

    
      
          
            
  
Welcome to ZhuSuan
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ZhuSuan is a python probabilistic programming library for
Bayesian deep learning, which conjoins the complimentary advantages of
Bayesian methods and deep learning. ZhuSuan is built upon
Tensorflow [https://www.tensorflow.org]. Unlike existing deep learning
libraries, which are mainly designed for deterministic neural networks and
supervised tasks, ZhuSuan provides deep learning style primitives and
algorithms for building probabilistic models and applying Bayesian inference.
The supported inference algorithms include:


	Variational inference with programmable variational posteriors, various
objectives and advanced gradient estimators (SGVB, REINFORCE, VIMCO, etc.).


	Importance sampling for learning and evaluating models, with programmable
proposals.


	Hamiltonian Monte Carlo (HMC) with parallel chains, and optional automatic
parameter tuning.








Installation

ZhuSuan is still under development. Before the first stable release (1.0),
please clone the GitHub repository [https://github.com/thu-ml/zhusuan] and
run

pip install .





in the main directory. This will install ZhuSuan and its dependencies
automatically. ZhuSuan also requires Tensorflow version 1.13.0 or later. Because
users should choose whether to install the cpu or gpu version of Tensorflow,
we do not include it in the dependencies. See
Installing Tensorflow [https://www.tensorflow.org/install/].

If you are developing ZhuSuan, you may want to install in an “editable” or
“develop” mode. Please refer to the Contributing section in
README [https://github.com/thu-ml/zhusuan/blob/master/README.md#contribution].

After installation, open your python console and type:

>>> import zhusuan as zs





If no error occurs, you’ve successfully installed ZhuSuan.


Tutorials


	Tutorial slides [https://docs.google.com/presentation/d/1Xqi-qFHciAdV9z1FHpGkUcHT-yugNVzwGX3MM74rMuM/edit?usp=sharing]

	Variational Autoencoders

	Basic Concepts in ZhuSuan

	Bayesian Neural Networks

	Logistic Normal Topic Models






API Docs


	zhusuan.distributions

	zhusuan.framework

	zhusuan.variational

	zhusuan.hmc

	zhusuan.sgmcmc

	zhusuan.evaluation

	zhusuan.transform

	zhusuan.diagnostics

	zhusuan.utils

	zhusuan.legacy
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Variational Autoencoders

Variational Auto-Encoders (VAE) [VAEKW13] is one of the
most widely used deep generative models.
In this tutorial, we show how to implement VAE in ZhuSuan step by step.
The full script is at
examples/variational_autoencoders/vae.py [https://github.com/thu-ml/zhusuan/blob/master/examples/variational_autoencoders/vae.py].

The generative process of a VAE for modeling binarized
MNIST [https://www.tensorflow.org/get_started/mnist/beginners] data is as
follows:


\[\begin{split}z &\sim \mathrm{N}(z|0, I) \\
x_{logits} &= f_{NN}(z) \\
x &\sim \mathrm{Bernoulli}(x|\mathrm{sigmoid}(x_{logits}))\end{split}\]

This generative process is a stereotype for deep generative models, which
starts with a latent representation (\(z\)) sampled from a simple
distribution (such as standard Normal).
Then the samples are forwarded through a deep neural network (\(f_{NN}\))
to capture the complex generative process of high dimensional observations
such as images.
Finally, some noise is added to the output to get a tractable likelihood for
the model.
For binarized MNIST, the observation noise is chosen to be Bernoulli, with
its parameters output by the neural network.


Build the model

In ZhuSuan, a model is constructed using
BayesianNet, which describes a directed
graphical model, i.e., Bayesian networks.
The suggested practice is to wrap model construction into a function (
we shall see the meanings of these arguments soon):

import zhusuan as zs

def build_gen(x_dim, z_dim, n, n_particles=1):
    bn = zs.BayesianNet()





Following the generative process, first we need a standard Normal
distribution to generate the latent representations (\(z\)).
As presented in our graphical model, the data is generated in batches with
batch size n, and for each data, the latent representation is of
dimension z_dim.
So we add a stochastic node by bn.normal to generate samples of shape
[n, z_dim]:

# z ~ N(z|0, I)
z_mean = tf.zeros([n, z_dim])
z = bn.normal("z", z_mean, std=1., group_ndims=1, n_samples=n_particles)





The method bn.normal is a helper function that creates a
Normal distribution and adds a
stochastic node that follows this distribution to the
BayesianNet instance.
The returned z is a StochasticTensor, which
is Tensor-like and can be mixed with Tensors and fed into almost any
Tensorflow primitives.


Note

To learn more about Distribution and
BayesianNet. Please refer to
Basic Concepts in ZhuSuan.



The shape of z_mean is [n, z_dim], which means that
we have [n, z_dim] independent inputs fed into the univariate
Normal distribution.
Because the input parameters are allowed to
broadcast [https://docs.scipy.org/doc/numpy-1.12.0/user/basics.broadcasting.html]
to match each other’s shape, the standard deviation std is simply set to
1.
Thus the shape of samples and probabilities evaluated at this node should
be of shape [n, z_dim]. However, what we want in modeling MNIST data, is a
batch of [n] independent events, with each one producing samples of z
that is of shape [z_dim], which is the dimension of latent representations.
And the probabilities in every single event in the batch should be evaluated
together, so the shape of local probabilities should be [n] instead of
[n, z_dim].
In ZhuSuan, the way to achieve this is by setting group_ndims`, as we do
in the above model definition code.
To help understand this, several other examples can be found in Distribution
tutorial.
n_samples is the number of samples to generate.
It is None by default, in which case a single sample is generated
without adding a new dimension.

Then we build a neural network of two fully-connected layers with \(z\)
as the input, which is supposed to learn the complex transformation that
generates images from their latent representations:

# x_logits = f_NN(z)
h = tf.layers.dense(z, 500, activation=tf.nn.relu)
h = tf.layers.dense(h, 500, activation=tf.nn.relu)
x_logits = tf.layers.dense(h, x_dim)





Next, we add an observation distribution (noise) that follows the Bernoulli
distribution to get a tractable likelihood when evaluating the probability
of an image:

# x ~ Bernoulli(x|sigmoid(x_logits))
bn.bernoulli("x", x_logits, group_ndims=1)






Note

The Bernoulli distribution
accepts log-odds of probabilities instead of probabilities.
This is designed for numeric stability reasons. Similar tricks are used in
Categorical , which accepts
log-probabilities instead of probabilities.



Putting together, the code for constructing a VAE is:

def build_gen(x_dim, z_dim, n, n_particles=1):
    bn = zs.BayesianNet()
    z_mean = tf.zeros([n, z_dim])
    z = bn.normal("z", z_mean, std=1., group_ndims=1, n_samples=n_particles)
    h = tf.layers.dense(z, 500, activation=tf.nn.relu)
    h = tf.layers.dense(h, 500, activation=tf.nn.relu)
    x_logits = tf.layers.dense(h, x_dim)
    bn.bernoulli("x", x_logits, group_ndims=1)








Reuse the model

Unlike common deep learning models (MLP, CNN, etc.), which is for supervised
tasks, a key difficulty in designing programing primitives for generative
models is their inner reusability.
This is because in a probabilistic graphical model, a stochastic node can
have two kinds of states, observed or latent.
Consider the above case, if z is a tensor sampled from the prior, how
about when you meet the condition that z is observed?
In common practice of tensorflow programming, one has to build another
computation graph from scratch and reuse the Variables (weights here).
If there are many stochastic nodes in the model, this process will be really
painful.

We provide a solution for this. To observe any stochastic nodes,
pass a dictionary mapping of (name, Tensor) pairs when constructing
BayesianNet.
This will assign observed values to corresponding StochasticTensor s.
For example, to observe a batch of images x_batch, write:

bn = zs.BayesianNet(observed={"x": x_batch})






Note

The observation passed must have the same type and shape as the
StochasticTensor.



However, we usually need to pass different configurations of observations to
the same BayesianNet more than once.
To achieve this, ZhuSuan provides a new class called
MetaBayesianNet
to represent the meta version of BayesianNet
which can repeatedly produce BayesianNet
objects by accepting different observations.
The recommended way to construct a
MetaBayesianNet is by wrapping the
function with a meta_bayesian_net()
decorator:

@zs.meta_bayesian_net(scope="gen")
def build_gen(x_dim, z_dim, n, n_particles=1):
    ...
    return bn

model = build_gen(x_dim, z_dim, n, n_particles)





which transforms the function into returning a
MetaBayesianNet instance:

>>> print(model)
<zhusuan.framework.meta_bn.MetaBayesianNet object at ...





so that we can observe stochastic nodes in this way:

# no observation
bn1 = model.observe()

# observe x
bn2 = model.observe(x=x_batch)





Each time the function is called, a different observation assignment is used
to construct a BayesianNet instance.
One question you may have in mind is that if there are Tensorflow
Variables [https://www.tensorflow.org/api_docs/python/tf/Variable]
created in the above function, will them be reused across these bn s?
The answer is no by default, but you can enable this by switching on the
reuse_variables option in the decorator:

@zs.meta_bayesian_net(scope="gen", reuse_variables=True)
def build_gen(x_dim, z_dim, n, n_particles=1):
    ...
    return bn

model = build_gen(x_dim, z_dim, n, n_particles)





Then bn1 and bn2 will share the same set of Tensorflow Variables.


Note

This only shares Tensorflow Variables across different
BayesianNet instances generated by the same
MetaBayesianNet through the
observe() method.
Creating multiple MetaBayesianNet
objects will recreate the tensorflow Variables, for example, in

m = build_gen(x_dim, z_dim, n, n_particles)
bn = m.observe()

m_new = build_gen(x_dim, z_dim, n, n_particles)
bn_new = m_new.observe()





bn and bn_new will use a different set of Tensorflow
Variables.



Since reusing Tensorflow Variables in repeated function calls is a typical
need, we provide another decorator
reuse_variables() for the more general cases.
Any function decorated by reuse_variables()
will automatically create Tensorflow Variables the first time they are called
and reuse them thereafter.




Inference and learning

Having built the model, the next step is to learn it from binarized MNIST
images.
We conduct
Maximum Likelihood [https://en.wikipedia.org/wiki/Maximum_likelihood_estimation]
learning, that is, we are going to maximize the log likelihood of data in our
model:


\[\max_{\theta} \log p_{\theta}(x)\]

where \(\theta\) is the model parameter.


Note

In this variational autoencoder, the model parameter is the network
weights, in other words, it’s the Tensorflow Variables created in the
fully_connected layers.



However, the model we defined has not only the observation (\(x\)) but
also latent representation (\(z\)).
This makes it hard for us to compute \(p_{\theta}(x)\), which we call
the marginal likelihood of \(x\), because we only know the joint
likelihood of the model:


\[p_{\theta}(x, z) = p_{\theta}(x|z)p(z)\]

while computing the marginal likelihood requires an integral over latent
representation, which is generally intractable:


\[p_{\theta}(x) = \int p_{\theta}(x, z)\;dz\]

The intractable integral problem is a fundamental challenge in learning latent
variable models like VAEs.
Fortunately, the machine learning society has developed many approximate
methods to address it. One of them is
Variational Inference [https://en.wikipedia.org/wiki/Variational_Bayesian_methods].
As the intuition is very simple, we briefly introduce it below.

Because directly optimizing \(\log p_{\theta}(x)\) is infeasible, we choose
to optimize a lower bound of it.
The lower bound is constructed as


\[\begin{split}\log p_{\theta}(x) &\geq \log p_{\theta}(x) - \mathrm{KL}(q_{\phi}(z|x)\|p_{\theta}(z|x)) \\
&= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x, z) - \log q_{\phi}(z|x)\right] \\
&= \mathcal{L}(\theta, \phi)\end{split}\]

where \(q_{\phi}(z|x)\) is a user-specified distribution of \(z\)
(called variational posterior) that is chosen to match the true posterior
\(p_{\theta}(z|x)\).
The lower bound is equal to the marginal log likelihood if and only if
\(q_{\phi}(z|x) = p_{\theta}(z|x)\), when the
Kullback–Leibler divergence [https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence]
between them (\(\mathrm{KL}(q_{\phi}(z|x)\|p_{\theta}(z|x))\)) is zero.


Note

In Bayesian Statistics, the process represented by the Bayes’ rule


\[p(z|x) = \frac{p(z)(x|z)}{p(x)}\]

is called
Bayesian Inference [https://en.wikipedia.org/wiki/Bayesian_inference],
where \(p(z)\) is called the prior, \(p(x|z)\) is the
conditional likelihood, \(p(x)\) is the marginal likelihood or
evidence, and \(p(z|x)\) is known as the posterior.



This lower bound is usually called Evidence Lower Bound (ELBO). Note that the
only probabilities we need to evaluate in it is the joint likelihood and
the probability of the variational posterior.

In variational autoencoder, the variational posterior (\(q_{\phi}(z|x)\))
is also parameterized by a neural network (\(g\)), which accepts input
\(x\), and outputs the mean and variance of a Normal distribution:


\[\begin{split}\mu_z(x;\phi), \log\sigma_z(x;\phi) &= g_{NN}(x) \\
q_{\phi}(z|x) &= \mathrm{N}(z|\mu_z(x;\phi), \sigma^2_z(x;\phi))\end{split}\]

In ZhuSuan, the variational posterior can also be defined as a
BayesianNet . The code for above definition is:

@zs.reuse_variables(scope="q_net")
def build_q_net(x, z_dim, n_z_per_x):
    bn = zs.BayesianNet()
    h = tf.layers.dense(tf.cast(x, tf.float32), 500, activation=tf.nn.relu)
    h = tf.layers.dense(h, 500, activation=tf.nn.relu)
    z_mean = tf.layers.dense(h, z_dim)
    z_logstd = tf.layers.dense(h, z_dim)
    bn.normal("z", z_mean, logstd=z_logstd, group_ndims=1, n_samples=n_z_per_x)
    return bn

variational = build_q_net(x, z_dim, n_particles)





Having both model and variational, we can build the lower bound as:

lower_bound = zs.variational.elbo(
    model, {"x": x}, variational=variational, axis=0)





The returned lower_bound is an
EvidenceLowerBoundObjective
instance, which is also Tensor-like and can be evaluated directly. However,
optimizing this lower bound objective needs special care.
The easiest way is to do
stochastic gradient descent [https://en.wikipedia.org/wiki/Stochastic_gradient_descent]
(SGD), which is very common in deep learning literature.
However, the gradient computation here involves taking derivatives of an
expectation, which needs Monte Carlo estimation.
This often induces large variance if not properly handled.


Note

Directly using auto-differentiation to compute the gradients of
EvidenceLowerBoundObjective
often gives you the wrong results.
This is because auto-differentiation is not designed to handle
expectations.



Many solutions have been proposed to estimate the gradient of some
type of variational lower bound (ELBO or others) with relatively low variance.
To make this more automatic and easier to handle, ZhuSuan has wrapped these
gradient estimators all into methods of the corresponding
variational objective (e.g., the
EvidenceLowerBoundObjective).
These functions don’t return gradient estimates but a more convenient
surrogate cost.
Applying SGD on this surrogate cost with
respect to parameters is equivalent to optimizing the
corresponding variational lower bounds using the well-developed low-variance
estimator.

Here we are using the Stochastic Gradient Variational Bayes (SGVB)
estimator from the original paper of variational autoencoders
[VAEKW13].
This estimator takes benefits of a clever reparameterization trick to
greatly reduce the variance when estimating the gradients of ELBO.
In ZhuSuan, one can use this estimator by calling the method
sgvb()
of the class:~zhusuan.variational.exclusive_kl.EvidenceLowerBoundObjective
instance.
The code for this part is:

# the surrogate cost for optimization
cost = tf.reduce_mean(lower_bound.sgvb())

# the lower bound value to print for monitoring convergence
lower_bound = tf.reduce_mean(lower_bound)






Note

For readers who are interested, we provide a detailed explanation of the
sgvb()
estimator used here, though this is not required for you to use
ZhuSuan’s variational functionality.

The key of SGVB estimator is a reparameterization trick, i.e., they
reparameterize the random variable
\(z\sim q_{\phi}(z|x) = \mathrm{N}(z|\mu_z(x;\phi), \sigma^2_z(x;\phi))\),
as


\[z = z(\epsilon; x, \phi) = \epsilon \sigma_z(x;\phi) + \mu_z(x;\phi),\; \epsilon\sim \mathrm{N}(0, I)\]

In this way, the expectation can be rewritten with respect to
\(\epsilon\):


\[\begin{split}\mathcal{L}(\phi, \theta) &=
\mathbb{E}_{z\sim q_{\phi}(z|x)} \left[\log p_{\theta}(x, z) - \log q_{\phi}(z|x)\right] \\
&= \mathbb{E}_{\epsilon\sim \mathrm{N}(0, I)} \left[\log p_{\theta}(x, z(\epsilon; x, \phi)) -
\log q_{\phi}(z(\epsilon; x, \phi)|x)\right]\end{split}\]

Thus the gradients with variational parameters \(\phi\) can be
directly moved into the expectation, enabling an unbiased low-variance
Monte Carlo estimator:


\[\begin{split}\nabla_{\phi} L(\phi, \theta) &=
\mathbb{E}_{\epsilon\sim \mathrm{N}(0, I)} \nabla_{\phi} \left[\log p_{\theta}(x, z(\epsilon; x, \phi)) -
\log q_{\phi}(z(\epsilon; x, \phi)|x)\right] \\
&\approx \frac{1}{k}\sum_{i=1}^k \nabla_{\phi} \left[\log p_{\theta}(x, z(\epsilon_i; x, \phi)) -
\log q_{\phi}(z(\epsilon_i; x, \phi)|x)\right]\end{split}\]

where \(\epsilon_i \sim \mathrm{N}(0, I)\)



Now that we have had the cost, the next step is to do the stochastic gradient
descent.
Tensorflow provides many advanced
optimizers [https://www.tensorflow.org/api_guides/python/train]
that improves the plain SGD, among which Adam [VAEKB14]
is probably the most popular one in deep learning society.
Here we are going to use Tensorflow’s Adam optimizer to do the learning:

optimizer = tf.train.AdamOptimizer(0.001)
infer_op = optimizer.minimize(cost)








Generate images

What we’ve done above is to define and learn the model. To see how it
performs, we would like to let it generate some images in the learning process.
To improve the visual quality of generation, we remove the observation noise,
i.e., the Bernoulli distribution.
We do this by using the direct output of the neural network (x_logits):

@zs.meta_bayesian_net(scope="gen", reuse_variables=True)
def build_gen(x_dim, z_dim, n, n_particles=1):
    bn = zs.BayesianNet()
        ...
    x_logits = tf.layers.dense(h, x_dim)
        ...





and adding a sigmoid function to it to get a “mean” image.
After that, we add a deterministic node in bn to keep track of
the Tensor x_mean:

@zs.meta_bayesian_net(scope="gen", reuse_variables=True)
def build_gen(x_dim, z_dim, n, n_particles=1):
    bn = zs.BayesianNet()
        ...
    x_logits = tf.layers.dense(h, x_dim)
    bn.deterministic("x_mean", tf.sigmoid(x_logits))
        ...





so that we can easily access it from a
BayesianNet instance.
For random generations, no observation about the model is made, so we
construct the corresponding BayesianNet by:

bn_gen = model.observe()





Then the generated samples can be fetched from the x_mean node of
bn_gen:

x_gen = tf.reshape(bn_gen["x_mean"], [-1, 28, 28, 1])








Run gradient descent

Now, everything is good before a run.
So we could just open the Tensorflow session, run the training loop,
print statistics, and write generated images to disk:

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    for epoch in range(1, epochs + 1):
        time_epoch = -time.time()
        np.random.shuffle(x_train)
        lbs = []
        for t in range(iters):
            x_batch = x_train[t * batch_size:(t + 1) * batch_size]
            _, lb = sess.run([infer_op, lower_bound],
                             feed_dict={x_input: x_batch,
                                        n_particles: 1,
                                        n: batch_size})
            lbs.append(lb)
        time_epoch += time.time()
        print("Epoch {} ({:.1f}s): Lower bound = {}".format(
            epoch, time_epoch, np.mean(lbs)))


        if epoch % save_freq == 0:
            images = sess.run(x_gen, feed_dict={n: 100, n_particles: 1})
            name = os.path.join(result_path,
                                "vae.epoch.{}.png".format(epoch))
            save_image_collections(images, name)





Below is a sample image of random generations from the model.
Keep watching them and have fun :)

[image: ../_images/vae_mnist.png]
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Basic Concepts in ZhuSuan


Distribution

Distributions are basic functionalities for building probabilistic models.
The Distribution class is the base class
for various probabilistic distributions which support batch inputs, generating
batches of samples and evaluate probabilities at batches of given values.

The list of all available distributions can be found on these pages:


	univariate distributions


	multivariate distributions




We can create a univariate Normal distribution in ZhuSuan by:

>>> import zhusuan as zs
>>> a = zs.distributions.Normal(mean=0., logstd=0.)





The typical input shape for a Distribution
is like batch_shape + input_shape, where input_shape represents the
shape of a non-batch input parameter;
batch_shape represents how many independent inputs are
fed into the distribution.
In general, distributions support broadcasting for inputs.

Samples can be generated by calling
sample() method of distribution
objects.
The shape is ([n_samples] + )batch_shape + value_shape.
The first additional axis is omitted only when passed n_samples is None
(by default), in which case one sample is generated. value_shape is the
non-batch value shape of the distribution.
For a univariate distribution, its value_shape is [].

An example of univariate distributions
(Normal):

>>> import tensorflow as tf
>>> _ = tf.InteractiveSession()

>>> b = zs.distributions.Normal([[-1., 1.], [0., -2.]], [0., 1.])

>>> b.batch_shape.eval()
array([2, 2], dtype=int32)

>>> b.value_shape.eval()
array([], dtype=int32)

>>> tf.shape(b.sample()).eval()
array([2, 2], dtype=int32)

>>> tf.shape(b.sample(1)).eval()
array([1, 2, 2], dtype=int32)

>>> tf.shape(b.sample(10)).eval()
array([10,  2,  2], dtype=int32)





and an example of multivariate distributions
(OnehotCategorical):

>>> c = zs.distributions.OnehotCategorical([[0., 1., -1.],
...                                         [2., 3., 4.]])

>>> c.batch_shape.eval()
array([2], dtype=int32)

>>> c.value_shape.eval()
array([3], dtype=int32)

>>> tf.shape(c.sample()).eval()
array([2, 3], dtype=int32)

>>> tf.shape(c.sample(1)).eval()
array([1, 2, 3], dtype=int32)

>>> tf.shape(c.sample(10)).eval()
array([10,  2,  3], dtype=int32)





There are cases where a batch of random variables are grouped into a
single event so that their probabilities can be computed together.
This is achieved by setting group_ndims argument, which defaults to 0.
The last group_ndims number of axes in
batch_shape are grouped into a single event.
For example, Normal(..., group_ndims=1) will
set the last axis of its batch_shape to a single event,
i.e., a multivariate Normal with identity covariance matrix.

The log probability density (mass) function can be evaluated by passing given
values to log_prob() method of
distribution objects.
In that case, the given Tensor should be
broadcastable to shape (... + )batch_shape + value_shape.
The returned Tensor has shape (... + )batch_shape[:-group_ndims].
For example:

>>> d = zs.distributions.Normal([[-1., 1.], [0., -2.]], 0.,
...                             group_ndims=1)

>>> d.log_prob(0.).eval()
array([-2.83787704, -3.83787727], dtype=float32)

>>> e = zs.distributions.Normal(tf.zeros([2, 1, 3]), 0.,
...                             group_ndims=2)

>>> tf.shape(e.log_prob(tf.zeros([5, 1, 1, 3]))).eval()
array([5, 2], dtype=int32)








BayesianNet

In ZhuSuan we support building probabilistic models as Bayesian networks, i.e.,
directed graphical models.
Below we use a simple Bayesian linear regression example to illustrate this.
The generative process of the model is


\[ \begin{align}\begin{aligned}w &\sim N(0, \alpha^2 I)\\y &\sim N(w^\top x, \beta^2)\end{aligned}\end{align} \]

where \(x\) denotes the input feature in the linear regression.
We apply a Bayesian treatment and assume a Normal prior distribution of the
regression weights \(w\). Suppose the input feature has 5 dimensions. For
simplicity we define the input as a placeholder and fix the hyper-parameters:

x = tf.placeholder(tf.float32, shape=[5])
alpha = 1.
beta = 0.1





To define the model, the first step is to construct a
BayesianNet instance:

bn = zs.BayesianNet()





A Bayesian network describes the dependency structure of the joint
distribution over a set of random variables as directed graphs.
To support this, a BayesianNet instance can
keep two kinds of nodes:


	Stochastic nodes. They are random variables in graphical models.
The w node can be constructed as:

w = bn.normal("w", tf.zeros([x.shape[-1]], std=alpha)





Here w is a StochasticTensor that follows
the Normal distribution:

>>> print(w)
<zhusuan.framework.bn.StochasticTensor object at ...





For any distribution available in zhusuan.distributions, we can find
a method of BayesianNet for creating the corresponding stochastic
node.
The returned StochasticTensor instances
are Tensor-like, which means that you can mix them with almost any Tensorflow
primitives, for example, the predicted mean of the linear regression is an
inner product between w and the input x:

y_mean = tf.reduce_sum(w * x, axis=-1)







	Deterministic nodes. As the above code shows, deterministic nodes can be
constructed directly with Tensorflow operations, and in this way
BayesianNet does not keep track of them.
However, in some cases it’s convenient to enable the tracking by the
deterministic() method:

y_mean = bn.deterministic("y_mean", tf.reduce_sum(w * x, axis=-1))





This allows you to fetch the y_mean Tensor from bn whenever you want
it.





The full code of building a Bayesian linear regression model is like:

def bayesian_linear_regression(x, alpha, beta):
    bn = zs.BayesianNet()
    w = bn.normal("w", mean=0., std=alpha)
    y_mean = tf.reduce_sum(w * x, axis=-1)
    bn.normal("y", y_mean, std=beta)
    return bn





A unique feature of graphical models is that stochastic nodes are allowed to
have undetermined behaviour (i.e., being latent), and we can observe them at
any time (then they are fixed to the observations).
In ZhuSuan, the BayesianNet can be initialized
with a dictionary argument observed to assign observations to certain
stochastic nodes, for example:

bn = zs.BayesianNet(observed={"w": w_obs})





will cause the random variable \(w\) to be observed as w_obs.
The result is that in bn, y_mean is computed from the observed value
of w (w_obs).
For stochastic nodes that are not given observations, their samples will be
used when the corresponding StochasticTensor is
involved in computation with Tensors or fed into Tensorflow operations.
In this example it means that if we don’t pass any observation to bn, the
samples of w will be used to compute y_mean.

Although the above approach allows assigning observations to stochastic
nodes, in most common cases, it is more convenient to first define the
graphical model, and then pass observations whenever needed.
Besides, the model should allow queries with different configurations of
observations.
To enable this workflow, we introduce a new class
MetaBayesianNet.
Conceptually we can view
MetaBayesianNet instances as the original
model and BayesianNet as the result of certain
observations.
As we shall see, BayesianNet instances can be
lazily constructed from its meta class instance.

We made it very easy to define the model as a
MetaBayesianNet.
There is no change to the above code but just adding a decorator to the
function:

@zs.meta_bayesian_net(scope="model")
def bayesian_linear_regression(x, alpha, beta):
    bn = zs.BayesianNet()
    w = bn.normal("w", mean=0., std=alpha)
    y_mean = tf.reduce_sum(w * x, axis=-1)
    bn.normal("y", y_mean, std=beta)
    return bn





The function decorated by zs.meta_bayesian_net() will return a
MetaBayesianNet instead of the original
BayesianNet instance:

>>> model = bayesian_linear_regression(x, alpha, beta)

>>> print(model)
<zhusuan.framework.meta_bn.MetaBayesianNet object at ...





As we have mentioned, MetaBayesianNet can
allow different configurations of observations.
This is achieved by its
observe() method.
We could pass observations as named arguments, and it will return a
corresponding BayesianNet instance,
for example:

bn = model.observe(w=w_obs)





will set w to be observed in the returned
BayesianNet instance bn.
Calling the above function with different named arguments instantiates the
BayesianNet with different observations,
which resembles the common behaviour of probabilistic graphical models.


Note

The observation passed must have the same type and shape as the
StochasticTensor.



If there are
tensorflow Variables [https://www.tensorflow.org/api_docs/python/tf/Variable]
created in a model construction function, you may want to reuse them for
BayesianNet instances with different
observations.
There is another decorator in ZhuSuan named reuse_variables() to make
this convenient.
You could add it to any function that creates Tensorflow variables:

@zs.reuse_variables(scope="model")
def build_model(...):
    bn = zs.BayesianNet()
    ...
    return bn





or equivalently, switch on the reuse_variables option in the
zs.meta_bayesian_net() decorator:

@zs.meta_bayesian_net(scope="model", reuse_variables=True)
def build_model(...):
    bn = zs.BayesianNet()
    ...
    return bn





Up to now we know how to construct a model and reuse it for different
observations.
After construction, BayesianNet supports queries
about the current state of the network, such as:

# get named node(s)
w = bn["w"]
w, y = bn.get(["w", "y"])

# get log probabilities of stochastic nodes conditioned on the current
# value of other StochasticTensors.
log_pw, log_py = bn.cond_log_prob(["w", "y"])

# get log joint probability given the current values of all stochastic
# nodes
log_joint_value = bn.log_joint()





By default the log joint probability is computed by summing over
conditional log probabilities at all stochastic nodes.
This requires that the distribution batch shapes of all stochastic nodes
are correctly aligned.
If not, the returned value can be arbitrary.
Most of the time you can adjust the group_ndims parameter of the stochastic
nodes to fix this.
If that’s not the case, we still allow customizing the log joint
probability function by rewriting it in the
MetaBayesianNet instance like:

meta_bn = build_linear_regression(x, alpha, beta)

def customized_log_joint(bn):
    return tf.reduce_sum(
        bn.cond_log_prob("w"), axis=-1) + bn.cond_log_prob("y")

meta_bn.log_joint = customized_log_joint





then all BayesianNet instances constructed
from this meta_bn will use the provided customized function to compute
the result of bn.log_joint().









          

      

      

    

  

    
      
          
            
  
Bayesian Neural Networks


Note

This tutorial assumes that readers have been familiar with ZhuSuan’s
basic concepts.



Recent years have seen neural networks’ powerful abilities in fitting complex
transformations, with successful applications on speech recognition, image
classification, and machine translation, etc.
However, typical training of neural networks requires lots of labeled data
to control the risk of overfitting.
And the problem becomes harder when it comes to real world regression tasks.
These tasks often have smaller amount of training data to use, and the
high-frequency characteristics of these data often makes neural networks
easier to get trapped in overfitting.

A principled approach for solving this problem is Bayesian Neural Networks
(BNN).
In BNN, prior distributions are put upon the neural network’s weights
to consider the modeling uncertainty.
By doing Bayesian inference on the weights, one can learn a predictor
which both fits to the training data and reasons about the uncertainty of
its own prediction on test data.
In this tutorial, we show how to implement BNNs in ZhuSuan.
The full script for this tutorial is at
examples/bayesian_neural_nets/bnn_vi.py [https://github.com/thu-ml/zhusuan/blob/master/examples/bayesian_neural_nets/bnn_vi.py].

We use a regression dataset called
Boston housing [https://archive.ics.uci.edu/ml/machine-learning-databases/housing/].
This has \(N = 506\) data points, with \(D = 13\) dimensions.
The generative process of a BNN for modeling multivariate regression is
as follows:


\[\begin{split}W_i &\sim \mathrm{N}(W_i|0, I),\quad i=1\cdots L. \\
y_{mean} &= f_{NN}(x, \{W_i\}_{i=1}^L) \\
y &\sim \mathrm{N}(y|y_{mean}, \sigma^2)\end{split}\]

This generative process starts with an input feature (\(x\)), which
is forwarded through a deep neural network (\(f_{NN}\)) with \(L\)
layers, whose parameters in each layer (\(W_i\)) satisfy a factorized
multivariate standard Normal distribution.
With this forward transformation, the model is able to learn complex
relationships between the input (\(x\)) and the output (\(y\)).
Finally, some noise is added to the output to get a tractable likelihood
for the model, which is typically a Gaussian noise in regression problems.
A graphical model representation for bayesian neural network is as follows.

[image: ../_images/bnn.png]

Build the model

We start by the model building function (we shall see the meanings of
these arguments later):

@zs.meta_bayesian_net(scope="bnn", reuse_variables=True)
def build_bnn(x, layer_sizes, n_particles):
    bn = zs.BayesianNet()





Following the generative process, we need standard Normal
distributions to generate the weights (\(\{W_i\}_{i=1}^L\)) in each layer.
For a layer with n_in input units and n_out output units, the weights
are of shape [n_out, n_in + 1] (one additional column for bias).
To support multiple samples (useful in inference and prediction), a common
practice is to set the n_samples argument to a placeholder, which we
choose to be n_particles here:

h = tf.tile(x[None, ...], [n_particles, 1, 1])
for i, (n_in, n_out) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
    w = bn.normal("w" + str(i), tf.zeros([n_out, n_in + 1]), std=1.,
                  group_ndims=2, n_samples=n_particles)





Note that we expand x with a new dimension and tile it to enable
computation with multiple particles of weight samples.
To treat the weights in each layer as a whole and evaluate the probability of
them together, group_ndims is set to 2.
If you are unfamiliar with this property, see Distribution for details.

Then we write the feed-forward process of neural networks, through which the
connection between output y and input x is established:

for i, (n_in, n_out) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
    w = bn.normal("w" + str(i), tf.zeros([n_out, n_in + 1]), std=1.,
                  group_ndims=2, n_samples=n_particles)
    h = tf.concat([h, tf.ones(tf.shape(h)[:-1])[..., None]], -1)
    h = tf.einsum("imk,ijk->ijm", w, h) / tf.sqrt(
        tf.cast(tf.shape(h)[2], tf.float32))
    if i < len(layer_sizes) - 2:
        h = tf.nn.relu(h)





Next, we add an observation distribution (noise) to get a tractable
likelihood when evaluating the probability:

y_mean = bn.deterministic("y_mean", tf.squeeze(h, 2))
y_logstd = tf.get_variable("y_logstd", shape=[],
                           initializer=tf.constant_initializer(0.))
bn.normal("y", y_mean, logstd=y_logstd)





Putting together and adding model reuse, the code for constructing a BNN is:

@zs.meta_bayesian_net(scope="bnn", reuse_variables=True)
def build_bnn(x, layer_sizes, n_particles):
    bn = zs.BayesianNet()
    h = tf.tile(x[None, ...], [n_particles, 1, 1])
    for i, (n_in, n_out) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
        w = bn.normal("w" + str(i), tf.zeros([n_out, n_in + 1]), std=1.,
                      group_ndims=2, n_samples=n_particles)
        h = tf.concat([h, tf.ones(tf.shape(h)[:-1])[..., None]], -1)
        h = tf.einsum("imk,ijk->ijm", w, h) / tf.sqrt(
            tf.cast(tf.shape(h)[2], tf.float32))
        if i < len(layer_sizes) - 2:
            h = tf.nn.relu(h)

    y_mean = bn.deterministic("y_mean", tf.squeeze(h, 2))
    y_logstd = tf.get_variable("y_logstd", shape=[],
                               initializer=tf.constant_initializer(0.))
    bn.normal("y", y_mean, logstd=y_logstd)
    return bn








Inference

Having built the model, the next step is to infer the posterior distribution,
or uncertainty of weights given the training data.


\[p(W|x_{1:N}, y_{1:N}) \propto p(W)\prod_{n=1}^N p(y_n|x_n, W)\]

Because the normalizing constant is intractable, we cannot directly
compute the posterior distribution of network parameters
(\(\{W_i\}_{i=1}^L\)).
In order to solve this problem, we use
Variational Inference [https://en.wikipedia.org/wiki/Variational_Bayesian_methods],
i.e., using a variational distribution
\(q_{\phi}(\{W_i\}_{i=1}^L)=\prod_{i=1}^L{q_{\phi_i}(W_i)}\) to
approximate the true posterior.
The simplest variational posterior (\(q_{\phi_i}(W_i)\)) we can specify
is factorized (also called mean-field) Normal distribution parameterized
by its mean and log standard deviation.


\[q_{\phi_i}(W_i) = \mathrm{N}(W_i|\mu_i, {\sigma_i}^2)\]

The code for above definition is:

@zs.reuse_variables(scope="variational")
def build_mean_field_variational(layer_sizes, n_particles):
    bn = zs.BayesianNet()
    for i, (n_in, n_out) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
        w_mean = tf.get_variable(
            "w_mean_" + str(i), shape=[n_out, n_in + 1],
            initializer=tf.constant_initializer(0.))
        w_logstd = tf.get_variable(
            "w_logstd_" + str(i), shape=[n_out, n_in + 1],
            initializer=tf.constant_initializer(0.))
        bn.normal("w" + str(i), w_mean, logstd=w_logstd,
                  n_samples=n_particles, group_ndims=2)
    return bn





In Variational Inference, to make \(q_{\phi}(W)\) approximate
\(p(W|x_{1:N}, y_{1:N})\) well.
We need to maximize a lower bound of the marginal log probability
(\(\log p(y|x)\)):


\[\begin{split}\log p(y_{1:N}|x_{1:N}) &\geq \log p(y_{1:N}|x_{1:N})
- \mathrm{KL}(q_{\phi}(W)\|p(W|x_{1:N},y_{1:N})) \\
&= \mathbb{E}_{q_{\phi}(W)} \left[\log (p(y_{1:N}|x_{1:N}, W)p(W))
- \log q_{\phi}(W)\right] \\
&\triangleq \mathcal{L}(\phi)\end{split}\]

The lower bound is equal to the marginal log
likelihood if and only if \(q_{\phi}(W) = p(W|x_{1:N}, y_{1:N})\),
for \(i\) in \(1\cdots L\), when the
Kullback–Leibler divergence [https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence]
between them (\(\mathrm{KL}(q_{\phi}(W)\|p(W|x_{1:N}, y_{1:N})\))
is zero.

This lower bound is usually called Evidence Lower Bound (ELBO). Note that the
only probabilities we need to evaluate in it is the joint likelihood and
the probability of the variational posterior.
The log conditional likelihood is


\[\log p(y_{1:N}|x_{1:N}, W) = \sum_{n=1}^N\log p(y_n|x_n, W)\]

Computing log conditional likelihood for the whole dataset is very
time-consuming.
In practice, we sub-sample a minibatch of data to approximate the conditional
likelihood


\[\log p(y_{1:N}|x_{1:N}, W) \approx \frac{N}{M}\sum_{m=1}^M\log p(y_m| x_m, W)\]

Here \(\{(x_m, y_m)\}_{m=1:M}\) is a subset including \(M\)
random samples from the training set \(\{(x_n, y_n)\}_{n=1:N}\).
\(M\) is called the batch size.
By setting the batch size relatively small, we can compute the lower bound
above efficiently.


Note

Different from models like VAEs, BNN’s latent variables
\(\{W_i\}_{i=1}^L\) are global for all the data, therefore we don’t
explicitly condition \(W\) on each data in the variational posterior.



We optimize this lower bound by
stochastic gradient descent [https://en.wikipedia.org/wiki/Stochastic_gradient_descent].
As we have done in the VAE tutorial,
the Stochastic Gradient Variational Bayes (SGVB) estimator is used.
The code for this part is:

model = build_bnn(x, layer_sizes, n_particles)
variational = build_mean_field_variational(layer_sizes, n_particles)

def log_joint(bn):
    log_pws = bn.cond_log_prob(w_names)
    log_py_xw = bn.cond_log_prob('y')
    return tf.add_n(log_pws) + tf.reduce_mean(log_py_xw, 1) * n_train

model.log_joint = log_joint

lower_bound = zs.variational.elbo(
    model, {'y': y}, variational=variational, axis=0)
cost = lower_bound.sgvb()

optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
infer_op = optimizer.minimize(cost)








Evaluation

What we’ve done above is to define the model and infer the parameters.
The main purpose of doing this is to predict about new data.
The probability distribution of new data (\(y\)) given its input
feature (\(x\)) and our training data (\(D\)) is


\[p(y|x, D) = \int_W p(y|x, W)p(W|D)\]

Because we have learned the approximation of \(p(W|D)\) by the variational
posterior \(q(W)\), we can substitute it into the equation


\[p(y|x, D) \simeq \int_W p(y|x, W)q(W)\]

Although the above integral is still intractable, Monte Carlo estimation
can be used to get an unbiased estimate of it by sampling from the variational
posterior


\[p(y|x, D) \simeq \frac{1}{M}\sum_{i=1}^M p(y|x, W^i)\quad W^i \sim q(W)\]

We can choose the mean of this predictive distribution to be our prediction
on new data


\[y^{pred} = \mathbb{E}_{p(y|x, D)} \; y \simeq \frac{1}{M}\sum_{i=1}^M \mathbb{E}_{p(y|x, W^i)} \; y \quad W^i \sim q(W)\]

The above equation can be implemented by passing the samples from the
variational posterior as observations into the model, and averaging over the
samples of y_mean from the resulting
BayesianNet.
The trick here is that the procedure of observing \(W\) as samples from
\(q(W)\) has been implemented when constructing the evidence lower bound,
and we can fetch the intermediate BayesianNet
instance by lower_bound.bn:

# prediction: rmse & log likelihood
y_mean = lower_bound.bn["y_mean"]
y_pred = tf.reduce_mean(y_mean, 0)





The predictive mean is given by y_mean.
To see how this performs, we would like to compute some quantitative
measurements including
Root Mean Squared Error (RMSE) [https://en.wikipedia.org/wiki/Root-mean-square_deviation]
and log likelihood [https://en.wikipedia.org/wiki/Likelihood_function#Log-likelihood].

RMSE is defined as the square root of the predictive mean square error,
smaller RMSE means better predictive accuracy:


\[RMSE = \sqrt{\frac{1}{N}\sum_{n=1}^N(y_n^{pred}-y_n^{target})^2}\]

Log likelihood (LL) is defined as the natural logarithm of the likelihood
function, larger LL means that the learned model fits the test data better:


\[\begin{split}LL &= \log p(y|x, D) \\
   &\simeq \log \int_W p(y|x, W)q(W) \\\end{split}\]

This can also be computed by Monte Carlo estimation


\[LL \simeq \log \frac{1}{M}\sum_{i=1}^M p(y|x, W^i)\quad W^i\sim q(W)\]

To be noted, as we usually standardized the data to make
them have unit variance at beginning (check the full script
examples/bayesian_neural_nets/bnn_vi.py [https://github.com/thu-ml/zhusuan/blob/master/examples/bayesian_neural_nets/bnn_vi.py]),
we need to count its effect in our evaluation formulas.
RMSE is proportional to the amplitude, therefore the final RMSE should be
multiplied with the standard deviation.
For log likelihood, it needs to be subtracted by a log term.
All together, the code for evaluation is:

# prediction: rmse & log likelihood
y_mean = lower_bound.bn["y_mean"]
y_pred = tf.reduce_mean(y_mean, 0)
rmse = tf.sqrt(tf.reduce_mean((y_pred - y) ** 2)) * std_y_train
log_py_xw = lower_bound.bn.cond_log_prob("y")
log_likelihood = tf.reduce_mean(zs.log_mean_exp(log_py_xw, 0)) - tf.log(
    std_y_train)








Run gradient descent

Again, everything is good before a run. Now add the following codes to
run the training loop and see how your BNN performs:

# Run the inference
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for epoch in range(1, epochs + 1):
        perm = np.random.permutation(x_train.shape[0])
        x_train = x_train[perm, :]
        y_train = y_train[perm]
        lbs = []
        for t in range(iters):
            x_batch = x_train[t * batch_size:(t + 1) * batch_size]
            y_batch = y_train[t * batch_size:(t + 1) * batch_size]
            _, lb = sess.run(
                [infer_op, lower_bound],
                feed_dict={n_particles: lb_samples,
                           x: x_batch, y: y_batch})
            lbs.append(lb)
        print('Epoch {}: Lower bound = {}'.format(epoch, np.mean(lbs)))

        if epoch % test_freq == 0:
            test_rmse, test_ll = sess.run(
                [rmse, log_likelihood],
                feed_dict={n_particles: ll_samples,
                           x: x_test, y: y_test})
            print('>> TEST')
            print('>> Test rmse = {}, log_likelihood = {}'
                  .format(test_rmse, test_ll))











          

      

      

    

  

    
      
          
            
  
Logistic Normal Topic Models

The full script for this tutorial is at examples/topic_models/lntm_mcem.py [https://github.com/thu-ml/zhusuan/blob/master/examples/topic_models/lntm_mcem.py].


An introduction to topic models and Latent Dirichlet Allocation

Nowadays it is much easier to get large corpus of documents. Even if there are
no suitable labels with these documents, much information can be extracted. We
consider designing a probabilistic model to generate the documents. Generative
models can bring more benefits than generating more data. One can also fit the
data under some specific structure through generative models. By inferring the
parameters in the model (either return a most probable value or figure out its
distribution), some valuable information may be discovered.

For example, we can model documents as arising from multiple topics, where a
topic is defined to be a distribution over a fixed vocabulary of terms. The most
famous model is Latent Dirichlet Allocation (LDA)
[LNTMBNJ03]. First we describe the notations. Following
notations differ from the standard notations in two places for consistence with
our notations of LNTM: The topics is denoted \(\vec{\phi}\) instead of
\(\vec{\beta}\), and the scalar Dirichlet prior of topics is \(\delta\)
instead of \(\eta\). Suppose there are \(D\) documents in the corpus,
and the \(d\)th document has \(N_d\) words. Let \(K\) be a
specified number of topics, \(V\) the size of vocabulary,
\(\vec{\alpha}\) a positive \(K\) dimension-vector, and \(\delta\) a
positive scalar. Let \(\mathrm{Dir}_K(\vec{\alpha})\) denote a
\(K\)-dimensional Dirichlet with vector parameter \(\vec{\alpha}\) and
\(\mathrm{Dir}_V(\delta)\) denote a \(V\)-dimensional Dirichlet with
scalar parameter \(\delta\). Let \(\mathrm{Catg}(\vec{p})\) be a
categorical distribution with vector parameter
\(\vec{p}=(p_1,p_2,...,p_n)^T\) (\(\sum_{i=1}^n p_i=1\)) and support
\(\{1,2,...,n\}\).


Note

Sometimes, the categorical and multinomial distributions are conflated, and
it is common to speak of a “multinomial distribution” when a “categorical
distribution” would be more precise. These two distributions are
distinguished in ZhuSuan.



The generative process is:


\[\begin{split}\vec{\phi}_k &\sim \mathrm{Dir}_V(\delta), k=1,2,...,K \\
\vec{\theta}_d &\sim \mathrm{Dir}_K(\vec{\alpha}), d=1,2,...,D \\
z_{dn} &\sim \mathrm{Catg}(\vec{\theta}_d), d=1,2,...,D, n=1,2,...,N_d \\
w_{dn} &\sim \mathrm{Catg}(\vec{\phi}_{z_{dn}}), d=1,2,...,D, n=1,2,...,N_d\end{split}\]

In more detail, we first sample \(K\) topics
\(\{\vec{\phi}_k\}_{k=1}^K\) from the symmetric Dirichlet prior with
parameter \(\delta\), so each topic is a \(K\)-dimensional vector, whose
components sum up to 1. These topics are shared among different documents. Then
for each document, suppose it is the \(d\)th document, we sample a topic
proportion vector \(\vec{\theta}_d\) from the Dirichlet prior with
parameter \(\vec{\alpha}\), indicating the topic proportion of this
document, such as 70% topic 1 and 30% topic 2. Next we start to sample the words
in the document. Sampling each word \(w_{dn}\) is a two-step process: first,
sample the topic assignment \(z_{dn}\) from the categorical distribution
with parameter \(\vec{\theta}_d\); secondly, sample the word \(w_{dn}\)
from the categorical distribution with parameter \(\vec{\phi}_{z_{dn}}\).
The range of \(d\) is \(1\) to \(D\), and the range of \(n\) is
\(1\) to \(N_d\) in the \(d\)th document. The model is shown as a
directed graphical model in the following figure.

[image: ../_images/lda.png]

Note

Topic \(\{\phi_k\}\), topic proportion \(\{\theta_d\}\), and topic
assignment \(\{z_{dn}\}\) have very different meaning. Topic means
some distribution over the words in vocabulary. For example,a topic
consisting of 10% “game”, 5% “hockey”, 3% “team”, …, possibly means a
topic about sports. They are shared among different documents. A topic
proportion belongs to a document, roughly indicating the probability
distribution of topics in the document. A topic assignment belongs to a
word in a document, indicating when sampling the word, which topic is
sampled first, so the word is sampled from this assigned topic. Both topic,
topic proportion, and topic assignment are latent variables which we have
not observed. The only observed variable in the generative model is the
words \(\{w_{dn}\}\), and what Bayesian inference needs to do is to
infer the posterior distribution of topic \(\{\phi_k\}\), topic
proportion \(\{\theta_d\}\), and topic assignment \(\{z_{dn}\}\).



The key property of LDA is conjugacy between the Dirichlet prior and likelihood.
We can write the joint probability distribution as follows:


\[p(w_{1:D,1:N}, z_{1:D,1:N}, \vec{\theta}_{1:D}, \vec{\phi}_{1:K};
\vec{\alpha}, \delta) =
\prod_{k=1}^K p(\vec{\phi}_k; \delta) \prod_{d=1}^D \{ p(\vec{\theta}_d;
\vec{\alpha}) \prod_{n=1}^{N_d} [p(z_{dn}|\vec{\theta}_d) p(w_{dn}|z_{dn},
\vec{\phi}_{1:K})] \}\]

Here \(p(y|x)\) means conditional distribution in which \(x\) is a
random variable, but \(p(y;x)\) means distribution parameterized by
\(x\), while \(x\) is a fixed value.

We denote \(\mathbf{\Theta}=(\vec{\theta}_1, \vec{\theta}_2, ...,
\vec{\theta}_D)^T\), \(\mathbf{\Phi}=(\vec{\phi}_1, \vec{\phi}_2, ...,
\vec{\phi}_K)^T\). Then \(\mathbf{\Theta}\) is a \(D\times K\) matrix
with each row representing topic proportion of one document, while
\(\mathbf{\Phi}\) is a \(K\times V\) matrix with each row representing a
topic. We also denote \(\mathbf{z}=z_{1:D,1:N}\) and
\(\mathbf{w}=w_{1:D,1:N}\) for convenience.

Our goal is to do posterior inference from the joint distribution. Since there
are three sets of latent variables in the joint distribution:
\(\mathbf{\Theta}\), \(\mathbf{\Phi}\) and \(\mathbf{z}\), inferring
their posterior distribution at the same time will be difficult, but we can
leverage the conjugacy between Dirichlet prior such as \(p(\vec{\theta}_d;
\vec{\alpha})\) and the multinomial likelihood such as \(\prod_{n=1}^{N_d}
p(z_{dn}|\vec{\theta}_d)\) (here the multinomial refers to a product of a bunch
of categorical distribution, i.e. ignore the normalizing factor of multinomial
distribution).

Two ways to leverage this conjugacy are:

(1) Iterate by fixing two sets of latent variables, and do conditional computing
for the remaining set. The examples are Gibbs sampling and mean-field
variational inference. For Gibbs sampling, each iterating step is fixing the
value of samples of two sets, and sample from the conditional distribution of
the remaining set. For mean-field variational inference, we often optimize by
coordinate ascent: each iterating step is fixing the variational distribution of
two sets, and updating the variational distribution of the remaining set based
on the parameters of the variational distribution of the two sets. Thanks to the
conjugacy, both conditional distribution in Gibbs sampling and conditional
update of the variational distribution in variational inference are tractable.

(2) Alternatively, we can integrate out some sets of latent variable before
doing further inference. For example, we can integrate out
\(\mathbf{\Theta}\) and \(\mathbf{\Phi}\), remaining the joint
distribution \(p(\mathbf{w}, \mathbf{z}; \vec{\alpha}, \delta)\) and do
Gibbs sampling or variational Bayes on \(\mathbf{z}\). After having a
estimation to \(\mathbf{z}\), we can extract some estimation about
\(\mathbf{\Phi}\) as the topic information too. These methods are called
respectively collapsed Gibbs sampling, and collapsed variational Bayesian
inference.

However, conjugacy requires the model being designed carefully. Here, we use a
more direct and general method to do Bayesian inference: Monte-Carlo EM, with
HMC [LNTMN+11] as the Monte-Carlo sampler.




Logistic Normal Topic Model in ZhuSuan

Integrating out \(\mathbf{\Theta}\) and \(\mathbf{\Phi}\) requires
conjugacy, or the integration is intractable. But integrating \(\mathbf{z}\)
is always tractable since \(\mathbf{z}\) is discrete. Now we have:


\[p(w_{dn}=v|\vec{\theta}_d, \Phi) = \sum_{k=1}^K (\vec{\theta}_d)_k \Phi_{kv}\]

More compactly,


\[p(w_{dn}|\vec{\theta}_d, \Phi) = \mathrm{Catg}(\Phi^T\vec{\theta}_d)\]

which means when sampling the words in the \(d\)th document, the word
distribution is the weighted average of all topics, and the weights are the
topic proportion of the document.

In LDA we implicitly use the bag-of-words model, and here we make it explicit.
Let \(\vec{x}_d\) be a \(V\)-dimensional vector,
\(\vec{x}_d=\sum_{n=1}^{N_d}\mathrm{one\_hot}(w_{dn})\). That is, for \(v\) from
\(1\) to \(V\), \((\vec{x}_d)_v\) represents the occurence count of
the \(v\)th word in the document. Denote \(\mathbf{X}=(\vec{x}_1,
\vec{x}_2, ..., \vec{x}_D)^T\), which is a \(D\times V\) matrix. You can
verify the following concise formula:


\[\log p(\mathbf{X}|\mathbf{\Theta}, \mathbf{\Phi})=-\mathrm{CE}(\mathbf{X},
\mathbf{\Theta}\mathbf{\Phi})\]

Here, CE means cross entropy, which is defined for matrices as
\(\mathrm{CE}(\mathbf{A},\mathbf{B})=-\sum_{i,j}A_{ij}\log B_{ij}\). Note
that \(p(\mathbf{X}|\mathbf{\Theta}, \mathbf{\Phi})\) is not a proper
distribution; It is a convenient term representing the likelihood of parameters.
What we actually means is \(\log p(w_{1:D,1:N}|\mathbf{\Theta},
\mathbf{\Phi})=-\mathrm{CE}(\mathbf{X}, \mathbf{\Theta}\mathbf{\Phi})\).

A intuitive demonstration of \(\mathbf{\Theta}\), \(\mathbf{\Phi}\) and
\(\mathbf{\Theta\Phi}\) is shown in the following picture.
\(\mathbf{\Theta}\) is the document-topic matrix, \(\mathbf{\Phi}\) is
the topic-word matrix, and then \(\mathbf{\Theta\Phi}\) is the document-word
matrix, which contains the word sampling distribution of each document.

[image: ../_images/matrixmul.png]
As minimizing the cross entropy encourages \(\mathbf{X}\) and
\(\mathbf{\Theta}\mathbf{\Phi}\) to be similar, this may remind you of
low-rank matrix factorization. It is natural since topic models can be
interpreted as learning “document-topics” parameters and “topic-words”
parameters. In fact one of the earliest topic models are solved using SVD, a
standard algorithm for low-rank matrix factorization. However, as a
probabilistic model, our model is different from matrix factorization by SVD
(e.g. the loss function is different). Probabilistic model is more
interpretable and can be solved by more algorithms, and Bayesian model can
bring the benefits of incorporating prior knowledge and inferring with
uncertainty.

After integrating \(\mathbf{z}\), only \(\mathbf{\Theta}\) and
\(\mathbf{\Phi}\) are left, and there is no conjugacy any more. Even if we
apply the “conditional computing” trick like Gibbs sampling, no closed-form
updating process can be obtained. However, we can adopt the gradient-based
method such as HMC and gradient ascent. Note that each row of
\(\mathbf{\Theta}\) and \(\mathbf{\Phi}\) lies on a probability simplex,
which is bounded and embedded. It is not common for HMC or gradient ascent to
deal with constrained sampling or constrained optimzation. Since we do not nead
conjugacy now, we replace the Dirichlet prior with logistic normal prior.
Now the latent variables live in the whole space \(\mathbb{R}^n\).

One may ask why to integrate the parameters \(\mathbf{z}\) and lose the
conjugacy. That is because our inference technique can also apply to other
models which do not have conjugacy from the beginning, such as Neural
Variational Document Model ([LNTMMYB16]).

The logistic normal topic model can be described as follows, where
\(\vec{\beta}_k\) is \(V\)-dimensional and \(\vec{\eta}_d\) is
\(K\)-dimensional:


\[\begin{split}\vec{\beta}_k &\sim \mathcal{N}(\vec{0}, \delta^2 \mathbf{I}), k=1,2,...,K \\
\vec{\phi}_k &= \mathrm{softmax}(\vec{\beta}_k), k=1,2,...,K \\
\vec{\eta}_d &\sim \mathcal{N}(\vec{\mu}, \mathrm{diag}(\vec{\sigma}^2)), d=1,2,...,D \\
\vec{\theta}_d &= \mathrm{softmax}(\vec{\eta}_d), d=1,2,...,D \\
z_{dn} &\sim \mathrm{Catg}(\vec{\theta}_d), d=1,2,...,D, n=1,2,...,N_d \\
w_{dn} &\sim \mathrm{Catg}(\vec{\phi}_{z_{dn}}), d=1,2,...,D, n=1,2,...,N_d\end{split}\]

The graphical model representation is shown in the following figure.

[image: ../_images/lntm.png]
Since \(\vec{\theta}_d\) is a deterministic function of
\(\vec{\eta}_d\), we can omit one of them in the probabilistic graphical
model representation. Here \(\vec{\theta}_d\) is omitted because
\(\vec{\eta}_d\) has a simpler prior. Similarly, we omit
\(\vec{\phi}_k\) and keep \(\vec{\beta}_k\).


Note

Called Logistic Normal Topic Model, maybe this reminds you of correlated
topic models. However, in our model the normal prior of \(\vec{\eta}_d\)
has a diagonal covariance matrix \(\mathrm{diag}(\vec{\sigma}^2)\), so
it cannot model the correlations between different topics in the corpus.
However, logistic normal distribution can approximate Dirichlet distribution
(see [LNTMSS17]). Hence our model is roughly
the same as LDA, while the inference techniques are different.



We denote \(\mathbf{H}=(\vec{\eta}_1, \vec{\eta}_2, ..., \vec{\eta}_D)^T\),
\(\mathbf{B}=(\vec{\beta}_1, \vec{\beta}_2, ..., \vec{\beta}_K)^T\). Then
\(\mathbf{\Theta}=\mathrm{softmax}(\mathbf{H})\), and
\(\mathbf{\Phi}=\mathrm{softmax}(\mathbf{B})\). Recall our notation that
\(\mathbf{X}=(\vec{x}_1, \vec{x}_2, ..., \vec{x}_D)^T\) where
\(\vec{x}_d=\sum_{n=1}^{N_d}\mathrm{one\_hot}(w_{dn})\). After integrating
\(\{z_{dn}\}\), the last two lines of the generating process:


\[z_{dn} \sim \mathrm{Catg}(\vec{\theta}_d), w_{dn} \sim
\mathrm{Catg}(\vec{\phi}_{z_{dn}})\]

become \(\log p(\mathbf{X}|\mathbf{\Theta},
\mathbf{\Phi})=-\mathrm{CE}(\mathbf{X}, \mathbf{\Theta}\mathbf{\Phi})\). So we
can write the joint probability distribution as follows:


\[p(\mathbf{X}, \mathbf{H}, \mathbf{B}; \vec{\mu}, \vec{\sigma}, \delta) =
p(\mathbf{B}; \delta) p(\mathbf{H}; \vec{\mu}, \vec{\sigma})
p(\mathbf{X}|\mathbf{H}, \mathbf{B})\]

where both \(p(\mathbf{B}; \delta)\) and \(p(\mathbf{H}; \vec{\mu},
\vec{\sigma})\) are Gaussian distribution and
\(p(\mathbf{X}|\mathbf{H}, \mathbf{B})=-\mathrm{CE}(\mathbf{X},
\mathrm{softmax}(\mathbf{H})\mathrm{softmax}(\mathbf{B}))\).

In ZhuSuan, the code for constructing such a model is:

@zs.meta_bayesian_net(scope='lntm')
def lntm(n_chains, n_docs, n_topics, n_vocab, eta_mean, eta_logstd):
    bn = zs.BayesianNet()
    eta_mean = tf.tile(tf.expand_dims(eta_mean, 0), [n_docs, 1])
    eta = bn.normal('eta', eta_mean, logstd=eta_logstd, n_samples=n_chains,
                    group_ndims=1)
    theta = tf.nn.softmax(eta)
    beta = bn.normal('beta', tf.zeros([n_topics, n_vocab]),
                    logstd=log_delta, group_ndims=1)
    phi = tf.nn.softmax(beta)
    # doc_word: Document-word matrix
    doc_word = tf.matmul(tf.reshape(theta, [-1, n_topics]), phi)
    doc_word = tf.reshape(doc_word, [n_chains, n_docs, n_vocab])
    bn.unnormalized_multinomial('x', tf.log(doc_word), normalize_logits=False,
                                dtype=tf.float32)
    return bn





where eta_mean is \(\vec{\mu}\), eta_logstd is \(\log\vec{\sigma}\),
eta is \(\mathbf{H}\) (\(\mathrm{H}\) is the uppercase letter of
\(\mathrm{\eta}\)), theta is
\(\mathbf{\Theta}=\mathrm{softmax}(\mathbf{H})\), beta is \(\mathbf{B}\)
(\(\mathrm{B}\) is the uppercase letter of \(\mathrm{\beta}\)), phi
is \(\mathbf{\Phi}=\mathrm{softmax}(\mathbf{B})\), doc_word is
\(\mathbf{\Theta}\mathbf{\Phi}\), x is \(\mathbf{X}\).

Q: What does UnnormalizedMultinomial distribution means?

A: UnnormalizedMultinomial distribution is not a proper distribution. It
means the likelihood of “bags of categorical”. To understand this, let’s
talk about multinomial distribution first. Suppose there are \(k\) events
\(\{1,2,...,k\}\) with the probabilities \(p_1,p_2,...,p_k\), and we do
\(n\) trials, and the count of result being \(i\) is \(x_i\). Denote
\(\vec{x}=(x_1,x_2,...,x_k)^T\) and \(\vec{p}=(p_1,p_2,...,p_k)^T\).
Then \(\vec{x}\) follows multinomial distribution: \(p(\vec{x};
\vec{p})=\frac{n!}{x_1!...x_k!}p_1^{x_1}...p_k^{x_k}\), so \(\log p(\vec{x};
\vec{p})=\log\frac{n!}{x_1!...x_k!} - \mathrm{CE}(\vec{x},\vec{p})\). However,
when we want to optimize the parameter \(\vec{p}\), we do not care the first
term. On the other hand, if we have a sequence of results \(\vec{w}\), and
the result counts are summarized in \(\vec{x}\). Then \(\log p(\vec{w};
\vec{p})=-\mathrm{CE}(\vec{x},\vec{p})\). The normalizing constant also
disappears. Since sometimes we only have access to \(\vec{x}\) instead of
the actual sequence of results, when we want to optimize w.r.t. the parameters,
we can write \(\vec{x}\sim \mathrm{UnnormalizedMultinomial}(\vec{p})\),
although it is not a proper distribution and we cannot sample from it.
UnnormalizedMultinomial just means \(p(\vec{w};
\vec{p})=-\mathrm{CE}(\vec{x},\vec{p})\). In the example of topic models, the
situation is also like this.

Q: The shape of eta in the model is n_chains*n_docs*n_topics. Why we
need the first dimension to store its different samples?

A: After introducing the inference method, we should know eta is a latent
variable which we need to integrate w.r.t. its distribution. In many cases the
integration is intractable, so we replace the integration with Monte-Carlo
methods, which requires the samples of the latent variable. Therefore we need to
construct our model, calculate the joint likelihood and do inference all with
the extra dimension storing different samples. In this example, the extra
dimension is called “chains” because we utilize the extra dimension to initialize
multiple chains and perform HMC evolution on each chain, in order to do parallel
sampling and to get independent samples from the posterior.




Inference

Let’s analyze the parameters and latent variables in the joint distribution.
\(\delta\) controls the sparsity of the words included in each topic, and
larger \(\delta\) leads to more sparsity. We leave it as a given
tunable hyperparameter without the need to optimize. The parameters we need
to optimize is \(\vec{\mu}\) and \(\vec{\sigma}^2\), whose element
represents the mean and variance of topic proportion in documents; and
\(\mathbf{B}\), which represents the topics. For \(\vec{\mu}\) and
\(\vec{\sigma}\), we want to find their maximum likelihood (MLE)
solution. Unlike \(\vec{\mu}\) and \(\vec{\sigma}\), \(\mathbf{B}\)
has a prior, so we could treat it as a random variable and infer its posterior
distribution. But here we just find its maximum a posterior (MAP)
estimation, so we treat it as a parameter and optimize it by gradient ascent
instead of inference via HMC. \(\mathbf{H}\) is the latent variable, so we
want to integrate it out before doing optimization.

Therefore, after integrating \(\mathbf{H}\), our optimization problem is:


\[\max_{\mathbf{B}, \vec{\mu}, \vec{\sigma}}\ \log p(\mathbf{X}, \mathbf{B};
\vec{\mu}, \vec{\sigma}, \delta)\]

where


\[\begin{split}\log p(\mathbf{X}, \mathbf{B}; \vec{\mu}, \vec{\sigma}, \delta) &= \log
p(\mathbf{X}| \mathbf{B}; \vec{\mu}, \vec{\sigma})
+ \log p(\mathbf{B}; \delta) \\
&= \log \int_{\mathbf{H}} p(\mathbf{X}, \mathbf{H}| \mathbf{B}; \vec{\mu},
\vec{\sigma}) d\mathbf{H} + \log p(\mathbf{B}; \delta)\end{split}\]

The term \(\log p(\mathbf{X}| \mathbf{B}; \vec{\mu}, \vec{\sigma}) = \log
\int_{\mathbf{H}} p(\mathbf{X}, \mathbf{H}| \mathbf{B}; \vec{\mu}, \vec{\sigma})
d\mathbf{H}\) is evidence of the observed data \(\mathbf{X}\), given the
model with parameters \(\mathbf{B}\), \(\vec{\mu}\),
\(\vec{\sigma}\). Computing the integration is intractable, let alone
maximize it w.r.t. the parameters. Fortunately, this is the standard form of
which we can write an lower bound called evidence lower bound (ELBO):


\[\begin{split}\log p(\mathbf{X}| \mathbf{B}; \vec{\mu}, \vec{\sigma}) &\geq \log
p(\mathbf{X}| \mathbf{B}; \vec{\mu}, \vec{\sigma}) -
\mathrm{KL}(q(\mathbf{H})||p(\mathbf{H}|\mathbf{X},\mathbf{B}; \vec{\mu},
\vec{\sigma})) \\
&= \mathbb{E}_{q(\mathbf{H})}[\log p(\mathbf{X}, \mathbf{H}| \mathbf{B};
\vec{\mu}, \vec{\sigma}) - \log q(\mathbf{H})] \\
&= \mathcal{L}(q, \mathbf{B}, \vec{\mu}, \vec{\sigma})\end{split}\]

Therefore,


\[\log p(\mathbf{X}, \mathbf{B}; \vec{\mu}, \vec{\sigma}, \delta) \geq
\mathcal{L}(q, \mathbf{B}, \vec{\mu}, \vec{\sigma}) + \log p(\mathbf{B};
\delta)\]

When \(q(\mathbf{H})=p(\mathbf{H}|\mathbf{X},\mathbf{B}; \vec{\mu},
\vec{\sigma})\), the lower bound is tight. To do optimization, we can apply
coordinate ascent to the lower bound, i.e. expectation-maximization (EM)
algorithm: We iterate between E-step and M-step.

In E-step, let


\[q(\mathbf{H})\leftarrow\max_q \mathcal{L}(q, \mathbf{B}, \vec{\mu},
\vec{\sigma})=p(\mathbf{H}|\mathbf{X},\mathbf{B}; \vec{\mu}, \vec{\sigma})\]

In M-step, let


\[\begin{split}\mathbf{B}, \vec{\mu},\vec{\sigma}&\leftarrow \max_{\mathbf{B},
\vec{\mu},\vec{\sigma}} [\mathcal{L}(q, \mathbf{B}, \vec{\mu}, \vec{\sigma})
+ \log p(\mathbf{B}; \delta)] \\ &=\max_{\mathbf{B}, \vec{\mu},\vec{\sigma}}
\{\mathbb{E}_{q(\mathbf{H})}[\log p(\mathbf{X}, \mathbf{H}| \mathbf{B};
\vec{\mu}, \vec{\sigma})] + \log p(\mathbf{B}; \delta)\}\end{split}\]

However, both the posterior \(p(\mathbf{H}|\mathbf{X},\mathbf{B};
\vec{\mu}, \vec{\sigma})\) in the E step and the integration
\(\mathbb{E}_{q(\mathbf{H})}[\log p(\mathbf{X}, \mathbf{H}| \mathbf{B};
\vec{\mu}, \vec{\sigma})]\) in the M step are intractable. It seems that we have
turned an intractable problem into another intractable problem.

We have solutions indeed. Since the difficulty lies in calculating and using the
posterior, we can use the whole set of tools in Bayesian inference. Here we use
sampling methods, to draw a series of samples \(\mathbf{H}^{(1)},
\mathbf{H}^{(2)}, ..., \mathbf{H}^{(S)}\) from
\(p(\mathbf{H}|\mathbf{X},\mathbf{B}; \vec{\mu}, \vec{\sigma})\). Then we
let \(q(\mathbf{H})\) be the empirical distribution of these samples, as an
approximation to the true posterior. Then the M-step becomes:


\[\begin{split}\mathbf{B}, \vec{\mu},\vec{\sigma}&\leftarrow \max_{\mathbf{B},
\vec{\mu},\vec{\sigma}} [\mathbb{E}_{q(\mathbf{H})}[\log p(\mathbf{X},
\mathbf{H}| \mathbf{B}; \vec{\mu}, \vec{\sigma})] + \log p(\mathbf{B};
\delta)] \\ &= \max_{\mathbf{B}, \vec{\mu},\vec{\sigma}}
[\frac{1}{S}\sum_{s=1}^S \log p(\mathbf{X}, \mathbf{H}^{(s)}| \mathbf{B};
\vec{\mu}, \vec{\sigma}) + \log p(\mathbf{B}; \delta)]\end{split}\]

Now the objective function is tractable to compute. This variant of EM algorithm
is called Monte-Carlo EM.

We analyze the E-step and M-step in more detail. What sampling method should we
choose in E-step? One of the workhorse sampling methods is Hamiltonian Monte
Carlo (HMC) [LNTMN+11]. Unlike Gibbs sampling which needs a
sampler of the conditional distribution, HMC is a black-box method which only
requires access to the gradient of log joint distribution at any position, which
is almost always tractable as long as the model is differentiable and the latent
variable is unconstrained.

To use HMC in ZhuSuan, first define the HMC object with its parameters:

hmc = zs.HMC(step_size=1e-3, n_leapfrogs=20, adapt_step_size=True,
             target_acceptance_rate=0.6)





Then write the log joint probability \(\log p(\mathbf{X},\mathbf{H}|
\mathbf{B}; \vec{\mu}, \vec{\sigma})= \log p(\mathbf{X}| \mathbf{B},\mathbf{H})
+ p(\mathbf{H};\vec{\mu}, \vec{\sigma})\):

def e_obj(bn):
    return bn.cond_log_prob('eta') + bn.cond_log_prob('x')





Given the following defined tensor,

x = tf.placeholder(tf.float32, shape=[batch_size, n_vocab], name='x')
eta = tf.Variable(tf.zeros([n_chains, batch_size, n_topics]), name='eta')
beta = tf.Variable(tf.zeros([n_topics, n_vocab]), name='beta')





we can define the sampling operator of HMC:

model = lntm(n_chains, batch_size, n_topics, n_vocab, eta_mean, eta_logstd)
model.log_joint = e_obj
sample_op, hmc_info = hmc.sample(model,
                                 observed={'x': x, 'beta': beta},
                                 latent={'eta': eta})





When running the session, we can run sample_op to update the value of
eta. Note that the first parameter of hmc.sample is a
MetaBayesianNet instance corresponding to
the generative model. It could also be a function accepting a Python dictionary
containing values of both the observed and latent variables as its argument,
and returning the log joint probability. hmc_info is a struct containing
information about the sampling iteration executed by sample_op, such as the
acceptance rate.

In the M-step, since \(\log p(\mathbf{X},\mathbf{H}| \mathbf{B}; \vec{\mu},
\vec{\sigma})= \log p(\mathbf{X}| \mathbf{B},\mathbf{H}) +
p(\mathbf{H};\vec{\mu}, \vec{\sigma})\), we can write the updating formula in
more detail:


\[\begin{split}\vec{\mu}, \vec{\sigma}&\leftarrow  \max_{ \vec{\mu},\vec{\sigma}}
[\frac{1}{S}\sum_{s=1}^S \log p( \mathbf{H}^{(s)};\vec{\mu}, \vec{\sigma})]
\\ \mathbf{B}&\leftarrow \max_{\mathbf{B}} [\frac{1}{S}\sum_{s=1}^S \log
p(\mathbf{X}|\mathbf{H}^{(s)}, \mathbf{B}) + \log p(\mathbf{B}; \delta)]\end{split}\]

Then \(\vec{\mu}\) and \(\vec{\sigma}\) have closed solution by taking
the samples of \(\mathbf{H}\) as observed data and do maximum likelihood
estimation of parameters in Gaussian distribution.
\(\mathbf{B}\), however, does not have a closed-form solution, so we do
optimization using gradient ascent.

The gradient ascent operator of \(\mathbf{B}\) can be defined as follows:

bn = model.observe(eta=eta, x=x, beta=beta)
log_p_beta, log_px = bn.cond_log_prob(['beta', 'x'])
log_p_beta = tf.reduce_sum(log_p_beta)
log_px = tf.reduce_sum(tf.reduce_mean(log_px, axis=0))
log_joint_beta = log_p_beta + log_px
learning_rate_ph = tf.placeholder(tf.float32, shape=[], name='lr')
optimizer = tf.train.AdamOptimizer(learning_rate_ph)
infer = optimizer.minimize(-log_joint_beta, var_list=[beta])





Since when optimizing \(\mathbf{B}\), the samples of \(\mathbf{H}\) is
fixed, var_list=[beta] in the last line is necessary.

In the E-step, \(p(\mathbf{H}|\mathbf{X},\mathbf{B}; \vec{\mu},
\vec{\sigma})\) could factorise as \(\prod_{d=1}^D
p(\vec{\eta}_d|\vec{x}_d,\mathbf{B}; \vec{\mu}, \vec{\sigma})\), so we can do
sampling for a mini-batch of data given some value of global parameters
\(\mathbf{B}\), \(\vec{\mu}\), and \(\vec{\sigma}\). Since the
update of \(\mathbf{B}\) requires calculating gradients and has a relatively
large time cost, we use stochastic gradient ascent to optimize it. That is,
after a mini-batch of latent variables are sampled, we do a step of gradient
ascent as M-step for \(\mathbf{B}\) using the mini-batch chosen in the
E-step.

Now we have both the sampling operator for the latent variable eta and
optimizing operator for the parameter beta, while the optimization w.r.t.
eta_mean and eta_logstd is straightforward. Now we can run the EM
algorithm.

First, the definition is as follows:

iters = X_train.shape[0] // batch_size
Eta = np.zeros((n_chains, X_train.shape[0], n_topics), dtype=np.float32)
Eta_mean = np.zeros(n_topics, dtype=np.float32)
Eta_logstd = np.zeros(n_topics, dtype=np.float32)

eta_mean = tf.placeholder(tf.float32, shape=[n_topics], name='eta_mean')
eta_logstd = tf.placeholder(tf.float32, shape=[n_topics],
                            name='eta_logstd')
eta_ph = tf.placeholder(tf.float32, shape=[n_chains, batch_size, n_topics],
                        name='eta_ph')
init_eta_ph = tf.assign(eta, eta_ph)





The key code in an epoch is:

time_epoch = -time.time()
lls = []
accs = []
for t in range(iters):
    x_batch = X_train[t*batch_size: (t+1)*batch_size]
    old_eta = Eta[:, t*batch_size: (t+1)*batch_size, :]

    # E step
    sess.run(init_eta_ph, feed_dict={eta_ph: old_eta})
    for j in range(num_e_steps):
        _, new_eta, acc = sess.run(
            [sample_op, hmc_info.samples['eta'],
             hmc_info.acceptance_rate],
            feed_dict={x: x_batch,
                       eta_mean: Eta_mean,
                       eta_logstd: Eta_logstd})
        accs.append(acc)
        # Store eta for the persistent chain
        if j + 1 == num_e_steps:
            Eta[:, t*batch_size: (t+1)*batch_size, :] = new_eta

    # M step
    _, ll = sess.run(
        [infer, log_px],
        feed_dict={x: x_batch,
                   eta_mean: Eta_mean,
                   eta_logstd: Eta_logstd,
                   learning_rate_ph: learning_rate})
    lls.append(ll)

# Update hyper-parameters
Eta_mean = np.mean(Eta, axis=(0, 1))
Eta_logstd = np.log(np.std(Eta, axis=(0, 1)) + 1e-6)

time_epoch += time.time()
print('Epoch {} ({:.1f}s): Perplexity = {:.2f}, acc = {:.3f}, '
      'eta mean = {:.2f}, logstd = {:.2f}'
      .format(epoch, time_epoch,
              np.exp(-np.sum(lls) / np.sum(X_train)),
              np.mean(accs), np.mean(Eta_mean),
              np.mean(Eta_logstd)))





We run num_e_steps times of E-step before M-step to make samples of HMC
closer to the desired equilibrium distribution. We print the mean
acceptance rate of HMC to diagnose whether HMC is working properly.
If it is too close to 0 or 1, the quality of samples will often be poor.
Moreover, when HMC works properly, we can also tune the acceptance rate to
a value for better performance, and the value is usually between 0.6 and 0.9.
In the example we set adapt_step_size=True and
target_acceptance_rate=0.6 to HMC, so the outputs of actual acceptance rates
should be close to 0.6.

Finally we can output the optimized value of phi = softmax(beta),
eta_mean and eta_logstd to show the learned topics and their proportion
in the documents of the corpus:

p = sess.run(phi)
for k in range(n_topics):
    rank = list(zip(list(p[k, :]), range(n_vocab)))
    rank.sort()
    rank.reverse()
    sys.stdout.write('Topic {}, eta mean = {:.2f} stdev = {:.2f}: '
                        .format(k, Eta_mean[k], np.exp(Eta_logstd[k])))
    for i in range(10):
        sys.stdout.write(vocab[rank[i][1]] + ' ')
    sys.stdout.write('\n')








Evaluation

The log_likelihood used to calculate the perplexity may be confusing.
Typically, the “likelihood” should refer to the evidence of the observed data
given some parameter value, i.e. \(p(\mathbf{X}| \mathbf{B}; \vec{\mu},
\vec{\sigma})\), with the latent variable \(\mathbf{H}\) integrated. However,
it is even more difficult to compute the marginal likelihood than to do
posterior inference. In the code, the likelihood is actually
\(p(\mathbf{X}|\mathbf{H}, \mathbf{B})\), which is not the marginal
likelihood; we should integrate it w.r.t. the prior of \(\mathbf{H}\) to get
marginal likelihood. Hence the perplexity output during the training process
will be smaller than the actual value.

After training the model and outputing the topics, the script will run
Annealed Importance Sampling (AIS) to estimate the marginal likelihood more
accurately. It may take some time, and you could turn on the verbose mode of AIS
to see its progress. Then our script will output the estimated perplexity which
is relatively reliable. We do not introduce AIS here. Readers who are interested
could refer to [LNTMNea01].
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zhusuan.distributions


Base class


	
class Distribution(dtype, param_dtype, is_continuous, is_reparameterized, use_path_derivative=False, group_ndims=0, **kwargs)

	Bases: object

The Distribution class is the base class for various probabilistic
distributions which support batch inputs, generating batches of samples and
evaluate probabilities at batches of given values.

The typical input shape for a Distribution is like
batch_shape + input_shape. where input_shape represents the shape
of non-batch input parameter, batch_shape represents how many
independent inputs are fed into the distribution.

Samples generated are of shape
([n_samples]+ )batch_shape + value_shape. The first additional axis
is omitted only when passed n_samples is None (by default), in which
case one sample is generated. value_shape is the non-batch value
shape of the distribution. For a univariate distribution, its
value_shape is [].

There are cases where a batch of random variables are grouped into a
single event so that their probabilities should be computed together. This
is achieved by setting group_ndims argument, which defaults to 0.
The last group_ndims number of axes in batch_shape are
grouped into a single event. For example,
Normal(..., group_ndims=1) will set the last axis of its
batch_shape to a single event, i.e., a multivariate Normal with
identity covariance matrix.

When evaluating probabilities at given values, the given Tensor should be
broadcastable to shape (... + )batch_shape + value_shape. The returned
Tensor has shape (... + )batch_shape[:-group_ndims].


See also

For more details and examples, please refer to
Basic Concepts in ZhuSuan.



For both, the parameter dtype represents type of samples. For discrete,
can be set by user. For continuous, automatically determined from parameter
types.

The value type of prob and log_prob will be param_dtype which is
deduced from the parameter(s) when initializating. And dtype must be
among int16, int32, int64, float16, float32 and float64.

When two or more parameters are tensors and they have different type,
TypeError will be raised.


	Parameters

	
	dtype – The value type of samples from the distribution.


	param_dtype – The parameter(s) type of the distribution.


	is_continuous – Whether the distribution is continuous.


	is_reparameterized – A bool. Whether the gradients of samples can
and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).


	use_path_derivative – A bool. Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are
grouped into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See above for more detailed explanation.









	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.












Univariate distributions


	
class Normal(mean=0.0, _sentinel=None, std=None, logstd=None, group_ndims=0, is_reparameterized=True, use_path_derivative=False, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of univariate Normal distribution.
See Distribution for details.


Warning

The order of arguments logstd/std has changed to std/logstd
since 0.3.1. Please use named arguments: Normal(mean, std=..., ...)
or Normal(mean, logstd=..., ...).




	Parameters

	
	mean – A float Tensor. The mean of the Normal distribution.
Should be broadcastable to match std or logstd.


	_sentinel – Used to prevent positional parameters. Internal,
do not use.


	std – A float Tensor. The standard deviation of the Normal
distribution. Should be positive and broadcastable to match mean.


	logstd – A float Tensor. The log standard deviation of the Normal
distribution. Should be broadcastable to match mean.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
distribution are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	use_path_derivative – A bool. Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”


	check_numerics – Bool. Whether to check numeric issues.









	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
logstd

	The log standard deviation of the Normal distribution.






	
mean

	The mean of the Normal distribution.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
std

	The standard deviation of the Normal distribution.






	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
class FoldNormal(mean=0.0, _sentinel=None, std=None, logstd=None, group_ndims=0, is_reparameterized=True, use_path_derivative=False, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of univariate FoldNormal distribution.
See Distribution for details.


Warning

The order of arguments logstd/std has changed to std/logstd
since 0.3.1. Please use named arguments:
FoldNormal(mean, std=..., ...) or
FoldNormal(mean, logstd=..., ...).




	Parameters

	
	mean – A float Tensor. The mean of the FoldNormal distribution.
Should be broadcastable to match std or logstd.


	_sentinel – Used to prevent positional parameters. Internal,
do not use.


	std – A float Tensor. The standard deviation of the FoldNormal
distribution. Should be positive and broadcastable to match mean.


	logstd – A float Tensor. The log standard deviation of the
FoldNormal distribution. Should be broadcastable to match mean.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
distribution are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	use_path_derivative – A bool. Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”


	check_numerics – Bool. Whether to check numeric issues.









	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
logstd

	The log standard deviation of the FoldNormal distribution.






	
mean

	The mean of the FoldNormal distribution.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
std

	The standard deviation of the FoldNormal distribution.






	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
class Bernoulli(logits, dtype=tf.int32, group_ndims=0, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of univariate Bernoulli distribution.
See Distribution for details.


	Parameters

	
	logits – A float Tensor. The log-odds of probabilities of being 1.


\[\mathrm{logits} = \log \frac{p}{1 - p}\]




	dtype – The value type of samples from the distribution. Can be
int (tf.int16, tf.int32, tf.int64) or float (tf.float16,
tf.float32, tf.float64). Default is int32.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.









	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
logits

	The log-odds of probabilities of being 1.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
class Categorical(logits, dtype=tf.int32, group_ndims=0, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of univariate Categorical distribution.
See Distribution for details.


	Parameters

	
	logits – A N-D (N >= 1) float32 or float64 Tensor of shape (…,
n_categories). Each slice [i, j,…, k, :] represents the
un-normalized log probabilities for all categories.


\[\mathrm{logits} \propto \log p\]




	dtype – The value type of samples from the distribution. Can be
float32, float64, int32, or int64. Default is int32.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.








A single sample is a (N-1)-D Tensor with tf.int32 values in range
[0, n_categories).


	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
logits

	The un-normalized log probabilities.






	
n_categories

	The number of categories in the distribution.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
Discrete

	alias of zhusuan.distributions.univariate.Categorical






	
class Uniform(minval=0.0, maxval=1.0, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of univariate Uniform distribution.
See Distribution for details.


	Parameters

	
	minval – A float Tensor. The lower bound on the range of the
uniform distribution. Should be broadcastable to match maxval.


	maxval – A float Tensor. The upper bound on the range of the
uniform distribution. Should be element-wise bigger than minval.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
distribution are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	check_numerics – Bool. Whether to check numeric issues.









	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
maxval

	The upper bound on the range of the uniform distribution.






	
minval

	The lower bound on the range of the uniform distribution.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
class Gamma(alpha, beta, group_ndims=0, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of univariate Gamma distribution.
See Distribution for details.


	Parameters

	
	alpha – A float Tensor. The shape parameter of the Gamma
distribution. Should be positive and broadcastable to match beta.


	beta – A float Tensor. The inverse scale parameter of the Gamma
distribution. Should be positive and broadcastable to match alpha.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	check_numerics – Bool. Whether to check numeric issues.









	
alpha

	The shape parameter of the Gamma distribution.






	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
beta

	The inverse scale parameter of the Gamma distribution.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
class Beta(alpha, beta, group_ndims=0, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of univariate Beta distribution.
See Distribution for details.


	Parameters

	
	alpha – A float Tensor. One of the two shape parameters of the
Beta distribution. Should be positive and broadcastable to match
beta.


	beta – A float Tensor. One of the two shape parameters of the
Beta distribution. Should be positive and broadcastable to match
alpha.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	check_numerics – Bool. Whether to check numeric issues.









	
alpha

	One of the two shape parameters of the Beta distribution.






	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
beta

	One of the two shape parameters of the Beta distribution.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
class Poisson(rate, dtype=tf.int32, group_ndims=0, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of univariate Poisson distribution.
See Distribution for details.


	Parameters

	
	rate – A float Tensor. The rate parameter of Poisson
distribution. Must be positive.


	dtype – The value type of samples from the distribution. Can be
int (tf.int16, tf.int32, tf.int64) or float (tf.float16,
tf.float32, tf.float64). Default is int32.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	check_numerics – Bool. Whether to check numeric issues.









	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
rate

	The rate parameter of Poisson.






	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
class Binomial(logits, n_experiments, dtype=tf.int32, group_ndims=0, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of univariate Binomial distribution.
See Distribution for details.


	Parameters

	
	logits – A float Tensor. The log-odds of probabilities.


\[\mathrm{logits} = \log \frac{p}{1 - p}\]




	n_experiments – A 0-D int32 Tensor. The number of experiments
for each sample.


	dtype – The value type of samples from the distribution. Can be
int (tf.int16, tf.int32, tf.int64) or float (tf.float16,
tf.float32, tf.float64). Default is int32.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	check_numerics – Bool. Whether to check numeric issues.









	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
logits

	The log-odds of probabilities.






	
n_experiments

	The number of experiments.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
class InverseGamma(alpha, beta, group_ndims=0, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of univariate InverseGamma distribution.
See Distribution for details.


	Parameters

	
	alpha – A float Tensor. The shape parameter of the InverseGamma
distribution. Should be positive and broadcastable to match beta.


	beta – A float Tensor. The scale parameter of the InverseGamma
distribution. Should be positive and broadcastable to match alpha.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	check_numerics – Bool. Whether to check numeric issues.









	
alpha

	The shape parameter of the InverseGamma distribution.






	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
beta

	The scale parameter of the InverseGamma distribution.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
class Laplace(loc, scale, group_ndims=0, is_reparameterized=True, use_path_derivative=False, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of univariate Laplace distribution.
See Distribution for details.


	Parameters

	
	loc – A float Tensor. The location parameter of the Laplace
distribution. Should be broadcastable to match scale.


	scale – A float Tensor. The scale parameter of the Laplace
distribution. Should be positive and broadcastable to match loc.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
distribution are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	use_path_derivative – A bool. Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”


	check_numerics – Bool. Whether to check numeric issues.









	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
loc

	The location parameter of the Laplace distribution.






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
scale

	The scale parameter of the Laplace distribution.






	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
class BinConcrete(temperature, logits, group_ndims=0, is_reparameterized=True, use_path_derivative=False, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of univariate BinConcrete distribution from (Maddison, 2016).
It is the binary case of
Concrete.
See Distribution for details.


See also

Concrete and
ExpConcrete




	Parameters

	
	temperature – A 0-D float Tensor. The temperature of the relaxed
distribution. The temperature should be positive.


	logits – A float Tensor. The log-odds of probabilities of being 1.


\[\mathrm{logits} = \log \frac{p}{1 - p}\]




	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
distribution are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	use_path_derivative – A bool. Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”


	check_numerics – Bool. Whether to check numeric issues.









	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
logits

	The log-odds of probabilities.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
temperature

	The temperature of BinConcrete.






	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
BinGumbelSoftmax

	alias of zhusuan.distributions.univariate.BinConcrete








Multivariate distributions


	
class MultivariateNormalCholesky(mean, cov_tril, group_ndims=0, is_reparameterized=True, use_path_derivative=False, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of multivariate normal distribution, where covariance is
parameterized with the lower triangular matrix \(L\) in Cholesky
decomposition \(LL^T = \Sigma\).

See Distribution for details.


	Parameters

	
	mean – An N-D float Tensor of shape […, n_dim]. Each slice
[i, j, …, k, :] represents the mean of a single multivariate normal
distribution.


	cov_tril – An (N+1)-D float Tensor of shape […, n_dim, n_dim].
Each slice [i, …, k, :, :] represents the lower triangular matrix in
the Cholesky decomposition of the covariance of a single distribution.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
distribution are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	use_path_derivative – A bool. Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”


	check_numerics – Bool. Whether to check numeric issues.









	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
cov_tril

	The lower triangular matrix in the cholosky decomposition of the
covariance.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
mean

	The mean of the normal distribution.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
class Multinomial(logits, n_experiments, normalize_logits=True, dtype=tf.int32, group_ndims=0, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of Multinomial distribution.
See Distribution for details.


	Parameters

	
	logits – A N-D (N >= 1) float Tensor of shape […, n_categories].
Each slice [i, j, …, k, :] represents the log probabilities for
all categories. By default (when normalize_logits=True), the
probabilities could be un-normalized.


\[\mathrm{logits} \propto \log p\]




	n_experiments – A 0-D int32 Tensor or None. When it is a 0-D
int32 integer, it represents the number of experiments for each
sample, which should be invariant among samples. In this situation
_sample function is supported. When it is None, _sample function
is not supported, and when calculating probabilities the number of
experiments will be inferred from given, so it could vary among
samples.


	normalize_logits – A bool indicating whether logits should be
normalized when computing probability. If you believe logits is
already normalized, set it to False to speed up. Default is True.


	dtype – The value type of samples from the distribution. Can be
int (tf.int16, tf.int32, tf.int64) or float (tf.float16,
tf.float32, tf.float64). Default is int32.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.








A single sample is a N-D Tensor with the same shape as logits. Each slice
[i, j, …, k, :] is a vector of counts for all categories.


	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
logits

	The un-normalized log probabilities.






	
n_categories

	The number of categories in the distribution.






	
n_experiments

	The number of experiments for each sample.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
class UnnormalizedMultinomial(logits, normalize_logits=True, dtype=tf.int32, group_ndims=0, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of UnnormalizedMultinomial distribution.
UnnormalizedMultinomial distribution calculates probabilities differently
from Multinomial: It considers the bag-of-words given as a
statistics of an ordered result sequence, and calculates the probability
of the (imagined) ordered sequence. Hence it does not multiply the term


\[\binom{n}{k_1, k_2, \dots} =  \frac{n!}{\prod_{i} k_i!}\]

See Distribution for details.


	Parameters

	
	logits – A N-D (N >= 1) float Tensor of shape […, n_categories].
Each slice [i, j, …, k, :] represents the log probabilities for
all categories. By default (when normalize_logits=True), the
probabilities could be un-normalized.


\[\mathrm{logits} \propto \log p\]




	normalize_logits – A bool indicating whether logits should be
normalized when computing probability. If you believe logits is
already normalized, set it to False to speed up. Default is True.


	dtype – The value type of samples from the distribution. Can be
int (tf.int16, tf.int32, tf.int64) or float (tf.float16,
tf.float32, tf.float64). Default is int32.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.








A single sample is a N-D Tensor with the same shape as logits. Each slice
[i, j, …, k, :] is a vector of counts for all categories.


	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
logits

	The un-normalized log probabilities.






	
n_categories

	The number of categories in the distribution.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
BagofCategoricals

	alias of zhusuan.distributions.multivariate.UnnormalizedMultinomial






	
class OnehotCategorical(logits, dtype=tf.int32, group_ndims=0, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of one-hot Categorical distribution.
See Distribution for details.


	Parameters

	
	logits – A N-D (N >= 1) float Tensor of shape (…,
n_categories). Each slice [i, j, …, k, :] represents the
un-normalized log probabilities for all categories.


\[\mathrm{logits} \propto \log p\]




	dtype – The value type of samples from the distribution. Can be
int (tf.int16, tf.int32, tf.int64) or float (tf.float16,
tf.float32, tf.float64). Default is int32.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.








A single sample is a N-D Tensor with the same shape as logits. Each slice
[i, j, …, k, :] is a one-hot vector of the selected category.


	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
logits

	The un-normalized log probabilities.






	
n_categories

	The number of categories in the distribution.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
OnehotDiscrete

	alias of zhusuan.distributions.multivariate.OnehotCategorical






	
class Dirichlet(alpha, group_ndims=0, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of Dirichlet distribution.
See Distribution for details.


	Parameters

	
	alpha – A N-D (N >= 1) float Tensor of shape (…, n_categories).
Each slice [i, j, …, k, :] represents the concentration parameter
of a Dirichlet distribution. Should be positive.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.








A single sample is a N-D Tensor with the same shape as alpha. Each slice
[i, j, …, k, :] of the sample is a vector of probabilities of a
Categorical distribution [x_1, x_2, … ], which lies on the simplex


\[\sum_{i} x_i = 1, 0 < x_i < 1\]


	
alpha

	The concentration parameter of the Dirichlet distribution.






	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
n_categories

	The number of categories in the distribution.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
class ExpConcrete(temperature, logits, group_ndims=0, is_reparameterized=True, use_path_derivative=False, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of ExpConcrete distribution from (Maddison, 2016), transformed
from Concrete by taking logarithm.
See Distribution for details.


See also

BinConcrete and
Concrete




	Parameters

	
	temperature – A 0-D float Tensor. The temperature of the relaxed
distribution. The temperature should be positive.


	logits – A N-D (N >= 1) float Tensor of shape (…,
n_categories). Each slice [i, j, …, k, :] represents the
un-normalized log probabilities for all categories.


\[\mathrm{logits} \propto \log p\]




	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
distribution are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	use_path_derivative – A bool. Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”


	check_numerics – Bool. Whether to check numeric issues.









	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
logits

	The un-normalized log probabilities.






	
n_categories

	The number of categories in the distribution.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
temperature

	The temperature of ExpConcrete.






	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
ExpGumbelSoftmax

	alias of zhusuan.distributions.multivariate.ExpConcrete






	
class Concrete(temperature, logits, group_ndims=0, is_reparameterized=True, use_path_derivative=False, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of Concrete (or Gumbel-Softmax) distribution from
(Maddison, 2016; Jang, 2016), served as the
continuous relaxation of the OnehotCategorical.
See Distribution for details.


See also

BinConcrete and
ExpConcrete




	Parameters

	
	temperature – A 0-D float Tensor. The temperature of the relaxed
distribution. The temperature should be positive.


	logits – A N-D (N >= 1) float Tensor of shape (…,
n_categories). Each slice [i, j, …, k, :] represents the
un-normalized log probabilities for all categories.


\[\mathrm{logits} \propto \log p\]




	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
distribution are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	use_path_derivative – A bool. Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”


	check_numerics – Bool. Whether to check numeric issues.









	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
logits

	The un-normalized log probabilities.






	
n_categories

	The number of categories in the distribution.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
temperature

	The temperature of Concrete.






	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.










	
GumbelSoftmax

	alias of zhusuan.distributions.multivariate.Concrete






	
class MatrixVariateNormalCholesky(mean, u_tril, v_tril, group_ndims=0, is_reparameterized=True, use_path_derivative=False, check_numerics=False, **kwargs)

	Bases: zhusuan.distributions.base.Distribution

The class of matrix variate normal distribution, where covariances
\(U\) and \(V\) are parameterized with the lower triangular
matrix in Cholesky decomposition,


\[L_u \text{s.t.} L_u L_u^T = U,\; L_v \text{s.t.} L_v L_v^T = V\]

See Distribution for details.


	Parameters

	
	mean – An N-D float Tensor of shape […, n_row, n_col].
Each slice [i, j, …, k, :, :] represents the mean of a single
matrix variate normal distribution.


	u_tril – An N-D float Tensor of shape […, n_row, n_row].
Each slice [i, j, …, k, :, :] represents the lower triangular matrix
in the Cholesky decomposition of the among-row covariance of a single
matrix variate normal distribution.


	v_tril – An N-D float Tensor of shape […, n_col, n_col].
Each slice [i, j, …, k, :, :] represents the lower triangular matrix
in the Cholesky decomposition of the among-column covariance of a
single matrix variate normal distribution.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
distribution are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	use_path_derivative – A bool. Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”


	check_numerics – Bool. Whether to check numeric issues.









	
batch_shape

	The shape showing how many independent inputs (which we call batches)
are fed into the distribution. For batch inputs, the shape of a
generated sample is batch_shape + value_shape.
We borrow this concept from tf.contrib.distributions.






	
dtype

	The sample type of the distribution.






	
get_batch_shape()

	Static batch_shape.


	Returns

	A TensorShape instance.










	
get_value_shape()

	Static value_shape.


	Returns

	A TensorShape instance.










	
group_ndims

	The number of dimensions in batch_shape (counted from the end)
that are grouped into a single event, so that their probabilities are
calculated together. See Distribution for more detailed explanation.






	
is_continuous

	Whether the distribution is continuous.






	
is_reparameterized

	Whether the gradients of samples can and are allowed to propagate back
into inputs, using the reparametrization trick from (Kingma, 2013).






	
log_prob(given)

	Compute log probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate log probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
mean

	The mean of the matrix variate normal distribution.






	
param_dtype

	The parameter(s) type of the distribution.






	
path_param(param)

	Automatically transforms a parameter based on use_path_derivative






	
prob(given)

	Compute probability density (mass) function at given value.


	Parameters

	given – A Tensor. The value at which to evaluate probability
density (mass) function. Must be able to broadcast to have a shape
of (... + )batch_shape + value_shape.



	Returns

	A Tensor of shape (... + )batch_shape[:-group_ndims].










	
sample(n_samples=None)

	Return samples from the distribution. When n_samples is None (by
default), one sample of shape batch_shape + value_shape is
generated. For a scalar n_samples, the returned Tensor has a new
sample dimension with size n_samples inserted at axis=0, i.e.,
the shape of samples is [n_samples] + batch_shape + value_shape.


	Parameters

	n_samples – A 0-D int32 Tensor or None. How many independent
samples to draw from the distribution.



	Returns

	A Tensor of samples.










	
u_tril

	The lower triangular matrix in the Cholesky decomposition of the
among-row covariance.






	
use_path_derivative

	Whether when taking the gradients
of the log-probability to propagate them through the parameters
of the distribution (False meaning you do propagate them). This
is based on the paper “Sticking the Landing: Simple,
Lower-Variance Gradient Estimators for Variational Inference”






	
v_tril

	The lower triangular matrix in the Cholesky decomposition of the
among-column covariance.






	
value_shape

	The non-batch value shape of a distribution. For batch inputs, the
shape of a generated sample is batch_shape + value_shape.












Distribution utils


	
log_combination(n, ks)

	Compute the log combination function.


\[\log \binom{n}{k_1, k_2, \dots} = \log n! - \sum_{i}\log k_i!\]


	Parameters

	
	n – A N-D float Tensor. Can broadcast to match tf.shape(ks)[:-1].


	ks – A (N + 1)-D float Tensor. Each slice [i, j, …, k, :] is
a vector of [k_1, k_2, …].






	Returns

	A N-D Tensor of type same as n.










	
explicit_broadcast(x, y, x_name, y_name)

	Explicit broadcast two Tensors to have the same shape.


	Returns

	x, y after broadcast.










	
maybe_explicit_broadcast(x, y, x_name, y_name)

	Explicit broadcast two Tensors to have the same shape if necessary.


	Returns

	x, y after broadcast.










	
is_same_dynamic_shape(x, y)

	Whether x and y has the same dynamic shape.


	Parameters

	
	x – A Tensor.


	y – A Tensor.






	Returns

	A scalar Tensor of bool.















          

      

      

    

  

    
      
          
            
  
zhusuan.framework


BayesianNet


	
class StochasticTensor(bn, name, dist, observation=None, **kwargs)

	Bases: zhusuan.utils.TensorArithmeticMixin

The StochasticTensor class represents the stochastic nodes in a
BayesianNet.

We can use any distribution available in zhusuan.distributions to
construct a stochastic node in a BayesianNet. For example:

bn = zs.BayesianNet()
x = bn.normal("x", 0., std=1.)





will build a stochastic node in bn with the
Normal distribution. The
returned x will be a StochasticTensor. The second line is
equivalent to:

dist = zs.distributions.Normal(0., std=1.)
x = bn.stochastic("x", dist)





StochasticTensor instances are Tensor-like, which means that
they can be passed into any Tensorflow operations. This makes it easy
to build Bayesian networks by mixing stochastic nodes and Tensorflow
primitives.


See also

For more information, please refer to Basic Concepts in ZhuSuan.




	Parameters

	
	bn – A BayesianNet.


	name – A string. The name of the StochasticTensor. Must be
unique in a BayesianNet.


	dist – A Distribution
instance that determines the distribution used in this stochastic node.


	observation – A Tensor, which matches the shape of dist. If
specified, then the StochasticTensor is observed and
the tensor property will return the observation. This
argument will overwrite the observation provided in
zhusuan.framework.meta_bn.MetaBayesianNet.observe().


	n_samples – A 0-D int32 Tensor. Number of samples generated by
this StochasticTensor.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class BayesianNet(observed=None)

	Bases: zhusuan.framework.bn._BayesianNet, zhusuan.framework.utils.Context

The BayesianNet class provides a convenient way to construct
Bayesian networks, i.e., directed graphical models.

To start, we create a BayesianNet instance:

bn = zs.BayesianNet()





A BayesianNet keeps two kinds of nodes


	deterministic nodes: they are just Tensors, usually the outputs of
Tensorflow operations.


	stochastic nodes: they are random variables in graphical models, and can
be constructed like




w = bn.normal("w", 0., std=alpha)





Here w is a StochasticTensor that follows the
Normal distribution. For any
distribution available in zhusuan.distributions, we can find
a method of BayesianNet for creating the corresponding stochastic
node. If you define your own distribution class, then there is a
general method stochastic() for doing this:

dist = CustomizedDistribution()
w = bn.stochastic("w", dist)





To observe any stochastic nodes in the network, pass a dictionary mapping
of (name, Tensor) pairs when constructing BayesianNet.
This will assign observed values to corresponding
StochasticTensor s. For example:

bn = zs.BayesianNet(observed={"w": w_obs})





will set w to be observed.


Note

The observation passed must have the same type and shape as the
StochasticTensor.



A useful case is that we often need to pass different observations more
than once into the Bayesian network, for which we provide
meta_bayesian_net() decorator and another
abstract class MetaBayesianNet.


See also

For more details and examples, please refer to
Basic Concepts in ZhuSuan.




	Parameters

	observed – A dictionary of (string, Tensor) pairs, which maps from
names of stochastic nodes to their observed values.






	
bag_of_categoricals(name, logits, normalize_logits=True, group_ndims=0, dtype=tf.int32, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
UnnormalizedMultinomial distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
UnnormalizedMultinomial
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
bernoulli(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
Bernoulli distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
Bernoulli for more
information about the other arguments.


	Returns

	A StochasticTensor instance.










	
beta(name, alpha, beta, n_samples=None, group_ndims=0, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
Beta distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
Beta for more information
about the other arguments.


	Returns

	A StochasticTensor instance.










	
bin_concrete(name, temperature, logits, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
BinConcrete distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
BinConcrete
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
bin_gumbel_softmax(name, temperature, logits, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
BinConcrete distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
BinConcrete
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
binomial(name, logits, n_experiments, n_samples=None, group_ndims=0, dtype=tf.int32, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
Binomial distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
Binomial for more information
about the other arguments.


	Returns

	A StochasticTensor instance.










	
categorical(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
Categorical distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
Categorical for more
information about the other arguments.


	Returns

	A StochasticTensor instance.










	
concrete(name, temperature, logits, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
Concrete distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
Concrete
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
cond_log_prob(name_or_names)

	The conditional log probabilities of stochastic nodes,
evaluated at their current values (given by
StochasticTensor.tensor).


	Parameters

	name_or_names – A string or a list of strings. Name(s) of the
stochastic nodes.



	Returns

	A Tensor or a list of Tensors.










	
deterministic(name, input_tensor)

	Add a named deterministic node in this BayesianNet.


	Parameters

	
	name – The name of the deterministic node. Must be unique in a
BayesianNet.


	input_tensor – A Tensor. The value of the deterministic node.






	Returns

	A Tensor. The same as input_tensor.










	
dirichlet(name, alpha, n_samples=None, group_ndims=0, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
Dirichlet distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
Dirichlet
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
discrete(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
Categorical distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
Categorical for more
information about the other arguments.


	Returns

	A StochasticTensor instance.










	
exp_concrete(name, temperature, logits, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
ExpConcrete distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
ExpConcrete
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
exp_gumbel_softmax(name, temperature, logits, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
ExpConcrete distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
ExpConcrete
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
fold_normal(name, mean=0.0, _sentinel=None, std=None, logstd=None, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
FoldNormal distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
FoldNormal for more
information about the other arguments.


	Returns

	A StochasticTensor instance.










	
gamma(name, alpha, beta, n_samples=None, group_ndims=0, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
Gamma distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
Gamma for more information
about the other arguments.


	Returns

	A StochasticTensor instance.










	
get(name_or_names)

	Get one or several nodes by name. For a single node, one can also use
dictionary-like bn[name] to get the node.


	Parameters

	name_or_names – A string or a tuple(list) of strings.



	Returns

	A Tensor/StochasticTensor or a list of
Tensor/StochasticTensor s.










	
classmethod get_context()

	




	
classmethod get_contexts()

	




	
gumbel_softmax(name, temperature, logits, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
Concrete distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
Concrete
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
inverse_gamma(name, alpha, beta, n_samples=None, group_ndims=0, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
InverseGamma distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
InverseGamma
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
laplace(name, loc, scale, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
Laplace distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
Laplace
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
local_log_prob(name_or_names)

	
Note

Deprecated in 0.4, will be removed in 0.4.1.








	
log_joint()

	The default log joint probability of this BayesianNet.
It works by summing over all the conditional log probabilities of
stochastic nodes evaluated at their current values (samples or
observations).


	Returns

	A Tensor.










	
matrix_variate_normal_cholesky(name, mean, u_tril, v_tril, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
MatrixVariateNormalCholesky distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
MatrixVariateNormalCholesky
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
multinomial(name, logits, n_experiments, normalize_logits=True, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
Multinomial distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
Multinomial
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
multivariate_normal_cholesky(name, mean, cov_tril, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
MultivariateNormalCholesky distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
MultivariateNormalCholesky
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
nodes

	The dictionary of all named nodes in this BayesianNet,
including all StochasticTensor s and named deterministic nodes.


	Returns

	A dict.










	
normal(name, mean=0.0, _sentinel=None, std=None, logstd=None, group_ndims=0, n_samples=None, is_reparameterized=True, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
Normal distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
Normal for more information
about the other arguments.


	Returns

	A StochasticTensor instance.










	
onehot_categorical(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
OnehotCategorical distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
OnehotCategorical
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
onehot_discrete(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
OnehotCategorical distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
OnehotCategorical
for more information about the other arguments.


	Returns

	A StochasticTensor instance.










	
outputs(name_or_names)

	
Note

Deprecated in 0.4, will be removed in 0.4.1.








	
poisson(name, rate, n_samples=None, group_ndims=0, dtype=tf.int32, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
Poisson distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
Poisson for more information
about the other arguments.


	Returns

	A StochasticTensor instance.










	
query(name_or_names, outputs=False, local_log_prob=False)

	
Note

Deprecated in 0.4, will be removed in 0.4.1.








	
stochastic(name, dist, **kwargs)

	Add a stochastic node in this BayesianNet.


	Parameters

	
	name – The name of the stochastic node. Must be unique in a
BayesianNet.


	dist – The followed distribution.


	kwargs – Optional parameters to specify the sampling behaviors,


	n_samples: A 0-D int32 Tensor. Number of samples generated.











	Returns

	A StochasticTensor.










	
uniform(name, minval=0.0, maxval=1.0, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
Uniform distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
Uniform for more
information about the other arguments.


	Returns

	A StochasticTensor instance.










	
unnormalized_multinomial(name, logits, normalize_logits=True, group_ndims=0, dtype=tf.int32, **kwargs)

	Add a stochastic node in this BayesianNet that follows the
UnnormalizedMultinomial distribution.


	Parameters

	name – The name of the stochastic node. Must be unique in a
BayesianNet.





See
UnnormalizedMultinomial
for more information about the other arguments.


	Returns

	A StochasticTensor instance.
















MetaBayesianNet


	
class MetaBayesianNet(f, args=None, kwargs=None, scope=None, reuse_variables=False)

	Bases: object

A lazy-constructed BayesianNet. Conceptually
it’s better to view MetaBayesianNet rather than
BayesianNet as the model because it
can accept different observations through the observe() method.

The suggested usage is through the meta_bayesian_net() decorator.


See also

For more information, please refer to Basic Concepts in ZhuSuan.




	Parameters

	
	f – A function that constructs and returns a
BayesianNet.


	args – A list. Ordered arguments that will be passed into f.


	kwargs – A dictionary. Named arguments that will be passed into f.


	scope – A string. The scope name passed to tensorflow
variable_scope() [https://www.tensorflow.org/api_docs/python/tf/variable_scope].


	reuse_variables – A bool. Whether to reuse tensorflow
Variables [https://www.tensorflow.org/api_docs/python/tf/Variable]
in repeated calls of observe().









	
log_joint

	The log joint function of this model. Can be overwritten as:

meta_bn = build_model(...)

def log_joint(bn):
    return ...

meta_bn.log_joint = log_joint










	
observe(**kwargs)

	Construct a BayesianNet given
observations.


	Parameters

	kwargs – A dictionary that maps from node names to their observed
values.



	Returns

	A BayesianNet instance.














	
meta_bayesian_net(scope=None, reuse_variables=False)

	Transform a function that builds a
BayesianNet into returning
MetaBayesianNet.

The suggested usage is as a decorator:

@meta_bayesian_net(scope=..., reuse_variables=True)
def build_model(...):
    bn = zs.BayesianNet()
    ...
    return bn





The decorated function will return a MetaBayesianNet instance
instead of a BayesianNet instance.


See also

For more details and examples, please refer to
Basic Concepts in ZhuSuan.




	Parameters

	
	scope – A string. The scope name passed to tensorflow
variable_scope() [https://www.tensorflow.org/api_docs/python/tf/variable_scope].




	reuse_variables – A bool. Whether to reuse tensorflow
Variables [https://www.tensorflow.org/api_docs/python/tf/Variable]
in repeated calls of MetaBayesianNet.observe().








	Returns

	The transformed function.












Utils


	
get_backward_ops(seed_tensors, treat_as_inputs=None)

	Get backward ops from inputs to seed_tensors by topological order.


	Parameters

	
	seed_tensors – A Tensor or list of Tensors, for which to get all
preceding Tensors.


	treat_as_inputs – None or a list of Tensors that is treated as
inputs during the search (where to stop searching the backward graph).






	Returns

	A list of tensorflow Operation s in topological order.










	
reuse_variables(scope)

	A decorator for transparent reuse of tensorflow
Variables [https://www.tensorflow.org/api_docs/python/tf/Variable] in a
function. The decorated function will automatically create variables the
first time they are called and reuse them thereafter.


Note

This decorator is internally implemented by tensorflow’s
make_template() function. See its doc [https://www.tensorflow.org/api_docs/python/tf/make_template]
for requirements on the target function.




	Parameters

	scope – A string. The scope name passed to tensorflow
variable_scope() [https://www.tensorflow.org/api_docs/python/tf/variable_scope].












	
reuse(scope)

	(Deprecated) Alias of reuse_variables().











          

      

      

    

  

    
      
          
            
  
zhusuan.variational


Base class


	
class VariationalObjective(meta_bn, observed, latent=None, variational=None)

	Bases: zhusuan.utils.TensorArithmeticMixin

The base class for variational objectives. You never use this class
directly, but instead instantiate one of its subclasses by calling
elbo(),
importance_weighted_objective(),
or klpq().


	Parameters

	
	meta_bn – A MetaBayesianNet
instance or a log joint probability function.
For the latter, it must accepts a dictionary argument of
(string, Tensor) pairs, which are mappings from all
node names in the model to their observed values. The
function should return a Tensor, representing the log joint likelihood
of the model.


	observed – A dictionary of (string, Tensor) pairs. Mapping from
names of observed stochastic nodes to their values.


	latent – A dictionary of (string, (Tensor, Tensor)) pairs.
Mapping from names of latent stochastic nodes to their samples and
log probabilities. latent and variational are mutually exclusive.


	variational – A BayesianNet instance
that defines the variational family.
variational and latent are mutually exclusive.









	
bn

	The BayesianNet constructed by
observing the meta_bn with samples from the variational
posterior distributions. None if the log joint probability
function is provided instead of meta_bn.


Note

This BayesianNet instance is
useful when computing predictions with the approximate posterior
distribution.








	
meta_bn

	The inferred model.
A MetaBayesianNet instance.
None if instead log joint probability function is given.






	
tensor

	Return the Tensor representing the value of the variational objective.






	
variational

	The variational family.
A BayesianNet instance.
None if instead latent is given.












Exclusive KL divergence


	
elbo(meta_bn, observed, latent=None, axis=None, variational=None)

	The evidence lower bound (ELBO) objective for variational inference. The
returned value is a EvidenceLowerBoundObjective instance.

See EvidenceLowerBoundObjective for examples of usage.


	Parameters

	
	meta_bn – A MetaBayesianNet
instance or a log joint probability function.
For the latter, it must accepts a dictionary argument of
(string, Tensor) pairs, which are mappings from all
node names in the model to their observed values. The
function should return a Tensor, representing the log joint likelihood
of the model.


	observed – A dictionary of (string, Tensor) pairs. Mapping from
names of observed stochastic nodes to their values.


	latent – A dictionary of (string, (Tensor, Tensor)) pairs.
Mapping from names of latent stochastic nodes to their samples and
log probabilities. latent and variational are mutually exclusive.


	axis – The sample dimension(s) to reduce when computing the
outer expectation in the objective. If None, no dimension is
reduced.


	variational – A BayesianNet instance
that defines the variational family.
variational and latent are mutually exclusive.






	Returns

	An EvidenceLowerBoundObjective instance.










	
class EvidenceLowerBoundObjective(meta_bn, observed, latent=None, axis=None, variational=None)

	Bases: zhusuan.variational.base.VariationalObjective

The class that represents the evidence lower bound (ELBO) objective for
variational inference. An instance of the class can be constructed by
calling elbo():

# lower_bound is an EvidenceLowerBoundObjective instance
lower_bound = zs.variational.elbo(
    meta_bn, observed, variational=variational, axis=0)





Here meta_bn is a MetaBayesianNet
instance representing the model to be inferred. variational is
a BayesianNet instance that defines the
variational family. axis is the index of the sample dimension used
to estimate the expectation when computing the objective.

Instances of EvidenceLowerBoundObjective are Tensor-like. They
can be automatically or manually cast into Tensors when fed into Tensorflow
Operators and doing computation with Tensors, or when the tensor
property is accessed. It can also be evaluated like a Tensor:

# evaluate the ELBO
with tf.Session() as sess:
    print sess.run(lower_bound, feed_dict=...)





Maximizing the ELBO wrt. variational parameters is equivalent to
minimizing \(KL(q\|p)\), i.e., the KL-divergence between the
variational posterior (\(q\)) and the true posterior (\(p\)).
However, this cannot be directly done by calling Tensorflow optimizers on
the EvidenceLowerBoundObjective instance because of the outer
expectation in the true ELBO objective, while our ELBO value at hand is a
single or a few sample estimates. The correct way for doing this is by
calling the gradient estimator provided by
EvidenceLowerBoundObjective. Currently there are two of them:


	sgvb(): The Stochastic Gradient Variational Bayes (SGVB) estimator,
also known as “the reparameterization trick”, or “path derivative
estimator”.


	reinforce(): The score function estimator with variance reduction,
also known as “REINFORCE”, “NVIL”, or “likelihood-ratio estimator”.




Thus the typical code for doing variational inference is like:

# choose a gradient estimator to return the surrogate cost
cost = lower_bound.sgvb()
# or
# cost = lower_bound.reinforce()

# optimize the surrogate cost wrt. variational parameters
optimizer = tf.train.AdamOptimizer(learning_rate)
infer_op = optimizer.minimize(cost, var_list=variational_parameters)
with tf.Session() as sess:
    for _ in range(n_iters):
        _, lb = sess.run([infer_op, lower_bound], feed_dict=...)






Note

Don’t directly optimize the EvidenceLowerBoundObjective
instance wrt. variational parameters, i.e., parameters in
\(q\). Instead a proper gradient estimator should be chosen to
produce the correct surrogate cost to minimize, as shown in the above
code snippet.



On the other hand, the ELBO can be used for maximum likelihood learning
of model parameters, as it is a lower bound of the marginal log
likelihood of observed variables. Because the outer expectation in the
ELBO is not related to model parameters, this time it’s fine to directly
optimize the class instance:

# optimize wrt. model parameters
learn_op = optimizer.minimize(-lower_bound, var_list=model_parameters)
# or
# learn_op = optimizer.minimize(cost, var_list=model_parameters)
# both ways are correct





Or we can do inference and learning jointly by optimize over both
variational and model parameters:

# joint inference and learning
infer_and_learn_op = optimizer.minimize(
    cost, var_list=model_and_variational_parameters)






	Parameters

	
	meta_bn – A MetaBayesianNet
instance or a log joint probability function.
For the latter, it must accepts a dictionary argument of
(string, Tensor) pairs, which are mappings from all
node names in the model to their observed values. The
function should return a Tensor, representing the log joint likelihood
of the model.


	observed – A dictionary of (string, Tensor) pairs. Mapping from
names of observed stochastic nodes to their values.


	latent – A dictionary of (string, (Tensor, Tensor)) pairs.
Mapping from names of latent stochastic nodes to their samples and
log probabilities. latent and variational are mutually exclusive.


	axis – The sample dimension(s) to reduce when computing the
outer expectation in the objective. If None, no dimension is
reduced.


	variational – A BayesianNet instance
that defines the variational family.
variational and latent are mutually exclusive.









	
bn

	The BayesianNet constructed by
observing the meta_bn with samples from the variational
posterior distributions. None if the log joint probability
function is provided instead of meta_bn.


Note

This BayesianNet instance is
useful when computing predictions with the approximate posterior
distribution.








	
meta_bn

	The inferred model.
A MetaBayesianNet instance.
None if instead log joint probability function is given.






	
reinforce(variance_reduction=True, baseline=None, decay=0.8)

	Implements the score function gradient estimator for the ELBO, with
optional variance reduction using moving mean estimate or “baseline”.
Also known as “REINFORCE” (Williams, 1992), “NVIL” (Mnih, 2014),
and “likelihood-ratio estimator” (Glynn, 1990).

It works for all types of latent StochasticTensor s.


Note

To use the reinforce() estimator, the is_reparameterized
property of each reparameterizable latent StochasticTensor must
be set False.




	Parameters

	
	variance_reduction – Bool. Whether to use variance reduction.
By default will subtract the learning signal with a moving mean
estimation of it. Users can pass an additional customized baseline
using the baseline argument, in that way the returned will be a
tuple of costs, the former for the gradient estimator, the latter
for adapting the baseline.


	baseline – A Tensor that can broadcast to match the shape
returned by log_joint. A trainable estimation for the scale of
the elbo value, which is typically dependent on observed values,
e.g., a neural network with observed values as inputs. This will be
additional.


	decay – Float. The moving average decay for variance
normalization.






	Returns

	A Tensor. The surrogate cost for Tensorflow optimizers to
minimize.










	
sgvb()

	Implements the stochastic gradient variational bayes (SGVB) gradient
estimator for the ELBO, also known as “reparameterization trick” or
“path derivative estimator”.

It only works for latent StochasticTensor s that can be
reparameterized (Kingma, 2013). For example,
Normal
and Concrete.


Note

To use the sgvb() estimator, the is_reparameterized
property of each latent StochasticTensor must be True (which is
the default setting when they are constructed).




	Returns

	A Tensor. The surrogate cost for Tensorflow optimizers to
minimize.










	
tensor

	Return the Tensor representing the value of the variational objective.






	
variational

	The variational family.
A BayesianNet instance.
None if instead latent is given.












Inclusive KL divergence


	
klpq(meta_bn, observed, latent=None, axis=None, variational=None)

	The inclusive KL objective for variational inference. The
returned value is an InclusiveKLObjective instance.

See InclusiveKLObjective for examples of usage.


	Parameters

	
	meta_bn – A MetaBayesianNet
instance or a log joint probability function.
For the latter, it must accepts a dictionary argument of
(string, Tensor) pairs, which are mappings from all
node names in the model to their observed values. The
function should return a Tensor, representing the log joint likelihood
of the model.


	observed – A dictionary of (string, Tensor) pairs. Mapping from
names of observed stochastic nodes to their values.


	latent – A dictionary of (string, (Tensor, Tensor)) pairs.
Mapping from names of latent stochastic nodes to their samples and
log probabilities. latent and variational are mutually exclusive.


	axis – The sample dimension(s) to reduce when computing the
outer expectation in the objective. If None, no dimension is
reduced.


	variational – A BayesianNet instance
that defines the variational family.
variational and latent are mutually exclusive.






	Returns

	An InclusiveKLObjective instance.










	
class InclusiveKLObjective(meta_bn, observed, latent=None, axis=None, variational=None)

	Bases: zhusuan.variational.base.VariationalObjective

The class that represents the inclusive KL objective (\(KL(p\|q)\),
i.e., the KL-divergence between the true posterior \(p\) and the
variational posterior \(q\)). This is the opposite direction of
the one (\(KL(q\|p)\), or exclusive KL objective) that induces the
ELBO objective.

An instance of the class can be constructed by calling klpq():

# klpq_obj is an InclusiveKLObjective instance
klpq_obj = zs.variational.klpq(
    meta_bn, observed, variational=variational, axis=axis)





Here meta_bn is a MetaBayesianNet
instance representing the model to be inferred. variational is
a BayesianNet instance that defines the
variational family. axis is the index of the sample dimension used
to estimate the expectation when computing the gradients.

Unlike most VariationalObjective
instances, the instance of InclusiveKLObjective cannot be used
like a Tensor or evaluated, because in general this objective is not
computable.

The only thing one could achieve with this objective is purely for
inference, i.e., optimize it wrt. variational parameters (parameters in
\(q\)). The way to perform this is by calling the supported gradient
estimator and getting the surrogate cost to minimize. Currently there is


	importance(): The self-normalized importance sampling gradient
estimator.




So the typical code for doing variational inference is like:

# call the gradient estimator to return the surrogate cost
cost = klpq_obj.importance()

# optimize the surrogate cost wrt. variational parameters
optimizer = tf.train.AdamOptimizer(learning_rate)
infer_op = optimizer.minimize(cost, var_list=variational_parameters)
with tf.Session() as sess:
    for _ in range(n_iters):
        _, lb = sess.run([infer_op, lower_bound], feed_dict=...)






Note

The inclusive KL objective is only a criteria for variational
inference but not model learning (Optimizing it doesn’t do maximum
likelihood learning like the ELBO objective does). That means, there
is no reason to optimize the surrogate cost wrt. model parameters.




	Parameters

	
	meta_bn – A MetaBayesianNet
instance or a log joint probability function.
For the latter, it must accepts a dictionary argument of
(string, Tensor) pairs, which are mappings from all
node names in the model to their observed values. The
function should return a Tensor, representing the log joint likelihood
of the model.


	observed – A dictionary of (string, Tensor) pairs. Mapping from
names of observed stochastic nodes to their values.


	latent – A dictionary of (string, (Tensor, Tensor)) pairs.
Mapping from names of latent stochastic nodes to their samples and
log probabilities. latent and variational are mutually exclusive.


	axis – The sample dimension(s) to reduce when computing the
outer expectation in the objective. If None, no dimension is
reduced.


	variational – A BayesianNet instance
that defines the variational family.
variational and latent are mutually exclusive.









	
bn

	The BayesianNet constructed by
observing the meta_bn with samples from the variational
posterior distributions. None if the log joint probability
function is provided instead of meta_bn.


Note

This BayesianNet instance is
useful when computing predictions with the approximate posterior
distribution.








	
importance()

	Implements the self-normalized importance sampling gradient estimator
for variational inference. This was used in the Reweighted Wake-Sleep
(RWS) algorithm (Bornschein, 2015) to adapt the proposal, or
variational posterior in the importance weighted objective (See
ImportanceWeightedObjective).
Now this estimator is widely used for neural adaptive proposals in
importance sampling.

It works for all types of latent StochasticTensor s.


Note

To use the rws() estimator, the is_reparameterized
property of each reparameterizable latent StochasticTensor must
be set False.




	Returns

	A Tensor. The surrogate cost for Tensorflow optimizers to
minimize.










	
meta_bn

	The inferred model.
A MetaBayesianNet instance.
None if instead log joint probability function is given.






	
rws()

	(Deprecated) Alias of importance().






	
tensor

	Return the Tensor representing the value of the variational objective.






	
variational

	The variational family.
A BayesianNet instance.
None if instead latent is given.












Monte Carlo objectives


	
importance_weighted_objective(meta_bn, observed, latent=None, axis=None, variational=None)

	The importance weighted objective for variational inference (Burda, 2015).
The returned value is an ImportanceWeightedObjective instance.

See ImportanceWeightedObjective for examples of usage.


	Parameters

	
	meta_bn – A MetaBayesianNet
instance or a log joint probability function.
For the latter, it must accepts a dictionary argument of
(string, Tensor) pairs, which are mappings from all
node names in the model to their observed values. The
function should return a Tensor, representing the log joint likelihood
of the model.


	observed – A dictionary of (string, Tensor) pairs. Mapping from
names of observed stochastic nodes to their values.


	latent – A dictionary of (string, (Tensor, Tensor)) pairs.
Mapping from names of latent stochastic nodes to their samples and
log probabilities. latent and variational are mutually exclusive.


	axis – The sample dimension(s) to reduce when computing the
outer expectation in the objective. If None, no dimension is
reduced.


	variational – A BayesianNet instance
that defines the variational family.
variational and latent are mutually exclusive.






	Returns

	An ImportanceWeightedObjective instance.










	
iw_objective(meta_bn, observed, latent=None, axis=None, variational=None)

	The importance weighted objective for variational inference (Burda, 2015).
The returned value is an ImportanceWeightedObjective instance.

See ImportanceWeightedObjective for examples of usage.


	Parameters

	
	meta_bn – A MetaBayesianNet
instance or a log joint probability function.
For the latter, it must accepts a dictionary argument of
(string, Tensor) pairs, which are mappings from all
node names in the model to their observed values. The
function should return a Tensor, representing the log joint likelihood
of the model.


	observed – A dictionary of (string, Tensor) pairs. Mapping from
names of observed stochastic nodes to their values.


	latent – A dictionary of (string, (Tensor, Tensor)) pairs.
Mapping from names of latent stochastic nodes to their samples and
log probabilities. latent and variational are mutually exclusive.


	axis – The sample dimension(s) to reduce when computing the
outer expectation in the objective. If None, no dimension is
reduced.


	variational – A BayesianNet instance
that defines the variational family.
variational and latent are mutually exclusive.






	Returns

	An ImportanceWeightedObjective instance.










	
class ImportanceWeightedObjective(meta_bn, observed, latent=None, axis=None, variational=None)

	Bases: zhusuan.variational.base.VariationalObjective

The class that represents the importance weighted objective for
variational inference (Burda, 2015). An instance of the class can be
constructed by calling importance_weighted_objective():

# lower_bound is an ImportanceWeightedObjective instance
lower_bound = zs.variational.importance_weighted_objective(
    meta_bn, observed, variational=variational, axis=axis)





Here meta_bn is a MetaBayesianNet
instance representing the model to be inferred. variational is
a BayesianNet instance that defines the
variational family. axis is the index of the sample dimension used
to estimate the expectation when computing the objective.

Instances of ImportanceWeightedObjective are Tensor-like. They
can be automatically or manually cast into Tensors when fed into Tensorflow
operations and doing computation with Tensors, or when the tensor
property is accessed. It can also be evaluated like a Tensor:

# evaluate the objective
with tf.Session() as sess:
    print sess.run(lower_bound, feed_dict=...)





The objective computes the same importance-sampling based estimate
of the marginal log likelihood of observed variables as
is_loglikelihood(). The difference is that the
estimate now serves as a variational objective, since it is also a lower
bound of the marginal log likelihood (as long as the number of samples is
finite). The variational posterior here is in fact the proposal. As a
variational objective, ImportanceWeightedObjective provides two
gradient estimators for the variational (proposal) parameters:


	sgvb(): The Stochastic Gradient Variational Bayes (SGVB) estimator,
also known as “the reparameterization trick”, or “path derivative
estimator”.


	vimco(): The multi-sample score function estimator with variance
reduction, also known as “VIMCO”.




The typical code for joint inference and learning is like:

# choose a gradient estimator to return the surrogate cost
cost = lower_bound.sgvb()
# or
# cost = lower_bound.vimco()

# optimize the surrogate cost wrt. model and variational
# parameters
optimizer = tf.train.AdamOptimizer(learning_rate)
infer_and_learn_op = optimizer.minimize(
    cost, var_list=model_and_variational_parameters)
with tf.Session() as sess:
    for _ in range(n_iters):
        _, lb = sess.run([infer_op, lower_bound], feed_dict=...)






Note

Don’t directly optimize the ImportanceWeightedObjective
instance wrt. to variational parameters, i.e., parameters in
\(q\). Instead a proper gradient estimator should be chosen to
produce the correct surrogate cost to minimize, as shown in the above
code snippet.



Because the outer expectation in the objective is not related to model
parameters, it’s fine to directly optimize the class instance wrt. model
parameters:

# optimize wrt. model parameters
learn_op = optimizer.minimize(-lower_bound,
                              var_list=model_parameters)
# or
# learn_op = optimizer.minimize(cost, var_list=model_parameters)
# both ways are correct





The above provides a way for users to combine the importance weighted
objective with different methods of adapting proposals (\(q\)). In
this situation the true posterior is a good choice, which indicates that
any variational objectives can be used for the adaptation. Specially,
when the klpq() objective is
chosen, this reproduces the Reweighted Wake-Sleep algorithm
(Bornschein, 2015) for learning deep generative models.


	Parameters

	
	meta_bn – A MetaBayesianNet
instance or a log joint probability function.
For the latter, it must accepts a dictionary argument of
(string, Tensor) pairs, which are mappings from all
node names in the model to their observed values. The
function should return a Tensor, representing the log joint likelihood
of the model.


	observed – A dictionary of (string, Tensor) pairs. Mapping from
names of observed stochastic nodes to their values.


	latent – A dictionary of (string, (Tensor, Tensor)) pairs.
Mapping from names of latent stochastic nodes to their samples and
log probabilities. latent and variational are mutually exclusive.


	axis – The sample dimension(s) to reduce when computing the
outer expectation in the objective. If None, no dimension is
reduced.


	variational – A BayesianNet instance
that defines the variational family.
variational and latent are mutually exclusive.









	
bn

	The BayesianNet constructed by
observing the meta_bn with samples from the variational
posterior distributions. None if the log joint probability
function is provided instead of meta_bn.


Note

This BayesianNet instance is
useful when computing predictions with the approximate posterior
distribution.








	
meta_bn

	The inferred model.
A MetaBayesianNet instance.
None if instead log joint probability function is given.






	
sgvb()

	Implements the stochastic gradient variational bayes (SGVB) gradient
estimator for the objective, also known as “reparameterization trick”
or “path derivative estimator”. It was first used for importance
weighted objectives in (Burda, 2015), where it’s named “IWAE”.

It only works for latent StochasticTensor s that can be
reparameterized (Kingma, 2013). For example,
Normal
and Concrete.


Note

To use the sgvb() estimator, the is_reparameterized
property of each latent StochasticTensor must be True (which is
the default setting when they are constructed).




	Returns

	A Tensor. The surrogate cost for Tensorflow optimizers to
minimize.










	
tensor

	Return the Tensor representing the value of the variational objective.






	
variational

	The variational family.
A BayesianNet instance.
None if instead latent is given.






	
vimco()

	Implements the multi-sample score function gradient estimator for
the objective, also known as “VIMCO”, which is named
by authors of the original paper (Minh, 2016).

It works for all kinds of latent StochasticTensor s.


Note

To use the vimco() estimator, the is_reparameterized
property of each reparameterizable latent StochasticTensor must
be set False.




	Returns

	A Tensor. The surrogate cost for Tensorflow optimizers to
minimize.



















          

      

      

    

  

    
      
          
            
  
zhusuan.hmc


	
class HMCInfo(samples, acceptance_rate, updated_step_size, init_momentum, orig_hamiltonian, hamiltonian, orig_log_prob, log_prob)

	Bases: object

Contains information about a sampling iteration by HMC. Users
can get fine control of the sampling process by monitoring these
statistics.


Note

Attributes provided in this structure must be fetched together with the
corresponding sampling operation and should not be fetched anywhere
else. Otherwise you would get undefined behaviors.




	Parameters

	
	samples – A dictionary of (string, Tensor) pairs. Samples
generated by this HMC iteration.


	acceptance_rate – A Tensor. The acceptance rate in this iteration.


	updated_step_size – A Tensor. The updated step size (by adaptation)
after this iteration.


	init_momentum – A dictionary of (string, Tensor) pairs. The
initial momentum for each latent variable in this sampling iteration.


	orig_hamiltonian – A Tensor. The original hamiltonian at the
beginning of the iteration.


	hamiltonian – A Tensor. The current hamiltonian at the end of the
iteration.


	orig_log_prob – A Tensor. The log joint probability at the
beginning position of the iteration.


	log_prob – A Tensor. The current log joint probability at the end
position of the iteration.













	
class HMC(step_size=1.0, n_leapfrogs=10, adapt_step_size=None, target_acceptance_rate=0.8, gamma=0.05, t0=100, kappa=0.75, adapt_mass=None, mass_collect_iters=10, mass_decay=0.99)

	Hamiltonian Monte Carlo (Neal, 2011) with adaptation for stepsize (Hoffman &
Gelman, 2014) and mass. The usage is similar with a Tensorflow optimizer.

The HMC class supports running multiple MCMC chains in parallel. To
use the sampler, the user first creates a (list of) tensorflow Variable
storing the initial sample, whose shape is chain axes + data axes. There
can be arbitrary number of chain axes followed by arbitrary number of data
axes. Then the user provides a log_joint function which returns a tensor
of shape chain axes, which is the log joint density for each chain.
Finally, the user runs the operation returned by sample(), which
updates the sample stored in the Variable.


Note

Currently we do not support invoking the sample() method
multiple times per HMC class. Please declare one HMC
class per each invoke of the sample() method.




Note

When the adaptations are on, the sampler is not reversible.
To guarantee current equilibrium, the user should only turn on
the adaptations during the burn-in iterations, and turn them off
when collecting samples. To achieve this, the best practice is to
set adapt_step_size and adapt_mass to be placeholders and feed
different values (True/False) when needed.




	Parameters

	
	step_size – A 0-D float32 Tensor. Initial step size.


	n_leapfrogs – A 0-D int32 Tensor. Number of leapfrog steps.


	adapt_step_size – A bool Tensor, if set, indicating whether to
adapt the step size.


	target_acceptance_rate – A 0-D float32 Tensor. The desired
acceptance rate for adapting the step size.


	gamma – A 0-D float32 Tensor. Parameter for adapting the step
size, see (Hoffman & Gelman, 2014).


	t0 – A 0-D float32 Tensor. Parameter for adapting the step size,
see (Hoffman & Gelman, 2014).


	kappa – A 0-D float32 Tensor. Parameter for adapting the step
size, see (Hoffman & Gelman, 2014).


	adapt_mass – A bool Tensor, if set, indicating whether to adapt
the mass, adapt_step_size must be set.


	mass_collect_iters – A 0-D int32 Tensor. The beginning iteration
to change the mass.


	mass_decay – A 0-D float32 Tensor. The decay of computing
exponential moving variance.









	
sample(meta_bn, observed, latent)

	Return the sampling Operation that runs a HMC iteration and
the statistics collected during it, given the log joint function (or a
MetaBayesianNet instance), observed
values and latent variables.


	Parameters

	
	meta_bn – A function or a
MetaBayesianNet instance. If it
is a function, it accepts a dictionary argument of (string,
Tensor) pairs, which are mappings from all StochasticTensor
names in the model to their observed values. The function should
return a Tensor, representing the log joint likelihood of the
model. More conveniently, the user can also provide a
MetaBayesianNet instance
instead of directly providing a log_joint function. Then a
log_joint function will be created so that log_joint(obs) =
meta_bn.observe(**obs).log_joint().


	observed – A dictionary of (string, Tensor) pairs. Mapping
from names of observed StochasticTensor s to their values.


	latent – A dictionary of (string, Variable) pairs.
Mapping from names of latent StochasticTensor s to corresponding
tensorflow Variables for storing their initial values and
samples.






	Returns

	A Tensorflow Operation that runs a HMC iteration.



	Returns

	A HMCInfo instance that collects sampling statistics
during an iteration.

















          

      

      

    

  

    
      
          
            
  
zhusuan.sgmcmc


	
class SGMCMC

	Bases: object

Base class for stochastic gradient MCMC (SGMCMC) algorithms.

SGMCMC is a class of MCMC algorithms which utilize stochastic gradients
instead of the true gradients. To deal with the problems brought by
stochasticity in gradients, more sophisticated updating scheme, such as
SGHMC and SGNHT, were proposed. We provided four SGMCMC algorithms here:
SGLD, PSGLD, SGHMC and SGNHT. For SGHMC and SGNHT, we support 2nd-order
integrators introduced in (Chen et al., 2015).

The implementation framework is similar to that of
HMC class. However, SGMCMC algorithms do not include
Metropolis update, and typically do not include hyperparameter adaptation.

The usage is the same as that of HMC class.
Running multiple SGMCMC chains in parallel is supported.

To use the sampler, the user first defines the sampling method and
corresponding hyperparameters by calling the subclass SGLD,
PSGLD, SGHMC or SGNHT. Then the user creates a
(list of) tensorflow Variable storing the initial sample, whose shape is
chain axes + data axes. There can be arbitrary number of chain axes
followed by arbitrary number of data axes. Then the user provides a
log_joint function which returns a tensor of shape chain axes, which
is the log joint density for each chain. Alternatively, the user can also
provide a meta_bn instance as a description of log_joint. Then the user
runs the operation returned by sample(), which updates the sample
stored in the Variable.

The typical code for SGMCMC inference is like:

sgmcmc = zs.SGHMC(learning_rate=2e-6, friction=0.2,
                  n_iter_resample_v=1000, second_order=True)
sample_op, sgmcmc_info = sgmcmc.make_grad_func(meta_bn,
    observed={'x': x, 'y': y}, latent={'w1': w1, 'w2': w2})

with tf.Session() as sess:
    for _ in range(n_iters):
        _, info = sess.run([sample_op, sgmcmc_info],
                              feed_dict=...)
        print("mean_k", info["mean_k"])   # For SGHMC and SGNHT,
                                          # optional





After getting the sample_op, the user can feed mini-batches to a data
placeholder observed so that the gradient is a stochastic gradient. Then
the user runs the sample_op like using HMC.


	
sample(meta_bn, observed, latent)

	Return the sampling Operation that runs a SGMCMC iteration and the
statistics collected during it, given the log joint function (or a
MetaBayesianNet instance), observed
values and latent variables.


	Parameters

	
	meta_bn – A function or a
MetaBayesianNet instance. If it
is a function, it accepts a dictionary argument of (string,
Tensor) pairs, which are mappings from all StochasticTensor
names in the model to their observed values. The function should
return a Tensor, representing the log joint likelihood of the
model. More conveniently, the user can also provide a
MetaBayesianNet instance
instead of directly providing a log_joint function. Then a
log_joint function will be created so that log_joint(obs) =
meta_bn.observe(**obs).log_joint().


	observed – A dictionary of (string, Tensor) pairs. Mapping
from names of observed StochasticTensor s to their values.


	latent – A dictionary of (string, Variable) pairs.
Mapping from names of latent StochasticTensor s to corresponding
tensorflow Variables for storing their initial values and
samples.






	Returns

	A Tensorflow Operation that runs a SGMCMC iteration, called
sample_op.



	Returns

	A namedtuple that records some useful values, called
sgmcmc_info. Suppose the list of keys of latent dictionary is
['w1', 'w2']. Then the typical structure of sgmcmc_info is
SGMCMCInfo(attr1={'w1': some value, 'w2': some value},
attr2={'w1': some value, 'w2': some value}, ...). Hence,
sgmcmc_info.attr1 is a dictionary containing the quantity
attr1 corresponding to each latent variable in the latent
dictionary.

sgmcmc_info returned by any SGMCMC algorithm has an attribute
q, representing the updated values of latent variables. To check
out other attributes, see the documentation for the specific
subclass below.
















	
class SGLD(learning_rate)

	Bases: zhusuan.sgmcmc.SGMCMC

Subclass of SGMCMC which implements Stochastic Gradient Langevin Dynamics
(Welling & Teh, 2011) (SGLD) update. The updating equation implemented
below follows Equation (3) in the paper.

Attributes of returned sgmcmc_info in SGMCMC.sample():


	q - The updated values of latent variables.





	Parameters

	learning_rate – A 0-D float32 Tensor. It can be either a constant
or a placeholder for decaying learning rate.










	
class PSGLD(learning_rate, preconditioner='rms', preconditioner_hparams=None)

	Bases: zhusuan.sgmcmc.SGLD

Subclass of SGLD implementing preconditioned stochastic gradient Langevin
dynamics, a variant proposed in (Li et al, 2015). We implement the RMSprop
preconditioner (Equation (4-5) in the paper). Other preconditioners can be
implemented similarly.

Attributes of returned sgmcmc_info in SGMCMC.sample():


	q - The updated values of latent variables.





	Parameters

	learning_rate – A 0-D float32 Tensor. It can be either a constant
or a placeholder for decaying learning rate.






	
class RMSPreconditioner

	
	
HParams

	alias of RMSHParams






	
default_hps = RMSHParams(decay=0.9, epsilon=0.001)

	












	
class SGHMC(learning_rate, friction=0.25, variance_estimate=0.0, n_iter_resample_v=20, second_order=True)

	Bases: zhusuan.sgmcmc.SGMCMC

Subclass of SGMCMC which implements Stochastic Gradient Hamiltonian Monte
Carlo (Chen et al., 2014) (SGHMC) update. Compared to SGLD, it adds a
momentum variable to the dynamics. Compared to naive HMC using stochastic
gradient which diverges, SGHMC simultanenously adds (often the same amount
of) friction and noise to make the dynamics have a stationary distribution.
The updating equation implemented below follows Equation (15) in the paper.
A 2nd-order integrator introduced in (Chen et al., 2015) is supported.

In the following description, we refer to Eq.(*) as Equation (15) in the
SGHMC paper.

Attributes of returned sgmcmc_info in SGMCMC.sample():


	q - The updated values of latent variables.


	mean_k - The mean kinetic energy of updated momentum variables
corresponding to the latent variables. Each item is a scalar.





	Parameters

	
	learning_rate – A 0-D float32 Tensor corresponding to \(\eta\)
in Eq.(*). Note that it does not scale the same as learning_rate in
SGLD since \(\eta=O(\epsilon^2)\) in Eq.(*) where
\(\epsilon\) is the step size. When NaN occurs, please consider
decreasing learning_rate.


	friction – A 0-D float32 Tensor corresponding to \(\alpha\) in
Eq.(*). A coefficient which simultaneously decays the momentum and adds
an additional noise (hence here the name friction is not accurate).
Larger friction makes the stationary distribution closer to the true
posterior since it reduces the effect of stochasticity in the gradient,
but slowers mixing of the MCMC chain.


	variance_estimate – A 0-D float32 Tensor corresponding to
\(\beta\) in Eq.(*). Just set it to zero if it is hard to estimate
the gradient variance well. Note that variance_estimate must be
smaller than friction.


	n_iter_resample_v – A 0-D int32 Tensor. Each n_iter_resample_v
calls to the sampling operation, the momentum variable will be
resampled from the corresponding normal distribution once. Smaller
n_iter_resample_v may lead to a stationary distribution closer to the
true posterior but slowers mixing. If you do not want the momentum
variable resampled, set the parameter to None or 0.


	second_order – A bool Tensor indicating whether to enable the
2nd-order integrator introduced in (Chen et al., 2015) or to use the
ordinary 1st-order integrator.













	
class SGNHT(learning_rate, variance_extra=0.0, tune_rate=1.0, n_iter_resample_v=None, second_order=True, use_vector_alpha=True)

	Bases: zhusuan.sgmcmc.SGMCMC

Subclass of SGMCMC which implements Stochastic Gradient Nosé-Hoover
Thermostat (Ding et al., 2014) (SGNHT) update. It is built upon SGHMC, and
it could tune the friction parameter \(\alpha\) in SGHMC automatically
(here is an abuse of notation: in SGNHT \(\alpha\) only refers to the
friction coefficient, and the noise term is independent of it (unlike
SGHMC)), i.e. it adds a new friction variable to the dynamics. The updating
equation implemented below follows Algorithm 2 in the supplementary
material of the paper. A 2nd-order integrator introduced in
(Chen et al., 2015) is supported.

In the following description, we refer to Eq.(**) as the equation in
Algorithm 2 in the SGNHT paper.

Attributes of returned sgmcmc_info in SGMCMC.sample():


	q - The updated values of latent variables.


	mean_k - The mean kinetic energy of updated momentum variables
corresponding to the latent variables. If use_vector_alpha==True, each
item has the same shape as the corresponding latent variable; else, each
item is a scalar.


	alpha - The values of friction variables \(\alpha\)
corresponding to the latent variables. If use_vector_alpha==True, each
item has the same shape as the corresponding latent variable; else, each
item is a scalar.





	Parameters

	
	learning_rate – A 0-D float32 Tensor corresponding to \(\eta\)
in Eq.(**). Note that it does not scale the same as learning_rate in
SGLD since \(\eta=O(\epsilon^2)\) in Eq.(*) where
\(\epsilon\) is the step size. When NaN occurs, please consider
decreasing learning_rate.


	variance_extra – A 0-D float32 Tensor corresponding to \(a\) in
Eq.(**), representing the additional noise added in the update (and the
initial friction \(\alpha\) will be set to this value). Normally
just set it to zero.


	tune_rate – A 0-D float32 Tensor. In Eq.(**), this parameter is not
present (i.e. its value is implicitly set to 1), but a non-1 value is
also valid. Higher tune_rate represents higher (multiplicative) rate
of tuning the friction \(\alpha\).


	n_iter_resample_v – A 0-D int32 Tensor. Each n_iter_resample_v
calls to the sampling operation, the momentum variable will be
resampled from the corresponding normal distribution once. Smaller
n_iter_resample_v may lead to a stationary distribution closer to the
true posterior but slowers mixing. If you do not want the momentum
variable resampled, set the parameter to None or 0.


	second_order – A bool Tensor indicating whether to enable the
2nd-order integrator introduced in (Chen et al., 2015) or to use the
ordinary 1st-order integrator.


	use_vector_alpha – A bool Tensor indicating whether to use a vector
friction \(\alpha\). If it is true, then the friction has the same
shape as the latent variable. That is, each component of the latent
variable corresponds to an independently tunable friction. Else, the
friction is a scalar.
















          

      

      

    

  

    
      
          
            
  
zhusuan.evaluation


	
is_loglikelihood(meta_bn, observed, latent=None, axis=None, proposal=None)

	Marginal log likelihood (\(\log p(x)\)) estimates using self-normalized
importance sampling.


	Parameters

	
	meta_bn – A MetaBayesianNet
instance or a log joint probability function.
For the latter, it must accepts a dictionary argument of
(string, Tensor) pairs, which are mappings from all
node names in the model to their observed values. The
function should return a Tensor, representing the log joint likelihood
of the model.


	observed – A dictionary of (string, Tensor) pairs. Mapping from
names of observed stochastic nodes to their values.


	latent – A dictionary of (string, (Tensor, Tensor)) pairs.
Mapping from names of latent stochastic nodes to their samples and
log probabilities. latent and proposal are mutually exclusive.


	axis – The sample dimension(s) to reduce when computing the
outer expectation in the objective. If None, no dimension is
reduced.


	proposal – A BayesianNet instance
that defines the proposal distributions of latent nodes.
proposal and latent are mutually exclusive.






	Returns

	A Tensor. The estimated log likelihood of observed data.













          

      

      

    

  

    
      
          
            
  
zhusuan.transform


	
planar_normalizing_flow(samples, log_probs, n_iters)

	Perform Planar Normalizing Flow along the last axis of inputs.


\[f(z_t) = z_{t-1} + h(z_{t-1} * w_t + b_t) * u_t\]

with activation function tanh as well as the invertibility trick
from (Danilo 2016).


	Parameters

	
	samples – A N-D (N>=2) float32 Tensor of shape […, d], and
planar normalizing flow will be performed along the last axis.


	log_probs – A (N-1)-D float32 Tensor, should be of the same shape
as the first N-1 axes of samples.


	n_iters – A int, which represents the number of successive flows.






	Returns

	A N-D Tensor, the transformed samples.



	Returns

	A (N-1)-D Tensor, the log probabilities of the transformed
samples.













          

      

      

    

  

    
      
          
            
  
zhusuan.diagnostics


	
effective_sample_size(samples, burn_in=100)

	Compute the effective sample size of a chain of vector samples, using the
algorithm in Stan. Users should flatten their samples as vectors if not so.


	Parameters

	
	samples – A 2-D numpy array of shape (M, D), where M is the
number of samples, and D is the number of dimensions of each
sample.


	burn_in – The number of discarded samples.






	Returns

	A 1-D numpy array. The effective sample size.










	
effective_sample_size_1d(samples)

	Compute the effective sample size of a chain of scalar samples.


	Parameters

	samples – A 1-D numpy array. The chain of samples.



	Returns

	A float. The effective sample size.













          

      

      

    

  

    
      
          
            
  
zhusuan.utils


	
class TensorArithmeticMixin

	Bases: object

Mixin class for implementing tensor arithmetic operations.

The derived class must support tf.convert_to_tensor, in order to
inherit from this mixin class.






	
log_mean_exp(x, axis=None, keepdims=False)

	Tensorflow numerically stable log mean of exps across the axis.


	Parameters

	
	x – A Tensor.


	axis – An int or list or tuple. The dimensions to reduce.
If None (the default), reduces all dimensions.


	keepdims – Bool. If true, retains reduced dimensions with length 1.
Default to be False.






	Returns

	A Tensor after the computation of log mean exp along given axes of
x.










	
merge_dicts(*dict_args)

	Given any number of dicts, shallow copy and merge into a new dict,
precedence goes to key value pairs in latter dicts.









          

      

      

    

  

    
      
          
            
  
zhusuan.legacy


Special


	
class Empirical(dtype, batch_shape=None, value_shape=None, group_ndims=0, is_continuous=None, **kwargs)

	Bases: zhusuan.distributions.base.Distribution


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of Empirical distribution. Distribution for any variables,
which are sampled from an empirical distribution and have no explicit
density. You can not sample from the distribution or calculate
probabilities and log-probabilities.
See Distribution for details.


	Parameters

	
	dtype – The value type of samples from the distribution.


	batch_shape – A TensorShape describing the batch_shape of the
distribution.


	value_shape – A TensorShape describing the value_shape of the
distribution.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_continuous – A bool or None. Whether the distribution is
continuous or not. If None, will consider it continuous only if
dtype is a float type.













	
class Implicit(samples, value_shape=None, group_ndims=0, **kwargs)

	Bases: zhusuan.distributions.base.Distribution


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of Implicit distribution. The distribution abstracts variables
whose distribution have no explicit form. A common example of implicit
variables are the generated samples from a GAN.
See Distribution for details.


	Parameters

	
	samples – A Tensor.


	value_shape – A TensorShape describing the value_shape of the
distribution.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.















Stochastic


	
class Normal(name, mean=0.0, _sentinel=None, std=None, logstd=None, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of univariate Normal StochasticTensor.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	_sentinel – Used to prevent positional parameters. Internal,
do not use.


	mean – A float Tensor. The mean of the Normal distribution.
Should be broadcastable to match logstd.


	std – A float Tensor. The standard deviation of the Normal
distribution. Should be positive and broadcastable to match mean.


	logstd – A float Tensor. The log standard deviation of the Normal
distribution. Should be broadcastable to match mean.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
StochasticTensor are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	check_numerics – Bool. Whether to check numeric issues.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class FoldNormal(name, mean=0.0, _sentinel=None, std=None, logstd=None, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of univariate FoldNormal StochasticTensor.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	mean – A float Tensor. The mean of the FoldNormal distribution.
Should be broadcastable to match std or logstd.


	_sentinel – Used to prevent positional parameters. Internal,
do not use.


	std – A float Tensor. The standard deviation of the FoldNormal
distribution. Should be positive and broadcastable to match mean.


	logstd – A float Tensor. The log standard deviation of the
FoldNormal distribution. Should be broadcastable to match mean.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
StochasticTensor are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	check_numerics – Bool. Whether to check numeric issues.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class Bernoulli(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of univariate Bernoulli StochasticTensor.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	logits – A float Tensor. The log-odds of probabilities of being 1.


\[\mathrm{logits} = \log \frac{p}{1 - p}\]




	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	dtype – The value type of this StochasticTensor. Can be
int (tf.int16, tf.int32, tf.int64) or float (tf.float16,
tf.float32, tf.float64). Default is int32.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class Categorical(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of univariate Categorical StochasticTensor.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	logits – A N-D (N >= 1) float Tensor of shape (…,
n_categories). Each slice [i, j,…, k, :] represents the
un-normalized log probabilities for all categories.


\[\mathrm{logits} \propto \log p\]




	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	dtype – The value type of this StochasticTensor. Can be
float32, float64, int32, or int64. Default is int32.








A single sample is a (N-1)-D Tensor with tf.int32 values in range
[0, n_categories).


	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class OnehotCategorical(name, logits, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of one-hot Categorical StochasticTensor.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	logits – A N-D (N >= 1) float Tensor of shape (…,
n_categories). Each slice [i, j, …, k, :] represents the
un-normalized log probabilities for all categories.


\[\mathrm{logits} \propto \log p\]




	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	dtype – The value type of this StochasticTensor. Can be
int (tf.int16, tf.int32, tf.int64) or float (tf.float16,
tf.float32, tf.float64). Default is int32.








A single sample is a N-D Tensor with the same shape as logits. Each slice
[i, j, …, k, :] is a one-hot vector of the selected category.


	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
Discrete

	alias of zhusuan.legacy.framework.stochastic.Categorical






	
OnehotDiscrete

	alias of zhusuan.legacy.framework.stochastic.OnehotCategorical






	
class Uniform(name, minval=0.0, maxval=1.0, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of univariate Uniform StochasticTensor.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	minval – A float Tensor. The lower bound on the range of the
uniform distribution. Should be broadcastable to match maxval.


	maxval – A float Tensor. The upper bound on the range of the
uniform distribution. Should be element-wise bigger than minval.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
StochasticTensor are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	check_numerics – Bool. Whether to check numeric issues.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class Gamma(name, alpha, beta, n_samples=None, group_ndims=0, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of univariate Gamma StochasticTensor.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	alpha – A float Tensor. The shape parameter of the Gamma
distribution. Should be positive and broadcastable to match beta.


	beta – A float Tensor. The inverse scale parameter of the Gamma
distribution. Should be positive and broadcastable to match alpha.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	check_numerics – Bool. Whether to check numeric issues.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class Beta(name, alpha, beta, n_samples=None, group_ndims=0, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of univariate Beta StochasticTensor.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	alpha – A float Tensor. One of the two shape parameters of the
Beta distribution. Should be positive and broadcastable to match
beta.


	beta – A float Tensor. One of the two shape parameters of the
Beta distribution. Should be positive and broadcastable to match
alpha.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	check_numerics – Bool. Whether to check numeric issues.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class Poisson(name, rate, n_samples=None, group_ndims=0, dtype=tf.int32, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of univariate Poisson StochasticTensor.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	rate – A float Tensor. The rate parameter of Poisson
distribution. Must be positive.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	dtype – The value type of this StochasticTensor. Can be
int (tf.int16, tf.int32, tf.int64) or float (tf.float16,
tf.float32, tf.float64). Default is int32.


	check_numerics – Bool. Whether to check numeric issues.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class Binomial(name, logits, n_experiments, n_samples=None, group_ndims=0, dtype=tf.int32, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of univariate Binomial StochasticTensor.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	logits – A float Tensor. The log-odds of probabilities.


\[\mathrm{logits} = \log \frac{p}{1 - p}\]




	n_experiments – A 0-D int32 Tensor. The number of experiments
for each sample.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	dtype – The value type of this StochasticTensor. Can be
int (tf.int16, tf.int32, tf.int64) or float (tf.float16,
tf.float32, tf.float64). Default is int32.


	check_numerics – Bool. Whether to check numeric issues.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class InverseGamma(name, alpha, beta, n_samples=None, group_ndims=0, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of univariate InverseGamma StochasticTensor.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	alpha – A float Tensor. The shape parameter of the InverseGamma
distribution. Should be positive and broadcastable to match beta.


	beta – A float Tensor. The scale parameter of the InverseGamma
distribution. Should be positive and broadcastable to match alpha.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	check_numerics – Bool. Whether to check numeric issues.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class Laplace(name, loc, scale, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of univariate Laplace StochasticTensor.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	loc – A float Tensor. The location parameter of the Laplace
distribution. Should be broadcastable to match scale.


	scale – A float Tensor. The scale parameter of the Laplace
distribution. Should be positive and broadcastable to match loc.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
StochasticTensor are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	check_numerics – Bool. Whether to check numeric issues.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class MultivariateNormalCholesky(name, mean, cov_tril, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of multivariate normal StochasticTensor, where covariance is
parameterized with the lower triangular matrix \(L\) in Cholesky
decomposition \(LL^T = \Sigma\).

See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	mean – An N-D float Tensor of shape […, n_dim]. Each slice
[i, j, …, k, :] represents the mean of a single multivariate normal
distribution.


	cov_tril – An (N+1)-D float Tensor of shape […, n_dim, n_dim].
Each slice [i, …, k, :, :] represents the lower triangular matrix in
the Cholesky decomposition of the covariance of a single distribution.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
distribution are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	check_numerics – Bool. Whether to check numeric issues.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class MatrixVariateNormalCholesky(name, mean, u_tril, v_tril, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of matrix variate normal StochasticTensor, where covariances
\(U\) and \(V\) are parameterized with the lower triangular
matrix in Cholesky decomposition,


\[L_u \text{s.t.} L_u L_u^T = U,\; L_v \text{s.t.} L_v L_v^T = V\]

See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	mean – An N-D float Tensor of shape […, n_row, n_col]. Each slice
[i, j, …, k, :, :] represents the mean of a single matrix variate
normal distribution.


	u_tril – An N-D float Tensor of shape […, n_row, n_row].
Each slice [i, j, …, k, :, :] represents the lower triangular matrix
in the Cholesky decomposition of the among-row covariance of a single
matrix variate normal distribution.


	v_tril – An N-D float Tensor of shape […, n_col, n_col].
Each slice [i, j, …, k, :, :] represents the lower triangular matrix
in the Cholesky decomposition of the among-column covariance of a
single matrix variate normal distribution.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
distribution are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	check_numerics – Bool. Whether to check numeric issues.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class Multinomial(name, logits, n_experiments, normalize_logits=True, n_samples=None, group_ndims=0, dtype=tf.int32, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of Multinomial StochasticTensor.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	logits – A N-D (N >= 1) float Tensor of shape […, n_categories].
Each slice [i, j, …, k, :] represents the log probabilities for
all categories. By default (when normalize_logits=True), the
probabilities could be un-normalized.


\[\mathrm{logits} \propto \log p\]




	n_experiments – A 0-D int32 Tensor or None. When it is a 0-D
int32 integer, it represents the number of experiments for each
sample, which should be invariant among samples. In this situation
_sample function is supported. When it is None, _sample function
is not supported, and when calculating probabilities the number of
experiments will be inferred from given, so it could vary among
samples.


	normalize_logits – A bool indicating whether logits should be
normalized when computing probability. If you believe logits is
already normalized, set it to False to speed up. Default is True.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	dtype – The value type of this StochasticTensor. Can be
int (tf.int16, tf.int32, tf.int64) or float (tf.float16,
tf.float32, tf.float64). Default is int32.








A single sample is a N-D Tensor with the same shape as logits. Each slice
[i, j, …, k, :] is a vector of counts for all categories.


	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class UnnormalizedMultinomial(name, logits, normalize_logits=True, group_ndims=0, dtype=tf.int32, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of UnnormalizedMultinomial StochasticTensor.
UnnormalizedMultinomial distribution calculates probabilities differently
from Multinomial: It considers the bag-of-words given as a
statistics of an ordered result sequence, and calculates the probability
of the (imagined) ordered sequence. Hence it does not multiply the term


\[\binom{n}{k_1, k_2, \dots} =  \frac{n!}{\prod_{i} k_i!}\]

See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	logits – A N-D (N >= 1) float Tensor of shape […, n_categories].
Each slice [i, j, …, k, :] represents the log probabilities for
all categories. By default (when normalize_logits=True), the
probabilities could be un-normalized.


\[\mathrm{logits} \propto \log p\]




	normalize_logits – A bool indicating whether logits should be
normalized when computing probability. If you believe logits is
already normalized, set it to False to speed up. Default is True.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	dtype – The value type of this StochasticTensor. Can be
int (tf.int16, tf.int32, tf.int64) or float (tf.float16,
tf.float32, tf.float64). Default is int32.








A single sample is a N-D Tensor with the same shape as logits. Each slice
[i, j, …, k, :] is a vector of counts for all categories.


	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
BagofCategoricals

	alias of zhusuan.legacy.framework.stochastic.UnnormalizedMultinomial






	
class Dirichlet(name, alpha, n_samples=None, group_ndims=0, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of Dirichlet StochasticTensor.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	alpha – A N-D (N >= 1) float Tensor of shape (…, n_categories).
Each slice [i, j, …, k, :] represents the concentration parameter
of a Dirichlet distribution. Should be positive.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	check_numerics – Bool. Whether to check numeric issues.








A single sample is a N-D Tensor with the same shape as alpha. Each slice
[i, j, …, k, :] of the sample is a vector of probabilities of a
Categorical distribution [x_1, x_2, … ], which lies on the simplex


\[\sum_{i} x_i = 1, 0 < x_i < 1\]


	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class BinConcrete(name, temperature, logits, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of univariate BinConcrete StochasticTensor from
(Maddison, 2016). It is the binary case of Concrete.
See StochasticTensor for details.


See also

Concrete and ExpConcrete




	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	temperature – A 0-D float Tensor. The temperature of the relaxed
distribution. The temperature should be positive.


	logits – A float Tensor. The log-odds of probabilities of being 1.


\[\mathrm{logits} = \log \frac{p}{1 - p}\]




	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
StochasticTensor are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	check_numerics – Bool. Whether to check numeric issues.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
BinGumbelSoftmax

	alias of zhusuan.legacy.framework.stochastic.BinConcrete






	
class ExpConcrete(name, temperature, logits, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of ExpConcrete StochasticTensor from (Maddison, 2016),
transformed from Concrete by taking logarithm.
See StochasticTensor for details.


See also

BinConcrete and Concrete




	Parameters

	
	temperature – A 0-D float Tensor. The temperature of the relaxed
distribution. The temperature should be positive.


	logits – A N-D (N >= 1) float Tensor of shape (…,
n_categories). Each slice [i, j, …, k, :] represents the
un-normalized log probabilities for all categories.


\[\mathrm{logits} \propto \log p\]




	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
StochasticTensor are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	check_numerics – Bool. Whether to check numeric issues.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
ExpGumbelSoftmax

	alias of zhusuan.legacy.framework.stochastic.ExpConcrete






	
class Concrete(name, temperature, logits, n_samples=None, group_ndims=0, is_reparameterized=True, check_numerics=False, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of Concrete (or Gumbel-Softmax) StochasticTensor from
(Maddison, 2016; Jang, 2016), served as
the continuous relaxation of the OnehotCategorical.
See StochasticTensor for details.


See also

BinConcrete and ExpConcrete




	Parameters

	
	temperature – A 0-D float Tensor. The temperature of the relaxed
distribution. The temperature should be positive.


	logits – A N-D (N >= 1) float Tensor of shape (…,
n_categories). Each slice [i, j, …, k, :] represents the
un-normalized log probabilities for all categories.


\[\mathrm{logits} \propto \log p\]




	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	is_reparameterized – A Bool. If True, gradients on samples from this
StochasticTensor are allowed to propagate into inputs, using the
reparametrization trick from (Kingma, 2013).


	check_numerics – Bool. Whether to check numeric issues.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
GumbelSoftmax

	alias of zhusuan.legacy.framework.stochastic.Concrete






	
class Empirical(name, dtype, batch_shape, n_samples=None, group_ndims=0, value_shape=None, is_continuous=None, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of Empirical StochasticTensor.
For any inference it is always required that the variables are observed.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	dtype – The value type of samples from the distribution.


	batch_shape – A TensorShape describing the batch_shape of the
distribution.


	value_shape – A TensorShape describing the value_shape of the
distribution.


	is_continuous – A bool or None. Whether the distribution is
continuous or not. If None, will consider it continuous only if
dtype is a float type.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.














	
class Implicit(name, samples, value_shape=None, group_ndims=0, n_samples=None, **kwargs)

	Bases: zhusuan.framework.bn.StochasticTensor


Warning

Deprecated in 0.4, will be removed in 0.4.1.



The class of Implicit StochasticTensor.
This distribution always sample the implicit tensor provided.
See StochasticTensor for details.


	Parameters

	
	name – A string. The name of the StochasticTensor. Must be unique
in the BayesianNet context.


	samples – A N-D (N >= 1) float Tensor.


	value_shape – A list or tuple describing the value_shape of the
distribution. The entries of the list can either be int, Dimension or
None.


	group_ndims – A 0-D int32 Tensor representing the number of
dimensions in batch_shape (counted from the end) that are grouped
into a single event, so that their probabilities are calculated
together. Default is 0, which means a single value is an event.
See Distribution for more detailed
explanation.


	n_samples – A 0-D int32 Tensor or None. Number of samples
generated by this StochasticTensor.









	
bn

	The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
cond_log_p

	The conditional log probability of the StochasticTensor,
evaluated at its current value (given by tensor).


	Returns

	A Tensor.










	
dist

	
The distribution followed by the StochasticTensor.





	Returns

	A Distribution instance.










	
distribution

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The distribution followed by the StochasticTensor.


	Returns

	A Distribution instance.










	
dtype

	The sample type of the StochasticTensor.


	Returns

	A DType instance.










	
get_shape()

	Alias of shape.


	Returns

	A TensorShape instance.










	
is_observed()

	Whether the StochasticTensor is observed or not.


	Returns

	A bool.










	
log_prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the log probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The log probability value.










	
name

	The name of the StochasticTensor.


	Returns

	A string.










	
net

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



The BayesianNet where the StochasticTensor lives.


	Returns

	A BayesianNet instance.










	
prob(given)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Compute the probability density (mass) function of
the underlying distribution at the given value.


	Parameters

	given – A Tensor.



	Returns

	A Tensor. The probability value.










	
sample(n_samples)

	
Warning

Deprecated in 0.4, will be removed in 0.4.1.



Sample from the underlying distribution.


	Parameters

	n_samples – A 0-D int32 Tensor. The number of samples.



	Returns

	A Tensor.










	
shape

	Return the static shape of this StochasticTensor.


	Returns

	A TensorShape instance.










	
tensor

	The value of this StochasticTensor. If it is observed, then
the observation is returned, otherwise samples are returned.


	Returns

	A Tensor.



















          

      

      

    

  

    
      
          
            
  
Contributing

We always welcome contributions to help make ZhuSuan better. If you would like
to contribute, please check out the
guidelines [https://github.com/thu-ml/zhusuan/blob/master/CONTRIBUTING.md]
here. Below are an incomplete list of our contributors (find more on
this page [https://github.com/thu-ml/zhusuan/graphs/contributors]).


	Jiaxin Shi (thjashin [https://github.com/thjashin])


	Jianfei Chen (cjf00000 [https://github.com/cjf00000])


	Shengyang Sun (ssydasheng [https://github.com/ssydasheng])


	Yucen Luo (xinmei9322 [https://github.com/xinmei9322])


	Yihong Gu (wmyw96 [https://github.com/wmyw96])


	Yuhao Zhou (miskcoo [https://github.com/miskcoo])


	Ziyu Wang (meta-inf [https://github.com/meta-inf])


	Alexander Botev (botev [https://github.com/botev])


	Shuyu Cheng (csy530216 [https://github.com/csy530216])


	Haowen Xu (korepwx [https://github.com/korepwx])


	Huajun Wu (CaptainMushroom [https://github.com/CaptainMushroom])
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