
nplruntime documentation
Release 0.1.0

Li Xizhi

Apr 01, 2017

Table of Content

1 Welcome to the NPL wiki! 1

2 Table of Content 3

3 NPL 5

4 What is NPL? 7

5 Install NPL Runtime 11

6 Projects Written in NPL 15

7 NPL vs Lua 19

8 NPL Architecture 21

9 Getting Started with NPL 23

10 Hello World in NPL 31

11 Video Tutorial: Create A Web Site 33

12 Video Tutorial: Create Paracraft Mod 39

13 NPL Source Code Overview 47

14 NPL Code Wiki 49

15 Debugging And Logs 53

16 Embedding NPLRuntime 55

17 Extending NPLRuntime With C++ Plugins 57

18 NPL Basic Concept 61

19 Bootstrapping 69

20 Build-in NPL CommandLine 71

21 NPL Load File 73

i

22 File Activation 79

23 Networking 87

24 Multi-Threading 89

25 Concurrency Model 93

26 NPL Common Libraries 99

27 Object Oriented Programming 101

28 Deploy Your Application 105

29 NPL Packages 107

30 Meta Programming in NPL 111

31 NPL C/C++ Architecture 115

32 Core ParaEngine/NPL API 119

33 Attribute System 121

34 Asset Manifest & Asynchronous Asset Loading 123

35 ParaObject 125

36 System Library 127

37 Timer 129

38 Serialization, Encoding and Logging 131

39 HTTP request 137

40 Files API 143

41 Mouse and Key Input 153

42 Overview 157

43 Localization 159

44 User Interface 161

45 Drawing With 2D API 163

46 2D GUI Windows 165

47 MCML Markup Language For 2D GUI 171

48 3D Programming 183

49 File Format 185

50 3D Scene 191

51 Camera 195

ii

52 Block Engine 197

53 NPL Web Server 199

54 NPL Server Page 207

55 NPL Admin Site Framework 213

56 Table Database 215

57 Using MySql Client 231

58 Deploy NPL Web Server With SSL (https) 233

59 Use Links 237

60 NPL Runtime Performance Compare 239

61 ParaEngine 243

62 ParaScripting 245

iii

iv

CHAPTER 1

Welcome to the NPL wiki!

NPL or Neural Parallel Language is an open source, fast, general purpose scripting language. Its syntax is 100%-
compatible with lua. NPL runtime provides essential functionality for building 3D/2D/Server applications that
runs on windows/Mac/linux/android/iOS. NPL can mix user-mode preemptive and non-preemptive code. It
gives you the concurrency of Erlang and speed of Java/C++ in the same dynamic and weakly-typed language.

NPLQQ 543474853

Install Guide

git clone https://github.com/LiXizhi/NPLRuntime.git
git submodule init && git submodule update
./build_linux.sh

See Install Guide for details

Getting Started

Example code

local function activate()
if(msg) then

print(msg.data or "");
end
NPL.activate("(gl)helloworld.lua", {data="hello world!"})

end
NPL.this(activate);

Why a New Programming Language?

NPL prototype was designed in 2004, which was then called ‘parallel oriented language’. NPL is initially designed
to write flexible algorithms that works in a multi-threaded, and distributed environment with many computers across
the network. More specifically, I want to have a language that is suitable for writing neural network algorithms, 3d
simulation and visualization. Lua and C/C++ affinity was chosen from the beginning.

1

http://www.lua.org
http://www.erlang.org/

nplruntime documentation, Release 0.1.0

Usage

To run with GUI, use:

npl [parameters...]

To run in server mode, use:

npls [filename] [parameters...]

For example:

npls hello.lua

2 Chapter 1. Welcome to the NPL wiki!

CHAPTER 2

Table of Content

•

• What is NPL?

• Getting Started

• Basic Concepts

• C/C++ NPL Runtime API

• System Libraries

• User Interface

• 3D Programming

• Web Server

• Resources

• Join Us

3

https://github.com/LiXizhi/ParaCraft/wiki/JoinUs

nplruntime documentation, Release 0.1.0

4 Chapter 2. Table of Content

CHAPTER 3

NPL

• NPL

• NPL Web: 1080p

5

nplruntime documentation, Release 0.1.0

6 Chapter 3. NPL

CHAPTER 4

What is NPL?

NPL is short for neural parallel language.

• NPL is a general-purpose open-source language. Its syntax is 100% compatible with Lua.

• NPL provides essential functionality for building 3D/2D/Web/Server applications.

• NPL provides rich C/C++ API and large collections of libraries written in NPL.

• NPL is a single language solution for advanced and interactive GUI, complex opengl/DirectX 3D graphics,
scalable webserver and distributed software frameworks. It is cross-platform, high performance, extensible and
debuggable.

• NPL is a language system initially designed to operate like the brain. Nodes and connections are ubiquitous;
threading and networking logics are hidden from developers.

• NPL can mix user-mode preemptive and non-preemptive code. It gives you the concurrency of Erlang
and speed of Java/C++ in the same dynamic and weakly-typed language.

See here for a list of projects written in NPL.

Facts You Should Know

• NPL runtime is written in C/C++. It can utilize the luajit compiler, which dynamically compiles script/byte code
into native machine code, thus it can approach native C/C++ performance with some caveats.

• NPL runtime native API is a rich collection of C/C++ functions that is callable from NPL script. It includes
networking, graphics, io, audio, assets management, and core NPL/ParaEngine infrastructure. NPL Reference
contains its full documentation. However, 99% of time, we never use native API directly in NPL script.

• Instead, we use NPL libraries, which are pure NPL/lua script files, distributed open sourced or in a zip/pkg file.
Over 1 million lines of fully-documented NPL script code are available for use. Try to search in the repository
of NPL source code, before writing your own.

• NPL libraries are all written in object oriented fashion, code is organized in folders and table names-
paces.

• Because NPL is written in C/C++, it is cross-platform, extensible and easy to integrate with other thirty-party
tools. For examples, NPLRuntime is distributed with following built in plugins: bullet(a robust 3d physics
engine), mono(C# scripting module with NPL API), mysql/sqlite(database engine), libcurl(a robust http/ssh
client).

• There are two ways to use Lua, one is embedding, the other is extending it. NPL takes the former approach.
For example, true preemptive programming would NOT be possible with the second approach. The embedding

7

http://www.lua.org/
https://codedocs.xyz/LiXizhi/NPLRuntime/
https://github.com/NPLPackages/main/tree/master/script/ide
http://www.erlang.org/
http://luajit.org/
https://codedocs.xyz/LiXizhi/NPLRuntime
http://bulletphysics.org/
http://www.mono-project.com/
https://www.mysql.com/
https://www.sqlite.org/
https://curl.haxx.se/

nplruntime documentation, Release 0.1.0

approach also allows NPL to expose all of its API and language features to other compiler, for example, each
NPL runtime states can host Lua/Mono C#/C++ compiler states all together.

Hello World in NPL

Run in command line npl helloworld.lua. The content of helloworld.lua is like this:

print("hello world");

Now, there comes a more complicated helloworld. It turns an ordinary helloworld.lua file into a neuron file, by
associating an activate function with it. The file is then callable from any NPL thread or remote computer by its
NPL address(url).

NPL.activate("(gl)helloworld.lua", {data="hello world!"})
local function activate()

local msg = msg;
if(msg) then

print(msg.data or "");
end

end
NPL.this(activate);

If your code has *.npl file extension, you can use or extend NPL syntax via meta programming. For example, above
code can be written with NPL syntax in helloworld.npl as below.

NPL.activate("(gl)helloworld.npl", {data="hello world!"})
this(msg){

if(msg) then
print(msg.data or "");

end
}

Why Should I Use NPL?

You may write your next big project in NPL, if you meet any following condition, if not all:

• If you like truly dynamic language like lua.

• If you care about C/C++ compatibility and performance.

• Coming from the C/C++ world, yet looking for a replacement language for java/C#, that can handle heavy load
of 2d/3d graphical client or server applications, easier than C/C++.

• Looking for a scripting language for both client and server development that is small and easy to deploy on
windows and other platforms.

• Looking for a dynamic language that can be just-in-time compiled and modified at run time.

• Mix user-mode preemptive and non-preemptive code for massive concurrent computation.

Note: calling API between C++/scripting runtime, usually requires a context switch which is com-
putationally expensive most language also involves type translation (such as string parameter), man-
aged/unmanaged environment transition (garbage collection), etc. NPL/LUA has the smallest cost among
all languages, and with luajit, type translation is even unnecessary. Thus making it ideal to choose NPL
when some part of your responsive app needs to be developed in C/C++.

8 Chapter 4. What is NPL?

nplruntime documentation, Release 0.1.0

Background

NPL prototype was designed in 2004, which was then called ‘parallel oriented language’. In 2005, it was implemented
together with ParaEngine, a distributed 3d computer game engine.

Why a New Programming Language?

NPL is initially designed to write flexible algorithms that works in a multi-threaded, and distributed environment with
many computers across the network. More specifically, I want to have a language that is suitable for writing neural
network algorithms, 3d simulation and visualization. Lua and C/C++ affinity was chosen from the beginning.

Communicate Like The Brain

Although we are still unclear about our brain’s exact computational model, however, following fact seems ubiquitous
in our brain.

• The brain consists of neurons and connections.

• Data flows from one neuron to another: it is asynchronously, single-direction and without callback. Communi-
cation in NPL is the same as above. Each file can become a neuron file to receive messages from other neuron
files. They communicate asynchronously without callback. As a result, no lock is required because there is
no shared data; making it both simple and fast to write and test distributed algorithms and deploy software in
heterogeneous environment.

Compare NPL With Other Languages

• C/C++:

– Pros: They are actually the only popular cross-platform language. NPL Runtime is also written in C++.

– Cons: But you really need a more flexible scripting language which are dynamically compiled and easier
to use.

• Mono C#, Java:

– Pros: Suitable for server side or heavy client. Rich libraries.

– Cons: Deployment on windows platform is big. Writing C++ plugins is hard, calling into C++ function is
usually slow. Language is strong typed, not really dynamic.

• Node.js, Electron:

– Pros: Suitable for server side or heavy client. HTML5/javascript is popular.

– Cons: Deployment on the client-side is very big. writing C++ plugins is very hard.

• Python, Ruby, ActionScript and many others:

– Pros: Popular and modular

– Cons: Performance is not comparable to C/C++; standard-alone client-side deployment is very big; syntax
too strict for a scripting language. Some of them looks alien for C/C++ developers.

• Lua:

– Pros: NPL is 100% compatible with it. Really dynamic language, highly extensible by C/C++, and
syntax is clear for C/C++ developers.

4.4. Background 9

nplruntime documentation, Release 0.1.0

– Cons: Born as an embedded language, it does not have a standalone general-purpose runtime with native
API support and rich libraries for complex client/server side programming. This is where NPL fits in.

• Concurrency Model: in-depth compare with erlang, GO, scala

References

Click the links, if you like to read the old history:

10 Chapter 4. What is NPL?

CHAPTER 5

Install NPL Runtime

You can redistribute NPLRuntime side-by-side with your scripts and resource files on windows/linux/iOS, etc. How-
ever, this section is only about installing NPL runtime to your development computer and setting up a recommended
coding environment for NPL.

Install on Windows

Install from Windows Installer

It is very easy to install on windows. The win32 executable of NPL runtime is currently released in two forms, choose
one that is most suitable to you:

• 32bits/64bits most recent development version (recommended for standalone application or module dev). Click
to download

• Official stable version released in ParacraftSDK (recommended for paracraft mod dev). See below.

Paracraft is an IDE written completely in NPL. Follow the steps:

• Download ParacraftSDK

– or you can clone it with following commands (you need git installed):

clone repository & sub modules
git clone https://github.com/LiXizhi/ParaCraftSDK.git
cd ParaCraftSDK
git submodule init
git submodule update
Go into the repository
cd ParaCraftSDK
install paracraft
redist\paracraft.exe
install NPLRuntime
NPLRuntime\install.bat

• redist\paracraft.exe will install the most recent version of Paracraft to ./redist folder

– if you failed to install, please manually download from Paracraft and copy all files to redist folder.

• Inside ./NPLRuntime/install.bat

– The NPL Runtime will be copied from ./redist folder to ./NPLRuntime/win/bin

– The above path will be added to your %path% variable, so that you can run npl script from any folder.

11

https://github.com/LiXizhi/NPLRuntime/releases
https://github.com/LiXizhi/NPLRuntime/releases
http://www.paracraft.cn
https://github.com/LiXizhi/ParaCraftSDK/archive/master.zip
https://git-scm.com/
http://www.paracraft.cn

nplruntime documentation, Release 0.1.0

Update NPL Runtime to latest version

• If you use NPLRuntime installer, simply download and reinstall it here

• If you use paracraftSDK, we regularly update paracraft (weekly) on windows platform, you can update to
latest version of NPL Runtime following following steps.

– run redist\paracraft.exe to update paracraft’s NPL runtime in redist folder

– run NPLRuntime\install.bat to copy NPL runtime executable from redist to
NPLRuntime/win/bin folder

• Compiling from source code is always the latest version (recommended for serious developers), see next section.

On 64bits version

To build 64bits version of NPLRuntime, you need to build from source code (see next section), or download prebuild
version from http://www.paracraft.cn.

Our current build target for public users is still 32bits on windows platform.

Please note that all compiled and non-compiled NPL/lua code can be loaded by both 32bits/64bits version
of NPL runtime across all supported platforms (windows/linux/mac/android/ios) etc. However, if you use
any C++ plugins (such as mysql, mono, etc), they must be built for each platform and CPU architecture.

Install on Windows From Source

see .travis.yml or our build output for reference

• You need to download and build boost from source code. Version 1.55.0 and 1.60.0 are tested,but the
latest version should be fine. Suppose you have unzipped the boost to D:\boost, you can build with following
command.

bootstrap
b2 --build-type=complete

and then add a system environment variable called BOOST_ROOT, with value D:\boost(or where your boost is
located), so that our build-tool will find boost for you.

• Download NPLRuntime source code, or clone it by running:

git clone https://github.com/LiXizhi/NPLRuntime.git

• Download cmake, and build either server or client version. They share the same code base but with
different cmakelist.txt; client version has everything server has plus graphics API.

– Server version: run NPLRuntime/NPLRuntime/CMakeList.txt in
NPLRuntime/bin/win32 folder (any folder is fine, but do not use the cmakelist.txt source
folder), please refer to ./build_win32.bat for details

– Client version: run NPLRuntime/Client/CMakeList.txt in NPLRuntime/bin/Client
folder (any folder is fine, but do not use the cmakelist.txt source folder)

* REQUIRED: Install latest DirectX9 SDK in default location here.

* There is also a cmake option called ParaEngineClient_DLL which will build NPLRuntime as
shared library, instead of executable.

• If successful, you will have visual studio solution files generated. Open it with visual studio and build.

12 Chapter 5. Install NPL Runtime

https://github.com/LiXizhi/NPLRuntime/releases
http://www.paracraft.cn
https://github.com/LiXizhi/NPLRuntime/blob/master/appveyor.yml
https://ci.appveyor.com/project/DarrenGZY/nplruntime-e8wud
http://www.boost.org/
https://github.com/LiXizhi/NPLRuntime
https://cmake.org/
https://github.com/LiXizhi/NPLRuntime/blob/master/NPLRuntime/ParaEngineClient/cmake/DirectX.cmake

nplruntime documentation, Release 0.1.0

• The final executable is in ./ParaWorld/bin/ directory.

How to Debug NPLRuntime C++ source code

When you build NPLRuntime from source code, all binary file(dlls) are automatically copied to
./ParaWorld/bin/ directory. All debug version files have _d appended to the end of the dll or exe files,
such as sqlite_d.dll, etc.

To debug your application, you need to start your application using the executable in ./ParaWorld/bin/, such
as paraengineclient_d.exe. You also need to specify a working directory where your application resides,
such as ./redist folder in ParacraftSDK. Alternatively, one can also copy all dependent *_d.dll files from
./ParaWorld/bin/ to your application’s working directory.

Applications written in NPL are usually in pure NPL scripts. So you can download and install any NPL powered
application (such as this one), and set your executable’s working directory to it before debugging from source code.
ParacraftSDK also contains a good collection of example NPL programs. Please see the video at [[TutorialWeb-
Site]] for install guide.

Install on Linux

Click here to download precompiled NPL Runtime linux 64bits release.

Under linux, it is highly recommended to build NPL from source code with latest packages and build tools on your
dev/deployment machine.

• Download NPLRuntime source code, or clone it by running:

git clone https://github.com/LiXizhi/NPLRuntime.git
git submodule init && git submodule update

• Install third-party packages and latest build tools.

– see .travis.yml or our build output for reference (on debian/ubuntu). In most cases, you
need gcc 4.9 or above,cmake,bzip2,boost,libcurl. Optionally, you can install
mysql,mono,postgresql if want to build NPL plugins for them.

• Run ./build_linux.sh from the root directory. Be patient to wait for build to complete.

./build_linux.sh

Please note, you need to have at least 2GB memory to build with gcc, or you need to step up swap memory

• The final executable is in ./ParaWorld/bin64/ directory. A symbolic link to the executable is created in
/usr/local/bin/npl, so that you can run NPL script from anywhere.

Install on MAC OSX

We use cmake to build under MAC OSX, it is very similar to install on linux, but you should use

./build_mac_server.sh

Currently, only server version is working on mac, client version is still under development.

5.2. Install on Linux 13

http://www.paracraft.cn
https://github.com/LiXizhi/NPLRuntime/releases
https://github.com/LiXizhi/NPLRuntime
https://github.com/LiXizhi/NPLRuntime/blob/master/.travis.yml
https://travis-ci.org/LiXizhi/NPLRuntime
https://github.com/LiXizhi/NPLRuntime/blob/master/build_linux.sh
http://www.cyberciti.biz/faq/linux-add-a-swap-file-howto/
https://cmake.org/

nplruntime documentation, Release 0.1.0

Editors and Debuggers

You can use your preferred editors that support lua syntax highlighting. NPL Runtime has a built-in web server called
[[NPL Code Wiki|NPLCodeWiki]], it allows you to edit and debug via HTTP from any web browser on any platform.

• [[NPL Code Wiki|NPLCodeWiki]]: build-in debugger and editor.

It is though highly recommended that you install NPL Runtime on windows, and use following editors:

• Visual Studio Community Edition: the free version of visual studio. This one is what I use.

• Visual Studio Code: a very good free/cross-platform editor based on Atom

We have developed several useful open-source NPL language plugins for visual studio products: In visual studio,
select menu::Tools::Extensions, and search online for npl to install following plugins:

• NPL/Lua language service for visual studio: used by thousands of developers worldwide.

– Download Source code

• NPL Debugger for visual studio: set break points and attach to running NPL process.

– Download Source code

• NPL/ParaEngine Tools for visual studio: misc tools

Example Code

ParacraftSDK contains many example projects written in NPL.

• See ParacraftSDK wiki site for more details.

• You may now get your hand dirty by this tutorial or continue reading here.

14 Chapter 5. Install NPL Runtime

https://www.visualstudio.com/
https://code.visualstudio.com/
https://visualstudiogallery.msdn.microsoft.com/7782dc20-924a-4726-8656-d876cdbb3417
https://github.com/LiXizhi/NPL
https://visualstudiogallery.msdn.microsoft.com/7ebe665c-4f1d-41fd-91e1-52176cf2d9db
https://github.com/LiXizhi/NPL
https://visualstudiogallery.msdn.microsoft.com/accd022b-ec37-4614-8c08-30e291d28bd5
https://github.com/LiXizhi/ParaCraftSDK
https://github.com/LiXizhi/ParaCraftSDK/wiki
https://github.com/LiXizhi/ParaCraftSDK/wiki/TutorialSimplePlugin

CHAPTER 6

Projects Written in NPL

The following applications are completely written in NPL.

Paracraft

• Started: 2012-present

• Website: www.paracraft.cn

– ParacraftSDK

– Self Learning College

Paracraft is a standalone 3d animation software for everyone. It was my exploration of CAD(computer aided design)
using the vision brain (i.e. your right brain). Paracraft is an extensible tool that everyone can learn to create videos and
computer programs. I am using it to promote NPL language in self learning college to teach students programming.

Wikicraft

• Started: 2016-present

• Website: wikicraft.cn

Project is still in development. It is web site developed using NPL web framework.

Magic Haqi

• Started: 2009-2014 (still operating)

• Website: haqi.61.com

– user forum

– user videos

Magic Haqi is a free/paid 3D MMORPG published by taomee in November, 2009, allowing kids to play, create and
share 3d worlds. It has over 5 million registered users and tens of thousands of user created works in China. The
software is developed and owned by the developers of Paracraft, but has nothing to do with Paracraft. The initial
version of paracraft was developed as a module in Magic Haqi. We have valid contract with its publisher taomee for
their use of paracraft and its source code.

15

http://www.paracraft.cn
https://github.com/LiXizhi/ParaCraftSDK
http://wikicraft.cn
http://haqi.61.com

nplruntime documentation, Release 0.1.0

Magic Haqi2

• Started: 2012-2013 (still operating)

• Website: haqi2.61.com Same as Magic haqi.

Kids Movie Creator

• Started: 2006-2007

• Website: download link

Kids Movie Creator is a very old shareware released in 2006, allowing kids to create 3d world and make movies.

PaperStar

• Started: 2015-present

• Website: ps.61.com

This is a sandbox game developed by taomee.com using NPL and ParacraftSDK.

Projects Sponsored

Our investor will sponsor NPL related projects. If you have an idea, click here to get sponsored. The following is a
list of projects being sponsored or open for recruitment.

• NPL 3D1

• NPL UI1

• :heart: NPL1

• :heart: CAD1

• NPL

• Paracraft EarthGIS

• :heart: GITNPL1

• Paracraft BMAX

• NPLMeta

• NPL CAD

• Paracraft

• NPL Replication

•

• 3D

• Npl Voxelizer finished

• NPL finished

16 Chapter 6. Projects Written in NPL

http://www.61.com/haqi2/home.html
http://kids-movie-creator.software.informer.com/
http://ps.61.com/
https://github.com/LiXizhi/ParaCraftSDK/wiki
https://github.com/LiXizhi/ParaCraft/wiki/NPLUnion
https://mart.coding.net/project/6467
https://mart.coding.net/project/6297
https://mart.coding.net/project/6063
https://mart.coding.net/project/4481
https://mart.coding.net/project/5469
https://mart.coding.net/project/5022
https://mart.coding.net/project/5471
https://mart.coding.net/project/5008
https://mart.coding.net/project/4684
https://mart.coding.net/project/4602
https://mart.coding.net/project/4480
https://mart.coding.net/project/4276
https://mart.coding.net/project/3876
https://mart.coding.net/project/3742
https://mart.coding.net/project/3741
https://mart.coding.net/project/3586

nplruntime documentation, Release 0.1.0

• ParaEngine/NPL 3DMAC

Other projects

You are welcome to add your own software here

6.8. Other projects 17

https://mart.coding.net/project/3389

nplruntime documentation, Release 0.1.0

18 Chapter 6. Projects Written in NPL

CHAPTER 7

NPL vs Lua

NPL embeds the small Lua/luajit compiler, and adds tons of native C/C++ API and new programming paradigms,
making NPL a general purpose language/runtime.

Lua is an embedded language with the world fastest JIT compiler. The entire lua runtime is written in 6000 lines of
code, making it very small and memory efficient to be embedded in another host language/runtime.

Host Languages vs Embedded Compilers

A high-level language contains its syntax, native API and libraries. All dynamic language runtimes must embed one or
more compiler implementations in it. Compilers contains low-level implementation of compiling text code to bytecode
and then to machine code.

For example, some version of JAVA, python, mono C#, objective C are first compiled into LLVM bytecode, and
then the LLVM runtime compiles the bytecode to machine code. LLVM byte code is similar to lua or luajit byte code.
Java/Python/MonoC# runtime embeds LLVM compiler in the same way as we embed lua/luajit in NPL. The difference
is that LLVM is large and based on C/C++ syntax; but luajit is really small, and based on lua syntax. Languages like
Java/Python/C# also have tons of host API in addition to LLVM in the same way of NPL hosting lua. This is why lua
is designed to be an embedded language over which other host languages can be devised.

Facts about NPL vs Lua:

• NPL provides its own set of libraries written in NPL scripts, whose syntax is 100% compatible with Lua. This
means that one can use any existing Lua code in NPL script, but the reverse is NOT possible.

• NPL runtime has over 700 000 lines of C/C++ NPL Host API code (not counting third-party library files), on
which all NPL library files depends on. In NPL, we advise writing NPL modules in our recommend way, rather
than using Lua’s require function to load any external third-party modules.

• NPL library has over 1 000 000 lines of NPL script code covering many aspects of general-purpose program-
ming. They are distributed as open source NPL packages. You are welcome to contribute your own NPL
package utilizing our rich set of host API and libraries.

• NPL provides both non-preemptive and preemptive programming paradigm that is not available in Lua.

• NPL has built-in support for multi-threading and message passing system that is not available in lua.

• Finally, NPL loves Lua syntax. By default all NPL script files has .lua extension for ease of editing. Whenever
possible, NPL will not deviate its syntax from lua. However, in case, NPL extends Lua syntax, NPL script file
will use a different file extension. For example, *.page, *.npl are used just in case the script uses Non-Lua
compatible syntax.

19

http://llvm.org/
https://www.lua.org/ddj.html
https://codedocs.xyz/LiXizhi/NPLRuntime/

nplruntime documentation, Release 0.1.0

NPL is not a wrapper of lua. It hosts lua’s JIT compiler to provide its own programming API and language
features, in addition to several other compilers, like mono C#, see below.

Compilers in NPL

NPL runtime state can run on top of three compiler frameworks simultaneously:

• Lua/Luajit compiler

• C/C++

• Mono/C# compiler Which means that you can write code with all NPL API and framework features in either
of the above three compilers, and these code can communicate with one another with NPL.activate in the
same NPL runtime process. Please see NPL Architecture for details.

Code targeting C/C++ should be pre-compiled. The other two can be compiled on the fly.

References

Figure 1.0: NPL Architecture Stack

20 Chapter 7. NPL vs Lua

https://sketchboard.me/NzZQDl1sCrGu#/

CHAPTER 8

NPL Architecture

Figure 1.0: NPL Architecture Stack

Figure 2.0: NPL Scheduler

21

https://sketchboard.me/NzZQDl1sCrGu#/
https://sketchboard.me/tzZQNDMvvxvQ#/

nplruntime documentation, Release 0.1.0

22 Chapter 8. NPL Architecture

CHAPTER 9

Getting Started with NPL

The syntax of NPL is 100% compatible with lua. If you are unfamiliar with lua, the only book you need is

Book: Programming in Lua

NPL/Lua Syntax in 15 minutes

The following NPL code is modified from http://learnxinyminutes.com/

-- Two dashes start a one-line comment.

--[[
Adding two ['s and]'s makes it a multi-line comment.

--]]

--
-- 1. Variables and flow control.
--

local num = 42; -- All numbers are doubles.

s = 'string is immutable'
-- comparing two strings is as fast as comparing two pointers
t = "double-quotes are also fine"; -- `;` is optional at line end
u = [[Double brackets

start and end
multi-line strings.]]

-- 'nil' is like null_ptr. It undefines t. When data has no reference,
-- it will be garbage collected some time later.
t = nil

-- Blocks are denoted with keywords like do/end:
while num < 50 do
num = num + 1 -- No ++ or += type operators.

end

-- If clauses:
if (num <= 40) then
print('less than 40')

elseif ("string" == 40 or s) then
print('lua has dynamic type,thus any two objects can be compared.');

elseif s ~= 'NPL' then

23

http://www.lua.org/pil/contents.html
http://learnxinyminutes.com/

nplruntime documentation, Release 0.1.0

print('less than 40')
else

-- Variables are global by default.
thisIsGlobal = 5 -- variable case is sensitive.

-- How to make a variable local:
local line = "this is accessible until next `end` or end of containing script file"

-- String concatenation uses the .. operator:
print("First string " .. line)

end

-- Undefined variables return nil.
-- This is not an error:
foo = anUnknownVariable -- Now foo == nil.

aBoolValue = false

-- Only nil and false are falsy; 0 and '' are true!
if (not aBoolValue) then print('false') end

-- 'or' and 'and' are short-circuited. They are like ||, && in C.
-- This is similar to the a?b:c operator in C:
ans = (aBoolValue and 'yes') or 'no' --> 'no'

local nSum = 0;
for i = 1, 100 do -- The range includes both ends. i is a local variable.

nSum = nSum + i
end

-- Use "100, 1, -1" as the range to count down:
-- In general, the range is begin, end[, step].
nSum = 0
for i = 100, 1, -1 do

nSum = nSum + i
end

-- Another loop construct:
repeat

nSum = nSum - 1
until nSum == 0

--
-- 2. Functions.
--

function fib(n)
if n < 2 then return 1 end
return fib(n - 2) + fib(n - 1)

end

-- Closures and anonymous functions are ok:
function adder(x)
-- The returned function is created when adder is
-- called, and remembers the value of x:
return function (y) return x + y end

end

24 Chapter 9. Getting Started with NPL

nplruntime documentation, Release 0.1.0

a1 = adder(9)
a2 = adder(36)
print(a1(16)) --> 25
print(a2(64)) --> 100

-- Returns, func calls, and assignments all work
-- with lists that may be mismatched in length.
-- Unmatched receivers are nil;
-- unmatched senders are discarded.

x, y, z = 1, 2, 3, 4
-- Now x = 1, y = 2, z = 3, and 4 is thrown away.

function bar(a, b, c)
print(string.format("%s %s %s", a, b or "b", c))
return 4, 8, 15, 16, 23, 42

end

x, y = bar("NPL") --> prints "NPL b nil"
-- Now x = 4, y = 8, values 15..42 are discarded.

-- Functions are first-class, may be local/global.
-- These are the same:
function f(x) return x * x end
f = function (x) return x * x end

-- And so are these:
local function g(x) return math.sin(x) end
local g; g = function (x) return math.sin(x) end

-- Calls with one parameter don't need parenthesis:
print 'hello' -- Works fine.

--
-- 3. Tables.
--

-- Tables = Lua's only compound data structure;
-- they are associative arrays.
-- Similar to php arrays or js objects, they are
-- hash-lookup dicts that can also be used as lists.

-- Using tables as dictionaries / maps:

-- Dict literals have string keys by default:
t = {key1 = 'value1', key2 = false}

-- String keys can use js-like dot notation:
print(t.key1) -- Prints 'value1'.
t.newKey = {} -- Adds a new key/value pair.
t.key2 = nil -- Removes key2 from the table.

-- Literal notation for any (non-nil) value as key:
u = {['@!#'] = 'qbert', [{}] = 1729, [6.28] = 'tau'}
print(u[6.28]) -- prints "tau"

-- Key matching is basically by value for numbers

9.1. NPL/Lua Syntax in 15 minutes 25

nplruntime documentation, Release 0.1.0

-- and strings, but by identity for tables.
a = u['@!#'] -- Now a = 'qbert'.
b = u[{}] -- We might expect 1729, but it's nil:
-- b = nil since the lookup fails. It fails
-- because the key we used is not the same object
-- as the one used to store the original value. So
-- strings & numbers are more portable keys.

-- A one-table-param function call needs no parens:
function h(x) print(x.key1) end
h{key1 = 'Sonmi~451'} -- Prints 'Sonmi~451'.

for key, val in pairs(u) do -- Table iteration.
print(key, val)

end

-- _G is a special table of all globals.
print(_G['_G'] == _G) -- Prints 'true'.

-- Using tables as lists / arrays:

-- List literals implicitly set up int keys:
v = {'value1', 'value2', 1.21, 'gigawatts'}
for i = 1, #v do -- #v is the size of v for lists.
print(v[i]) -- Indices start at 1 !! SO CRAZY!

end
-- A 'list' is not a real type. v is just a table
-- with consecutive integer keys, treated as a list.

--
-- 3.1 Metatables and metamethods.
--

-- A table can have a metatable that gives the table
-- operator-overloadish behavior. Later we'll see
-- how metatables support js-prototypey behavior.

f1 = {a = 1, b = 2} -- Represents the fraction a/b.
f2 = {a = 2, b = 3}

-- This would fail:
-- s = f1 + f2

metafraction = {}
function metafraction.__add(f1, f2)
sum = {}
sum.b = f1.b * f2.b
sum.a = f1.a * f2.b + f2.a * f1.b
return sum

end

setmetatable(f1, metafraction)
setmetatable(f2, metafraction)

s = f1 + f2 -- call __add(f1, f2) on f1's metatable

-- f1, f2 have no key for their metatable, unlike
-- prototypes in js, so you must retrieve it as in

26 Chapter 9. Getting Started with NPL

nplruntime documentation, Release 0.1.0

-- getmetatable(f1). The metatable is a normal table
-- with keys that Lua knows about, like __add.

-- But the next line fails since s has no metatable:
-- t = s + s
-- Class-like patterns given below would fix this.

-- An __index on a metatable overloads dot lookups:
defaultFavs = {animal = 'gru', food = 'donuts'}
myFavs = {food = 'pizza'}
setmetatable(myFavs, {__index = defaultFavs})
eatenBy = myFavs.animal -- works! thanks, metatable

-- Direct table lookups that fail will retry using
-- the metatable's __index value, and this recurses.

-- An __index value can also be a function(tbl, key)
-- for more customized lookups.

-- Values of __index,add, .. are called metamethods.
-- Full list. Here a is a table with the metamethod.

-- __add(a, b) for a + b
-- __sub(a, b) for a - b
-- __mul(a, b) for a * b
-- __div(a, b) for a / b
-- __mod(a, b) for a % b
-- __pow(a, b) for a ^ b
-- __unm(a) for -a
-- __concat(a, b) for a .. b
-- __len(a) for #a
-- __eq(a, b) for a == b
-- __lt(a, b) for a < b
-- __le(a, b) for a <= b
-- __index(a, b) <fn or a table> for a.b
-- __newindex(a, b, c) for a.b = c
-- __call(a, ...) for a(...)

--
-- 3.2 Class-like tables and inheritance.
--

-- Classes aren't built in; there are different ways
-- to make them using tables and metatables.

-- Explanation for this example is below it.

Dog = {} -- 1.

function Dog:new() -- 2.
newObj = {sound = 'woof'} -- 3.
self.__index = self -- 4.
return setmetatable(newObj, self) -- 5.

end

function Dog:makeSound() -- 6.
print('I say ' .. self.sound)

end

9.1. NPL/Lua Syntax in 15 minutes 27

nplruntime documentation, Release 0.1.0

mrDog = Dog:new() -- 7.
mrDog:makeSound() -- 'I say woof' -- 8.

-- 1. Dog acts like a class; it's really a table.
-- 2. function tablename:fn(...) is the same as
-- function tablename.fn(self, ...)
-- The : just adds a first arg called self.
-- Read 7 & 8 below for how self gets its value.
-- 3. newObj will be an instance of class Dog.
-- 4. self = the class being instantiated. Often
-- self = Dog, but inheritance can change it.
-- newObj gets self's functions when we set both
-- newObj's metatable and self's __index to self.
-- 5. Reminder: setmetatable returns its first arg.
-- 6. The : works as in 2, but this time we expect
-- self to be an instance instead of a class.
-- 7. Same as Dog.new(Dog), so self = Dog in new().
-- 8. Same as mrDog.makeSound(mrDog); self = mrDog.

--

-- Inheritance example:

LoudDog = Dog:new() -- 1.

function LoudDog:makeSound()
s = self.sound .. ' ' -- 2.
print(s .. s .. s)

end

seymour = LoudDog:new() -- 3.
seymour:makeSound() -- 'woof woof woof' -- 4.

-- 1. LoudDog gets Dog's methods and variables.
-- 2. self has a 'sound' key from new(), see 3.
-- 3. Same as LoudDog.new(LoudDog), and converted to
-- Dog.new(LoudDog) as LoudDog has no 'new' key,
-- but does have __index = Dog on its metatable.
-- Result: seymour's metatable is LoudDog, and
-- LoudDog.__index = LoudDog. So seymour.key will
-- = seymour.key, LoudDog.key, Dog.key, whichever
-- table is the first with the given key.
-- 4. The 'makeSound' key is found in LoudDog; this
-- is the same as LoudDog.makeSound(seymour).

-- If needed, a subclass's new() is like the base's:
function LoudDog:new()
newObj = {}
-- set up newObj
self.__index = self
return setmetatable(newObj, self)

end

-- Copyright: modified from http://learnxinyminutes.com/
-- Have fun with NPL/Lua!

28 Chapter 9. Getting Started with NPL

nplruntime documentation, Release 0.1.0

How To Practice

We have developed NPL Code Wiki to help you learn and practice NPL. To launch NPL Code Wiki, you need to

• install Paracraft

• create an empty world or load online world like this one (HourOfCode)

• press F11 to launch NPL Code Wiki.

You can then enter any NPL code in the console. See below:

Advanced Language Features

Lua/NPL is easy to learn, but hard to master. Pay attention to following concepts.

• Lua string is immutable, so comparing two strings is as fast as comparing two pointers.

• Lua has lexical scoping, use it to accelerate your code by exposing frequently used objects as local variables in
its upper lexical scope.

• Always use local variables.

• NPL recommends object oriented programming, one can implement all C++ class features with lua tables, like
class inheritance and virtual functions, etc.

9.2. How To Practice 29

http://www.paracraft.cn
https://github.com/LiXizhi/HourOfCode/wiki

nplruntime documentation, Release 0.1.0

30 Chapter 9. Getting Started with NPL

CHAPTER 10

Hello World in NPL

This tutorial demonstrates

• how to setup a simple development environment

• write a program that output hello world

• explains the basic concept behind the scene

This article is an aggregates of information you will find in this wiki guide. Skip this tutorial, if you have
already read all related pages.

Setup Development Environment

For more information, see Install Guide.

• Download ParacraftSDK

– or you can clone it by running:

git clone https://github.com/LiXizhi/ParaCraftSDK.git

• Make sure you have updated to the latest version, by running ./redist/paracraft.exe at least once

• Run ./NPLRuntime/install.bat

– The NPL Runtime will be copied from ./redist folder to ./NPLRuntime/win/bin

– The above path will be added to your %path% variable, so that you can run npl script from any folder.

To write NPL code, we recommend using either or both of following editors (and plugins):

• Visual Studio Community Edition: the free version of visual studio

– In visual studio, select menu::Tools::Extensions, and search online for npl to install following
plugins:

• Visual Studio Code: a cross-platform free editor based on Atom

Hello World Program

Run in command line npl helloworld.lua. The content of helloworld.lua is like this:

31

https://github.com/LiXizhi/ParaCraftSDK/archive/master.zip
https://www.visualstudio.com/
https://code.visualstudio.com/
https://atom.io/

nplruntime documentation, Release 0.1.0

print("hello world");

You should see a file ./log.txt in your current working directory, which contains the “hello world” text.

If npl command is not found, make sure ./NPLRuntime/win/bin is added to your search %path%;
or you can simply use the full path to run your script (see below).

__YourSDKPath__/NPLRuntime/win/bin/npl helloworld.lua

Behind the Scenes

ParacraftSDK’s redist folder contains an installer of Paracraft. Running Paracraft.exe from redist directory
will install the latest version of Paracraft, which ships with NPLRuntime. ./NPLRuntime/install.bat
copies only NPL runtime related files from redist folder to ./NPLRuntime/win/bin and
./NPLRuntime/win/packages

./NPLRuntime/win/packages contains pre-compiled source code of NPL libraries.

To deploy your application, you need to deploy both bin and packages folders together with your own script and
resource files, such as

./bin/ :npl runtime 32bits

./bin64/ :npl runtime 64bits

./packages/ :npl precompiled source code

./script/ :your own script

./ :the working (root) directory of your application

In NPL script, you can reference any file using path relative to the working directory. So you need to make sure you
start your app from the root directory.

Further Readings

ParacraftSDK contains many example projects written in NPL.

• See ParacraftSDK wiki site for more details.

• See Source Code Overview

32 Chapter 10. Hello World in NPL

http://www.paracraft.cn
https://github.com/LiXizhi/ParaCraftSDK
https://github.com/LiXizhi/ParaCraftSDK/wiki

CHAPTER 11

Video Tutorial: Create A Web Site

video

In this video tutorial, you will learn how to create a web site like this with NPL. The following topics will be covered:

• setup NPL web development environment

• NPL server page programming model

• Debugging and logs

• Use table database

• MVC frameworks for serious web development

For complete explanation behind the scene, please read WebServer

Setup NPL web development environment

For more information, see Install Guide. The following is only about setting up the recommended IDE under win32.

• Install Git so that you can call git command from your cmd line.

• Download ParacraftSDK

– or you can clone it by running:

git clone https://github.com/LiXizhi/ParaCraftSDK.git

• Make sure you have updated to the latest version, by running ./redist/paracraft.exe at least once

• Run ./NPLRuntime/install.bat

– The NPL Runtime will be automatically copied from ./redist folder to ./NPLRuntime/win/bin

– The above path will be added to your %path% variable, so that you can run npl script from any folder.

• Download and install Visual Studio Community Edition: the free version of visual studio

– In visual studio, select menu::Tools::Extensions, and search online for npl or lua to install fol-
lowing plugins: NPL/Lua language service for visual studio: this will give you all the syntax highlighting,
intellisense and debugging capability for NPL in visual studio.

33

http://pan.baidu.com/s/1c20GEi
https://github.com/tatfook/wikicraft
https://git-scm.com/
https://github.com/LiXizhi/ParaCraftSDK/archive/master.zip
https://www.visualstudio.com/
https://visualstudiogallery.msdn.microsoft.com/7782dc20-924a-4726-8656-d876cdbb3417

nplruntime documentation, Release 0.1.0

Create a New Visual Studio Project

NPL is a dynamic language, it does not require you to build anything in order to run, so you can create any type of
visual studio project you like and begin adding files to it.

There are two ways to do it. Please use the lazy way but read the manual one.

The lazy way

• run git clone https://github.com/tatfook/wikicraft.git

• cd into the source directory and run ./update_packages.bat

• open the sln file with visual studio

• run start.bat, you will see the npl server started.

– visit http://localhost:8099 for the main site.

– visit http://127.0.0.1:8099 for the NPL code wiki web site.

• rename the project to your preferred name and begin coding in the ./www folder. (see next chapter)

• finally, see the configure the project property step in the manual one section.

The manual one

• create an empty visual studio project: such as a C# library or VC++ empty project.

• install the main npl package into your project root directory.

mkdir npl_packages
cd npl_packages
git clone https://github.com/NPLPackages/main.git

• configure the project property to tell visual studio to start NPLRuntime with proper command line pa-
rameters when we press Ctrl+F5.

– For the external program: we can use either npl.bat or ParaEngineClient.exe, see below

– external program: D:\lxzsrc\ParaCraftSDKGit\NPLRuntime\win\bin\ParaEngineClient.exe

– command line parameters: bootstrapper="script/apps/WebServer/WebServer.lua"
port="8099" root="www/" servermode="true" dev="D:/lxzsrc/wikicraft/"

– working directory: D:/lxzsrc/wikicraft/

* Note: the dev param and working directory should be the root of your web project directory.

• add main project at npl_packages/main/*.csproj to your newly created solution file, so that you have
all the source code of NPL and NPL web server for debugging and documentation. Reopen your visual studio
solution file for NPL documentation intellisense to take effect.

• create www/ directory and add index.page file to it.

• Press Ctrl+F5 in visual studio, and you will launch the web server.

– visit http://localhost:8099/index.page in your browser.

34 Chapter 11. Video Tutorial: Create A Web Site

http://localhost:8099
http://127.0.0.1:8099
http://localhost:8099/index.page

nplruntime documentation, Release 0.1.0

NPL server page programming model

NPL web server itself is an open source application written completely in NPL. For its complete source code, please
see script/apps/WebServer/WebServer.lua in the main npl_package.

So to start a website in a given folder such as ./www/, we need to call

npl bootstrapper="script/apps/WebServer/WebServer.lua" port="8099" root="www/"

Normally, we also need to place a file called webserver.config.xml in the web root folder. If no config
file is found, default.webserver.config.xml is used, which will redirect all request without extension to
index.page and serve *.npl, *.page, and all static files in the root directory and it will also host NPL code wiki
at http://127.0.0.1:8099. For more information, please see WebServer

Play with Mixed Code Web Programming

NPL server page is a mixed HTML/NPL file, usually with the extension .page. You can now play with it by creating
new *.page file in ./www/ directory under visual studio. For more information, see NPLServerPage.

Intellisense in visual studio

If you have installed NPL language service plugin and added main package csproj to your solu-
tion, you should already noticed intellisense in your visual studio IDE for all *.lua,*.npl,*.page
files. Everything under ./Documentation folder is used for auto-code completion. Please see
npl_packages/main/Documentation/, you can also add your own intellisense by adding xml files to your
own project’s ‘./Documentation’ folder. For more information, please see NplVisualStudioIDE.

Toggle Page Editing Mode

• One can toggle between two editing mode when writing *.page file in visual studio

– right click the page file in solution manager, and select open with...

– the default text editor will highlight NPL code in the page file, while all HTML text are greyed out

– the HTML editor will highlight all html tags and all npl code are greyed out. (see below)

You can toggle between these mode depending on whether you are working on HTML or code.

How Does It Work?

At runtime, server page is preprocessed into pure NPL script and then executed.

For example

<html><body>
<?npl for i=1,5 do ?>

<p>hello</p>
<?npl end ?>
</body></html>

Above server page will be pre-processed into following NPL page script, and cached for subsequent requests.

11.2. NPL server page programming model 35

https://github.com/NPLPackages/main/
https://github.com/NPLPackages/main/blob/master/script/apps/WebServer/default.webserver.config.xml
http://127.0.0.1:8099

nplruntime documentation, Release 0.1.0

echo ("<html><body>");
for i=1,5 do
echo("<p>hello</p>")

end
echo ("</body></html>");

When running above page script, echo command will generate the final HTML response text to be sent back to client.

Internals and Performance

Normally, a single NPL server can serve over 1000 dynamic page requests per seconds and with millions of concurrent
connections (limited by your OS). It can serve over 40000 req/sec if it is very simple dynamic page without database
query. See NPLPerformance and WebServer for details.

Unlike other preprocessed page language like PHP, database queries inside npl page file are actually invoked asyn-
chronously, but written in the more human-friendly synchronous fashion. Please see Use table database chap-
ter for details.

Debugging and logs

Most page errors are rendered to the HTTP stream, which is usually directly visible in your browser. For complete or
more hidden errors, please keep ./log.txt in your working directory open, so that you can read most recent error
logs in it. Your error is usually either a syntax error or a runtime error.

To debug with NPL Code wiki

• Launch your website

• Right click on a line in visual studio and select NPL set breakpoint here in the context menu.

• The http://127.0.0.1:8099/debugger page will be opened.

– Please note, your actual web site is at http://localhost:8099. They are two different websites
hosted on the same port by the same NPL process, you can use the first 127.0.0.1 website to debug the
second localhost website, because both web sites share the same NPL runtime stack/memory/code.

Please see DebugAndLog for general purpose NPL debugging.

Use table database

Table database is written in NPL and is the default and recommended database engine for your website. It can be used
without any external dependency or configuration.

<html>
<body>
<?
-- connect to TableDatabase (a NoSQL db engine written in NPL)
db = TableDatabase:new():connect("database/npl/", function() end);

db.TestUser:findOne({name="user1"}, resume);
local err, user = yield(); -- async wait when job is done

if(not user) then
-- insert 5 records to database asynchronously.

36 Chapter 11. Video Tutorial: Create A Web Site

nplruntime documentation, Release 0.1.0

local finishedCount = 0;
for i=1, 5 do

db.TestUser:insertOne({name=("user"..i)}, {name=("user"..i), password="1"},
→˓function(err, data)

finishedCount = finishedCount + 1;
if(finishedCount == 5) then

resume();
end

end);
end
yield(); -- async wait when job is done

echo("<p>we just created "..finishedCount.." users in `./database/npl/TestUser.db`
→˓</p>")
else

echo("<p>users already exist in database, print them</p>")
end

-- fetch all users from database asynchronously.
db.TestUser:find({}, function(err, users) resume(err, users); end);
err, users = yield(); -- async wait when job is done
?>

<?npl for i, user in ipairs(users) do ?>
i = <?=i?>, name=<? echo(user.name) ?>

<?npl end ?>

</body>
</html>

Try above code. See UsingTableDatabase for details.

MVC frameworks for serious web development

There are many ways to write MVC framework with NPL. For robust web development, we will introduce the MVC
coding style used in this sample web site.

The pros of using MVC framework is that:

• Making your website robust and secure

• Reuse the same code for both client/server side API calls.

• Writing less code for robust http rest API

It begins with a router page

All dynamic page requests are handled by a single file index.page, which calls routes.page.

The router page will check whether the request is a ajax rest API request or a normal page request according to its url.
For example, every request url that begins with /api/[name]/... is regarded as an API request, and everything
else is a normal page request.

If it is a ajax API request, we will simply route it by loading the corresponding page file in models/[name].page.
In other words, if you placed a user.page file in models directory, you have already created a set of ajax HTTP
rest API on the url /api/user/....

Normally, all of your model file should inherit from a carefully-written base model class. So that you can define a
robust data-binding interface to your low-level database system or anything else.

11.5. MVC frameworks for serious web development 37

https://github.com/tatfook/wikicraft
https://github.com/tatfook/wikicraft/blob/master/www/index.page
https://github.com/tatfook/wikicraft/blob/master/www/wiki/routes.page
https://github.com/tatfook/wikicraft/blob/master/www/wiki/models/abstract/base.page

nplruntime documentation, Release 0.1.0

For example, the models/project.page, defines basic CRUD interface to create/get/update/delete records in
the project.db database table. It also defines a custom ajax api at project:api_getminiproject() which
is automatically mapped to the url api/project/getminiproject/ in the router page (i.e. every method that
begins with api_ in the model class is a public rest API).

How you write your model class and define the mapping rules are completely up to you. The example website just
gives you an example of writing model class.

As a website developer, you can choose to query model data on the client side with HTTP calls, or on the server side by
directly calling model class method. Generally speaking, client side frameworks like angular, etc prefer everything
to be called on the client side. We also favors client side query in most cases unless it is absolutely necessary to do it
on the server side, such as content needs to be rendered on the server so that it is search-engine friendly.

Final Word

NPL used to be targeted at 3D/TCP server development since 2005. NPL for Web development was introduced in
early 2016, which is relatively new. So if there are errors or questions, please report on our issues.

Hope you enjoy your NPL programming~

38 Chapter 11. Video Tutorial: Create A Web Site

https://github.com/tatfook/wikicraft/blob/master/www/wiki/models/project.page
https://github.com/LiXizhi/NPLRuntime/issues

CHAPTER 12

Video Tutorial: Create Paracraft Mod

video

In this video tutorial, you will learn how to create 3D applications with NPL. Make sure you have read our previous
video TutorialWebSite. This is also going to be a very long video, be prepared and patient!

3D Graphics Powered By ParaEngine

NPL’s graphics API is powered by a built-in 3D computer game engine called ParaEngine, which is written as early
as 2005 (NPL was started in 2004). Its development goes side-by-side with NPL in the same repository. If you read
the source code of NPLRuntime, you will notice two namespaces called NPL and ParaEngine.

In the past years, I have made several attempts to make the ParaEngine portion more modular, but even so, I did not
separate it from the NPLRuntime code tree, because I want the minimum build of NPLRuntime to support all 3D
API, just like JAVA, C# and Chrome/NodeJS does. However, if you build NPLRuntime with no OpenGL/DirectX
graphics, such as on Linux server, these 3D APIs are still available to NPL script but will not draw anythings to your
screen.

Introducing Our 3D World Editor: Paracraft

First of all, creating 3D applications isn’t easy in general. Fortunately, NPL offers a free and open source NPL package
called Paracraft, which is 3d world editor written in NPL.

Paracraft itself is also a standard alone software product for every one (including kids above 7 years old) to create 3D
world, animated characters, movies and codes all in a single application. See http://www.paracraft.cn/ for its official
website. Actually there are hundreds of interactive 3D worlds, movies and games created by paracraft users without
the need of any third-party software.

Fig. Screen shot of Paracraft

Note: Yes, the look of it are inspired by a great sandbox game called minecraft (I love it very much),
but using blocks is just the methodology we adopt for crafting objects almost exclusively. Blocks in
paracraft can be resized and turned into animated characters. The block methodology (rather than using
triangles) allows everyone (including kids) to create models, animations, and even rigging characters very
easily, and it is lots of fun. Remember you can still import polygon models from MAYA/3dsmax, etc, if
you are that professional.

Let us look at some features of Paracraft.

• Everything is a block, entity or item, a block or entity can contain other items in it.

39

https://github.com/LiXizhi/NPLRuntime
https://github.com/NPLPackages/paracraft
http://www.paracraft.cn/

nplruntime documentation, Release 0.1.0

• Every operation is a command and most of them support undo and redo.

• There are items like scripts, movie blocks, bones, terrain brush, physics blocks, etc.

• Use NPL Code Wiki to view and debug.

• Network enabled, you can host your own private world and website in your world directory.

Creating Paracraft Plugin(Mod)

If you want to control more of the logic and looks of your 3D world, you need to write NPL code as professionally as
we wrote paracraft itself. This is what this tutorial is really about.

Why Using Mod?

Because paracraft is also released as an open source NPL package, you can just modify the source code of Paracraft
and turn it into anything you like or even write everything from scratch.

However, this is not the recommended way, because paracraft is maintained by us and regularly updated. If you
directly modify paracraft without informing us, it may be very difficult to stay up to date with us. Unless you find a
bug or wrote a new feature which we can merge into our main branch, you are recommended to use Paracraft Mod to
create plugins to extend paracraft or even applications that looks entirely different from it.

Paracraft Mod or plugin system exposes many extension points to various aspects of the system. One can use it to add
new blocks, commands, web page in NPL code wiki, or even replace the entire user interface and IO of paracraft.

_Fig. Above Image is an online game created via Paracraft Mod by one of our partners. _

You can see how much difference there is from paracraft.

Creating Your First Paracraft Mod

Install ParacraftSDK

• Install Git so that you can call git command from your cmd line.

• Download ParacraftSDK

– or you can clone it by running:

git clone https://github.com/LiXizhi/ParaCraftSDK.git

• Make sure you have updated to the latest version, by running ./redist/paracraft.exe at least once

• Download and install Visual Studio Community Edition: the free version of visual studio

– In visual studio, select menu::Tools::Extensions, and search online for npl or lua to install fol-
lowing plugins: NPL/Lua language service for visual studio: this will give you all the syntax highlighting,
intellisense and debugging capability for NPL in visual studio.

see Install Guide and ParaCraftSDK Simple Plugin for more information.

40 Chapter 12. Video Tutorial: Create Paracraft Mod

https://github.com/NPLPackages/paracraft
http://ps.61.com/
https://git-scm.com/
https://github.com/LiXizhi/ParaCraftSDK/archive/master.zip
https://www.visualstudio.com/
https://visualstudiogallery.msdn.microsoft.com/7782dc20-924a-4726-8656-d876cdbb3417
https://github.com/LiXizhi/ParaCraftSDK/wiki/TutorialSimplePlugin

nplruntime documentation, Release 0.1.0

Create HelloWorld Mod

• Run ./bin/CreateParacraftMod.bat and enter the name of your plugin, such as HelloWorld. A
folder at ./_mod/HelloWorld will be generated.

• Run ./_mod/HelloWorld/Run.bat to test your plugin with your copy of paracraft in the ./redist folder.

The empty plugin does not do anything yet, except printing a log when it is loaded.

Command line and runtime environment

If you open Run.bat with a text editor, you will see following lines.

@echo off
pushd "%~dp0../../redist/"
call "ParaEngineClient.exe" dev="%~dp0" mod="HelloWorld" isDevEnv="true"
popd

It specifies following things:

• the application is started via ParaEngineClient.exe in ./redist folder

• the dev parameter specifies the development directory (which is the plugin directory ./_mod/HelloWorld/),
basically what this means is that NPLRuntime will always look for files in this folder first and then in working
directory (./redist folder).

• the mod and isDevEnv parameters simply tells paracraft to load the given plugin from the development direc-
tory, so that you do not have to load and enable it manually in paracraft GUI.

Install Source Code From NPL Package

All APIs of paracraft are available as source code from NPL package. Run
./_mod/HelloWorld/InstallPackages.bat to get them or you can create
./_mod/HelloWorld/npl_packages and install manually like this.

cd npl_packages
git clone https://github.com/NPLPackages/main.git
git clone https://github.com/NPLPackages/paracraft.git

You may edit InstallPackages.bat to install other packages, and run it regularly to stay up-to-date with git
source.

it is NOT advised to modify or add files in the ./npl_packages folder, instead create a similar directory
structure in your mod directory if you want to add or modify package source code. Read npl_packages
for how to contribute.

Setup Project Files

NPL is a dynamic language, it does not require you to build anything in order to run, so you can create any type of
visual studio project you like and begin adding files to it. Open ModProject.sln with visual studio in your mod
directory, everything should already have been setup for you. You can Ctrl+F5 to run.

To manually create project solution file, follow following steps:

• create an empty visual studio project: such as a C# library and remove all cs files from it.

12.3. Creating Paracraft Plugin(Mod) 41

nplruntime documentation, Release 0.1.0

• add npl_packages/main/*.csproj and npl_packages/paracraft/*.csproj to your solu-
tions, so that you have all the source code of NPL core lib and paracraft, where you can easily search for
documentation and implementation.

• configure the project property to tell visual studio to start NPLRuntime with proper command line parameters
when we press Ctrl+F5. The following does exactly the same thing as the ./Run.bat in mod folder.

– For the external program: we can use ParaEngineClient.exe, see below

– external program: D:\lxzsrc\ParaCraftSDKGit\redist\ParaEngineClient.exe

– command line parameters: mod="HelloWorld" isDevEnv="true"
dev="D:/lxzsrc/ParaCraftSDKGit/redist/_mod/HelloWorld/"

– working directory: D:/lxzsrc/ParaCraftSDKGit/redist/_mod/HelloWorld/

* Note: the dev param and working directory should be the root of your mod project folder.

Please see my previous video tutorial for web server for more details about installing NPL language service for visual
studio.

Understanding Paracraft Mod

When paracraft starts, it will load the file at ./Mod/_plugin_name_/main.lua for each enabled plugin. It is
the entry point of any plugin, everything else is up to the developer.

In our example, open the entry file ./_mod/HelloWorld/Mod/HelloWorld/main.lua (see below). Because
development directory is set to _mod/HelloWorld by startup command line, the relative path of above file is
./Mod/HelloWorld/main.lua. This is why Paracraft can find the entry file.

local HelloWorld = commonlib.inherit(commonlib.gettable("Mod.ModBase"),commonlib.
→˓gettable("Mod.HelloWorld"));

function HelloWorld:ctor()
end

-- virtual function get mod name
function HelloWorld:GetName()

return "HelloWorld"
end

-- virtual function get mod description
function HelloWorld:GetDesc()

return "HelloWorld is a plugin in paracraft"
end

function HelloWorld:init()
LOG.std(nil, "info", "HelloWorld", "plugin initialized");

end

function HelloWorld:OnLogin()
end

-- called when a new world is loaded.
function HelloWorld:OnWorldLoad()
end

-- called when a world is unloaded.
function HelloWorld:OnLeaveWorld()
end

42 Chapter 12. Video Tutorial: Create Paracraft Mod

nplruntime documentation, Release 0.1.0

function HelloWorld:OnDestroy()
end

Most plugin will register a class in the “Mod” table, like above. The class usually inherits from Mod.ModBase. The
class will be instantiated when paracraft starts, and its virtual functions are called at appropriate time.

For example, if your plugin contains custom commands or block items, you can register them in the init() method.

How to write plugin

There are three recommended ways to extend paracraft

• create your own command: command is a powerful way to interact with the user. The rule of thumb is that
before you have any GUI dialog, consider writing a command first. Command is easy to test, integrate, and
capable of interacting with other commands. Graphic User Interface(GUI) is good, however, it can only interact
with humans in strict ways, commands can interact with both human and other commands or programs.

• create custom items: custom items include entities, items, or blocks. This ensures that your code is modular and
independent. The best way to add new functions to paracraft is by adding new block or item types. Consider the
color block and movie block in paracraft, which contains both GUI and complex logics.

• add filters: filters is a useful way to inject your code at predefined integration points in Paracraft.

The least recommended way to extend paracraft is to clone the source code files of paracraft to development directory
and modify them. Because plugin directory is searched before the main paracraft source code pkg file, it is possible to
overwrite source code of paracraft in this way, but you are highly decouraged to do so. If you are requesting a feature
that can not be added via the recommended ways, please inform the developers of paracraft to add a new filter for you,
instead of modifying our source code directly in your plugin.

Extending Command

see _mod/Test/Mod/Test/DemoCommand.lua

Extending GUI

see _mod/Test/Mod/Test/DemoGUI.lua

Extending Item

TODO:

Extending NPL Code Wiki

Users of Paracraft knows about NPL Code Wiki, if you want to use latest web technology (HTML5/js) to create
user interface that can interact with your 3D application, you can extend the NPL code wiki.

Now let us create a new web page and add a menu item in NPL Code wiki

First of all, you need to place your server page file in NPL code wiki’s web root directory. So we can create a file at
./_mod/HelloWorld/script/apps/WebServer/admin/wp-content/pages/HelloWorld.page

12.4. How to write plugin 43

nplruntime documentation, Release 0.1.0

its content may be

<h1>Hello World from plugin!</h1>

In the ./_mod/HelloWorld/Mod/HelloWorld/main.lua file’s init function, we add a menu filter to attach
a menu item.

function HelloWorld:init()

-- add a menu item to NPL code wiki's `Tools:helloworld`
NPL.load("(gl)script/apps/WebServer/WebServer.lua");
WebServer:GetFilters():add_filter('wp_nav_menu_objects', function(sorted_menu_

→˓items)
sorted_menu_items[sorted_menu_items:size()+1] = {

url="helloworld",
menu_item_parent="Tools",
title="hello world",
id="helloworld",

};
return sorted_menu_items;

end);
end

Now restart paracraft, and press F11 to activate the NPL code wiki, you will notice the new menu item in its tools
menu.

Documentation

The best documentation is the source code of paracraft which is in the paracraft package and several plugin demos in
the ./_mod/test folder. Since code is fully documented, use search by text in source code for documentations, as
if you are googling on the web.

Debugging

For detailed information, please see NPL Debugging and Logs

• Use ./redist/log.txt to print and check log file.

• press F12 to bring up the buildin debugger.

• use Ctrl+F3 to use the MCML browser for building GUI pages.

• use GUI debuggers for NPL in visual studio.

Plugin Deployment

To deploy and test your plugin in production environment, you need to package all the files in your plugin’s devel-
opment directory (i.e. _mod/HelloWorld/*.*) into a zip file called HelloWorld.zip, and place the zip file
to ‘./redist/Mod/HelloWorld.zip’. It is important that the file path in the zip file resembles the relative path to the
development directory (i.e. Mod/HelloWorld/main.lua in the HelloWorld.zip).

Once you have deployed your plugin, you can start paracraft normally, such as running
./redist/Paracraft.exe, enable your plugin in Paracraft and test it.

44 Chapter 12. Video Tutorial: Create Paracraft Mod

https://github.com/NPLPackages/paracraft
https://github.com/LiXizhi/NPLRuntime/wiki/DebugAndLog

nplruntime documentation, Release 0.1.0

You can redistribute your plugins in any way you like. We highly recommend that you code and release on github and
inform us (via email or pull request) if you have just released some cool plugin. We are very likely to fork your code
and review it.

Further Readings

• Check out all sample plugins in ./_mod folder.

• Check out all the SDK video tutorials by the author of Paracraft on the website.

• Read NPL Runtime’s official wiki

Why are you doing this?

Lots of people and even our partners asked me why are you doing this NPL/Paracraft/ParaEngine thing and
make all of them open source? To make the long story short, I want to solve two problems:

• Create a self-learning based educational platform so that everyone can learn computer science as my own child-
hood does.

– We hope in 7 years, this could be the best present that we can give to our children. Right now, I really
cannot find any material even close to it on the Internet.

• Create a online 3D simulated virtual world in which we can test new artificial intelligence algorithms with lots
of humans. Using blocks is obviously the most economical way.

Thanks to our generous investor at Tatfook, we are able to sponsor more independent programmers and support
more teams and partners using NPL to fulfill the above two goals. Please read this if you are interested in joining us
and be sponsored.

12.8. Further Readings 45

https://github.com/LiXizhi/NPLRuntime/wiki
https://github.com/LiXizhi/ParaCraft/wiki/NPLUnion

nplruntime documentation, Release 0.1.0

46 Chapter 12. Video Tutorial: Create Paracraft Mod

CHAPTER 13

NPL Source Code Overview

This is a brief overview of NPL source code. The best way to learn NPL is to read its source code.

All NPL related source code is distributed as packages.

Two important packages for NPL and paracraft developement is at:

• main package: NPL standard library source code

• paracraft package: paracraft source code

cd npl_packages
git clone https://github.com/NPLPackages/main.git
git clone https://github.com/NPLPackages/paracraft.git

When you program, you can search by text in all NPL source code.

Source code overview

Core Library Files

• script/ide/

• script/ide/commonlib.lua: common include file for frequently used libraries without GUI.

• script/ide/System: Core library

• script/ide/STL: Like C++ stl, simple dData structures

• script/ide/timer.lua: time class

• script/ide/math: vector, matrix, etc.

Object Oriented

• script/ide/oo.lua: class inheritance implementation

• script/ide/System/Core/ToolBase.lua: a powerful base class with signal/property support.

47

https://github.com/NPLPackages/main
https://github.com/NPLPackages/paracraft
https://github.com/NPLPackages/main/tree/master/script/ide
https://github.com/NPLPackages/main/tree/master/script/ide/commonlib.lua
https://github.com/NPLPackages/main/tree/master/script/ide/System
https://github.com/NPLPackages/main/tree/master/script/ide/STL
https://github.com/NPLPackages/main/tree/master/script/ide/timer.lua
https://github.com/NPLPackages/main/tree/master/script/ide/math
https://github.com/NPLPackages/main/tree/master/script/ide/oo.lua
https://github.com/NPLPackages/main/tree/master/script/ide/System/Core/ToolBase.lua

nplruntime documentation, Release 0.1.0

Web Server Source Code

• script/apps/WebServer: implementation of a web server (like Apache) in NPL.

• script/apps/WebServer/WebServer.lua: entry file

• script/apps/WebServer/admin: A php-like web site framework in NPL

Paracraft Source Code

Lots of code here. If you are developing Paracraft plugins or 3d client applications in NPL. It is important to read
source here.

• script/apps/Aries/Creator/Game: main source code of Paracraft

• [script/apps/Aries/Creator/Game/Areas](https://github.com/NPLPackages/paracraft/tree/master/script/apps/Aries
/Creator/Game/Areas): desktop GUI

• script/apps/Aries/Creator/Game/Entity: All movable entity types

• script/apps/Aries/Creator/Game/blocks: All block types

• [script/apps/Aries/Creator/Game/Commands](https://github.com/NPLPackages/paracraft/tree/master/script/apps/Aries
/Creator/Game/Commands): In-Game Commands

• [script/apps/Aries/Creator/Game/Tasks](https://github.com/NPLPackages/paracraft/tree/master/script/apps/Aries
/Creator/Game/Tasks): Commands with GUI

• [script/apps/Aries/Creator/Game/GUI](https://github.com/NPLPackages/paracraft/tree/master/script/apps/Aries
/Creator/Game/GUI): editor GUIs

• [script/apps/Aries/Creator/Game/Network](https://github.com/NPLPackages/paracraft/tree/master/script/apps/Aries
/Creator/Game/Network): Paracraft server implementation

• [script/apps/Aries/Creator/Game/Shaders](https://github.com/NPLPackages/paracraft/tree/master/script/apps/Aries
/Creator/Game/Shaders): GPU shaders

• [script/apps/Aries/Creator/Game/Mod](https://github.com/NPLPackages/paracraft/tree/master/script/apps/Aries
/Creator/Game/Mod): Plugin interface

• script/apps/Aries/Creator/Game/SceneContext: User input like keyboard and mouse

48 Chapter 13. NPL Source Code Overview

https://github.com/NPLPackages/main/tree/master/script/apps/WebServer
https://github.com/NPLPackages/main/tree/master/script/apps/WebServer/WebServer.lua
https://github.com/NPLPackages/main/tree/master/script/apps/WebServer/admin
https://github.com/NPLPackages/paracraft/tree/master/script/apps/Aries/Creator/Game
https://github.com/NPLPackages/paracraft/tree/master/script/apps/Aries/Creator/Game/Entity
https://github.com/NPLPackages/paracraft/tree/master/script/apps/Aries/Creator/Game/blocks
https://github.com/NPLPackages/paracraft/tree/master/script/apps/Aries/Creator/Game/SceneContext

CHAPTER 14

NPL Code Wiki

NPL Code Wiki is a web site which can be served directly from your local computer using NPL Runtime. It provides
you a way to communicate with NPL Runtime via any web browser.

• NPL Code Wiki is designed to help people learn and practice NPL programming.

• It provides a way to inspect or debug NPL Runtime via HTTP protocol.

• Providing an interactive console to edit/debug NPL code at runtime.

Start Code Wiki

Start With NPL Runtime

Run from console

npl script/apps/WebServer/WebServer.lua

The default web address is http://127.0.0.1:8099/. For more information, please see WebServer section.

Start With Paracraft

To launch NPL Code Wiki, you need to

• install Paracraft

• create an empty world

• press F11 to launch. NPL Code wiki will be opened using your default web browser.

You can then enter any NPL code in the console. See below:

NPL Code Wiki Source Code is at script/apps/WebServer

Alternatively, you can start it via following code. Press F12 in any world in Paracraft to enter code.

NPL.load("(gl)script/apps/WebServer/WebServer.lua");
WebServer:Start("script/apps/WebServer/admin");

49

http://127.0.0.1:8099/
http://www.paracraft.cn
https://github.com/LiXizhi/ParaCraftSDK/tree/master/src/script/apps/WebServer

nplruntime documentation, Release 0.1.0

NPL Debugger

NPL debugger is a HTTP protocol based debugger. It can be opened from menu::tools::NPL debugger, or
with Ctrl+Alt+I in paracraft.

Because it is based on HTTP and served from the same NPL runtime you are debugging, you can debug your running
application from any modern web browser. For example, you can debug apps running on linux server or mobile device
remotely from a windows client. However, you must make sure that the apps are started with full source code available
in its running directory.

How to Attach

There is no need to start your app in debug mode. Instead, just launch NPL code wiki, and follow the steps:

• In the web page, open your script files and press F9 or click the left margin of the line to set breakpoints.

• Click Attach button to begin debugging.

– You can then press F10, F11, Shift+F11 or press the buttons to step through your code.

– In the watcher window, you can evaluate any code or variable. Just type the variable name or code and
click evaluate

• When debugger is attached, your program may run pretty slow, so once you are finished, click Stop button to
detach.

Limitations

Currently only the main thread can be debugged, if you want to debug other thread, you can write your own debugger
in NPL, the complete source code of the NPL debugger web site is only 400 lines.

NPL Code Editor

This is a multi-tab code editor for NPL. It can be opened from menu::view::code editor.

• Enter file name and press enter to open the file.

• Click the sync button on left top corner to navigate to the active document’s directory.

• Even if you close your computer, your last opened files will be remembered when you open it again.

• Right click on the file name tab for a list of commands, such as open containing folder, reload, etc.

• Modified files will be marked with * in its tab, and need to be confirmed before closing it.

• Ctrl+S to save to disk.

• Filter files as you type in the left top’s directory text box.

Object Inspector

Click Menu::View::ObjectInspect to open object inspector. Here you can view and edit all objects
in NPL Runtime.

50 Chapter 14. NPL Code Wiki

nplruntime documentation, Release 0.1.0

Once you edited a property, a command string is generated on top of the property window. The command string is
equivalent to your last operation. In above image, the command string to change the window title is:

/property -all WindowText Paracraft

The server-side NPL code that realized the Object Inspector page can be viewed by clicking the
view source link on the bottom of the web page. This provides you a way to study the NPL imple-
mentation of whatever you see in NPL Code wiki web site.

The Console Page

Click Menu::Tools::Console to open Console Window. Here you can enter any NPL code or NPL web
page code to be evalulated at runtime.

For example, enter following code and press Run as Code button:

print("hello world")

By default, text is output to log.txt file in the current working directory.

alert("hello world")

The above code will display a message box, if code wiki is launched with Paracraft.

The Log Page

Click Menu::Tools::Log to open Log Window. Both the console page and the log page can display content in
log.txt.

• One can leave this window open even when your application restarts. It will automatically scroll to the newest
log for you.

• Check preserve log to preserve logs between each application restarts.

• If there are critical errors or warnings, an error sign with a text number will be displayed in red on top of the log
window, click it to navigate to the line of interest in the log file.

14.5. The Console Page 51

nplruntime documentation, Release 0.1.0

52 Chapter 14. NPL Code Wiki

CHAPTER 15

Debugging And Logs

There are many ways to debug your NPL scripts, including printing logs, via NPL Code Wiki, or via IDE like visual
studio or vscode, etc.

Logs in NPL

log.txt file is the most important place to look for errors. When your application starts, NPL runtime will create a
new log.txt in the current working directory.

Rule of Silence

The entire Unix system is built on top of the philosophy of rule of silence, which advocate every program to output
nothing to standard output unless absolutely necessary.

So by default, NPL runtime output nothing to its standard output. All NPL output API like log, print, echo write
content to log.txt instead of standard output. There is only one hidden API io.write which can be used to write
to standard output.

By default, NPL runtime and its libraries output many info to log files. This log file can grow big if your server runs
for days. There are two ways to deal with it: one is to use a timer (or external shell script) to backup or redirect
log.txt to a different file everyday; second is to change the default log level to error, which only output fatal
errors to log.txt. Application developers can also write their own logs to several files simultaneously, please see
script/ide/log.lua for details.

When application starts, one can also change the default log file name, or whether it will overwrite existing log.txt
or append to it. Please refer to log interface C++ API for details.

Use Logs For Debugging

The default log level of NPL is TRACE, which will write lots of logs to log.txt. At development time, it is good
practice to keep this file open in a text editor that can automatically refresh when file content is changed.

When you feel something goes wrong, search for error or runtime error in log.txt. NPL Code Wiki
provide a log page from menu:view:log, where you can filter logs. See below:

Many script programmers prefer to insert echo({params,...}) in code to output debug info to log.txt, and
when code is working, these echo lines are commented out.

A good practice is to insert permanent log line with debug level set to debug like
LOG.std(nil,"debug","modulename","some text",...).

53

http://www.linfo.org/rule_of_silence.html

nplruntime documentation, Release 0.1.0

Use A Graphical Debugger

HTTP Debugger in NPL Code Wiki

Sometimes inserting temporary log lines into code can be inefficient. One can also use NPL HTTP debugger to debug
code via HTTP in a HTML5 web browser with nice GUI. NPL HTTP Debugger allows you to debug remote process,
such as debugging linux/android/ios NPL process on a windows or mac computer. See NPLCodeWiki for details.

If you have installed NPL/Lua language service for visual studio, one can set HTTP-based breakpoints directly inside
visual studio.

In visual studio, open your NPL script or page file, right click the line where you want to set breakpoint, and from the
context menu, select NPL Set Breakpoint Here.

If you have started your NPL process, visual studio will open the HTTP debugger page with your default web browser.
This is usually something like http://localhost:8099/debugger. Breakpoints will be automatically set and
file opened in the browser.

Debugger Plugin for Visual Studio

We also provide open source NPL debugger plugins that is integrated with visual studio and vscode, see InstallGuide
for details.However, it is a little complex to install visual studio debugger plugin, please follow instruction here: How
To Install NPL Debugger for VS

Once installed, you can debug by selecting from visual studio menu Tools::Launch NPL Debugger...

54 Chapter 15. Debugging And Logs

https://visualstudiogallery.msdn.microsoft.com/7782dc20-924a-4726-8656-d876cdbb3417
https://visualstudiogallery.msdn.microsoft.com/7ebe665c-4f1d-41fd-91e1-52176cf2d9db
https://visualstudiogallery.msdn.microsoft.com/7ebe665c-4f1d-41fd-91e1-52176cf2d9db

CHAPTER 16

Embedding NPLRuntime

NPLRuntime comes with a general purpose executable for launching NPL based applications. This is the standard
usage of NPLRuntime.

However, some client application may prefer embedding NPLRuntime in their own executable file, or even as child
window of their own application. This is possible via NPLRuntime dll or (paraengineclient.dll) under win-
dows platform.

Please see https://github.com/LiXizhi/ParaCraftSDK/blob/master/samples/MyAppExe/MyApp.cpp for details.

#include "PEtypes.h"
#include "IParaEngineApp.h"
#include "IParaEngineCore.h"
#include "INPL.h"
#include "INPLRuntime.h"
#include "INPLRuntimeState.h"
#include "INPLAcitvationFile.h"
#include "NPLInterface.hpp"
#include "PluginLoader.hpp"

#include "MyApp.h"

using namespace ParaEngine;
using namespace NPL;
using namespace MyCompany;

// some lines omitted here

INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR lpCmdLine, INT)
{

std::string sAppCmdLine;
if (lpCmdLine)

sAppCmdLine = lpCmdLine;

// TODO: add your custom command line here
sAppCmdLine += " mc=true noupdate=true";

CMyApp myApp(hInst);
return myApp.Run(0, sAppCmdLine.c_str());

}

55

https://github.com/LiXizhi/ParaCraftSDK/blob/master/samples/MyAppExe/MyApp.cpp

nplruntime documentation, Release 0.1.0

Building Custom Executable Application

To build your custom application, you must download NPLRuntime source code (for header files) and set CMAKE
include directory properly.

• Download the sample at https://github.com/LiXizhi/ParaCraftSDK/blob/master/samples/MyAppExe

• Set CMAKE include directory to https://github.com/LiXizhi/NPLRuntime/tree/master/Client/trunk/
ParaEngineClient/Core

• paraengineclient.dll is dynamically loaded at runtime via NPL plugin interface, which means that
your executable does not need to link to any library file. **All you need when embedding NPLRuntime is
header files. ** This decouples your host application executable from NPLRuntime library files which may be
upgraded separately without rebuilding your host executable.

– Main header files:

Build NPLRuntime as Libraries

In most cases, you do not need to build these libraries, simply copy ParaEngineClient.dll and other related
dll files from the ParacraftSDK’s ./redist folder to your host application’s executable directory. Make sure they
are up to date.

However, one can also build NPL Runtime as Libraries manually. See CMake options when building NPLRuntime
from source code.

56 Chapter 16. Embedding NPLRuntime

https://github.com/LiXizhi/ParaCraftSDK/blob/master/samples/MyAppExe
https://github.com/LiXizhi/NPLRuntime/tree/master/Client/trunk/ParaEngineClient/Core
https://github.com/LiXizhi/NPLRuntime/tree/master/Client/trunk/ParaEngineClient/Core

CHAPTER 17

Extending NPLRuntime With C++ Plugins

NPL provides three extensibility modes: (1) NPL scripting (2) Mono C# dll (3) C++ plugin interface. All of them can
be used simultaneously. Please see BasicConcept for details.

C++ plugins

C++ plugins allows us to treat dll/so file as a single script file. We would only want to use it for performance critical
tasks or functions that make heavy use of other third-party C/C++ libraries.

The following is a sample c++ plugin. https://github.com/LiXizhi/ParaCraftSDK/tree/master/samples/plugins/
HelloWorldCppDll

#include "stdafx.h"
#include "HelloWorld.h"

#ifdef WIN32
#define CORE_EXPORT_DECL __declspec(dllexport)
#else
#define CORE_EXPORT_DECL
#endif

// forward declare of exported functions.
#ifdef __cplusplus
extern "C" {
#endif

CORE_EXPORT_DECL const char* LibDescription();
CORE_EXPORT_DECL int LibNumberClasses();
CORE_EXPORT_DECL unsigned long LibVersion();
CORE_EXPORT_DECL ParaEngine::ClassDescriptor* LibClassDesc(int i);
CORE_EXPORT_DECL void LibInit();
CORE_EXPORT_DECL void LibActivate(int nType, void* pVoid);

#ifdef __cplusplus
} /* extern "C" */
#endif

HINSTANCE Instance = NULL;

using namespace ParaEngine;

ClassDescriptor* HelloWorldPlugin_GetClassDesc();
typedef ClassDescriptor* (*GetClassDescMethod)();

57

https://github.com/LiXizhi/ParaCraftSDK/tree/master/samples/plugins/HelloWorldCppDll
https://github.com/LiXizhi/ParaCraftSDK/tree/master/samples/plugins/HelloWorldCppDll

nplruntime documentation, Release 0.1.0

GetClassDescMethod Plugins[] =
{

HelloWorldPlugin_GetClassDesc,
};

/** This has to be unique, change this id for each new plugin.

*/
#define HelloWorld_CLASS_ID Class_ID(0x2b905a29, 0x47b409af)

class HelloWorldPluginDesc:public ClassDescriptor
{
public:

void* Create(bool loading = FALSE)
{

return new CHelloWorld();
}

const char* ClassName()
{

return "IHelloWorld";
}

SClass_ID SuperClassID()
{

return OBJECT_MODIFIER_CLASS_ID;
}

Class_ID ClassID()
{

return HelloWorld_CLASS_ID;
}

const char* Category()
{

return "HelloWorld";
}

const char* InternalName()
{

return "HelloWorld";
}

HINSTANCE HInstance()
{

extern HINSTANCE Instance;
return Instance;

}
};

ClassDescriptor* HelloWorldPlugin_GetClassDesc()
{

static HelloWorldPluginDesc s_desc;
return &s_desc;

}

CORE_EXPORT_DECL const char* LibDescription()
{

return "ParaEngine HelloWorld Ver 1.0.0";

58 Chapter 17. Extending NPLRuntime With C++ Plugins

nplruntime documentation, Release 0.1.0

}

CORE_EXPORT_DECL unsigned long LibVersion()
{

return 1;
}

CORE_EXPORT_DECL int LibNumberClasses()
{

return sizeof(Plugins)/sizeof(Plugins[0]);
}

CORE_EXPORT_DECL ClassDescriptor* LibClassDesc(int i)
{

if (i < LibNumberClasses() && Plugins[i])
{

return Plugins[i]();
}
else
{

return NULL;
}

}

CORE_EXPORT_DECL void LibInit()
{
}

#ifdef WIN32
BOOL WINAPI DllMain(HINSTANCE hinstDLL,ULONG fdwReason,LPVOID lpvReserved)
#else
void __attribute__ ((constructor)) DllMain()
#endif
{

// TODO: dll start up code here
#ifdef WIN32

Instance = hinstDLL; // Hang on to this DLL's instance handle.
return (TRUE);

#endif
}

/** this is the main activate function to be called, when someone calls NPL.activate(
→˓"this_file.dll", msg);

*/
CORE_EXPORT_DECL void LibActivate(int nType, void* pVoid)
{

if(nType == ParaEngine::PluginActType_STATE)
{

NPL::INPLRuntimeState* pState = (NPL::INPLRuntimeState*)pVoid;
const char* sMsg = pState->GetCurrentMsg();
int nMsgLength = pState->GetCurrentMsgLength();

NPLInterface::NPLObjectProxy input_msg = NPLInterface::NPLHelper::
→˓MsgStringToNPLTable(sMsg);

const std::string& sCmd = input_msg["cmd"];
if(sCmd == "hello" || true)
{

NPLInterface::NPLObjectProxy output_msg;

17.1. C++ plugins 59

nplruntime documentation, Release 0.1.0

output_msg["succeed"] = "true";
output_msg["sample_number_output"] = (double)(1234567);
output_msg["result"] = "hello world!";

std::string output;
NPLInterface::NPLHelper::NPLTableToString("msg", output_msg, output);
pState->activate("script/test/echo.lua", output.c_str(), output.size());

}
}

}

The most important function is LibActivate which is like NPL.this(function() end) in NPL script.

It is the function to be invoked when someone calls something like below:

NPL.activate("this_file.dll", {cmd="hello"})

One can also place dll or so file under sub directories of the working directory, such as
NPL.activate("mod/this_file.dll",{cmd="hello"})

Note to Linux Developers

Under linux, the generated plugin file name is usually “libXXX.so”, please copy this file to working directory and
load using NPL.activate("XXX.dll",{cmd="hello"}) instead of the actual filename. NPLRuntime will
automatically replace XXX.dll with libXXX.so when searching for the dll file. This way, your script code does
not need to change when deploying to linux and windows platform.

60 Chapter 17. Extending NPLRuntime With C++ Plugins

CHAPTER 18

NPL Basic Concept

This section provides a more detailed description to NPL’s language feature.

A Brief History of Computer Language

Computer programming language is essentially a language in itself, like English and Chinese; but it is mainly written
by humans to instruct computers. Our current computers has its unique way to process language. In general, it is a kind
of command-like IO system, with input and output. Any piece of code can always be statically mapped to nodes and
connections, where each connection has a single-unique direction from output to input; when a computer executes the
code, it moves data along those connections. This is similar to how our brain works by our biological neural network.
The difference is that we do not know how, when and where data is passed along. Since parallelism in our brain can
also be mapped to a certain kind of node-connection relationship; the only thing differs is computational speed. So
when designing computer language, let us first take concurrent programming out, and focus on making it easier and
efficient to create all kinds of nodes and connections, and passing data along the connections.

Let us list all major patterns:

• Nearly all languages provides functions:

– Functional language like C provides defining custom input/output patterns with functions. Let us regard
if,else,expressions, etc as build-in functions.

• In some languages like javascript, function is first-class object, allowing one to create interesting node-
connection patterns.

• Some like C++,java,php supports object-oriented programming, which is essentially a filter-like in-
put/output patterns, that moves data as a whole more easily.

• Some is weakly typed like javascript, python allowing a node to accept input from more versatile input,
at some expense. Some strongly-typed language like C++ use template-programming to simulate this feature at
the cost of more code generated.

• Some is statically scoped like lua, that automatically captured variables for any asynchronous callback, and
some dynamically scoped language also simulates this feature with anonymous function and captures in some
clumsy way like ‘C#’.

• Some features establishing node and connections across multiple threads or computers on the network.

So what is the language that support all the above, while still maintaining high-performance? A close answer is lua;
the complete answer is NPL.

61

nplruntime documentation, Release 0.1.0

What NPL is Not

• meta programming is a technique to translate text code from first domain to second one, and then compile
second one and execute. It is common for some library to use this technique to provide a more concise way of
coding with the library. Examples:

– qt.io in C++

– php which pre-process code-mixed hyper text into complete programming code.

– Scala to ‘Java’

– CoffeeScript to Javascript

• NPL is NOT meta programming. But NPL web server library use a similar technique to make coding server
web pages that generate HTML5/javascript on the client more easily.

• NPL is not syntactic sugar or meta-programming for concurrent programming library. It is the programmer’s
job to write or use libraries that support concurrent programming, rather than introducing some non-intuitive
syntax to the language itself.

NPL Runtime Architecture

This section helps you to understand the internals of NPL runtime. One of the major things that one need to understand
is its message passing model.

Message Passing Model

In NPL, any file on disk can receive messages from other files. A file can send messages to other files via
NPL.activate function. This function is strictly asynchronous. The details is below:

Message processing always has two phases:

• phase1: synapse data relay phase

• phase2: neuron file response phase

When you send a message via NPL.activate, the message is in phase 1. Message is not processed immediately,
but cached in a queue. For example, if the target neuron file is on the local machine, the message is pushed (cached)
directly to local thread queue; if the target is on remote machine, NPL runtime will automatcally establish TCP
connection, and it will ensure the message is pushed(cached) on the target machine’s specified thread queue.

Message processing takes place in phase2. Each NPL runtime process may contain one or more NPL runtime states,
each corresponds to one system-level thread with its own message queue, memory, and code. NPL runtime states
are logically separated from each other. In each NPL state, it processes messages in its message queue in heart-beat
fashion. Therefore it is the programmer’s job to finish processing the message within reasonable time slice, otherwise
the message queue will be full and begin to lose early messages.

Code Overview

This section helps you to understand the open source code of NPL.

62 Chapter 18. NPL Basic Concept

nplruntime documentation, Release 0.1.0

incoming connections

incoming connection: acceptor/dispatcher thread
-> CNPLNetServer::handle_accept

-> CNPLNetServer.m_connection_manager.start(a new CNPLConnection object) : a
→˓new CNPLConnection object is added to CNPLConnectionManager

-> CNPLConnection.start()
-> automatically assign a temporary nid to this unauthenticated

→˓connection, temp connection is called ~XXX.
-> CNPLDispatcher::AddNPLConnection(temporary nid, CNPLConnection)

-> begin reading the connection sockets
-> LATER: Once authenticated, the scripting interface can call

→˓(CNPLConnection)NPL.GetConnection(nid)::rename(nid, bAuthenticated)

if any messages are sent via the new incomming connection, the message field should contain msg.nid and msg.tid,
where tid is temporaray nid. If there is no nid, it means that the connection is not yet authenticated. In NPL, one can
call NPL.accept(tid,nid)

incoming messages

incoming message
-> CNPLConnection::handle_read

-> CNPLConnection::handleReceivedData
-> CNPLConnection::m_parser.parse until a complete message is read

-> CNPLConnection::handleMessageIn()
-> CNPLConnection::m_msg_dispatcher.DispatchMsg((NPLMsgIn)this->m_

→˓input_msg)
-> CNPLRuntimeState = GetNPLRuntime()->

→˓GetRuntimeState(NPLMsgIn::m_rts_name)
-> if CNPLDispatcher::CheckPubFile(NPLMsgIn::m_filename)

-> new NPLMessage(from NPLMsgIn)
-> CNPLRuntimeState::Activate_async(NPLMessage);

-> CNPLRuntimeState::SendMessage(NPLMessage) ->
→˓insert message to CNPLRuntimeState.m_input_queue

-> or return access denied

outgoing messages

from NPL script NPL.activate()
-> CNPLRuntime::NPL_Activate

-> if local activation, get the runtime state.
-> CNPLRuntimeState::Activate_async(NPLMessage) -> CNPLRuntimeState::

→˓SendMessage(NPLMessage) -> insert message to CNPLRuntimeState.m_input_queue
-> if remote activation with nid, send via dispatcher

-> CNPLDispatcher::Activate_Async(NPLFileName, code)
-> CNPLConnection = CNPLDispatcher::CreateGetNPLConnectionByNID(nid)

-> if found in CNPLDispatcher::m_active_connection_map(nid,
→˓CNPLConnection), return

-> or if found in CNPLDispatcher::m_pending_connection_map(nid,
→˓CNPLConnection), return

-> or if found in CNPLDispatcher::m_server_address_map(host, port,
→˓ nid): we will actively establish a new connection to it.

-> CNPLDispatcher::CreateConnection(NPLRuntimeAddress)
-> CNPLNetServer::CreateConnection(NPLRuntimeAddress)

18.3. NPL Runtime Architecture 63

nplruntime documentation, Release 0.1.0

-> new CNPLConnection()
-> CNPLConnection::

→˓SetNPLRuntimeAddress(NPLRuntimeAddress)
-> (CNPLNetServer::m_connection_manager as

→˓CNPLConnectionManager)::add(CNPLConnection)
-> CNPLConnection::connect() -> CNPLConnection::m_

→˓resolver->async_resolve ->
-> CNPLConnection::handle_resolve ->

→˓CNPLConnection::m_socket.async_connect
-> CNPLConnection::handle_connect

-> CNPLConnection::handleConnect() : for
→˓custom behavior

-> CNPLConnection::start()
-> CNPLDispatcher::

→˓AddNPLConnection(CNPLConnection.m_address.nid, CNPLConnection)
-> add nid to CNPLDispatcher::m_

→˓active_connection_map(nid, CNPLConnection), remove nid from m_pending_connection_
→˓map(nid, CNPLConnection)

-> begin reading the connection sockets
-> Add to CNPLDispatcher::m_pending_connection_map if not

→˓connected when returned, return the newly created connection
-> or return null.

-> CNPLConnection::SendMessage(NPLFilename, code)
-> new NPLMsgOut(from NPLFilename, code)
-> push to CNPLConnection::m_queueOutput() and start sending

→˓first one if queue is previously empty.

NPL Message Format

NPL message protocol is based on TCP and HTTP compatible. More information is in NPLMsgIn_parser.h

quick sample

A (g1)script/hello.lua NPL/1.0
rts:r1
User-Agent:NPL
16:{"hello world!"}

NPL Quick Guide

In NPL runtime, there can be one or more runtime threads called NPL runtime states. Each runtime state has its own
name, stack, thread local memory manager, and message queue. The default NPL state is called (main), which is also
the thread for rendering 3D graphics. It is also the thread to spawn other worker threads.

To make a NPL runtime accessible by other NPL runtimes, one must call

NPL.StartNetServer("127.0.0.1", "60001");

This must be done on both client and server. Please note that NPL does not distinguish between client and server. If
you like, you may call the one who first calls NPL.activate to be client. For private client, the port number can
be “0” to indicate that it will not be accessible by other computers, but it can always connect to other public NPL
runtimes.

To make files within NPL runtime accessible by other NPL runtimes, one must add those files to public file lists by
calling

64 Chapter 18. NPL Basic Concept

https://github.com/LiXizhi/NPLRuntime/blob/master/Client/trunk/ParaEngineClient/NPL/NPLMsgIn_parser.h

nplruntime documentation, Release 0.1.0

NPL.AddPublicFile("script/test/network/TestSimpleClient.lua", 1);
NPL.AddPublicFile("script/test/network/TestSimpleServer.lua", 2);

the second parameter is id of the file. The file name to id map must be the same for all communicating computers.
This presumption may be removed in futhure versions.

To create additional worker threads (NPL states) for handling messages, one can call

for i=1, 10 do
local worker = NPL.CreateRuntimeState("some_runtime_state"..i, 0);
worker:Start();

end

Each NPL runtime on the network (either LAN/WAN) is identified by a globally unique nid string. NPL itself does
not verify or authenticate nid, it is the programmers’ job to do it.

To add a trusted server address to nid map, one can call

NPL.AddNPLRuntimeAddress({host="127.0.0.1", port="60001", nid="this_is_server_nid
→˓"})

so that NPL runtime knows how to connection to the nid via TCP endpoints. host can be ip or domain name.

To activate a file on a remote NPL runtime(identified by a nid), one can call

while(NPL.activate("(some_runtime_state)this_is_server_nid:script/test/network/
→˓TestSimpleServer.lua",
{some_data_table}) ~=0) do

end

Please note that NPL.activate() function will return non-zero if no connection is established for the target, but it
will immediately try to establish a new connection if the target address of server nid is known. The above sample code
simply loop until activate succeed; in real world, one should use a timer with timeout or use one of the helper function
such as NPL.activate_with_timeout.

When a file is activated, its activation function will be called, and data is inside the global msg table.

local function activate()
if(msg.nid) then
elseif(msg.tid) then
end
NPL.activate(string.format("%s:script/test/network/TestSimpleClient.lua", msg.

→˓nid or msg.tid), {some_date_sent_back})
end
NPL.this(activate)

msg.nid contains the nid of the source NPL runtime. msg.nid is nil, if connection is not authenticated or nid is
not known. In such cases, msg.tid is always available; it contains the local temporary id. When the connection is
authenticated, one can call following function to reassign nid to a connection or reject it. NPL runtime will try to reuse
the same existing TCP connect between current computer and each nid or tid target, for all communcations between
the two endpoints in either direction.

NPL.accept(msg.tid, nid) -- to rename tid to nid, or
NPL.reject(msg.tid) -- to close the connection.

only the main thread support non-thread safe functions, such as those with rendering. For worker
thread(runtime state), please only use NPL functions that are explicitly marked as thread-safe in the doc-
umentation.

18.3. NPL Runtime Architecture 65

nplruntime documentation, Release 0.1.0

NPL Extensibility and Scripting Performance

NPL provides three extensibility modes: (1) Lua scripting runtime states (2) Mono .Net runtimes (3) C++ plugin
interface All of them can be used simultanously to create logics for game applications. All modes support cross-
platform and multi-threaded computing.

Lua runtime is natively supported and has the most extensive ParaEngine API exposed. It is both extremely light
weighted and having a good thread local memory manager. It is suitable for both client and server side scripting. It is
recommended to use only lua scripts on the client side.

Mono .Net runtimes is supported via NPLMono.dll (which in turn is a C++ plugin dll). The main advantage of using
.Net scripting is its rich libraries, popular language support(C#,Java,VB and their IDE) and compiled binary code
performance. .Net scripting runtime is recommended to use on the server side only, since deploying .Net on the client
requires quite some disk space. And .Net (strong typed language) is less effective than lua when coding for client
logics.

C++ plugins allows us to treat dll file as a single script file. It has the best performance among others, but also is the
most difficult to code. We would only want to use it for performance critical tasks or functions that make extensive use
of other third-party C/C++ libraries. For example, NPLRouter.dll is a C++ plugin for routing messages on the server
side.

Cross-Runtime Communication

A game project may have thousands of lua scripts on the client, mega bytes of C# code contained in several .NET
dll assemblies on the server, and a few C++ plugin dlls on both client and server. (On linux, *.dll will actually
find the *.so file) All these extensible codes are connected to the ParaEngine Runtime and have full access to the
exposed ParaEngine API. Hence, source code written in different language runtimes can use the ParaEngine API to
communicate with each other as well as the core game engine module.

More over, NPL.activate is the single most versatile and effective communication function used in all NPL ex-
tensibility modes. In NPL, a file is the smallest communication entity. Each file can receive messages either from the
local or remote files.

• In NPL lua runtime, each script file with a activate() function assigned can receive messages from other scripts.

• In NPL .Net runtime, each C# file with a activate() function defined inside a class having the same name as the
file name can receive messages from other scripts. (namespace around class name is also supported, see the
example)

• In NPL C++ plugins, each dll file must expose a activate() function to receive messages from other scripts.

Following are example scripts and NPL.activate() functions to send messages to them.

File name: script/HelloWorld.lua (NPL script file)
activate: NPL.activate("script/HelloWorld.lua", {data})

local function activate()
end
NPL.this(activate)

File name: HelloWorld.cs inside C# mono/MyMonoLib.dll
activate: NPL.activate("mono/MyMonoLib.dll/HelloWorld.cs", {data})

NPL.activate("mono/MyMonoLib.dll/ParaMono.HelloWorld.cs", {data})

class HelloWorld
{

66 Chapter 18. NPL Basic Concept

nplruntime documentation, Release 0.1.0

public static void activate(ref int type, ref string msg)
{
}

}
namespace ParaMono
{

class HelloWorld
{

public static void activate(ref int type, ref string msg)
{
}

}
}

File name: HelloWorld.cpp inside C++ MyPlugin.dll
activate: NPL.activate("MyPlugin.dll", {data})

CORE_EXPORT_DECL void LibActivate(int nType, void* pVoid)
{

if(nType == ParaEngine::PluginActType_STATE)
{
}

}

The NPL.activate() can use the file extension (*.lua, *.cs, *.dll) to distinguish the file type.

All NPL.activate() communications are asynchronous and each message must go through message queues be-
tween the sending and receiving endpoints. The performance of NPL.activate() is therefore not as efficient as local
function calls, so they are generally only used to dispatch work tasks to different worker threads or communicating
between client and server.Generally, 30000 msgs per second can be processed for 100 bytes message on 2.5G quad
core CPU machine. For pure client side game logics, we rarely use NPL.activate(), instead we use local function calls
whereever possible.

High Level Networking Programming Libraries

In real world applications, we usually need to build a network architecture on top of NPL, which usually contains the
following tool sets and libraries.

• gateway servers and game(application) servers where the client connections are kept.

• routers for dispaching messagings between game(app) servers and database servers.

• database servers that performances business logics and query the underlying databases(My SQLs)

• memory cache servers that cache data for database servers to minimize access to database.

• Configuration files and management tools (shell scripts, server deployingment tools, monitoring tools, etc)

• backup servers for all above and DNS servers.

18.3. NPL Runtime Architecture 67

nplruntime documentation, Release 0.1.0

68 Chapter 18. NPL Basic Concept

CHAPTER 19

Bootstrapping

Bootstrapping is to specify the first script file to load when starting NPL runtime, it will also be activated every 0.5
seconds. There are several ways to do it via command line.

The recommended way is to specify it explicitly with bootstrapper=filename parameters. Like below.

npl bootstrapper="script/gameinterface.lua"

If no file name is specified, script/gameinterface.lua will be used. A more concise way is to specify the file
name as first parameter, like below.

npl helloworld.lua

Internally, the boot order of NPL is like below:

• When the NPL runtime starts, it first reads all of its command line arguments as name, value pairs and save them
to an internal data structure for later use.

• NPL recognizes several predefined command names, one of them is bootstrapper. It specifies the main loop file.

• NPL initializes itself. This can take several seconds, involving reading configurations, graphics initialization,
script API bindings, etc.

• When everything is initialized, the majority of NPL’s Core API is available to the scripting interface and NPL
loads the main loop script specified by the bootstrapper and calls its activation function every 0.5 seconds.

• Anything happens afterwards is up to the progammer who wrote the main loop script.

In addition to script file, one can also use XML file as the bootstrapper. The content of the xml should look like below.

<?xml version="1.0" ?>
<MainGameLoop>(gl)script/apps/Taurus/main_loop.lua</MainGameLoop>

To start it, we can use

npl script/apps/Taurus/bootstrapper.xml

Understanding File Path

When programming with NPL, the code will reference other script or asset file by relative file name. The search order
of a file is as follows:

• check if file exists in the current development directory (in release time, this is the same as the working directory)

69

nplruntime documentation, Release 0.1.0

• check if file exists in the search paths (by default it is the current working directory)

• check if file exists in any loaded archive files (mainXXX.PKG or world/plugins ZIP files) in their loading order.

• if the file is NPL script file, look for precompiled binary file at ./bin/filename.o also in above places and order.

• if the file is listed in asset_manifest.txt, we will download it or open it from ./temp/cache if already
downloaded.

• check if disk file exists in all search paths of npl_packages.

• if none of above places are found, we will report file not found. Please also note, some API allows you to
use specify search order, temporarily disable some places, or include certain directory like the current writable
directory. Please refer to the usage of each API for details.

70 Chapter 19. Bootstrapping

CHAPTER 20

Build-in NPL CommandLine

Native Params

The following command line is built-in to NPL executable.

• bootstrapper="myapp/main.lua": set bootstrapper file

• [-d|D] [filename]: -d to run in background (daemon mode), -D to force run in fore ground.

• dev="C:/MyDev/": set dev directory, if empty or “/”, it means the current working directory.

• servermode="true": disable 3D rendering and force running in server mode.

• logfile="log2016.5.20.txt": change default log.txt location

• single="true": force only one instance of the executable can be running in the OS.

• loadpackage="folder1,folder1,...": commar separated list of packages to load before bootstrap-
ping. Such as loadpackage="npl_packages/paracraft/"

NPL System Module Params

The following params are handled by the NPL system module

• debug="main" : enable IPC debugging to the main NPL thread. No performance penalties.

• resolution="1020 680": force window size in case of client application

Paracraft Module Params

The following params are handled by the Paracraft Package

• world="worlds/DesignHouse/myworld" : Load a given world at start up.

• mc="true": force paracraft (in case of running from MagicHaqi directory)

71

nplruntime documentation, Release 0.1.0

72 Chapter 20. Build-in NPL CommandLine

CHAPTER 21

NPL Load File

In NPL code, one may call something like NPL.load("script/ide/commonlib.lua") to load a file. All
NPL code needs to be compiled in order to run. NPL.load does following things automatically for you.

• find the correct file either in NPL zip package or according to NPL search path defined in npl_packages and
automatically use precompiled binary version (*.o) if available (see DeployGuide).

– relative path is supported, but only recommended for private files, such as NPL.load("./A.lua")
or NPL.load("../../B.lua")

– when using relative path, file extension can be omitted, where *.npl and *.lua are searched, such as
NPL.load("./A") or NPL.load("../../B")

• automatically resolve recursion.(such as File A load File B, while B also load A).

• compiles the script code if not yet compiled

– if file extension is *.npl, NPL meta compiler will be invoked.

• The first time code is compiled, it also execute the code chunk in protected mode with pcall. In most cases,
this means injecting new code to the global or exported table, so that one can use them later.

• it can also be used to load C++/Mono C#/NPL packages

• return the exported file module if any. See file based module section below for details.

/**
load a new file (in the current runtime state) without activating it. If the file is
→˓already loaded,
it will not be loaded again unless bReload is true.
IMPORTANT: this function is synchronous; unlike the asynchronous activation function.
LoadFile is more like "include in C++".When the function returns, contents in the
→˓file is loaded to memory.
@note: in NPL/lua, function is first class object, so loading a file means executing
→˓the code chunk in protected mode with pcall,
in most cases, this means injecting new code to the global table. Since there may be
→˓recursions (such as A load B, while B also load A),
your loading code should not reply on the loading order to work. You need to follow
→˓basic code injection principles.
For example, commonlib.gettable("") is the the commended way to inject new code to
→˓the current thread's global table.
Be careful not to pollute the global table too much, use nested table/namespace.
Different NPL applications may have their own sandbox environments, which have their
→˓own dedicated global tables, for example all `*.page` files use a separate global
→˓table per URL request in NPL Web Server App.
@note: when loading an NPL file, we will first find if there is an up to date
→˓compiled version in the bin directory. if there is,

73

nplruntime documentation, Release 0.1.0

we will load the compiled version, otherwise we will use the text version. use bin
→˓version, if source version does not exist; use bin version, if source and bin
→˓versions are both on disk (instead of zip) and that bin version is newer than the
→˓source version.
e.g. we can compile source to bin directory with file extension ".o", e.g. "script/
→˓abc.lua" can be compiled to "bin/script/abc.o", The latter will be used if
→˓available and up-to-date.
@param filePath: the local relative file path.
If the file extension is ".dll", it will be treated as a plug-in. Examples:

"NPLRouter.dll" -- load a C++ or C# dll. Please note that, in windows, it
→˓looks for NPLRonter.dll; in linux, it looks for ./libNPLRouter.so

"plugin/libNPLRouter.dll" -- almost same as above, it is reformatted to
→˓remove the heading 'lib' when loading. In windows, it looks for plugin/NPLRonter.
→˓dll; in linux, it looks for ./plugin/libNPLRouter.so
@param bReload: if true, the file will be reloaded even if it is already loaded.

otherwise, the file will only be loaded if it is not loaded yet.
@remark: one should be very careful when calling with bReload set to true, since this
→˓may lead to recursive

reloading of the same file. If this occurs, it will generate C Stack overflow
→˓error message.

*/
NPL.load(filePath, bReload)

Code Injection Model

Since, in NPL/lua, table and functions are first class object, we use a very flexible code injection model to manage all
dynamically loaded code during the life time of an application.

To inject new code, we use method like commonlib.gettable, commonlib.inherit, please see Ob-
jectOriented for details. The developer should ensure they inject their code with unique names (such as
CompanyName.AppName.ModuleName etc). In other words, do not pollute the global table.

To reference these code, the user needs to call NPL.load as well as commonlib.gettable to create a local stub
variable in the file scope. Please note, due to NPL.load order, the stub may be created before the actual code is
injected into it.

For example, you have a class file in script/MyApp/MyClass.lua like below

local MyClass = commonlib.inherit(nil, commonlib.gettable("MyApp.MyClass"));

MyClass.default_param = 1;

-- this is the constructor function.
function MyClass:ctor()

self.map = {};
end

function MyClass:init(param1)
self.map.param1 = param1;
return self;

end

function MyClass:Clone()
return MyClass:new():init(self:GetParam());

end

74 Chapter 21. NPL Load File

nplruntime documentation, Release 0.1.0

function MyClass:GetParam()
return self.map.param1;

end

To use above class, one may use

NPL.load("(gl)script/MyApp/MyClass.lua")
local MyClass = commonlib.gettable("MyApp.MyClass");

local UserClass = commonlib.inherit(nil, commonlib.gettable("MyApp.UserClass"));

function UserClass:ctor()
self.map = MyClass:new(); -- use another class

end

please see ObjectOriented for details.

File-based Modules

File-based modules use the containing source code filename to store exported object. So programmers do not need to
explicitly specify object namespace in code, this solves several issues:

• code written in this style is independent of its containing file location.

• code looks more isolated.

• multiple versions of the same code can coexist.

One not-so-convenient thing is that the user must explicitly load every referenced external modules written
in this way in every file. This is the primary reason why the common NPL library are NOT written in this
way.

Defining file-based module

There are three ways to define a file-based module. Suppose, you have a file called A.npl and you want to export
some object from it.

• One way is to call NPL.export when file is loaded.

-- this is A.npl file
local A = {};
NPL.export(A);

function A.print(s)
echo(s);

end

Following is a better and recommended way, which works with cyclic dependencies. See Module Cyclic
Reference section for details.

-- this is A.npl file
local A = NPL.export();
function A.print(s)

echo(s);
end

21.2. File-based Modules 75

nplruntime documentation, Release 0.1.0

• Another way is simply return the object to be associated with the current file at the last line of code, like below.
This is also a lua-compatible way. It does not work when there are cyclic dependencies.

-- this is A.npl file
local A = {};
return A;

• finally, there is an advanced manual way to simply add to the _file_mod_ table.

-- this is A.npl file
local A = {};
_file_mod_[NPL.filename():gsub("([^/]*$)", "").."A.npl"] = A;

As you can see, file-based module simply automatically stores the mapping from the module’s full filename to its
exported object in a hidden global table. If one changes the filename or file location, the mapping key also changes.
This is why you can load multiple versions of the same module and let the user to choose which one to use in a given
source file.

Module Cyclic Reference

When you write file modules that depends on each file, there are cyclic dependencies. One workaround is to modify
the default exported object, which is always an empty table, instead of creating a local table. See below. We have two
files A and B that reference each other.

-- A.lua
local B = NPL.load("./B.lua")
local A = NPL.export();
function A.print(s)

B.print(s)
end

-- B.lua
local A = NPL.load("./A.lua")
local B = NPL.export();
function B.print(s)

echo(s..type(A));
end

NPL.export() is the core of file module system in NPL, it will return the default empty table represent-
ing the current file. This is the same way as how commonlib.gettable() solve cyclic dependency.

Modules with Object Oriented Class Inheritance

The following shows an example of two class table with inheritance, and also cyclic dependency.

-- base_class.lua
local derived_class = NPL.load("./derived_class.lua")
local base_class = commonlib.inherit(nil, NPL.export());
function base_class:ctor()

derived_class:cyclic_dependency_test();
end

-- derived_class.lua
local base_class = NPL.load("./base_class.lua")
local B = commonlib.inherit(base_class, NPL.export());

76 Chapter 21. NPL Load File

nplruntime documentation, Release 0.1.0

function B:ctor()
end
function B:cyclic_dependency_test()
end

Loading file-based module With module name

To import a file-based module, one calls NPL.load(modname). NPL.load is a versatile function which can load
either standard source files or file-based modules and return the exported module object.

A modname is different from filename, a string is treated as modname if and only if it does NOT contain
file extension or begin with ”./” or ”../”. such as NPL.load("sample_mod")

NPL.load(modname) will automatically find the source file of the module by trying the following locations in
order until it finds one. Using module name in NPL.load is less efficient than using explicit filename, because it needs
to do the search every time it is called, so only use it at file-load time, such as at the beginning of a file.

• if the code that invokes NPL.load is from npl_packages/[parentModDir]/

– try: npl_packages/[parentModDir]/npl_mod/[modname]/[modname].lua|npl

– try: npl_packages/[parentModDir]/npl_packages/[modname]/npl_mod/[modname]/[modname].lua|npl

• try: npl_mod/[modname]/[modname].npl|lua

• try: npl_packages/[modname]/npl_mod/[modname]/[modname].npl|lua

Example 1: NPL.load(“sample_mod”) will test following file locations for both *.npl and *.lua file:

• if code that invokes it is from npl_packages/[parentModDir]/

– npl_packages/[parentModDir]/npl_mod/sample_mod/sample_mod.npl

– npl_packages/[parentModDir]/npl_packages/sample_mod/npl_mod/sample_mod/sample_mod.npl

• npl_mod/sample_mod/sample_mod.npl

• npl_packages/sample_mod/npl_mod/sample_mod/sample_mod.npl

Example 2: NPL.load(“sample_mod.xxx.yyy”) will test following file locations for both *.npl and *.lua file:

• if code that invokes it is from npl_packages/[parentModDir]/

– npl_packages/[parentModDir]/npl_mod/sample_mod/xxx/yyy.npl

– npl_packages/[parentModDir]/npl_packages/sample_mod/npl_mod/sample_mod/xxx/yyy.npl

• npl_mod/sample_mod/xxx/yyy.npl

• npl_packages/sample_mod/npl_mod/sample_mod/xxx/yyy.npl

As you can see, the npl_packages/ and npl_mod/ are two special folders to search for when loading file based
module. code inside npl_packages/xxx/ folder always use local npl_mod and local npl_packages before searching
for global ones, this allow multiple versions of the same npl_mod to coexist in different npl_packages. It is up to the
developer to decide how to package and release their application or modules.

Here is an example of npl_mod in main package

For more information on NPL packages, please see npl_packages

21.2. File-based Modules 77

https://github.com/NPLPackages/main/tree/master/npl_mod/sample_mod

nplruntime documentation, Release 0.1.0

When to Use require

require is Lua’s way to load a file based module. NPL hooks into this function to always call NPL.load with
the same input before passing down. More specifically, NPL injects a custom loader (at index 2) into the lua’s
package.loaders. So calling require is almost identical to calling NPL.load so far, except that multiple
code versions can not coexist.

Do not Use require

Since NPL.load now hooks original lua’s require function. Facts in this section may not be true, but we still do not
recommend using require in your own code, unless you are reusing third-party lua libraries. The reason is simple,
NPL.load is backward-compatible with the original require, but the original require does not support features provided
by NPL.load. Using require in your own code may confuse other lua developers. Therefore, code written for NPL
developers should always use NPL.load.

One should only use require to load lua C plugins, do not use it in your own NPL scripts. require is rated low
in community. Its original implementation is same, but use a similar global hidden table, whose logic you never know,
in a flat manner. It also does not support cyclic dependency so far.

Moreover, some application may need to create sandbox environment to isolate code execution (code are injected to
specified global table), using require give you no control of code injection.

Different NPL applications may have their own sandbox environments, which have their own dedicated global tables,
for example all *.page files use a separate global table per URL request in NPL Web Server App.

Finally, require‘ is slow and uses different search paths than NPL; while NPL.load is fast and honors precompiled code
either in package zip file or in search paths defined in npl_packages, and consistent on all platforms.

78 Chapter 21. NPL Load File

CHAPTER 22

File Activation

NPL can communicate with remote NPL script using the NPL.activate function. It is a powerful function, and is
available in C++, mono plugin too.

Basic Syntax

Like in neural network, all communications are asynchronous and uni-directional without callbacks. Although the
function does return a integer value. Please see NPL Reference for details.

NPL.activate(url, {any_pure_data_table_here, })

• @param url: a globally unique name of a NPL file name instance. The string format of an NPL file name
is like below. [(sRuntimeStateName|gl)][sNID:]sRelativePath[] the following is a list of all
valid file name combinations:

– user001@paraengine.com:script/hello.lua – a file of user001 in its default gaming thread

– (world1)server001@paraengine.com:script/hello.lua – a file of server001 in its thread
world1

– (worker1)script/hello.lua – a local file in the thread worker1

– (gl)script/hello.lua – a glia (local) file in the current runtime state’s thread

– script/hello.lua – a file in the current thread. For a single threaded application, this is usually
enough.

– (worker1)NPLRouter.dll – activate a C++ file. Please note that, in windows, it looks for NPLRon-
ter.dll; in linux, it looks for ./libNPLRouter.so

– (worker1)DBServer.dll/DBServer.DBServer.cs – for C# file, the class must have a static
activate function defined in the CS file.

• @param msg: it is a chunk of pure data table that will be transmitted to the destination file.

Neuron File

Only files associated with an activate function can be activated. This is done differently in NPL/C++/C# plugin

• In NPL, it is most flexible by using the build-in NPL.this function

79

nplruntime documentation, Release 0.1.0

local function activate()
-- input is passed in a global "msg" variable
echo(msg);

end
NPL.this(activate);

• msg is passed in a global msg variable which is visible to all files, and the msg variable will last until the thread
receives the next activation message.

• In NPL’s C++ plugin, you need to define a C function. Please see ParacraftSDK’s example folder for details.

• In NPL’s mono C# plugin, you simply define a class with a static activate function. Please see
ParacraftSDK’s example folder for details.

Input Message, msg.nid and msg.tid

In above code, msg contains the information received from the sender, plus the source id of the sender. For
unauthenticated senders, the source id is stored in msg.tid, which is an auto-generated number string like “~1”. The
receiver can keep using this temporary id msg.tid to send message back, such as

local function activate()
-- input is passed in a global "msg" variable
NPL.activate(format("%s:some_reply_file.lua", msg.tid or msg.nid), {"replied"});

end
NPL.this(activate);

The receiver can also rename the temporary msg.tid by calling NPL.accept(msg.tid,nid_name), so the
next time if the receiver got a message from the same sender (i.e. the same TCP connection), the msg.nid contains
the last assigned name and msg.tid field no longer exists. We usually use NPL.accept to distinguish between au-
thenticated and unauthenticated senders, and reject unauthenticated messages by calling NPL.reject(msg.tid)
as early as possible to save CPU cycles.

See following example:

local function activate()
-- input is passed in a global "msg" variable
if(msg.tid) then

-- unauthenticated? reject as early as possible or accept it.
if(msg.password=="123") then

NPL.accept(msg.tid, msg.username or "default_user");
else

NPL.reject(msg.tid);
end

elseif(msg.nid) then
-- only respond to authenticated messages.
NPL.activate(format("%s:some_reply_file.lua", msg.nid), {"replied"});

end
end
NPL.this(activate);

Please note, msg.tid or msg.nid always match to a single low-level TCP connection, hence their names are
shared to all neuron files in the process. For example, if you accept in one neuron file, all other neuron files will
receive messages in msg.nid form.

Please see

80 Chapter 22. File Activation

nplruntime documentation, Release 0.1.0

Neuron File Visibility

For security reasons, all neuron files can be activated by other files in the same process. This includes scripts in other
local threads of the same process. See also MultiThreading.

To expose script to remote computers, one needs to do two things.

• one is to start NPL server by listening to an IP and port: NPL uses TCP protocol for all communications.

• second is to tell NPL runtime that a given file is a public neuron file.

See below:

NPL.StartNetServer("0.0.0.0", 8080);
NPL.AddPublicFile(filename, id);

• “0.0.0.0” means all IP addresses, one can also use “127.0.0.1”, “localhost” or whatever IP addresses.

• 8080: is the port number. Pick any one you like.

The second parameter to NPL.AddPublicFile is an integer, which is transmitted on behalf of the long filename
to save bandwidth. So it must be unique if you add multiple public files.

Please note, that file name must be relative to working directory. such as
NPL.AddPublicFile("script/test/test.lua",1). Absolute path is not supported at
the moment.

Activating remote file

Once a server NPL runtime exposes a public file, other client NPL runtime can activate it with the NPL.activate
function. Please note that, an NPL runtime can be both server and client. The one who started the connection is usually
called server. Pure client must also call NPL.StartNetServer in order to activate the server. But it can specify
port="0" to indicate that it will not listen for incoming connections.

However, on the client, we need to assign a local name to the remote server using the
NPL.AddNPLRuntimeAddress, so that we can refer to this server by name in all subsequent NPL.activate
call.

NPL.AddNPLRuntimeAddress({host = "127.0.0.1", port = "8099", nid = "server1"})

Usually we do this during initialization time only once. After that we can activate public files on the remote server
like below:

NPL.activate("server1:helloworld.lua", {})

Please note the name specified by nid is arbitrary and used only on the client computer to refer to a computer. In
other words, different clients can name the same remote computer differently.

Message Delivery Guarantees

Please note that the first time that a computer activate a remote file, a TCP connection is automatically established,
but the first message is NOT delivered. This is because NPL.activate() is asynchronous, it must return a value
before the new connection is established. It always returns 0 when your message is delivered via an existing path, and
non-zero in case of first message to a remote system.

22.3. Neuron File Visibility 81

nplruntime documentation, Release 0.1.0

If there is no already established path (i.e no TCP connection), NPL will immediately try to establish it. However,
please note, the message that returns non-zero is NOT delivered, even if NPL successfully established a path to the
remote system soon afterwards. Thus it is the programmer’s job to activate again until NPL.activate returns 0.
This guarantees that a message with 0 return value is always delivered at least in the viewpoint of NPL runtime.

The same mechanism can be used to recover lost-connections.

To write fault-tolerant message passing code, consider following.

• When a NPL runtime process start, ping remote process with NPL.activate until it returns 0 to establish TCP
connections. This ensures that all subsequent NPL.activate across these two systems can be delivered.

• Discover Lost Connections:

– Method1: Use a timer to ping or listen for disconnect system event and reconnect in case connection is
lost. However, individual messages may be lost during these time.

– Method2: Use a wrapper function to call NPL.activate, which checks its return value. If it is non-zero,
either reconnect with timeout or put message to a pending queue in case connection can be recovered
shortly and resend queued messages.

We leave it to the programmer to handle all occasions when NPL.activate returns non-zero values, since different
business logic may use a different approach.

Example Client/Server app

To run the example, call following.

npl "script/test/network/SimpleClientServer.lua" server="true"
npl "script/test/network/SimpleClientServer.lua" client="true"

The source code of this demo is also included in ParaCraftSDK/examples folder.

filename: script/test/network/SimpleClientServer.lua

--[[
Author: Li,Xizhi
Date: 2009-6-29
Desc: start one server, and at least one client.

npl "script/test/network/SimpleClientServer.lua" server="true"
npl "script/test/network/SimpleClientServer.lua" client="true"

]]
NPL.load("(gl)script/ide/commonlib.lua"); -- many sub dependency included

local nServerThreadCount = 2;
local initialized;
local isServerInstance = ParaEngine.GetAppCommandLineByParam("server","false") ==
→˓"true";

-- expose these files. client/server usually share the same public files
local function AddPublicFiles()

NPL.AddPublicFile("script/test/network/SimpleClientServer.lua", 1);
end

-- NPL simple server
local function InitServer()

AddPublicFiles();

82 Chapter 22. File Activation

nplruntime documentation, Release 0.1.0

NPL.StartNetServer("127.0.0.1", "60001");

for i=1, nServerThreadCount do
local rts_name = "worker"..i;
local worker = NPL.CreateRuntimeState(rts_name, 0);
worker:Start();

end

LOG.std(nil, "info", "Server", "server is started with %d threads",
→˓nServerThreadCount);
end

-- NPL simple client
local function InitClient()

AddPublicFiles();

-- since this is a pure client, no need to listen to any port.
NPL.StartNetServer("0", "0");

-- add the server address
NPL.AddNPLRuntimeAddress({host="127.0.0.1", port="60001", nid="simpleserver"})

LOG.std(nil, "info", "Client", "started");

-- activate a remote neuron file on each thread on the server
for i=1, nServerThreadCount do

local rts_name = "worker"..i;
while(NPL.activate(string.format("(%s)simpleserver:script/test/network/

→˓SimpleClientServer.lua", rts_name),
{TestCase = "TP", data="from client"}) ~=0) do
-- if can not send message, try again.
echo("failed to send message");
ParaEngine.Sleep(1);

end
end

end

local function activate()
if(not initialized) then

initialized = true;
if(isServerInstance) then

InitServer();
else

InitClient();
end

elseif(msg and msg.TestCase) then
LOG.std(nil, "info", "test", "%s got a message", isServerInstance and "server

→˓" or "client");
echo(msg);

end
end
NPL.this(activate);

The above server is actually multi-threaded, please see MultiThreading for details.

The first time, NPL.activate calls a new remote server (with which we have not established
TCP connection), the message is dropped and returned a non-zero value. NPLExtension.lua

22.4. Activating remote file 83

nplruntime documentation, Release 0.1.0

contains a number of helper functions to help you for sending a guaranteed message, such as
NPL.activate_with_timeout.You need to include commonlib to use it.

Trusted Connections and NID

In the receiver’s activate function, it can assign any name or nid to incoming connection’s NPL runtime.

HelloWorld Example

Now, here comes a more complicated helloworld. It turns an ordinary helloworld.lua file into a neuron file, by
associating an activate function with it. The file is then callable from any NPL thread or remote computer by its
NPL address(url).

local function activate()
if(msg) then

print(msg.data or "");
end
NPL.activate("(gl)helloworld.lua", {data="hello world!"})

end
NPL.this(activate);

Simple Web Server Example

NPL uses a HTTP-compatible protocol, so it is possible to handle standard HTTP request using the same NPL server.
When NPL runtime receives a HTTP request message, it will send it to a publicly visible file with id -10. So we can
create a simple HTTP web server with just a number of lines, like below:

filename: main.lua

NPL.load("(gl)script/ide/commonlib.lua");

local function StartWebServer()
local host = "127.0.0.1";
local port = "8099";
-- tell NPL runtime to route all HTTP message to the public neuron file `http_

→˓server.lua`
NPL.AddPublicFile("source/SimpleWebServer/http_server.lua", -10);
NPL.StartNetServer(host, port);
LOG.std(nil, "system", "WebServer", "NPL Server started on ip:port %s %s", host,

→˓port);
end
StartWebServer();

local function activate()
end
NPL.this(activate);

filename: http_server.lua

NPL.load("(gl)script/ide/Json.lua");
NPL.load("(gl)script/ide/LuaXML.lua");

84 Chapter 22. File Activation

nplruntime documentation, Release 0.1.0

local tostring = tostring;
local type = type;

local npl_http = commonlib.gettable("MyCompany.Samples.npl_http");

-- whether to dump all incoming stream;
npl_http.dump_stream = false;

-- keep statistics
local stats = {

request_received = 0,
}

local default_msg = "HTTP/1.1 200 OK\r\nContent-Length: 31\r\nContent-Type: text/
→˓html\r\n\r\n<html><body>hello</body></html>";

local status_strings = {
ok ="HTTP/1.1 200 OK\r\n",
created ="HTTP/1.1 201 Created\r\n",
accepted ="HTTP/1.1 202 Accepted\r\n",
no_content = "HTTP/1.1 204 No Content\r\n",
multiple_choices = "HTTP/1.1 300 Multiple Choices\r\n",
moved_permanently = "HTTP/1.1 301 Moved Permanently\r\n",
moved_temporarily = "HTTP/1.1 302 Moved Temporarily\r\n",
not_modified = "HTTP/1.1 304 Not Modified\r\n",
bad_request = "HTTP/1.1 400 Bad Request\r\n",
unauthorized = "HTTP/1.1 401 Unauthorized\r\n",
forbidden = "HTTP/1.1 403 Forbidden\r\n",
not_found = "HTTP/1.1 404 Not Found\r\n",
internal_server_error = "HTTP/1.1 500 Internal Server Error\r\n",
not_implemented = "HTTP/1.1 501 Not Implemented\r\n",
bad_gateway = "HTTP/1.1 502 Bad Gateway\r\n",
service_unavailable = "HTTP/1.1 503 Service Unavailable\r\n",

};
npl_http.status_strings = status_strings;

-- make an HTML response
-- @param return_code: nil if default to "ok"(200)
function npl_http.make_html_response(nid, html, return_code, headers)

if(type(html) == "table") then
html = commonlib.Lua2XmlString(html);

end
npl_http.make_response(nid, html, return_code, headers);

end

-- make a json response
-- @param return_code: nil if default to "ok"(200)
function npl_http.make_json_response(nid, json, return_code, headers)

if(type(html) == "table") then
json = commonlib.Json.Encode(json)

end
npl_http.make_response(nid, json, return_code, headers);

end

-- make a string response
-- @param return_code: nil if default to "ok"(200)
-- @param body: must be string
-- @return true if send.

22.7. Simple Web Server Example 85

nplruntime documentation, Release 0.1.0

function npl_http.make_response(nid, body, return_code, headers)
if(type(body) == "string" and nid) then

local out = {};
out[#out+1] = status_strings[return_code or "ok"] or return_code["not_found"];
if(body~="") then

out[#out+1] = format("Content-Length: %d\r\n", #body);
end
if(headers) then

local name, value;
for name, value in pairs(headers) do

if(name ~= "Content-Length") then
out[#out+1] = format("%s: %s\r\n", name, value);

end
end

end
out[#out+1] = "\r\n";
out[#out+1] = body;

-- if file name is "http", the message body is raw http stream
return NPL.activate(format("%s:http", nid), table.concat(out));

end
end

local function activate()
stats.request_received = stats.request_received + 1;
local msg=msg;
local nid = msg.tid or msg.nid;
if(npl_http.dump_stream) then

log("HTTP:"); echo(msg);
end
npl_http.make_response(nid, format("<html><body>hello world. req: %d. input is %s

→˓</body></html>", stats.request_received, commonlib.serialize_compact(msg)));
end
NPL.this(activate)

For a full-fledged build-in HTTP server framework in NPL, please see WebServer

86 Chapter 22. File Activation

CHAPTER 23

Networking

This topic is FAQ to networking API, please see Activation File for real guide of remote communications.

In NPL, you do not need to create any sockets or writing message loops for communication with remote computers.
Instead, all communications are managed by NPL very efficiently (see NPLArchitecture for details). Users only need
one single function to establish connection, authenticate and communicate with remote computers.

Initialize Networking Interface

By default, NPL is started without listening on any port, unless you called some library, such as the WebServer. To
enable networking in NPL, one needs to call

-- a server that listen on 8080 for all IP addresses
NPL.StartNetServer("0.0.0.0", 8080);

The client also needs to call NPL.StartNetServer.

-- a client that does not listen on any port. Just start the network interface.
NPL.StartNetServer("127.0.0.1", "0");

Please see Activation File for details.

Server Parameters

The following is from WebServer‘s config file. You can have a general picture of what is configurable in NPL.

<!--HTTP server related-->
<table name='NPLRuntime'>
<!--whether to use compression for incoming connections. This must be true in

→˓order for CompressionLevel and CompressionThreshold to take effect-->
<bool name='compress_incoming'>true</bool>
<!---1, 0-9: Set the zlib compression level to use in case compresssion is

→˓enabled.
Compression level is an integer in the range of -1 to 9.

Lower compression levels result in faster execution, but less compression.
→˓Higher levels result in greater compression,

but slower execution. The zlib constant -1, provides a good compromise
→˓between compression and speed and is equivalent to level 6.-->

<number name='CompressionLevel'>-1</number>
<!--when the NPL message size is bigger than this number of bytes, we will use

→˓m_nCompressionLevel for compression.

87

nplruntime documentation, Release 0.1.0

For message smaller than the threshold, we will not compress even m_
→˓nCompressionLevel is not 0.-->

<number name='CompressionThreshold'>204800</number>
<!--if plain text http content is requested, we will compress it with gzip when

→˓its size is over this number of bytes.-->
<number name='HTTPCompressionThreshold'>12000</number>
<!--the default npl queue size for each npl thread. defaults to 500. may set to

→˓something like 5000 for busy servers-->
<number name='npl_queue_size'>20000</number>
<!--whether socket's SO_KEEPALIVE is enabled.-->
<bool name='TCPKeepAlive'>true</bool>
<!--enable application level keep alive. we will use a global idle timer to

→˓detect if a connection has been inactive for IdleTimeoutPeriod-->
<bool name='KeepAlive'>false</bool>
<!--Enable idle timeout. This is the application level timeout setting.-->
<bool name='IdleTimeout'>false</bool>
<!--how many milliseconds of inactivity to assume this connection should be

→˓timed out. if 0 it is never timed out.-->
<number name='IdleTimeoutPeriod'>1200000</number>
<!--queue size of pending socket acceptor-->
<number name='MaxPendingConnections'>1000</number>

</table>

Please note, the IdleTimeout should be set for both client and server, because timeout may occur on either side,
see below for best timeout practice. TCPKeepAlive is only for server side.

To programmatically set parameters, see following example:

local att = NPL.GetAttributeObject();
att:SetField("TCPKeepAlive", true);
att:SetField("KeepAlive", false);
att:SetField("IdleTimeout", false);
att:SetField("IdleTimeoutPeriod", 1200000);
NPL.SetUseCompression(true, true);
att:SetField("CompressionLevel", -1);
att:SetField("CompressionThreshold", 1024*16);
-- npl message queue size is set to really large
__rts__:SetMsgQueueSize(5000);

TCP Keep Alive

If you want a persistent already-authenticated connection even there are no messages sent for duration longer than 20
seconds, you probably want to generate some kind of regular ping messages. Because otherwise, either the server or
the client may consider the TCP connection is dead, and you will lose your authenticated session on the server side.

Although NPL allows you to configure server side application level ping messages globally with KeepAlive at-
tribute, it is not recommended to enable it on the server or set its value to a very large value (such as several minutes).

The recommended way is that the client should initiate the ping messages to all remote processes on regular intervals.

For a robust client application, the client also needs to handle connection lost and recover or re-authenticate at appli-
cation level.

88 Chapter 23. Networking

CHAPTER 24

Multi-Threading

In NPL, multi-threading is handled in the same way as networking communication. In other words, activating scripts
in other local threads is virtually the same as calling scripts running on another computer. You simply communicate
with remote script file with the NPL.activate in the same way for both local threads and remote computers. The
only difference is that the target script url is different.

For example, to activate a script on local thread A, one can use

NPL.activate("(A)helloworld.lua", {});

To activate the script in a remote computer B‘s C thread, one can use

NPL.activate("(C)B:helloworld.lua", {});

For more information, please see file activation

Creating NPL Worker Thread

NPL worker thread must be created, before messages to it can be processed by script running in that thread.

NPL.activate("(A)helloworld.lua",{}); does not automatically create thread A. You need to call fol-
lowing code to create NPL runtime on thread A.

NPL.CreateRuntimeState("A", 0):Start();

After that, messages sent to (A)helloworld.lua will be processed in a real system-level thread called A.

Example Project

Now let us create a real multi-threaded application with just a single file
script/test/TestMultithread.lua. The application print helloworld in 5 threads simultaneously.

NPL.load("(gl)script/ide/commonlib.lua");

local function Start()
for i=1, 5 do

local thead_name = "T"..i;
NPL.CreateRuntimeState(thead_name, 0):Start();
NPL.activate(format("(%s)script/test/TestMultithread.lua", thead_name), {

89

nplruntime documentation, Release 0.1.0

text = "hello world",
sleep_time = math.random()*5,

});
end

end

local isStarted;
local function activate()

if(msg and msg.text) then
-- sleep random seconds to simulate heavy task
ParaEngine.Sleep(msg.sleep_time);
LOG.std(nil, "info", "MultiThread", "%s from thread %s", msg.text, __rts__:

→˓GetName());
elseif(not isStarted) then

-- initialize on first call
isStarted = true;
Start();

end
end

NPL.this(activate);

To run above file, use

NPL.activate("(gl)script/test/TestMultithread.lua");

or from command line

npl script/test/TestMultithread.lua

The output will be something like below

2016-03-16 6:22:00 PM|T1|info|MultiThread|hello world from thread T1
2016-03-16 6:22:01 PM|T3|info|MultiThread|hello world from thread T3
2016-03-16 6:22:03 PM|T2|info|MultiThread|hello world from thread T2
2016-03-16 6:22:03 PM|T5|info|MultiThread|hello world from thread T5
2016-03-16 6:22:04 PM|T4|info|MultiThread|hello world from thread T4

Advanced Examples

Following NPL modules utilize multiple local threads.

• script/apps/DBServer/DBServer.lua: a database server, each thread for processing SQL logics, a
thread monitor is used to find the most free thread to route any sql query.

Other Options

By design, threading should be avoided to simplify software design and debugging. In addition to real threads, it is
usually preferred to use architecture to avoid using thread at all.

• Timer/callbacks/events/signals are good candidates for asynchronous tasks in a single thread.
With NPL.activate, it even allows you to switch implementation without changing any code; and you can
boost performance or debug code in a single thread more easily.

90 Chapter 24. Multi-Threading

nplruntime documentation, Release 0.1.0

• Coroutine is a lua language feature, which is also supported by NPL. In short, it uses a single thread to
simulate multiple virtual threads, allowing you to share all data in the same thread without using locks, but still
allowing the developer to yield CPU resource to other virtual threads at any time. The interactive debugging
module in NPL is implemented with coroutines. Please see script/ide/Debugger/IPCDebugger.lua
for details.

24.4. Other Options 91

nplruntime documentation, Release 0.1.0

92 Chapter 24. Multi-Threading

CHAPTER 25

Concurrency Model

This is an in-depth topic about NPL’s concurrency model and design principles. It also compares it with other similar
models in popular languages, like erlang, GO, Scala(java), etc.

What is Concurrency?

The mental picture of all computer languages is to execute in sequential order. Concurrency is a language feature about
writing code that runs concurrently. Traditional way of doing this is via threads and locks, which is very troublesome
to write. The Actor Model, which was first proposed by Carl Hewitt in 1973, takes a different approach to concurrency,
which should avoid the problems caused by threading and locking.

There are many implementations of concurrency model in different languages, they differ both in performance under
different use cases, and in the programmers’ mental picture when writing concurrent code.

NPL uses a hybrid approach, which give you the ability to run tens of thousands of tasks in a single thread
or across multiple threads. More importantly, you do not need to write any code to spawn a virtual process
or write error-prone message loops. In short, NPL is very fast, scalable and give programmers a mental
picture that is close to neurons in the brain.

Concurrent Activation in NPL

Preemptive vs Non-Preemptive File Activation

By default NPL activate function is non-preemptive, it is the programmer’s job to finish execution within reasonable
time slice. The default non-preemptive mode gives the programmer full control of how code is executed and different
neuron files can easily share data using global tables in the same thread.

On the other hand, NPL also allows you to do preemptive activation, in which the NPL runtime will count virtual
machine instructions until it reaches a user-defined value (such as 1000) and then automatically yield(pause) the
activate function. The function will be resumed automatically in the next time slice. NPL time slice is by default about
16ms (i.e. 60FPS).

To make file activate function preemptive, simply pass a second parameter
{PreemptiveCount,MsgQueueSize,[filename|name],clear} to NPL.this like below:

• PreemptiveCount: is the number of VM instructions to count before it yields. If nil or 0, it is non-preemptive.
Please note JIT-compiled code does not count as instruction by default, see below.

• MsgQueueSize: Max message queue size of this file, if not specified, it is same as the NPL thread’s message
queue size.

93

https://golang.org/
http://www.scala-lang.org/
https://en.wikipedia.org/wiki/Actor_model

nplruntime documentation, Release 0.1.0

• filename|name: virtual filename, if not specified, the current file being loaded is used.

• clear: clear all memory used by the file, including its message queue. Normally one never needs to clear. A
neuron file without messages takes less than 100 bytes of memory (mostly depending on the length’s of its
filename)

-- this is a demo of how to use preemptive activate function.
NPL.this(function()

local msg = msg; -- important to keep a copy on stack since we go preemptive.
local i=0;
while(true) do

i = i + 1;
echo(tostring(msg.name)..i);
if(i==400) then

error("test runtime error");
end

end
end, {PreemptiveCount = 100, MsgQueueSize=10, filename="yourfilename.lua"});

You can test your code with:

NPL.activate("yourfilename.lua", {name="hi"});

Facts about preemptive activate function:

• It allows you to run tens of thousands of jobs concurrently in the same system thread. Each running job has its
own stack and the memory overhead is about 450bytes. A neuron file without pending messages takes less than
100 bytes of memory (mostly depending on the length’s of its filename). The only limitation to the number of
concurrent jobs is your system memory.

• There is a slight performance penalty on program speed due to counting VM instructions.

• With preemptive activate function, the programmer should pay attention when making changes to shared data
in the thread, since your function may be paused at any instruction. The golden rule here is never make any
changes to shared data, but use messages to exchange data.

• C/C++ API call is counted as one instruction, so if you call ParaEngine.Sleep(10), it will block all concurrent
jobs on that NPL thread for 10 seconds.

• Code in async callbacks (such as timer, remote api call) in activate function are NOT preemptive. Because
callbacks are invoked from the context of other concurrent activate functions.

Test Cases and Examples:

see also script/ide/System/test/test_concurrency.lua for more tests cases.

local test_concurrency = commonlib.gettable("System.Core.Test.test_concurrency");

function test_concurrency:testRuntimeError()
NPL.this(function()

local msg = msg; -- important to keep a copy on stack since we go preemptive.
local i=0;
while(true) do

i = i + 1;
echo(tostring(msg.name)..i);
if(i==40) then

error("test runtime error");
end

end

94 Chapter 25. Concurrency Model

nplruntime documentation, Release 0.1.0

end, {PreemptiveCount = 100, MsgQueueSize=10, filename="tests/testRuntimeError"});
NPL.activate("tests/testRuntimeError", {name="1"});
NPL.activate("tests/testRuntimeError", {name="1000"});

end

function test_concurrency:testLongTask()
NPL.this(function()

local msg = msg; -- important to keep a copy on stack since we go preemptive.
local i=0;
while(true) do

i = i + 1;
echo(i);

end
end, {PreemptiveCount = 100, MsgQueueSize=10, filename="tests/testLongTask"});
NPL.activate("tests/testLongTask", {name="1"});

end

function test_concurrency:testMessageQueueFull()
NPL.this(function()

local msg = msg; -- important to keep a copy on stack since we go preemptive.
local i=0;
for i=1, 1000 do

i = i + 1;
end
echo({"finished", msg});

end, {PreemptiveCount = 100, MsgQueueSize=3, filename="tests/testMessageQueueFull
→˓"});

for i=1, 10 do
NPL.activate("tests/testMessageQueueFull", {index=i});

end
-- result: only the first three calls will finish.

end

function test_concurrency:testMemorySize()
__rts__:SetMsgQueueSize(100000);
for i=1, 10000 do

NPL.this(function()
local msg = msg; -- important to keep a copy on stack since we go

→˓preemptive.
for i=1, math.random(1,1000) do

msg.i = i;
end
echo(msg);

end, {PreemptiveCount = 10, MsgQueueSize=1000, filename="tests/testMemorySize
→˓"..i});

NPL.activate("tests/testMemorySize"..i, {index=i});
end
-- TODO: use a timer to check when it will finish.

end

function test_concurrency:testThroughput()
__rts__:SetMsgQueueSize(100000);
for i=1, 10000 do

NPL.this(function()
local msg = msg;
while(true) do

echo(msg)
end

25.2. Concurrent Activation in NPL 95

nplruntime documentation, Release 0.1.0

end, {PreemptiveCount = 10, MsgQueueSize=3, filename="tests/testThroughput"..
→˓i});

NPL.activate("tests/testThroughput"..i, {index=i});
end

end

NPL Message Scheduling

Each NPL runtime can have one or more NPL states/threads (i.e. real system threads). Each NPL state has a single
message queue for input and output with other NPL threads or remote processes. Programmer can set the maximum
size of this queue, so when it is full, messages are automatically dropped.

On each time slice, NPL state will process ALL messages in its message queue in priority order.

• If a message belongs to a non-preemptive file, it will invoke its activate function immediately.

• If a message belongs to a preemptive file, it will remove the message from the queue and insert it to the target
file’s message queue, which may has a different message queue size. If message queue of the file is full, it will
drop the message immediately.

In another native thread timer, all active preemptive files (with pending/half-processed messages) will be pro-
cessed/resumed in preemptive way. I.e. we will count VM(virtual machine) instructions for each activate function
and pause it if necessary.

Note: all TCP/IP network connections are managed by a single global network IO thread. In this way
you can have tens of thousands of live TCP connections without using much system memory. A global
NPL dispatcher automatically dispatch incoming network messages to the message queue of the target
NPL state/thread. Normally, the number of NPL threads used is close to the number of CPU cores on the
computer.

Causions on Preemptive Programming

Since preemptive code and non-preemptive code can coexit in the same NPL state (thread). It is the programmers’ job
to ensure preemptive code does not modify global data.

• Note: when NPL debugger is attached, all preemptive code are paused to make debugging possible.

• Also, please note that JIT-compiled code does NOT call hooks by default. Either disable the JIT compiler or edit
src/Makefile: XCFLAGS= -DLUAJIT_ENABLE_CHECKHOOK This comes with a speed penalty even hook is
not set. Our recommendation is to call dummy() or any NPL API functions and count that.

Priority of Concurrent Activation

PreemptiveCount is the total number of instructions (or Byte code) executed in an activate function before we pause
it. In NPL, PreemptiveCount can be specified per activate function, thus giving you fine control over how much
computation each activate function can run in a given time slice.

The NPL scheduler for preemptive activation file will guarantee each function will run precisely PreemptiveCount
instructions after PreemptiveCount * total_active_process_count instructions every time slice.

So there is absolutely no dead-lock conditions in our user-mode preemptive scheduler. The only thing that may
break your application is running out of memory. However, each active (running) function only take 400-2000 bytes
according to usage. even 1 million concurrently running jobs takes only about 1GB memory. If only half of those jobs
are busy doing calculation on average, you get only a little over 500MB memory usage.

96 Chapter 25. Concurrency Model

nplruntime documentation, Release 0.1.0

Language Compare: The Mental Picture

We will compare concurrency model in several languages in terms of programmer’s mental picture and implementa-
tion.

Erlang

In erlang, one has to manually call spawn function to create a user-mode virtual process. So it is both fast and memory
efficient to create millions of erlang processes in a single thread. Erlang simulates preemptive scheduling among
those processes by counting byte code executed. Erlang processes are currently scheduled on a reduction count basis
as described here and here. One reduction is roughly equivalent to a function call. A process is allowed to run until
it pauses to wait for input (a message from some other process) or until it has executed 1000 reductions. A process
waiting for a message will be re-scheduled as soon as there is something new in the message queue, or as soon as the
receive timer (receive ... after Time -> ... end) expires. It will then be put last in the appropriate queue. Erlang has 4
scheduler queues (priorities): ‘max’, ‘high’, ‘normal’, and ‘low’.

• Pros: In the viewpoint of programmers, erlang process is preemptive. Underneath it is not true
preemptive, but as along as it does not call C functions, the scheduler is pretty accurate.

• Cons: The programmers need to manually name, create and manage the process’s message loop (such as when
message queue grows too big).

Comparison:

• Similarity:

– Both NPL and erlang copies messages when sending them

– Both support preemptive concurrent scheduler.

– Both use user mode code to simulate processes, so that there is almost no limit to the total number of
asynchronous entities created.

• Differences:

– Erlang is preemptive; NPL can be not preemptive and non-preemptive.

– NPL use source code file name as the entity name, and it does not require the programmer to create
and manually write the message loop. Thus the mental picture is each NPL file has a hidden
message loop.

– Erlang does not give you explicit control over which real system thread your process is running (instead,
it automatically does it for you). In NPL, each neuron file can be explicitly instanced on one or more
system-level thread.

– Erlang scheduler does not give you control over Instruction Count per process before it is preemptied. In
NPL, one can specify different instruction count per activate function, thus giving you a much finer control
over priority.

– In NPL we count each C API as a single instruction, while Erlang tries to convert C API to the number of
ByteCode executed in the same time.

Go

To me, GO‘s concurrency model is a wrapper of C/C++ threading model. Its syntax and library can greatly simply the
code (if written in C/C++). It uses real system threads, so you can not have many concurrent jobs like erlang or NPL.

Comparison:

25.4. Language Compare: The Mental Picture 97

http://erlang.org/pipermail/erlang-questions/2001-April/003132.html
https://hamidreza-s.github.io/erlang/scheduling/real-time/preemptive/migration/2016/02/09/erlang-scheduler-details.html
https://golang.org/

nplruntime documentation, Release 0.1.0

• NPL can be written in the same fashion of GO, because it give you explicit control over real system-level thread.

Scala

Scala is a meta language over higher general purpose language like java. Scala is like a rewrite of Erlang in java.
Its syntax is in object-oriented fashion with a mixture of Erlang’s functional style. So please refer to erlang for
comparision. However, Scala is not-preemptive as erlang, it relies on the programmer to yield in its event based
library, while NPL supports preemptive mode in additional to non-preemptive mode.

Final Words

• Unlike erlang, go, scala, NPL is a dynamic and weak type language. In NPL, it is faster to invoke C/C++ code,
its byte code is as fast as most strongly typed languages. See NPLPerformance for details.

98 Chapter 25. Concurrency Model

http://www.scala-lang.org/

CHAPTER 26

NPL Common Libraries

NPL common Libraries contains a rich and open source collection of libraries covering: io, networking, 2d/3d graph-
ics, web server, data structure, and many other software frameworks.

Library Installation

NPL common libraries can be installed in pkg or zip or in plain source code. When you deploy your application,
you can choose to use our pre-made zip file or deploy only used files in a zip package by yourself.

If you installed NPL runtime via ParaCraftSDK on windows platform, you will already have NPL common library
installed in ParaCraftSDKGit/NPLRuntime/win/packages/main.pkg.

If you installed NPL runtime from source code on linux. It does not have NPL common libraries preinstalled. Instead
you need to copy or link the script folder to your project’s working directory. The folder to link to can be found
here, which contains thousands of open source and documented files all written in NPL.

Major Libraries

For minimum server-side application development, include this:

NPL.load("(gl)script/ide/commonlib.lua");

or

NPL.load("(gl)script/ide/System/System.lua");

For full-fledged heavy 2d/3d application development, include this:

NPL.load("(gl)script/ide/IDE.lua");

or

NPL.load("(gl)script/kids/ParaWorldCore.lua");

99

https://github.com/LiXizhi/ParaCraftSDK/tree/master/src/script

nplruntime documentation, Release 0.1.0

Documentation

NPL libraries are themselves written in pure NPL scripts. They usually have no external dependencies, but on the low
level NPL API provided by NPL runtime. These API is in turn implemented in C/C++ in cross-platform ways.

The documentation for low level API is here https://codedocs.xyz/LiXizhi/NPLRuntime/modules.html

However, it is not particularly useful to read low level API. All you need to do it is to glance over it, and then dive into
the source code of NPL libraries here.

100 Chapter 26. NPL Common Libraries

https://codedocs.xyz/LiXizhi/NPLRuntime/modules.html
https://github.com/LiXizhi/ParaCraftSDK/tree/master/src/script

CHAPTER 27

Object Oriented Programming

All NPL library source code is written in object oriented way. It is recommended that you do the same for your own
code.

Lua itself can be used as a functional language, which does not enforce object oriented programming. It
is the programmer’s choice of how to write their code.

NPL has a number of library files to help you code in object oriented ways.

Referencing a class

commonlib.gettable and NPL.load is the primary way for you to include and import other component. Be-
cause all NPL libraries are defined to be compatible with commonlib.gettable, it is possible to import the class
namespace table without loading it. This also makes the order of importing or loading libraries trivial.

Remember that NPL/Lua is a statically scoped language and each function is hash value on its containing table, it is
important to cache class table on a local variable.

Example of importing commonlib.LinkedList into LinkedList.

local LinkedList = commonlib.gettable("commonlib.LinkedList");

local MyClass = commonlib.gettable("MyApp.MyClass");
function MyClass.Test()

local list = LinkedList:new();
end

By the time, you call the function on the imported table, you need to NPL.load its imple-
mentation before hand. As you see, most common class is already buddled in common include
files, such as NPL.load("(gl)script/ide/commonlib.lua");, this include the implementation of
commonlib.gettable as well. If you are interested, you can read its source code. So if you have loaded that
file before, such as in your bootstrapper file, you do not need to load it in every other files. But you need to call
commonlib.gettable on the beginning of every file using the given library, for better performance.

It is good practice to only NPL.load non-frequently used files shortly before they are used. So that,
your application can boot up faster, and use less memory.

101

nplruntime documentation, Release 0.1.0

Defining a singleton class

For singleton class, which contains only static functions. It is sufficient to use commonlib.gettable to define the
class. The idea is that you reference the class,and then add some static implementations to it dynamically.

local MyClass = commonlib.gettable("MyApp.MyClass");

function MyClass.Method1()

end

function MyClass.Method2()

end

Defining an ordinary class

For class, which you want to create instances from, you need to use the commonlib.inherit function. For
implementation of commonlib.inherit, please see script/ide/oo.lua.

The following will define a MyClass class with new method.

local MyClass = commonlib.inherit(nil, commonlib.gettable("MyApp.MyClass"));

MyClass.default_param = 1;

-- this is the constructor function.
function MyClass:ctor()

self.map = {};
end

function MyClass:init(param1)
self.map.param1 = param1;
return self;

end

function MyClass:Clone()
return MyClass:new():init(self:GetParam());

end

function MyClass:GetParam()
return self.map.param1;

end

To create a new instance of it

local MyClass = commonlib.gettable("MyApp.MyClass");

local c1 = MyClass:new():init("param1");
local c2 = MyClass:new():init("param1");

You can define a derived class like below

102 Chapter 27. Object Oriented Programming

https://github.com/NPLPackages/main/blob/master/script/ide/oo.lua

nplruntime documentation, Release 0.1.0

local MyClassDerived = commonlib.inherit(commonlib.gettable("MyApp.MyClass"),
→˓commonlib.gettable("MyApp.MyClassDerived"));

-- this is the constructor function.
function MyClassDerived:ctor()

-- parent class's ctor() have been automatically called
end

function MyClassDerived:init(param1)
MyClassDerived._super.init(self, param1);
return self;

end

Advanced ToolBase class

If you want a powerful class with event/signal/auto property, and dynamic reflections, you can
derive your class from ToolBase class.

See the examples.

local Rect = commonlib.gettable("mathlib.Rect");

-- class new class
local UIElement = commonlib.inherit(commonlib.gettable("System.Core.ToolBase"),
→˓commonlib.gettable("System.Windows.UIElement"));
UIElement:Property("Name", "UIElement");
UIElement:Signal("SizeChanged");
UIElement:Property({"enabled", true, "isEnabled", auto=true});

function UIElement:ctor()
-- client rect
self.crect = Rect:new():init(0,0,0,0);

end

function UIElement:init(parent)
self:SetParent(parent);
return self;

end

-- many other functions omitted here

27.4. Advanced ToolBase class 103

nplruntime documentation, Release 0.1.0

104 Chapter 27. Object Oriented Programming

CHAPTER 28

Deploy Your Application

You can deploy your application to windows, linux, ios, android, etc. Both 32bits/64bits versions are supported.

• NPL scripts can be deployed in plain *.lua or *.npl text files or in precompiled *.o binary file.

• You can also buddle all or part of your scripts or any other read-only resource files into one or more zipped
archive files.

• You can deploy NPL runtime globally or side-by-side with your application files.

For automatic deployment, please install and use ParacraftSDK. This articles explains how to do it manually.

Pre-compiling NPL script

Precompiled NPL script is called bytecode in lua. The bytecode generated by Luajit is incompatible with bytecode
generated by lua, but is cross-platform for any (32bits/64bits) architecture. If you choose to deploy your app with
bytecode, you must also choose to use luajit or lua when deploying NPL runtime.

Please read the documentation in NPLCompiler.lua for more information. Examples:

NPL.load("(gl)script/ide/Debugger/NPLCompiler.lua");
NPL.CompileFiles("script/*.lua", nil, 100);

Buddle Scripts in Zip files

You can buddle your script and assets in zip files. There are two kinds of zip files: one is the standard *.zip file,
the other is called *.pkg file. You can create *.pkg file from a standard zip file with the NPL runtime like below.
*.pkg use a simple encription algorithm over the zip file.

ParaAsset.GeneratePkgFile("main.zip", "main.pkg");

When application starts, NPL runtime will automatically load all main*.pkg and main*.zip files in the applica-
tion’s start directory into memory. The load order is based on file name, so that the a file in “main_patch2.pkg” will
overwrite the same file in “main_patch1.pkg”.

Please note that loading pkg file is very fast, it only copys the file into memory, individual script file or assets are only
unzipped and parsed on first use.

A programmer can also programmatically load or unload any archive file using the NPL API like below.

105

nplruntime documentation, Release 0.1.0

NPL.load("pluginABC.pkg");
-- or using explicit calls
ParaAsset.OpenArchive("pluginABC.pkg", true);

The second parameter is whether to use relative path in archive files. (i.e. file path in archive file are relative to the
containing directory). Search paths, such as from npl_packages are honored when loading archives.

Deploy NPLRuntime Side-By-Side

Deploying NPL Runtime side-by-side is as easy as copying all executable files to the application directory. The
recommended deployment folder structures is below

bin/: npl exe, dll, lua,luajit, etc
packages/: common *.pkg *.zip package files
script/: your own script files
config.txt
any other files

Another way is to deploy everything to the application root directory.

script/: your own script files
npl exe, dll, lua,luajit, etc
common *.pkg *.zip package files
config.txt
any other files

if config.txt file is on the root application directory. Its cmdline content will be appended to NPL
command line when running NPL runtime from this directory.

An example config.txt, see below:

cmdline=noupdate="true" debug="main" bootstrapper="script/apps/HelloWorld/main.lua"

Luajit vs Lua

Luajit and Lua are ABI-compatible, meaning that you can deploy NPL runtime with them simply by replacing
lua.dll(so) with either implementation. Luajit is the recommended way for release deployment on all plat-
forms. However, currently on iOS, Luajit is used but disabled, since it is not allowed. Even a disabled luajit runs faster
than lua and its bytecode is the same for both 32bits and 64bits OS. So you would only want to deploy lua dll for
debugging purposes on development machines.

106 Chapter 28. Deploy Your Application

CHAPTER 29

NPL Packages

NPL Package is a special folder under npl_packages/[package_name]/. Files in it are always organized
as if they are relative to the working directory. So this folder can be used as a search path directly, or zipped to a
*.zip|pkg to be used as an archive file, or loaded by file module name all at the same time.

NPL package serves following purposes:

• it provides a way to buddle and release multiple software modules to be used by someone else.

• it can be used as additional search path for third-party plugins, which I will explain later.

• it provides a way to allow different versions of the same file module to coexist by putting them in different npl
packages in a single application. See LoadFile

• it provides a way to install third-party modules at development time.

• it provides a way to share big asset files (like textures, 3d models, audios) between modules, because all
npl_packages share the same working directory.

Package As Search Path

Files in npl_packages/[package_name] are usually relative to the root working directory.

Therefore, developer who wants to use other people’s modules can simply add
npl_packages/[package_name] to global search path by calling following code:

NPL.load("npl_packages/some_test_module/")

The trick is to end with / in file name. What this function does is actually find the package folder in a
number of possible locations (see next section), and then add it to the global search path. By default, when
NPL starts, it will always try to load the official ‘npl_packages/main/’ package. So you do not need to call
NPL.load("npl_packages/main/") in order to use the rich set of open source NPL libraries.

Another way is to load via command line, such as below. See NPLCommandLine

npl loadpackage="npl_packages/paracraft/" dev="/"

How NPL Locate Packages

NPL locates package folder given by its relative path in following order:

• search in current working directory

107

nplruntime documentation, Release 0.1.0

• search in current executable directory

• search recursively for 5 parent directories of the executable directory.

For example, suppose:

• your current working directory is /home/myapp/,

• and your executable directory is /opt/NPLRuntime/redist/bin64/,

then NPL.load("npl_packages/main/") will search following directories until one exists and add it to the
search path.

• /home/myapp/npl_packages/main/

• /opt/NPLRuntime/redist/bin64/npl_packages/main/

• /opt/NPLRuntime/redist/npl_packages/main/

• /opt/NPLRuntime/npl_packages/main/

• /opt/npl_packages/main/

• /npl_packages/main/

What Happened After Loading A Package

The short answer is nothing happens, because loading a package only add its folder to the global search
path. You still need to load any module files in the package folder with NPL.load. For example, support you
have NPL.load("npl_packages/test/") successfully loaded at ‘/home/myapp/npl_packages/test/’ and there
is module file at /home/myapp/npl_packages/test/script/any_module_folder/test.lua Then
you can load it with relative file path. NPL.load("script/any_module_folder/test.lua") However,
if there is a file at your working directory such as /home/myapp/script/any_module_folder/test.lua,
this file will be loaded rather than the one in the global search path.

File Search Order

Files in current working directory are always searched first (including those in zipped archive files) before we resolve
to global search path. Moreover, search path added last is actually searched first. There is one exception, if NPL is run
with dev directory in its command line dev="dev_folder", NPL packages in dev_folder are loaded before
zipped archive files. This allows one to use the latest source code during development.

For example:

NPL.load("npl_packages/A/")
NPL.load("npl_packages/B/")
NPL.load("test.lua");

test.lua is searched first in current working directory and any loaded archive (zip, pkg) file. If not exist, it will
search in npl_packages/B/ and then in npl_packages/A/.

Usage

For package developers:

NPL packages are mostly used at development time by other developers (not end users).

108 Chapter 29. NPL Packages

nplruntime documentation, Release 0.1.0

i.e. If you want other developers’ to use your code, you can upload your working directory to git, so that other
developers can clone your project to their npl_packages/[your module name]. Package can include not
only source code, but also binary asset files, like images, textures, sound, 3d models, etc.

For other developers:

Other developers should merge all used npl_packages to working directory, before releasing their soft-
ware.

i.e. It is the developer’s job to resolve dependencies, in case multiple versions of the same file exist among used
npl_packages. At release time, it is recommended NOT to redistribute the npl_package folder, but copy/merge the
content in them to the working directory, pre-compile all source code and package code and/or assets in one or multiple
archive files. Please see the DeployGuide for details. However, if different versions of the same file must coexist, we
can use file-based modules to distribute in separate npl_packages folders.

Where To Find NPL Packages

Each repository under NPLPackages is a valid npl_package managed by the community.

Click here for more details on NPL packages.

If one want to upload their own package here, please make an issue here, and provide links to its code.

How To Install A Package

Simply create a folder under your development’s working directory, create a sub folder called npl_packages. And
then run git clone from there. Like this:

cd npl_packages
git clone https://github.com/NPLPackages/main.git

See also paracraft package for another example.

File-based Modules

See LoadFile.

How to Contribute

It is NOT advised to modify or add files in the ./npl_packages folder, instead create a similar directory structure in
your project’s development directory if you want to add or modify package source code. If you do want to contribute
to any npl packages, please fork it on github and send pull requests to its author on github.

For example, if you want to modify or add a file like ./npl_packages/main/.../ABC.lua Instead of modify
it in the npl package folder, you simply create a file at the root development folder with the same directory structure
like this ./.../ABC.lua. At runtime, your version of file will be loaded instead of the one in npl package folder.

When your code is mature, you may consider fork the given npl_package in another place, and merge your changed
files and send the author a pull request. If the author responds fast, he or she may accept your changes and you can
later get rid of your changed files in your original project.

29.3. Where To Find NPL Packages 109

https://github.com/NPLPackages/
https://github.com/LiXizhi/NPLRuntime/wiki/npl_packages
https://github.com/NPLPackages/NPLPackages/issues
https://github.com/NPLPackages/paracraft/wiki

nplruntime documentation, Release 0.1.0

110 Chapter 29. NPL Packages

CHAPTER 30

Meta Programming in NPL

Meta programming allows you to extend NPL syntax using the NPL language itself. For example, following code are
valid in NPL.

local a=1;
loop(){ please execute the code 10 times with i

echo(a+i)
async(){

echo("This is from worker thread");
}

}

Here loop, async are extended NPL syntax defined elsewhere.

The concept is first developed by LISP programming language in 1960s. However, despite the power of LISP, its syntax
is hard to read for most programmers nowadays. NPL introduces a similar concept called Function-Expression,
which can be mixed very well with the original NPL syntax.

The syntax of NPL’s Function-Expression is name(input,...){ ... }

Files with *.npl extension support Function-Expression syntax by default. For example

NPL.load("(gl)script/tests/helloworld.npl")
NPL.loadstring("-- source code here", "filename_here")

Function-Expression User Guide

def expression

def(<name>, <params>){
--mode:<mode>
statements

}

• <name>:name of new structure to be defined, name could not be null

• <params>:parameters to be passed to defined structure multiple parameters should be seperated by comma
unknown number parameters, using ...

• <mode>:mode is set at the first line of comment inside block. Mode could be strict, line and token. When
different mode is set, different parsing strategy is used in defined function expression. If nothing specified, strict
mode is used.

111

http://lisp-lang.org/

nplruntime documentation, Release 0.1.0

• <statements>: statements here are template code, which would be applied to final code without any change.
However, one exception is +{} structure. Code inside +{} would be executed during compiling. And some
default functions are provided to give users more control.

Default functions in +{}emit(str, l): emit str at the line l. when no str is specified, it emit whole code chunk inside
function expression block. when no l is specifiec, it emit at first lineemitline(fl, ll): used only in line mode. emit code
chunk from line fl to ll. If no ll specified it emit from fl to end of code chunkparams(p): emit parameter p

UsageAfter defining a function expression, it could be used like this:

<name>(<params>){
statements in specified mode

}

Mode

• strict: statements in strict mode are followed the rules of original npl/lua grammar

• line: statements in line mode are treated as lines, no grammar and syntax rules

• token: statements in token mode are treated as token lists, original symbols and keywords are kept, but no
grammar and syntax rules

Examples

Example 1

def("translate", x, y, z){
push()
translate(+{params(x)}, +{params(y)}, +{params(z)})
+{emit()}
pop()

}

translate(1,2,3){
rotate(45)

}

The above chunk will compiled into

push()
translate(1,2,3)
rotate(45)
pop()

Example 2

def("loop"){
--mode:line
+{local line = ast:getLines(1,1)
local times, i = line:match("execute the code (%w+) times with (%l)")
if not times then times="1" end
if not i then i="i" end

}
for +{emit(i)}=1, +{emit(times)} do

112 Chapter 30. Meta Programming in NPL

nplruntime documentation, Release 0.1.0

+{emitline(2)}
end
}

loop(){execute the code 10 times with j
print(2+j)
print(3)
print(4)

}

The above chunk will compiled into

do for j=1, 10 do
print(2+j)
print(3)
print(4) end end

For more examples, please see our test here or dsl definition file here

30.2. Examples 113

https://github.com/NPLPackages/main/tree/master/script/ide/System/Compiler/tests
https://github.com/NPLPackages/main/tree/master/script/ide/System/Compiler/dsl

nplruntime documentation, Release 0.1.0

114 Chapter 30. Meta Programming in NPL

CHAPTER 31

NPL C/C++ Architecture

This section covers cross-platform modules written in C/C++. These modules are exposed via NPL scripting API so
that they are called via NPL.

C++ Modules

NPL Scripting Engine:

• NPL state (or NPL virtual code environment): a single NPL thread, has its own memory allocators and manages
all files it load.

– NPL state can load NPL/Lua script or C++ dll.

– Mono state: can load C# dll.

• NPL Networking: Manage all local or remote NPL states via NPL HTTP/TCP connections.

Graphics Engine:

All GUI objects must be created in the main NPL thread, which is the same as renderer thread. 2D/3D Engine are
all object oriented. All 2D objects are origanized in a parent/child tree. 3D objects are organized in a quad-tree in
additional to parent/child tree.

Video/audio Renderer

A static/dynamic buffer, textures, draw 3d/2d api, fonts, etc.

• DirectX fully supported renderer.

• OpenGL renderer: a cross-platform renderer(limited functions used in our linux/android build)

PaintEngine

It is like a GDI engine used by 2D Engine for drawing 2D and simple 3d objects, like lines, rectangles, etc.

115

https://codedocs.xyz/LiXizhi/NPLRuntime/

nplruntime documentation, Release 0.1.0

2D Engine: GUIBase is the base class to all 2d object.

• GUIRoot: root node of all GUI objects.

• GUIContainer, GUIButton, GUIText, etc

3D Engine: BaseObject is the base class to all 3D object.

• ViewportManager: manages 2D viewport into which we can render 3d or 2d objects.

• SceneObject: root node of all 3D objects. It manages all objects like adding, deleting, searching, rendering,
physics, etc

• TerrainTileRoot: it is a quadtree container of all 3D objects for fast object searching according to their 3d
locations and current camera frustum.

• CameraObject: camera frustum. several derived class like AutoCamera, etc

• MeshObject: base class static triangle mesh objects in the 3d object.

• MeshPhysicsObject: it is a static mesh with physics.

• BipedObject: it represents an animated object.

• MinisceneGraph: it is a simplified version of SceneObject, which usually manages a small number of 3d objects
which can be rendered separately in to a 2D texture.

• TerrainEngine: infinitely large terrain with a heightmap, and multiple texture layers. It is rendered with dynamic
level-of-detail algorithm.

• Other Scene objects:

• BlockEngine: it manages rendering of 32000x32000x256 blocks.

– BlockRegion: manages 512x512x256 blocks, which are saved into a single file

– ChunkColumn: 16x16x256

– Chunk: 16x16x16, a static renderable object.

Physics Engine

It uses the open source Bullet physics engine for static mesh objects in the scene. Block physics is handled separately
by the BlockEngine itself.

Asset Management:

Usually each static asset file is a asset entity. AssetEntity is the based class to all assets in the system. Assets pro-
vides data and sometimes rendering methods to be used any other 2d/3d objects. All assets are loaded asynchronously
by default from either IO disk or remote network.

• TextureEntity: 2d textures

• MeshEntity: static mesh file like .x

• ParaXEntity: animated mesh file which can be loaded from .x, .fbx

• Audio, bmax model, database, font, etc.

• EffectFile: shader files, which can be loaded from directX .fx.

116 Chapter 31. NPL C/C++ Architecture

nplruntime documentation, Release 0.1.0

IO and Util

• FileManager: manages all files and search paths.

• CParaFile: manages a single file read/write.

• math: 2d/3d math libs like vectors and matrices

ParaScripting API:

• C++ –> NPL: exposing all above functions and modules to NPL scripting environment.

• See all C++ bindings in NPL scripting reference

31.1. C++ Modules 117

https://codedocs.xyz/LiXizhi/NPLRuntime/

nplruntime documentation, Release 0.1.0

118 Chapter 31. NPL C/C++ Architecture

CHAPTER 32

Core ParaEngine/NPL API

The following API is implemented in C/C++ and exposed to NPL.

For examples of using these NPL API, please refer to source code of NPL packages, like the main package

In NPL scripts, tables that begins with Para like ParaIO, ParaUI, ParaScene, ParaEngine are usually core
C++ API. Moreover, most functions in NPL table is also core C++ API, like NPL.load, NPL.this, etc.

119

https://github.com/NPLPackages/main

nplruntime documentation, Release 0.1.0

120 Chapter 32. Core ParaEngine/NPL API

CHAPTER 33

Attribute System

Almost all C++ API objects like ParaUIObject, ParaObject, and even some global table like ParaEngine,
expose a data interface via ParaAttributeObject.

The attribute system allows us to easily get or set data in core C++ object via NPL scripts, like below.

local attr = ParaEngine.GetAttributeObject();
local value = attr:GetField("IgnoreWindowSizeChange", false);
attr:SetField("IgnoreWindowSizeChange", not value);

In NPL code wiki, one can open from menu view::object browser to inspect all living core objects via the
attribute system.

Please note script/ide/System/Core/DOM.lua provides a handy interface to iterate over existing core ob-
jects or even pure NPL tables.

121

https://codedocs.xyz/LiXizhi/NPLRuntime/classParaScripting_1_1ParaAttributeObject.html
https://github.com/NPLPackages/main/blob/master/script/ide/System/Core/DOM.lua

nplruntime documentation, Release 0.1.0

122 Chapter 33. Attribute System

CHAPTER 34

Asset Manifest & Asynchronous Asset Loading

A graphical application usually depends on tons of assets (textures, models, etc) to process and render. It is usually not
possible deploy all assets to client machine at installation time, instead assets are downloaded from the server usually
on first use.

NPL/ParaEngine has built-in support for asynchronous asset loading via asset manifest system. Basically it resolves
two problems:

1. Use a plain text file to look up and download assets in the background in several worker threads.

2. Most UI and 3d objects in ParaEngine provide a synchronous interface to set assets, as if they are already
available. In reality, they will automatically resolves assets (also their dependencies) when those assets are
available locally.

Asset Manifest Manager

When an application starts, NPLRuntime will read all Assets_manifest*.txt file under the root directory. Each
file has following content

format is [relative path],md5,fileSize

if the name ends with .z, it is zipped. This could be 4MB uncompressed in size md5 is checksum code of the file.
fileSize is the compressed file size.

audio/music.mp3.z,3799134715,22032
model/building/tree.dds.z,2957514200,949
model/building/tree.x.z,2551621901,816
games/tutorial.swf,1157008036,171105

When one of the async loader try to load an application asset(texture, model, etc), it will first search in AssetManifest
using the TO-LOWER-CASED asset path, such as (model/building/tree.x). if will then search the “temp/cache/”
directory for a matching file

The file matching is done by comparing the line in the asset file with the filename in the cache directory, using their
md5 and size.

audio/music.mp3.z,3799134715,22032 matches to file 379913471522032

Example Usage:

123

nplruntime documentation, Release 0.1.0

AssetFileEntry* pEntry = CAssetManifest::GetSingleton().GetFile("Texture/somefile.
→˓dds");

if(pEntry && pEntry->DoesFileExist())
{

// Load from file pEntry->GetLocalFileName();
}

124 Chapter 34. Asset Manifest & Asynchronous Asset Loading

CHAPTER 35

ParaObject

ParaObject is the scripting proxy to a 3D object on the C++ engine. In most cases, it could be a 3d mesh, an animated
character called biped, a bmax model or any custom 3D objects.

Create 3D Object

Use CreateCharacter to create animated character based on a ParaX asset file.

local player = ParaScene.CreateCharacter ("MyPlayer", ParaAsset.LoadParaX("",
→˓"character/v3/Elf/Female/ElfFemale.x"), "", true, 0.35, 0, 1.0);
player:SetPosition(ParaScene.GetPlayer():GetPosition());
ParaScene.Attach(player);

Use CreateMeshPhysicsObject to create a static mesh object based on a mesh asset file

local asset = ParaAsset.LoadStaticMesh("","model/common/editor/z.x")
local obj = ParaScene.CreateMeshPhysicsObject("blueprint_center", asset, 1,1,1, false,
→˓ "1,0,0,0,1,0,0,0,1,0,0,0");
obj:SetPosition(ParaScene.GetPlayer():GetPosition());
obj:GetAttributeObject():SetField("progress",1);
ParaScene.Attach(obj);

Get View Parameters

Please note all asset are async-loaded, when asset is not loaded, object renders nothing, and following
parameters may not be correct when associated mesh asset is not async-loaded.

local obj = ParaScene.GetObject("MyPlayer")
local params = {};
param.rotation = obj:GetRotation({})
param.scaling = obj:GetScale();
param.facing = obj:GetFacing();
param.ViewBox = obj:GetViewBox({});
local x,y,z = obj:GetViewCenter();

125

nplruntime documentation, Release 0.1.0

References:

More Complete API reference, please see ParaObject Reference

126 Chapter 35. ParaObject

https://codedocs.xyz/LiXizhi/NPLRuntime/classParaScripting_1_1ParaObject.html

CHAPTER 36

System Library

All system library is contained in the main package. See here for how to install packages.

Commonly used packages

• Timer: showdoc

• Serialization

• Database

• HTTP

• Networking

• ... TODO

127

https://github.com/NPLPackages/main
https://github.com/NPLPackages/main/tree/master/script/ide/timer.lua

nplruntime documentation, Release 0.1.0

128 Chapter 36. System Library

CHAPTER 37

Timer

• Encoding: script/ide/timer.lua

NPL.load("(gl)script/ide/timer.lua");

local mytimer = commonlib.Timer:new({callbackFunc = function(timer)
commonlib.log({"ontimer", timer.id, timer.delta, timer.lastTick})

end})

-- start the timer after 0 milliseconds, and signal every 1000 millisecond
mytimer:Change(0, 1000)

-- start the timer after 1000 milliseconds, and stop it immediately.
mytimer:Change(1000, nil)

-- now kill the timer.
mytimer:Change()

-- kill all timers in the pool
commonlib.TimerManager.Clear()

-- dump timer info
commonlib.TimerManager.DumpTimerCount()

-- get the current time in millisecond. This may be faster than ParaGlobal_
→˓timeGetTime() since it is updated only at rendering frame rate.
commonlib.TimerManager.GetCurrentTime();

-- one time timer
commonlib.TimerManager.SetTimeout(function() end, 1000)

129

https://github.com/NPLPackages/main/tree/master/script/ide/timer.lua

nplruntime documentation, Release 0.1.0

130 Chapter 37. Timer

CHAPTER 38

Serialization, Encoding and Logging

• Serialization: script/ide/serialization.lua

• Encoding: script/ide/Encoding.lua

• Logging: script/ide/log.lua

• SHA1: script/ide/System/Encoding/sha1.lua

NPL/Lua Table Serialization

see script/test/TestNPL.lua

local o = {a=1, b="string"};

-- serialize to string
local str = commonlib.serialize_compact(o)
-- write string to log.txt
log(str);
-- string to NPL table again
local o = NPL.LoadTableFromString(str);
-- echo to output any object to log.txt
echo(o);

Data Formatting

log(string.format("succeed: test case %.3f for %s\r\n", 1/3, "hello"));
-- format is faster than string.format, but only support limited place holder like %s
→˓and %d.
log(format("succeed: test case %d for %s\r\n", 1, "hello"));

Data Encoding

• Encoding: script/ide/Encoding.lua

commonlib.echo(NPL.EncodeURLQuery("http://www.paraengine.com", {"name1", "value1",
→˓"name2", "",}))

131

https://github.com/NPLPackages/main/tree/master/script/ide/serialization.lua
https://github.com/NPLPackages/main/tree/master/script/ide/Encoding.lua
https://github.com/NPLPackages/main/tree/master/script/ide/log.lua
https://github.com/NPLPackages/main/tree/master/script/ide/System/Encoding/sha1.lua
https://github.com/NPLPackages/main/tree/master/script/ide/Encoding.lua

nplruntime documentation, Release 0.1.0

UTF8 vs Default Text Encoding

Encoding is a complex topic. The rule of thumb in NPL is to use utf8 encoding wherever possible, such as in
source code, XML/html/page files, UI text, network messages, etc. However, system file path must be encoded
in the operating system’s default encoding, which may be different from utf8, so we need to use following meth-
ods to convert between the default and utf8 encoding for a given text to be used as system file path, such as
ParaIO.open(filename) requires filename to be in default encoding.

NPL.load("(gl)script/ide/Encoding.lua");
local Encoding = commonlib.gettable("commonlib.Encoding");
commonlib.Encoding.Utf8ToDefault(text)
commonlib.Encoding.DefaultToUtf8(text)

Json Encoding

• Json Encoding: script/ide/Json.lua

NPL.load("(gl)script/ide/Json.lua");
local t = {
["name1"] = "value1",
["name2"] = {1, false, true, 23.54, "a \021 string"},
name3 = commonlib.Json.Null()
}

local json = commonlib.Json.Encode (t)
print (json)
--> {"name1":"value1","name3":null,"name2":[1,false,true,23.54,"a \u0015 string"]}

local t = commonlib.Json.Decode(json)
print(t.name2[4])
--> 23.54

-- also consider the NPL version
local out={};
if(NPL.FromJson(json, out)) then

commonlib.echo(out)
end

XML Encoding

• XML Encoding: script/ide/LuaXML.lua

NPL.load("(gl)script/ide/LuaXML.lua");
function TestLuaXML:test_LuaXML_CPlusPlus()

local input = [[<paragraph justify="centered" >first childboldsecond child
→˓</paragraph>]]

local x = ParaXML.LuaXML_ParseString(input);
assert(x[1].name == "paragraph");

end

function TestLuaXML:test_LuaXML_NPL()
local input = [[<paragraph justify="centered" >first childboldsecond child

→˓</paragraph>]]

132 Chapter 38. Serialization, Encoding and Logging

https://github.com/NPLPackages/main/tree/master/script/ide/Json.lua
https://github.com/NPLPackages/main/tree/master/script/ide/LuaXML.lua

nplruntime documentation, Release 0.1.0

local xmlRoot = commonlib.XML2Lua(input)
assert(commonlib.Lua2XmlString(xmlRoot) == input);
log(commonlib.Lua2XmlString(xmlRoot, true))

end

Binary Data

To read or write binary data to or from string, we can use the file API with a special filename called <memory>, see
below.

• To read binary string, simply call WritingString to write input string to a memory buffer file and then
seek(0) and read data out in any way you like.

• To write binary string, simply call WritingString, WriteBytes or WritingInt, once finished, call
GetText(0,-1) to get the final output binary string.

function test_MemoryFile()
-- "<memory>" is a special name for memory file, both read/write is possible.
local file = ParaIO.open("<memory>", "w");
if(file:IsValid()) then

file:WriteString("hello ");
local nPos = file:GetFileSize();
file:WriteString("world");
file:WriteInt(1234);
file:seek(nPos);
file:WriteString("World");
file:SetFilePointer(0, 2); -- 2 is relative to end of file
file:WriteInt(0);
file:WriteString("End");
file:WriteBytes(3, {100, 0, 22});
-- read entire binary text data back to npl string
echo(#(file:GetText(0, -1)));
file:close();

end
end

XPath query in XML

• XPath: script/ide/XPath.lua

NPL.load("(gl)script/ide/XPath.lua");

local xmlDocIP = ParaXML.LuaXML_ParseFile("script/apps/Poke/IP.xml");
local xpath = "/mcml:mcml/mcml:packageList/mcml:package/";
local xpath = "//mcml:IPList/mcml:IP[@text = 'Level2_2']";
local xpath = "//mcml:IPList/mcml:IP[@version = 5]";
local xpath = "//mcml:IPList/mcml:IP[@version < 6]"; -- only supported by selectNodes2
local xpath = "//mcml:IPList/mcml:IP[@version > 4]"; -- only supported by selectNodes2
local xpath = "//mcml:IPList/mcml:IP[@version >= 5]"; -- only supported by
→˓selectNodes2
local xpath = "//mcml:IPList/mcml:IP[@version <= 5]"; -- only supported by
→˓selectNodes2

38.7. Binary Data 133

https://github.com/NPLPackages/main/tree/master/script/ide/XPath.lua

nplruntime documentation, Release 0.1.0

local xmlDocIP = ParaXML.LuaXML_ParseFile("character/v3/Pet/MGBB/mgbb.xml");
local xpath = "/mesh/shader/@index";
local xpath = "/mesh/boundingbox/@minx";
local xpath = "/mesh/submesh/@filename";
local xpath = "/mesh/submesh";

--
-- select nodes to an array table
--
local result = commonlib.XPath.selectNodes(xmlDocIP, xpath);
local result = XPath.selectNodes(xmlDocIP, xpath, nMaxResultCount); -- select at most
→˓nMaxResultCount result

--
-- select a single node or nil
--
local node = XPath.selectNode(xmlDocIP, xpath);

--
-- iterate on all nodes.
--
for node in commonlib.XPath.eachNode(xmlDocIP, xpath) do

commonlib.echo(node[1]);
end

Logging

log.txt may take a few seconds to be flushed to disk file.

• Logging: script/ide/log.lua

-- write formatted logs to log.txt
LOG.std(nil,"info", "sub_system_name", "some formated message: %s", "hello");
LOG.std(nil,"debug", "sub_system_name", {a=1, c="any table object"});
LOG.std(nil,"error", "sub_system_name", "error code here");
LOG.std(nil,"warn", "sub_system_name", "warning");

Log redirection and configurations: It is also possible to redirect log.txt to different files on startup. see NPLCom-
mandLine

NPL.load("(gl)script/ide/log.lua");
commonlib.log("hello %s \n", "paraengine")
commonlib.log({"anything"})
local fromPos = commonlib.log.GetLogPos()
log(fromPos.." babababa...\n");
local text = commonlib.log.GetLog(fromPos, nil)
log(tostring(text).." is retrieved\n")

commonlib.applog("hello paraengine"); --> ./log.txt --> 20090711 02:59:19|0|hello
→˓paraengine|script/shell_loop.lua:23: in function FunctionName|
commonlib.applog("hello %s", "paraengine")

commonlib.servicelog("MyService", "hello paraengine"); --> ./MyService_20090711.log --
→˓> 2009-07-11 10:53:27|0|hello paraengine||
commonlib.servicelog("MyService", "hello %s", "paraengine");

134 Chapter 38. Serialization, Encoding and Logging

https://github.com/NPLPackages/main/tree/master/script/ide/log.lua

nplruntime documentation, Release 0.1.0

-- set log properties before using the log
commonlib.servicelog.GetLogger("no_append"):SetLogFile("log/no_append.log")
commonlib.servicelog.GetLogger("no_append"):SetAppendMode(false);
commonlib.servicelog.GetLogger("no_append"):SetForceFlush(true);
commonlib.servicelog("no_append", "test");

-- This will change the default logger's file position at runtime.
commonlib.servicelog.GetLogger(""):SetLogFile("log/log_2016.5.19.txt");

38.9. Logging 135

nplruntime documentation, Release 0.1.0

136 Chapter 38. Serialization, Encoding and Logging

CHAPTER 39

HTTP request

http url request: script/ide/System/os/GetUrl.lua

-- return the content of a given url.
-- e.g. echo(NPL.GetURL("www.paraengine.com"))
-- @param url: url string or a options table of {url=string, postfields=string, form=
→˓{key=value}, headers={key=value, "line strings"}, json=bool, qs={}}
-- if .json is true, code will be decoded as json.
-- if .qs is query string table
-- if .postfields is a binary string to be passed in the request body. If this is
→˓present, form parameter will be ignored.
-- @param callbackFunc: a function(rcode, msg, data) end, if nil, the function will
→˓not return until result is returned(sync call).
-- `rcode` is http return code, such as 200 for success, which is same as `msg.rcode`
-- `msg` is the raw HTTP message {header, code=0, rcode=200, data}
-- `data` contains the translated response data if data format is a known format
→˓like json
-- or it contains the binary response body from server, which is same as `msg.data`
-- @param option: mostly nil. "-I" for headers only
-- @return: return nil if callbackFunc is a function. or the string content in sync
→˓call.
function System.os.GetUrl(url, callbackFunc, option)
end

NPL.load("(gl)script/ide/System/os/GetUrl.lua");

• download file or making standard request

System.os.GetUrl("https://github.com/LiXizhi/HourOfCode/archive/master.zip", echo);`

• get headers only with “-I” option.

System.os.GetUrl("https://github.com/LiXizhi/HourOfCode/archive/master.zip",
→˓function(err, msg, data) echo(msg) end, "-I");

• send form KV pairs with http post

System.os.GetUrl({url = "http://localhost:8099/ajax/console?action=getparams", form =
→˓{key="value",} }, function(err, msg, data) echo(data) end);

• send multi-part binary forms with http post

137

https://github.com/NPLPackages/main/tree/master/script/ide/System/os/GetUrl.lua

nplruntime documentation, Release 0.1.0

System.os.GetUrl({url = "http://localhost:8099/ajax/console?action=printrequest",
→˓form = {name = {file="dummy.html", data="<html><bold>bold</bold></html>", type=
→˓"text/html"}, } }, function(err, msg, data) echo(data) end);

• To send any binary data, one can use

System.os.GetUrl({url = "http://localhost:8099/ajax/console?action=printrequest",
→˓headers={["content-type"]="application/json"}, postfields='{"key":"value"}' },
→˓function(err, msg, data) echo(data) end);

• To simplify json encoding, we can send form as json string using following shortcut

System.os.GetUrl({url = "http://localhost:8099/ajax/console?action=getparams", json =
→˓true, form = {key="value", key2 ={subtable="subvalue"} } }, function(err, msg,
→˓data) echo(data) end);

HTTP PUT request:

System.os.GetUrl({
method = "PUT",
url = "http://localhost:8099/ajax/log?action=log",
form = {filecontent = "binary string here", }

}, function(err, msg, data) echo(data) end);

HTTP DELETE request:

System.os.GetUrl({
method = "DELETE",
url = "http://localhost:8099/ajax/log?action=log",
form = {filecontent = "binary string here", }

}, function(err, msg, data) echo(data) end);

On the server side, suppose it is NPL web server, one can get the request body using request:GetBody() or
request:getparams(). The former will only include request body, while the latter contains url parameters as
well.

Debugging HTTP request

In NPL Code Wiki’s console window, one can test raw http request by sending a request to
/ajax/console?action=printrequest, and then check log console for raw request content.

System.os.GetUrl({url = "http://localhost:8099/ajax/console?action=printrequest",
→˓echo);

Local Server

Local server offers a way for you to download files or making url requests with a cache policy. Local database system
is used to backup all url requests. The cached files may be in the database or in native file system.

For more information, please see localserver

138 Chapter 39. HTTP request

https://github.com/NPLPackages/main/tree/master/script/ide/System/localserver

nplruntime documentation, Release 0.1.0

what is a local server?

The LocalServer module allows a web application to cache and serve its HTTP resources locally, without a network
connection.

Local Server Overview

The LocalServer module is a specialized URL cache that the web application controls. Requests for URLs in the
LocalServer’s cache are intercepted and served locally from the user’s disk.

Resource stores

A resource store is a container of URLs. Using the LocalServer module, applications can create any number of
resource stores, and a resource store can contain any number of URLs.

There are two types of resource stores: - ResourceStore - for capturing ad-hoc URLs using NPL. The ResourceStore
allows an application to capture user data files that need to be addressed with a URL, such as a PDF file or an image.
- ManagedResourceStore - for capturing a related set of URLs that are declared in a manifest file, and are updated
automatically. The ManagedResourceStore allows the set of resources needed to run a web application to be captured.
For both types of stores, the set of URLs captured is explicitly controlled by the web application.

Architecture & Implementation Notes

all sql database manipulation functions are exposed via WebCacheDB, whose implementation is split in Web-
CacheDB* files. localserver is the based class for two servers: ResourceStore and ManagedResourceStore.

Using Local server as a local database

One can use local server as a simple (name, value) pair database with cache_policy functions.

To query a database entry call below, here we will use web service store

NPL.load("(gl)script/ide/System/localserver/factory.lua");
local ls = System.localserver.CreateStore(nil, 2);
if(not ls) then

return
end
cache_policy = cache_policy or System.localserver.CachePolicy:new("access plus 1

→˓week");

local url = System.localserver.UrlHelper.WS_to_REST(fakeurl_query_miniprofile,
→˓{JID=JID}, {"JID"});

local item = ls:GetItem(url)
if(item and item.entry and item.payload and not cache_policy:IsExpired(item.

→˓payload.creation_date)) then
-- NOTE:item.payload.data is always a string, one may deserialize from it to

→˓obtain table object.
local profile = item.payload.data;
if(type(callbackFunc) == "function") then

callbackFunc(JID, profile);
end

else

end

39.2. Local Server 139

nplruntime documentation, Release 0.1.0

To add(update) a database entry call below

NPL.load("(gl)script/ide/System/localserver/factory.lua");
local ls = System.localserver.CreateStore(nil, 2);
if(not ls) then

return
end
-- make url
local url = System.localserver.UrlHelper.WS_to_REST(fakeurl_query_miniprofile,

→˓{JID=JID}, {"JID"});

-- make entry
local item = {

entry = System.localserver.WebCacheDB.EntryInfo:new({
url = url,

}),
payload = System.localserver.WebCacheDB.PayloadInfo:new({

status_code = System.localserver.HttpConstants.HTTP_OK,
data = msg.profile,

}),
}
-- save to database entry
local res = ls:PutItem(item)
if(res) then

log("ls put JID mini profile for "..url.."\n")
else

log("warning: failed saving JID profile item to local server.\n")
end

Lazy writing

For the URL history, this transaction commit overhead is unacceptably high(0.05s for the most simple write commit).
On some systems, the cost of committing a new page to the history database was as high as downloading the entire
page and rendering the page to the screen. As a result, ParaEngine’s localserver has implemented a lazy sync system.

Please see https://developer.mozilla.org/en/Storage/Performance, for a reference

Localserver has relaxed the ACID requirements in order to speed up commits. In particular, we have dropped durabil-
ity. This means that when a commit returns, you are not guaranteed that the commit has gone through. If the power
goes out right away, that commit may (or may not) be lost. However, we still support the other (ACI) requirements.
This means that the database will not get corrupted. If the power goes out immediately after a commit, the transaction
will be like it was rolled back: the database will still be in a consistent state.

Send Email Via SMTP

It is not trivial to make a SMTP email server. However, it is fairly easy to send an email via an existing email server.
One can do it manually via System.os.GetUrl with proper options, or we write the following handy function for
you.

System.os.SendEmail({
url="smtp://smtp.exmail.qq.com",
username="lixizhi@paraengine.com", password="XXXXX",
-- ca_info = "/path/to/certificate.pem",

140 Chapter 39. HTTP request

https://github.com/NPLPackages/main/tree/master/script/ide/System/os/GetUrl.lua

nplruntime documentation, Release 0.1.0

from="lixizhi@paraengine.com", to="lixizhi@yeah.net", cc="xizhi.li@gmail.com",
subject = "title here",
body = "any body context here. can be very long",

}, function(err, msg) echo(msg) end);

Here is what I receive in my mail box:

39.3. Send Email Via SMTP 141

nplruntime documentation, Release 0.1.0

142 Chapter 39. HTTP request

CHAPTER 40

Files API

Search Files

• Files: script/ide/Files.lua

NPL.load("(gl)script/ide/Files.lua");
local result = commonlib.Files.Find({}, "model/test", 0, 500, function(item)

local ext = commonlib.Files.GetFileExtension(item.filename);
if(ext) then

return (ext == "x") or (ext == "dds")
end

end)

-- search zip files using perl regular expression. like ":^xyz\\s+.*blah$"
local result = commonlib.Files.Find({}, "model/test", 0, 500, ":.*", "*.zip")

-- using lua file system
local lfs = commonlib.Files.GetLuaFileSystem();
echo(lfs.attributes("config/config.txt", "mode"))

Read/Write Binary Files

local file = ParaIO.open("temp/binaryfile.bin", "w");
if(file:IsValid()) then

local data = "binary\0\0\0\0file";
file:WriteString(data, #data);
-- write 32 bits int
file:WriteUInt(0xffffffff);
file:WriteInt(-1);
-- write float
file:WriteFloat(-3.14);
-- write double (precision is limited by lua double)
file:WriteDouble(-3.1415926535897926);
-- write 16bits word
file:WriteWord(0xff00);
-- write 16bits short integer
file:WriteShort(-1);
file:WriteBytes(3, {255, 0, 255});
file:close();

143

https://github.com/NPLPackages/main/tree/master/script/ide/Files.lua

nplruntime documentation, Release 0.1.0

-- testing by reading file content back
local file = ParaIO.open("temp/binaryfile.bin", "r");
if(file:IsValid()) then

-- test reading binary string without increasing the file cursor
assert(file:GetText(0, #data) == data);
file:seekRelative(#data);
assert(file:getpos() == #data);
file:seek(0);
-- test reading binary string
assert(file:ReadString(#data) == data);
assert(file:ReadUInt() == 0xffffffff);
assert(file:ReadInt() == -1);
assert(math.abs(file:ReadFloat() - (-3.14)) < 0.000001);
assert(file:ReadDouble() == -3.1415926535897926);
assert(file:ReadWord() == 0xff00);
assert(file:ReadShort() == -1);
local o = {};
file:ReadBytes(3, o);
assert(o[1] == 255 and o[2] == 0 and o[3] == 255);
file:seek(0);
assert(file:ReadString(8) == "binary\0\0");
file:close();

end
end

In-Memory File And Binary Buffer

To write binary data to string, we can use the file API with a special filename called <memory>, see below

function test_MemoryFile()
-- "<memory>" is a special name for memory file, both read/write is possible.
local file = ParaIO.open("<memory>", "w");
if(file:IsValid()) then

file:WriteString("hello ");
local nPos = file:GetFileSize();
file:WriteString("world");
file:WriteInt(1234);
file:seek(nPos);
file:WriteString("World");
file:SetFilePointer(0, 2); -- 2 is relative to end of file
file:WriteInt(0);
file:WriteString("End");
file:WriteBytes(3, {100, 0, 22});
-- read entire binary text data back to npl string
echo(#(file:GetText(0, -1)));
file:close();

end
end

Read/Write Files

see NPL.load("(gl)script/test/ParaIO_test.lua");

144 Chapter 40. Files API

nplruntime documentation, Release 0.1.0

-- tested on 2007.1, LiXizhi
local function ParaIO_FileTest()

-- file write
log("testing file write...\r\n")

local file = ParaIO.open("temp/iotest.txt", "w");
file:WriteString("test\r\n");
file:WriteString("test\r\n");
file:close();

-- file read
log("testing file read...\r\n")

local file = ParaIO.open("temp/iotest.txt", "r");
log(tostring(file:readline()));
log(tostring(file:readline()));
log(tostring(file:readline()));
file:close();

end

-- tested on 2007.6.7, LiXizhi
local function ParaIO_ZipFileTest()

local writer = ParaIO.CreateZip("d:\\simple.zip","");
writer:ZipAdd("temp/file1.ini", "d:\\file1.ini");
writer:ZipAdd("temp/file2.ini", "d:\\file2.ini");
writer:ZipAddFolder("temp");
writer:AddDirectory("worlds/", "d:/temp/*.", 4);
writer:AddDirectory("worlds/", "d:/worlds/*.*", 2);
writer:close();

end

-- tested on 2007.6.7, LiXizhi
local function ParaIO_SearchZipContentTest()

-- test case 1
log("test case 1\n");
local search_result = ParaIO.SearchFiles("","*.", "d:\\simple.zip", 0, 10000, 0);
local nCount = search_result:GetNumOfResult();
local i;
for i = 0, nCount-1 do

log(search_result:GetItem(i).."\n");
end
search_result:Release();
-- test case 2
log("test case 2\n");
local search_result = ParaIO.SearchFiles("","*.ini", "d:\\simple.zip", 0, 10000,

→˓0);
local nCount = search_result:GetNumOfResult();
local i;
for i = 0, nCount-1 do

log(search_result:GetItem(i).."\n");
end
search_result:Release();
-- test case 3
log("test case 3\n");
local search_result = ParaIO.SearchFiles("","temp/*.", "d:\\simple.zip", 0, 10000,

→˓ 0);

40.4. Read/Write Files 145

nplruntime documentation, Release 0.1.0

local nCount = search_result:GetNumOfResult();
local i;
for i = 0, nCount-1 do

log(search_result:GetItem(i).."\n");
end
search_result:Release();
-- test case 4
log("test case 4\n");
local search_result = ParaIO.SearchFiles("temp/","*.*", "d:\\simple.zip", 0,

→˓10000, 0);
local nCount = search_result:GetNumOfResult();
local i;
for i = 0, nCount-1 do

log(search_result:GetItem(i).."\n");
end
search_result:Release();
-- test case 5
log("test case 5\n");
local search_result = ParaIO.SearchFiles("","temp/*.*", "d:\\simple.zip", 0,

→˓10000, 0);
local nCount = search_result:GetNumOfResult();
local i;
for i = 0, nCount-1 do

log(search_result:GetItem(i).."\n");
end
search_result:Release();

end

local function ParaIO_SearchPathTest()
ParaIO.CreateDirectory("npl_packages/test/")
local file = ParaIO.open("npl_packages/test/test_searchpath.lua", "w");
file:WriteString("echo('from test_searchpath.lua')")
file:close();

ParaIO.AddSearchPath("npl_packages/test");
ParaIO.AddSearchPath("npl_packages/test/"); -- same as above, check for duplicate

assert(ParaIO.DoesFileExist("test_searchpath.lua"));

ParaIO.RemoveSearchPath("npl_packages/test");

assert(not ParaIO.DoesFileExist("test_searchpath.lua"));

-- ParaIO.AddSearchPath("npl_packages/test/");
-- this is another way of ParaIO.AddSearchPath, except that it will check for

→˓folder existence.
-- in a number of locations.
NPL.load("npl_packages/test/");

-- test standard open api
local file = ParaIO.open("test_searchpath.lua", "r");
if(file:IsValid()) then

log(tostring(file:readline()));
else

log("not found\n");
end
file:close();

146 Chapter 40. Files API

nplruntime documentation, Release 0.1.0

-- test script file
NPL.load("(gl)test_searchpath.lua");

ParaIO.ClearAllSearchPath();

assert(not ParaIO.DoesFileExist("test_searchpath.lua"));
end

-- TODO: test passed on 2008.4.20, LiXizhi
function ParaIO_PathReplaceable()

ParaIO.AddPathVariable("WORLD", "worlds/MyWorld")
if(ParaIO.AddPathVariable("userid", "temp/LIXIZHI_PARAENGINE")) then

local fullpath;
commonlib.echo("test simple");
fullpath = ParaIO.DecodePath("%WORLD%/%userid%/filename");
commonlib.echo(fullpath);
fullpath = ParaIO.EncodePath(fullpath)
commonlib.echo(fullpath);

commonlib.echo("test encoding with a specified variables");
fullpath = ParaIO.DecodePath("%WORLD%/%userid%/filename");
commonlib.echo(fullpath);
commonlib.echo(ParaIO.EncodePath(fullpath, "WORLD"));
commonlib.echo(ParaIO.EncodePath(fullpath, "WORLD, userid"));

commonlib.echo("test encoding with inline path");
fullpath = ParaIO.DecodePath("%WORLD%/%userid%_filename");
commonlib.echo(fullpath);
fullpath = ParaIO.EncodePath(fullpath)
commonlib.echo(fullpath);

commonlib.echo("test nested");
fullpath = ParaIO.DecodePath("%userid%/filename/%userid%/nestedtest");
commonlib.echo(fullpath);
fullpath = ParaIO.EncodePath(fullpath)
commonlib.echo(fullpath);

commonlib.echo("test remove");
if(ParaIO.AddPathVariable("userid", nil)) then

fullpath = ParaIO.DecodePath("%userid%/filename");
commonlib.echo(fullpath);
fullpath = ParaIO.EncodePath(fullpath)
commonlib.echo(fullpath);

end

commonlib.echo("test full path");
fullpath = ParaIO.DecodePath("NormalPath/filename");
commonlib.echo(fullpath);
fullpath = ParaIO.EncodePath(fullpath)
commonlib.echo(fullpath);

end
end

function ParaIO_SearchFiles_reg_expr()
-- test case 1
local search_result = ParaIO.SearchFiles("script/ide/",":.*", "*.zip", 2, 10000,

→˓0);

40.4. Read/Write Files 147

nplruntime documentation, Release 0.1.0

local nCount = search_result:GetNumOfResult();
local i;
for i = 0, nCount-1 do

log(search_result:GetItem(i).."\n");
end
search_result:Release();

end

function test_excel_doc_reader()
NPL.load("(gl)script/ide/Document/ExcelDocReader.lua");
local ExcelDocReader = commonlib.gettable("commonlib.io.ExcelDocReader");
local reader = ExcelDocReader:new();

-- schema is optional, which can change the row's keyname to the defined value.
reader:SetSchema({

[1] = {name="npcid", type="number"},
[2] = {name="superclass", validate_func=function(value) return value or

→˓"menu1"; end },
[3] = {name="class", validate_func=function(value) return value or "normal";

→˓end },
[4] = {name="class_name", validate_func=function(value) return value or "";

→˓end },
[5] = {name="gsid", type="number" },
[6] = {name="exid", type="number" },
[7] = {name="money_list", },

})
-- read from the second row
if(reader:LoadFile("config/Aries/NPCShop/npcshop.xml", 2)) then

local rows = reader:GetRows();
echo(rows);

end

NPL.load("(gl)script/ide/Document/ExcelDocReader.lua");
local ExcelDocReader = commonlib.gettable("commonlib.io.ExcelDocReader");
local reader = ExcelDocReader:new();

-- schema is optional, which can change the row's keyname to the defined value.
local function card_and_level_func(value)

if(value) then
local level, card_gsid = value:match("^(%d+):(%d+)");
return {level=level, card_gsid=card_gsid};

end
end
reader:SetSchema({

{name="gsid", type="number"},
{name="displayname"},
{name="max_level", type="number" },
{name="hp", type="number" },
{name="attack", type="number" },
{name="defense", type="number" },
{name="powerpips_rate", type="number" },
{name="accuracy", type="number" },
{name="critical_attack", type="number" },
{name="critical_block", type="number" },
{name="card1", validate_func= card_and_level_func},
{name="card2", validate_func= card_and_level_func},

148 Chapter 40. Files API

nplruntime documentation, Release 0.1.0

{name="card3", validate_func= card_and_level_func},
{name="card4", validate_func= card_and_level_func},
{name="card5", validate_func= card_and_level_func},
{name="card6", validate_func= card_and_level_func},
{name="card7", validate_func= card_and_level_func},
{name="card8", validate_func= card_and_level_func},

})
-- read from the second row
if(reader:LoadFile("config/Aries/Others/combatpet_levels.excel.teen.xml", 2)) then

local rows = reader:GetRows();
log(commonlib.serialize(rows, true));

end
end

Delete Files

See ParaIO Reference for more functions

ParaIO.DeleteFile("temp/*.*");

Compress and Decompress with Zlib and Gzip

• Files: script/test/TestNPL.lua

-- compress/decompress test
function TestNPL.Compress()

-- using gzip
local content = "abc";
local dataIO = {content=content, method="gzip"};
if(NPL.Compress(dataIO)) then

echo(dataIO);
if(dataIO.result) then

dataIO.content = dataIO.result; dataIO.result = nil;
if(NPL.Decompress(dataIO)) then

echo(dataIO);
assert(dataIO.result == content);

end
end

end

-- using zlib and deflate
local content = "abc";
local dataIO = {content=content, method="zlib", windowBits=-15, level=3};
if(NPL.Compress(dataIO)) then

echo(dataIO);
if(dataIO.result) then

dataIO.content = dataIO.result; dataIO.result = nil;
if(NPL.Decompress(dataIO)) then

echo(dataIO);
assert(dataIO.result == content);

end
end

40.5. Delete Files 149

https://codedocs.xyz/LiXizhi/NPLRuntime/classParaScripting_1_1ParaIO.html
https://github.com/NPLPackages/main/tree/master/script/test/TestNPL.lua

nplruntime documentation, Release 0.1.0

end
end

Running Shell Commands

• source: script/ide/System/os/run.lua

To run external command lines via windows batch or linux bash shell in either synchronous or asynchronous
mode.

NPL.load("(gl)script/ide/System/os/run.lua");
if(System.os.GetPlatform()=="win32") then

-- any lines of windows batch commands
echo(System.os("dir *.exe \n svn info"));
-- this will popup confirmation window, so there is no way to get its result.
System.os.runAsAdmin('reg add "HKCR\\paracraft" /ve /d "URL:paracraft" /f');

else
-- any lines of linux bash shell commands
echo(System.os.run("ls -al | grep total\ngit | grep commit"));

end
-- async run command in worker thread
for i=1, 10 do

System.os.runAsync("echo hello", function(err, result) echo(result) end);
end
echo("waiting run async reply ...")

please note:

• windows and linux have different default shell program. One may need to use
System.os.GetPlatform()=="win32" to target code to a given platform.

• We can write very long multi-line commands. Internally a temporary shell script file is created and executed
with IO redirection.

• Sometimes, we may prefer async API to prevent stalling the calling thread, such as NPL web server invoking
some backend programs for image processing. The async API pushes a message to a processor queue and
returns immediately, one can use one or more NPL threads to process any number of queued shell commands.
For more details, please see doc in System.os.runAsync source file.

• You need to have permissions to run these scripts. Under window 10 or above, we provide
System.os.runAdmin to automatically popup confirmation dialog to run as administrator. Under linux,
there is nothing we can do, you must give execute permission to ./temp folder. This is the case for selinux
core.

Reading Image File

function test_reading_image_file()
-- reading binary image file
-- png, jpg format are supported.
local filename = "Texture/alphadot.png";
local file = ParaIO.open(filename, "image");
if(file:IsValid()) then

local ver = file:ReadInt();
local width = file:ReadInt();

150 Chapter 40. Files API

https://github.com/NPLPackages/main/tree/master/script/ide/System/os/run.lua

nplruntime documentation, Release 0.1.0

local height = file:ReadInt();
-- how many bytes per pixel, usually 1, 3 or 4
local bytesPerPixel = file:ReadInt();
echo({ver, width=width, height = height, bytesPerPixel = bytesPerPixel})
local pixel = {};
for y=1, height do

for x=1, width do
pixel = file:ReadBytes(bytesPerPixel, pixel);
echo({x, y, rgb=pixel})

end
end
file:close();

end
end

40.8. Reading Image File 151

nplruntime documentation, Release 0.1.0

152 Chapter 40. Files API

CHAPTER 41

Mouse and Key Input

This section is about handling mouse and key events in a window application.

Low level event handler

At the lowest level of NPL, mouse and keyboard event handlers can be registered to ParaUIObject and the global
ParaScene. The ParaScene is a global singleton to handle all events not handled by any GUI objects. Please note,
there is a another AutoCameraController which is enabled by default to handle mouse and key events before
passing to ParaScene. So the order of event filtering in NPLRuntime is like below

• GUI events: controls that have focus always get event first

• AutoCameraController: optionally enabled for handling basic player control, such as right click
to rotate the view, arrow keys to move the main player. Please note, this can be disabled if one wants to handle
everything in NPL script. Trust me, it can cost you over 2000 lines of code if you do it manually.

• ParaScene: finally mouse and key events are handled by the 3d scene.

It is NOT recommended to use low level NPL api directly, see next section.

Use NPL libraries to handle event

2D events

For 2D GUI events, one can handle via window controls or MCML page. There is also a mcml v1 tag called
<pe:hotkey> for handling simple key event when window is visible.

3D Scene Context

For 3D or global mouse/key, one should use SceneContext.

At most one scene context can be selected at any time. Once selected, the scene context will receive all key/mouse
events in the 3D scene. One can derive from this class to write and switch to your own scene event handlers.

The computational model for global key/mouse event in C++ Engine is:

key/mouse input--> 2D --> (optional auto camera) --> 3D scene --> script handlers

This class simplified and modified above model with following object oriented model:

153

https://github.com/NPLPackages/main/blob/master/script/ide/System/Core/SceneContext.lua

nplruntime documentation, Release 0.1.0

key/mouse input--> 2D --> one of SceneContext object--> Manipulator container -->
→˓ Manipulators --> (optional auto camera manipulator)

Please note that both model can coexist, however SceneContext is now the recommended way to handle any scene
event. SceneContext hide all dirty work of hooking into the old C++ engine callback interface, and offers more user
friendly way of event handling.

Virtual functions:

mousePressEvent(event)
mouseMoveEvent
mouseReleaseEvent
mouseWheelEvent
keyReleaseEvent
keyPressEvent
OnSelect()
OnUnselect()

use the lib:

NPL.load("(gl)script/ide/System/Core/SceneContext.lua");
local MySceneContext = commonlib.inherit(commonlib.gettable("System.Core.SceneContext
→˓"), commonlib.gettable("System.Core.MySceneContext"));
function MySceneContext:ctor()

self:EnableAutoCamera(true);
end

function MySceneContext:mouseReleaseEvent(event)
_guihelper.MessageBox("clicked")

end

-- method 1:
local sContext = MySceneContext:new():Register("MyDefaultSceneContext");
sContext:activate();
-- method 2:
MySceneContext:CreateGetInstance("MyDefaultSceneContext"):activate();

Scene Context Switch

Context is usually associated with a tool item, such as when user click to use the tool, its context is activated and once
user deselect it, the context is switched back to a default one.

Scene context allows one to write modular code for each tool items with complex mouse/key input without affecting
each other. It is common for an application to derive all of its context from a base context to support shared global key
events, etc.

For an example of using context, please see Paracraft’s context folder.

See also here for how to replace the default context in paracraft’s mod interface with filters.

Manipulators

Scene context can contain manipulators. Manipulator is a module to manipulate complex scene objects, like the one
below.

154 Chapter 41. Mouse and Key Input

https://github.com/NPLPackages/paracraft/blob/master/script/apps/Aries/Creator/Game/SceneContext
https://github.com/NPLPackages/main/blob/master/script/ide/System/Scene/Manipulators/Manipulator.lua

nplruntime documentation, Release 0.1.0

Manipulator is the base class used for creating user-defined manipulators. A manipulator can be connected to a
depend node instead of updating a node attribute directly call AddValue() in constructor if one wants to define a
custom manipulator property(plug) that can be easily binded with dependent node’s plug.

Manipulator can also draw complex 3D overlay objects with 3d picking support. In above picture, the three curves are
drawn by the Rotate manipulator.

41.2. Use NPL libraries to handle event 155

https://github.com/NPLPackages/main/blob/master/script/ide/System/Scene/Manipulators/RotateManip.lua

nplruntime documentation, Release 0.1.0

156 Chapter 41. Mouse and Key Input

CHAPTER 42

Overview

To write modular code, a system may expose its interface in the form of virtual functions, events or filters.

• virtual functions: allows a derived class to hook the input and output of a single function in the base
class.

• events: feeds input to external functions when certain things happened. Events only hooks the input without
providing an output.

• filters: allows external functions to form input-output chains to modify data at any point of execution.

Use whatever patterns to allow external modifications to the input-output of your modular code.

Filters

Filters is a design pattern of input-output chains. Please see script/ide/System/Core/Filters.lua for detailed usage.

You can simply apply a named filters at any point of execution in your code to allow other users to modify your data.

For example, one can turn data = data; into an equivalent filter, like below

data = GameLogic.GetFilters():apply_filters("my_data", data, some_parameters);

The above code does nothing until some other modules add_filters to "my_data".

Each filter function takes the output of the previous filter function as its first parameter, all other input parameters are
shared by all filter functions, like below

F1(input, ...)-->F2(F1_output, ...)-->F3(F2_output, ...)-->F3_output

Filters is the recommended way for plugin/app developers to extend or modify paracraft.

Click here to see all Paracraft Filters

157

https://github.com/NPLPackages/main/blob/master/script/ide/System/Core/Filters.lua
https://github.com/NPLPackages/paracraft/blob/master/script/apps/Aries/Creator/Game/ParacraftFilters.md

nplruntime documentation, Release 0.1.0

158 Chapter 42. Overview

CHAPTER 43

Localization

There are some helper class for you to implement localization. For best practices, please see example in paracraft
package, which uses poedit to edit and store localization strings with multi-languages.

• Helper class for translation table:

• paracraft examples:

Overview

UTF8 encoding should be used where ever possible in your source code or mcml files. Everything returned from NPL
is also UTF8 encoded, except for native file path.

Follow following steps:

• Use this class to create a global table L to look up for localized text with a primary key.

• When your application start, populate table L with data from your localization files according to current
language setting.

• In your script code or mcml UI page files, replace any text “XXX” with L"XXX"

• Re-Run Poedit to scan for all source files and update the localization database file.

• Inform your translator to translate the *.po files into multiple languages and generate *.mo files. Or you may
just use google translate or other services.

• Iterate above three steps when you insert new text in your source code.

Always use

-- Right way
local text = format(L"Some text %d times", times)

instead of

-- BAD & Wrong Way!!!
local text = L"Some text "..times..L" times"

for better translation because different language have different syntax.

159

https://github.com/NPLPackages/main/tree/master/script/ide/Locale.lua

nplruntime documentation, Release 0.1.0

Localization GetText Tools

To store your language strings, you can use plain table in script or use a third-party tool like Poedit. We have created
Poedit plugin to support NPL code, download the NPLgettext tool here.

In paracraft, there is a command called /poedit which does the gettext job automatically.

160 Chapter 43. Localization

https://github.com/LiXizhi/NPLgettext

CHAPTER 44

User Interface

There are two low-level ways to draw 2d graphical objects.

• One is via creating ParaUIObject controls (like buttons, containers, editbox). These controls are managed in
C++ and created in NPL scripts.

• The other is creating owner draw ParaUIObject, and do all the drawings with Painting API in NPL scripts, such
as draw rect, lines, text, etc.

Moreover, there are a number of high-level graphical libraries written in NPL which allows you to create 2D user
interface more easily.

• IDE controls is NPL wrapper of the low-level C++ API. It provides more versatile controls than the raw Pa-
raUIObjects.

– One old implementation is based on ParaUIObject controls.

– One new implementation is based on Painting API, in System.Window.UIElement namespace.

• MCML/NPL is a HTML/JS like mark up language to create user interface.

– One old implementation is based on ParaUIObject controls.

– One new implementation is based on Painting API, in System.Window.mcml namespace.

Further Reading

161

nplruntime documentation, Release 0.1.0

162 Chapter 44. User Interface

CHAPTER 45

Drawing With 2D API

There are two low-level ways to draw 2d graphical objects.

• One is via creating ParaUIObject controls (like buttons, containers, editbox). These controls are managed in
C++ and created in NPL scripts.

• The other is creating owner draw ParaUIObject, and do all the drawings with Painting API in NPL scripts, such
as draw rect, lines, text, etc.

Moreover, there is a number of high-level graphical libraries written in NPL which allows you to create 2D user
interface more easily.

• IDE controls is NPL wrapper of the low-level C++ API. It provides more versatile controls than the raw Pa-
raUIObjects.

– One old implementation is based on ParaUIObject controls.

– One new implementation is based on Painting API, in System.Window.UIElement namespace.

• MCML/NPL is a HTML/JS like mark up language to create user interface.

– One old implementation is based on ParaUIObject controls.

– One new implementation is based on Painting API, in System.Window.mcml namespace.

This article is only about low-level drawing API in C++ side, which are exposed to NPL. However, one
should always use MCML or Windows.UIElement instead of following raw API.

button

Creating a button with a texture background and text. The root element is a container see next section. Please place a
png texture Texture/alphadot.png at the working directory.

NPL.load("(gl)script/ide/System/System.lua");

local clickCount = 1;
local function CreateUI()

local _this = ParaUI.CreateUIObject("button", "MyBtn", "_lt", 10, 10, 64, 22);
_this.text= "text";
_this.background = "Texture/alphadot.png";
_this:SetScript("onclick", function(obj)

obj.text = "clicked "..clickCount;
clickCount = clickCount + 1;

end)
_this:AttachToRoot();

163

nplruntime documentation, Release 0.1.0

end
CreateUI();

container

Create a container and a child button inside it.

local _parent, _this;
_this = ParaUI.CreateUIObject("container", "MyContainer", "_lt", 10, 110, 200,

→˓64);
_this:AttachToRoot();
_this.background = "Texture/alphadot.png";
_parent = _this;

-- create a child
_this = ParaUI.CreateUIObject("button", "b", "_rt", -10-32, 10, 32, 22);
_this.text= "X"
_this.background = "";
_parent:AddChild(_this);

text and editbox

System Fonts

In ParaEngine/NPL, we support loading fonts from *.ttf files. One can install custom font files at fonts/*.ttf,
and use them with filename, such as Verdana;bold. Please note, all controls in ParaEngine uses “Sys-
tem” font by default. “System” font maps to the system font used by the current computer by default. How-
ever, one can change it to a different custom font installed in fonts/*.ttf. Suppose you have a font file at
fonts/ParaEngineThaiFont.ttf, you can map default System font to it by calling.

Config.AppendTextValue("GUI_font_mapping","System");
Config.AppendTextValue("GUI_font_mapping","ParaEngineThaiFont");

It is a pair of function calls, the first is name, the second is value. We recommend doing it in script/config.lua,
it is loaded before any UI control is created. Please see that file for details.

Please note, for each font with different size, weight, and name, we will create a different internal temporary image
file for rendering. So it is recommended to use just a few fonts in your application.

164 Chapter 45. Drawing With 2D API

CHAPTER 46

2D GUI Windows

A System.Windows.Window is the primary container for 2D GUI. There are multiple ways to create windows.
The most common way is to use mcml markup language. The programing model is like writing HTML/js web page.

Quick Sample

First you need to create a html file, such as source/HelloWorldMCML/mcml_window.html.

<pe:mcml>
<script refresh="false" type="text/npl" src="mcml_window.lua"><![CDATA[

function OnClickOK()
local content = Page:GetValue("content") or "";
_guihelper.MessageBox(":"..content);

end
]]></script>
<div style="color:#33ff33;background-color:#808080">

<div style="margin:10px;">
Hello World from HTML page!

</div>
<div style="margin:10px;">

<input type="text" name="content" style="width:200px;height:25px;" />
<input type="button" name="ok" value="" onclick="OnClickOK"/>

</div>
</div>
</pe:mcml>

To create and show the window using the html file, we simply do following code.

NPL.load("(gl)script/ide/System/Windows/Window.lua");
local Window = commonlib.gettable("System.Windows.Window")
local window = Window:new();
window:Show({

url="source/HelloWorldMCML/mcml_window.html",
alignment="_lt", left = 300, top = 100, width = 300, height = 400,

});

Window Alignment

Notice the alignment parameter specify the relative position to its parent or the native screen window.

165

nplruntime documentation, Release 0.1.0

* @param alignment: can be one of the following strings or nil or left out
→˓entirely:

* - "_lt" align to left top of the screen

* - "_lb" align to left bottom of the screen

* - "_ct" align to center of the screen

* - "_ctt": align to center top of the screen

* - "_ctb": align to center bottom of the screen

* - "_ctl": align to center left of the screen

* - "_ctr": align to center right of the screen

* - "_rt" align to right top of the screen

* - "_rb" align to right bottom of the screen

* - "_mt": align to middle top

* - "_ml": align to middle left

* - "_mr": align to middle right

* - "_mb": align to middle bottom

* - "_fi": align to left top and right bottom. This is like fill in the
→˓parent window.

*
* the layout is given below:

* _lt _mt _rt

* _ml _ct _mr

* _lb _mb _rb

left,top,width,height have different meanings for different alignment type. The most simple one is “_lt”
which means left top alignment.

• center alignment:

– alignment="_ct",left = 0,top = -100,width = 300,height = 400 will display
window at center. Normally, if you want to center a window with given width and height, one should
use: left = -width/2,top = -height/2,width,height. The left, top means relative to the
center of the parent window. “_ctt” means center top.

• middle alignment:

– “_mt” middle top: it means that the pixels relative to left and right border of the parent window should be
fixed.In other words, if the parent resizes, the width of the window also resize.

– _mt: x is coordinate from the left. y is coordinate from the top, width is the coordinate from the right and
height is the height

– _mb: x is coordinate from the left. y is coordinate from the bottom, width is the coordinate from the right
and height is the height

– _ml: x is coordinate from the left. y is coordinate from the top, width is the width and height is the
coordinate from the bottom

– _mr: x is coordinate from the right. y is coordinate from the top, width is the width and height is the
coordinate from the bottom

MCML V1 vs V2

There two implementations of MCML: v1 and v2. The example above is given by v2, which is the preferred imple-
mentation. However, v1 is mature and stable implementation, v2 is new and currently does not have as many build-in
controls as v1. We are still working on v2 and hope it can be 100% compatible and powerful with v1. To launch the
same mcml page with v1, one can use

166 Chapter 46. 2D GUI Windows

nplruntime documentation, Release 0.1.0

NPL.load("(gl)script/kids/3DMapSystemApp/mcml/PageCtrl.lua");
local page = System.mcml.PageCtrl:new({url="source/HelloWorldMCML/mcml_window.html

→˓"});
page:Create("testpage", nil, "_lt", 0, 0, 300, 400);

Difference between v1 and v2

• v1 uses NPL’s build-in GUI objects written in C++, i.e. ParaUIObject like button,container,editbox.
Their implementation is hidden from NPL scripts and user IO is exposed to NPL script via callback functions.

• v2 uses NPL script to draw all the GUI objects using 3d-triangle drawing API and handles user input in NPL
script. Therefore the user has complete control over the look of their control in NPL script. One can read the
source code of v2 in main package.

UI Elements (Controls)

In mcml v2 implementation, mcml page are actually translated to UI Elements at runtime. UI Element contains
a collection of GUI controls written completely in NPL. They all derive from UIElement, which contains virtual
functions to paint the control and handle user IO event.

The following are buildin-in UI elements or controls:

Creating GUI Without MCML

In most cases, we should use mcml to create GUI, however, there are places when you want to create your custom
control or custom mcml tag, you will then need to write your own control.

Following are some examples:

function test_Windows:TestCreateWindow()

-- create the native window
local window = Window:new();

-- test UI element
local elem = UIElement:new():init(window);
elem:SetBackgroundColor("#0000ff");
elem:setGeometry(10,0,64,32);

-- test create rectangle
local rcRect = Rectangle:new():init(window);
rcRect:SetBackgroundColor("#ff0000");
rcRect:setGeometry(10,32,64,32);

-- test Button
local btn = Button:new():init(window);
btn:SetBackgroundColor("#00ff00");
btn:setGeometry(10,64,64,32);
btn:Connect("clicked", function (event)

_guihelper.MessageBox("you clicked me");
end)
btn:Connect("released", function(event)

_guihelper.MessageBox("mouse up");
end)

46.4. UI Elements (Controls) 167

https://github.com/NPLPackages/main/tree/master/script/ide/System/Windows/UIElement.lua

nplruntime documentation, Release 0.1.0

-- show the window natively
window:Show("my_window", nil, "_mt", 0,0, 200, 200);

end

function test_Windows:TestMouseEnterLeaveEvents()
-- create the native window
local window = Window:new();
window.mouseEnterEvent = function(self, event)

Application:postEvent(self, System.Core.LogEvent:new({"window enter", event:
→˓localPos()}));

end
window.mouseLeaveEvent = function(self, event)

Application:postEvent(self, System.Core.LogEvent:new({"window leave"}));
end

-- Parent1
local elem = UIElement:new():init(window);
elem:SetBackgroundColor("#0000ff");
elem:setGeometry(10,0,64,64);
elem.mouseEnterEvent = function(self, event)

Application:postEvent(self, System.Core.LogEvent:new({"parent1 enter", event:
→˓localPos()}));

end
elem.mouseLeaveEvent = function(self, event)

Application:postEvent(self, System.Core.LogEvent:new({"parent1 leave"}));
end

-- Parent1:Button1
local btn = Button:new():init(elem);
btn:SetBackgroundColor("#ff0000");
btn:setGeometry(0,0,64,32);
btn.mouseEnterEvent = function(self, event)

Application:postEvent(self, System.Core.LogEvent:new({"btn1 enter", event:
→˓localPos()}));

end
btn.mouseLeaveEvent = function(self, event)

Application:postEvent(self, System.Core.LogEvent:new({"btn1 leave"}));
end

-- Button2
local btn = Button:new():init(window);
btn:SetBackgroundColor("#00ff00");
btn:setGeometry(10,64,64,32);
btn.mouseEnterEvent = function(self, event)

Application:postEvent(self, System.Core.LogEvent:new({"btn2 enter", event:
→˓localPos()}));

end
btn.mouseLeaveEvent = function(self, event)

Application:postEvent(self, System.Core.LogEvent:new({"btn2 leave"}));
end

-- show the window natively
window:Show("my_window1", nil, "_mt", 0,200, 200, 200);

end

function test_Windows:TestEditbox()

168 Chapter 46. 2D GUI Windows

nplruntime documentation, Release 0.1.0

-- create the native window
local window = Window:new();

-- test UI element
local elem = EditBox:new():init(window);
elem:setGeometry(60,30,64,25);
-- elem:setMaxLength(6);
-- show the window natively
window:Show("my_window", nil, "_lt", 0,0, 200, 200);

end

Creating Custom MCML v2 Controls

This is our custom control MyApp.Controls.MyCustomControl, whose implementation is defined in
test_pe_custom.lua

<pe:mcml>
<script type="text/npl" refresh="false">
<![CDATA[
]]>
</script>

<pe:custom src="test_pe_custom.lua" classns="MyApp.Controls.MyCustomControl"
→˓style="width:200px;height:200px;">

</pe:custom>
</pe:mcml>

Now in test_pe_custom.lua, we create its implementation.

local MyCustomControl = commonlib.inherit(commonlib.gettable("System.Windows.UIElement
→˓"), commonlib.gettable("MyApp.Controls.MyCustomControl"));

function MyCustomControl:paintEvent(painter)
painter:SetPen("#ff0000");
painter:DrawText(10,10, "MyCustomControl");

end

Preview and Debug Layout

Sometimes, we want to change the code and preview the result without restarting the whole application. If your
windows contains no external logics and uses mcml v1 exclusively, you can preview using MCML browser, simply
press Ctrl+F3.

In most cases, you may need to write temporary or persistent test code for your new window class with data connected.
This usually involves delete the old window object and create a new one like below. Run it repeatedly in NPL code
wiki’s console to preview your updated mcml code.

-- remove old window
local window = commonlib.gettable("test.window")
if(window and window.CloseWindow) then

window:CloseWindow(true);
end

-- create a new window

46.6. Creating Custom MCML v2 Controls 169

nplruntime documentation, Release 0.1.0

NPL.load("(gl)script/ide/System/Windows/Window.lua");
local Window = commonlib.gettable("System.Windows.Window")
local window = Window:new();
window:Show({

url="script/ide/System/test/test_mcml_page.html",
alignment="_lt", left = 0, top = 0, width = 200, height = 400,

});
-- keep a reference for refresh
test.window = window;

170 Chapter 46. 2D GUI Windows

CHAPTER 47

MCML Markup Language For 2D GUI

MCML or Micro Cosmos Markup Language is a meta language written in NPL since 2008, since then it has become
the standard of writing 2D user interface in NPL. MCML is inspired by early version of ASP.net, however it uses local
architecture for local user interface.

Quick Sample

Here is an example of mcml page in a .html file, such as source/HelloWorldMCML/mcml_window.html.
The file extension only makes it possible for you to preview the page in other html code editor.

<pe:mcml>
<script refresh="false" type="text/npl" src="mcml_window.lua"><![CDATA[

function OnClickOK()
local content = Page:GetValue("content") or "";
_guihelper.MessageBox(":"..content);

end
]]></script>
<div style="color:#33ff33;background-color:#808080">

<div style="margin:10px;">
Hello World from HTML page!

</div>
<div style="margin:10px;">

<input type="text" name="content" style="width:200px;height:25px;" />
<input type="button" name="ok" value="" onclick="OnClickOK"/>

</div>
</div>
</pe:mcml>

To render the page, one can launch it with a window like below. See System.Window for details.

NPL.load("(gl)script/ide/System/Windows/Window.lua");
local Window = commonlib.gettable("System.Windows.Window")
local window = Window:new();
window:Show({

url="source/HelloWorldMCML/mcml_window.html",
alignment="_lt", left = 300, top = 100, width = 300, height = 400,

});

171

nplruntime documentation, Release 0.1.0

MCML V1 vs V2

There two implementations of MCML: v1 and v2. The example above is given by v2, which is the preferred imple-
mentation. However, v1 is mature and stable implementation, v2 is new and currently does not have as many build-in
controls as v1. We are still working on v2 and hope it can be 100% compatible and powerful with v1. This article is
only about v2. See last section for v1.

Difference between v1 and v2

• v1 uses NPL’s build-in GUI objects written in C++, i.e. ParaUIObject like button,container,editbox.
Their implementation is hidden from NPL scripts and user IO is exposed to NPL script via callback functions.

• v2 uses NPL script to draw all the GUI objects using 3d-triangle drawing API and handles user input in NPL
script. Therefore the user has complete control over the look of their control in NPL script. One can read the
source code of v2 in main package.

Mcml tags

There are a number of tags which you can use to create interactive content. Besides, one can also create your own
custom tags with UI controls, see System.Window for details. All mcml build-in tags are in the pe: xml namespace,
which stands for ParaEngine or pe.

Standard html tags are mapped as follows:

• The div tag is mapped to pe:div class.

• plain text is mapped to pe:text.

• input type=button is mapped to pe:button, etc.

Examples

There are many mcml examples where you browse in the paracraft package. Most of them are written in mcml v1,
however the syntax should be the same for mcml v2. Click to search paracraft package for mcml

Following is just some quick examples:

<pe:mcml>
<script type="text/npl" refresh="false">
<![CDATA[
globalVar = "test global var";
function OnButtonClick()

_guihelper.MessageBox("refresh page now?", function()
Page:SetValue("myBtn", "refreshed");
Page:Refresh(0);

end);
end

repeat_data = { {a=1}, {a=2} };
function GetDS()

return repeat_data;
end
]]>
</script>

<div align="right" style="background-color:#ff0000;margin:10px;padding:10px;min-
→˓width:400px;min-height:150px">

172 Chapter 47. MCML Markup Language For 2D GUI

https://github.com/NPLPackages/paracraft/search?q=mcml&type=Code&utf8=%E2%9C%93

nplruntime documentation, Release 0.1.0

<div align="right" style="padding:5px;background:url(Texture/Aries/Common/
→˓ThemeKid/btn_thick_hl_32bits.png:7 7 7 7)">

<div style="float:left;background-color:#000000;color:#ffd800;font-size:
→˓20px;">

hello worldfontColor
</div>
<div style="float:left;background-color:#0000ff;margin-left:10px;width:

→˓20px;height:20px;">
</div>

</div>
<div valign="bottom">

<div style="float:left;background-color:#00ff00;width:60px;height:20px;">
</div>
<div style="float:left;background-color:#0000ff;margin-left:10px;width:

→˓20px;height:20px;">
</div>

</div>
</div>
<div>

hello worldfontColor
fontColor

</div>

<%=Eval('globalVar')%>
<%=document.write('hello world')%>

<pe:container style="padding:5px;background-color:#ff0000">

button:<input type="button" name="myBtn" value="RefreshPage" onclick=
→˓"OnButtonClick" style=""/>

editbox:<input type="text" name="myEditbox" value="" style="margin-left:2px;
→˓width:64px;height:25px"/>

pe_if: <pe:if condition='<%=globalVar=="test global var"%>'>true</pe:if>
</pe:container>
<pe:repeat value="item in repeat_data" style="float:left">

<div style="float:left;"><%=item.a%></div>
</pe:repeat>
<pe:repeat value="item in GetDS()" style="float:left">

<div style="float:left;"><%=item.a%></div>
</pe:repeat>
<pe:repeat DataSource='<%=GetDS()%>' style="float:left">

<div style="float:left;"><%=a%></div>
</pe:repeat>

</pe:mcml>

MCML Layout

Please see System.Window first for basic alignment types. There are over 12 different alignment types, which supports
automatic resizing of controls according to parent window size.

• mcml v1 have a <pe:container> control which supports all alignment types via alignment attribute.

• mcml v1 and v2’s <div> supports a limited set of alignment type via align and valign attribute, where you
can align object to left or right. Please note, due to mcml v1’s one pass rendering algorithm, right alignment
only works when parent width is fixed sized. mcml v2 does not have this limitation because it uses two pass
algorithm. A workaround for mcml v1 is to use <pe:container> instead of <div> and use alignment
for right alignment.

47.5. MCML Layout 173

nplruntime documentation, Release 0.1.0

Relative positioning

Relative position is a way to position controls without occupying any space. It can be specified with
style="position:relative;". If all controls in a container is relatively positioned, they can all be accu-
rately positioned at desired location relative to their parent.

However, relative position is NOT recommended, because a single change in child control size may result in chang-
ing all other child controls’ position values and if parent control’s size changes, the entire UI may be wrong. The
recommended way of position is “float:left” or line based position. <div> defaults to line based position, in which
it will automatically add line break at end. Specify “float:left” to make it float. Many other controls default to
“float:left”, such as <input>, . Some UI designer in special product may still prefer relative position despite
of this.

MCML vs HTML

MCML only supports a very limited subset of HTML. The most useful layout method in mcml is <div> tag.

NPL Code Behind and Embedding

In MCML page, there are three ways to embed NPL code.

• Use <script src="helloworld.lua">, this will load the npl file relative to the current page file.

• Embed NPL code section inside <script> anywhere in the page file

• Embed code in xml attribute in quotations like this attrname='<%= %>'. Please note it depends on whether
the tag implementation support it. For each attribute you can not mix code with text. Unlike in NPL web server
page, all code in MCML are evaluated at runtime rather than preprocessed. This is very important.

<script type="text/npl" src="somefile.lua" refresh="false">
<![CDATA[
globalVar = "test global var";
function OnButtonClick()

_guihelper.MessageBox("refresh page now?", function()
Page:SetValue("myBtn", "refreshed");
Page:Refresh(0);

end);
end
repeat_data = { {a=1}, {a=2} };
function GetDS()

return repeat_data;
end
]]>
</script>
<div style='<%=format("width:%dpx", 100) %>'></div>

Page Variable Scoping

Global variables or functions defined in inline script are local to the page and not visible outside the page. So consider
using a separate code behind file if one wants to expose values to external environment or simply your code is too
long.

There is a predefined variable called Page, which is accessible to the page’s sandbox’s environment.

174 Chapter 47. MCML Markup Language For 2D GUI

nplruntime documentation, Release 0.1.0

Two-Way Databinding

Many HTML developers have a jquery mindset, where they like to manipulate the DOM (Document Object Model
or XML node) directly, which is NOT supported in mcml. Instead, one should have a databinding mindset
like in angularjs. In MCML v1, DOM != Controls. DOM is only a static template for creating controls in a
page. Controls can never modify static template unless you write explicit code, which is really rare.

Most mcml tags only support one-way data binding from static DOM template to controls only at the time when
controls are created (i.e. Page Refresh, see below). To read value back from controls, one must either listen to
onchange event of individual control or manually call Page:GetValue(name) for a collection of controls in a
callback function, such as when user pressed OK button.

Two-way data-binding is useful but hard to implement in any system. Some HTML framework like angularjs does
it by using a timer to periodically check watched data model and hook into every control’s onchange event. One can
simulate it manually in mcml. In mcml v2, DOM is almost equal to controls, hence it is relatively easy to implement
two-way data binding in v2 than in v1.

Automatic two-way data-binding is not natively supported in both v1 and v2. But we are planning to
support it in the near future. The following example shows how to do manual two-way binding in mcml.

<pe:mcml>
<p>Two-way databinding Example in mcml:</p>
<script type="text/npl" refresh="false"><![CDATA[
-- nodes are generated according to this data source object, ds is global in page
→˓scope so that it is shared between page refresh
ds = {

block1 = nil,
block2 = nil,

};

function asyncFillBlock1()
PullData();
-- use timer to simulate async API, such as fetching from a remote server.
commonlib.TimerManager.SetTimeout(function()

-- simulate some random data from remote server
ds.block1 = {};
for i=1, math.random(2,8) do

ds.block1[i] = {key="firstdata"..i, value=false};
end
ds.block2 = nil;
ApplyData();

end, 1000)
end

function asyncFillBlock2()
PullData();
commonlib.TimerManager.SetTimeout(function()

ds.block2 = {};

-- count is based on the number of checked item in data1(block1)
local data1_count = 0;
for i, data in pairs(ds.block1) do

data1_count = data1_count + (data.value and 1 or 0);
end

-- generate block2 according to current checked item in data1(block1)
for i=1, data1_count do

ds.block2[i] = {key="seconddata"..i, value=false};
end

47.7. NPL Code Behind and Embedding 175

nplruntime documentation, Release 0.1.0

ApplyData();
end, 1000)

end

-- apply data source to dom
function ApplyData()

Page("#block1"):ClearAllChildren();
Page("#block2"):ClearAllChildren();

if(ds.block1) then
local parentNode = Page("#block1");
for i, data in pairs(ds.block1) do

local node = Page("", {attr={style="margin:5px"}, data.key });
parentNode:AddChild(node);
local node = Page("<input />", {attr={type="checkbox", name=data.key,

→˓checked = data.value and "true"} });
parentNode:AddChild(node);

end
local node = Page("<input />", {attr={type="button", value="FillBlock2",

→˓onclick = "asyncFillBlock2"} });
parentNode:AddChild(node);

end

if(ds.block2) then
local parentNode = Page("#block2");
for i, data in pairs(ds.block2) do

local node = Page("", {attr={style="margin:5px"}, data.key });
parentNode:AddChild(node);
local node = Page("<input />", {attr={type="text", EmptyText="enter text

→˓", name=data.key, value=data.value, style="width:80px;"} });
parentNode:AddChild(node);

end
end

Page:Refresh(0.01);
end

-- pull data from DOM
function PullData()

if(ds.block1) then
for i, data in pairs(ds.block1) do

data.value = Page:GetValue(data.key);
end

end
if(ds.block2) then

for i, data in pairs(ds.block2) do
data.value = Page("#"..data.key):value(); -- just another way of Page:

→˓GetValue()
end

end
end

function OnClickSubmit()
-- TODO: one can also use a timer and hook to every onchange event of controls to

→˓automatically invoke Apply and Pull Data.
-- Here we just need to manually call it.
PullData();
_guihelper.MessageBox(ds);

176 Chapter 47. MCML Markup Language For 2D GUI

nplruntime documentation, Release 0.1.0

end
]]></script>
<div>

<input type="button" value="FillBlock1" onclick="asyncFillBlock1()"/>

block1: <div name="block1"></div>
block2: <div name="block2"></div>

</div>
<input type="button" value="Submit" onclick="OnClickSubmit()" />

</pe:mcml>

In above example, When user clicks FillBlock1 button, some random data is filled in ds.block1, each data is
displayed as checkbox, and the user can check any number of them and click the FillBlock2 button. This time we
will fill ds.block2 with same number of checked items in ds.block1, and each item is displayed as a text input
box. When user clicks Submit button, the current ds is displayed in a message box with user filled data.

We call ApplyData to rebuild all related DOM whenever ds is modified externally, and we call PullData in the
first line of each callback function so that our ds data is always up to date with mcml controls. The above example is
called manual two-way binding because we have to call ApplyData and PullData manually. One can also use a
timer and hook to every onchange event of controls to automatically invoke ApplyData and PullData, so that we
do not have to write them everywhere in our callback functions.

There is an old two-way data binding code called BindingContext, which is only used in <form> tag in
mcml, it may cause some strange behaviors when you are manipulating DOM.

Page Refresh

For dynamic pages, it is very common to change some variable in NPL script and refresh the page to reflect the
changes.

<script refresh='false'> means that the code section will not be reevaluated when page is refreshed. Also
note that global variables or functions are shared between multiple script sections or multiple page refreshes.

Please also note that code changes in inline script blocks are usually reparsed when window is rebuild. However, if
one use code behind model, npl file is cached and you need to restart your application to take effect. It is good practise
to write in inline script first, and when code is stable move them to a code behind page. This will also make your page
load faster during frequent page refresh or rebuild.

Writing Dynamic Pages

MCML has its own way of writing dynamic pages. In short, mcml uses frequent full page refresh to build
responsive UI layout. Please note that each mcml page refresh does NOT rebuild (reparse) the entire DOM tree again,
it simply reuses the old DOM tree and re-execute any embedded code on them each time. If the code is marked as
refresh="false" (see last section), its last calculated value will be used.

Generally, MCML v1 uses a single pass to render the entire web page. MCML v2 uses two passes (click here to see
details).

Unlike HTML/Javascript(especially jquery) where programmers are encouraged to manipulate the document tree di-
rectly, in mcml, you are NOT advised to change the DOM with your own code (although we do provide a jquery like
interface to its DOM). Instead, we encourage you to data-bind your code and create different code paths using condi-
tional component like <pe:if>, when everything is set you do a full page refresh with Page:refresh(). This is
a little bit like AngularJS, but we do it with real-time executed inline code. The difference is that AngularJS will
compile all tags and convert everything from angular DOM to HTML DOM, but mcml just does one pass rendering
of the mcml tags and execute the code as it converts DOM to real NPL controls.

47.8. Writing Dynamic Pages 177

https://github.com/NPLPackages/main/blob/master/script/ide/DataBinding.lua
https://github.com/NPLPackages/main/tree/master/script/ide/System/Windows/mcml/PageElement.lua

nplruntime documentation, Release 0.1.0

Another thing is that unlike in AngularJS where data changes are watched and page is automatically refreshed, in
mcml, one has to manually call Page:refresh(delayTimeSeconds) to refresh the whole page, such as when
user pressed a button to change the layout. Please note, changing the DOM does not automatically refresh the page,
one still need to call the refresh function. Mcml code logics is much simpler to understand and learn, while angularJS,
although powerful, but with too many hidden dark-magic that programmers will never figure out on their own.

Finally, mcml page is NOT preprocessed into a second DOM tree before rendering like what NPL web server page
or PHP does. Every tag in mcml is a real mcml control or PageElement and the DOM tree is persistent across page
refresh. MCML uses a single pass to render all of them. This also makes full page Page:refresh() much faster
than other technologies. Please note, mcml v2 has even faster page refresh than mcml v1, this is because in mcml v2,
NPL controls are pure script objects, while in v1 they are ParaUIObject in ParaEngine. The former is much faster to
create/destroy or even shared during page refresh depending on each PageElement’s implementation.

MCML Controls

Remember mcml is meant to be replacement for tedious control creation in the whole application, not a stateless and
isolated web page. Each mcml page is an integral part of the application, they run in the same thread and have access
to everything in that thread. They usually have direct interactions (or data-binding) with the 3D scene and other UI
controls. To get the underlying control, one can use Page:FindControl(name)

MCML Page:Refresh(DelayTime)

Page:Refresh(DelayTime) refresh the entire page after DelayTime seconds. Please note that during the delay
time period, if there is another call to this function with a longer delay time, the actual refresh page activation will be
further delayed Note: This function is usually used with a design pattern when the MCML page contains asynchronous
content such as pe:name, etc. whenever an asynchronous tag is created, it will first check if data for display is available
at that moment. if yes, it will just display it as static content; if not, it will retrieve the data with a callback function.
In the callback function, it calls this Refresh method of the associated page with a delay time. Hence, when the last
delay time is reached, the page is rebuilt and the dynamic content will be accessible by then.

• @param DelayTime: if nil, it will default to self.DefaultRefreshDelayTime (usually 1.5 second).

• tip: If one set this to a negative value, it may causes an immediate page refresh.

Page Styling and Themes

MCML has limited support of inline css in style or class parameter. MCML v1 and v2 support style tag, in which
we can define inline or file based css in the form of a standard NPL table. Please note, the syntax is not text/css,
but text/mcss. It is simply a table object with key name, value pairs. The key name can be tag class name or class
name, compound names with tag,id,class filtering is not supported.

Here is an example of defining styles with different class names, all mcml tags can have zero or more class names.

<pe:mcml>
<style type="text/mcss" src="script/ide/System/test/test_file_style.mcss">
{

color_red = { color = "#ff0000" },
color_blue = { color = "#0000ff", ["margin-left"] = 10 },
bold = { ["font-weight"]="bold" }

}
</style>
css class
</pe:mcml>

178 Chapter 47. MCML Markup Language For 2D GUI

https://github.com/NPLPackages/main/tree/master/script/ide/System/Windows/mcml/PageElement.lua

nplruntime documentation, Release 0.1.0

External css files are loaded and cached throughout the lifetime of the application process. Its content is also NPL
table, such as script/ide/System/test/test_file_style.mcss:

-- Testing mcml css: script/ide/System/test/test_file_style.mcss
{
["default"] = { color="#ffffff" },
["mobile_button"] = {

background = "Texture/Aries/Creator/Mobile/blocks_UI_32bits.png;1 1 34 34:12 12
→˓12 12",
},
color_red = { color = "#ff0000" },
color_blue = { color = "#0000ff", ["margin-left"] = 10, ["font-size"] = 16 },
bold = { ["font-weight"] = "bold" },
["pe:button"] = {padding = 10, color="#00ff00"},
}

In most cases, we can style the object directly in style attributes using 9 tiled image file. See next section.

To change the style of unthemed tags or buildin classes, one must progammatically modify the following table:

• In mcml v1, there is a global table like this one

• In mcml v2, there is a class called StyleDefault

9-Tile Image

MCML supports a feature called image tiling. It can use a specified section of an image and divide the subsection into
9 images and automatically stretch the 5 middle images as the target resizes (4 images at the corner are unstretched).
This is very useful to create good looking buttons with various sizes.

The syntax is like this: <div style="background:url(someimage_32bits.png#0 0 64 21: 10
10 10 10);" >

• #left top width height is optional, which specifies a sub region. if ignored it means the entire image.

• :left top to_right to_bottom means distance to left, top, right and bottom of the above sub region.

• _32bits.png means that we should use 32bits color, otherwise we will compress the color to save video
memory

• Image size must of order of 2, like 2,4,8,16,64, 128, 256, etc. Because directX/openGL only supports order
of 2 images. If your image file is not order of 2, they will be stretched and become blurred when rendered.

Please note, in css file or <style> tag, # can also be ; when specifying a sub region.

Setting Key Focus

For mcml v1, one can set key focus by following code. It only works for text box.

local ctl = Page:FindControl(name);
if(ctl) then

ctl:Focus();
end

For input text box, one can also use.

47.10. 9-Tile Image 179

https://github.com/NPLPackages/paracraft/tree/master/script/apps/Aries/Creator/Game/DefaultTheme.mc.lua
https://github.com/NPLPackages/main/tree/master/script/ide/System/Windows/mcml/StyleDefault.lua

nplruntime documentation, Release 0.1.0

<input type="text" autofocus="true" ... />

But there can only be one such control in a window. If there are multiple ones, the last one get focus. For example

<pe:mcml>
<div>

Text: <input type="text" name="myAutoFocusEditBox" />
</div>
... many other div here...
<!-- This should be the last in the page -->
<script type="text/npl" refresh="true">

local ctl = Page("#myAutoFocusEditBox"):GetControl()
ctl:Focus();
ctl:SetCaretPosition(-1);

</script>
</pe:mcml>

Conclusion

MCML v2 implementation is not very complete yet. You are welcome to contribute your own tags or controls to our
main package.

FAQ

Why large font size appears to be blurred in mcml?

MCML uses 3D API to do all the graphical drawing. For each font size, an image must be loaded into video memory.
Thus by default, mcml may scale an existing font to prevent creating unnecessary image. To prevent this behavior,
one can use style="base-font-size:30;font-size:30" this will always create a base font image for
your current font setting. In general, an application should limit the number of font settings used in your graphical
application.

References

Documentation For MCML V1

• mcml v1 Source Code, such as:

– pe_html

– pe_editor

– pe_html_input

– pe_gridview: more examples

– pe_treeview

– pe_design

– pe_component

– pe_script

• Test cases(Examples) for mcml v1

180 Chapter 47. MCML Markup Language For 2D GUI

https://github.com/NPLPackages/paracraft/tree/master/script/kids/3DMapSystemApp/mcml
https://github.com/NPLPackages/paracraft/blob/master/script/kids/3DMapSystemApp/mcml/pe_html.lua
https://github.com/NPLPackages/paracraft/blob/master/script/kids/3DMapSystemApp/mcml/pe_editor.lua
https://github.com/NPLPackages/paracraft/blob/master/script/kids/3DMapSystemApp/mcml/pe_html_input.lua
https://github.com/NPLPackages/paracraft/blob/master/script/kids/3DMapSystemApp/mcml/pe_gridview.lua
https://github.com/NPLPackages/paracraft/blob/master/script/kids/3DMapSystemApp/mcml/pe_treeview.lua
https://github.com/NPLPackages/paracraft/blob/master/script/kids/3DMapSystemApp/mcml/pe_design.lua
https://github.com/NPLPackages/paracraft/blob/master/script/kids/3DMapSystemApp/mcml/pe_component.lua
https://github.com/NPLPackages/paracraft/blob/master/script/kids/3DMapSystemApp/mcml/pe_script.lua
https://github.com/NPLPackages/paracraft/tree/master/script/kids/3DMapSystemApp/mcml/test

nplruntime documentation, Release 0.1.0

More over, many existing GUI of paracraft are actually created with mcml v1. Search the source code for
any HTML pages for examples.

47.13. FAQ 181

nplruntime documentation, Release 0.1.0

182 Chapter 47. MCML Markup Language For 2D GUI

CHAPTER 48

3D Programming

NPL/ParaEngine provides rich set of graphical API and libraries to create sophisticated interactive 3D application.
ParaEngine used to be a full-featured computer game engine, it is now built-in with NPLRuntime. ParaEngine imple-
mentation is C/C++ based. All of its API can be accessed via NPL scripts.

Example 3D Projects

• Paracraft: is a 3D animation software written completely in NPL with over half million lines of NPL code.

• Haqi: is a 3D MMORPG written completely in NPL with over 1 million lines of NPL code.

183

http://www.paracraft.cn
http://haqi.61.com

nplruntime documentation, Release 0.1.0

184 Chapter 48. 3D Programming

CHAPTER 49

File Format

ParaEngine/NPL support several build-in file format. Some is used for 3d models, some for 3d world

3D Model file format

ParaEngine supports following built-in or standard file format.

• ParaX format (*.x): This is our build-in file format for advanced animated characters, particles, etc. One needs to
download and install ParaEngine exporter plugin for 3dsmax 9 (32bits/64bits). However, we are not supporting
the latest version of 3dsmax. Please consider using FBX file format.

• FBX format (*.fbx): FBX is the universal file format for AutoDesk product like MAYA/3dsmax. It is one of
the most supported lossless file format in the industry. Click here for how to use FPX. (Please note model size
and embedded texture matters)

we only support FBX version 2013 or above. Version 2014, 2015 are tested.

• BMAX (*.bmax): This is our built-in block max file format, which is used exclusively by Paracraft application
for storing static and animated blocks.

• STL format (*.stl): This is a file format used for 3d printing.

BMax file format

BMAX is short for Block Max, it is a file format used exclusively in Paracraft for storing and
exchanging block data. In paracraft, the world is made up of blocks, each block may contain
x,y,z,block_id,block_data,custom_data

• x,y,z is block position

• block_id is type id of the block, see block_types.xml for a complete list of block ids.

• block_data is a 32bits data of the block, it usually denotes the orientation or type of the block.

• custom_data can be any NPL table object that stores additional data of the block. Most static blocks does
not contain custom_data, however, blocks like movie block, command blocks will save animation data and
commands in this place.

You can select some blocks in paracraft and save them to bmax file to examine a real bmax file, it should be self-
explanatory. Following is an example bmax file(containing a button, 2 movie blocks, a repeater and a wire):

185

https://github.com/LiXizhi/ParaCraftSDK/wiki/FBXModel
https://github.com/NPLPackages/paracraft/blob/master/config/Aries/creator/block_types.xml

nplruntime documentation, Release 0.1.0

<pe:blocktemplate>
<pe:blocks>{

{-2,0,-3,105,5,},

{-2,0,-2,228,[6]={{name="cmd","/t 6 /end",},{{"{timeseries={lookat_z={times={0,5348,},
→˓data={20001.56125,20004.65625,},ranges={{1,2,},},type=\"Linear\",name=\"lookat_z\",}
→˓,eye_liftup={times={0,5348,},data={0.28568,0.26068,},ranges={{1,2,},},type=\"Linear\
→˓",name=\"eye_liftup\",},lookat_x={times={0,5348,},data={20000.51959,20000.58203,},
→˓ranges={{1,2,},},type=\"Linear\",name=\"lookat_x\",},eye_rot_y={times={0,5348,},
→˓data={-3.11606,-3.11668,},ranges={{1,2,},},type=\"LinearAngle\",name=\"eye_rot_y\",}
→˓,is_fps={times={0,5348,},data={0,0,},ranges={{1,2,},},type=\"Discrete\",name=\"is_
→˓fps\",},lookat_y={times={0,5348,},data={-127.08333,-127.08333,},ranges={{1,2,},},
→˓type=\"Linear\",name=\"lookat_y\",},eye_dist={times={0,5348,},data={8,8,},ranges={
→˓{1,2,},},type=\"Linear\",name=\"eye_dist\",},has_collision={times={0,5348,},data={1,
→˓1,},ranges={{1,2,},},type=\"Discrete\",name=\"has_collision\",},eye_roll={times={0,
→˓5348,},data={0,0,},ranges={{1,2,},},type=\"LinearAngle\",name=\"eye_roll\",},},}",
→˓name="slot",attr={count=1,id=10061,},},{"{timeseries={time={times={},data={},ranges=
→˓{},type=\"Linear\",name=\"time\",},music={times={},data={},ranges={},type=\
→˓"Discrete\",name=\"music\",},tip={times={},data={},ranges={},type=\"Discrete\",
→˓name=\"tip\",},movieblock={times={},data={},ranges={},type=\"Discrete\",name=\
→˓"movieblock\",},cmd={times={},data={},ranges={},type=\"Discrete\",name=\"cmd\",},
→˓blocks={times={},data={},ranges={},type=\"Discrete\",name=\"blocks\",},text={times=
→˓{},data={},ranges={},type=\"Discrete\",name=\"text\",},},}",name="slot",attr=
→˓{count=1,id=10063,},},name="inventory",{"{timeseries={blockinhand={times={},data={},
→˓ranges={},type=\"Discrete\",name=\"blockinhand\",},x={times={0,},data={20000.51959,}
→˓,ranges={{1,1,},},type=\"Linear\",name=\"x\",},pitch={times={},data={},ranges={},
→˓type=\"LinearAngle\",name=\"pitch\",},y={times={0,},data={-127.08333,},ranges={{1,1,
→˓},},type=\"Linear\",name=\"y\",},parent={times={},data={},ranges={},type=\
→˓"LinearTable\",name=\"parent\",},roll={times={},data={},ranges={},type=\
→˓"LinearAngle\",name=\"roll\",},block={times={},data={},ranges={},type=\"Discrete\",
→˓name=\"block\",},scaling={times={},data={},ranges={},type=\"Linear\",name=\"scaling\
→˓",},gravity={times={},data={},ranges={},type=\"Discrete\",name=\"gravity\",},
→˓HeadUpdownAngle={times={},data={},ranges={},type=\"Linear\",name=\"HeadUpdownAngle\
→˓",},anim={times={},data={},ranges={},type=\"Discrete\",name=\"anim\",},bones={R_
→˓Forearm_rot={times={0,34,1836,},data={{0.00024,0.00175,-0.01261,0.99992,},{0.00024,
→˓0.00175,-0.01261,0.99992,},{0.00022,-0.05946,0.42959,0.90107,},},ranges={{1,3,},},
→˓type=\"Discrete\",name=\"R_Forearm_rot\",},R_UpperArm_rot={times={0,34,1836,},data={
→˓{-0.01933,-0.00286,0.03036,0.99935,},{-0.01802,-0.03834,0.32796,0.94375,},{-0.0137,-
→˓0.01077,0.14324,0.98954,},},ranges={{1,3,},},type=\"Discrete\",name=\"R_UpperArm_
→˓rot\",},isContainer=true,},speedscale={times={},data={},ranges={},type=\"Discrete\",
→˓name=\"speedscale\",},assetfile={times={0,},data={\"actor\",},ranges={{1,1,},},
→˓type=\"Discrete\",name=\"assetfile\",},skin={times={},data={},ranges={},type=\
→˓"Discrete\",name=\"skin\",},z={times={0,},data={20001.56125,},ranges={{1,1,},},
→˓type=\"Linear\",name=\"z\",},facing={times={},data={},ranges={},type=\"LinearAngle\
→˓",name=\"facing\",},HeadTurningAngle={times={},data={},ranges={},type=\"Linear\",
→˓name=\"HeadTurningAngle\",},name={times={0,},data={\"actor3\",},ranges={{1,1,},},
→˓type=\"Discrete\",name=\"name\",},opacity={times={},data={},ranges={},type=\"Linear\
→˓",name=\"opacity\",},},tooltip=\"actor3\",}",name="slot",attr={count=1,id=10062,},},
→˓},name="entity",attr={bz=19201,bx=19200,class="EntityMovieClip",item_id=228,by=5,},}
→˓,},

{-2,0,-1,197,3,},
{-2,0,0,189,},
{-2,0,1,228,[6]={{name="cmd","/t 30 /end",},{name="inventory",{name="slot",attr=
→˓{count=1,id=10061,},},},name="entity",attr={bz=19204,bx=19200,class="EntityMovieClip
→˓",item_id=228,by=5,},},},}

</pe:blocks>

186 Chapter 49. File Format

nplruntime documentation, Release 0.1.0

</pe:blocktemplate>

For user manual of using movie blocks, please see the courses in

• http://www.paracraft.cn/learn/movieblockcourses?lang=zh

ParaX File format

ParaX is binary file format used exclusively in NPL Runtime for animated 3D character asset.ParaX is like a concise
version of FBX file (FBX is like BMAX file used by autodesk 3dsmax/maya, ...) NPL Runtime also support reading
FBX file and load as ParaXModel object in C++, for user guide see FBX

• BMAX to ParaX converter in C++ (Lacking support for animation data in movie block)
https://github.com/LiXizhi/NPLRuntime/tree/master/Client/trunk/ParaEngineClient/BMaxModel

• ParaX models:

– https://github.com/LiXizhi/NPLRuntime/blob/master/Client/trunk/ParaEngineClient/ParaXModel/XFileCharModelParser.h

– https://github.com/LiXizhi/NPLRuntime/blob/master/Client/trunk/ParaEngineClient/3dengine/ParaXSerializer.h

– https://github.com/LiXizhi/NPLRuntime/blob/master/Client/trunk/ParaEngineClient/3dengine/ParaXSerializer.h

BMAX movie blocks to ParaX File format Conversion Details

• locate all movie blocks in BMAX file and ignore all other blocks. Movie blocks needs to be in the same order
of 3D space (as repeater and wires indicates)

• The first movie block is always animation id 0 (idle animation)

• The second movie block is always animation id 4 (walk animation)

• The animation id of the third or following movie blocks can be specified in its movie block command

• The BMAX model(s) in the first movie block is used for defining bones and mesh (vertices, etc), please see this
code for how to translate blocks into bones, vertices and sub meshes. BMAX models in all other movie blocks
are ignored.

• Animation data in movie blocks are used to generate bone animations for each animation id in the final ParaX-
Model.

3D World File Format

ParaEngine/NPL can automatically save or load 3D scene object to or from disk files.

To create an empty world, one can use

local worldpath = "temp/clientworld";
ParaIO.DeleteFile(worldpath.."/");
ParaIO.CreateDirectory(worldpath.."/");
ParaWorld.NewEmptyWorld(worldpath, 533.3333, 64);

3D world is tiled. Each tile is usually 512*512 meters. For historical reasons, it is 533.3333 by default. You will
notice three files, after calling above function.

temp/clientworld/worldconfig.txt which is the entry file for 3d world, its content is like

49.2. ParaX File format 187

https://github.com/LiXizhi/ParaCraftSDK/wiki/FBXModel
https://github.com/LiXizhi/NPLRuntime/tree/master/Client/trunk/ParaEngineClient/BMaxModel
https://github.com/LiXizhi/NPLRuntime/tree/master/Client/trunk/ParaEngineClient/BMaxModel

nplruntime documentation, Release 0.1.0

-- Auto generated by ParaEngine
type = lattice
TileSize = 533.333313
(0,0) = temp/clientworld/flat.txt
(0,1) = temp/clientworld/flat.txt
...

It contains a mapping from tile (x,y) to tile configuration file.

temp/clientworld/flat.txt is configuration file for a single terrain tile.

-- auto gen by ParaEngine
Heightmapfile = temp/clientworld/flat.raw
MainTextureFile = terrain/data/MainTexture.dds
CommonTextureFile = terrain/data/CommonTexture.dds
Size = 533.333313
ElevScale = 1.0
Swapvertical = 1
HighResRadius = 30
DetailThreshold = 50.000000
MaxBlockSize = 64
DetailTextureMatrixSize = 64
NumOfDetailTextures = 0

Global Terrain Format

Global Terrain Format is a LOD triangle tile based terrain engine. The logical tile size is defined by 3d world config-
uration file, such as 533.333, however, its real dimension is always 512*512 and saved as a *.raw file.

Block World File Format

ParaEngine has a build-in block engine for rendering 3D blocky world. Block world is also tiled. The logical tile size
is defined by 3d world configuration file, such as 533.333, however, its real dimension is always 512x512 and saved
as a binary block region file in *.raw extension. Please note that block world region file *.raw is different from
global terrain’s *.raw file. The latter is just height maps.

Currently, each block may contain x,y,z,block_id,block_data[,custom_data], currently
custom_data is not supported in block region *.raw file. Block region file is encoded (compressed) using
increase-by-integer algorithm, which will save lots of disk space if blocks are of the same type in the tiled
region.

See BlockRegion.cpp for details

References

• http://www.paracraft.cn/ : see bmax model tutorial video

• https://github.com/LiXizhi/NPLRuntime/wiki

• https://github.com/LiXizhi/STLExporter

• http://wikicraft.cn/wiki/mod/packages : see STLExporter

188 Chapter 49. File Format

https://github.com/LiXizhi/NPLRuntime/blob/master/Client/trunk/ParaEngineClient/BlockEngine/BlockRegion.h

nplruntime documentation, Release 0.1.0

• BMAX to ParaX converter in C++ (Lacking support for animation data in movie block)
https://github.com/LiXizhi/NPLRuntime/tree/master/Client/trunk/ParaEngineClient/BMaxModel

• ParaX models:

– https://github.com/LiXizhi/NPLRuntime/blob/master/Client/trunk/ParaEngineClient/ParaXModel/XFileCharModelParser.h

– https://github.com/LiXizhi/NPLRuntime/blob/master/Client/trunk/ParaEngineClient/3dengine/ParaXSerializer.h

49.6. References 189

nplruntime documentation, Release 0.1.0

190 Chapter 49. File Format

CHAPTER 50

3D Scene

There are a number of 3D objects which one can create via scripting API, such as mesh, physics mesh, sky box,
camera, biped character, light, particles, containers, overlays, height map terrain, blocks, animations, shaders, 3D
assets, etc.

Triangle Limitations

One can set the maximum number of total triangles of animated characters in the 3d scene per frame, like below

ParaScene.GetAttributeObject():SetField("MaxCharTriangles", 150000);

Faraway objects exceeding this value will be skipped during rendering. Another way of reducing triangle count is via
level-of-detail (LOD) when loading mesh or characters. Currently, one must manually provide all LOD of mesh when
loading a 3d file.

Rendering Pipeline

Currently all fixed function, shaders and deferred shading share the same predefined rendering pipelines. The render
order can be partially affected by RenderImportance, RenderOrder, several Shader files property. But
in general, it is a fixed general purpose rendering pipeline suitable in most situations.

The source code of the pipeline is hard-coded in SceneObject.cpp's AdvanceScene() function.

Here is what it does:

For each active viewport, we do the following:

• traverse the scene and quad-tree tile manager and call PrepareRender() for each visible scene object, which
will insert the object into a number of predefined global render queues.

• PIPELINE_3D_SCENE

– draw MiniSceneGraph with local cameras and render into textures

– draw owner-draw objects like render targets.

– draw all m_mirrorSurfaces into local textures

– tesselate global terrain according to current camera

– render shadow map for shadow casters queue, and other global object like blocks that cast shadows.

– draw block engine multiframe world texture

191

nplruntime documentation, Release 0.1.0

– render global terrain

– draw opaque blocks in block engine

– draw alpha-test enabled blocks in block engine

– draw static meshes in big mesh queue from front to back

– draw static meshes in small mesh queue from back to front

– draw sprite objects queue

– draw animated characters queue

– render selection queue

– render current sky object

– draw block engine multiframe world texture on sky

– draw missile object queue

– draw block engine water reflection pass

– block engine deferred shading post processing for opaque objects

– draw batched transparent particles

– block engine draw all alpha blended blocks

– draw transparent animated characters in transparent biped queue

– block engine deferred shading post processing for alpha blended object

– draw block engine deferred lights

– draw all head-on display

– draw simulated global ocean surface

– draw transparent static mesh objects in transparent mesh queue

– draw transparent triangle face groups

– draw objects in post render queue

– draw particle systems

– invoke custom post rendering shaders in NPL script for 3d scene

– draw water waves

– draw helpers for physics world debugging

– draw helpers for bounding boxes of scene objects

– draw portal system

– draw overlays

• PIPELINE_UI

– render all visible GUI objects by traversing the GUIRoot object.

• PIPELINE_POST_UI_3D_SCENE

– only MiniSceneGraph whose GetRenderPipelineOrder() ==
PIPELINE_POST_UI_3D_SCENE will be rendered in this pipeline

• PIPELINE_COLOR_PICKING

192 Chapter 50. 3D Scene

nplruntime documentation, Release 0.1.0

Pipeline customization

• RenderImportance property of ParaObject only affects render order in a given queue.

• RenderOrder property of ParaObject will affect which queue the object goes into, as well as the order inside
the queue. However, only RenderOrder>100 is used to insert objects to post render queue.

For example, the following code will ensure the two objects are rendered last and ztest is disabled.

local asset = ParaAsset.LoadStaticMesh("","model/common/editor/z.x")
local obj = ParaScene.CreateMeshPhysicsObject("blueprint_center", asset, 1,1,1,

→˓false, "1,0,0,0,1,0,0,0,1,0,0,0");
obj:SetPosition(ParaScene.GetPlayer():GetPosition());
obj:SetField("progress",1);
obj:GetEffectParamBlock():SetBoolean("ztest", false);
obj:SetField("RenderOrder", 101)
ParaScene.Attach(obj);

local player = ParaScene.CreateCharacter ("MyPlayer1", ParaAsset.LoadParaX("",
→˓"character/v3/Elf/Female/ElfFemale.x"), "", true, 0.35, 0, 1.0);

local x,y,z = ParaScene.GetPlayer():GetPosition()
player:SetPosition(x+1,y,z);
player:SetField("RenderOrder", 100)
player:GetEffectParamBlock():SetBoolean("ztest", false);
ParaScene.Attach(player);

50.2. Rendering Pipeline 193

nplruntime documentation, Release 0.1.0

194 Chapter 50. 3D Scene

CHAPTER 51

Camera

ParaEngine has build-in C++ support for a very versatile camera object, called AutoCamera. AutoCamera is the
default camera used when you are inside a 3d world.

It can be configured in various ways to handle most key/mouse input for you, as well as controlling the biped object
that it is focusing on.

To get or set current camera’s attributes, one can use following code. Use Object Browser in NPL Code Wiki to see
all of its attributes. Camera is a child of Scene object.

local attr = ParaCamera.GetAttributeObject()

Control Everything In Your Own Code

In most cases, we can focus the camera to a Biped player object in the scene to control the motion of the player directly.
Trust me, writing a robust and smooth player camera controller is difficult, at least 3000 lines of code. If you really
want to handle everything yourself, there is an option. Create a dummy invisible object to let the camera to focus to.
And then set IsControlledExternally property to true for the dummy object.

your_dummy_obj:SetField("IsControlledExternally", true)

This way, the auto camera will not try to control the focused dummy object any more. And it is up to you to control
the player, such as using WASD or arrow keys for movement and mouse to rotate its facing, etc.

Code Examples

Following are from ParaEngineExtension.lua. They are provided as an example.

-- set the look at position of the camera. It uses an invisible avatar as the camera
→˓look at position.
-- after calling this function, please call ParaCamera.SetEyePos(facing, height,
→˓angle) to change the camera eye position.
function ParaCamera.SetLookAtPos(x, y, z)

local player = ParaCamera.GetDummyObject();
player:SetPosition(x, y - 0.35, z);
player:ToCharacter():SetFocus();

end

function ParaCamera.GetLookAtPos()

195

nplruntime documentation, Release 0.1.0

return unpack(ParaCamera.GetAttributeObject():GetField("Lookat position", {0,0,0}
→˓));
end
-- it returns polar coordinate system.
-- @return camobjDist, LifeupAngle, CameraRotY
function ParaCamera.GetEyePos()

local att = ParaCamera.GetAttributeObject();
return att:GetField("CameraObjectDistance", 0), att:GetField("CameraLiftupAngle",

→˓0), att:GetField("CameraRotY", 0);
end

-- create/get the dummy camera object for the camera look position.
function ParaCamera.GetDummyObject()

local player = ParaScene.GetObject("invisible camera");
if(player:IsValid() == false) then

player = ParaScene.CreateCharacter ("invisible camera", "", "", true, 0, 0,
→˓0);

--player:GetAttributeObject():SetField("SentientField", 0);--senses nobody
player:GetAttributeObject():SetField("SentientField", 65535);--senses

→˓everybody
--player:SetAlwaysSentient(true);--senses everybody
player:SetDensity(0); -- make it flow in the air
player:SetPhysicsHeight(0);
player:SetPhysicsRadius(0);
player:SetField("SkipRender", true);
player:SetField("SkipPicking", true);
ParaScene.Attach(player);
player:SetPosition(0, 0, 0);

end
return player;

end

-- set the camera eye position by camera object distance, life up angle and rotation
→˓around the y axis. One must call ParaCamera.SetLookAtPos() before calling this
→˓function.
-- e.g.ParaCamera.SetEyePos(5, 1.3, 0.4);
function ParaCamera.SetEyePos(camobjDist, LifeupAngle, CameraRotY)

local att = ParaCamera.GetAttributeObject();
att:SetField("CameraObjectDistance", camobjDist);
att:SetField("CameraLiftupAngle", LifeupAngle);
att:SetField("CameraRotY", CameraRotY);

end

196 Chapter 51. Camera

CHAPTER 52

Block Engine

The block engines can manage multiple BlockWorld object.

BlockWorld

Each BlockWorld represents a block world with at most 32000x32000x256, where 256 is height of the world.
Each BlockWorld will dynamically and asynchronously load BlockRegion on demand.

BlockRegion

It manages 512x512x256 blocks, which are saved into a single file.

BlockChunk

It caches model and light Data for 16x16x16 region. Each chunk is converted and added to a queue into
BlockRenderTask for sorting and rendering.

BlockLightGrid

It calculates sun and block lighting in a separate thread and save the result into BlockChunk for rendering.

BlockModel

BlockModel is usually cube 3D model, but it is not a 3D object directly used in rendering, instead it is actually used
in BlockTemplate to provide rendering and physics data.

197

nplruntime documentation, Release 0.1.0

198 Chapter 52. Block Engine

CHAPTER 53

NPL Web Server

Click here for step-by-step tutorial to build a NPL web site.

NPL Runtime provides a build-in self-contained framework for writing web server applications in a way similar to
PHP, yet with asynchronous API like NodeJs.

Why Write Web Servers in NPL?

Turning Async Code Into Synchronous Ones

Many tasks on the server side has asynchronous API like database operations, remote procedure call, background tasks,
timers, etc. Asynchronous API frees the processing thread from io-bound or long running task. Using asynchronous
API (like those in NodeJs) makes web server fast, but difficult to write, as there are too many function callbacks that
breaks the otherwise sequential and flat programming code.

In NPL page file, any asynchronous API can be used as synchronous ones via resume/yield, so that constructing
a web page is like writing a document sequentially like in PHP. Under the hood, it is still asynchronous API and
the same worker thread can process thousands of requests per second even some of them takes a long time to finish.
Following is a quick example show the idea.

<?
local value = "Not Set"
-- any async function with callback
local mytimer = commonlib.Timer:new({callbackFunc = function(timer)

value = "Set";
resume();

end})
-- start the timer after 1000 milliseconds
mytimer:Change(1000, nil)

-- async wait when job is done
yield();
assert(value == "Set");

Please note, resume/yield is NOT the ones as in multithreaded programming where locks and signals are involved.
It is a special coroutine internally; the code is completely lock-free and the thread is NOT waiting but processing
other URL requests. Please see NPLServerPage for details.

199

http://php.net/
https://nodejs.org/

nplruntime documentation, Release 0.1.0

Self-Contained Client/Server Solution

NPL Web Server is fast and very easy to deploy on all platforms (no external dependencies even for databases). You
may have a very sophisticated 3d client application, which may also be servers and/or web servers, such as Paracraft.

We believe, every software either running on central server farm or endpoints like home or mobile devices should
be able to provide services via TCP connection and/or HTTP (web server). In many of our applications, a single
software acts both as client and server. Very few existing programming language provides an easy way or architecture
for sharing client and server side code or variables in a lock-free fashion due to multi-threaded (multi-process) nature
of those web frameworks. Moreover, a server application is usually hard to deploy and config, making it difficult to
install on home computers or mobile devices.

NPL is a language to solve these problems and provides rich client side API as well as a web server framework that
can service as many requests as professional web servers while sharing the entire runtime environment for your client
and server code. See below.

Programming Model of NPL web server

NPL Runtime provides a build-in framework for writing web server applications in a way similar to PHP.

NPL Web Server recommends the async programming model like Nodejs, but without losing the simplic-
ity of synchronous mixed code programming like in PHP.

Following is an example helloworld.page server page.

| |query database and wait for database result | MVC Render | |—-|——————————————————-|——
——| | duration |95% | 5% |

The processing of a web page usually consists of two phases.

• One is fetching data from database engine, which usually takes over 95% of the total time.

• The other is page rendering, which is CPU-bound and takes only 5% of total request time.

With NPL’s yield method, it allows other web requests to be processed concurrently in the 90% interval while
waiting database result on the same system-level thread. See following code to see how easy to mix async-code
with template-based page rendering code. This allows us to serve 5000 requests/sec in a single NPL thread
concurrently, even if each request takes 30ms seconds to fetch from database.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
→˓xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>

<title>NPL server page test. </title>
</head>
<body>
<p>

<?npl
echo "Hi, I'm a NPL script!";

?>
</p>

<?
-- connect to TableDatabase (a NoSQL db engine written in NPL)
db = TableDatabase:new():connect("database/npl/", function() end);

-- insert 5 records to database asynchronously.
local finishedCount = 0;

200 Chapter 53. NPL Web Server

http://www.paracraft.cn
http://php.net/
https://nodejs.org

nplruntime documentation, Release 0.1.0

for i=1, 5 do
db.TestUser:insertOne({name=("user"..i), password="1"}, function(err, data)

finishedCount = finishedCount + 1;
if(finishedCount == 5) then

resume();
end

end);
end
yield(); -- async wait when job is done

-- fetch all users from database asynchronously.
db.TestUser:find({}, function(err, users) resume(err, users); end);
err, users = yield(); -- async wait when job is done
?>

<?npl for i, user in ipairs(users) do ?>
i = <?=i?>, name=<? echo(user.name) ?>

<?npl end ?>

<p>
1. <?npl echo 'if you want to serve NPL code in XHTML or XML documents, use

→˓these tags'; ?>
</p>
<p>

2. <? echo 'this code is within short tags'; ?>
Code within these tags <?= 'some text' ?> is a shortcut for this code <? echo

→˓'some text' ?>
</p>
<p>

3. <% echo 'You may optionally use ASP-style tags'; %>
</p>

<% nplinfo(); %>

<% print("<p>filename: %s, dirname: %s</p>", __FILE__, dirname(__FILE__)); %>

<%
some_global_var = "this is global variable";

-- include file in same directory
include("test_include.page");
-- include file relative to web root directory. however this will not print, because
→˓we use include_once, and the file is already included before.
include_once("/test_include.page");
-- include file using disk file path
local result = include(dirname(__FILE__).."test_include.page");

-- we can also get the result from included file
echo(result);
%>

</body>
</html>

<%
--assert(false, "uncomment to test runtime error");

function test_exit()

53.2. Programming Model of NPL web server 201

nplruntime documentation, Release 0.1.0

exit();
end
test_exit();
assert(false, "can not reach here");
%>

Content of test_include.page referenced in above server page is:

<?npl

echo("<p>this is from included file: "..(some_global_var or "").."</p>");

-- can also has return value.
return "<p>from test_include.page</p>";

The output of above server page, when viewed in a web browser, such as
http://localhost:8099/helloworld is

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
→˓xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>NPL server page test. </title>

</head>
<body>
<p>

Hi, I'm a NPL script!</p>

i = 1, name=user1

i = 2, name=user2

i = 3, name=user3

i = 4, name=user4

i = 5, name=user5

<p>
1. if you want to serve NPL code in XHTML or XML documents, use these tags</p>

<p>
2. this code is within short tags Code within these tags some text is a

→˓shortcut for this code some text</p>
<p>

3. You may optionally use ASP-style tags</p>

<p>NPL web server v1.0</p><p>site url: http://localhost:8099/</p><p>your ip: 127.0.0.1
→˓</p><p>{

["Host"]="localhost:8099",

["rcode"]=0,

["Connection"]="keep-alive",

["Accept"]="text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;
→˓q=0.8",

["Accept-Encoding"]="gzip, deflate, sdch",

["method"]="GET",

["body"]="",

["tid"]="~1",

["url"]="/helloworld.page",

["User-Agent"]="Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML,
→˓like Gecko) Chrome/48.0.2564.116 Safari/537.36",

["Upgrade-Insecure-Requests"]="1",

202 Chapter 53. NPL Web Server

nplruntime documentation, Release 0.1.0

["Accept-Language"]="en-US,en;q=0.8",

}

</p><p>filename: script/apps/WebServer/test/helloworld.page, dirname: script/
→˓apps/WebServer/test/</p><p>this is from included file: this is global variable</p>
→˓<p>this is from included file: this is global variable</p><p>from test_include.page
→˓</p></body>
</html>

Web Server Source Code

• script/apps/WebServer: implementation of a web server (like Apache) in NPL.

• script/apps/WebServer/WebServer.lua: entry file

• script/apps/WebServer/admin: A php-like web site framework in NPL. See AdminSiteFramework for details

Introduction

The NPL web server implementation uses NPL’s own messaging system, and is written in pure NPL scripts with-
out any external dependencies. It allows you to create web site built with NPL Runtime on the back-end and
JavaScript/HTML5 on the client.

NPL language service plugins for visual studio (community edition is free) provides a good coding environ-
ment. See below:

Website Examples

• WebServerExample: a sample web site with NPL code wiki

• Wikicraft: full website example

• script/apps/WebServer/admin is a NPL based web site framework similar to the famous
WordPress.org. It is recommended that you xcopy all files in it to your own web root directory and work
from there. See AdminSiteFramework for details.

• script/apps/WebServer/test is a test site, where you can see the test code.

starting a web server programmatically

Starting server from a web root directory:

NPL.load("(gl)script/apps/WebServer/WebServer.lua");
WebServer:Start("script/apps/WebServer/test", "0.0.0.0", 8099);

Open http://localhost:8099/helloworld.lua in your web browser to test. See log.txt for details.

There can be a webserver.config.xml file in the web root directory. see below. if no config file is found,
default.webserver.config.xml is used, which will redirect all request without extension to index.page
and serve *.lua, *.page, and all static files in the root directory and it will also host NPL code wiki at http://127.0.0.1:
8099.

53.3. Introduction 203

https://github.com/LiXizhi/ParaCraftSDK/tree/master/src/script/apps/WebServer
https://github.com/LiXizhi/ParaCraftSDK/tree/master/src/script/apps/WebServer/WebServer.lua
https://github.com/LiXizhi/ParaCraftSDK/tree/master/src/script/apps/WebServer/admin
https://github.com/NPLPackages/WebServerExample
https://github.com/tatfook/wikicraft
https://github.com/NPLPackages/main/blob/master/script/apps/WebServer/default.webserver.config.xml
http://127.0.0.1:8099
http://127.0.0.1:8099

nplruntime documentation, Release 0.1.0

starting a web server from command line

You can bootstrap a webserver using the buildin file, run following commmand:

npl bootstrapper="script/apps/WebServer/WebServer.lua" port="8099"

• config: can be omitted which defaults to config/WebServer.config.xml in current directory

Web Server configuration file

More info, see script/apps/WebServer/test/webserver.config.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- web server configuration file: this node can be child node, thus embedded in
→˓shared xml -->
<WebServer>

<!--which HTTP ip and port this server listens to. -->
<servers>
<!-- @param host, port: which ip port to listen to. if * it means all. -->
<server host="*" port="8099" host_state_name="">

<defaultHost rules_id="simple_rule"></defaultHost>
<virtualhosts>

<!-- force "http://127.0.0.1/" to match to iternal npl_code_wiki site for
→˓debugging -->

<host name="127.0.0.1:8099" rules_id="npl_code_wiki" allow='{"127.0.0.1"}'></
→˓host>

</virtualhosts>
</server>

</servers>
<!--rules used when starting a web server. Multiple rules with different id can be

→˓defined. -->
<rules id="simple_rule">
<!--URI remapping example-->
<rule match='{"^[^%.]+$", "robots.txt"}' with="WebServer.redirecthandler" params='

→˓{"/index.page"}'></rule>
<!--npl script example-->
<!--<rule match="%.lua$" with="WebServer.makeGenericHandler" params='{docroot=

→˓"script/apps/WebServer/test", params={}, extra_vars=nil}'></rule>-->
<rule match='{"%.lua$", "%.npl$"}' with="WebServer.npl_script_handler" params='%CD

→˓%'></rule>
<!--npl server page example-->
<rule match="%.page$" with="WebServer.npl_page_handler" params='%CD%'></rule>
<!--filehandler example, base dir is where the root file directory is. %CD% means

→˓current file's directory-->
<rule match="." with="WebServer.filehandler" params='{baseDir = "%CD%"}'></rule>

</rules>
</WebServer>

Each server can have a default host and multiple virtual hosts. Each host must be associated with a rule_id. The
rule_id is looked up in the rules node, which contains multiple rules specifying how request url is mapped to their
handlers. npl_code_wiki is an internal rule_id which is usually used for host http://127.0.0.1:8099/ for
debugging purposes only, see above example code. If you changed your port number, you need to update the config
file accordingly, otherwise npl_code_wiki will not be available.

Each rule contains three attributes: match, with and params.

• “match” is a regular expresion string or a array table of reg strings like shown in above sample code.

204 Chapter 53. NPL Web Server

nplruntime documentation, Release 0.1.0

• “with” is a handler function which will be called when url matches “match”. More precisely, it is handler
function maker, that returns the real handler function(request, response) end. When rules are compiled at startup
time, these maker functions are called just once to generate the actual handler function.

• “params” is an optional string or table that will be passed to the handler maker function to generate the real
handler function.

The rules are applied in sequential order as they appeared in the config file. So they are usually defined in the order of
redirectors, dynamic scripts, file handlers.

Handler Makers

Some common handlers are implemented in common_handlers.lua. Some of the most important ones are listed
below

WebServer.redirecthandler

It is the url redirect handler. it generate a handler that replaces “match” with “params”

<rule match="^[^%./]*/$" with="WebServer.redirecthandler" params='{"readme.txt"}'>
→˓</rule>

The above will redirect http://localhost:8080/ to http://localhost:8080/readme.txt.

WebServer.filehandler

It generate a handler that serves files in the directory specified in “params” or “params.baseDir”.

<rule match="." with="WebServer.filehandler" params='{baseDir = "script/apps/
→˓WebServer"}'></rule>

alternatively:
<rule match="." with="WebServer.filehandler" params='script/apps/WebServer'></

→˓rule>

The above will map http://localhost:8080/readme.txt to the disk file
script/apps/WebServer/readme.txt

WebServer.npl_script_handler

Currently it is the same as WebServer.makeGenericHandler. In future we will support remote handlers that
runs in another thread asynchrounously. So it is recommended for user to use this function instead of Web-
Server.makeGenericHandler serving request using npl files to generate dynamic response. This is very useful for
REST-like web service in XML or json format.

<rule match="%.lua$" with="WebServer.npl_script_handler" params='script/apps/
→˓WebServer/test'></rule>

alternatively:
<rule match="%.lua$" with="WebServer.npl_script_handler" params='{docroot="script/

→˓apps/WebServer/test"}'></rule>

53.6. Handler Makers 205

nplruntime documentation, Release 0.1.0

The above will map http://localhost:8080/helloworld.lua to the script file
script/apps/WebServer/test/helloworld.lua

Caching on NPL Web Server

1. We use File Monitor API to monitor all file changes in web root directory.

2. For dynamic page files: recompile dynamic page if changed. All compiled *.page code is always in cache. So
multiple requests calling the same page file only compile once.

3. For static files: everything is cached in either original or gzip-format ready for direct HTTP response. All static
files are served using a separate NPL thread to prevent IO affecting the main thread.

for more advanced file caching, one may consider using nginx as the gateway load balancer.

Caching in Application Code

For caching in local thread, there is a helper class called mem_cache.

NPL.load("(gl)script/apps/WebServer/mem_cache.lua");
local mem_cache = commonlib.gettable("WebServer.mem_cache");
local obj_cache = mem_cache:GetInstance();
obj_cache:add("name", "value")
obj_cache:replace("name", "value1")
assert(obj_cache:get("name") == "value1");
assert(obj_cache:get("name", "group1") == nil);
obj_cache:add("name", "value", "group1")
assert(obj_cache:get("name", "group1") == "value");

Caching in different computer

TODO: mem_cache can be configured to read/write data from a remote computer.

206 Chapter 53. NPL Web Server

https://github.com/LiXizhi/ParaCraftSDK/tree/master/src/script/apps/WebServer/mem_cache.lua

CHAPTER 54

NPL Server Page

NPL server page is a mixed HTML/NPL file, usually with the extension .page.

How Does It Work?

At runtime time, server page is preprocessed into pure NPL script and then executed. For example

<html><body>
<?npl for i=1,5 do ?>

<p>hello</p>
<?npl end ?>
</body></html>

Above server page will be pre-processed into following NPL page script, and cached for subsequent requests.

echo ("<html><body>");
for i=1,5 do
echo("<p>hello</p>")

end
echo ("</body></html>");

When running above page script, echo command will generate the final HTML response text to be sent back to client.

Sandbox Environment

When a HTTP request come and redirected to NPL page handler, a special sandbox environment table is created, all
page scripts related to that request is executed in this newly created sandbox environment. So you can safely create
global variables and expect them to be uninitialized for each page request.

However, the sandbox environment also have read/write access to the global per-thread NPL runtime environment,
where all NPL classes are loaded.

NPL.load vs include

In a page file, one can call NPL.load to load a given NPL class, such as mysql.lua; or one can also use the page
command include to load another page file into sandbox environment. The difference is that classes loaded by
NPL.load will be loaded only once per thread; where include will be loaded for every HTTP request handled by
its worker thread. Moreover, NPL web server will monitor file changes for all page files and recompile them when
modified by a developer; for files with NPL.load, you need to restart your server, or use special code to reload it.

207

nplruntime documentation, Release 0.1.0

Mixing Async Code with Yield/Resume

The processing of a web page usually consists of two phases.

• One is fetching data from database engine, which usually takes over 95% of the total time.

• The other is page rendering, which is CPU-bound and takes only 5% of total request time.

| |query database and wait for database result | MVC Render | |—-|——————————————————-|——
——| | duration |95% | 5% |

With NPL’s yield method, it allows other web requests to be processed concurrently in the 90% interval while
waiting database result on the same system-level thread. See following code to see how easy to mix async-code
with template-based page rendering code. This allows us to serve 5000 requests/sec in a single NPL thread
concurrently, even if each request takes 30ms seconds to fetch from database.

Following is excerpt from our helloworld.page example.

<?
-- connect to TableDatabase (a NoSQL db engine written in NPL)
db = TableDatabase:new():connect("database/npl/", function() end);

-- insert 5 records to database asynchronously.
local finishedCount = 0;
for i=1, 5 do

db.TestUser:insertOne({name=("user"..i), password="1"}, function(err, data)
finishedCount = finishedCount + 1;
if(finishedCount == 5) then

resume();
end

end);
end
yield(); -- async wait when job is done

-- fetch all users from database asynchronously.
db.TestUser:find({}, function(err, users) resume(err, users); end);
err, users = yield(true); -- async wait when job is done
?>

<?npl for i, user in ipairs(users) do ?>
i = <?=i?>, name=<? echo(user.name) ?>

<?npl end ?>

Code Explanation: When the first yield() is called, the execution of page rendering is paused. It will be resumed
by the result of a previous async task. In our case, when all five users have been inserted to our database, we will call
resume(), which will immediately resume page execution from last yield (paused) code position.

Then we started another async task to fetch all users in the database, and called yield immediately to wait for its
results. This time we passed some parameter resume(err,users), everything passed to resume will be returned
from yield() function. So err,users = yield(true) will return the users table when it returns.

Please note, we recommend you pass a boolean err as first parameter to resume, since all of our async API follows
the same rule. Also note that we passed true to the second yield function, which tells to page renderer to output
error and stop execution immediately. If you want to handle the error yourself, please pass nothing to yield like
err,users = yield()

208 Chapter 54. NPL Server Page

nplruntime documentation, Release 0.1.0

Page Commands

The following commands can only be called from inside an NPL page file. They are shortcut to long commands.

Following objects and functions can be used inside page script:
request: current request object: headers and cookies
response: current response object: send headers or set cookies, etc.
echo(text): output html
__FILE__: current filename
page: the current page (parser) object
_GLOBAL: the _G itself

following are exposed via meta class:
include(filename, bReload): inplace include another script
include_once(filename): include only once, mostly for defining functions
print(...): output html with formated string.
nplinfo(): output npl information.
exit(text), die(): end the request
dirname(__FILE__): get directory name
site_config(): get the web site configuration table
site_url(path, scheme):
addheader(name, value):
file_exists(filename):
log(obj)
sanitize(text) escape xml '<' '>'
json_encode(value, bUseEmptyArray) to json string
json_decode(str) decode from json string
xml_encode(value) to xml string
include_pagecode(code, filename): inplace include page code.
get_file_text(filename)
util.GetUrl(url, function(err, msg, data) end):
util.parse_str(query_string):
err, msg = yield(bExitOnError) pause execution until resume() is called.
resume(err, msg) in async callback, call this function to resume execution from

→˓last yield() position.

see script/apps/WebServer/npl_page_env.lua for detailed documentation.

Request/Response Object

• request object: current request object: headers and cookies

• response object: current response object: send headers or set cookies, etc.

Memory Cache and Global Objects

NPL web server has a built-in simple local memory cache utility. One can use it to store objects that is shared by all
requests on the main thread. In future it may be configured to run on a separate server like memcached.

See below:

NPL.load("(gl)script/apps/WebServer/mem_cache.lua");
local mem_cache = commonlib.gettable("WebServer.mem_cache");
local obj_cache = mem_cache:GetInstance();

54.2. Page Commands 209

https://github.com/NPLPackages/main/tree/master/script/apps/WebServer/npl_page_env.lua
https://github.com/NPLPackages/main/tree/master/script/apps/WebServer/npl_request.lua
https://github.com/NPLPackages/main/tree/master/script/apps/WebServer/npl_response.lua

nplruntime documentation, Release 0.1.0

obj_cache:add("name", "value")
obj_cache:replace("name", "value1")
assert(obj_cache:get("name") == "value1");
assert(obj_cache:get("name", "group1") == nil);
obj_cache:add("name", "value", "group1")
assert(obj_cache:get("name", "group1") == "value");

Alternatively, one can also create global objects that is shared by all requests in the NPL thread, by using
commonlib.gettable() method. Table objects created with commonlib.gettable() is different from
gettable() in page file. The latter will create table on the local page scope which lasts only during the lifetime of
a given http request.

File Uploader

NPL web server supports multipart/form-data by which one can upload binary file to the server. It is rec-
ommended to use a separate server for file upload, because it is IO bound and consumes bandwidth when file is very
large.

Click here for a complete example of file uploader.

Here is the client side code to upload file as enctype="multipart/form-data"

<form name="uploader" enctype="multipart/form-data" class="form-horizontal" method=
→˓"post" action="/ajax/fileuploader?action=upload">
<input name="fileToUpload" id="fileToUpload" type="file" class="form-control"/>
<input name="submit" type="submit" class="btn btn-primary" value="Upload"/>

</form>

Here is an example NPL server page code, the binary contents of the file is in
request:getparams()["fileToUpload"].contents. The maximum file upload size allowed can
be configured by NPL runtime attribute. The default value is 100MB.

local fileToUpload = request:getparams()["fileToUpload"]
if(fileToUpload and request:getparams()["submit"] and fileToUpload.name and
→˓fileToUpload.contents) then

local target_dir = "temp/uploads/" .. ParaGlobal.GetDateFormat("yyyyMMdd") .. "/";
local target_file = target_dir .. fileToUpload.name;
local fileType = fileToUpload.name:match("%.(%w+)$"); -- file extension

-- check if file already exists
if(file_exists(target_file)) then

response:send({err = "Sorry, file already exists."});
return

end
-- check file size
if (fileToUpload.size and fileToUpload.size> 5000000) then

response:send({err = "Sorry, your file is too large."});
return

end

-- Allow certain file formats
if(false and fileType ~= "jpg" and fileType ~= "png" and fileType~="txt") then

response:send({err = "Sorry, only JPG, PNG & TXT files are allowed."});
return

end

210 Chapter 54. NPL Server Page

https://github.com/NPLPackages/main/blob/master/script/apps/WebServer/admin/wp-content/pages/fileuploader.page

nplruntime documentation, Release 0.1.0

-- if everything is ok, try to save file to target directory
ParaIO.CreateDirectory(target_dir);
local file = ParaIO.open(commonlib.Encoding.Utf8ToDefault(target_file), "w");
if(file:IsValid()) then

file:write(fileToUpload.contents, #fileToUpload.contents);
file:close();
response:send({contents = target_file, name = fileToUpload.name, size =

→˓fileToUpload.size, ["content-type"] = fileToUpload["content-type"], });
return;

else
response:send({err = "can not create file on disk. file name invalid or disk

→˓is full."});
end

end
response:send({err = "unknown err"});

Server Side Redirection

See also RFC standard

<?npl
response:set_header("Location", "http://www.paracraft.cn/")
response:status(301):send_headers();

54.5. File Uploader 211

https://en.wikipedia.org/wiki/Server-side_redirect

nplruntime documentation, Release 0.1.0

212 Chapter 54. NPL Server Page

CHAPTER 55

NPL Admin Site Framework

WebServer/admin is a open source NPL-based web site framework. It comes with the main package and con-
tains all source code of NPLCodeWiki. It is served as a demo and debugger for your own web application. It
is also by default run side by side on 127.0.0.1:8099/ with your website on localhost:8099. See de-
fault.webserver.config.xml.

How to run NPL Admin Site

npl script/apps/WebServer/WebServer.lua

or you can run with more options like

npl bootstrapper="script/apps/WebServer/WebServer.lua" port="8099"

Once started, you can visit the admin site from http://localhost:8099

Introduction

I have implemented it according to the famous WordPress.org blog site. The default theme template is based on
“sensitive” which is a free theme of wordpress. “sensitive” theme has no dependency on media and can adjust display
and layout according to screen width, which is suitable for showing on mobile phone device.

How to use

Usage 1: Use by reference (Recommended)

Basically, if you want to use admin framework without cloning the file, simply add following line to your rule file

<!--wp framework related js, css, files-->
<rule match="^/?wp%-" with="WebServer.filehandler" params='{baseDir = "script/

→˓apps/WebServer/admin/"}'></rule>

In your page index.page file, you can include the main file of the wp framework, such as this:

213

https://github.com/NPLPackages/main/tree/master/script/apps/WebServer/admin/
https://github.com/NPLPackages/main/blob/master/script/apps/WebServer/default.webserver.config.xml
https://github.com/NPLPackages/main/blob/master/script/apps/WebServer/default.webserver.config.xml
http://localhost:8099

nplruntime documentation, Release 0.1.0

<?npl

-- we will not load complete framework, but only ajax and helper functions
WP_USE_MINI_LOADER = true;
include_once("script/apps/WebServer/admin/wp-main.page");

-- call your router, such as
include_once("./myproj/routes.page");

Usage 2: Use by cloning

• copy everything in this folder to your own web site root, say /www/MySite/

• modify wp-content/database/*.xml for site description and menus.

• add your own web pages to wp-content/pages/, which are accessed by their filename in the url.

• If you want more customization to the look, modify the wp-content/themes/sensitive or create your own theme
folder. Remember to set your theme in wp-content/database/table_sitemeta.xml, which con-
tains all options for the site.

Usage 3: Adding new features to it

• Simply put your own files in script/apps/WebServer/admin/ in your dev or working directory, your
files will be loaded first before the one in npl_package/main.

Architecture

The architecture is based on Wordpress.org (4.0.1). Although everything is rewritten
→˓in NPL, I have kept all functions, filters, and file names identical to wordpress.
See `wp-includes/` for the framework source code.

Code locations: * framework loader is in wp-settings.page * site options:
wp-content/database/table_sitemeta.xml: such as theme, default menu, etc. * menus:
wp-content/database/table_nav_menu.xml

Ajax framework

Any request url begins with `ajax/xxx` use the `wp-admin/admin-ajax.page`. it will
→˓automatically load the page xxx. and invoke `do_action('wp_ajax_xxx')`.
If the request url begins with `ajax/xxx?action=yyy`, then page xxx is loaded, and
→˓`do_action('wp_ajax_xxx')` is invoked.
A page that handles ajax request needs to call `add_action('wp_ajax_xxx' function_
→˓name)` to register a handler for ajax actions.
see `wp-content/pages/aboutus.page` for an example.

214 Chapter 55. NPL Admin Site Framework

CHAPTER 56

Table Database

Table database is implemented in NPL and is the default and recommended database engine. It can be used
without any external dependency or configuration.

Introduction to Table Database

A schema-less, server-less, NoSQL database able to process big data in multiple NPL threads, with extremly intuitive
table-like API, automatic indexing and extremely fast searching, keeping data and algorithm in one system just like
how the human brain works.

Local Storage API vs Full-Featured Database Solution

The raw table database has no configuration file. Please regard the raw table database as a local storage API provided by
NPL, rather than a full-featured database solution. However its performance is good enough to be used as the database
engine for medium sized projects. You need to write application-level code to have something like authentication, and
data replication/hashing on multiple computers, etc. However, in future, some of these functions may be provided as
additional libraries on top of the raw table database to provide enterprise level database solution that runs on multiple
nodes.

Performance

Following is tested on my Intel-i7-3GHZ CPU. See test folder for test source code.

Run With Conservative Mode

Following is averaged value from 100000+ operations in a single thread

• Random non-index insert: 43478 inserts/second

– Async API tested with default configuration with 1 million records on a single thread.

• Round trip latency call:

– Blocking API: 20000 query/s

– Non-blocking API: 11ms or 85 query/s (due to NPL time slice)

215

https://github.com/NPLPackages/main/blob/master/script/ide/System/Database/test/test_TableDatabase.lua

nplruntime documentation, Release 0.1.0

– i.e. Round strip means start next operation after previous one is returned. This is latency test.

• Random indexed inserts: 17953 query/s

– i.e. start next operation immediately, without waiting for the first one to return.

• Random select with auto-index: 18761 query/s

– i.e. same as above, but with findOne operation.

• Randomly mixing CRUD operations: 965-7518 query/s

– i.e. same as above, but randomly calling Create/Read/Update/Delete (CRUD) on the same auto-indexed
table.

– Mixing read/write can be slow when database grows bigger. e.g. you can get 18000 CRUD/s for just
10000 records.

Run With Aggressive Mode

One can also use in-memory journal file or ignore OS disk write feedback to further increase DB throughput by
30-100% percent. See Store.lua for details. By default, this feature is off.

Code Examples:

NPL.load("(gl)script/ide/System/Database/TableDatabase.lua");
local TableDatabase = commonlib.gettable("System.Database.TableDatabase");
-- this will start both db client and db server if not.
local db = TableDatabase:new():connect("temp/mydatabase/", function() end);

-- Note: `db.User` will automatically create the `User` collection table if not.
-- clear all data
db.User:makeEmpty({}, function(err, count) echo("deleted"..(count or 0)) end);
-- insert 1
db.User:insertOne(nil, {name="1", email="1@1",}, function(err, data) assert(data.

→˓email=="1@1") end)
-- insert 1 with duplicate name
db.User:insertOne(nil, {name="1", email="1@1.dup",}, function(err, data)

→˓assert(data.email=="1@1.dup") end)

-- find or findOne will automatically create index on `name` and `email` field.
-- indices are NOT forced to be unique. The caller needs to ensure this see

→˓`insertOne` below.
db.User:find({name="1",}, function(err, rows) assert(#rows==2); end);
db.User:find({name="1", email="1@1"}, function(err, rows) assert(rows[1].email==

→˓"1@1"); end);
-- find with compound index of name and email
db.User:find({ ["+name+email"] = {"1", "1@1"} }, function(err, rows) assert(

→˓#rows==1); end);

-- force insert
db.User:insertOne(nil, {name="LXZ", password="123"}, function(err, data)

→˓assert(data.password=="123") end)
-- this is an update or insert command, if the query has result, it will actually

→˓update first matching row rather than inserting one.
-- this is usually a good way to force uniqueness on key or compound keys,
db.User:insertOne({name="LXZ"}, {name="LXZ", password="1", email="lixizhi@yeah.net

→˓"}, function(err, data) assert(data.password=="1") end)

-- insert another one

216 Chapter 56. Table Database

nplruntime documentation, Release 0.1.0

db.User:insertOne({name="LXZ2"}, {name="LXZ2", password="123", email=
→˓"lixizhi@yeah.net"}, function(err, data) assert(data.password=="123") end)

-- update one
db.User:updateOne({name="LXZ2",}, {name="LXZ2", password="2", email="lixizhi@yeah.

→˓net"}, function(err, data) assert(data.password=="2") end)
-- remove and update fields
db.User:updateOne({name="LXZ2",}, {_unset = {"password"}, updated="with unset"},

→˓function(err, data) assert(data.password==nil and data.updated=="with unset") end)
-- replace the entire document
db.User:replaceOne({name="LXZ2",}, {name="LXZ2", email="lixizhi@yeah.net"},

→˓function(err, data) assert(data.updated==nil) end)
-- force flush to disk, otherwise the db IO thread will do this at fixed interval
db.User:flush({}, function(err, bFlushed) assert(bFlushed==true) end);
-- select one, this will automatically create `name` index
db.User:findOne({name="LXZ"}, function(err, user) assert(user.password=="1");

→˓end)
-- array field such as {"password", "1"} are additional checks, but does not use

→˓index.
db.User:findOne({name="LXZ", {"password", "1"}, {"email", "lixizhi@yeah.net"}},

→˓function(err, user) assert(user.password=="1"); end)
-- search on non-unqiue-indexed rows, this will create index `email` (not-unique

→˓index)
db.User:find({email="lixizhi@yeah.net"}, function(err, rows) assert(#rows==2);

→˓end);
-- search and filter result with password=="1"
db.User:find({name="LXZ", email="lixizhi@yeah.net", {"password", "1"}, },

→˓function(err, rows) assert(#rows==1 and rows[1].password=="1"); end);
-- find all rows with custom timeout 1 second
db.User:find({}, function(err, rows) assert(#rows==4); end, 1000);
-- remove item
db.User:deleteOne({name="LXZ2"}, function(err, count) assert(count==1); end);
-- wait flush may take up to 3 seconds
db.User:waitflush({}, function(err, bFlushed) assert(bFlushed==true) end);
-- set cache to 2000KB
db.User:exec({CacheSize=-2000}, function(err, data) end);
-- run select command from Collection
db.User:exec("Select * from Collection", function(err, rows) assert(#rows==3)

→˓end);
-- remove index fields
db.User:removeIndex({"email", "name"}, function(err, bSucceed) assert(bSucceed ==

→˓true) end)
-- full table scan without using index by query with array items.
db.User:find({ {"name", "LXZ"}, {"password", "1"} }, function(err, rows) assert(

→˓#rows==1 and rows[1].name=="LXZ"); end);
-- find with left subset of previously created compound key "+name+email"
db.User:find({ ["+name"] = {"1", limit=2} }, function(err, rows) assert(#rows==2);

→˓ end);
-- return at most 1 row whose id is greater than -1
db.User:find({ _id = { gt = -1, limit = 1, skip == 1} }, function(err, rows)

→˓assert(#rows==1); echo("all tests succeed!") end);

Why A New Database System?

Current SQL/NoSQL implementation can not satisfy following requirements at the same time.

• Keeping data close to computation, much like our brain.

56.4. Why A New Database System? 217

nplruntime documentation, Release 0.1.0

• Store arbitrary data without schema.

• Automatic indexing based on query usage.

• Provide both blocking/non-blocking API.

• Multithreaded architecture without using network connections for maximum local performance.

• Capable of storing hundreds of Giga Bytes of data locally.

• Native document storage format for NPL tables.

• Super easy client API just like manipulating standard NPL/lua tables.

• Easy to setup and deploy with NPL runtime.

• No server configuration, calling client API will automatically start the server on first use.

About Transactions

Each write/insert operation is by default a write command (virtual transaction). We will periodically (default is
50ms, see Store.AutoFlushInterval) flush all queued commands into disk. Everything during these period
will either succeed or fail. If you are worried about data lose, you can manually invoke flush command, however
doing so will greatly compromise performance. Please note flush command will affect the overall throughput of the
entire DB system. In general, you can only get about 20-100 flush(real transactions) per second. Without enforcing
transaction on each command, you can easily get a throughput of 6000 write commands per second (i.e. could be
100 times faster).

There is one solution to get both high throughput and transaction.

The following solution give you ACID of a single command. After issuing a really important group of commands, and
you want to ensure that these commands are actually successful like a transaction, the client can issue a waitflush
command to check if the previous commands are successful. Please note that waitflush command may take up to
50ms or Store.AutoFlushInterval to return. You can make all calls asynchronous, so 99.99% times user get
a fast feed back, but there is a very low chance that user may be informed of failure after 50ms. On client side, you
may also need to prevent user to issue next transaction in 50ms,In most cases, users do not click mouse that quick, so
this hidden logic goes barely noticed.

The limitation of the above approach is that you can only know whether a group of commands has been success-
fully flushed to disk, but you can not rollback your changes, nor can you know which commands fail and which are
successful in case of multiple commands.

Opinion on Software Achitecture

Like the brain, we recommend that each computer manages its own chunk of data. As modern computers are having
more computing cores, it is possible for a single (virtual) machine to manage 100-500GB of data locally or 1000
requests per second. Using a local database engine is the best choice in such situation for both performance and ease
of deployment.

To scale up to even more data and requests, we devide data with machines and use higher level programming logics for
communications. In this way, we control all the logics with our own code, rather than using general-purpose solutions
like memcached, MangoDB(NoSQL), or SQLServer, etc.

218 Chapter 56. Table Database

nplruntime documentation, Release 0.1.0

Implementation Details

• Each data table(collections of data) is stored in a single sqlite database file.

• Each database file contains a indexed mapping from object-id to object-table(document).

• Each database file contains a schema table telling additional index keys used.

• Each database file contains a key to object-id table for each custom index key.

• All DB IO operations are performaned in a single dedicated NPL thread.

The above general idea can also be found in commercial database engine like CortexDB, see below.

User Guide

Because Table database is schema-less. It requires some caution of the programmer during development.

Auto Key Index

By default, when you are inserting records into the database, it will have only one internal unique key called _id.
All subsequent query commands such as findOne or find or insertOne, deleteOne, updateOne command
with query fields, such as name will automatically add a new index key with corresponding name such as name, and
rebuild the index table for all existing records. Please note, all indices are NOT-constraint to be unique, it is up to the
caller to ensure index usage. Different records with the same key value are all stored in the index table.

One can also force not-to-use index when querying by using array items rather than key,value pairs in the
query parameter, see below.

NPL.load("(gl)script/ide/System/Database/TableDatabase.lua");
local TableDatabase = commonlib.gettable("System.Database.TableDatabase");
-- this will start both db client and db server if not.
local db = TableDatabase:new():connect("temp/mydatabase/", function() end);

-- Note: `db.User` will automatically create the `User` collection table if not.
-- clear all data
db.User:makeEmpty({}, function(err, count) echo("deleted"..(count or 0)) end);
-- insert 1
db.User:insertOne(nil, {name="1", email="1@1",}, function(err, data) echo(data)

→˓ end)
-- insert 1 with duplicate name
db.User:insertOne(nil, {name="1", email="1@1.dup",}, function(err, data)

→˓echo(data) end)

-- find or findOne will automatically create index on `name` and `email` field.
-- indices are NOT forced to be unique. The caller needs to ensure this see

→˓`insertOne` below.
-- this will return two records using one index table `name`
db.User:find({name="1",}, function(err, rows) echo(rows); end);
-- this will return one record using two index table `name` and `email`
db.User:find({name="1", email="1@1"}, function(err, rows) echo(rows); end);

-- force insert, insertOne with no query parameter will force insertion.
db.User:insertOne(nil, {name="LXZ", password="123"}, function(err, data)

→˓echo(data) end)
-- this is an update or insert command, if the query has result, it will actually

→˓update first matching row rather than inserting one.

56.7. Implementation Details 219

http://cortex-ag.com/

nplruntime documentation, Release 0.1.0

-- this is usually a good way to force uniqueness on key or compound keys
-- so the following will update existing record rather than inserting a new one
db.User:insertOne({name="LXZ"}, {name="LXZ", password="1", email="lixizhi@yeah.net

→˓"}, function(err, data) echo(data) end)

All query fields in findOne, updateOne, etc can contain array items, which performs additional filter checks
without automatically create index, like below. name is an indexed key, where as password and email are not, so
they need be specified as array items in the query parameter.

-- array fields such as {"password", "1"} are additional checks, but does not use
→˓index.

db.User:findOne({name="LXZ", {"password", "1"}, {"email", "lixizhi@yeah.net"}},
→˓function(err, user) echo(user); end)

In case, you make a mistake with index during development, please use DB manager in NPL code wiki to remove
any index that you accidentally create. or simply call removeIndex to remove all or given index keys.

Force Key Uniqueness and Upsert

If you want to force uniqueness on a given key, one can specify the unique key in query field when inserting a new
record, which turns the insertOne command into an Upsert command. See below:

-- this is an update or insert command, if the query has result, it will actually
→˓update first matching row rather than inserting one.
-- this is usually a good way to force uniqueness on key or compound keys
-- so the following will update existing record rather than inserting a new one
db.User:insertOne({name="LXZ"}, {name="LXZ", password="1", email="lixizhi@yeah.net"},
→˓function(err, data) echo(data) end)

Some notes:

• Query commands such as find, findOne, insertOne will automatically create index for fields in query
parameter, unless field is specified in array format.

• Query with mixed index and non-index is done by fetching using index first and then filter result with non-
indexed fields. If there is no indexed fields, then non-indexed query can be very slow, since it will linearly
search on all records, which can be very slow.

• Query with multiple fields is supported. It will first fetch ids using each index field, and calculate the shared ids
and then fetch these rows in a batch.

Write-Ahead-Log and Checkpointing

By default, TableDatabase uses write-ahead-log. We will flush data to WAL file every 50ms; and we will do WAL
checkpoint every 5 seconds or 1000 dirty pages. One can configure these two intervals, like below. However, it is not
recommended to change these values.

NPL.load("(gl)script/ide/System/Database/Store.lua");
local Store = commonlib.gettable("System.Database.Store");
-- We will wait for this many milliseconds when meeting the first non-queued command
→˓before commiting to disk. So if there are many commits in quick succession, it will
→˓not be IO bound.
Store.AutoFlushInterval = 50;
Store.AutoCheckPointInterval = 5000;

220 Chapter 56. Table Database

https://www.sqlite.org/wal.html

nplruntime documentation, Release 0.1.0

Checkpointing may take 10ms-1000ms depending on usage, during which time it will block all write
operations, so one may experience a latency in API once in a while.

Message Queue Size

One can set the message queue size for both the calling thread and db processor thread. The default value is good
enough for most situations.

db.name:exec({QueueSize=10001});

Memory Cache Size

Change the suggested maximum number of database disk pages that TableDatabase will hold in memory at once per
open database file. The default suggested cache size is -2000, which means the cache size is limited to 2048KB of
memory. You can set it to a much bigger value, since it is only allocated on demand. Negative value is KB, Positive is
number of pages, each page is 4KB.

db.name:exec({CacheSize=-2000});

Bulk Operations and Message Deliver Guarantee

Table database usually has a high throughout such as 5000-40000 requests/sec. However, if you are doing bulk
insertion of millions of records. You should do chunk by chunk using callbacks, otherwise you will either reach the
limit of NPL thread buffer or TCP socket buffer(in case it is remote process). A good way is to keep at most 1000
active requests at any one time (System.Concurrency has helper class for this kind of jobs). This way you can
get a good throughput with message delivery guarantees.

Following is example of inserting 1 million records (takes about 23 seconds). You can paste following code to NPL
Code Wiki’s console to test.

NPL.load("(gl)script/ide/System/Database/TableDatabase.lua");
local TableDatabase = commonlib.gettable("System.Database.TableDatabase");

-- this will start both db client and db server if not.
local db = TableDatabase:new():connect("temp/mydatabase/");

db.insertNoIndex:makeEmpty({});
db.insertNoIndex:flush({});

NPL.load("(gl)script/ide/Debugger/NPLProfiler.lua");
local npl_profiler = commonlib.gettable("commonlib.npl_profiler");
npl_profiler.perf_reset();

npl_profiler.perf_begin("tableDB_BlockingAPILatency", true)
local total_times = 1000000; -- a million non-indexed insert operation
local max_jobs = 1000; -- concurrent jobs count
NPL.load("(gl)script/ide/System/Concurrent/Parallel.lua");
local Parallel = commonlib.gettable("System.Concurrent.Parallel");
local p = Parallel:new():init()
p:RunManyTimes(function(count)

db.insertNoIndex:insertOne(nil, {count=count, data=math.random()},
→˓function(err, data)

if(err) then

56.8. User Guide 221

nplruntime documentation, Release 0.1.0

echo({err, data});
end
p:Next();

end)
end, total_times, max_jobs):OnFinished(function(total)

npl_profiler.perf_end("tableDB_BlockingAPILatency", true)
log(commonlib.serialize(npl_profiler.perf_get(), true));

end);

In future version, we may support build-in Bulk API.

Async vs Sync API

Table database provides both sync and asynchronous API, and they can be use simultaneously. However, sync interface
is disabled by default. One has to manually enable it, such as during initialization. In sync interface, if you do not
provide a callback function, then the API block until result is returned, otherwise the API return AsyncTask object
immediately. See following example:

-- enable sync mode once and for all in current thread.
db:EnableSyncMode(true);
-- synchronous call will block until data is fetched.
local err, data = db.User:insertOne(nil, {name="LXZ2", email="sync mode"})
-- async call return a task object immediately without waiting result.
local task = db.User:insertOne(nil, {name="LXZ2", email="sync mode"}, function(err,
→˓data) end)

Synchronous call will pause the entire NPL thread, and is NOT the recommended to use, that is why we disabled this
feature by default.

Instead, during web development, there is another way to use async API in synchronous way, which is to use coroutine.
In NPL web server, we provide resume/yield. See NPLServerPage‘s mixing sync/async code section.

Ranged Query and Pagination

Paging through your data is one of the most common operations with TableDB. A typical scenario is the need to
display your results in chunks in your UI. If you are batch processing your data it is also important to get your paging
strategy correct so that your data processing can scale.

Let’s walk through an example to see the different ways of paging through data in TableDB. In this example, we have
a database of user data that we need to page through and display 10 users at a time. So in effect, our page size is 10.
Let us first create our db with 10000 users of scheme {_id,name,company,state}.

NPL.load("(gl)script/ide/System/Database/TableDatabase.lua");
local TableDatabase = commonlib.gettable("System.Database.TableDatabase");
local db = TableDatabase:new():connect("temp/mydatabase/");

-- add some data
for i=1, 10000 do

db.pagedUsers:insertOne({name="name"..i},
{name="name"..i, company="company"..i, state="state"..i}, function() end)

end

222 Chapter 56. Table Database

nplruntime documentation, Release 0.1.0

Approach One: Use limit and skip

TableDB support limit and offset|skip key words in query parameter on an indexed field or the internal _id
field. offset or skip tells TableDB to skip some items before returning at most limit number of items. gt
means greater than to select a given range of data.

-- page 1
db.pagedUsers:find({_id = {gt=-1, limit=10, skip=0}}, function(err, users)

→˓echo(users) end);
-- page 2
db.pagedUsers:find({_id = {gt=-1, limit=10, skip=10}}, function(err, users)

→˓echo(users) end);
-- page 3
db.pagedUsers:find({_id = {gt=-1, limit=10, skip=20}}, function(err, users)

→˓echo(users) end);

You get the idea. In general to retrieve page n the code looks like this

local pagesize = 10; local n = 10;
db.pagedUsers:find({_id = {gt=-1, limit=pagesize, skip=(n-1)*pagesize}},

→˓function(err, users) echo(users) end);

However as the offset of your data increases this approach has serious performance problems. The reason is that
every time the query is executed, the server has to walk from the beginning of the first non-skipped row to the specified
offset. As your offset increases this process gets slower and slower. Also this process does not make efficient use of
the indexes. So typically the skip and limit approach is useful when you have small offset. If you are working
with large data sets with very big offset values you need to consider other approaches.

Approach Two: Using find and limit

The reason the previous approach does not scale very well is the skip command. So the goal in this section is to
implement paging without using the skip command. For this we are going to leverage the natural order in the stored
data like a time stamp or an id stored in the document. In this example we are going to use the _id stored in each
document. _id is a TableDB auto-increased internal id.

-- page 1
db.pagedUsers:find({_id = { gt = -1, limit=10}}, function(err, users)

echo(users)
-- Find the id of the last document in this page
local last_id = users[#users]._id;

-- page 2
db.pagedUsers:find({_id = { gt = last_id, limit=10}}, function(err, users)

echo(users)
-- Find the id of the last document in this page
local last_id = users[#users]._id;
-- page 3
-- ...

end);
end);

Notice how the gt keywords to select rows whose values is greater than the specified value and sort data in
ascending order. One can do this for any indexed field, either it is number or string, see below for ranged query in
TableDB:

56.8. User Guide 223

nplruntime documentation, Release 0.1.0

NPL.load("(gl)script/ide/System/Database/TableDatabase.lua");
local TableDatabase = commonlib.gettable("System.Database.TableDatabase");

-- this will start both db client and db server if not.
local db = TableDatabase:new():connect("temp/mydatabase/");

-- add some data
for i=1, 100 do

db.rangedTest:insertOne({i=i}, {i=i, data="data"..i}, function() end)
end

-- return at most 5 records with i > 90, skipping 2. result in ascending order
db.rangedTest:find({ i = { gt = 95, limit = 5, offset=2} }, function(err, rows)

echo(rows); --> 98,99,100
end);

-- return at most 20 records with _id > 98, result in ascending order
db.rangedTest:find({ _id = { gt = 98, limit = 20} }, function(err, rows)

echo(rows); --> 99,100
end);

-- do a full table scan without using index
db.rangedTest:find({ {"i", { gt = 55, limit=2, offset=1} }, {"data", {lt="data60"}

→˓ }, }, function(err, rows)
echo(rows); --> 57,58

end);

db.rangedTest:find({ {"i", { gt = 55} }, {"data", "data60"}, }, function(err,
→˓rows)

echo(rows); --> 60
end);

Please note that array fields in query object will not auto-create or use any index, instead a full table scan
is performed which can be slow. Ranged query is also supported in array fields, but it is implemented via
full table scan.

Compound key is more suitable for ranged query see Compound keys section below for how to use it.

Count Record

Rule of thumb: avoid using count!

Implementation of full paging usually requires you to get the count of all items in a database. However, it is not trivial
to get accurate count. SQL query like select count(*) as count from Collection may take seconds
or even minutes to return for tables with many rows like 100 millions. This is because almost every SQL engine uses
B-tree, but B-tree does not store count. The same story is true for both TableDB, MySQL, etc.

For a faster count, you can create a counter table and let your application update it according to the inserts and deletes
it does. Or you may not allow the user to scroll to the last page, but show more pages progressively.

If you do not mind the performance or your table size is small, TableDB provides the count query

NPL.load("(gl)script/ide/System/Database/TableDatabase.lua");
local TableDatabase = commonlib.gettable("System.Database.TableDatabase");
local db = TableDatabase:new():connect("temp/mydatabase/");

db.countTest:removeIndex({}, function(err, bRemoved) end);

224 Chapter 56. Table Database

nplruntime documentation, Release 0.1.0

-- compound keys
for i=1, 100 do

db.countTest:insertOne({name="name"..i}, {
name="name"..i,
company = (i%2 == 0) and "tatfook" or "paraengine",
state = (i%3 == 0) and "china" or "usa"}, function() end)

end

-- count all rows
db.countTest:count({}, function(err, count)

assert(count == 100)
end);
-- count with compound keys
db.countTest:count({["+company"] = {"tatfook"}}, function(err, count)

assert(count == 50)
end);
-- count with complex query
db.countTest:count({["+state+name+company"] = {"china", gt="name50"}},

→˓function(err, count)
assert(count == 19)

end);

Compound Indices

To efficiently query data with multiple key values, one needs to use compound indices. Please note a compound key
of (key1, key2, key3) can also be used to query (key1, key2) and (key1), so the order of subkeys are very important.

If you created a compound index say on (key1, key2, key3), then only the right most key in the query can contain
ranged constraint, all other keys to its left such as (key1 and key2) must be present (no gaps) and specified in equal
constraint.

To understand compound indices, one needs to understand how index works in standard relational database engine,
because a TableDB query usually use only one internal index to do all the complex queries and an index is a B-tree.
So compound index can not be used where B-tree is not capable of. Read query planner of sqlite here for more details.

The syntax of using compound key is by prepending “+|-” to one or more field names, such as “+key1+key2+key3”,
there can be at most 4 sub keys, see below for examples. “+” means ascending order, “-” means descending order.

Examples:

NPL.load("(gl)script/ide/System/Database/TableDatabase.lua");
local TableDatabase = commonlib.gettable("System.Database.TableDatabase");
local db = TableDatabase:new():connect("temp/mydatabase/");

db.compoundTest:removeIndex({}, function(err, bRemoved) end);

-- compound keys
for i=1, 100 do

db.compoundTest:insertOne({name="name"..i}, {
name="name"..i,
company = (i%2 == 0) and "tatfook" or "paraengine",
state = (i%3 == 0) and "china" or "usa"}, function() end)

end

-- compound key can also be created on single field "+company". it differs from
→˓standard key "company".

db.compoundTest:find({["+company"] = {"paraengine", limit=5, skip=3}},
→˓function(err, users)

56.8. User Guide 225

https://www.sqlite.org/optoverview.html

nplruntime documentation, Release 0.1.0

assert(#users == 5)
end);

-- create a compound key on +company+name (only the right most key can be paged)
-- `+` means index should use ascending order, `-` means descending. such as

→˓"+company-name"
-- it will remove "+company" key, since the new component key already contains

→˓the "+company".
db.compoundTest:find({["+company+name"] = {"tatfook", gt="", limit=5, skip=3}},

→˓function(err, users)
assert(#users == 5)

end);

-- a query of exact same left keys after a compound key is created will
→˓automatically use

-- the previously created compound key, so "+company", "+company+name" in
→˓following query are the same.

db.compoundTest:find({["+company"] = {"tatfook", limit=5, skip=3}}, function(err,
→˓users)

assert(#users == 5)
end);

-- the order of key names in compound index is important. for example:
-- "+company+state+name" shares the same compound index with "+company" and

→˓"+company+state"
-- "+state+name+company" shares the same compound index with "+state" and

→˓"+state+name"
db.compoundTest:find({["+state+name+company"] = {"china", gt="name50", limit=5,

→˓skip=3}}, function(err, users)
assert(#users == 5)

end);

-- compound keys with descending order. Notice the "-" sign before `name`.
db.compoundTest:find({["+state-name+company"] = {"china", limit=5, skip=3}},

→˓function(err, users)
assert(#users == 5)

end);

-- updateOne with compound key
db.compoundTest:updateOne({["+state-name+company"] = {"usa", "name1", "paraengine

→˓"}}, {name="name0_modified"}, function(err, user)
assert(user.name == "name0_modified")

end);

-- this query is ineffient since it uses intersection of single keys (with many
→˓duplications).

-- one should consider use "+state+company", instead of this.
db.compoundTest:find({state="china", company="tatfook"}, function(err, users)

assert(#users == 16)
end);

-- this query is ineffient since it uses intersection of single keys.
-- one should consider use "+state+company", instead of this.
db.compoundTest:count({state="china", company="tatfook"}, function(err, count)

assert(count == 16)
end);

226 Chapter 56. Table Database

nplruntime documentation, Release 0.1.0

Compound key vs Standard key

Compound key is very different from standard key in terms of internal implementations. They can coexist in the same
table even for the same key. For example:

-- query with standard key "name"
db.User:find({name="1",});
-- query with compound key "+name"
db.User:find({["+name"]="1",});

The above code will create two different kinds of internal index tables for the “name” field.

Compound key index table is more similar to traditional relational database table. For example, if one creates a
compound key of “+key1+key2+key3”, then an internal index table of (cid UNIQUE,name1,name2,name3) is
created with composite index of CREATE INDEX (name1,name2,name3). For each row in the collection, there
is a matching row in its internal index table.

However, a standard key in tableDB stores index table differently as (name UNIQUE,cids), where cids is a text
array of collection cid. There maybe far less rows in the internal index table than the actual collection.

Both keys have advantages and disadvantages, generally speaking:

• standard key is faster and good for index intersections. Most suitable for keys with 1-1000 duplications.

• compound key is good for sorting and ranged query. Suitable for keys with any duplicated rows.

The biggest factor that you should use a compound key is that your key’s values have many duplications. For example,
if you want to query with gender+age with millions of user records, compound key is the only way to go.

For other single key situations, standard key is recommended. For example, with standard keys you can get all
projects that belongs to a given userid very efficiently, given that each user has far less than 1000 projects.

Database Viewer Tools

NPLCodeWiki contains a db manager in its tools menu, which can be used to view and modify data, as well as
examine and removing table indices. It is very important to examine and remove unnecessary indices due to
coding mistakes.

Remove Table Fields

To remove table fields, use updateOne with _unset query parameter like below.

-- remove "password" field from the given row
db.User:updateOne({name="LXZ2",}, {_unset = {"password"}, updated="with unset"},

function(err, data)
assert(data.password==nil and data.updated=="with unset")

end)

Another way is the use replaceOne to replace the entire document.

-- replace the entire document
db.User:replaceOne({name="LXZ2",}, {name="LXZ2", email="lixizhi@yeah.net"},
→˓function(err, data) assert(data.updated==nil) end)

56.8. User Guide 227

nplruntime documentation, Release 0.1.0

Always Use Models

In typical web applications, we use model/view/controller (or MVC) architecture. A model is usually
a wrapper of a single schema-less database record in TableDatabase. Usually a model should provide
CRUD(create/read/update/delete) operations according to user-defined query. It is the model’s responsibility to en-
sure input/output are valid, such as whether a string is too long, or whether the caller is querying with a non-indexed
key.

In case, you are using client side controllers, one can use a router page to automatically redirect URL AJAX queries
to the model’s function calls.

For a complete example of url redirection and model class, please see
script/apps/WebServer/admin/wp-content/pages/wiki/routes.page and
script/apps/WebServer/admin/wp-content/pages/models/abstract/base.page

Following code illustrates the basic ideas.

Router page such as in routes.page

local model = models and models[modelname];
if(not model) then

return response:status(404):send({message="model not found"});
else

model = model:new();
end

-- redirect CRUB URL to method in model.
if(request:GetMethod() == "GET") then

if(model.get) then
local result = model:get(request:getparams());
return response:send(result);

end
elseif(request:GetMethod() == "PUT") then

if(params and params:match("^new")) then
if(model.create) then

local result = model:create(request:getparams());
return response:send(result);

end
else

if(model.update) then
local result = model:update(request:getparams());
return response:send(result);

end
end

elseif(request:GetMethod() == "DELETE") then
if(model.delete) then

local result = model:delete(request:getparams());
return response:send(result);

end
end

And in model class, such as models/site.page

<?npl
--[[
Title: a single web site of a user
Author: LiXizhi
Date: 2016/6/28
]]

228 Chapter 56. Table Database

nplruntime documentation, Release 0.1.0

include_once("base.page");

local site = inherit(models.base, gettable("models.site"));

site.db_name = "site";

function site:ctor()
-- unique name of the website, usually same as owner name
self:addfield("name", "string", true, 30);
-- markdown text description
self:addfield("desc", "string");
-- such as "https://github.com/LiXizhi/wiki"
self:addfield("store", "string", false, 200);
-- owner name, not unique
self:addfield("owner", "string", false, 30);

end

Data Replication

TableDB is a fully ACID and fast database (it uses Sqlite as its internal storage engine). We are going to support
tableDB very actively as an integral part of NPL. NPL language itself is designed for parallelism, the current version
of tableDB is still a local SQL engine. It is hence not hard to use NPL to leverage TableDB to a fully distributed and
fault-tolerant database system.

TODO: RAFT implementation coming in 2017

https://raft.github.io/ is a concensus algorithm that we are going to implement using NPL and TableDB itself to lever-
age TableDB to support master/slave data replication for high-availability database systems.

There are many existing distributed SQL server that are built over similar architecture and use Sqlite as the storage
engine, like these

We highly recommend the native database system in NPL: TableDatabase. It is way faster and built-in
with NPL runtime.

56.8. User Guide 229

https://www.sqlite.org/famous.html
https://raft.github.io/
https://www.sqlite.org/famous.html

nplruntime documentation, Release 0.1.0

230 Chapter 56. Table Database

CHAPTER 57

Using MySql Client

Install Guide

• On linux platform, mysql client is by default installed when you build NPLRuntime from source code. You
should find a libluasql.so in NPL runtime directory.

• On windows platform, you must manually install the mysql client connector plugin.

https://github.com/LiXizhi/luasql

Once installed, you can use it like below:

NPL.load("(gl)script/ide/mysql/mysql.lua");
local MySql = commonlib.gettable("System.Database.MySql");
local mysql_db = MySql:new():init(db_user, db_password, db_name, db_host, db_port);

A Better Way to Code

It is recommended that you write a wrapper file like my_db.page which exposes a global object such as my_db that
contains functions to access to your actual database.

An example in the Admin web site framework is here.

• script/apps/WebServer/admin/wp-includes/wp-db.page

It will manage connection strings (passwords, ips, pools) from global configuration files, etc. In all other server pages,
you simply include the file, and call its functions like this

local query = string.format("select * from wp_users where %s = '%s' ",db_field,value);
local user = wpdb:get_row(query);

231

https://github.com/LiXizhi/luasql

nplruntime documentation, Release 0.1.0

232 Chapter 57. Using MySql Client

CHAPTER 58

Deploy NPL Web Server With SSL (https)

This post shows How To Configure Nginx with SSL as a Reverse Proxy for NPL Web
Server.

Why NPL Does Not Support SSL Natively?

NPL protocol is TCP based, which can run HTTP and NPL’s TCP protocol on the same port. If the TCP connection
is encoded with SSL, it will break NPL’s internal TCP protocol. This is why NPL does not support SSL natively.
However, NPL server can fetch data via https, so it is perfectly fine to call SSL protected rest API within the NPL
server.

Introduction

By default, NPL comes with its own built in web server, which listens on port 8099. This is convenient if you run a
private NPL instance, or if you just need to get something up quickly and don’t care about security. Once you have
real production data going to your host, though, it’s a good idea to use a more secure web server proxy in front like
Nginx.

Prerequisites

This post will detail how to wrap your site with SSL using the Nginx web server as a reverse proxy for your NPL
instance. This tutorial assumes some familiarity with Linux commands, a working NPL Runtime installation, and a
Ubuntu 14.04 installation.

You can install NPL runtime later in this tutorial, if you don’t have it installed yet.

Step One — Configure Nginx

Nginx has become a favored web server for its speed and flexibility in recents years, so that is the web server we will
be using.

233

https://nginx.org/

nplruntime documentation, Release 0.1.0

Install Nginx

Update your package lists and install Nginx:

sudo apt-get update
sudo apt-get install nginx

Get a Certificate

Next, you will need to purchase or create an SSL certificate. These commands are for a self-signed certificate, but you
should get an officially signed certificate if you want to avoid browser warnings.

Move into the proper directory and generate a certificate:

cd /etc/nginx
sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /etc/nginx/cert.key -
→˓out /etc/nginx/cert.crt

You will be prompted to enter some information about the certificate. You can fill this out however you’d like; just be
aware the information will be visible in the certificate properties. We’ve set the number of bits to 2048 since that’s the
minimum needed to get it signed by a CA. If you want to get the certificate signed, you will need to create a CSR.

Edit the Configuration

Next you will need to edit the default Nginx configuration file.

sudo nano /etc/nginx/sites-enabled/default

Here is what the final config might look like; the sections are broken down and briefly explained below. You can
update or replace the existing config file, although you may want to make a quick copy first.

server {
listen 80;
return 301 https://$host$request_uri;

}

server {

listen 443;
server_name npl.domain.com;

ssl_certificate /etc/nginx/cert.crt;
ssl_certificate_key /etc/nginx/cert.key;

ssl on;
ssl_session_cache builtin:1000 shared:SSL:10m;
ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
ssl_ciphers HIGH:!aNULL:!eNULL:!EXPORT:!CAMELLIA:!DES:!MD5:!PSK:!RC4;
ssl_prefer_server_ciphers on;

access_log /var/log/nginx/npl.access.log;

location / {

proxy_set_header Host $host;

234 Chapter 58. Deploy NPL Web Server With SSL (https)

nplruntime documentation, Release 0.1.0

proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

Fix the “It appears that your reverse proxy set up is broken" error.
proxy_pass http://localhost:8099;
proxy_read_timeout 90;

proxy_redirect http://localhost:8099 https://npl.domain.com;
}

}

In our configuration, the cert.crt and cert.key settings reflect the location where we created our SSL certificate. You will
need to update the servername and proxyredirect lines with your own domain name. There is some additional
Nginx magic going on as well that tells requests to be read by Nginx and rewritten on the response side to ensure the
reverse proxy is working.

The first section tells the Nginx server to listen to any requests that come in on port 80 (default HTTP) and redirect
them to HTTPS.

...
server {

listen 80;
return 301 https://$host$request_uri;

}
...

Next we have the SSL settings. This is a good set of defaults but can definitely be expanded on. For more explanation,
please read this tutorial.

...
listen 443;
server_name npl.domain.com;

ssl_certificate /etc/nginx/cert.crt;
ssl_certificate_key /etc/nginx/cert.key;

ssl on;
ssl_session_cache builtin:1000 shared:SSL:10m;
ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
ssl_ciphers HIGH:!aNULL:!eNULL:!EXPORT:!CAMELLIA:!DES:!MD5:!PSK:!RC4;
ssl_prefer_server_ciphers on;
...

The final section is where the proxying happens. It basically takes any incoming requests and proxies them to the NPL
instance that is bound/listening to port 8099 on the local network interface. This is a slightly different situation, but
this tutorial has some good information about the Nginx proxy settings.

...
location / {

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

Fix the “It appears that your reverse proxy set up is broken" error.
proxy_pass http://localhost:8099;

58.4. Step One — Configure Nginx 235

nplruntime documentation, Release 0.1.0

proxy_read_timeout 90;

proxy_redirect http://localhost:8099 https://npl.domain.com;
}
...

A few quick things to point out here. If you don’t have a domain name that resolves to your NPL server, then the
proxy_redirect statement above won’t function correctly without modification, so keep that in mind.

Step Two — Configure NPL Runtime

As stated previously, this tutorial assumes that NPL is already installed. This tutorial will show you how to install
NPL if necessary. You will probably need to switch to the root user for that article.

For NPL to work with Nginx, we need to update the NPL config to listen only on the localhost interface instead of
all (0.0.0.0), to ensure traffic gets handled properly. This is an important step because if NPL is still listening on all
interfaces, then it will still potentially be accessible via its original port (8099).

For example, one may start npl webserver like this

pkill -9 npl
npl -d root="WebServerExample/" ip="127.0.0.1" port="8099" bootstrapper="script/apps/
→˓WebServer/WebServer.lua"

Notice that the ip="127.0.0.1" setting needs to be either added or modified.

Then go ahead and restart NPL and Nginx.

sudo service nginx restart

You should now be able to visit your domain using either HTTP or HTTPS, and the NPL web site will be served
securely. You will see a certificate warning if you used a self-signed certificate.

Conclusion

The only thing left to do is verify that everything worked correctly. As mentioned above, you should now be able to
browse to your newly configured URL - npl.domain.com - over either HTTP or HTTPS. You should be redirected to
the secure site, and should see some site information, including your newly updated SSL settings. As noted previously,
if you are not using hostnames via DNS, then your redirection may not work as desired. In that case, you will need to
modify the proxy_pass section in the Nginx config file.

You may also want to use your browser to examine your certificate. You should be able to click the lock to look at the
certificate properties from within your browser.

References

This is a rewrite of this post in terms of NPL.

236 Chapter 58. Deploy NPL Web Server With SSL (https)

https://github.com/NPLPackages/WebServerExample/blob/master/start.sh
https://www.digitalocean.com/community/tutorials/how-to-configure-nginx-with-ssl-as-a-reverse-proxy-for-jenkins

CHAPTER 59

Use Links

Source code

Development

Documentation

Plugins and Mod

237

nplruntime documentation, Release 0.1.0

238 Chapter 59. Use Links

CHAPTER 60

NPL Runtime Performance Compare

High-Performance JIT Compiler

NPL syntax is 100% compatible with Lua, therefore it can be configured to utilize JIT compiler (Luajit). In general,
luajit is believed to be one of the fastest JIT compiler in the world. It’s speed is close to C/C++, and can even out-
perform static typed languages like java/C#. It is the fastest dynamic language in the world. However, special care
needs to be taken when writing test cases, since badly written test case can make the same code 100 times slower.

Compare Chart

Following is from Julia. Source code: C, Fortran, Python, Matlab/Octave, R, JavaScript, Java, Go, Lua.

The following micro-benchmark results were obtained on a single core (serial execution) on an Intel(R) Xeon(R) CPU
E7-8850 2.00GHz CPU with 1TB of 1067MHz DDR3 RAM, running Linux:

| |C/Fortran |Python |NPL |Java|JavaScript|Go |R |Matlab |Octave|—————|——-|——-|——–|—-|——|——|—
—-|——-|——– | |gcc5.1 |3.4.3 | 1.0 |1.8 |V8 |go1.5 |3.2.2 |R2015b |4.0.0|mandel |0.81 |15.32 |0.67|1.35|0.66
|1.11 |53.16 |7.58 |451.81|fib |0.70 |77.76 |1.71|1.21|3.36 |1.86 |533.52 |26.89 |9324.35 |rand_mat_mul |3.48 |1.14
|1.16|2.36|15.07|1.42 |1.57 |1.12 |1.12|rand_mat_stat |1.45 |17.93 |3.27|3.92|2.30 |2.96 |14.56 |14.52 |30.93|parse_int
|5.05 |17.02 |5.77|3.35|6.06 |1.20 |45.73 |802.52 |9581.44 |quicksort |1.31 |32.89 |2.03|2.60|2.70 |1.29 |264.54 |4.92
|1866.01 |pi_sum |1.00 |21.99 |1.00|1.00|1.01 |1.00 |9.56 |1.00 |299.31

Figure: benchmark times relative to C (smaller is better, C performance = 1.0).

C and Fortran compiled by gcc 5.1.1, taking best timing from all optimization levels (-O0 through -O3).
C, Fortran, Go. Python 3 was installed from the Anaconda distribution. The Python implementations of
rand_mat_stat and rand_mat_mul use NumPy (v1.9.2) functions; the rest are pure Python implementa-
tions. Benchmarks can also be seen here as a plot created with Gadfly.

These benchmarks, while not comprehensive, do test compiler performance on a range of common code patterns,
such as function calls, string parsing, sorting, numerical loops, random number generation, and array operations. It
is important to note that these benchmark implementations are not written for absolute maximal performance (the
fastest code to compute fib(20) is the constant literal 6765). Rather, all of the benchmarks are written to test the
performance of specific algorithms implemented in each language. In particular, all languages use the same algorithm:
the Fibonacci benchmarks are all recursive while the pi summation benchmarks are all iterative; the “algorithm” for
random matrix multiplication is to call LAPACK, except where that’s not possible, such as in JavaScript. The point
of these benchmarks is to compare the performance of specific algorithms across language implementations, not to
compare the fastest means of computing a result, which in most high-level languages relies on calling C code.

239

http://julialang.org/
https://github.com/JuliaLang/julia/blob/master/test/perf/micro/perf.c
https://github.com/JuliaLang/julia/blob/master/test/perf/micro/perf.f90
https://github.com/JuliaLang/julia/blob/master/test/perf/micro/perf.py
https://github.com/JuliaLang/julia/blob/master/test/perf/micro/perf.m
https://github.com/JuliaLang/julia/blob/master/test/perf/micro/perf.R
https://github.com/JuliaLang/julia/tree/master/test/perf/micro/java/src/main/java
https://github.com/JuliaLang/julia/tree/master/test/perf/micro/java/src/main/java
https://github.com/JuliaLang/julia/blob/master/test/perf/micro/perf.go
https://github.com/JuliaLang/julia/blob/master/test/perf/micro/perf.lua

nplruntime documentation, Release 0.1.0

NPL Database Performance

More information, please see UsingTableDatabase

Following is tested on my Intel-i7-3GHZ CPU. See test folder for test source code.

Run With Conservative Mode

Following is averaged value from 100000+ operations in a single thread

• Random non-index insert: 43478 inserts/second

– Async API tested with default configuration with 1 million records on a single thread.

• Round trip latency call:

– Blocking API: 20000 query/s

– Non-blocking API: 11ms or 85 query/s (due to NPL time slice)

– i.e. Round strip means start next operation after previous one is returned. This is latency test.

• Random indexed inserts: 17953 query/s

– i.e. start next operation immediately, without waiting for the first one to return.

• Random select with auto-index: 18761 query/s

– i.e. same as above, but with findOne operation.

• Randomly mixing CRUD operations: 965-7518 query/s

– i.e. same as above, but randomly calling Create/Read/Update/Delete (CRUD) on the same auto-indexed
table.

– Mixing read/write can be slow when database grows bigger. e.g. you can get 18000 CRUD/s for just
10000 records.

NPL Web Server Performance

The following is done using ApacheBench (AB tool) with 5000 requests and 1000 concurrency on a 1 CPU 1GB
memory virtual machine. The queried content is http://paracraft.wiki/, which is a fairly standard dynamic web page.

root@iZ62yqw316fZ:/opt/paracraftwiki# ab -n 5000 -c 1000 http://paracraft.wiki/
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking paracraft.wiki (be patient).....done

Finished 5000 requests

Server Software: NPL/1.1
Server Hostname: paracraft.wiki
Server Port: 80

Document Path: /
Document Length: 24736 bytes

240 Chapter 60. NPL Runtime Performance Compare

https://github.com/NPLPackages/main/blob/master/script/ide/System/Database/test/test_TableDatabase.lua
http://paracraft.wiki/

nplruntime documentation, Release 0.1.0

Concurrency Level: 1000
Time taken for tests: 3.005 seconds
Complete requests: 5000
Failed requests: 0
Write errors: 0
Total transferred: 124730000 bytes
HTML transferred: 123680000 bytes
Requests per second: 1664.05 [#/sec] (mean)
Time per request: 600.944 [ms] (mean)
Time per request: 0.601 [ms] (mean, across all concurrent requests)
Transfer rate: 40538.43 [Kbytes/sec] received

References

There are a few benchmark compare sites:

• https://github.com/attractivechaos/plb: algorithm compare

• TechEmpower: compare web server framework only

• Luajit Performance

• Computer benchmark game: No luajit.

60.4. References 241

https://github.com/attractivechaos/plb
http://attractivechaos.github.io/plb/
https://github.com/TechEmpower/FrameworkBenchmarks
http://luajit.org/performance.html
http://benchmarksgame.alioth.debian.org/

nplruntime documentation, Release 0.1.0

242 Chapter 60. NPL Runtime Performance Compare

CHAPTER 61

ParaEngine

class Nutshell
With a little bit of a elaboration, should you feel it necessary.

Public Types

enum Tool
Our tool set.

The various tools we can opt to use to crack this particular nut

Values:

kHammer = 0
What? It does the job.

kNutCrackers
Boring.

kNinjaThrowingStars
Stealthy.

Public Functions

Nutshell()
Nutshell constructor.

~Nutshell()
Nutshell destructor.

void crack(Tool tool)
Crack that shell with specified tool

Parameters

• tool: - the tool with which to crack the nut

bool isCracked() Return
Whether or not the nut is cracked

243

nplruntime documentation, Release 0.1.0

244 Chapter 61. ParaEngine

CHAPTER 62

ParaScripting

245

nplruntime documentation, Release 0.1.0

246 Chapter 62. ParaScripting

Index

N
Nutshell (C++ class), 243
Nutshell::~Nutshell (C++ function), 243
Nutshell::crack (C++ function), 243
Nutshell::isCracked (C++ function), 243
Nutshell::kHammer (C++ class), 243
Nutshell::kNinjaThrowingStars (C++ class), 243
Nutshell::kNutCrackers (C++ class), 243
Nutshell::Nutshell (C++ function), 243
Nutshell::Tool (C++ type), 243

247

	Welcome to the NPL wiki!
	Table of Content
	NPL中文手册
	What is NPL?
	Install NPL Runtime
	Projects Written in NPL
	NPL vs Lua
	NPL Architecture
	Getting Started with NPL
	Hello World in NPL
	Video Tutorial: Create A Web Site
	Video Tutorial: Create Paracraft Mod
	NPL Source Code Overview
	NPL Code Wiki
	Debugging And Logs
	Embedding NPLRuntime
	Extending NPLRuntime With C++ Plugins
	NPL Basic Concept
	Bootstrapping
	Build-in NPL CommandLine
	NPL Load File
	File Activation
	Networking
	Multi-Threading
	Concurrency Model
	NPL Common Libraries
	Object Oriented Programming
	Deploy Your Application
	NPL Packages
	Meta Programming in NPL
	NPL C/C++ Architecture
	Core ParaEngine/NPL API
	Attribute System
	Asset Manifest & Asynchronous Asset Loading
	ParaObject
	System Library
	Timer
	Serialization, Encoding and Logging
	HTTP request
	Files API
	Mouse and Key Input
	Overview
	Localization
	User Interface
	Drawing With 2D API
	2D GUI Windows
	MCML Markup Language For 2D GUI
	3D Programming
	File Format
	3D Scene
	Camera
	Block Engine
	NPL Web Server
	NPL Server Page
	NPL Admin Site Framework
	Table Database
	Using MySql Client
	Deploy NPL Web Server With SSL (https)
	Use Links
	NPL Runtime Performance Compare
	ParaEngine
	ParaScripting

