized=True,
use_path_derivative=False, check_numerics=False, **kwargs)

Bases: zhusuan.distributions.base.Distribution

1.5. zhusuan.distributions 59

ZhuSuan Documentation, Release 0.4.0

The class of ExpConcrete distribution from (Maddison, 2016), transformed from Concrete by taking loga-
rithm. See Distribution for details.

See also:

BinConcrete and Concrete

Parameters

• temperature – A 0-D float Tensor. The temperature of the relaxed distribution. The
temperature should be positive.

• logits – A N-D (N >= 1) float Tensor of shape (. . . , n_categories). Each slice [i, j, . . . , k,
:] represents the un-normalized log probabilities for all categories.

logits ∝ log 𝑝

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this distribution
are allowed to propagate into inputs, using the reparametrization trick from (Kingma, 2013).

• use_path_derivative – A bool. Whether when taking the gradients of the log-
probability to propagate them through the parameters of the distribution (False meaning
you do propagate them). This is based on the paper “Sticking the Landing: Simple, Lower-
Variance Gradient Estimators for Variational Inference”

• check_numerics – Bool. Whether to check numeric issues.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

60 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

logits
The un-normalized log probabilities.

n_categories
The number of categories in the distribution.

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

temperature
The temperature of ExpConcrete.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

ExpGumbelSoftmax
alias of zhusuan.distributions.multivariate.ExpConcrete

class Concrete(temperature, logits, group_ndims=0, is_reparameterized=True,
use_path_derivative=False, check_numerics=False, **kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of Concrete (or Gumbel-Softmax) distribution from (Maddison, 2016; Jang, 2016), served as the
continuous relaxation of the OnehotCategorical. See Distribution for details.

See also:

1.5. zhusuan.distributions 61

ZhuSuan Documentation, Release 0.4.0

BinConcrete and ExpConcrete

Parameters

• temperature – A 0-D float Tensor. The temperature of the relaxed distribution. The
temperature should be positive.

• logits – A N-D (N >= 1) float Tensor of shape (. . . , n_categories). Each slice [i, j, . . . , k,
:] represents the un-normalized log probabilities for all categories.

logits ∝ log 𝑝

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this distribution
are allowed to propagate into inputs, using the reparametrization trick from (Kingma, 2013).

• use_path_derivative – A bool. Whether when taking the gradients of the log-
probability to propagate them through the parameters of the distribution (False meaning
you do propagate them). This is based on the paper “Sticking the Landing: Simple, Lower-
Variance Gradient Estimators for Variational Inference”

• check_numerics – Bool. Whether to check numeric issues.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

62 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

logits
The un-normalized log probabilities.

n_categories
The number of categories in the distribution.

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

temperature
The temperature of Concrete.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

GumbelSoftmax
alias of zhusuan.distributions.multivariate.Concrete

class MatrixVariateNormalCholesky(mean, u_tril, v_tril, group_ndims=0,
is_reparameterized=True, use_path_derivative=False,
check_numerics=False, **kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of matrix variate normal distribution, where covariances 𝑈 and 𝑉 are parameterized with the lower
triangular matrix in Cholesky decomposition,

𝐿𝑢s.t.𝐿𝑢𝐿
𝑇
𝑢 = 𝑈, 𝐿𝑣s.t.𝐿𝑣𝐿

𝑇
𝑣 = 𝑉

See Distribution for details.

Parameters

1.5. zhusuan.distributions 63

ZhuSuan Documentation, Release 0.4.0

• mean – An N-D float Tensor of shape [. . . , n_row, n_col]. Each slice [i, j, . . . , k, :, :]
represents the mean of a single matrix variate normal distribution.

• u_tril – An N-D float Tensor of shape [. . . , n_row, n_row]. Each slice [i, j, . . . , k, :,
:] represents the lower triangular matrix in the Cholesky decomposition of the among-row
covariance of a single matrix variate normal distribution.

• v_tril – An N-D float Tensor of shape [. . . , n_col, n_col]. Each slice [i, j, . . . , k, :, :]
represents the lower triangular matrix in the Cholesky decomposition of the among-column
covariance of a single matrix variate normal distribution.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this distribution
are allowed to propagate into inputs, using the reparametrization trick from (Kingma, 2013).

• use_path_derivative – A bool. Whether when taking the gradients of the log-
probability to propagate them through the parameters of the distribution (False meaning
you do propagate them). This is based on the paper “Sticking the Landing: Simple, Lower-
Variance Gradient Estimators for Variational Inference”

• check_numerics – Bool. Whether to check numeric issues.

batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution.
For batch inputs, the shape of a generated sample is batch_shape + value_shape. We borrow this
concept from tf.contrib.distributions.

dtype
The sample type of the distribution.

get_batch_shape()
Static batch_shape.

Returns A TensorShape instance.

get_value_shape()
Static value_shape.

Returns A TensorShape instance.

group_ndims
The number of dimensions in batch_shape (counted from the end) that are grouped into a single event,
so that their probabilities are calculated together. See Distribution for more detailed explanation.

is_continuous
Whether the distribution is continuous.

is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

64 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

mean
The mean of the matrix variate normal distribution.

param_dtype
The parameter(s) type of the distribution.

path_param(param)
Automatically transforms a parameter based on use_path_derivative

prob(given)
Compute probability density (mass) function at given value.

Parameters given – A Tensor. The value at which to evaluate probability density (mass)
function. Must be able to broadcast to have a shape of (... +)batch_shape +
value_shape.

Returns A Tensor of shape (... +)batch_shape[:-group_ndims].

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Tensor of samples.

u_tril
The lower triangular matrix in the Cholesky decomposition of the among-row covariance.

use_path_derivative
Whether when taking the gradients of the log-probability to propagate them through the parameters of the
distribution (False meaning you do propagate them). This is based on the paper “Sticking the Landing:
Simple, Lower-Variance Gradient Estimators for Variational Inference”

v_tril
The lower triangular matrix in the Cholesky decomposition of the among-column covariance.

value_shape
The non-batch value shape of a distribution. For batch inputs, the shape of a generated sample is
batch_shape + value_shape.

1.5.4 Distribution utils

log_combination(n, ks)
Compute the log combination function.

log

(︂
𝑛

𝑘1, 𝑘2, . . .

)︂
= log 𝑛!−

∑︁
𝑖

log 𝑘𝑖!

Parameters

• n – A N-D float Tensor. Can broadcast to match tf.shape(ks)[:-1].

• ks – A (N + 1)-D float Tensor. Each slice [i, j, . . . , k, :] is a vector of [k_1, k_2, . . .].

Returns A N-D Tensor of type same as n.

explicit_broadcast(x, y, x_name, y_name)
Explicit broadcast two Tensors to have the same shape.

1.5. zhusuan.distributions 65

ZhuSuan Documentation, Release 0.4.0

Returns x, y after broadcast.

maybe_explicit_broadcast(x, y, x_name, y_name)
Explicit broadcast two Tensors to have the same shape if necessary.

Returns x, y after broadcast.

is_same_dynamic_shape(x, y)
Whether x and y has the same dynamic shape.

Parameters

• x – A Tensor.

• y – A Tensor.

Returns A scalar Tensor of bool.

1.6 zhusuan.framework

1.6.1 BayesianNet

class StochasticTensor(bn, name, dist, observation=None, **kwargs)
Bases: zhusuan.utils.TensorArithmeticMixin

The StochasticTensor class represents the stochastic nodes in a BayesianNet.

We can use any distribution available in zhusuan.distributions to construct a stochastic node in a
BayesianNet. For example:

bn = zs.BayesianNet()
x = bn.normal("x", 0., std=1.)

will build a stochastic node in bn with the Normal distribution. The returned x will be a
StochasticTensor. The second line is equivalent to:

dist = zs.distributions.Normal(0., std=1.)
x = bn.stochastic("x", dist)

StochasticTensor instances are Tensor-like, which means that they can be passed into any Tensorflow
operations. This makes it easy to build Bayesian networks by mixing stochastic nodes and Tensorflow primitives.

See also:

For more information, please refer to Basic Concepts in ZhuSuan.

Parameters

• bn – A BayesianNet.

• name – A string. The name of the StochasticTensor. Must be unique in a
BayesianNet.

• dist – A Distribution instance that determines the distribution used in this stochastic
node.

• observation – A Tensor, which matches the shape of dist. If specified, then the
StochasticTensor is observed and the tensor property will return the observa-
tion. This argument will overwrite the observation provided in zhusuan.framework.
meta_bn.MetaBayesianNet.observe().

66 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

• n_samples – A 0-D int32 Tensor. Number of samples generated by this
StochasticTensor.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

1.6. zhusuan.framework 67

ZhuSuan Documentation, Release 0.4.0

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

class BayesianNet(observed=None)
Bases: zhusuan.framework.bn._BayesianNet, zhusuan.framework.utils.Context

The BayesianNet class provides a convenient way to construct Bayesian networks, i.e., directed graphical
models.

To start, we create a BayesianNet instance:

bn = zs.BayesianNet()

A BayesianNet keeps two kinds of nodes

• deterministic nodes: they are just Tensors, usually the outputs of Tensorflow operations.

• stochastic nodes: they are random variables in graphical models, and can be constructed like

68 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

w = bn.normal("w", 0., std=alpha)

Here w is a StochasticTensor that follows the Normal distribution. For any distribution available
in zhusuan.distributions, we can find a method of BayesianNet for creating the corresponding
stochastic node. If you define your own distribution class, then there is a general method stochastic() for
doing this:

dist = CustomizedDistribution()
w = bn.stochastic("w", dist)

To observe any stochastic nodes in the network, pass a dictionary mapping of (name, Tensor) pairs when
constructing BayesianNet. This will assign observed values to corresponding StochasticTensor s. For
example:

bn = zs.BayesianNet(observed={"w": w_obs})

will set w to be observed.

Note: The observation passed must have the same type and shape as the StochasticTensor.

A useful case is that we often need to pass different observations more than once into the Bayesian network, for
which we provide meta_bayesian_net() decorator and another abstract class MetaBayesianNet.

See also:

For more details and examples, please refer to Basic Concepts in ZhuSuan.

Parameters observed – A dictionary of (string, Tensor) pairs, which maps from names of
stochastic nodes to their observed values.

bag_of_categoricals(name, logits, normalize_logits=True, group_ndims=0, dtype=tf.int32,
**kwargs)

Add a stochastic node in this BayesianNet that follows the UnnormalizedMultinomial distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See UnnormalizedMultinomial for more information about the other arguments.

Returns A StochasticTensor instance.

bernoulli(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)
Add a stochastic node in this BayesianNet that follows the Bernoulli distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See Bernoulli for more information about the other arguments.

Returns A StochasticTensor instance.

beta(name, alpha, beta, n_samples=None, group_ndims=0, check_numerics=False, **kwargs)
Add a stochastic node in this BayesianNet that follows the Beta distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See Beta for more information about the other arguments.

Returns A StochasticTensor instance.

bin_concrete(name, temperature, logits, n_samples=None, group_ndims=0,
is_reparameterized=True, check_numerics=False, **kwargs)

Add a stochastic node in this BayesianNet that follows the BinConcrete distribution.

1.6. zhusuan.framework 69

ZhuSuan Documentation, Release 0.4.0

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See BinConcrete for more information about the other arguments.

Returns A StochasticTensor instance.

bin_gumbel_softmax(name, temperature, logits, n_samples=None, group_ndims=0,
is_reparameterized=True, check_numerics=False, **kwargs)

Add a stochastic node in this BayesianNet that follows the BinConcrete distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See BinConcrete for more information about the other arguments.

Returns A StochasticTensor instance.

binomial(name, logits, n_experiments, n_samples=None, group_ndims=0, dtype=tf.int32,
check_numerics=False, **kwargs)

Add a stochastic node in this BayesianNet that follows the Binomial distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See Binomial for more information about the other arguments.

Returns A StochasticTensor instance.

categorical(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)
Add a stochastic node in this BayesianNet that follows the Categorical distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See Categorical for more information about the other arguments.

Returns A StochasticTensor instance.

concrete(name, temperature, logits, n_samples=None, group_ndims=0, is_reparameterized=True,
check_numerics=False, **kwargs)

Add a stochastic node in this BayesianNet that follows the Concrete distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See Concrete for more information about the other arguments.

Returns A StochasticTensor instance.

cond_log_prob(name_or_names)
The conditional log probabilities of stochastic nodes, evaluated at their current values (given by
StochasticTensor.tensor).

Parameters name_or_names – A string or a list of strings. Name(s) of the stochastic nodes.

Returns A Tensor or a list of Tensors.

deterministic(name, input_tensor)
Add a named deterministic node in this BayesianNet.

Parameters

• name – The name of the deterministic node. Must be unique in a BayesianNet.

• input_tensor – A Tensor. The value of the deterministic node.

Returns A Tensor. The same as input_tensor.

dirichlet(name, alpha, n_samples=None, group_ndims=0, check_numerics=False, **kwargs)
Add a stochastic node in this BayesianNet that follows the Dirichlet distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

70 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

See Dirichlet for more information about the other arguments.

Returns A StochasticTensor instance.

discrete(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)
Add a stochastic node in this BayesianNet that follows the Categorical distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See Categorical for more information about the other arguments.

Returns A StochasticTensor instance.

exp_concrete(name, temperature, logits, n_samples=None, group_ndims=0,
is_reparameterized=True, check_numerics=False, **kwargs)

Add a stochastic node in this BayesianNet that follows the ExpConcrete distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See ExpConcrete for more information about the other arguments.

Returns A StochasticTensor instance.

exp_gumbel_softmax(name, temperature, logits, n_samples=None, group_ndims=0,
is_reparameterized=True, check_numerics=False, **kwargs)

Add a stochastic node in this BayesianNet that follows the ExpConcrete distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See ExpConcrete for more information about the other arguments.

Returns A StochasticTensor instance.

fold_normal(name, mean=0.0, _sentinel=None, std=None, logstd=None, n_samples=None,
group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

Add a stochastic node in this BayesianNet that follows the FoldNormal distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See FoldNormal for more information about the other arguments.

Returns A StochasticTensor instance.

gamma(name, alpha, beta, n_samples=None, group_ndims=0, check_numerics=False, **kwargs)
Add a stochastic node in this BayesianNet that follows the Gamma distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See Gamma for more information about the other arguments.

Returns A StochasticTensor instance.

get(name_or_names)
Get one or several nodes by name. For a single node, one can also use dictionary-like bn[name] to get
the node.

Parameters name_or_names – A string or a tuple(list) of strings.

Returns A Tensor/StochasticTensor or a list of Tensor/StochasticTensor s.

classmethod get_context()

classmethod get_contexts()

gumbel_softmax(name, temperature, logits, n_samples=None, group_ndims=0,
is_reparameterized=True, check_numerics=False, **kwargs)

Add a stochastic node in this BayesianNet that follows the Concrete distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

1.6. zhusuan.framework 71

ZhuSuan Documentation, Release 0.4.0

See Concrete for more information about the other arguments.

Returns A StochasticTensor instance.

inverse_gamma(name, alpha, beta, n_samples=None, group_ndims=0, check_numerics=False,
**kwargs)

Add a stochastic node in this BayesianNet that follows the InverseGamma distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See InverseGamma for more information about the other arguments.

Returns A StochasticTensor instance.

laplace(name, loc, scale, n_samples=None, group_ndims=0, is_reparameterized=True,
check_numerics=False, **kwargs)

Add a stochastic node in this BayesianNet that follows the Laplace distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See Laplace for more information about the other arguments.

Returns A StochasticTensor instance.

local_log_prob(name_or_names)

Note: Deprecated in 0.4, will be removed in 0.4.1.

log_joint()
The default log joint probability of this BayesianNet. It works by summing over all the conditional log
probabilities of stochastic nodes evaluated at their current values (samples or observations).

Returns A Tensor.

matrix_variate_normal_cholesky(name, mean, u_tril, v_tril, n_samples=None,
group_ndims=0, is_reparameterized=True,
check_numerics=False, **kwargs)

Add a stochastic node in this BayesianNet that follows the MatrixVariateNormalCholesky distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See MatrixVariateNormalCholesky for more information about the other arguments.

Returns A StochasticTensor instance.

multinomial(name, logits, n_experiments, normalize_logits=True, n_samples=None,
group_ndims=0, dtype=tf.int32, **kwargs)

Add a stochastic node in this BayesianNet that follows the Multinomial distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See Multinomial for more information about the other arguments.

Returns A StochasticTensor instance.

multivariate_normal_cholesky(name, mean, cov_tril, n_samples=None, group_ndims=0,
is_reparameterized=True, check_numerics=False, **kwargs)

Add a stochastic node in this BayesianNet that follows the MultivariateNormalCholesky distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See MultivariateNormalCholesky for more information about the other arguments.

Returns A StochasticTensor instance.

72 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

nodes
The dictionary of all named nodes in this BayesianNet, including all StochasticTensor s and
named deterministic nodes.

Returns A dict.

normal(name, mean=0.0, _sentinel=None, std=None, logstd=None, group_ndims=0,
n_samples=None, is_reparameterized=True, check_numerics=False, **kwargs)

Add a stochastic node in this BayesianNet that follows the Normal distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See Normal for more information about the other arguments.

Returns A StochasticTensor instance.

onehot_categorical(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)
Add a stochastic node in this BayesianNet that follows the OnehotCategorical distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See OnehotCategorical for more information about the other arguments.

Returns A StochasticTensor instance.

onehot_discrete(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)
Add a stochastic node in this BayesianNet that follows the OnehotCategorical distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See OnehotCategorical for more information about the other arguments.

Returns A StochasticTensor instance.

outputs(name_or_names)

Note: Deprecated in 0.4, will be removed in 0.4.1.

poisson(name, rate, n_samples=None, group_ndims=0, dtype=tf.int32, check_numerics=False,
**kwargs)

Add a stochastic node in this BayesianNet that follows the Poisson distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See Poisson for more information about the other arguments.

Returns A StochasticTensor instance.

query(name_or_names, outputs=False, local_log_prob=False)

Note: Deprecated in 0.4, will be removed in 0.4.1.

stochastic(name, dist, **kwargs)
Add a stochastic node in this BayesianNet.

Parameters

• name – The name of the stochastic node. Must be unique in a BayesianNet.

• dist – The followed distribution.

1.6. zhusuan.framework 73

ZhuSuan Documentation, Release 0.4.0

• kwargs – Optional parameters to specify the sampling behaviors,

– n_samples: A 0-D int32 Tensor. Number of samples generated.

Returns A StochasticTensor.

uniform(name, minval=0.0, maxval=1.0, n_samples=None, group_ndims=0,
is_reparameterized=True, check_numerics=False, **kwargs)

Add a stochastic node in this BayesianNet that follows the Uniform distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See Uniform for more information about the other arguments.

Returns A StochasticTensor instance.

unnormalized_multinomial(name, logits, normalize_logits=True, group_ndims=0,
dtype=tf.int32, **kwargs)

Add a stochastic node in this BayesianNet that follows the UnnormalizedMultinomial distribution.

Parameters name – The name of the stochastic node. Must be unique in a BayesianNet.

See UnnormalizedMultinomial for more information about the other arguments.

Returns A StochasticTensor instance.

1.6.2 MetaBayesianNet

class MetaBayesianNet(f, args=None, kwargs=None, scope=None, reuse_variables=False)
Bases: object

A lazy-constructed BayesianNet. Conceptually it’s better to view MetaBayesianNet rather than
BayesianNet as the model because it can accept different observations through the observe() method.

The suggested usage is through the meta_bayesian_net() decorator.

See also:

For more information, please refer to Basic Concepts in ZhuSuan.

Parameters

• f – A function that constructs and returns a BayesianNet.

• args – A list. Ordered arguments that will be passed into f.

• kwargs – A dictionary. Named arguments that will be passed into f.

• scope – A string. The scope name passed to tensorflow variable_scope().

• reuse_variables – A bool. Whether to reuse tensorflow Variables in repeated calls of
observe().

log_joint
The log joint function of this model. Can be overwritten as:

meta_bn = build_model(...)

def log_joint(bn):
return ...

meta_bn.log_joint = log_joint

74 Chapter 1. Installation

https://www.tensorflow.org/api_docs/python/tf/variable_scope
https://www.tensorflow.org/api_docs/python/tf/Variable

ZhuSuan Documentation, Release 0.4.0

observe(**kwargs)
Construct a BayesianNet given observations.

Parameters kwargs – A dictionary that maps from node names to their observed values.

Returns A BayesianNet instance.

meta_bayesian_net(scope=None, reuse_variables=False)
Transform a function that builds a BayesianNet into returning MetaBayesianNet.

The suggested usage is as a decorator:

@meta_bayesian_net(scope=..., reuse_variables=True)
def build_model(...):

bn = zs.BayesianNet()
...
return bn

The decorated function will return a MetaBayesianNet instance instead of a BayesianNet instance.

See also:

For more details and examples, please refer to Basic Concepts in ZhuSuan.

Parameters

• scope – A string. The scope name passed to tensorflow variable_scope().

• reuse_variables – A bool. Whether to reuse tensorflow Variables in repeated calls of
MetaBayesianNet.observe().

Returns The transformed function.

1.6.3 Utils

get_backward_ops(seed_tensors, treat_as_inputs=None)
Get backward ops from inputs to seed_tensors by topological order.

Parameters

• seed_tensors – A Tensor or list of Tensors, for which to get all preceding Tensors.

• treat_as_inputs – None or a list of Tensors that is treated as inputs during the search
(where to stop searching the backward graph).

Returns A list of tensorflow Operation s in topological order.

reuse_variables(scope)
A decorator for transparent reuse of tensorflow Variables in a function. The decorated function will automati-
cally create variables the first time they are called and reuse them thereafter.

Note: This decorator is internally implemented by tensorflow’s make_template() function. See its doc for
requirements on the target function.

Parameters scope – A string. The scope name passed to tensorflow variable_scope().

reuse(scope)
(Deprecated) Alias of reuse_variables().

1.6. zhusuan.framework 75

https://www.tensorflow.org/api_docs/python/tf/variable_scope
https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/make_template
https://www.tensorflow.org/api_docs/python/tf/variable_scope

ZhuSuan Documentation, Release 0.4.0

1.7 zhusuan.variational

1.7.1 Base class

class VariationalObjective(meta_bn, observed, latent=None, variational=None)
Bases: zhusuan.utils.TensorArithmeticMixin

The base class for variational objectives. You never use this class directly, but instead instantiate one of its
subclasses by calling elbo(), importance_weighted_objective(), or klpq().

Parameters

• meta_bn – A MetaBayesianNet instance or a log joint probability function. For the
latter, it must accepts a dictionary argument of (string, Tensor) pairs, which are
mappings from all node names in the model to their observed values. The function should
return a Tensor, representing the log joint likelihood of the model.

• observed – A dictionary of (string, Tensor) pairs. Mapping from names of ob-
served stochastic nodes to their values.

• latent – A dictionary of (string, (Tensor, Tensor)) pairs. Mapping from
names of latent stochastic nodes to their samples and log probabilities. latent and variational
are mutually exclusive.

• variational – A BayesianNet instance that defines the variational family. varia-
tional and latent are mutually exclusive.

bn
The BayesianNet constructed by observing the meta_bn with samples from the variational posterior
distributions. None if the log joint probability function is provided instead of meta_bn.

Note: This BayesianNet instance is useful when computing predictions with the approximate posterior
distribution.

meta_bn
The inferred model. A MetaBayesianNet instance. None if instead log joint probability function is
given.

tensor
Return the Tensor representing the value of the variational objective.

variational
The variational family. A BayesianNet instance. None if instead latent is given.

1.7.2 Exclusive KL divergence

elbo(meta_bn, observed, latent=None, axis=None, variational=None)
The evidence lower bound (ELBO) objective for variational inference. The returned value is a
EvidenceLowerBoundObjective instance.

See EvidenceLowerBoundObjective for examples of usage.

Parameters

• meta_bn – A MetaBayesianNet instance or a log joint probability function. For the
latter, it must accepts a dictionary argument of (string, Tensor) pairs, which are

76 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

mappings from all node names in the model to their observed values. The function should
return a Tensor, representing the log joint likelihood of the model.

• observed – A dictionary of (string, Tensor) pairs. Mapping from names of ob-
served stochastic nodes to their values.

• latent – A dictionary of (string, (Tensor, Tensor)) pairs. Mapping from
names of latent stochastic nodes to their samples and log probabilities. latent and variational
are mutually exclusive.

• axis – The sample dimension(s) to reduce when computing the outer expectation in the
objective. If None, no dimension is reduced.

• variational – A BayesianNet instance that defines the variational family. varia-
tional and latent are mutually exclusive.

Returns An EvidenceLowerBoundObjective instance.

class EvidenceLowerBoundObjective(meta_bn, observed, latent=None, axis=None, varia-
tional=None)

Bases: zhusuan.variational.base.VariationalObjective

The class that represents the evidence lower bound (ELBO) objective for variational inference. An instance of
the class can be constructed by calling elbo():

lower_bound is an EvidenceLowerBoundObjective instance
lower_bound = zs.variational.elbo(

meta_bn, observed, variational=variational, axis=0)

Here meta_bn is a MetaBayesianNet instance representing the model to be inferred. variational is a
BayesianNet instance that defines the variational family. axis is the index of the sample dimension used to
estimate the expectation when computing the objective.

Instances of EvidenceLowerBoundObjective are Tensor-like. They can be automatically or manually
cast into Tensors when fed into Tensorflow Operators and doing computation with Tensors, or when the tensor
property is accessed. It can also be evaluated like a Tensor:

evaluate the ELBO
with tf.Session() as sess:

print sess.run(lower_bound, feed_dict=...)

Maximizing the ELBO wrt. variational parameters is equivalent to minimizing 𝐾𝐿(𝑞‖𝑝), i.e., the KL-
divergence between the variational posterior (𝑞) and the true posterior (𝑝). However, this cannot be di-
rectly done by calling Tensorflow optimizers on the EvidenceLowerBoundObjective instance be-
cause of the outer expectation in the true ELBO objective, while our ELBO value at hand is a single or
a few sample estimates. The correct way for doing this is by calling the gradient estimator provided by
EvidenceLowerBoundObjective. Currently there are two of them:

• sgvb(): The Stochastic Gradient Variational Bayes (SGVB) estimator, also known as “the reparameter-
ization trick”, or “path derivative estimator”.

• reinforce(): The score function estimator with variance reduction, also known as “REINFORCE”,
“NVIL”, or “likelihood-ratio estimator”.

Thus the typical code for doing variational inference is like:

choose a gradient estimator to return the surrogate cost
cost = lower_bound.sgvb()
or
cost = lower_bound.reinforce()

(continues on next page)

1.7. zhusuan.variational 77

ZhuSuan Documentation, Release 0.4.0

(continued from previous page)

optimize the surrogate cost wrt. variational parameters
optimizer = tf.train.AdamOptimizer(learning_rate)
infer_op = optimizer.minimize(cost, var_list=variational_parameters)
with tf.Session() as sess:

for _ in range(n_iters):
_, lb = sess.run([infer_op, lower_bound], feed_dict=...)

Note: Don’t directly optimize the EvidenceLowerBoundObjective instance wrt. variational parame-
ters, i.e., parameters in 𝑞. Instead a proper gradient estimator should be chosen to produce the correct surrogate
cost to minimize, as shown in the above code snippet.

On the other hand, the ELBO can be used for maximum likelihood learning of model parameters, as it is a lower
bound of the marginal log likelihood of observed variables. Because the outer expectation in the ELBO is not
related to model parameters, this time it’s fine to directly optimize the class instance:

optimize wrt. model parameters
learn_op = optimizer.minimize(-lower_bound, var_list=model_parameters)
or
learn_op = optimizer.minimize(cost, var_list=model_parameters)
both ways are correct

Or we can do inference and learning jointly by optimize over both variational and model parameters:

joint inference and learning
infer_and_learn_op = optimizer.minimize(

cost, var_list=model_and_variational_parameters)

Parameters

• meta_bn – A MetaBayesianNet instance or a log joint probability function. For the
latter, it must accepts a dictionary argument of (string, Tensor) pairs, which are
mappings from all node names in the model to their observed values. The function should
return a Tensor, representing the log joint likelihood of the model.

• observed – A dictionary of (string, Tensor) pairs. Mapping from names of ob-
served stochastic nodes to their values.

• latent – A dictionary of (string, (Tensor, Tensor)) pairs. Mapping from
names of latent stochastic nodes to their samples and log probabilities. latent and variational
are mutually exclusive.

• axis – The sample dimension(s) to reduce when computing the outer expectation in the
objective. If None, no dimension is reduced.

• variational – A BayesianNet instance that defines the variational family. varia-
tional and latent are mutually exclusive.

bn
The BayesianNet constructed by observing the meta_bn with samples from the variational posterior
distributions. None if the log joint probability function is provided instead of meta_bn.

Note: This BayesianNet instance is useful when computing predictions with the approximate posterior

78 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

distribution.

meta_bn
The inferred model. A MetaBayesianNet instance. None if instead log joint probability function is
given.

reinforce(variance_reduction=True, baseline=None, decay=0.8)
Implements the score function gradient estimator for the ELBO, with optional variance reduction using
moving mean estimate or “baseline”. Also known as “REINFORCE” (Williams, 1992), “NVIL” (Mnih,
2014), and “likelihood-ratio estimator” (Glynn, 1990).

It works for all types of latent StochasticTensor s.

Note: To use the reinforce() estimator, the is_reparameterized property of each reparame-
terizable latent StochasticTensor must be set False.

Parameters

• variance_reduction – Bool. Whether to use variance reduction. By default will
subtract the learning signal with a moving mean estimation of it. Users can pass an addi-
tional customized baseline using the baseline argument, in that way the returned will be a
tuple of costs, the former for the gradient estimator, the latter for adapting the baseline.

• baseline – A Tensor that can broadcast to match the shape returned by log_joint. A
trainable estimation for the scale of the elbo value, which is typically dependent on ob-
served values, e.g., a neural network with observed values as inputs. This will be addi-
tional.

• decay – Float. The moving average decay for variance normalization.

Returns A Tensor. The surrogate cost for Tensorflow optimizers to minimize.

sgvb()
Implements the stochastic gradient variational bayes (SGVB) gradient estimator for the ELBO, also known
as “reparameterization trick” or “path derivative estimator”.

It only works for latent StochasticTensor s that can be reparameterized (Kingma, 2013). For example,
Normal and Concrete.

Note: To use the sgvb() estimator, the is_reparameterized property of each latent Stochas-
ticTensor must be True (which is the default setting when they are constructed).

Returns A Tensor. The surrogate cost for Tensorflow optimizers to minimize.

tensor
Return the Tensor representing the value of the variational objective.

variational
The variational family. A BayesianNet instance. None if instead latent is given.

1.7.3 Inclusive KL divergence

klpq(meta_bn, observed, latent=None, axis=None, variational=None)
The inclusive KL objective for variational inference. The returned value is an InclusiveKLObjective

1.7. zhusuan.variational 79

ZhuSuan Documentation, Release 0.4.0

instance.

See InclusiveKLObjective for examples of usage.

Parameters

• meta_bn – A MetaBayesianNet instance or a log joint probability function. For the
latter, it must accepts a dictionary argument of (string, Tensor) pairs, which are
mappings from all node names in the model to their observed values. The function should
return a Tensor, representing the log joint likelihood of the model.

• observed – A dictionary of (string, Tensor) pairs. Mapping from names of ob-
served stochastic nodes to their values.

• latent – A dictionary of (string, (Tensor, Tensor)) pairs. Mapping from
names of latent stochastic nodes to their samples and log probabilities. latent and variational
are mutually exclusive.

• axis – The sample dimension(s) to reduce when computing the outer expectation in the
objective. If None, no dimension is reduced.

• variational – A BayesianNet instance that defines the variational family. varia-
tional and latent are mutually exclusive.

Returns An InclusiveKLObjective instance.

class InclusiveKLObjective(meta_bn, observed, latent=None, axis=None, variational=None)
Bases: zhusuan.variational.base.VariationalObjective

The class that represents the inclusive KL objective (𝐾𝐿(𝑝‖𝑞), i.e., the KL-divergence between the true pos-
terior 𝑝 and the variational posterior 𝑞). This is the opposite direction of the one (𝐾𝐿(𝑞‖𝑝), or exclusive KL
objective) that induces the ELBO objective.

An instance of the class can be constructed by calling klpq():

klpq_obj is an InclusiveKLObjective instance
klpq_obj = zs.variational.klpq(

meta_bn, observed, variational=variational, axis=axis)

Here meta_bn is a MetaBayesianNet instance representing the model to be inferred. variational is a
BayesianNet instance that defines the variational family. axis is the index of the sample dimension used to
estimate the expectation when computing the gradients.

Unlike most VariationalObjective instances, the instance of InclusiveKLObjective cannot be
used like a Tensor or evaluated, because in general this objective is not computable.

The only thing one could achieve with this objective is purely for inference, i.e., optimize it wrt. variational
parameters (parameters in 𝑞). The way to perform this is by calling the supported gradient estimator and getting
the surrogate cost to minimize. Currently there is

• importance(): The self-normalized importance sampling gradient estimator.

So the typical code for doing variational inference is like:

call the gradient estimator to return the surrogate cost
cost = klpq_obj.importance()

optimize the surrogate cost wrt. variational parameters
optimizer = tf.train.AdamOptimizer(learning_rate)
infer_op = optimizer.minimize(cost, var_list=variational_parameters)
with tf.Session() as sess:

(continues on next page)

80 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

(continued from previous page)

for _ in range(n_iters):
_, lb = sess.run([infer_op, lower_bound], feed_dict=...)

Note: The inclusive KL objective is only a criteria for variational inference but not model learning (Optimizing
it doesn’t do maximum likelihood learning like the ELBO objective does). That means, there is no reason to
optimize the surrogate cost wrt. model parameters.

Parameters

• meta_bn – A MetaBayesianNet instance or a log joint probability function. For the
latter, it must accepts a dictionary argument of (string, Tensor) pairs, which are
mappings from all node names in the model to their observed values. The function should
return a Tensor, representing the log joint likelihood of the model.

• observed – A dictionary of (string, Tensor) pairs. Mapping from names of ob-
served stochastic nodes to their values.

• latent – A dictionary of (string, (Tensor, Tensor)) pairs. Mapping from
names of latent stochastic nodes to their samples and log probabilities. latent and variational
are mutually exclusive.

• axis – The sample dimension(s) to reduce when computing the outer expectation in the
objective. If None, no dimension is reduced.

• variational – A BayesianNet instance that defines the variational family. varia-
tional and latent are mutually exclusive.

bn
The BayesianNet constructed by observing the meta_bn with samples from the variational posterior
distributions. None if the log joint probability function is provided instead of meta_bn.

Note: This BayesianNet instance is useful when computing predictions with the approximate posterior
distribution.

importance()
Implements the self-normalized importance sampling gradient estimator for variational inference. This
was used in the Reweighted Wake-Sleep (RWS) algorithm (Bornschein, 2015) to adapt the proposal, or
variational posterior in the importance weighted objective (See ImportanceWeightedObjective).
Now this estimator is widely used for neural adaptive proposals in importance sampling.

It works for all types of latent StochasticTensor s.

Note: To use the rws() estimator, the is_reparameterized property of each reparameterizable
latent StochasticTensor must be set False.

Returns A Tensor. The surrogate cost for Tensorflow optimizers to minimize.

meta_bn
The inferred model. A MetaBayesianNet instance. None if instead log joint probability function is
given.

1.7. zhusuan.variational 81

ZhuSuan Documentation, Release 0.4.0

rws()
(Deprecated) Alias of importance().

tensor
Return the Tensor representing the value of the variational objective.

variational
The variational family. A BayesianNet instance. None if instead latent is given.

1.7.4 Monte Carlo objectives

importance_weighted_objective(meta_bn, observed, latent=None, axis=None, variational=None)
The importance weighted objective for variational inference (Burda, 2015). The returned value is an
ImportanceWeightedObjective instance.

See ImportanceWeightedObjective for examples of usage.

Parameters

• meta_bn – A MetaBayesianNet instance or a log joint probability function. For the
latter, it must accepts a dictionary argument of (string, Tensor) pairs, which are
mappings from all node names in the model to their observed values. The function should
return a Tensor, representing the log joint likelihood of the model.

• observed – A dictionary of (string, Tensor) pairs. Mapping from names of ob-
served stochastic nodes to their values.

• latent – A dictionary of (string, (Tensor, Tensor)) pairs. Mapping from
names of latent stochastic nodes to their samples and log probabilities. latent and variational
are mutually exclusive.

• axis – The sample dimension(s) to reduce when computing the outer expectation in the
objective. If None, no dimension is reduced.

• variational – A BayesianNet instance that defines the variational family. varia-
tional and latent are mutually exclusive.

Returns An ImportanceWeightedObjective instance.

iw_objective(meta_bn, observed, latent=None, axis=None, variational=None)
The importance weighted objective for variational inference (Burda, 2015). The returned value is an
ImportanceWeightedObjective instance.

See ImportanceWeightedObjective for examples of usage.

Parameters

• meta_bn – A MetaBayesianNet instance or a log joint probability function. For the
latter, it must accepts a dictionary argument of (string, Tensor) pairs, which are
mappings from all node names in the model to their observed values. The function should
return a Tensor, representing the log joint likelihood of the model.

• observed – A dictionary of (string, Tensor) pairs. Mapping from names of ob-
served stochastic nodes to their values.

• latent – A dictionary of (string, (Tensor, Tensor)) pairs. Mapping from
names of latent stochastic nodes to their samples and log probabilities. latent and variational
are mutually exclusive.

• axis – The sample dimension(s) to reduce when computing the outer expectation in the
objective. If None, no dimension is reduced.

82 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

• variational – A BayesianNet instance that defines the variational family. varia-
tional and latent are mutually exclusive.

Returns An ImportanceWeightedObjective instance.

class ImportanceWeightedObjective(meta_bn, observed, latent=None, axis=None, varia-
tional=None)

Bases: zhusuan.variational.base.VariationalObjective

The class that represents the importance weighted objective for variational inference (Burda, 2015). An instance
of the class can be constructed by calling importance_weighted_objective():

lower_bound is an ImportanceWeightedObjective instance
lower_bound = zs.variational.importance_weighted_objective(

meta_bn, observed, variational=variational, axis=axis)

Here meta_bn is a MetaBayesianNet instance representing the model to be inferred. variational is a
BayesianNet instance that defines the variational family. axis is the index of the sample dimension used to
estimate the expectation when computing the objective.

Instances of ImportanceWeightedObjective are Tensor-like. They can be automatically or manu-
ally cast into Tensors when fed into Tensorflow operations and doing computation with Tensors, or when the
tensor property is accessed. It can also be evaluated like a Tensor:

evaluate the objective
with tf.Session() as sess:

print sess.run(lower_bound, feed_dict=...)

The objective computes the same importance-sampling based estimate of the marginal log likelihood of observed
variables as is_loglikelihood(). The difference is that the estimate now serves as a variational objective,
since it is also a lower bound of the marginal log likelihood (as long as the number of samples is finite). The vari-
ational posterior here is in fact the proposal. As a variational objective, ImportanceWeightedObjective
provides two gradient estimators for the variational (proposal) parameters:

• sgvb(): The Stochastic Gradient Variational Bayes (SGVB) estimator, also known as “the reparameter-
ization trick”, or “path derivative estimator”.

• vimco(): The multi-sample score function estimator with variance reduction, also known as “VIMCO”.

The typical code for joint inference and learning is like:

choose a gradient estimator to return the surrogate cost
cost = lower_bound.sgvb()
or
cost = lower_bound.vimco()

optimize the surrogate cost wrt. model and variational
parameters
optimizer = tf.train.AdamOptimizer(learning_rate)
infer_and_learn_op = optimizer.minimize(

cost, var_list=model_and_variational_parameters)
with tf.Session() as sess:

for _ in range(n_iters):
_, lb = sess.run([infer_op, lower_bound], feed_dict=...)

Note: Don’t directly optimize the ImportanceWeightedObjective instance wrt. to variational param-
eters, i.e., parameters in 𝑞. Instead a proper gradient estimator should be chosen to produce the correct surrogate
cost to minimize, as shown in the above code snippet.

1.7. zhusuan.variational 83

ZhuSuan Documentation, Release 0.4.0

Because the outer expectation in the objective is not related to model parameters, it’s fine to directly optimize
the class instance wrt. model parameters:

optimize wrt. model parameters
learn_op = optimizer.minimize(-lower_bound,

var_list=model_parameters)
or
learn_op = optimizer.minimize(cost, var_list=model_parameters)
both ways are correct

The above provides a way for users to combine the importance weighted objective with different methods of
adapting proposals (𝑞). In this situation the true posterior is a good choice, which indicates that any variational
objectives can be used for the adaptation. Specially, when the klpq() objective is chosen, this reproduces the
Reweighted Wake-Sleep algorithm (Bornschein, 2015) for learning deep generative models.

Parameters

• meta_bn – A MetaBayesianNet instance or a log joint probability function. For the
latter, it must accepts a dictionary argument of (string, Tensor) pairs, which are
mappings from all node names in the model to their observed values. The function should
return a Tensor, representing the log joint likelihood of the model.

• observed – A dictionary of (string, Tensor) pairs. Mapping from names of ob-
served stochastic nodes to their values.

• latent – A dictionary of (string, (Tensor, Tensor)) pairs. Mapping from
names of latent stochastic nodes to their samples and log probabilities. latent and variational
are mutually exclusive.

• axis – The sample dimension(s) to reduce when computing the outer expectation in the
objective. If None, no dimension is reduced.

• variational – A BayesianNet instance that defines the variational family. varia-
tional and latent are mutually exclusive.

bn
The BayesianNet constructed by observing the meta_bn with samples from the variational posterior
distributions. None if the log joint probability function is provided instead of meta_bn.

Note: This BayesianNet instance is useful when computing predictions with the approximate posterior
distribution.

meta_bn
The inferred model. A MetaBayesianNet instance. None if instead log joint probability function is
given.

sgvb()
Implements the stochastic gradient variational bayes (SGVB) gradient estimator for the objective, also
known as “reparameterization trick” or “path derivative estimator”. It was first used for importance
weighted objectives in (Burda, 2015), where it’s named “IWAE”.

It only works for latent StochasticTensor s that can be reparameterized (Kingma, 2013). For example,
Normal and Concrete.

Note: To use the sgvb() estimator, the is_reparameterized property of each latent Stochas-
ticTensor must be True (which is the default setting when they are constructed).

84 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Returns A Tensor. The surrogate cost for Tensorflow optimizers to minimize.

tensor
Return the Tensor representing the value of the variational objective.

variational
The variational family. A BayesianNet instance. None if instead latent is given.

vimco()
Implements the multi-sample score function gradient estimator for the objective, also known as “VIMCO”,
which is named by authors of the original paper (Minh, 2016).

It works for all kinds of latent StochasticTensor s.

Note: To use the vimco() estimator, the is_reparameterized property of each reparameterizable
latent StochasticTensor must be set False.

Returns A Tensor. The surrogate cost for Tensorflow optimizers to minimize.

1.8 zhusuan.hmc

class HMCInfo(samples, acceptance_rate, updated_step_size, init_momentum, orig_hamiltonian, hamil-
tonian, orig_log_prob, log_prob)

Bases: object

Contains information about a sampling iteration by HMC. Users can get fine control of the sampling process by
monitoring these statistics.

Note: Attributes provided in this structure must be fetched together with the corresponding sampling operation
and should not be fetched anywhere else. Otherwise you would get undefined behaviors.

Parameters

• samples – A dictionary of (string, Tensor) pairs. Samples generated by this HMC
iteration.

• acceptance_rate – A Tensor. The acceptance rate in this iteration.

• updated_step_size – A Tensor. The updated step size (by adaptation) after this itera-
tion.

• init_momentum – A dictionary of (string, Tensor) pairs. The initial momentum
for each latent variable in this sampling iteration.

• orig_hamiltonian – A Tensor. The original hamiltonian at the beginning of the itera-
tion.

• hamiltonian – A Tensor. The current hamiltonian at the end of the iteration.

• orig_log_prob – A Tensor. The log joint probability at the beginning position of the
iteration.

• log_prob – A Tensor. The current log joint probability at the end position of the iteration.

1.8. zhusuan.hmc 85

ZhuSuan Documentation, Release 0.4.0

class HMC(step_size=1.0, n_leapfrogs=10, adapt_step_size=None, target_acceptance_rate=0.8,
gamma=0.05, t0=100, kappa=0.75, adapt_mass=None, mass_collect_iters=10,
mass_decay=0.99)

Hamiltonian Monte Carlo (Neal, 2011) with adaptation for stepsize (Hoffman & Gelman, 2014) and mass. The
usage is similar with a Tensorflow optimizer.

The HMC class supports running multiple MCMC chains in parallel. To use the sampler, the user first creates a
(list of) tensorflow Variable storing the initial sample, whose shape is chain axes + data axes. There
can be arbitrary number of chain axes followed by arbitrary number of data axes. Then the user provides a
log_joint function which returns a tensor of shape chain axes, which is the log joint density for each chain.
Finally, the user runs the operation returned by sample(), which updates the sample stored in the Variable.

Note: Currently we do not support invoking the sample() method multiple times per HMC class. Please
declare one HMC class per each invoke of the sample() method.

Note: When the adaptations are on, the sampler is not reversible. To guarantee current equilibrium, the user
should only turn on the adaptations during the burn-in iterations, and turn them off when collecting samples.
To achieve this, the best practice is to set adapt_step_size and adapt_mass to be placeholders and feed different
values (True/False) when needed.

Parameters

• step_size – A 0-D float32 Tensor. Initial step size.

• n_leapfrogs – A 0-D int32 Tensor. Number of leapfrog steps.

• adapt_step_size – A bool Tensor, if set, indicating whether to adapt the step size.

• target_acceptance_rate – A 0-D float32 Tensor. The desired acceptance rate for
adapting the step size.

• gamma – A 0-D float32 Tensor. Parameter for adapting the step size, see (Hoffman &
Gelman, 2014).

• t0 – A 0-D float32 Tensor. Parameter for adapting the step size, see (Hoffman & Gelman,
2014).

• kappa – A 0-D float32 Tensor. Parameter for adapting the step size, see (Hoffman &
Gelman, 2014).

• adapt_mass – A bool Tensor, if set, indicating whether to adapt the mass, adapt_step_size
must be set.

• mass_collect_iters – A 0-D int32 Tensor. The beginning iteration to change the
mass.

• mass_decay – A 0-D float32 Tensor. The decay of computing exponential moving vari-
ance.

sample(meta_bn, observed, latent)
Return the sampling Operation that runs a HMC iteration and the statistics collected during it, given the
log joint function (or a MetaBayesianNet instance), observed values and latent variables.

Parameters

• meta_bn – A function or a MetaBayesianNet instance. If it is a function, it ac-
cepts a dictionary argument of (string, Tensor) pairs, which are mappings from
all StochasticTensor names in the model to their observed values. The function should

86 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

return a Tensor, representing the log joint likelihood of the model. More conveniently,
the user can also provide a MetaBayesianNet instance instead of directly providing
a log_joint function. Then a log_joint function will be created so that log_joint(obs) =
meta_bn.observe(**obs).log_joint().

• observed – A dictionary of (string, Tensor) pairs. Mapping from names of
observed StochasticTensor s to their values.

• latent – A dictionary of (string, Variable) pairs. Mapping from names of
latent StochasticTensor s to corresponding tensorflow Variables for storing their initial
values and samples.

Returns A Tensorflow Operation that runs a HMC iteration.

Returns A HMCInfo instance that collects sampling statistics during an iteration.

1.9 zhusuan.sgmcmc

class SGMCMC
Bases: object

Base class for stochastic gradient MCMC (SGMCMC) algorithms.

SGMCMC is a class of MCMC algorithms which utilize stochastic gradients instead of the true gradients.
To deal with the problems brought by stochasticity in gradients, more sophisticated updating scheme, such as
SGHMC and SGNHT, were proposed. We provided four SGMCMC algorithms here: SGLD, PSGLD, SGHMC
and SGNHT. For SGHMC and SGNHT, we support 2nd-order integrators introduced in (Chen et al., 2015).

The implementation framework is similar to that of HMC class. However, SGMCMC algorithms do not include
Metropolis update, and typically do not include hyperparameter adaptation.

The usage is the same as that of HMC class. Running multiple SGMCMC chains in parallel is supported.

To use the sampler, the user first defines the sampling method and corresponding hyperparameters by calling
the subclass SGLD, PSGLD, SGHMC or SGNHT. Then the user creates a (list of) tensorflow Variable storing the
initial sample, whose shape is chain axes + data axes. There can be arbitrary number of chain axes
followed by arbitrary number of data axes. Then the user provides a log_joint function which returns a tensor
of shape chain axes, which is the log joint density for each chain. Alternatively, the user can also provide a
meta_bn instance as a description of log_joint. Then the user runs the operation returned by sample(), which
updates the sample stored in the Variable.

The typical code for SGMCMC inference is like:

sgmcmc = zs.SGHMC(learning_rate=2e-6, friction=0.2,
n_iter_resample_v=1000, second_order=True)

sample_op, sgmcmc_info = sgmcmc.make_grad_func(meta_bn,
observed={'x': x, 'y': y}, latent={'w1': w1, 'w2': w2})

with tf.Session() as sess:
for _ in range(n_iters):

_, info = sess.run([sample_op, sgmcmc_info],
feed_dict=...)

print("mean_k", info["mean_k"]) # For SGHMC and SGNHT,
optional

After getting the sample_op, the user can feed mini-batches to a data placeholder observed so that the gradient
is a stochastic gradient. Then the user runs the sample_op like using HMC.

1.9. zhusuan.sgmcmc 87

ZhuSuan Documentation, Release 0.4.0

sample(meta_bn, observed, latent)
Return the sampling Operation that runs a SGMCMC iteration and the statistics collected during it, given
the log joint function (or a MetaBayesianNet instance), observed values and latent variables.

Parameters

• meta_bn – A function or a MetaBayesianNet instance. If it is a function, it ac-
cepts a dictionary argument of (string, Tensor) pairs, which are mappings from
all StochasticTensor names in the model to their observed values. The function should
return a Tensor, representing the log joint likelihood of the model. More conveniently,
the user can also provide a MetaBayesianNet instance instead of directly providing
a log_joint function. Then a log_joint function will be created so that log_joint(obs) =
meta_bn.observe(**obs).log_joint().

• observed – A dictionary of (string, Tensor) pairs. Mapping from names of
observed StochasticTensor s to their values.

• latent – A dictionary of (string, Variable) pairs. Mapping from names of
latent StochasticTensor s to corresponding tensorflow Variables for storing their initial
values and samples.

Returns A Tensorflow Operation that runs a SGMCMC iteration, called sample_op.

Returns

A namedtuple that records some useful values, called sgmcmc_info. Suppose the
list of keys of latent dictionary is ['w1', 'w2']. Then the typical structure of
sgmcmc_info is SGMCMCInfo(attr1={'w1': some value, 'w2': some
value}, attr2={'w1': some value, 'w2': some value}, ...).
Hence, sgmcmc_info.attr1 is a dictionary containing the quantity attr1 corresponding
to each latent variable in the latent dictionary.

sgmcmc_info returned by any SGMCMC algorithm has an attribute q, representing the up-
dated values of latent variables. To check out other attributes, see the documentation for the
specific subclass below.

class SGLD(learning_rate)
Bases: zhusuan.sgmcmc.SGMCMC

Subclass of SGMCMC which implements Stochastic Gradient Langevin Dynamics (Welling & Teh, 2011)
(SGLD) update. The updating equation implemented below follows Equation (3) in the paper.

Attributes of returned sgmcmc_info in SGMCMC.sample():

• q - The updated values of latent variables.

Parameters learning_rate – A 0-D float32 Tensor. It can be either a constant or a placeholder
for decaying learning rate.

class PSGLD(learning_rate, preconditioner=’rms’, preconditioner_hparams=None)
Bases: zhusuan.sgmcmc.SGLD

Subclass of SGLD implementing preconditioned stochastic gradient Langevin dynamics, a variant proposed in
(Li et al, 2015). We implement the RMSprop preconditioner (Equation (4-5) in the paper). Other preconditioners
can be implemented similarly.

Attributes of returned sgmcmc_info in SGMCMC.sample():

• q - The updated values of latent variables.

88 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Parameters learning_rate – A 0-D float32 Tensor. It can be either a constant or a placeholder
for decaying learning rate.

class RMSPreconditioner

HParams
alias of RMSHParams

default_hps = RMSHParams(decay=0.9, epsilon=0.001)

class SGHMC(learning_rate, friction=0.25, variance_estimate=0.0, n_iter_resample_v=20, sec-
ond_order=True)

Bases: zhusuan.sgmcmc.SGMCMC

Subclass of SGMCMC which implements Stochastic Gradient Hamiltonian Monte Carlo (Chen et al., 2014)
(SGHMC) update. Compared to SGLD, it adds a momentum variable to the dynamics. Compared to naive
HMC using stochastic gradient which diverges, SGHMC simultanenously adds (often the same amount of)
friction and noise to make the dynamics have a stationary distribution. The updating equation implemented
below follows Equation (15) in the paper. A 2nd-order integrator introduced in (Chen et al., 2015) is supported.

In the following description, we refer to Eq.(*) as Equation (15) in the SGHMC paper.

Attributes of returned sgmcmc_info in SGMCMC.sample():

• q - The updated values of latent variables.

• mean_k - The mean kinetic energy of updated momentum variables corresponding to the latent variables.
Each item is a scalar.

Parameters

• learning_rate – A 0-D float32 Tensor corresponding to 𝜂 in Eq.(*). Note that it does
not scale the same as learning_rate in SGLD since 𝜂 = 𝑂(𝜖2) in Eq.(*) where 𝜖 is the step
size. When NaN occurs, please consider decreasing learning_rate.

• friction – A 0-D float32 Tensor corresponding to 𝛼 in Eq.(*). A coefficient which
simultaneously decays the momentum and adds an additional noise (hence here the name
friction is not accurate). Larger friction makes the stationary distribution closer to the true
posterior since it reduces the effect of stochasticity in the gradient, but slowers mixing of
the MCMC chain.

• variance_estimate – A 0-D float32 Tensor corresponding to 𝛽 in Eq.(*). Just set it to
zero if it is hard to estimate the gradient variance well. Note that variance_estimate must be
smaller than friction.

• n_iter_resample_v – A 0-D int32 Tensor. Each n_iter_resample_v calls to the sam-
pling operation, the momentum variable will be resampled from the corresponding normal
distribution once. Smaller n_iter_resample_v may lead to a stationary distribution closer to
the true posterior but slowers mixing. If you do not want the momentum variable resampled,
set the parameter to None or 0.

• second_order – A bool Tensor indicating whether to enable the 2nd-order integrator
introduced in (Chen et al., 2015) or to use the ordinary 1st-order integrator.

class SGNHT(learning_rate, variance_extra=0.0, tune_rate=1.0, n_iter_resample_v=None, sec-
ond_order=True, use_vector_alpha=True)

Bases: zhusuan.sgmcmc.SGMCMC

Subclass of SGMCMC which implements Stochastic Gradient Nosé-Hoover Thermostat (Ding et al., 2014)
(SGNHT) update. It is built upon SGHMC, and it could tune the friction parameter 𝛼 in SGHMC automati-

1.9. zhusuan.sgmcmc 89

ZhuSuan Documentation, Release 0.4.0

cally (here is an abuse of notation: in SGNHT 𝛼 only refers to the friction coefficient, and the noise term is
independent of it (unlike SGHMC)), i.e. it adds a new friction variable to the dynamics. The updating equation
implemented below follows Algorithm 2 in the supplementary material of the paper. A 2nd-order integrator
introduced in (Chen et al., 2015) is supported.

In the following description, we refer to Eq.(**) as the equation in Algorithm 2 in the SGNHT paper.

Attributes of returned sgmcmc_info in SGMCMC.sample():

• q - The updated values of latent variables.

• mean_k - The mean kinetic energy of updated momentum variables corresponding to the latent variables.
If use_vector_alpha==True, each item has the same shape as the corresponding latent variable; else, each
item is a scalar.

• alpha - The values of friction variables 𝛼 corresponding to the latent variables. If
use_vector_alpha==True, each item has the same shape as the corresponding latent variable; else, each
item is a scalar.

Parameters

• learning_rate – A 0-D float32 Tensor corresponding to 𝜂 in Eq.(**). Note that it does
not scale the same as learning_rate in SGLD since 𝜂 = 𝑂(𝜖2) in Eq.(*) where 𝜖 is the step
size. When NaN occurs, please consider decreasing learning_rate.

• variance_extra – A 0-D float32 Tensor corresponding to 𝑎 in Eq.(**), representing
the additional noise added in the update (and the initial friction 𝛼 will be set to this value).
Normally just set it to zero.

• tune_rate – A 0-D float32 Tensor. In Eq.(**), this parameter is not present (i.e. its value
is implicitly set to 1), but a non-1 value is also valid. Higher tune_rate represents higher
(multiplicative) rate of tuning the friction 𝛼.

• n_iter_resample_v – A 0-D int32 Tensor. Each n_iter_resample_v calls to the sam-
pling operation, the momentum variable will be resampled from the corresponding normal
distribution once. Smaller n_iter_resample_v may lead to a stationary distribution closer to
the true posterior but slowers mixing. If you do not want the momentum variable resampled,
set the parameter to None or 0.

• second_order – A bool Tensor indicating whether to enable the 2nd-order integrator
introduced in (Chen et al., 2015) or to use the ordinary 1st-order integrator.

• use_vector_alpha – A bool Tensor indicating whether to use a vector friction 𝛼. If it
is true, then the friction has the same shape as the latent variable. That is, each component
of the latent variable corresponds to an independently tunable friction. Else, the friction is a
scalar.

1.10 zhusuan.evaluation

is_loglikelihood(meta_bn, observed, latent=None, axis=None, proposal=None)
Marginal log likelihood (log 𝑝(𝑥)) estimates using self-normalized importance sampling.

Parameters

• meta_bn – A MetaBayesianNet instance or a log joint probability function. For the
latter, it must accepts a dictionary argument of (string, Tensor) pairs, which are
mappings from all node names in the model to their observed values. The function should
return a Tensor, representing the log joint likelihood of the model.

90 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

• observed – A dictionary of (string, Tensor) pairs. Mapping from names of ob-
served stochastic nodes to their values.

• latent – A dictionary of (string, (Tensor, Tensor)) pairs. Mapping from
names of latent stochastic nodes to their samples and log probabilities. latent and proposal
are mutually exclusive.

• axis – The sample dimension(s) to reduce when computing the outer expectation in the
objective. If None, no dimension is reduced.

• proposal – A BayesianNet instance that defines the proposal distributions of latent
nodes. proposal and latent are mutually exclusive.

Returns A Tensor. The estimated log likelihood of observed data.

1.11 zhusuan.transform

planar_normalizing_flow(samples, log_probs, n_iters)
Perform Planar Normalizing Flow along the last axis of inputs.

𝑓(𝑧𝑡) = 𝑧𝑡−1 + ℎ(𝑧𝑡−1 * 𝑤𝑡 + 𝑏𝑡) * 𝑢𝑡

with activation function tanh as well as the invertibility trick from (Danilo 2016).

Parameters

• samples – A N-D (N>=2) float32 Tensor of shape [. . . , d], and planar normalizing flow
will be performed along the last axis.

• log_probs – A (N-1)-D float32 Tensor, should be of the same shape as the first N-1 axes
of samples.

• n_iters – A int, which represents the number of successive flows.

Returns A N-D Tensor, the transformed samples.

Returns A (N-1)-D Tensor, the log probabilities of the transformed samples.

1.12 zhusuan.diagnostics

effective_sample_size(samples, burn_in=100)
Compute the effective sample size of a chain of vector samples, using the algorithm in Stan. Users should flatten
their samples as vectors if not so.

Parameters

• samples – A 2-D numpy array of shape (M, D), where M is the number of samples, and
D is the number of dimensions of each sample.

• burn_in – The number of discarded samples.

Returns A 1-D numpy array. The effective sample size.

effective_sample_size_1d(samples)
Compute the effective sample size of a chain of scalar samples.

Parameters samples – A 1-D numpy array. The chain of samples.

Returns A float. The effective sample size.

1.11. zhusuan.transform 91

ZhuSuan Documentation, Release 0.4.0

1.13 zhusuan.utils

class TensorArithmeticMixin
Bases: object

Mixin class for implementing tensor arithmetic operations.

The derived class must support tf.convert_to_tensor, in order to inherit from this mixin class.

log_mean_exp(x, axis=None, keepdims=False)
Tensorflow numerically stable log mean of exps across the axis.

Parameters

• x – A Tensor.

• axis – An int or list or tuple. The dimensions to reduce. If None (the default), reduces all
dimensions.

• keepdims – Bool. If true, retains reduced dimensions with length 1. Default to be False.

Returns A Tensor after the computation of log mean exp along given axes of x.

merge_dicts(*dict_args)
Given any number of dicts, shallow copy and merge into a new dict, precedence goes to key value pairs in latter
dicts.

1.14 zhusuan.legacy

1.14.1 Special

class Empirical(dtype, batch_shape=None, value_shape=None, group_ndims=0, is_continuous=None,
**kwargs)

Bases: zhusuan.distributions.base.Distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of Empirical distribution. Distribution for any variables, which are sampled from an empirical dis-
tribution and have no explicit density. You can not sample from the distribution or calculate probabilities and
log-probabilities. See Distribution for details.

Parameters

• dtype – The value type of samples from the distribution.

• batch_shape – A TensorShape describing the batch_shape of the distribution.

• value_shape – A TensorShape describing the value_shape of the distribution.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_continuous – A bool or None. Whether the distribution is continuous or not. If
None, will consider it continuous only if dtype is a float type.

92 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

class Implicit(samples, value_shape=None, group_ndims=0, **kwargs)
Bases: zhusuan.distributions.base.Distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of Implicit distribution. The distribution abstracts variables whose distribution have no explicit form.
A common example of implicit variables are the generated samples from a GAN. See Distribution for
details.

Parameters

• samples – A Tensor.

• value_shape – A TensorShape describing the value_shape of the distribution.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

1.14.2 Stochastic

class Normal(name, mean=0.0, _sentinel=None, std=None, logstd=None, n_samples=None,
group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of univariate Normal StochasticTensor. See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• _sentinel – Used to prevent positional parameters. Internal, do not use.

• mean – A float Tensor. The mean of the Normal distribution. Should be broadcastable to
match logstd.

• std – A float Tensor. The standard deviation of the Normal distribution. Should be positive
and broadcastable to match mean.

• logstd – A float Tensor. The log standard deviation of the Normal distribution. Should be
broadcastable to match mean.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this StochasticTen-
sor are allowed to propagate into inputs, using the reparametrization trick from (Kingma,
2013).

1.14. zhusuan.legacy 93

ZhuSuan Documentation, Release 0.4.0

• check_numerics – Bool. Whether to check numeric issues.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

94 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

class FoldNormal(name, mean=0.0, _sentinel=None, std=None, logstd=None, n_samples=None,
group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of univariate FoldNormal StochasticTensor. See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

1.14. zhusuan.legacy 95

ZhuSuan Documentation, Release 0.4.0

• mean – A float Tensor. The mean of the FoldNormal distribution. Should be broadcastable
to match std or logstd.

• _sentinel – Used to prevent positional parameters. Internal, do not use.

• std – A float Tensor. The standard deviation of the FoldNormal distribution. Should be
positive and broadcastable to match mean.

• logstd – A float Tensor. The log standard deviation of the FoldNormal distribution.
Should be broadcastable to match mean.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this StochasticTen-
sor are allowed to propagate into inputs, using the reparametrization trick from (Kingma,
2013).

• check_numerics – Bool. Whether to check numeric issues.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

96 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

1.14. zhusuan.legacy 97

ZhuSuan Documentation, Release 0.4.0

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

class Bernoulli(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)
Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of univariate Bernoulli StochasticTensor. See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• logits – A float Tensor. The log-odds of probabilities of being 1.

logits = log
𝑝

1− 𝑝

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• dtype – The value type of this StochasticTensor. Can be int (tf.int16, tf.int32, tf.int64) or
float (tf.float16, tf.float32, tf.float64). Default is int32.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

98 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

1.14. zhusuan.legacy 99

ZhuSuan Documentation, Release 0.4.0

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

class Categorical(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)
Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of univariate Categorical StochasticTensor. See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• logits – A N-D (N >= 1) float Tensor of shape (. . . , n_categories). Each slice [i, j,. . . , k,
:] represents the un-normalized log probabilities for all categories.

logits ∝ log 𝑝

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• dtype – The value type of this StochasticTensor. Can be float32, float64, int32, or int64.
Default is int32.

A single sample is a (N-1)-D Tensor with tf.int32 values in range [0, n_categories).

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

100 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

1.14. zhusuan.legacy 101

ZhuSuan Documentation, Release 0.4.0

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

class OnehotCategorical(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32,
**kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of one-hot Categorical StochasticTensor. See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• logits – A N-D (N >= 1) float Tensor of shape (. . . , n_categories). Each slice [i, j, . . . , k,
:] represents the un-normalized log probabilities for all categories.

logits ∝ log 𝑝

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• dtype – The value type of this StochasticTensor. Can be int (tf.int16, tf.int32, tf.int64) or
float (tf.float16, tf.float32, tf.float64). Default is int32.

A single sample is a N-D Tensor with the same shape as logits. Each slice [i, j, . . . , k, :] is a one-hot vector of
the selected category.

102 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

1.14. zhusuan.legacy 103

ZhuSuan Documentation, Release 0.4.0

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

Discrete
alias of zhusuan.legacy.framework.stochastic.Categorical

OnehotDiscrete
alias of zhusuan.legacy.framework.stochastic.OnehotCategorical

class Uniform(name, minval=0.0, maxval=1.0, n_samples=None, group_ndims=0,
is_reparameterized=True, check_numerics=False, **kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of univariate Uniform StochasticTensor. See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

104 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

• minval – A float Tensor. The lower bound on the range of the uniform distribution. Should
be broadcastable to match maxval.

• maxval – A float Tensor. The upper bound on the range of the uniform distribution. Should
be element-wise bigger than minval.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this StochasticTen-
sor are allowed to propagate into inputs, using the reparametrization trick from (Kingma,
2013).

• check_numerics – Bool. Whether to check numeric issues.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

1.14. zhusuan.legacy 105

ZhuSuan Documentation, Release 0.4.0

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

106 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Returns A Tensor.

class Gamma(name, alpha, beta, n_samples=None, group_ndims=0, check_numerics=False, **kwargs)
Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of univariate Gamma StochasticTensor. See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• alpha – A float Tensor. The shape parameter of the Gamma distribution. Should be
positive and broadcastable to match beta.

• beta – A float Tensor. The inverse scale parameter of the Gamma distribution. Should be
positive and broadcastable to match alpha.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• check_numerics – Bool. Whether to check numeric issues.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

1.14. zhusuan.legacy 107

ZhuSuan Documentation, Release 0.4.0

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

108 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

class Beta(name, alpha, beta, n_samples=None, group_ndims=0, check_numerics=False, **kwargs)
Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of univariate Beta StochasticTensor. See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• alpha – A float Tensor. One of the two shape parameters of the Beta distribution. Should
be positive and broadcastable to match beta.

• beta – A float Tensor. One of the two shape parameters of the Beta distribution. Should
be positive and broadcastable to match alpha.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• check_numerics – Bool. Whether to check numeric issues.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

1.14. zhusuan.legacy 109

ZhuSuan Documentation, Release 0.4.0

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

110 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

class Poisson(name, rate, n_samples=None, group_ndims=0, dtype=tf.int32, check_numerics=False,
**kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of univariate Poisson StochasticTensor. See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• rate – A float Tensor. The rate parameter of Poisson distribution. Must be positive.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• dtype – The value type of this StochasticTensor. Can be int (tf.int16, tf.int32, tf.int64) or
float (tf.float16, tf.float32, tf.float64). Default is int32.

• check_numerics – Bool. Whether to check numeric issues.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

1.14. zhusuan.legacy 111

ZhuSuan Documentation, Release 0.4.0

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

112 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

class Binomial(name, logits, n_experiments, n_samples=None, group_ndims=0, dtype=tf.int32,
check_numerics=False, **kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of univariate Binomial StochasticTensor. See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• logits – A float Tensor. The log-odds of probabilities.

logits = log
𝑝

1− 𝑝

• n_experiments – A 0-D int32 Tensor. The number of experiments for each sample.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

1.14. zhusuan.legacy 113

ZhuSuan Documentation, Release 0.4.0

• dtype – The value type of this StochasticTensor. Can be int (tf.int16, tf.int32, tf.int64) or
float (tf.float16, tf.float32, tf.float64). Default is int32.

• check_numerics – Bool. Whether to check numeric issues.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

114 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

class InverseGamma(name, alpha, beta, n_samples=None, group_ndims=0, check_numerics=False,
**kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of univariate InverseGamma StochasticTensor. See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

1.14. zhusuan.legacy 115

ZhuSuan Documentation, Release 0.4.0

• alpha – A float Tensor. The shape parameter of the InverseGamma distribution. Should
be positive and broadcastable to match beta.

• beta – A float Tensor. The scale parameter of the InverseGamma distribution. Should be
positive and broadcastable to match alpha.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• check_numerics – Bool. Whether to check numeric issues.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

116 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

1.14. zhusuan.legacy 117

ZhuSuan Documentation, Release 0.4.0

class Laplace(name, loc, scale, n_samples=None, group_ndims=0, is_reparameterized=True,
check_numerics=False, **kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of univariate Laplace StochasticTensor. See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• loc – A float Tensor. The location parameter of the Laplace distribution. Should be broad-
castable to match scale.

• scale – A float Tensor. The scale parameter of the Laplace distribution. Should be positive
and broadcastable to match loc.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this StochasticTen-
sor are allowed to propagate into inputs, using the reparametrization trick from (Kingma,
2013).

• check_numerics – Bool. Whether to check numeric issues.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

118 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

1.14. zhusuan.legacy 119

ZhuSuan Documentation, Release 0.4.0

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

class MultivariateNormalCholesky(name, mean, cov_tril, n_samples=None, group_ndims=0,
is_reparameterized=True, check_numerics=False,
**kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of multivariate normal StochasticTensor, where covariance is parameterized with the lower triangular
matrix 𝐿 in Cholesky decomposition 𝐿𝐿𝑇 = Σ.

See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• mean – An N-D float Tensor of shape [. . . , n_dim]. Each slice [i, j, . . . , k, :] represents the
mean of a single multivariate normal distribution.

• cov_tril – An (N+1)-D float Tensor of shape [. . . , n_dim, n_dim]. Each slice [i, . . . , k,
:, :] represents the lower triangular matrix in the Cholesky decomposition of the covariance
of a single distribution.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this distribution
are allowed to propagate into inputs, using the reparametrization trick from (Kingma, 2013).

• check_numerics – Bool. Whether to check numeric issues.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

120 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

1.14. zhusuan.legacy 121

ZhuSuan Documentation, Release 0.4.0

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

class MatrixVariateNormalCholesky(name, mean, u_tril, v_tril, n_samples=None,
group_ndims=0, is_reparameterized=True,
check_numerics=False, **kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of matrix variate normal StochasticTensor, where covariances 𝑈 and 𝑉 are parameterized with the
lower triangular matrix in Cholesky decomposition,

𝐿𝑢s.t.𝐿𝑢𝐿
𝑇
𝑢 = 𝑈, 𝐿𝑣s.t.𝐿𝑣𝐿

𝑇
𝑣 = 𝑉

See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• mean – An N-D float Tensor of shape [. . . , n_row, n_col]. Each slice [i, j, . . . , k, :, :]
represents the mean of a single matrix variate normal distribution.

• u_tril – An N-D float Tensor of shape [. . . , n_row, n_row]. Each slice [i, j, . . . , k, :,
:] represents the lower triangular matrix in the Cholesky decomposition of the among-row
covariance of a single matrix variate normal distribution.

122 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

• v_tril – An N-D float Tensor of shape [. . . , n_col, n_col]. Each slice [i, j, . . . , k, :, :]
represents the lower triangular matrix in the Cholesky decomposition of the among-column
covariance of a single matrix variate normal distribution.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this distribution
are allowed to propagate into inputs, using the reparametrization trick from (Kingma, 2013).

• check_numerics – Bool. Whether to check numeric issues.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

1.14. zhusuan.legacy 123

ZhuSuan Documentation, Release 0.4.0

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

124 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

class Multinomial(name, logits, n_experiments, normalize_logits=True, n_samples=None,
group_ndims=0, dtype=tf.int32, **kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of Multinomial StochasticTensor. See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• logits – A N-D (N >= 1) float Tensor of shape [. . . , n_categories]. Each slice [i, j,
. . . , k, :] represents the log probabilities for all categories. By default (when normal-
ize_logits=True), the probabilities could be un-normalized.

logits ∝ log 𝑝

• n_experiments – A 0-D int32 Tensor or None. When it is a 0-D int32 integer, it repre-
sents the number of experiments for each sample, which should be invariant among samples.
In this situation _sample function is supported. When it is None, _sample function is not
supported, and when calculating probabilities the number of experiments will be inferred
from given, so it could vary among samples.

• normalize_logits – A bool indicating whether logits should be normalized when com-
puting probability. If you believe logits is already normalized, set it to False to speed up.
Default is True.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• dtype – The value type of this StochasticTensor. Can be int (tf.int16, tf.int32, tf.int64) or
float (tf.float16, tf.float32, tf.float64). Default is int32.

A single sample is a N-D Tensor with the same shape as logits. Each slice [i, j, . . . , k, :] is a vector of counts
for all categories.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

1.14. zhusuan.legacy 125

ZhuSuan Documentation, Release 0.4.0

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

126 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

class UnnormalizedMultinomial(name, logits, normalize_logits=True, group_ndims=0,
dtype=tf.int32, **kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of UnnormalizedMultinomial StochasticTensor. UnnormalizedMultinomial distribution calculates
probabilities differently from Multinomial: It considers the bag-of-words given as a statistics of an ordered
result sequence, and calculates the probability of the (imagined) ordered sequence. Hence it does not multiply
the term (︂

𝑛

𝑘1, 𝑘2, . . .

)︂
=

𝑛!∏︀
𝑖 𝑘𝑖!

See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• logits – A N-D (N >= 1) float Tensor of shape [. . . , n_categories]. Each slice [i, j,
. . . , k, :] represents the log probabilities for all categories. By default (when normal-
ize_logits=True), the probabilities could be un-normalized.

logits ∝ log 𝑝

• normalize_logits – A bool indicating whether logits should be normalized when com-
puting probability. If you believe logits is already normalized, set it to False to speed up.
Default is True.

1.14. zhusuan.legacy 127

ZhuSuan Documentation, Release 0.4.0

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• dtype – The value type of this StochasticTensor. Can be int (tf.int16, tf.int32, tf.int64) or
float (tf.float16, tf.float32, tf.float64). Default is int32.

A single sample is a N-D Tensor with the same shape as logits. Each slice [i, j, . . . , k, :] is a vector of counts
for all categories.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

128 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

BagofCategoricals
alias of zhusuan.legacy.framework.stochastic.UnnormalizedMultinomial

class Dirichlet(name, alpha, n_samples=None, group_ndims=0, check_numerics=False, **kwargs)
Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

1.14. zhusuan.legacy 129

ZhuSuan Documentation, Release 0.4.0

The class of Dirichlet StochasticTensor. See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• alpha – A N-D (N >= 1) float Tensor of shape (. . . , n_categories). Each slice [i, j, . . . , k,
:] represents the concentration parameter of a Dirichlet distribution. Should be positive.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• check_numerics – Bool. Whether to check numeric issues.

A single sample is a N-D Tensor with the same shape as alpha. Each slice [i, j, . . . , k, :] of the sample is a vector
of probabilities of a Categorical distribution [x_1, x_2, . . .], which lies on the simplex∑︁

𝑖

𝑥𝑖 = 1, 0 < 𝑥𝑖 < 1

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

130 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

1.14. zhusuan.legacy 131

ZhuSuan Documentation, Release 0.4.0

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

class BinConcrete(name, temperature, logits, n_samples=None, group_ndims=0,
is_reparameterized=True, check_numerics=False, **kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of univariate BinConcrete StochasticTensor from (Maddison, 2016). It is the binary case of
Concrete. See StochasticTensor for details.

See also:

Concrete and ExpConcrete

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• temperature – A 0-D float Tensor. The temperature of the relaxed distribution. The
temperature should be positive.

• logits – A float Tensor. The log-odds of probabilities of being 1.

logits = log
𝑝

1− 𝑝

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this StochasticTen-
sor are allowed to propagate into inputs, using the reparametrization trick from (Kingma,
2013).

• check_numerics – Bool. Whether to check numeric issues.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

132 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

1.14. zhusuan.legacy 133

ZhuSuan Documentation, Release 0.4.0

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

BinGumbelSoftmax
alias of zhusuan.legacy.framework.stochastic.BinConcrete

class ExpConcrete(name, temperature, logits, n_samples=None, group_ndims=0,
is_reparameterized=True, check_numerics=False, **kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of ExpConcrete StochasticTensor from (Maddison, 2016), transformed from Concrete by taking
logarithm. See StochasticTensor for details.

See also:

BinConcrete and Concrete

Parameters

• temperature – A 0-D float Tensor. The temperature of the relaxed distribution. The
temperature should be positive.

• logits – A N-D (N >= 1) float Tensor of shape (. . . , n_categories). Each slice [i, j, . . . , k,
:] represents the un-normalized log probabilities for all categories.

logits ∝ log 𝑝

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

134 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this StochasticTen-
sor are allowed to propagate into inputs, using the reparametrization trick from (Kingma,
2013).

• check_numerics – Bool. Whether to check numeric issues.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

1.14. zhusuan.legacy 135

ZhuSuan Documentation, Release 0.4.0

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

ExpGumbelSoftmax
alias of zhusuan.legacy.framework.stochastic.ExpConcrete

class Concrete(name, temperature, logits, n_samples=None, group_ndims=0, is_reparameterized=True,
check_numerics=False, **kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

136 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of Concrete (or Gumbel-Softmax) StochasticTensor from (Maddison, 2016; Jang, 2016), served as the
continuous relaxation of the OnehotCategorical. See StochasticTensor for details.

See also:

BinConcrete and ExpConcrete

Parameters

• temperature – A 0-D float Tensor. The temperature of the relaxed distribution. The
temperature should be positive.

• logits – A N-D (N >= 1) float Tensor of shape (. . . , n_categories). Each slice [i, j, . . . , k,
:] represents the un-normalized log probabilities for all categories.

logits ∝ log 𝑝

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this StochasticTen-
sor are allowed to propagate into inputs, using the reparametrization trick from (Kingma,
2013).

• check_numerics – Bool. Whether to check numeric issues.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

1.14. zhusuan.legacy 137

ZhuSuan Documentation, Release 0.4.0

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

138 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

GumbelSoftmax
alias of zhusuan.legacy.framework.stochastic.Concrete

class Empirical(name, dtype, batch_shape, n_samples=None, group_ndims=0, value_shape=None,
is_continuous=None, **kwargs)

Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of Empirical StochasticTensor. For any inference it is always required that the variables are observed.
See StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• dtype – The value type of samples from the distribution.

• batch_shape – A TensorShape describing the batch_shape of the distribution.

• value_shape – A TensorShape describing the value_shape of the distribution.

• is_continuous – A bool or None. Whether the distribution is continuous or not. If
None, will consider it continuous only if dtype is a float type.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

1.14. zhusuan.legacy 139

ZhuSuan Documentation, Release 0.4.0

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

140 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

class Implicit(name, samples, value_shape=None, group_ndims=0, n_samples=None, **kwargs)
Bases: zhusuan.framework.bn.StochasticTensor

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The class of Implicit StochasticTensor. This distribution always sample the implicit tensor provided. See
StochasticTensor for details.

Parameters

• name – A string. The name of the StochasticTensor. Must be unique in the BayesianNet
context.

• samples – A N-D (N >= 1) float Tensor.

• value_shape – A list or tuple describing the value_shape of the distribution. The entries
of the list can either be int, Dimension or None.

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

• n_samples – A 0-D int32 Tensor or None. Number of samples generated by this Stochas-
ticTensor.

1.14. zhusuan.legacy 141

ZhuSuan Documentation, Release 0.4.0

bn
The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

cond_log_p
The conditional log probability of the StochasticTensor, evaluated at its current value (given by
tensor).

Returns A Tensor.

dist

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

distribution

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The distribution followed by the StochasticTensor.

Returns A Distribution instance.

dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the log probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The log probability value.

name
The name of the StochasticTensor.

Returns A string.

net

142 Chapter 1. Installation

ZhuSuan Documentation, Release 0.4.0

Warning: Deprecated in 0.4, will be removed in 0.4.1.

The BayesianNet where the StochasticTensor lives.

Returns A BayesianNet instance.

prob(given)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Compute the probability density (mass) function of the underlying distribution at the given value.

Parameters given – A Tensor.

Returns A Tensor. The probability value.

sample(n_samples)

Warning: Deprecated in 0.4, will be removed in 0.4.1.

Sample from the underlying distribution.

Parameters n_samples – A 0-D int32 Tensor. The number of samples.

Returns A Tensor.

shape
Return the static shape of this StochasticTensor.

Returns A TensorShape instance.

tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Tensor.

1.15 Contributing

We always welcome contributions to help make ZhuSuan better. If you would like to contribute, please check out the
guidelines here. Below are an incomplete list of our contributors (find more on this page).

• Jiaxin Shi (thjashin)

• Jianfei Chen (cjf00000)

• Shengyang Sun (ssydasheng)

• Yucen Luo (xinmei9322)

• Yihong Gu (wmyw96)

• Yuhao Zhou (miskcoo)

• Ziyu Wang (meta-inf)

1.15. Contributing 143

https://github.com/thu-ml/zhusuan/blob/master/CONTRIBUTING.md
https://github.com/thu-ml/zhusuan/graphs/contributors
https://github.com/thjashin
https://github.com/cjf00000
https://github.com/ssydasheng
https://github.com/xinmei9322
https://github.com/wmyw96
https://github.com/miskcoo
https://github.com/meta-inf

ZhuSuan Documentation, Release 0.4.0

• Alexander Botev (botev)

• Shuyu Cheng (csy530216)

• Haowen Xu (korepwx)

• Huajun Wu (CaptainMushroom)

144 Chapter 1. Installation

https://github.com/botev
https://github.com/csy530216
https://github.com/korepwx
https://github.com/CaptainMushroom

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

145

ZhuSuan Documentation, Release 0.4.0

146 Chapter 2. Indices and tables

Bibliography

[VAEKW13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[VAEKB14] Diederik Kingma and Jimmy Ba. Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[LNTMBNJ03] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022, 2003.

[LNTMN+11] Radford M Neal and others. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, 2011.

[LNTMMYB16] Yishu Miao, Lei Yu, and Phil Blunsom. Neural variational inference for text processing. In Interna-
tional Conference on Machine Learning, 1727–1736. 2016.

[LNTMSS17] Akash Srivastava and Charles Sutton. Autoencoding variational inference for topic models. arXiv
preprint arXiv:1703.01488, 2017.

[LNTMNea01] Radford M Neal. Annealed importance sampling. Statistics and computing, 11(2):125–139, 2001.

147

ZhuSuan Documentation, Release 0.4.0

148 Bibliography

Python Module Index

z
zhusuan.diagnostics, 91
zhusuan.distributions, 28
zhusuan.distributions.base, 28
zhusuan.distributions.multivariate, 51
zhusuan.distributions.univariate, 30
zhusuan.distributions.utils, 65
zhusuan.evaluation, 90
zhusuan.framework, 66
zhusuan.framework.bn, 66
zhusuan.framework.meta_bn, 74
zhusuan.framework.utils, 75
zhusuan.hmc, 85
zhusuan.legacy, 92
zhusuan.legacy.distributions.special,

92
zhusuan.legacy.framework.stochastic, 93
zhusuan.sgmcmc, 87
zhusuan.transform, 91
zhusuan.utils, 92
zhusuan.variational, 76
zhusuan.variational.base, 76
zhusuan.variational.exclusive_kl, 76
zhusuan.variational.inclusive_kl, 79
zhusuan.variational.monte_carlo, 82

149

ZhuSuan Documentation, Release 0.4.0

150 Python Module Index

Index

A
alpha (Beta attribute), 41
alpha (Dirichlet attribute), 58
alpha (Gamma attribute), 39
alpha (InverseGamma attribute), 46

B
bag_of_categoricals() (BayesianNet method),

69
BagofCategoricals (in module

zhusuan.distributions.multivariate), 56
BagofCategoricals (in module

zhusuan.legacy.framework.stochastic), 129
batch_shape (Bernoulli attribute), 34
batch_shape (Beta attribute), 41
batch_shape (BinConcrete attribute), 49
batch_shape (Binomial attribute), 44
batch_shape (Categorical attribute), 36
batch_shape (Concrete attribute), 62
batch_shape (Dirichlet attribute), 58
batch_shape (Distribution attribute), 29
batch_shape (ExpConcrete attribute), 60
batch_shape (FoldNormal attribute), 33
batch_shape (Gamma attribute), 39
batch_shape (InverseGamma attribute), 46
batch_shape (Laplace attribute), 47
batch_shape (MatrixVariateNormalCholesky at-

tribute), 64
batch_shape (Multinomial attribute), 53
batch_shape (MultivariateNormalCholesky at-

tribute), 51
batch_shape (Normal attribute), 31
batch_shape (OnehotCategorical attribute), 56
batch_shape (Poisson attribute), 42
batch_shape (Uniform attribute), 38
batch_shape (UnnormalizedMultinomial attribute),

55
BayesianNet (class in zhusuan.framework.bn), 68

Bernoulli (class in zhusuan.distributions.univariate),
34

Bernoulli (class in
zhusuan.legacy.framework.stochastic), 98

bernoulli() (BayesianNet method), 69
beta (Beta attribute), 41
Beta (class in zhusuan.distributions.univariate), 41
Beta (class in zhusuan.legacy.framework.stochastic),

109
beta (Gamma attribute), 39
beta (InverseGamma attribute), 46
beta() (BayesianNet method), 69
bin_concrete() (BayesianNet method), 69
bin_gumbel_softmax() (BayesianNet method), 70
BinConcrete (class in

zhusuan.distributions.univariate), 49
BinConcrete (class in

zhusuan.legacy.framework.stochastic), 132
BinGumbelSoftmax (in module

zhusuan.distributions.univariate), 50
BinGumbelSoftmax (in module

zhusuan.legacy.framework.stochastic), 134
Binomial (class in zhusuan.distributions.univariate),

44
Binomial (class in zhusuan.legacy.framework.stochastic),

113
binomial() (BayesianNet method), 70
bn (Bernoulli attribute), 98
bn (Beta attribute), 109
bn (BinConcrete attribute), 132
bn (Binomial attribute), 114
bn (Categorical attribute), 100
bn (Concrete attribute), 137
bn (Dirichlet attribute), 130
bn (Empirical attribute), 139
bn (EvidenceLowerBoundObjective attribute), 78
bn (ExpConcrete attribute), 135
bn (FoldNormal attribute), 96
bn (Gamma attribute), 107
bn (Implicit attribute), 141

151

ZhuSuan Documentation, Release 0.4.0

bn (ImportanceWeightedObjective attribute), 84
bn (InclusiveKLObjective attribute), 81
bn (InverseGamma attribute), 116
bn (Laplace attribute), 118
bn (MatrixVariateNormalCholesky attribute), 123
bn (Multinomial attribute), 125
bn (MultivariateNormalCholesky attribute), 120
bn (Normal attribute), 94
bn (OnehotCategorical attribute), 102
bn (Poisson attribute), 111
bn (StochasticTensor attribute), 67
bn (Uniform attribute), 105
bn (UnnormalizedMultinomial attribute), 128
bn (VariationalObjective attribute), 76

C
Categorical (class in

zhusuan.distributions.univariate), 36
Categorical (class in

zhusuan.legacy.framework.stochastic), 100
categorical() (BayesianNet method), 70
Concrete (class in zhusuan.distributions.multivariate),

61
Concrete (class in zhusuan.legacy.framework.stochastic),

136
concrete() (BayesianNet method), 70
cond_log_p (Bernoulli attribute), 98
cond_log_p (Beta attribute), 109
cond_log_p (BinConcrete attribute), 132
cond_log_p (Binomial attribute), 114
cond_log_p (Categorical attribute), 100
cond_log_p (Concrete attribute), 137
cond_log_p (Dirichlet attribute), 130
cond_log_p (Empirical attribute), 139
cond_log_p (ExpConcrete attribute), 135
cond_log_p (FoldNormal attribute), 96
cond_log_p (Gamma attribute), 107
cond_log_p (Implicit attribute), 142
cond_log_p (InverseGamma attribute), 116
cond_log_p (Laplace attribute), 118
cond_log_p (MatrixVariateNormalCholesky at-

tribute), 123
cond_log_p (Multinomial attribute), 125
cond_log_p (MultivariateNormalCholesky attribute),

120
cond_log_p (Normal attribute), 94
cond_log_p (OnehotCategorical attribute), 103
cond_log_p (Poisson attribute), 111
cond_log_p (StochasticTensor attribute), 67
cond_log_p (Uniform attribute), 105
cond_log_p (UnnormalizedMultinomial attribute),

128
cond_log_prob() (BayesianNet method), 70
cov_tril (MultivariateNormalCholesky attribute), 51

D
default_hps (PSGLD.RMSPreconditioner attribute),

89
deterministic() (BayesianNet method), 70
Dirichlet (class in

zhusuan.distributions.multivariate), 58
Dirichlet (class in

zhusuan.legacy.framework.stochastic), 129
dirichlet() (BayesianNet method), 70
Discrete (in module zhusuan.distributions.univariate),

37
Discrete (in module

zhusuan.legacy.framework.stochastic), 104
discrete() (BayesianNet method), 71
dist (Bernoulli attribute), 98
dist (Beta attribute), 109
dist (BinConcrete attribute), 132
dist (Binomial attribute), 114
dist (Categorical attribute), 100
dist (Concrete attribute), 137
dist (Dirichlet attribute), 130
dist (Empirical attribute), 140
dist (ExpConcrete attribute), 135
dist (FoldNormal attribute), 96
dist (Gamma attribute), 107
dist (Implicit attribute), 142
dist (InverseGamma attribute), 116
dist (Laplace attribute), 118
dist (MatrixVariateNormalCholesky attribute), 123
dist (Multinomial attribute), 125
dist (MultivariateNormalCholesky attribute), 121
dist (Normal attribute), 94
dist (OnehotCategorical attribute), 103
dist (Poisson attribute), 111
dist (StochasticTensor attribute), 67
dist (Uniform attribute), 105
dist (UnnormalizedMultinomial attribute), 128
distribution (Bernoulli attribute), 98
distribution (Beta attribute), 109
distribution (BinConcrete attribute), 133
distribution (Binomial attribute), 114
distribution (Categorical attribute), 101
Distribution (class in zhusuan.distributions.base),

28
distribution (Concrete attribute), 137
distribution (Dirichlet attribute), 130
distribution (Empirical attribute), 140
distribution (ExpConcrete attribute), 135
distribution (FoldNormal attribute), 96
distribution (Gamma attribute), 107
distribution (Implicit attribute), 142
distribution (InverseGamma attribute), 116
distribution (Laplace attribute), 118

152 Index

ZhuSuan Documentation, Release 0.4.0

distribution (MatrixVariateNormalCholesky
attribute), 123

distribution (Multinomial attribute), 125
distribution (MultivariateNormalCholesky at-

tribute), 121
distribution (Normal attribute), 94
distribution (OnehotCategorical attribute), 103
distribution (Poisson attribute), 112
distribution (StochasticTensor attribute), 67
distribution (Uniform attribute), 105
distribution (UnnormalizedMultinomial attribute),

128
dtype (Bernoulli attribute), 35, 98
dtype (Beta attribute), 41, 110
dtype (BinConcrete attribute), 49, 133
dtype (Binomial attribute), 44, 114
dtype (Categorical attribute), 36, 101
dtype (Concrete attribute), 62, 138
dtype (Dirichlet attribute), 58, 130
dtype (Distribution attribute), 29
dtype (Empirical attribute), 140
dtype (ExpConcrete attribute), 60, 135
dtype (FoldNormal attribute), 33, 96
dtype (Gamma attribute), 39, 107
dtype (Implicit attribute), 142
dtype (InverseGamma attribute), 46, 116
dtype (Laplace attribute), 47, 118
dtype (MatrixVariateNormalCholesky attribute), 64,

123
dtype (Multinomial attribute), 53, 126
dtype (MultivariateNormalCholesky attribute), 51, 121
dtype (Normal attribute), 31, 94
dtype (OnehotCategorical attribute), 57, 103
dtype (Poisson attribute), 43, 112
dtype (StochasticTensor attribute), 67
dtype (Uniform attribute), 38, 105
dtype (UnnormalizedMultinomial attribute), 55, 128

E
effective_sample_size() (in module

zhusuan.diagnostics), 91
effective_sample_size_1d() (in module

zhusuan.diagnostics), 91
elbo() (in module zhusuan.variational.exclusive_kl),

76
Empirical (class in

zhusuan.legacy.distributions.special), 92
Empirical (class in

zhusuan.legacy.framework.stochastic), 139
EvidenceLowerBoundObjective (class in

zhusuan.variational.exclusive_kl), 77
exp_concrete() (BayesianNet method), 71
exp_gumbel_softmax() (BayesianNet method), 71

ExpConcrete (class in
zhusuan.distributions.multivariate), 59

ExpConcrete (class in
zhusuan.legacy.framework.stochastic), 134

ExpGumbelSoftmax (in module
zhusuan.distributions.multivariate), 61

ExpGumbelSoftmax (in module
zhusuan.legacy.framework.stochastic), 136

explicit_broadcast() (in module
zhusuan.distributions.utils), 65

F
fold_normal() (BayesianNet method), 71
FoldNormal (class in

zhusuan.distributions.univariate), 32
FoldNormal (class in

zhusuan.legacy.framework.stochastic), 95

G
Gamma (class in zhusuan.distributions.univariate), 39
Gamma (class in zhusuan.legacy.framework.stochastic),

107
gamma() (BayesianNet method), 71
get() (BayesianNet method), 71
get_backward_ops() (in module

zhusuan.framework.utils), 75
get_batch_shape() (Bernoulli method), 35
get_batch_shape() (Beta method), 41
get_batch_shape() (BinConcrete method), 49
get_batch_shape() (Binomial method), 44
get_batch_shape() (Categorical method), 36
get_batch_shape() (Concrete method), 62
get_batch_shape() (Dirichlet method), 58
get_batch_shape() (Distribution method), 29
get_batch_shape() (ExpConcrete method), 60
get_batch_shape() (FoldNormal method), 33
get_batch_shape() (Gamma method), 40
get_batch_shape() (InverseGamma method), 46
get_batch_shape() (Laplace method), 47
get_batch_shape() (MatrixVariateNormalC-

holesky method), 64
get_batch_shape() (Multinomial method), 53
get_batch_shape() (MultivariateNormalCholesky

method), 51
get_batch_shape() (Normal method), 31
get_batch_shape() (OnehotCategorical method),

57
get_batch_shape() (Poisson method), 43
get_batch_shape() (Uniform method), 38
get_batch_shape() (UnnormalizedMultinomial

method), 55
get_context() (zhusuan.framework.bn.BayesianNet

class method), 71

Index 153

ZhuSuan Documentation, Release 0.4.0

get_contexts() (zhusuan.framework.bn.BayesianNet
class method), 71

get_shape() (Bernoulli method), 99
get_shape() (Beta method), 110
get_shape() (BinConcrete method), 133
get_shape() (Binomial method), 114
get_shape() (Categorical method), 101
get_shape() (Concrete method), 138
get_shape() (Dirichlet method), 130
get_shape() (Empirical method), 140
get_shape() (ExpConcrete method), 135
get_shape() (FoldNormal method), 96
get_shape() (Gamma method), 107
get_shape() (Implicit method), 142
get_shape() (InverseGamma method), 116
get_shape() (Laplace method), 119
get_shape() (MatrixVariateNormalCholesky

method), 123
get_shape() (Multinomial method), 126
get_shape() (MultivariateNormalCholesky method),

121
get_shape() (Normal method), 94
get_shape() (OnehotCategorical method), 103
get_shape() (Poisson method), 112
get_shape() (StochasticTensor method), 67
get_shape() (Uniform method), 105
get_shape() (UnnormalizedMultinomial method),

128
get_value_shape() (Bernoulli method), 35
get_value_shape() (Beta method), 41
get_value_shape() (BinConcrete method), 49
get_value_shape() (Binomial method), 44
get_value_shape() (Categorical method), 36
get_value_shape() (Concrete method), 62
get_value_shape() (Dirichlet method), 58
get_value_shape() (Distribution method), 29
get_value_shape() (ExpConcrete method), 60
get_value_shape() (FoldNormal method), 33
get_value_shape() (Gamma method), 40
get_value_shape() (InverseGamma method), 46
get_value_shape() (Laplace method), 47
get_value_shape() (MatrixVariateNormalC-

holesky method), 64
get_value_shape() (Multinomial method), 53
get_value_shape() (MultivariateNormalCholesky

method), 51
get_value_shape() (Normal method), 31
get_value_shape() (OnehotCategorical method),

57
get_value_shape() (Poisson method), 43
get_value_shape() (Uniform method), 38
get_value_shape() (UnnormalizedMultinomial

method), 55
group_ndims (Bernoulli attribute), 35

group_ndims (Beta attribute), 41
group_ndims (BinConcrete attribute), 49
group_ndims (Binomial attribute), 44
group_ndims (Categorical attribute), 36
group_ndims (Concrete attribute), 62
group_ndims (Dirichlet attribute), 58
group_ndims (Distribution attribute), 29
group_ndims (ExpConcrete attribute), 60
group_ndims (FoldNormal attribute), 33
group_ndims (Gamma attribute), 40
group_ndims (InverseGamma attribute), 46
group_ndims (Laplace attribute), 48
group_ndims (MatrixVariateNormalCholesky at-

tribute), 64
group_ndims (Multinomial attribute), 53
group_ndims (MultivariateNormalCholesky at-

tribute), 51
group_ndims (Normal attribute), 31
group_ndims (OnehotCategorical attribute), 57
group_ndims (Poisson attribute), 43
group_ndims (Uniform attribute), 38
group_ndims (UnnormalizedMultinomial attribute),

55
gumbel_softmax() (BayesianNet method), 71
GumbelSoftmax (in module

zhusuan.distributions.multivariate), 63
GumbelSoftmax (in module

zhusuan.legacy.framework.stochastic), 139

H
HMC (class in zhusuan.hmc), 85
HMCInfo (class in zhusuan.hmc), 85
HParams (PSGLD.RMSPreconditioner attribute), 89

I
Implicit (class in zhusuan.legacy.distributions.special),

92
Implicit (class in zhusuan.legacy.framework.stochastic),

141
importance() (InclusiveKLObjective method), 81
importance_weighted_objective() (in mod-

ule zhusuan.variational.monte_carlo), 82
ImportanceWeightedObjective (class in

zhusuan.variational.monte_carlo), 83
InclusiveKLObjective (class in

zhusuan.variational.inclusive_kl), 80
inverse_gamma() (BayesianNet method), 72
InverseGamma (class in

zhusuan.distributions.univariate), 45
InverseGamma (class in

zhusuan.legacy.framework.stochastic), 115
is_continuous (Bernoulli attribute), 35
is_continuous (Beta attribute), 41
is_continuous (BinConcrete attribute), 49

154 Index

ZhuSuan Documentation, Release 0.4.0

is_continuous (Binomial attribute), 44
is_continuous (Categorical attribute), 36
is_continuous (Concrete attribute), 62
is_continuous (Dirichlet attribute), 59
is_continuous (Distribution attribute), 29
is_continuous (ExpConcrete attribute), 60
is_continuous (FoldNormal attribute), 33
is_continuous (Gamma attribute), 40
is_continuous (InverseGamma attribute), 46
is_continuous (Laplace attribute), 48
is_continuous (MatrixVariateNormalCholesky at-

tribute), 64
is_continuous (Multinomial attribute), 53
is_continuous (MultivariateNormalCholesky

attribute), 51
is_continuous (Normal attribute), 31
is_continuous (OnehotCategorical attribute), 57
is_continuous (Poisson attribute), 43
is_continuous (Uniform attribute), 38
is_continuous (UnnormalizedMultinomial at-

tribute), 55
is_loglikelihood() (in module

zhusuan.evaluation), 90
is_observed() (Bernoulli method), 99
is_observed() (Beta method), 110
is_observed() (BinConcrete method), 133
is_observed() (Binomial method), 114
is_observed() (Categorical method), 101
is_observed() (Concrete method), 138
is_observed() (Dirichlet method), 131
is_observed() (Empirical method), 140
is_observed() (ExpConcrete method), 135
is_observed() (FoldNormal method), 96
is_observed() (Gamma method), 108
is_observed() (Implicit method), 142
is_observed() (InverseGamma method), 116
is_observed() (Laplace method), 119
is_observed() (MatrixVariateNormalCholesky

method), 123
is_observed() (Multinomial method), 126
is_observed() (MultivariateNormalCholesky

method), 121
is_observed() (Normal method), 94
is_observed() (OnehotCategorical method), 103
is_observed() (Poisson method), 112
is_observed() (StochasticTensor method), 67
is_observed() (Uniform method), 105
is_observed() (UnnormalizedMultinomial method),

128
is_reparameterized (Bernoulli attribute), 35
is_reparameterized (Beta attribute), 41
is_reparameterized (BinConcrete attribute), 50
is_reparameterized (Binomial attribute), 44
is_reparameterized (Categorical attribute), 36

is_reparameterized (Concrete attribute), 62
is_reparameterized (Dirichlet attribute), 59
is_reparameterized (Distribution attribute), 29
is_reparameterized (ExpConcrete attribute), 60
is_reparameterized (FoldNormal attribute), 33
is_reparameterized (Gamma attribute), 40
is_reparameterized (InverseGamma attribute), 46
is_reparameterized (Laplace attribute), 48
is_reparameterized (MatrixVariateNormalC-

holesky attribute), 64
is_reparameterized (Multinomial attribute), 53
is_reparameterized (MultivariateNormalC-

holesky attribute), 51
is_reparameterized (Normal attribute), 31
is_reparameterized (OnehotCategorical at-

tribute), 57
is_reparameterized (Poisson attribute), 43
is_reparameterized (Uniform attribute), 38
is_reparameterized (UnnormalizedMultinomial

attribute), 55
is_same_dynamic_shape() (in module

zhusuan.distributions.utils), 66
iw_objective() (in module

zhusuan.variational.monte_carlo), 82

K
klpq() (in module zhusuan.variational.inclusive_kl),

79

L
Laplace (class in zhusuan.distributions.univariate), 47
Laplace (class in zhusuan.legacy.framework.stochastic),

117
laplace() (BayesianNet method), 72
loc (Laplace attribute), 48
local_log_prob() (BayesianNet method), 72
log_combination() (in module

zhusuan.distributions.utils), 65
log_joint (MetaBayesianNet attribute), 74
log_joint() (BayesianNet method), 72
log_mean_exp() (in module zhusuan.utils), 92
log_prob() (Bernoulli method), 35, 99
log_prob() (Beta method), 41, 110
log_prob() (BinConcrete method), 50, 133
log_prob() (Binomial method), 44, 114
log_prob() (Categorical method), 37, 101
log_prob() (Concrete method), 62, 138
log_prob() (Dirichlet method), 59, 131
log_prob() (Distribution method), 30
log_prob() (Empirical method), 140
log_prob() (ExpConcrete method), 60, 135
log_prob() (FoldNormal method), 33, 97
log_prob() (Gamma method), 40, 108
log_prob() (Implicit method), 142

Index 155

ZhuSuan Documentation, Release 0.4.0

log_prob() (InverseGamma method), 46, 116
log_prob() (Laplace method), 48, 119
log_prob() (MatrixVariateNormalCholesky method),

64, 123
log_prob() (Multinomial method), 53, 126
log_prob() (MultivariateNormalCholesky method),

52, 121
log_prob() (Normal method), 31, 94
log_prob() (OnehotCategorical method), 57, 103
log_prob() (Poisson method), 43, 112
log_prob() (StochasticTensor method), 67
log_prob() (Uniform method), 38, 105
log_prob() (UnnormalizedMultinomial method), 55,

128
logits (Bernoulli attribute), 35
logits (BinConcrete attribute), 50
logits (Binomial attribute), 45
logits (Categorical attribute), 37
logits (Concrete attribute), 63
logits (ExpConcrete attribute), 61
logits (Multinomial attribute), 54
logits (OnehotCategorical attribute), 57
logits (UnnormalizedMultinomial attribute), 55
logstd (FoldNormal attribute), 33
logstd (Normal attribute), 32

M
matrix_variate_normal_cholesky()

(BayesianNet method), 72
MatrixVariateNormalCholesky (class in

zhusuan.distributions.multivariate), 63
MatrixVariateNormalCholesky (class in

zhusuan.legacy.framework.stochastic), 122
maxval (Uniform attribute), 38
maybe_explicit_broadcast() (in module

zhusuan.distributions.utils), 66
mean (FoldNormal attribute), 33
mean (MatrixVariateNormalCholesky attribute), 64
mean (MultivariateNormalCholesky attribute), 52
mean (Normal attribute), 32
merge_dicts() (in module zhusuan.utils), 92
meta_bayesian_net() (in module

zhusuan.framework.meta_bn), 75
meta_bn (EvidenceLowerBoundObjective attribute), 79
meta_bn (ImportanceWeightedObjective attribute), 84
meta_bn (InclusiveKLObjective attribute), 81
meta_bn (VariationalObjective attribute), 76
MetaBayesianNet (class in

zhusuan.framework.meta_bn), 74
minval (Uniform attribute), 38
Multinomial (class in

zhusuan.distributions.multivariate), 52
Multinomial (class in

zhusuan.legacy.framework.stochastic), 124

multinomial() (BayesianNet method), 72
multivariate_normal_cholesky() (Bayesian-

Net method), 72
MultivariateNormalCholesky (class in

zhusuan.distributions.multivariate), 51
MultivariateNormalCholesky (class in

zhusuan.legacy.framework.stochastic), 120

N
n_categories (Categorical attribute), 37
n_categories (Concrete attribute), 63
n_categories (Dirichlet attribute), 59
n_categories (ExpConcrete attribute), 61
n_categories (Multinomial attribute), 54
n_categories (OnehotCategorical attribute), 57
n_categories (UnnormalizedMultinomial attribute),

55
n_experiments (Binomial attribute), 45
n_experiments (Multinomial attribute), 54
name (Bernoulli attribute), 99
name (Beta attribute), 110
name (BinConcrete attribute), 133
name (Binomial attribute), 114
name (Categorical attribute), 101
name (Concrete attribute), 138
name (Dirichlet attribute), 131
name (Empirical attribute), 140
name (ExpConcrete attribute), 136
name (FoldNormal attribute), 97
name (Gamma attribute), 108
name (Implicit attribute), 142
name (InverseGamma attribute), 117
name (Laplace attribute), 119
name (MatrixVariateNormalCholesky attribute), 124
name (Multinomial attribute), 126
name (MultivariateNormalCholesky attribute), 121
name (Normal attribute), 94
name (OnehotCategorical attribute), 103
name (Poisson attribute), 112
name (StochasticTensor attribute), 67
name (Uniform attribute), 106
name (UnnormalizedMultinomial attribute), 129
net (Bernoulli attribute), 99
net (Beta attribute), 110
net (BinConcrete attribute), 133
net (Binomial attribute), 115
net (Categorical attribute), 101
net (Concrete attribute), 138
net (Dirichlet attribute), 131
net (Empirical attribute), 140
net (ExpConcrete attribute), 136
net (FoldNormal attribute), 97
net (Gamma attribute), 108
net (Implicit attribute), 142

156 Index

ZhuSuan Documentation, Release 0.4.0

net (InverseGamma attribute), 117
net (Laplace attribute), 119
net (MatrixVariateNormalCholesky attribute), 124
net (Multinomial attribute), 126
net (MultivariateNormalCholesky attribute), 121
net (Normal attribute), 94
net (OnehotCategorical attribute), 103
net (Poisson attribute), 112
net (StochasticTensor attribute), 67
net (Uniform attribute), 106
net (UnnormalizedMultinomial attribute), 129
nodes (BayesianNet attribute), 72
Normal (class in zhusuan.distributions.univariate), 30
Normal (class in zhusuan.legacy.framework.stochastic),

93
normal() (BayesianNet method), 73

O
observe() (MetaBayesianNet method), 74
onehot_categorical() (BayesianNet method), 73
onehot_discrete() (BayesianNet method), 73
OnehotCategorical (class in

zhusuan.distributions.multivariate), 56
OnehotCategorical (class in

zhusuan.legacy.framework.stochastic), 102
OnehotDiscrete (in module

zhusuan.distributions.multivariate), 58
OnehotDiscrete (in module

zhusuan.legacy.framework.stochastic), 104
outputs() (BayesianNet method), 73

P
param_dtype (Bernoulli attribute), 35
param_dtype (Beta attribute), 42
param_dtype (BinConcrete attribute), 50
param_dtype (Binomial attribute), 45
param_dtype (Categorical attribute), 37
param_dtype (Concrete attribute), 63
param_dtype (Dirichlet attribute), 59
param_dtype (Distribution attribute), 30
param_dtype (ExpConcrete attribute), 61
param_dtype (FoldNormal attribute), 34
param_dtype (Gamma attribute), 40
param_dtype (InverseGamma attribute), 46
param_dtype (Laplace attribute), 48
param_dtype (MatrixVariateNormalCholesky at-

tribute), 65
param_dtype (Multinomial attribute), 54
param_dtype (MultivariateNormalCholesky at-

tribute), 52
param_dtype (Normal attribute), 32
param_dtype (OnehotCategorical attribute), 57
param_dtype (Poisson attribute), 43
param_dtype (Uniform attribute), 38

param_dtype (UnnormalizedMultinomial attribute),
55

path_param() (Bernoulli method), 35
path_param() (Beta method), 42
path_param() (BinConcrete method), 50
path_param() (Binomial method), 45
path_param() (Categorical method), 37
path_param() (Concrete method), 63
path_param() (Dirichlet method), 59
path_param() (Distribution method), 30
path_param() (ExpConcrete method), 61
path_param() (FoldNormal method), 34
path_param() (Gamma method), 40
path_param() (InverseGamma method), 46
path_param() (Laplace method), 48
path_param() (MatrixVariateNormalCholesky

method), 65
path_param() (Multinomial method), 54
path_param() (MultivariateNormalCholesky

method), 52
path_param() (Normal method), 32
path_param() (OnehotCategorical method), 57
path_param() (Poisson method), 43
path_param() (Uniform method), 38
path_param() (UnnormalizedMultinomial method),

56
planar_normalizing_flow() (in module

zhusuan.transform), 91
Poisson (class in zhusuan.distributions.univariate), 42
Poisson (class in zhusuan.legacy.framework.stochastic),

111
poisson() (BayesianNet method), 73
prob() (Bernoulli method), 35, 99
prob() (Beta method), 42, 110
prob() (BinConcrete method), 50, 133
prob() (Binomial method), 45, 115
prob() (Categorical method), 37, 101
prob() (Concrete method), 63, 138
prob() (Dirichlet method), 59, 131
prob() (Distribution method), 30
prob() (Empirical method), 140
prob() (ExpConcrete method), 61, 136
prob() (FoldNormal method), 34, 97
prob() (Gamma method), 40, 108
prob() (Implicit method), 143
prob() (InverseGamma method), 46, 117
prob() (Laplace method), 48, 119
prob() (MatrixVariateNormalCholesky method), 65,

124
prob() (Multinomial method), 54, 126
prob() (MultivariateNormalCholesky method), 52, 121
prob() (Normal method), 32, 95
prob() (OnehotCategorical method), 57, 104
prob() (Poisson method), 43, 112

Index 157

ZhuSuan Documentation, Release 0.4.0

prob() (StochasticTensor method), 68
prob() (Uniform method), 39, 106
prob() (UnnormalizedMultinomial method), 56, 129
PSGLD (class in zhusuan.sgmcmc), 88
PSGLD.RMSPreconditioner (class in

zhusuan.sgmcmc), 89

Q
query() (BayesianNet method), 73

R
rate (Poisson attribute), 43
reinforce() (EvidenceLowerBoundObjective

method), 79
reuse() (in module zhusuan.framework.utils), 75
reuse_variables() (in module

zhusuan.framework.utils), 75
rws() (InclusiveKLObjective method), 81

S
sample() (Bernoulli method), 35, 99
sample() (Beta method), 42, 110
sample() (BinConcrete method), 50, 134
sample() (Binomial method), 45, 115
sample() (Categorical method), 37, 102
sample() (Concrete method), 63, 138
sample() (Dirichlet method), 59, 131
sample() (Distribution method), 30
sample() (Empirical method), 141
sample() (ExpConcrete method), 61, 136
sample() (FoldNormal method), 34, 97
sample() (Gamma method), 40, 108
sample() (HMC method), 86
sample() (Implicit method), 143
sample() (InverseGamma method), 47, 117
sample() (Laplace method), 48, 119
sample() (MatrixVariateNormalCholesky method), 65,

124
sample() (Multinomial method), 54, 127
sample() (MultivariateNormalCholesky method), 52,

122
sample() (Normal method), 32, 95
sample() (OnehotCategorical method), 57, 104
sample() (Poisson method), 43, 113
sample() (SGMCMC method), 87
sample() (StochasticTensor method), 68
sample() (Uniform method), 39, 106
sample() (UnnormalizedMultinomial method), 56, 129
scale (Laplace attribute), 48
SGHMC (class in zhusuan.sgmcmc), 89
SGLD (class in zhusuan.sgmcmc), 88
SGMCMC (class in zhusuan.sgmcmc), 87
SGNHT (class in zhusuan.sgmcmc), 89
sgvb() (EvidenceLowerBoundObjective method), 79

sgvb() (ImportanceWeightedObjective method), 84
shape (Bernoulli attribute), 100
shape (Beta attribute), 111
shape (BinConcrete attribute), 134
shape (Binomial attribute), 115
shape (Categorical attribute), 102
shape (Concrete attribute), 139
shape (Dirichlet attribute), 131
shape (Empirical attribute), 141
shape (ExpConcrete attribute), 136
shape (FoldNormal attribute), 97
shape (Gamma attribute), 108
shape (Implicit attribute), 143
shape (InverseGamma attribute), 117
shape (Laplace attribute), 120
shape (MatrixVariateNormalCholesky attribute), 124
shape (Multinomial attribute), 127
shape (MultivariateNormalCholesky attribute), 122
shape (Normal attribute), 95
shape (OnehotCategorical attribute), 104
shape (Poisson attribute), 113
shape (StochasticTensor attribute), 68
shape (Uniform attribute), 106
shape (UnnormalizedMultinomial attribute), 129
std (FoldNormal attribute), 34
std (Normal attribute), 32
stochastic() (BayesianNet method), 73
StochasticTensor (class in zhusuan.framework.bn),

66

T
temperature (BinConcrete attribute), 50
temperature (Concrete attribute), 63
temperature (ExpConcrete attribute), 61
tensor (Bernoulli attribute), 100
tensor (Beta attribute), 111
tensor (BinConcrete attribute), 134
tensor (Binomial attribute), 115
tensor (Categorical attribute), 102
tensor (Concrete attribute), 139
tensor (Dirichlet attribute), 131
tensor (Empirical attribute), 141
tensor (EvidenceLowerBoundObjective attribute), 79
tensor (ExpConcrete attribute), 136
tensor (FoldNormal attribute), 97
tensor (Gamma attribute), 109
tensor (Implicit attribute), 143
tensor (ImportanceWeightedObjective attribute), 85
tensor (InclusiveKLObjective attribute), 82
tensor (InverseGamma attribute), 117
tensor (Laplace attribute), 120
tensor (MatrixVariateNormalCholesky attribute), 124
tensor (Multinomial attribute), 127
tensor (MultivariateNormalCholesky attribute), 122

158 Index

ZhuSuan Documentation, Release 0.4.0

tensor (Normal attribute), 95
tensor (OnehotCategorical attribute), 104
tensor (Poisson attribute), 113
tensor (StochasticTensor attribute), 68
tensor (Uniform attribute), 106
tensor (UnnormalizedMultinomial attribute), 129
tensor (VariationalObjective attribute), 76
TensorArithmeticMixin (class in zhusuan.utils),

92

U
u_tril (MatrixVariateNormalCholesky attribute), 65
Uniform (class in zhusuan.distributions.univariate), 37
Uniform (class in zhusuan.legacy.framework.stochastic),

104
uniform() (BayesianNet method), 74
unnormalized_multinomial() (BayesianNet

method), 74
UnnormalizedMultinomial (class in

zhusuan.distributions.multivariate), 54
UnnormalizedMultinomial (class in

zhusuan.legacy.framework.stochastic), 127
use_path_derivative (Bernoulli attribute), 36
use_path_derivative (Beta attribute), 42
use_path_derivative (BinConcrete attribute), 50
use_path_derivative (Binomial attribute), 45
use_path_derivative (Categorical attribute), 37
use_path_derivative (Concrete attribute), 63
use_path_derivative (Dirichlet attribute), 59
use_path_derivative (Distribution attribute), 30
use_path_derivative (ExpConcrete attribute), 61
use_path_derivative (FoldNormal attribute), 34
use_path_derivative (Gamma attribute), 40
use_path_derivative (InverseGamma attribute),

47
use_path_derivative (Laplace attribute), 48
use_path_derivative (MatrixVariateNormalC-

holesky attribute), 65
use_path_derivative (Multinomial attribute), 54
use_path_derivative (MultivariateNormalC-

holesky attribute), 52
use_path_derivative (Normal attribute), 32
use_path_derivative (OnehotCategorical at-

tribute), 58
use_path_derivative (Poisson attribute), 43
use_path_derivative (Uniform attribute), 39
use_path_derivative (UnnormalizedMultinomial

attribute), 56

V
v_tril (MatrixVariateNormalCholesky attribute), 65
value_shape (Bernoulli attribute), 36
value_shape (Beta attribute), 42
value_shape (BinConcrete attribute), 50

value_shape (Binomial attribute), 45
value_shape (Categorical attribute), 37
value_shape (Concrete attribute), 63
value_shape (Dirichlet attribute), 59
value_shape (Distribution attribute), 30
value_shape (ExpConcrete attribute), 61
value_shape (FoldNormal attribute), 34
value_shape (Gamma attribute), 40
value_shape (InverseGamma attribute), 47
value_shape (Laplace attribute), 48
value_shape (MatrixVariateNormalCholesky at-

tribute), 65
value_shape (Multinomial attribute), 54
value_shape (MultivariateNormalCholesky at-

tribute), 52
value_shape (Normal attribute), 32
value_shape (OnehotCategorical attribute), 58
value_shape (Poisson attribute), 44
value_shape (Uniform attribute), 39
value_shape (UnnormalizedMultinomial attribute),

56
variational (EvidenceLowerBoundObjective at-

tribute), 79
variational (ImportanceWeightedObjective at-

tribute), 85
variational (InclusiveKLObjective attribute), 82
variational (VariationalObjective attribute), 76
VariationalObjective (class in

zhusuan.variational.base), 76
vimco() (ImportanceWeightedObjective method), 85

Z
zhusuan.diagnostics (module), 91
zhusuan.distributions (module), 28
zhusuan.distributions.base (module), 28
zhusuan.distributions.multivariate (mod-

ule), 51
zhusuan.distributions.univariate (mod-

ule), 30
zhusuan.distributions.utils (module), 65
zhusuan.evaluation (module), 90
zhusuan.framework (module), 66
zhusuan.framework.bn (module), 66
zhusuan.framework.meta_bn (module), 74
zhusuan.framework.utils (module), 75
zhusuan.hmc (module), 85
zhusuan.legacy (module), 92
zhusuan.legacy.distributions.special

(module), 92
zhusuan.legacy.framework.stochastic

(module), 93
zhusuan.sgmcmc (module), 87
zhusuan.transform (module), 91
zhusuan.utils (module), 92

Index 159

ZhuSuan Documentation, Release 0.4.0

zhusuan.variational (module), 76
zhusuan.variational.base (module), 76
zhusuan.variational.exclusive_kl (mod-

ule), 76
zhusuan.variational.inclusive_kl (mod-

ule), 79
zhusuan.variational.monte_carlo (module),

82

160 Index

	Installation
	Variational Autoencoders
	Basic Concepts in ZhuSuan
	Bayesian Neural Networks
	Logistic Normal Topic Models
	zhusuan.distributions
	zhusuan.framework
	zhusuan.variational
	zhusuan.hmc
	zhusuan.sgmcmc
	zhusuan.evaluation
	zhusuan.transform
	zhusuan.diagnostics
	zhusuan.utils
	zhusuan.legacy
	Contributing

	Indices and tables
	Bibliography
	Python Module Index
	Index

