

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

GraphQL for Doctrine using Hydrators

[image: _images/zf-doctrine-graphql.svg]Build Status [https://travis-ci.org/API-Skeletons/zf-doctrine-graphql]
[image: _images/badge.svg]Coverage [https://coveralls.io/repos/github/API-Skeletons/zf-doctrine-graphql/badge.svg?branch=master&124]
[image: _images/PHPStan-enabled-brightgreen.svg]PHPStan [https://github.com/phpstan/phpstan]
[image: _images/open-source.svg]Gitter [https://gitter.im/api-skeletons/open-source]
[image: _images/patreon-donate-yellow.svg]Patreon [https://www.patreon.com/apiskeletons]
[image: _images/downloads.svg]Total Downloads [https://packagist.org/packages/api-skeletons/zf-doctrine-graphql]

This library uses Doctrine native traversal of related objects to provide full GraphQL
querying of entities and all related fields and entities.
Entity metadata is introspected and is therefore Doctrine data driver agnostic.
Data is collected with hydrators thereby
allowing full control over each field using hydrator filters, strategies and naming strategies.
Multiple object managers are supported. Multiple hydrator configurations are supported.
Works with GraphiQL [https://github.com/graphql/graphiql].

A range of filters [http://graphql.apiskeletons.com/en/latest/queries.html]
are provided to filter collections at any location in the query.

Doctrine provides easy taversal of your database. Consider the following imaginary query:

$entity[where id = 5]
 ->getRelation()
 ->getField1()
 ->getField2()
 ->getManyToOne([where name like '%dev%'])
 ->getName()
 ->getField3()
 ->getOtherRelation()
 ->getField4()
 ->getField5()

And see it realized in GraphQL with fine grained control over each field via hydrators:

 {
 entity (filter: { id: 5 }) {
 relation {
 field1
 field2
 manyToOne (filter: { name_contains: 'dev' }) {
 name
 field3
 }
 } otherRelation {
 field4
 field5
 }
 }
 }

Read the Documentation [http://graphql.apiskeletons.com]

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

