

 Navigation

 	
 index

 	
 next |

 	Zerogw 0.5.9 documentation

Welcome to Zerogw’s documentation!

Contents:

	Installation Guide
	Prerequisites

	Easy Way

	Hard Way

	Verifying Install

	Zerogw Backend Protocols
	HTTP Forwarding

	WebSockets Backend Protocol

	Control Socket Protocol

	HTTP Tutorial
	Disclaimer

	Hello World

	WebSocket Tutorial
	Overview

	Configuration Guide

Indices and tables

	Index

	Search Page

 Copyright 2011, Paul Colomiets.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zerogw 0.5.9 documentation

Installation Guide

Prerequisites

	libzmq >= 2.1

	openssl

	libev

	libyaml

Easy Way

We currently have only packages for Archlinux and Ubuntu.

Archlinux

yaourt -S zerogw

Ubuntu

apt-add-repository ppa:tailhook/zerogw
apt-get install zerogw

Hard Way

To compile from source or to compile recent version from git you need
the following dependencies:

	python3 [http://python.org/] needed for coyaml to build configuration parser

	libwebsite [http://github.com/tailhook/libwebsite] for handling http

	coyaml [http://github.com/tailhook/coyaml] for handling configuration

	libzmq [http://zeromq.org/] and libev [http://software.schmorp.de/pkg/libev.html] of course

	libyaml [http://pyyaml.org/wiki/LibYAML] for parsing configuration

For compiling coyaml, libwebsite and then zerogw itself you need to run
the following magick sequence of commands for each of them:

./waf configure --prefix=/usr
./waf build
sudo ./waf install

For other tools see respective documentation.

Verifying Install

After install is completed you can run:

zerogw

It should print few warnings on screen. Startup messages are printed as
warnings since they are important for installations where lower level
messages disabled. Also usually your mime-types is inconsistent (at
least in archlinux it is). But nevermind, just got to the browser and
check http://localhost:8000/hello, you should see some greeting if
everything works.

 Copyright 2011, Paul Colomiets.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zerogw 0.5.9 documentation

Zerogw Backend Protocols

HTTP Forwarding

We use zeromq’s request reply model for http forwarding (except for
long polling case)

Request

For each http request zerogw forwards a single multipart message.
Request_id is sent like address data (message parts that can be read
using XREP sockets only, and finished by empty message). After address
data configured parts of the request are sent one by one as multipart
message. E.g. if you have following in configuration:

zmq-forward:
 contents:
 - !Method
 - !Uri
 - !Header Cookie
 - !Body

And you’ve got request:

POST /hello HTTP/1.1
Host: example.com
Cookie: example=cookie_value
Content-Length: 8

PostBody

You will receive following message parts (one line per message part):

POST
/hello
example=cookie_value
PostBody

It’s up to the application for how to act upon it. Note if you set
retry to something you can get same request twice. And if retry
is set to !RetryFirst <N> request id will be same for every attempt,
if you’ve set retry to !RetryLast <N> request id will change on
each attempt. But usually request id is opaque for user in zeromq.

Response

Response can contain one, two or three parts for convenience.

In the simple case you just send message body, as a single part message.
Zerogw will respond with 200 OK and that message body.

If you respond with two messages first one will be status line, so yo
can respond with 404 page like the following:

404 Not Found
<h1> Page Not Found</h1>

Note

These ways are quite unuseful in real situations.
Content-Length header will be added automatically, but you should
configure specific Content-Type header in a config to be sure
that browser will render page correctly when using this method

If you need to supply headers you send 3 message parts. Second one is
constructed from nul-terminated name/value header pairs:

200 OK
Content-Type\0text/html\0E-tag\0immortal\0
Lorem ipsum dolor sit amet

Note

Last header value must be nul-terminated. You must not add
Content-Length header as it will be generated automatically.
Currently headers sent from backend will be appended to headers
specified in config without overwriting, it can lead to unexpected
behavior on some proxies or browsers so you should use use one or
another way for each header type throught the whole application.

WebSockets Backend Protocol

Zerogw implements unified interface for application writers for both
long polling and websockets. Both are used for bidirectional message
channels from client to server.

Note

There is no overhead of using long polling with normal http
backend in zerogw if that suits your application. This interface is
provided to make using either websockets or long polling transparent
for both frontend and backend developer and provides reliable message
stream.

Zerogw to Backend Messages

Most messages from server to client consists of client id (long binary
string of nonsense) and ascii command name, following more message parts
which we will call arguments in the text below.

Connection Messages

	connect

	is sent when new connection established, no arguments

	disconnect

	is sent when connection disconnected. All subscriptions
(see below) are already cancelled so you don’t need to remove them,
but you can cleanup some application-specific data. No arguments

Starting with v0.5.10: disconnect appends an cookie (see below)
as an argument, if cookie is set (it breaks compatibility somewhat
with versions starting with v0.5.8, which did not return cookie
on the disconnect)

Messages

	message

	message sent from frontend to websocket, has single
argument - message text. Can be binary if the browser (or malicious
client) sent binary data

	msgfrom

	message sent from frontend to websocket, has two arguments cookie
and message text, latter is same as in message and former is
an opaque string set by set_cookie (see below)

Heartbeats

There are two kinds of heartbeat messages:

	plain heartbeat, activated by heartbeat-interval setting

	synchronisation message containing connection ids, activated by
sync-interval setting

Both start with server id message. For the former server id is followed by
literal ascii heartbeat. Latter consists of literal ascii sync followed
by pairs connection_id, cookie (latter is empty if cookie is not sent, but is
always sent).

Sync messages are only sent to named outputs (see below), and can be used to
synchronize user list with backend in case of network failures (connect or
disconnect message lost), backend failures (could not process connect
or disconnect message, because backend crashed when processing message) or
zerogw crashes (zerogw can’t send disconnect messages after restart).

Backend to Zerogw Messages

Usually messages sent from backend are published using pubsub to several
zerogw. This allows not to track where user currently is and also allows
to publish messages to several users without doing that on backend.

Direct Messages

	send, conn_id, message

	sends message directly to the user. You can send binary message,
but most browsers can read only text data, so use utf-8

	sendall, message

	sends message to all connections. Of course addressees are limited to a
single route, not to the whole zerogw. Note that message is also sent to
unauthenticated connections. You need to subscribe all users to some topic
and use publish if you want to send to authenticated users only.

Topic Subscription

Topics is a mechanism in zerogw which allows you to send message to
several users effeciently. You first subscribe users to a topic, send
publish a message to a topic, and all users get this message. Topic is
an opaque binary string. Topics are created and removed on demand and
are quite fast to use them for a lot of things.

	subscribe, conn_id, topic

	subscribes connection

	unsubscribe, conn_id, topic

	unsubscribes connection

	publish, topic, message

	publish message to a topic, message will be delivered to all connections
subscribed to the topic

	clone, source_topic, target_topic

	clones subscriptions of source_topic such as all its connections are
now subscribed to both topics, connections that where subscribed to
target_topic are left intact (so it can be thought as merge operation)

	drop, topic

	delete topic, unsubscribing all the users (can be combined with clone
to achieve “rename” or “join” effect)

Outputs

In addition to subscription clients on topics you can subscribe subset
of client messages to a specific named backend (named-outputs in
config)

	add_output, conn_id, msg_prefix, name

	map prefix to specific output

	del_output, conn_id, msg_prefix

	unmap prefix

As with subscriptions don’t need to unmap anything from disconnected
user.

Note

it’s your responsibility to clean user state from the backend.
disconnect messages are sent to main backend only

Cookie

Cookie is a experimental feature of zerogw v0.5.8, which allows to
prepend opaque data to all messages sent from a client. This is usually
used to authorize connection without need to access authorization
database on each user’s message. Only one cookie can be attached at a
time, but you can change the cookie at any time. Once set, you can’t
discard cookie. Once cookie attached all messages will be forwarded
using msgfrom message type with cookie and data.

	set_cookie, conn_id, cookie

	set cookie for the connection, cookie is an opaque string

Note

starting with v0.5.10 cookie set with set_cookie are
sent in disconnect messages. Since disconnect can occur before
you were able to set cookie you must tolerate different number of
arguments in disconnect messsages.

 Copyright 2011, Paul Colomiets.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zerogw 0.5.9 documentation

Control Socket Protocol

 Copyright 2011, Paul Colomiets.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zerogw 0.5.9 documentation

HTTP Tutorial

Disclaimer

Unlike most HTTP servers out there zerogw doesn’t try to support old CGI
convention of passing environment to your web application. For each
forwarded requests zerogw forwards only a few fields, such as url and
method (configurable) to a backend. This way we produce less internal
traffic and less bloated applications. This also means thay you can’t
use most of bloated web frameworks out there. Zerogw is suitable for
fast web applications (and a parts of thereof) which need most out of
machine performance (e.g. you can use it for autocompletion or some
other AJAX). If you want to use big fat web framework there are plenty
of other solutions. If thats ok for you, read on!

Hello World

Let’s start with simple hello world application written in python. The first thing to know
is how to configure zerogw. We will start with simplest possible
configuration and will improve it later.

All configuration settings should be written into a separate file with the YAML convention.
Here we call it zerowg.yaml.

Minimal configuration:

Server:
 listen:
 - host: 0.0.0.0
 port: 8080

Routing:
 zmq-forward:
 enabled: yes
 socket:
 - !zmq.Bind "tcp://127.0.0.1:5000"
 contents:
 - !Uri

All above means that zerogw will listen for connections on port 8080 on
all interfaces (0.0.0.0). Then it will forward requests to local host
with port 5000. This port also listens for connections, so you can start
several backend processes (and even several boxes, if you’ll change
127.0.0.1 to your local network ip address) to process requests.
Forwarded request will contain just URI part of the original request.

Then we will write the simple python script which would make this work:

import zmq

ctx = zmq.Context()
sock = ctx.socket(zmq.REP)
sock.connect('tcp://127.0.0.1:5000')
while True:
 uri, = sock.recv_multipart()
 sock.send_multipart([b'Hello from '+uri])

Next start the zerowg server and use -c to tell zerogw the configuration file:

zerogw -c ./zerogw.yaml

Open a new terminal and start your python script:

python ./ourserver.py

This is everything which is needed to serve requests.
Note we are connecting to the address you specified to bind to in zerogw.yaml.

Now you can go to the browser at http://localhost:8080/ and you should
see Hello from /.

We use recv_multipart and send_multipart to simplify working
with sockets. If they are not provided in your language bindings you
will probably need to use recv and send while reading
RCVMORE and setting SNDMORE flags. Refer to zeromq and you
language bindings for more information.

Note

This code works perfectly for example, but in reality it can
except suring recv or send calls. So in production application you
should use more complicated loop. See ioloop in pyzmq bindings or
appropriate functionality in your language bindings

Was that hard? I guess no really.

 Copyright 2011, Paul Colomiets.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zerogw 0.5.9 documentation

WebSocket Tutorial

Overview

Zerogw supports unified interface for both websockets and websocket
emulation for long polling. This tutorial will guide you throught the
process of creating simple near real-time web chat with zerogw and
few dozens lines of backend code.

 Copyright 2011, Paul Colomiets.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Zerogw 0.5.9 documentation

Configuration Guide

 Copyright 2011, Paul Colomiets.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Zerogw 0.5.9 documentation

Index

 Copyright 2011, Paul Colomiets.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		Zerogw 0.5.9 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Paul Colomiets.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

