
ZFC Preparation Documentation
Release 0

Samuel Bowers

Feb 25, 2019

Contents

1 Objectives 3

2 Contents 5

3 Requirements 33

4 Contact 35

i

ii

ZFC Preparation Documentation, Release 0

Welcome to the preparation materials for the workshop for the study of drivers of deforestation, forest degradation and
national forest definition. The workshop will take place in Harare on 25th February - 1st March 2019. To prepare for
the workshop, we’ve prepared some material for you to work through.

For part of the workshop we’ll be covering the basics of R, a programming language commonly used for data analysis.
We’ll be running it through the ‘RStudio’ development environment, and using it for the analysis of forest inventory
data from Zimbabwe. The purpose of this document is to prepare all participants by installing required software and
familiarisation with RStudio’s user interface. We’ll also run through the installation process of QGIS.

We’d like all participants to have at least tried to run through these instructions before the workshop begins on Monday
25th February.

Contents 1

ZFC Preparation Documentation, Release 0

2 Contents

CHAPTER 1

Objectives

1. To install RStudio and QGIS in preparation for the workshop

2. To familiarise each participant with the layout and operation of RStudio

3. To produce some simple summary statistics and graphs using forest inventory data

3

ZFC Preparation Documentation, Release 0

4 Chapter 1. Objectives

CHAPTER 2

Contents

2.1 RStudio Setup

2.1.1 Downloading R

The first step is to download the R software. You can download it for free from CRAN via the R website.

If you’re confused about which version you need, you can download the Windows (32-bit/64-bit) version here (79
MB).

2.1.2 Installing R

Once the download is complete, navigate to your Downloads folder, and run the executable named R-3.5.2-win.
exe (or similar).

This will open the R installer. You can accept all default settings. First, press OK:

Then Next:

5

https://www.r-project.org/
https://cloud.r-project.org/bin/windows/base/R-3.5.2-win.exe

ZFC Preparation Documentation, Release 0

Then Next again:

Then Next again:

6 Chapter 2. Contents

ZFC Preparation Documentation, Release 0

Then Next again:

Then Next again:

2.1. RStudio Setup 7

ZFC Preparation Documentation, Release 0

Then Next once more:

Wait until the installation has completed:

8 Chapter 2. Contents

ZFC Preparation Documentation, Release 0

Then click Finish to complete:

2.1.3 What is RStudio?

RStudio is an ‘integrated development environment’ (IDE) used with the R programming language. IDEs are pieces
of software that include features for advanced editing, interactive testing, and debugging. There exist many IDEs, and
you may find in time that you find an IDE that suits you, or alternatively, you may find that you prefer to write scripts
in a simple text editor and prefer not to use an IDE at all.

RStudio is a very widely used IDE, and we can recommend it as a place to start.

2.1. RStudio Setup 9

ZFC Preparation Documentation, Release 0

2.1.4 Downloading RStudio

You can download RStudio for free from the RStudio website. Make sure you choose the correct version, which is
RStudio Desktop installer (free) for Windows Vista/7/8/10.

If you’re struggling to find the correct version, you can also download it directly here (85.8 MB).

Note: Are you using Linux or Mac, or an earlier version of Windows? The following instructions should mostly work
fine for you, but be aware you’ll need to select a different version from the RStudio download site, and that RStudio
will look visually slightly different.

2.1.5 Installing RStudio

Once the download is complete, navigate to your Downloads folder, and run the executable named RStudio-1.
1.463.exe (or similar).

This will open the RStudio installer. You can accept all default settings. Press next:

then next again:

10 Chapter 2. Contents

https://www.rstudio.com/products/rstudio/download/
https://download1.rstudio.org/RStudio-1.1.463.exe

ZFC Preparation Documentation, Release 0

then next once more:

. . . and wait until the installation is complete:

2.1. RStudio Setup 11

ZFC Preparation Documentation, Release 0

Press Finish to complete the installation.

2.1.6 Running RStudio

You’ll find a new program named RStudio in your Start menu. Click the icon to open RStudio. You should be
presented with a program that looks like the following:

12 Chapter 2. Contents

ZFC Preparation Documentation, Release 0

2.1.7 Installation problems?

If something isn’t working for you, please feel free to get in touch with sam.bowers@ed.ac.uk.

2.2 RStudio 101

Welcome to R!

R is a relatively straightforward programming language commonly used for data processing and alaysis. It’s open
source, freely available, and very widely-used in scientific fields, including in ecology and forestry. It’s also relatively
easy to pick up, so it’s a great place to start to learn programming.

2.2.1 RStudio Layout

RStudio should look something like the following:

2.2. RStudio 101 13

mailto:sam.bowers@ed.ac.uk

ZFC Preparation Documentation, Release 0

The important part of RStudio for this tutorial is the Console window, located on the left (or bottom-left) of RStudio.
In this window you can run R ‘interactively’, which allows you to run R commands on-the-fly, and receive immediate
answers.

In the workshop we’ll be using a combination of ‘interactive’ programming and writing scripts, but for the following
tasks, we’ll work in the ‘interactive’ mode only. Commands can be typed following the > symbol, and submitted by
pressing ‘Enter’.

2.2.2 Commands

Write the following command in the console window, and submit it with Enter. Be very careful to copy it exactly,
including the inverted commas.

> print('Hello World!')

If the command has worked, you should see:

> print('Hello World!')
[1] "Hello World!"

If instead you got an error, double-check that you copied the phrase precisely.

What has happened here is that you’ve instructed R to print a phrase to the terminal. The phrase Hello World!
was written to the terminal after the command.

Practice using the print function in R until you’re familiar with it:

> print('I can get R to print anything I type')
[1] "I can get R to print anything I type"

(continues on next page)

14 Chapter 2. Contents

ZFC Preparation Documentation, Release 0

(continued from previous page)

> print('Even numbers like 6 and symbols like #')
[1] "Even numbers like 6 and symbols like #"

There are hundreds of other commands available in R (commonly known as ‘functions’). What do you think the
following functiuons do?:

> toupper('Hello World!')
[1] "HELLO WORLD!"

> nchar('Hello World!')
[1] 12

> paste('Hello', 'World!')
[1] "Hello World!"

Tip: You can access help for R functions using a ? symbol in the console window. For example: ?print, ?
toupper etc. This will bring up a text description of how the function works, and what inputs it requires.

An aside: Comments

Comments are important aspects of programs. Comments are used to describe what your program does in readable
language, or to temporarily remove lines from a program. Comments are indicated by the # symbol, and anything that
follows won’t be executed.

We’ll now use comments to describe the code. Adding comments to your code is good practice as it makes your code
easier for other people to use, and helps you to remember how your own code works. For the purposes of this tutorial,
you won’t need to copy out anything after the # symbol.

2.2.3 Calculations

Until now you’ve been working with letters and symbols, a data type in R known as characters. R is also able to
handle numbers, which are represented by the data types named integer (for whole numbers) and numeric (for
numbers with a decimal point.

Attention: Unlike characters, integer and numeric data types are not surrounded by inverted commas.

We can use R like a calculator to perform arthimetic on numbers. Try the following:

> 1 + 2 # Addition
[1] 3

> 1 - 2 # Subtraction
[1] -1

> 3 * 4 # Multiplication
[1] 12

> 5 / 2 # Division
[1] 2.5

2.2. RStudio 101 15

ZFC Preparation Documentation, Release 0

We can also use R to peform more complex operations:

> 8 ^ 2 # Power functions
[1] 64

> log(10) # Natural logarithm
[1] 2.302585

> pi # Access constants
[1] 3.141593

2.2.4 Variables

In programming, variables are names that we give for something. They ensure that code is readable, and offer a means
of ‘saving’ a value for later use. We assign a value to a variable in R either using the = or <- symbols, with the variable
name on the left and it’s value on the right. Try these examples of how variables work:

> x <- 1

> x
[1] 1

> y <- 1 + 2

> y
[1] 3

> z <- x + y

> z
[1] 4

Exercises

1. Use the +, -, *, and - operators to compute the following:

• 123456 plus 654321

• 123456 minus 654321

• 123456 multiplied by 654321

• 123456 divided by 654321

• 123456 squared

2. The basal area of a tree (BA) can be calculated using the equation:

• BA = 𝜋(DBH/2)^2

. . . where DBH is the tree diameter at breast height and 𝜋 = 3.14. Use R to calculate the basal area of a
tree of 50 cm DBH.

2.2.5 Logical data

Logical data can take two values; TRUE or FALSE (sometimes denoted as 1 or 0). The logical data type is most
commonly associated with logical expressions. The main logical expressions we use in R are as follows:

16 Chapter 2. Contents

ZFC Preparation Documentation, Release 0

> # An equivalence statement tests whether two arguments have the same value.

> 1 == 1
[1] TRUE

> 1 == 2
[1] FALSE

> FALSE == FALSE
[1] TRUE

> TRUE == FALSE
[1] FALSE

> # A negation statement tests is the opposite of an equivalence statement.

> 1 != 2
[1] TRUE

> 1 != 1
[1] FALSE

> TRUE != TRUE
[1] FALSE

> FALSE != TRUE
[1] TRUE

We can combine logical statements together:

> # The '&' statement (conjunction) returns TRUE where both arguments are TRUE.

> 1 == 1 & 2 == 2
[1] TRUE

> TRUE & TRUE
[1] TRUE

> TRUE & FALSE
[1] FALSE

> FALSE & FALSE
[1] FALSE

> # The '|' statement (disjunction) returns TRUE where either of the arguments is
→˓TRUE.

> 1 == 2 | 2 == 2
[1] TRUE

> FALSE | TRUE
[1] TRUE

> FALSE | FALSE
[1] FALSE

> TRUE | TRUE
[1] TRUE

2.2. RStudio 101 17

ZFC Preparation Documentation, Release 0

Logical statements like these may be quite different from anything you’ve learned before, so don’t worry if this is still
confusing!

2.2.6 Groups of things

Frequently we will want to group multiple values together in a single variable. The main mechanisms for doing this
in R are vectors, lists and data.frames. Here we’ll focus on vectors and later dataframes, but you
should be aware that many methods exist of grouping in R.

Creating vectors

Vectors are a group of ordered elements. They are created as follows:

> my_vector <- c(2, 4, 6, 8) # Use the command c() to define a vector, separating
→˓elements using commas

> my_vector
[1] 2 4 6 8

>>> my_vector <- c(my_vector, 10) # Add a new element to the end of a vector

>>> my_vector
[1] 2 4 6 8 10

Exercises

1. Try to create your own vector containing the letters ‘A’ to ‘F’

2. Append the letter ‘G’ to the end of your vector

Indexing vectors

We can access individual elements of a list using indexing. We do this using square brackets and specifying the
numeric location of the elements we want to access.

Here are some examples of how we index vectors:

> zoo <- c('Tiger', 'Parrot', 'Bear', 'Sloth', 'Giraffe') # A list of animals in a zoo

> zoo[1] # Get the first element of the list
[1] "Tiger"

> zoo[4] # Get the fourth element of the list
[1] "Sloth"

Modifying vectors

We can also modify vectors, as follows:

18 Chapter 2. Contents

ZFC Preparation Documentation, Release 0

> zoo[2:4] # Get the second to fourth elements from the vector
[1] "Parrot" "Bear" "Sloth"

> rev(zoo) # Reverse the vector
[1] "Giraffe" "Sloth" "Bear" "Parrot" "Tiger"

> zoo_reverse <- rev(zoo) # We can 'save' the change by declaring a variable

> zoo_reverse[3] <- "Lion" # Modify the third element of the list
> zoo_reverse
[1] "Giraffe" "Sloth" "Lion" "Parrot" "Tiger"

Vector functions

We can determine various properties of vectors using the following functions:

> my_vector <- c(2, 4, 6, 8, 10)

> min(my_vector) # Returns the minimum value of a vector
[1] 2

> max(my_vector) # Returns the maximum value of a vector
[1] 10

> length(my_vector) # Returns the number of elements (length) of a vector
[1] 5

We can also pefrom standard mathematical operations on vectors. For example:

> sum(my_vector)
[1] 30

> my_vector / 2
[1] 1 2 3 4 5

Exercises:

1. Define a new vector with the numbers 1 to 10. What is the sum total of this vector? Can you reverse it to count
from 10 to 1?

2. Can you figure out how to calculate the mean average and standard deviation of my_vector as defined above?
HINT: Google is your friend!

2.2.7 Overview

Congratulations for reaching this far, learning to program is hard work! Don’t worry if you didn’t catch everything,
we’ll be going over much of this again in the workshop.

Here you’ve been introduced to some of the basic operations in R. You should now understand:

1. How to use functions (e.g. print(), length(), rev()).

2. Definition and use of variables.

3. Performance of basic arithmetic (e.g. +, -, *, /).

2.2. RStudio 101 19

ZFC Preparation Documentation, Release 0

4. How boolean logic works in R (i.e. TRUE, FALSE).

5. How to use vectors to store multiple values together (e.g. c(1,2,3)), access individual elements of vectors,
and perform mathematical operations on all values of a vector.

In the remainder of this introduction to R we’ll load some synthetic forest inventory data in R, perform basic statistical
analyses, and learn to draw plots.

2.3 RStudio Data Processing

In this second part, we’ll perform some basic processing on some synthetic forest inventory data.

2.3.1 Load external data into R

The most straightforward way to load data into R is to use comma-separated values (.csv) format, a text file format
that separates records across rows and fields with commas. CSV files can be exported from spreadsheet software (e.g.
Microsoft Excel).

The .csv file we’ll use is named plot_data.csv, and can be downloaded here.

Save plot_data.csv somewhere memorable (e.g. Desktop). You can open this file with a text editor (e.g.
Notepad) or as a spreadsheet (e.g. Microsoft Excel) if you’d like to take a look at its contents.

This file contains synthetic data for 25 forest plots in miombo woodlands each sized 50 x 50 m (0.25 ha). Each row
contains data for a unique stem, where stems have a range of properties (e.g. DBH, height, species, etc.).

Attention: The data we’ll use in this exercise is entirely made up. Definitely don’t use this dataset for any
quantitative work!

To load the data into R, we’ll need two commands. First, we’ll need to set the ‘working directory’, which is the
location that R will run and where we will reference the CSV file relative to.

Set the working directory to the location you saved the data to as follows:

> setwd('C:/Users/your_username/Desktop/')

Note:

• Make your you replace your_username with your actual username.

• Note that the directory is referenced with / rather than \, this is because \ has a special meaning in R.

• If you saved plot_data.csv at any location other than the Desktop, you’ll need to reference that location
instead.

To load the data into R, you can use the read.csv() function, as follows. Be careful with inverted commas, and
don’t worry for now about what stringsAsFactors = FALSE means:

> df <- read.csv('plot_data.csv', stringsAsFactors = FALSE)

Once you’ve successfully loaded in the data, you can take a peek at the first few lines of it using the head() command:

20 Chapter 2. Contents

ZFC Preparation Documentation, Release 0

> head(df)
plot_code tag_id species DBH height status x_location y_location
1 plot_01 A001 Parinari curatellifolia 9.8 12.0 alive 1.2 1.9
2 plot_01 A002 Terminalia sericea 44.9 24.0 alive 4.3 3.4
3 plot_01 A003 Afzelia quanzensis 6.3 8.5 alive 1.6 3.8
4 plot_01 A004 Erythrophleum africanum 16.9 20.0 alive 2.0 4.6
5 plot_01 A005 Terminalia sericea 9.9 9.0 alive 0.1 7.5
6 plot_01 A006 Brachystegia spiciformis 30.7 22.0 alive 3.1 8.3

Don’t go any further until you’ve been able to replicate the output above.

2.3.2 Data frames

What you’ve loaded in is callled a ‘data frame’. Data frames are a format that store data like a table. The top line of the
table is called the header, and contains the name of each column, and following rows denote data points. In this case,
columns contain a range of properties of trees (species, DBH, height, etc.), and rows contains data for an individual
stem.

Data frames can contain multiple types of data, but each column of a data frame has to be a single type. For example,
in this case the column plot_code is a character, and DBH is a numeric data type.

Individual columns of the data frame can be accessed using the $ operator, which returns a vector. For example:

> df$DBH
[1] 9.8 44.9 6.3 16.9 9.9 30.7 6.9 9.1 6.9 20.6 28.7 45.8 5.7 12.8 9.7 20.7
→˓8.9 13.5 5.5 5.5 6.2 10.3 27.9
[24] 6.1 36.7 19.2 5.5 8.5 5.6 38.6 17.2 17.3 9.1 24.3 12.4 13.0 15.9 16.4 8.2
→˓6.2 7.0 31.4 6.1 41.5 8.0 28.0
[47] 6.3 85.6 8.2 53.5 37.7 9.8 16.7 13.3 10.0 6.6 19.2 11.9 9.2 14.1 8.0 10.0
→˓23.3 9.6 5.3 18.4 27.0 23.8 71.4
[70] 13.0 52.1 13.8 23.6 6.4 11.9 13.4 10.6 44.2 7.5 10.6 44.5 11.1 13.9 24.5 25.0
→˓7.2 8.9 42.1 13.1 17.7 19.7 19.0
[93] 21.8 22.0 9.7 23.6 8.1 15.0 5.6 23.7 15.9 21.5 8.2 8.6 14.9 7.7 13.5 12.1
→˓5.8 6.8 15.5 83.2 6.9 35.6 8.4
[116] 6.4 9.7 22.8 16.8 12.8 5.8 29.0 5.8 14.0 5.2 12.8 10.6 17.7 8.0 23.4 31.4
→˓26.2 17.7 18.7 7.1 11.5 29.5 7.4
[139] 9.3 13.0 11.4 18.1 49.7 6.7 5.9 23.4 7.9 5.4 6.3 7.1 13.8 27.6 13.6 9.7
→˓16.1 5.0 48.0 26.0 6.1 6.7 17.3
[162] 19.0 12.3 21.6 5.0 16.5 28.2 22.3 18.5 17.4 31.6 23.7 8.0 22.5 14.6 19.5 13.8
→˓74.2 13.7 24.7 18.0 10.8 11.4 30.3
[185] 11.2 17.8 38.4 9.4 32.1 16.9 19.4 11.6 17.1 35.3 6.5 28.6 11.5 38.6 15.9 7.5
→˓ 9.2 40.8 11.5 8.9 22.1 12.3 35.2
[208] 27.3 20.7 21.3 7.1 5.4 7.9 16.6 31.0 6.0 30.3 9.4 26.8 19.9 22.4 22.1 49.0
→˓13.6 28.1 28.8 6.5 9.9 23.2 21.4
[231] 19.6 49.0 11.1 25.4 14.2 10.2 9.4 5.8 38.1 33.1 11.1 16.1 17.1 15.5 19.5 7.8
→˓20.5 28.0 29.3 9.1 44.0 24.3 42.3
[254] 9.2 15.7 7.2 16.1 44.2 18.2 15.9 34.4 5.5 7.5 12.2 11.4 7.8 20.1 39.7 6.3
→˓10.8 9.1 6.9 8.2 5.3 11.1 14.4
[277] 31.7 5.6 20.5 16.3 5.4 12.0 7.4 19.5 16.4 27.9 15.6 22.9 57.1 15.4 6.5 13.0
→˓33.0 7.9 8.9 19.6 12.4 20.1 16.7
[300] 6.7 5.9 12.4 23.5 9.5 13.8 5.4 40.9 22.0 31.0 19.8 6.7 41.4 42.1 5.9 30.9
→˓20.9 40.4 6.5 8.1 8.2 14.9 15.2
[323] 7.4 19.1 18.6 10.1 18.1 19.2 44.7 41.4 7.4 5.3 22.2 19.7 10.6 39.2 20.7 8.1
→˓15.2 12.8 7.9 6.1 27.1 19.4 15.2
[346] 16.0 44.5 20.3 8.1 47.8 11.1 11.6 11.4 18.6 25.1 10.4 5.5 9.1 8.7 7.3 12.2
→˓26.8 25.2 17.8 9.2 11.6 11.9 24.0

(continues on next page)

2.3. RStudio Data Processing 21

ZFC Preparation Documentation, Release 0

(continued from previous page)

[369] 12.8 18.9 9.0 11.4 9.5 9.4 7.7 7.6 6.9 5.2 10.6 7.9 7.0 18.9 25.4 15.7
→˓11.9 26.6 48.3 11.4 5.2 24.0 19.4
[392] 10.4 24.4 36.4 10.7 7.4 7.5 7.8 23.1 21.1 15.7 16.8 23.0 10.1 33.0 5.7 9.5
→˓24.6 5.4 5.6 21.9 27.6 15.9 6.6
[415] 5.0 17.5 20.3 6.5 12.1 13.6 20.6 9.4 9.4 8.5 13.6 7.4 10.0 10.0 11.6 14.8
→˓14.4 13.7 5.9 55.1 7.9 11.1 35.6
[438] 12.8 32.6 19.7 16.2 13.3 9.7 15.1 53.9 28.1 22.3 9.1 13.8 12.5 35.0 6.6 33.0
→˓10.0 8.1 31.0 18.6 57.8 9.0 5.2
[461] 11.1 46.2 11.2 30.1 8.3 11.9 7.8 37.7 9.9 23.3 23.8 12.9 5.9 8.5 7.7 18.2
→˓ 5.6 5.4 5.4 30.5 18.2 11.9 8.8
[484] 30.1 20.1 15.3 6.7 6.6 18.6 17.2 5.4 14.6 15.7 16.1 31.9 42.2 8.2 25.7 20.0
→˓ 9.4 23.1 18.2 22.0 8.7 12.2 35.4
[507] 17.6 7.0 11.5 6.7 13.1 5.2 6.6 19.4 12.8 13.8 32.2 16.3 17.3 6.9 59.2 15.5
→˓11.5 22.4 32.5 17.5 15.6 13.1 9.6
[530] 10.0 9.5 57.9 26.1 6.7 18.6 5.3 15.0 8.1 20.9 39.3 15.4 6.1 15.9 6.5 7.5
→˓13.7 30.7 28.0 44.0 8.2 12.5 12.5
[553] 19.1 30.7 28.1 12.5 8.3 34.7 8.4 81.8 60.6 17.3 14.1 20.4 9.2 6.2 16.4 27.4
→˓13.4 18.2 20.7 36.9 34.9 6.4 51.2
[576] 11.1 5.2 7.2 43.8 19.1 45.5 17.2 16.6 21.7 23.8 5.0 28.1 6.0 11.1 16.8 14.5
→˓ 5.4 16.2 10.7 17.4 28.3 19.4 43.6
[599] 27.5 12.7 16.3 9.8 13.4 24.6 18.5 38.6 7.4 15.4 5.2 11.4 33.2 32.9 12.8 31.9
→˓ 7.7 6.9 13.6 10.7 7.3 7.0 9.9
[622] 5.5 15.8 37.9 7.9 6.4 49.0 9.3 33.6 5.7 6.5 52.6 8.5 5.1 6.8 12.0 10.8
→˓24.3 9.6 5.9 5.4 30.6 28.8 30.9
[645] 7.0 24.8 5.4 9.9 21.5 16.3 6.0 9.6 25.9 17.3 6.9 32.7 18.3 6.7 22.9 6.9
→˓14.2 9.9 26.6 50.8 12.8 20.5 38.5
[668] 13.8 5.9 23.0 14.4 20.0 35.4 9.1 65.5 43.6 11.6 29.9 6.0 25.7 40.9 8.9 19.1
→˓15.3 13.8 33.3 11.1 5.9 12.7 11.1
[691] 7.1 7.2 10.7 7.4 6.8 10.3 13.7 14.2 22.8 33.7 6.2 12.9 7.3 35.0 8.9 6.5
→˓25.1 20.2 5.4 8.5 9.3 7.9 7.5
[714] 21.6 18.4 5.9 14.4 50.7 60.3 16.7 7.9 10.2 15.4 6.4 11.7 11.8 17.8 9.2 11.1
→˓ 7.8 19.4 30.8 14.9 7.5 36.6 66.8
[737] 8.7 38.7 5.4 12.1 9.8 9.7 10.8 40.3 10.0 23.4 5.4 36.2 10.4 7.4 6.3 16.6
→˓ 7.6 24.8 66.4 16.4 12.1 30.9 9.9
[760] 8.6 9.5 10.3 20.9 12.0 15.8 9.3 8.9 21.2 8.9 52.4 7.8 6.6 5.8 6.2 11.5
→˓ 6.8 22.8 39.2 20.0 8.0 16.5 6.4
[783] 12.0 16.5 19.6 13.5 15.6 12.6 19.9 19.5 20.7 17.2 6.6 25.8 7.9 10.4 6.6 12.1
→˓10.1 31.9 31.9 11.2 8.1 26.9 6.8
[806] 11.3 18.2 5.6 11.5 8.8 13.6 8.1 9.0 15.8 10.3 30.4 24.5 9.1 12.3 9.5 19.0
→˓35.9 15.3 24.2 6.6 23.7 15.0 6.8
[829] 19.4 15.2 21.3 27.1 33.6 14.9 6.4 19.1 5.5 89.0 5.6 10.2 85.1 6.6 10.1 10.0
→˓10.3 19.4 11.0 17.2 20.6 5.7 19.9
[852] 32.7 5.5 19.5 17.4 12.8 37.1 11.7 34.6 12.6 57.7 27.3 5.2 5.8 12.2 14.7 23.5
→˓25.8 30.6 20.5 23.0 15.4 26.0 7.0
[875] 11.2 14.2 10.0 26.3 38.0 9.1 9.3 6.8 15.4 7.6 14.9 5.9 22.6 32.7 5.2 10.0
→˓12.4 13.6 32.6 16.4 8.8 12.2 55.3
[898] 12.2 63.4 20.5 6.0 21.3 41.3 34.9 17.4 5.9 11.4 15.5 9.9 9.7 19.2 16.6 10.8
→˓10.6 47.6 12.4 24.2 16.3 29.6 16.1
[921] 5.7 7.3 8.7 14.2 53.5 8.5 53.8 9.6 15.8 6.1 9.7 10.1 5.8 64.5 11.0 40.3
→˓12.7 6.9 15.3 14.7 39.8 20.4 19.9
[944] 21.3 7.9 27.9 7.5 14.0 19.3 26.5 16.5 5.7 15.6 22.0 7.9 12.7 6.2 23.4 8.8
→˓26.8 27.1 48.6 21.7 16.3 5.5 14.7
[967] 6.7 17.4 45.7 45.7 23.9 16.0 7.3 10.9 43.9 13.3 8.2 44.1 6.5 7.3 12.8 9.7
→˓12.6 21.5 27.5 9.8 7.0 22.3 5.2
[990] 19.0 15.1 12.1 14.3 6.8 14.7 7.8 5.3 11.6 13.0 5.4
[reached getOption("max.print") -- omitted 2580 entries]

22 Chapter 2. Contents

ZFC Preparation Documentation, Release 0

Exercises

Now it’s your turn!

1. Calculate the mean average DBH in this dataset (HINT: recall the mean() function.

2. Try to extract a vector of species names from the data frame.

2.3.3 Generating statistics

Often we’ll want to summarise our data rather than view a raw vector of numbers. A good way to do this is with the
summary() function, which returns key statistics for each column of a data frame:

> summary(df)
plot_code tag_id species DBH height
→˓ status x_location y_location
Length:3580 Length:3580 Length:3580 Min. : 5.0 Min. : 2.50
→˓ Length:3580 Min. : 0.00 Min. : 0.00
Class :character Class :character Class :character 1st Qu.: 8.4 1st Qu.:10.50
→˓ Class :character 1st Qu.:12.68 1st Qu.:11.88
Mode :character Mode :character Mode :character Median :13.6 Median :16.00
→˓ Mode :character Median :25.40 Median :25.25

Mean :17.5 Mean :16.95
→˓ Mean :25.31 Mean :25.04

3rd Qu.:22.4 3rd Qu.:22.00
→˓ 3rd Qu.:38.10 3rd Qu.:37.80

Max. :92.9 Max. :57.50
→˓ Max. :50.00 Max. :50.00

We can also apply summary() to an individual column of a dataframe:

> summary(df$DBH)
Min. 1st Qu. Median Mean 3rd Qu. Max.
5.0 8.4 13.6 17.5 22.4 92.9

Other individual statistics can be calculated with built-in R functions, for example:

> mean(df$DBH)
[1] 17.50045

> median(df$DBH)
[1] 13.6

> sd(df$DBH) # Standard deviation
[1] 12.38198

> max(df$DBH)
[1] 92.9

When looking at character data, we can use other forms of summarising data. For example:

> unique(df$plot_code) # Return unique plot values
[1] "plot_01" "plot_02" "plot_03" "plot_04" "plot_05" "plot_06" "plot_07" "plot_08"
→˓"plot_09" "plot_10" "plot_11" "plot_12" "plot_13" "plot_14" "plot_15"
[16] "plot_16" "plot_17" "plot_18" "plot_19" "plot_20" "plot_21" "plot_22" "plot_23"
→˓"plot_24" "plot_25"

(continues on next page)

2.3. RStudio Data Processing 23

ZFC Preparation Documentation, Release 0

(continued from previous page)

> table(df$plot_code) # Return number of stems in each plot
plot_01 plot_02 plot_03 plot_04 plot_05 plot_06 plot_07 plot_08 plot_09 plot_10

→˓plot_11 plot_12 plot_13 plot_14 plot_15 plot_16 plot_17 plot_18 plot_19 plot_20
159 120 233 263 165 154 188 93 139 46

→˓229 192 33 117 256 70 204 135 199 206
plot_21 plot_22 plot_23 plot_24 plot_25

70 108 56 73 72

R also lets us modify and create new columns. Let’s say that we wanted to calculate DBH (currently in units of cm) in
metres and save it to a new column:

> df$DBH_m <- df$DBH / 100

> summary(df$DBH_m)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.050 0.084 0.136 0.175 0.224 0.929

We can this new column to calculate basal area, which is usually expressed in units of m^2:

> df$basal_area <- pi * (df$DBH_m / 2) ** 2 # pi * r^2

> summary(df$basal_area)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.001963 0.005542 0.014527 0.036092 0.039408 0.677831

Exercises

1. What is the mean and standard deviation of tree heights in the entire dataset?

2. How many different species are there in this dataset?

3. What are the three most common species in the dataset?

4. Can you figure out what was the minimum DBH measured in these plots?

2.3.4 Aggregation

We often need to aggregate stem data to plot summaries. This is where using R in place of spreadsheet software starts
to become very powerful.

Let’s use the basal_area column we defined earlier to calculate the total basal area of each plot. To sum the basal
area in each plot we can use the aggregate() function. Be careful here, the syntax of this function differs from
what we’ve covered already.

> df_plot <- aggregate(basal_area ~ plot_code, df, sum)

> df_plot$basal_area <- df_plot$basal_area / 0.25 # Translate to units of m^2/ha, as
→˓our plots are 0.25 ha in size

> df_plot
plot_code basal_area
1 plot_01 25.084091
2 plot_02 19.177783
3 plot_03 30.126482
4 plot_04 43.599101

(continues on next page)

24 Chapter 2. Contents

ZFC Preparation Documentation, Release 0

(continued from previous page)

5 plot_05 27.744608
6 plot_06 21.809257
7 plot_07 28.908511
8 plot_08 12.148756
9 plot_09 18.025749
10 plot_10 6.285862
11 plot_11 31.490451
12 plot_12 24.466042
13 plot_13 6.756331
14 plot_14 14.503772
15 plot_15 33.763903
16 plot_16 9.690883
17 plot_17 29.543069
18 plot_18 19.004022
19 plot_19 28.991242
20 plot_20 31.032360
21 plot_21 9.942044
22 plot_22 14.048863
23 plot_23 14.682639
24 plot_24 8.452713
25 plot_25 7.557422

The aggregate function produced a new data frame, where instead of each row being an individual stem each row
instead relates to a plot. We can run this new data frame through some of the functions we’ve already learned. For
example:

> summary(df_plot$basal_area)
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.286 12.149 19.178 20.673 28.991 43.599

> mean(df_plot$basal_area)
[1] 20.67344

We can substitute the sum part of the aggregate function for another statistic. For example, to calculate stocking
density, we might use:

> df_sd <- aggregate(tag_id ~ plot_code, df, length) # Calculate number of unique tags

We can combine this with our already made plot scale dataframe by adding a new column to df_plot:

> df_plot$stocking_density <- df_sd$tag_id

Exercise

Instead of by plot, try to aggregate the data by species. Use the data frame you produce to figure out:

1. What is the average basal area of each species? What are the dominant species in this dataset?

2. What species has the lowest total basal area?

2.3.5 Making plots

R is also very well suited to making publication quality plots. We can produce plots with the plot command. For
example:

2.3. RStudio Data Processing 25

ZFC Preparation Documentation, Release 0

plot(height ~ DBH, df)

This plot shows a positive relationship between DBH and stem height, as might be expected.

Exercise

1. Using `df_plot, can you build a plot of stocking density vs basal area? The resulting plot should look
something like this:

26 Chapter 2. Contents

ZFC Preparation Documentation, Release 0

2.3.6 Overview

Well done! Again, don’t worry if it didn’t all make sense, programming takes a long time to understand.

Here you’ve been introduced to data analysis in R. You should now understand:

1. How to load data into R (i.e. read.csv).

2. How to use and manipulate data frames (e.g. the $ operator).

3. How to generate summary statistics with data frams (e.g. summary).

4. How to aggreate data (i.e. aggregate).

5. How to make simple plots using data (i.e. plot).

2.3.7 Further reading

If you want to continue learning R, we can recommend the following resources:

1. https://www.datacamp.com/courses/free-introduction-to-r

2. https://www.youtube.com/playlist?list=PL6gx4Cwl9DGCzVMGCPi1kwvABu7eWv08P

3. https://ourcodingclub.github.io/

4. https://r4ds.had.co.nz/

Happy coding!

2.4 QGIS Setup

2.4.1 What is QGIS

QGIS is a desktop Geographic Information System (GIS) application that supports viewing, editing and analysis of
geospatial data. QGIS is free and open source, and offers a viable alternative to commercial software such as ArcGIS.

2.4.2 Downloading QGIS

You can download QGIS from the QGIS website. Make sure you choose the correct version, which is Long term
release, QGIS Standalone Installer for Windows. Most users will require the 64-bit version, but if you’re have an
older laptop you might need to download the 32-bit version.

If you’re struggling to find the correct version, you can also download it (Windows, 64-bit) directly here (392 MB).

Note: Are you using Linux or Mac, you may need to download a different version to that above. If accessing this
large volume of data is a problem, we’ll bring along copies of QGIS to the workshop for you to install.

2.4.3 Installing QGIS

Once the download is complete, navigate to your Downloads folder, and run the executable named
QGIS-OSGeo4W-2.18.28-1-Setup-x86_64.exe (or similar).

This will open the QGIS installer. You can accept all default settings. Click Next:

2.4. QGIS Setup 27

https://www.datacamp.com/courses/free-introduction-to-r
https://www.youtube.com/playlist?list=PL6gx4Cwl9DGCzVMGCPi1kwvABu7eWv08P
https://ourcodingclub.github.io/
https://r4ds.had.co.nz/
https://www.qgis.org/en/site/forusers/download.html
https://qgis.org/downloads/QGIS-OSGeo4W-2.18.28-1-Setup-x86_64.exe

ZFC Preparation Documentation, Release 0

Then ‘I Agree’:

Then Next:

28 Chapter 2. Contents

ZFC Preparation Documentation, Release 0

Then Install:

. . . and wait until the installation is complete:

2.4. QGIS Setup 29

ZFC Preparation Documentation, Release 0

Press Finish to complete the installation.

2.4.4 Running QGIS

To run QGIS, navigate to your install through the start menu, and Run QGIS Desktop 2.18.28 or similar.

If your installation is successful, you should see an interface that looks something like the following:

30 Chapter 2. Contents

ZFC Preparation Documentation, Release 0

2.4.5 Installation problems?

If something isn’t working for you, please feel free to get in touch with sam.bowers@ed.ac.uk.

2.4. QGIS Setup 31

mailto:sam.bowers@ed.ac.uk

ZFC Preparation Documentation, Release 0

32 Chapter 2. Contents

CHAPTER 3

Requirements

1. A Windows PC. Preferably a laptop that can be brought along to the workshop.

2. An internet connection suitable for downloading moderately large files (~100s MB).

3. A sense of adventure!

33

ZFC Preparation Documentation, Release 0

34 Chapter 3. Requirements

CHAPTER 4

Contact

If you encounter problems or need any assitance, please feel free to email Sam Bowers at sam.bowers@ed.ac.uk.

35

mailto:sam.bowers@ed.ac.uk

	Objectives
	Contents
	Requirements
	Contact

