
ZenPack SDK Documentation
Release 2.1.1

Zenoss, Inc.

Dec 18, 2020

Contents

1 What is zenpacklib? 3

2 What does zenpacklib do? 5

3 Who should use zenpacklib? 7

4 What about some examples? 9
4.1 Development Environment . 10
4.2 Getting Started . 15
4.3 Tutorials . 18
4.4 Monitoring an SNMP Device . 19
4.5 Monitoring an HTTP API . 45
4.6 Troubleshooting . 69
4.7 Command Line Reference . 70
4.8 YAML Reference . 74
4.9 Compatibility . 124
4.10 Changes . 128
4.11 License . 136

i

ii

ZenPack SDK Documentation, Release 2.1.1

The ZenPack SDK is a collection of development tools and documentation that you can use to extend Zenoss’ func-
tionality.

ZenPacks are a plugin mechanism for Zenoss. Most commonly they’re used to extend Zenoss to monitor new types of
targets. We developed zenpacklib to simplify the process of creating custom ZenPacks.

Contents 1

ZenPack SDK Documentation, Release 2.1.1

2 Contents

CHAPTER 1

What is zenpacklib?

zenpacklib is a Python library that makes building common types of ZenPacks simpler, faster, more consistent, and
more accurate.

3

ZenPack SDK Documentation, Release 2.1.1

4 Chapter 1. What is zenpacklib?

CHAPTER 2

What does zenpacklib do?

Specifically zenpacklib allows all of the following to be described in YAML, and extended in Python only if necessary.

• zProperties (a.k.a. Configuration Properties)

• Device Classes

• Monitoring Templates

• New Device and Component Types

• Relationships between Device and Component Types

• Event Classes

• Process Classes

• Device Link Providers

• Impact Triggers

It is this combination of declarative YAML and imperative Python extension that allows zenpacklib to make easy
things easy and hard things possible.

5

ZenPack SDK Documentation, Release 2.1.1

6 Chapter 2. What does zenpacklib do?

CHAPTER 3

Who should use zenpacklib?

You should consider using zenpacklib if any of the following statements apply to you.

• Your ZenPack will only contain monitoring templates, but you prefer creating YAML files over creating moni-
toring templates by clicking around the Zenoss web interface.

• Your ZenPack needs to add zProperties.

• Your ZenPack needs to add new device or component types and relationships between them.

You should even consider using zenpacklib if you are an experience ZenPack developer and already know how to
create new device and component types. You will find that the amount of boilerplate code you need to write is
drastically reduced, if not elimited, by using zenpacklib. You will still have all of the power of Python to extend upon
the functionality provided by zenpacklib.

If your ZenPack only consists of configuration you can create and add to a ZenPack using the Zenoss web interface,
and you’re more comfortable clicking through the web interface than create a YAML file, you probably should use
Zenoss’ built-in capabilities instead of zenpacklib.

7

ZenPack SDK Documentation, Release 2.1.1

8 Chapter 3. Who should use zenpacklib?

CHAPTER 4

What about some examples?

The following example shows an example of adding new zProperties. Note the special DEFAULTS entry. You’ll find
that this is supported in many places as a way to set default properties for all other entries in a section. In this case it
will set category to ACME Widgeter for the zWidgeterEnable and zWidgeterInterval zProperties.

name: ZenPacks.acme.Widgeter

zProperties:
DEFAULTS:
category: ACME Widgeter

zWidgeterEnable:
type: boolean
default: true

zWidgeterInterval:
type: string
default: 300

Extending upon that example we can add a device class and monitoring template complete with a datasource, threshold
and graph.

device_classes:
/Server/ACME/Widgeter:
templates:

Device:
description: ACME Widgeter monitoring.
targetPythonClass: ZenPacks.acme.Widgeter.Widgeter

datasources:
status:

type: COMMAND
parser: Nagios
commandTemplate: "echo OK|available=1"

(continues on next page)

9

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

datapoints:
available:
rrdtype: GAUGE
rrdmin: 0
rrdmax: 1

thresholds:
unavailable:
dsnames: [status_available]
eventClass: /Status
severity: Critical
minval: 1

graphs:
Availability:
units: percent
miny: 0
maxy: 100

graphpoints:
Availability:
dpName: status_available
rpn: 100,*
format: "%7.2lf%%"
lineType: AREA

Finally we can add a new device type, component type and relationship between them.

classes:
Widgeter:
base: [zenpacklib.Device]
meta_type: ACMEWidgeter

Widget:
base: [zenpacklib.Component]
meta_type: ACMEWidget
properties:

flavor:
label: Flavor
type: string

class_relationships:
- Widgeter 1:MC Widget

4.1 Development Environment

The process of developing a ZenPack can be made much faster and easier by starting with a good development
environment. A good development environment should do the following.

• Isolate your changes from other users changes or a production systems.

• Allow you to quickly see the result of changes for faster iteration.

• Allow you to easily troubleshoot when changes don’t have the desired effect.

10 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

The following recommendations provide a good starting point for anyone wanting to do ZenPack development on
Zenoss 5.

4.1.1 Installing

You must have Zenoss installed to develop ZenPacks. I recommend starting by creating a dedicated Zenoss installation
for your own development. Start by following the normal installation instructions available at docs.zenoss.com with
the following notes.

• System requirements for development can be lower. See below.

• A single-host installation should be used for development.

• Any supported operating system can be used. This guide covers Enterprise Linux 5.

• Verify that Zenoss has been deployed and its web interface is working.

System Requirements

A development system will usually have system requirements lower than those of a production Zenoss system. This
is because it likely won’t be storing as much data, supporting as many web users, or even performing continual
monitoring. Your development system should have at least the following resources.

• 4 CPU cores.

• 20 GB memory.

• 75 GB storage.

4.1.2 Configuring the System

We’ll want to make the following changes to our development system to make ourselves more productive. Each will
be detailed in the following sections.

• Add a zenoss user to the host that matches the same user in containers.

• Create a /z directory on the host to share with containers.

• Configure serviced to automatically share /z with all containers.

First make sure that you have either the Zenoss.core or Zenoss.resmgr service deployed and running, and that you’re
able to login to its web interface. All commands in the following sections should be run as root or through sudo unless
otherwise noted.

Add a “zenoss” User

To make development easier we’re going to be sharing files between the host and docker containers running on the
host. We can create a zenoss user on the host that matches the UID (user ID) and GID (group ID) of the zenoss user in
the containers to avoid having to worry about permissions problems with those shared files.

groupadd --gid=1206 zenoss
adduser --uid=1337 --gid=1206 zenoss

It’ll also be useful for our zenoss user to be able to use sudo and docker commands. We can allow that by adding the
user to the wheel and docker groups respectively.

4.1. Development Environment 11

http://docs.zenoss.com/

ZenPack SDK Documentation, Release 2.1.1

usermod -a -G wheel zenoss
usermod -a -G docker zenoss

If running Zenoss 5.2 or later, we need to add the user to the serviced group as well, in order to interact with serviced
containers.

usermod -a -G serviced zenoss

Helper Aliases and Functions

A lot of the commands you’ll use while developing ZenPacks must be executed inside a Zenoss container. Constantly
having to attach to the Zope container, switch to the zenoss user, execute the command, and exit the container is
tedious. With a few additions to our zenoss user’s .bashrc, we can eliminate those tedious steps.

Add the following lines to the end of /home/zenoss/.bashrc.

ZenPack development helpers.
alias zope='serviced service attach zope su zenoss -l'
alias zenhub='serviced service attach zenhub su zenoss -l'
z () { serviced service attach zope su zenoss -l -c "cd /z;$*"; }
zenbatchload () { z zenbatchload $*; }
zendisc () { z zendisc $*; }
zendmd () { z zendmd $*; }
zenmib () { z zenmib $*; }
zenmodeler () { z zenmodeler $*; }
zenpack () { z zenpack $*; }
zenpacklib () { z zenpacklib $*; }
zenpython () { z zenpython $*; }

Next time you login as the zenoss user, you’ll have new commands available.

• zope: Opens the zenoss user shell in the running Zope container.

• zenhub: Opens the zenoss user shell in the running zenhub container.

• z: Run any command as zenoss user in running Zope container.

– zendisc: Discovers new devices.

– zendmd: Opens zendmd console.

– zenmib: Import SNMP MIB files.

– zenmodeler: Remodels existing devices.

– zenpack: For installing and removing ZenPacks.

– zenpacklib: Runs zenpacklib commands.

Authenticating as “zenoss”

You will likely want to login to the system as the zenoss user after getting the system configured. That way you won’t
have to switch (su) to the user to make sure files you create have the right permissions. I recommend either setting a
password for the user, or adding your public key to the user’s authorized_keys file to support this.

Optionally set the zenoss user’s password:

12 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

passwd zenoss

Optionally add your SSH public key to the zenoss user’s authorized_keys file to login without a password:

mkdir -p /home/zenoss/.ssh
chmod 700 /home/zenoss/.ssh
cat >> /home/zenoss/.ssh/authorized_keys
... paste your public key, enter, ctrl-D ...
chmod 600 /home/zenoss/.ssh/authorized_keys
chown -R zenoss:zenoss /home/zenoss/.ssh

Create a “/z” Directory

Now we can create a directory to share that the zenoss user on the host and in the container will be able to use. The
specific path of this directory isn’t particularly important, but I like using /z because it’s as short as possible.

mkdir -p /z
chown -R zenoss:zenoss /z

Mount “/z” Into All Containers

Now we can configure serviced to automatically share (bind mount) the host’s /z directory into every container it starts.
This will let us use the same files on the host and in containers using the exact same path.

Edit /etc/default/serviced. Find the existing SERVICED_OPTS line. It will likely be commented out (with a #) and
look like the following.

Arbitrary serviced daemon args
SERVICED_OPTS=

Uncomment it, and add the bind mount configuration as follows.

Arbitrary serviced daemon args
SERVICED_OPTS="--mount *,/z,/z"

You must then restart serviced.

systemctl restart serviced

Test “/z” Sharing

Now you can verify that both the host and containers can read and write files in /z.

On the host:

su - zenoss # becomes zenoss user on host
touch /z/host
serviced service attach zenhub # attach to a container
su - zenoss # becomes zenoss user in container
rm /z/host
touch /z/container
exit # back to container root user
exit # back to host zenoss user

(continues on next page)

4.1. Development Environment 13

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

rm /z/container
exit # back to host root user

4.1.3 Configuring Zenoss Services

There are some optional tweaks you can make to Zenoss service definitions to make development faster and easier.
We’ll go through the following here.

• Reducing Zope to a single instance so breakpoints can be used.

• Setting unnecessary services to not automatically launch.

Reducing Zope to a Single Instance

Out of the box, at least in Zenoss.resmgr, Zope is configured to run a minimum of two instances. This is problematic
when you insert a breakpoint (pdb.set_trace()) in code run by Zope because you can’t be sure the breakpoint will occur
in the instance of Zope you happen to be running in the foreground.

Run the following command to edit the Zope service definition. This will open vi with Zope’s JSON service definition.

serviced service edit Zope

Search this file for “Instances” with the quotes. You should see a section that looks something like the following.
Change Instances, Min, and Default to 1. Then save and quit.

"Instances": 6,
"InstanceLimits": {

"Min": 2,
"Max": 0,
"Default": 6

},

Run the following command to restart Zope and affect the change.

serviced service restart Zope

Setting Services to Manual Launch

The default Zenoss service templates are configured to launch almost all services they contain automatically. When
developing ZenPacks it’s usually unnecessary to have all of the collector process such as zenping running. These
services are consuming memory, CPU, and may need to be restarted frequently as you’re making code changes. To
avoid all of that you can configure some services to not launch automatically when you start the service.

Run the following command to edit zenping’s service definition to make it not automatically launch.

serviced service edit zenping

Search this file for “Launch” with the quotes. You should see a section that looks like the following. Change auto to
manual. Then save and quit.

"Launch": "auto",

14 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

This won’t stop zenping if it was already running, but it will prevent it from starting up next time you start Zenoss.core
or Zenoss.resmgr.

Here’s the base list of services you should consider setting to the manual launch mode.

• zencommand

• zenjmx

• zenmail (defaults to manual)

• zenmodeler

• zenperfsnmp

• zenping

• zenpop3 (defaults to manual)

• zenprocess

• zenpython

• zenstatus

• zensyslog

• zentrap

Here are some additional services you’ll find on Zenoss.resmgr only that could be set to manual.

• zenjserver

• zenpropertymonitor

• zenucsevents

• zenvsphere

You may have more or less services on your system depending on what ZenPacks are installed. The rule of thumb
should be that any services under the Collection tree can be set to manual except for zenhub, MetricShipper, collec-
torredis, and zminion.

4.2 Getting Started

The first thing we’ll need to do is install the ZenPackLib ZenPack into our development system. This is done in the
same way as it would be in any Zenoss system.

The ZenPackLib ZenPack provides the zenpacklib command line tool, which will allow us to create ZenPacks.

Note: This tutorial assumes your system is already setup as described in Development Environment and Getting
Started.

4.2.1 Installing ZenPackLib

The latest version of ZenPackLib can be downloaded from its entry in the ZenPack Catalog. The following commands
show how you would download and install version 2.1.1.

4.2. Getting Started 15

https://www.zenoss.com/product/zenpacks/zenpacklib
https://www.zenoss.com/product/zenpacks

ZenPack SDK Documentation, Release 2.1.1

Note: From here on all command should be run as the zenoss user on the host unless otherwise noted. If you don’t
login to the host as the zenoss user, use su - zenoss to get a login shell.

cd /tmp
wget http://wiki.zenoss.org/download/zenpacks/ZenPacks.zenoss.ZenPackLib/2.1.1/
→˓ZenPacks.zenoss.ZenPackLib-2.1.1.egg
serviced service run zope zenpack-manager install ZenPacks.zenoss.ZenPackLib-2.1.1.egg

Executing zenpacklib requires a live Zenoss environment. Always executing it as the zenoss user in your Zope con-
tainer is a good way to have the right environment setup. The following commands demonstrate how to do this.

serviced service attach zope # attach to zope container
su - zenoss # become zenoss user in zope container
zenpacklib --version
exit # back to root in container
exit # back to host

These five commands can be reduced to the following single command if you setup the helper aliases and functions
your .bashrc recommended in Helper Aliases and Functions.

zenpacklib --version

4.2.2 Creating a ZenPack

There are two ways to get started with zenpacklib. You can either use it to create a new ZenPack from the command
line, or you can update an existing ZenPack to use it. We’ll start by creating a ZenPack from the command line.

Run the following commands to create a new ZenPack.

Create ZenPacks in /z so the host and containers can access them.
cd /z
zenpacklib --create ZenPacks.acme.Widgeter

This will print several lines to let you know what has been created. Note that the ZenPack’s source directory has been
created, but it has not yet been installed.

Creating source directory for ZenPacks.acme.Widgeter:
- making directory: ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter
- creating file: ZenPacks.acme.Widgeter/setup.py
- creating file: ZenPacks.acme.Widgeter/MANIFEST.in
- creating file: ZenPacks.acme.Widgeter/ZenPacks/__init__.py
- creating file: ZenPacks.acme.Widgeter/ZenPacks/acme/__init__.py
- creating file: ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter/datasources/__init__.

→˓py
- creating file: ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter/thresholds/__init__.

→˓py
- creating file: ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter/parsers/__init__.py
- creating file: ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter/migrate/__init__.py
- creating file: ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter/resources/__init__.py
- creating file: ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter/modeler/__init__.py
- creating file: ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter/tests/__init__.py
- creating file: ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter/libexec/__init__.py
- creating file: ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter/modeler/plugins/__

→˓init__.py

(continues on next page)

16 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

- creating file: ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter/lib/__init__.py
- creating file: ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter/__init__.py
- creating file: ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter/zenpack.yaml

Now let’s take a look at zenpack.yaml. This is the file that will define a large part of what our ZenPack is.

name: ZenPacks.acme.Widgeter

Add Monitoring

Let’s add a device class and a monitoring template to our ZenPack. Change zenpack.yaml to contain the following:

name: ZenPacks.acme.Widgeter

device_classes:
/Server/ACME/Widgeter:
zProperties:

zDeviceTemplates:
- WidgeterHealth

templates:
WidgeterHealth:

description: ACME Widgeter monitoring.

datasources:
health:

type: COMMAND
parser: Nagios
commandTemplate: "echo OK|percent=100"

datapoints:
percent:
rrdtype: GAUGE
rrdmin: 0
rrdmax: 100

thresholds:
unhealthy:
dsnames: [health_percent]
eventClass: /Status
severity: Warning
minval: 90

graphs:
Health:

units: percent
miny: 0
maxy: 0

graphpoints:
Health:
dpName: health_percent
format: "%7.2lf%%"

4.2. Getting Started 17

ZenPack SDK Documentation, Release 2.1.1

Check for Correctness

Now that we have a more interesting zenpack.yaml, let’s have zenpacklib check that it’s correct. This can be done
using the lint command.

zenpacklib --lint ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter/zenpack.yaml

Lint will print information about errors it finds in the YAML file. If nothing is printed, lint thinks the YAML is correct.

4.2.3 Installing a ZenPack

Now that we’ve created a ZenPack called ZenPacks.acme.Widgeter in /z, we can install it into our Zenoss system by
running the following command.

z zenpack --link --install ZenPacks.acme.Widgeter

Zenoss must be restarted anytime a new ZenPack is installed. A full restart of the entire system can be performed by
running one of the following commands depending on what distribution of Zenoss you have installed..

serviced service restart Zenoss.core
serviced service restart Zenoss.resmgr

Technically it isn’t necessary to restart everything. A lot of the infrastructure services don’t use ZenPack code. The
following is a smaller list of services that you’re likely to need to restart after installing and modifying ZenPacks
during development.

• Zope

• zenhub

• zeneventd

• zenactiond

• zenjobs

The following command will quickly restart just these services.

echo Zope zenhub zeneventd zenactiond zenjobs | xargs -n1 serviced service restart

4.2.4 What Next?

You can either start with some Tutorials or jump right into the YAML Reference.

4.3 Tutorials

The following tutorials provide step-by-step instructions on using zenpacklib to extend Zenoss is common ways.

• Monitoring an SNMP Device

This tutorial starts with the very basics of creating a ZenPack through Zenoss’ web interface and adding config-
uration to it. Then it progresses to extending the model, creating a modeler plugin, monitoring components, and
then to event management with SNMP traps as an example.

This is most likely the first tutorial you should do.

18 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

• Monitoring an HTTP API

In this tutorial the basics are skipped and we jump right into extending the model, modeling a custom HTTP
API, and monitoring the same API using the zenpython daemon provided by the PythonCollector ZenPack.

This is a more advanced tutorial that contains more advanced Python code.

4.3.1 Prerequisites

To follow the steps in these tutorials you will need to have access to the following:

• A Linux server with Zenoss installed on it. This should not be a Zenoss server you care about. We will break
things. You can download Zenoss from the Zenoss download site.

• An SSH client to connect to your Zenoss server. PuTTY works well for Windows, ssh from the command line
works well for Mac and Linux.

• These tutorials.

You may need experience in the following areas to more easily follow these tutorials.

• Zenoss: Familiarity administration and configuration.

• Linux: Ability to move around the file system, manage files and run commands.

• Programming: Any type of programming or scripting experience will help.

4.4 Monitoring an SNMP Device

The following sections will describe a common approach to monitoring an SNMP- enabled device. We’ll start with
the basics that can be done without writing a line of code, and then move on to more sophisticated capabilities.

For purposes of this guide we’ll be building a ZenPack to support a NetBotz environmental sensor device. This device
has a variety of sensors that monitor temperature, humidity, dew point, audio levels and air flow.

Note: This tutorial assumes your system is already setup as described in Development Environment and Getting
Started.

4.4.1 SNMP Tools

To configure Zenoss to monitor a device using SNMP, it is necessary to understand a bit about SNMP and the specific
capabilities of your device. This section will walk you through using Net-SNMP, smidump, and snmpsim to learn
about SNMP and your device.

Installing Net-SNMP

In the SNMP world the client is referred to as a manager and the server is referred to as the agent. Net-SNMP is
software that provides both an agent that’s used in all sorts of devices, and many command line tools that act as
manager. We’re only going to need the command line tools, so we’ll be installing the net-snmp-utils package.

You can install Net-SNMP’s command line tools by running the following command as root.

yum -y install net-snmp-utils

4.4. Monitoring an SNMP Device 19

http://community.zenoss.org/community/download
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.net-snmp.org/
https://www.ibr.cs.tu-bs.de/projects/libsmi/smidump.html
http://snmpsim.sourceforge.net/

ZenPack SDK Documentation, Release 2.1.1

Installing libsmi

smidump is a useful command line tool for converting MIBs to other formats. We’ll be using it later in this tutorial
to research what a MIB provides.

Install smidump by installing the libsmi package with the following command.

yum -y install libsmi

Installing the SNMP Simulator

When developing a ZenPack to monitor an SNMP-enabled device it can often be useful to simulate the device’s SNMP
agent. There are many tools available to do this. For this guide we will be using the free snmpsim because it’s easy to
install on our Zenoss host.

1. Run the following commands as root to install snmpsim:

yum -y groupinstall "Development Tools"
yum -y install python-devel
easy_install snmpsim
mkdir -p /usr/share/snmpsim/data
mkdir -p /var/run/snmpsim
useradd -U snmpsim
chown snmpsim:snmpsim /var/run/snmpsim

2. Run the following command as root to install a NetBotz recording.

wget https://goo.gl/OJe2vL -O /usr/share/snmpsim/data/public.snmprec

3. Run the following command as root to run snmpsim.

snmpsimd.py \
--process-user=snmpsim \
--process-group=snmpsim \
--agent-udpv4-endpoint=172.17.0.1:161 \
--daemonize

4. Test the simulator with the following snmpwalk command.

snmpwalk -v2c -c public 172.17.0.1 sysDescr

You should see the following output.

SNMPv2-MIB::sysDescr.0 = STRING: Linux Netbotz01 2.4.26 #1 Wed Oct 31 18:09:53
→˓CDT 2007 ppc

Using snmpwalk

The tool you’ll be using most often is called snmpwalk. All SNMP values are arranged on a tree, and snmpwalk allows
you to query for all data under a given branch of that tree. See the following example that walks all values under the
system branch.

Run the snmpwalk command.

snmpwalk -v2c -c public 172.17.0.1 system

20 Chapter 4. What about some examples?

http://snmpsim.sourceforge.net/

ZenPack SDK Documentation, Release 2.1.1

SNMPv2-MIB::sysDescr.0 = STRING: Linux Netbotz01 2.4.26 #1 Wed Oct 31 18:09:53 CDT
→˓2007 ppc
SNMPv2-MIB::sysObjectID.0 = OID: SNMPv2-SMI::enterprises.5528.100.20.10.2006
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (7275488) 20:12:34.88
SNMPv2-MIB::sysContact.0 = STRING: unknown
SNMPv2-MIB::sysName.0 = STRING: Netbotz01
SNMPv2-MIB::sysLocation.0 = STRING: Z1 Rack02 NetBotz01

We can see that this NetBotz device seems to be based on Linux and that we have some more-or-less useful information
about the device’s name, location and administrative contact.

The second line with the sysObjectID has an unusual value. It’s a partially decoded OID. It isn’t decoded enough for
us to know what it means. SNMP tools including Net-SNMP use MIB files to decode these OIDs into human readable
values. In fact, we’re only able to read most of the output above because Net- SNMP has a set of standard MIBs
enabled by default.

Let’s run that command again, but use the -On flag to tell snmpwalk not to decode OIDs.

snmpwalk -v2c -c public -On 172.17.0.1 system

.1.3.6.1.2.1.1.1.0 = STRING: Linux Netbotz01 2.4.26 #1 Wed Oct 31 18:09:53 CDT 2007
→˓ppc
.1.3.6.1.2.1.1.2.0 = OID: .1.3.6.1.4.1.5528.100.20.10.2006
.1.3.6.1.2.1.1.3.0 = Timeticks: (7275488) 20:12:34.88
.1.3.6.1.2.1.1.4.0 = STRING: unknown
.1.3.6.1.2.1.1.5.0 = STRING: Netbotz01
.1.3.6.1.2.1.1.6.0 = STRING: Z1 Rack02 NetBotz01

While this data is mostly less valuable than the decoded version above, it’s more useful for a single reason. We can take
that .1.3.6.1.4.1.5528.100.20.10.2006 value and search the Internet for it. It’s best to remove the leading
. and search for 1.3.6.1.4.1.5528.100.20.10.2006 instead. This should lead you to the NETBOTZV2-MIB
which will contain the decoding information we need to learn more about this device.

Run the following command to download NETBOTZV2-MIB.mib into /usr/share/snmp/mibs/.

wget https://goo.gl/0v4Kti -O /usr/share/snmp/mibs/NETBOTZV2-MIB.mib

Now we can run the original snmpwalk command again with the addition of the -m all option. This option tells
Net-SNMP tools to use all MIBs.

snmpwalk -v2c -c public -m all 172.17.0.1 system

SNMPv2-MIB::sysDescr.0 = STRING: Linux Netbotz01 2.4.26 #1 Wed Oct 31 18:09:53 CDT
→˓2007 ppc
SNMPv2-MIB::sysObjectID.0 = OID: NETBOTZV2-MIB::netBotz420ERack
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (7275488) 20:12:34.88
SNMPv2-MIB::sysContact.0 = STRING: unknown
SNMPv2-MIB::sysName.0 = STRING: Netbotz01
SNMPv2-MIB::sysLocation.0 = STRING: Z1 Rack02 NetBotz01

Now we can see that the sysObjectID is NETBOTZV2-MIB::netBotz420ERack. This gives us a better idea of exactly
what kind of device it is. We’ll see that as we look deeper into this device that the NETBOTZV2-MIB will prove more
useful.

4.4. Monitoring an SNMP Device 21

ZenPack SDK Documentation, Release 2.1.1

Default Net-SNMP Options

The snmpwalk usage showed three primary command line options that we tend to use most of the time. Net-SNMP
allows you to specify these in a configuration file so you don’t have to type them every time. I recommend doing this.

Create /etc/snmp/snmp.conf and add the following lines.

defVersion v2c
defCommunity public
mibs ALL

These lines add the following equivalent command line options respectively:

• -v2c

• -c public

• -m all

So now we can run this command.

snmpwalk 172.17.0.1 sysObjectID

And get the same results as if we ran.

snmpwalk -v2c -c public -m all 172.17.0.1 sysObjectID

This will save you time while developing this ZenPack, and others in the future.

Decoding and Encoding OIDs

Often it can be useful to turn numeric OIDs into their human-readable equivalent, or vice-versa. The snmptranslate
command can be used for this. See the following examples.

OID to name:

snmptranslate .1.3.6.1.4.1.5528.100.20.10.2006
NETBOTZV2-MIB::netBotz420ERack

Name to OID:

snmptranslate -On NETBOTZV2-MIB::netBotz420ERack
.1.3.6.1.4.1.5528.100.20.10.2006

4.4.2 Device Monitoring

This section will cover monitoring device-level metrics using SNMP. This requires no code, and you can find in-
structions for doing it in the normal Zenoss documentation. However, there are some extra considerations and steps
required to package your configuration in a ZenPack.

Note: Commands in this section should be run on the host as the zenoss user unless otherwise noted.

22 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Create a ZenPack

The first step will be to create and install a ZenPack to contain all of the NetBotz monitoring functionality we’re going
to build.

cd /z
zenpacklib --create ZenPacks.training.NetBotz
zenpack --link --install ZenPacks.training.NetBotz

We should also restart at least Zope after installing the ZenPack so that we can work with it in the web interface.

serviced service restart Zope

Create a Device Class

To support our new NetBotz environmental sensor device we will want to create a new device class. This will give us
full control over how these types of devices are modeled and monitored. Use the following steps to add a new device
class.

1. Navigate to the Infrastructure view.

2. Select the root of the DEVICES tree.

3. Click the + button at the bottom of the list to add a new organizer.

4. Set the Name to NetBotz then click SUBMIT.

The new NetBotz device will now be selected. We’ll want to check on some important configuration properties
using the following steps.

Set Device Class Properties

1. Click the DETAILS button at the top of the list.

2. Select Modeler Plugins.

The modeler plugins are what model information about the device. We should see a list something like the
following. This list is being acquired from the root (/ or /Devices) device class.

• zenoss.snmp.NewDeviceMap

• zenoss.snmp.DeviceMap

• zenoss.snmp.InterfaceMap

• zenoss.snmp.RouteMap

This is a good basic list that uses standard MIB-2 support that works with most SNMP-enabled devices. How-
ever, it’s unlikely that we care about the routing table on our environmental sensors, so there’s no reason to
model it.

3. Remove zenoss.snmp.RouteMap from the list.

4. Click Save.

Now you can see the Path at which our modeler plugin configuration is set has changed from / to /NetBotz.
This allows us to know that regardless of what the user sets their default modeler plugins to in the system that
NetBotz appliances will be collected using the set of modeler plugins we configure here.

4.4. Monitoring an SNMP Device 23

ZenPack SDK Documentation, Release 2.1.1

5. Select Configuration Properties from the left navigation pane.

There are a lot of configuration properties. You don’t have to worry about understanding all of them. However,
some will be critical to monitoring NetBotz appliances. We know that we’re going to be using SNMP so let’s
make sure that it’s enabled.

6. Find the zSnmpMonitorIgnore property and set its value to true.

7. Now set the value for zSnmpMonitorIgnore to false.

The reason for flipping the value back to it’s original value is the same as saving the list of modeler plugins.
While the system default is to have SNMP monitoring enabled, a user could easily disable it globally and cause
our NetBotz monitoring to stop working. By flipping the value, we’ve set it locally within our device class and
will prevent changes in the global default from affecting the operation of our ZenPack.

Add Device Class to ZenPack

Now that we’ve setup the NetBotz device class, it’s time to add it to our ZenPack using the following steps. Adding a
device class to your ZenPack causes all settings in that device class to be added to the ZenPack. This includes modeler
plugin configuration, configuration property values and monitoring templates.

1. Make sure that you have the NetBotz device class selected in the Infrastructure view.

2. Choose Add to ZenPack from the gear menu in the bottom-left.

3. Select your NetBotz ZenPack then click SUBMIT.

Add a NetBotz Device

This would be a great time to add a NetBotz device to our new /NetBotz device class. We haven’t done anything in
the way of customer monitoring. It can often be helpful to see what Zenoss’ default settings will return for a device
before we start adding features.

You can add a the device through the web interface, or on the command line using zendisc as follows:

z zendisc run --deviceclass=/NetBotz --device=172.17.0.1

Note: I’ll often use zendisc from the command line only because the zenjobs daemon must be running to add jobs
from the web interface. The zenjobs daemon is not required to be running when adding devices using zendisc from the
command line because it immediately adds the device instead of scheduling a job to do it.

You should now see that Zenoss was able to model some information about the device even though we haven’t added
any custom monitoring. For example, you should see the following on the device in the web interface.

• Overview

– Hardware Manufacturer: NetBotz

– Hardware Model: .1.3.6.1.4.1.5528.100.20.10.2006

– OS Manufacturer: Unknown

– OS Model: Linux 2.4.26

• Components - Interfaces: 2 - eth0 and lo

If we were running the zenperfsnmp daemon, we’d start to see that Zenoss was monitoring the uptime and interface
metrics after about 10 minutes.

24 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Configure Monitoring Templates

Before adding a monitoring template we should look to see what monitoring templates are already being used in our
new device class.

Validate Existing Monitoring Templates

We created the NetBotz device class directly within the root (or /) device class. This means that we’ll be inheriting the
system default monitoring templates and binding. Use the following steps to validate this.

1. Select the NetBotz device class in the Infrastructure view.

2. Choose Bind Templates from the gear menu in the bottom-left.

You should only see Device (/Devices) in the Selected box. Depending on what other ZenPacks you
have installed in the system you may see zero or more other templates listed in the Available box.

Now we investigate what this system default Device monitoring template does.

3. Click CANCEL on the Bind Templates dialog.

4. Click the DETAILS button at the top of the device class tree.

5. Select Device (/Devices) under Monitoring Templates.

You’ll see that there’s a single SNMP datasource named sysUpTime. If you expand this datasource you will see
that it contains a single datapoint which is also named sysUpTime. This single datapoint named the same as
its containing datasource is always what you’ll see for SNMP datasources. The reason for having the concep-
tual separation between datasources and datapoints is that other types of datasources such as COMMAND are
capable of returning multiple datapoints.

You’ll note that this monitoring template has no threshold or graphs defined. This is unusual. Typically there’d
be no reason to collect data that you weren’t going to either threshold against or show in a graph. The sysUpTime
datapoint is an exception because it is shown on a device’s Overview page in the Uptime field and therefore
doesn’t need to be graphed.

Let’s use snmpwalk to check if our NetBotz device supports sysUpTime. The OID listed for the sysUpTime data-
source is 1.3.6.1.2.1.1.3.0 so we run the following command:

snmpwalk 172.17.0.1 1.3.6.1.2.1.1.3.0
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (7275488) 20:12:34.88

This response indicates that the NetBotz device does support the sysUpTime OID. This is a mandatory field for SNMP
devices to support so you will be able to get it in almost all cases.

Add a Monitoring Template

Now that we’ve validated that the existing Device monitoring template will work on our NetBotz device, we’ll add
another monitoring template to collect additional information.

Note: We could create a local copy of the Device monitoring template in the NetBotz device class and add new
datasources, thresholds and graphs to it. However, this prevents us from taking advantage of changes made to the
system default Device template in the future.

Follow these steps to create and bind a new template to the NetBotz device class.

1. Navigate to Advanced -> Monitoring Templates.

4.4. Monitoring an SNMP Device 25

ZenPack SDK Documentation, Release 2.1.1

2. Click the + button in the bottom-left to add a template.

1. Set the Name field to NetBotzDevice.

2. Set the Template Path field to /NetBotz.

3. Click SUBMIT.

4. Bind this template to the NetBotz device class.

1. Navigate to Infrastructure.

2. Select the NetBotz device class.

3. Choose Bind Templates from the gear menu in the bottom-left.

4. Move NetBotzDevice from available to selected.

5. Click SAVE.

Build the Monitoring Template

Now that we’ve created the NetBotzDevice monitoring template and bound it to the NetBotz device class, we need to
add datasources, thresholds and graphs. We don’t already know what might be interesting to graph for each NetBotz
device, so let’s go exploring with snmpwalk:

snmpwalk 172.17.0.1 .1.3
SNMPv2-MIB::sysDescr.0 = STRING: Linux Netbotz01 2.4.26 #1 Wed Oct 31 18:09:53 CDT
→˓2007 ppc
SNMPv2-MIB::sysObjectID.0 = OID: NETBOTZV2-MIB::netBotz420ERack
... lots of lines removed ...
SNMPv2-MIB::snmpInTotalReqVars.0 = Counter32: 4406
... and more removed ...

There isn’t much of interest to collect at the device level. By “device-level” I mean values that only have a single
instance for the device. Typical examples of these kinds of metrics would be memory utilization or the previous
sysUpTime example. With SNMP it can be easy to find these kinds of single-instance values because their OID ends
in .0 as in SNMPv2-MIB::snmpInTotalReqVars.0.

Note: We’ll get into monitoring multi-instance values in the component monitoring section.

Since there aren’t any extremely interesting single-instance values to collect, we’ll collect that snmpInTotalReqVars
for illustrative purposes. We’ll need to know the numeric OID for this value. Use snmptranslate to find it:

snmptranslate -On SNMPv2-MIB::snmpInTotalReqVars.0
.1.3.6.1.2.1.11.13.0

Add an SNMP Datasource

Use the steps below to add an SNMP datasource for snmpInTotalReqVars.

1. Navigate to Advanced -> Monitoring Templates.

2. Expand NetBotzDevice then select /NetBotz.

3. Click + on the Data Sources pane.

1. Set Name to snmpInTotalReqVars

26 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

2. Set Type to SNMP

3. Click SUBMIT.

Note: Best practice is to name SNMP datasources according to the name of the OID that’s being polled
from the MIB.

4. Double-click to edit the snmpInTotalReqVars datasource.

1. Set OID to 1.3.6.1.2.1.11.13.0

2. Click SAVE.

Warning: A common mistake to make when setting the OID in a device-level template is to omit the
trailing .0. The reason this is common is that if you were using the MIB as reference instead of the sn-
mpwalk above, you’d see that the OID for SNMPv2-MIB::snmpInTotalReqVars was 1.3.6.1.2.1.11.13
instead of 1.3.6.1.2.1.11.13.0. Due to this, I always recommend using snmpwalk to verify exactly
what OID you should be polling.

While Zenoss will accept the OID with the leading ., I recommend omitting it. It isn’t necessary.

We now have a choice about how we want to handle the value that comes back from polling that OID. As you can see
above in the snmpwalk output, it is a Counter32 type. This means that it starts at 0 and, in this case, increments each
time an SNMP variable is requested. The most common way to handle counters like these is as a delta. It’s not very
interesting to know how many variables have been requested since the device last rebooted, but it might be interesting
to know how many variables are requested per second.

The default type for a datapoint is GAUGE which would record the actual value you see in the snmpwalk output. If
we’d rather monitor the rate of requests, we’d change the datapoint type to DERIVE using the following steps.

1. Double-click on the snmpInTotalReqVars.snmpInTotalReqVars datapoint.

You may need to expand the snmpInTotalReqVars datasource first.

1. Set RRD Type to DERIVE

2. Set RRD Minimum to 0

3. Click SAVE.

Warning: It is very important to always set the RRD Minimum to 0 for DERIVE type datapoints. If you fail to do
this, you will get large negative spikes in your data anytime the device reboots or the counter resets for any other
reason.

The only time you wouldn’t set a minimum of 0 is when the value you’re monitoring can increase and decrease
and you’re interested in tracking rates of negative change as well as rates of positive change.

Add a Threshold

Now we can add a threshold to our monitoring template. Let’s say we want to raise a warning event anytime the rate
of SNMP variable requests exceeds 10 per second. This can be done with the following steps.

1. Click + on the Thresholds pane.

1. Set Name to high SNMP variable request rate

4.4. Monitoring an SNMP Device 27

ZenPack SDK Documentation, Release 2.1.1

2. Set Type to MinMaxThreshold

3. Click ADD.

2. Double-click to edit the high SNMP variable request rate threshold.

1. Drag the snmpInTotalReqVars datapoint to the left box.

2. Set Severity to Warning

3. Set Maximum Value to 10

4. Set Event Class to /Perf/Snmp

5. Click SAVE.

Note: A MinMaxThreshold can be used to handle a variety of conditions including over a maximum value, under a
minimum value, outside a defined range or within a defined range. See the regular Zenoss documentation for how to
use each of these options.

Add a Graph Definition

Now we’ll add a graph so the user will be able to see the trend of SNMP variable requests per second over time. This
can be done with the following steps.

1. Click + on the Graph Definitions pane.

1. Set Name to SNMP Rates

2. Click SUBMIT.

2. Double-click to edit the SNMP Rates graph definition.

1. Set Units to requests/sec

2. Set Min Y to 0

3. Click SUBMIT.

Note: Always set the units for your graph. Also set the minimum Y axis and maximum Y axis values if
you know what the possible limits are for the data. This results in graphs that are easier to read.

The format field should also be tweaked to best present the kind of data that is to be graphed. You can find
more information on what can be used in the format field in the RRDtool rrdgraph_graph documentation
under the PRINT section.

3. Select the SNMP Rates graph definition.

4. Choose Manage Graph Points from the gear menu.

1. Choose Data Point from the + menu.

2. Set Data Point to snmpInTotalReqVars

3. Check Include Related Thresholds

4. Click SUBMIT

5. Double-click to edit the snmpInTotalReqVars graph point.

1. Set Name to Variables

28 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

2. Click SAVE.

Note: The name of a graph point is what is displayed for it in the graph legend. You should always
choose something short that describes the data and makes sense in context of the units chosen above.

Test Monitoring Template

The quick way to check if we’ve been successful in creating and binding our monitoring template is to navigate to
the NetBotz device we added to the system and verify that we see our NetBotzDevice (/NetBotz) monitoring template
listed at the bottom of the device’s left navigation pane.

Now we can test that our datasource will be collected by running the following command to do a single collection of
the NetBotz device:

z zenperfsnmp run -v10 --device=Netbotz01

We can look through the output to see what zenperfsnmp does. I usually look for any lines that contain MetricWriter.
These lines will show the collected data being published to the database. If data isn’t collected, these lines won’t be
present. Because of this you might run the following command instead to only see lines that contain this pattern:

z zenperfsnmp run -v10 --device=Netbotz01 | grep "MetricWriter"

We should see about 18 datapoints being published. You’ll see two of eventQueueLength, sysUpTime, 14 interface
datapoints and our custom snmpInTotalReqVars in there somewhere.

Export the ZenPack

Now that we’ve created a ZenPack and added some configuration to it, we need to export it. Exporting a ZenPack takes
all of the object’s you’ve added to your ZenPack through the web interface and compiles them into an objects.xml
file that gets saved into your ZenPack’s source directory in the file system.

Follow these steps to export a ZenPack.

1. Navigate to Advanced -> ZenPacks -> Your ZenPack in the web interface.

2. Scroll to the bottom of the page to see what objects the ZenPack provides.

All objects listed in the ZenPack Provides section and objects contained within them will be exported.

3. Choose Export ZenPack from the gear menu in the bottom-left of the screen.

4. Choose to only export and not download then click OK.

You could also choose to download the ZenPack through your web browser. However, the downloaded file will
be the built egg distribution format of the ZenPack. This means that it can be installed into other Zenoss systems,
but is not suitable for further development.

This will export everything under ZenPack Provides to a directory within your ZenPack’s source called objects/. No
other files in your ZenPack’s source directory are created or modified. You can find this file in a path such as the
following.

/z/ZenPacks.acme.Widgeter/ZenPacks/acme/Widgeter

Each time you add a new object to you ZenPack within the web interface, or modify an object that’s already contained
within your ZenPack, you should export the ZenPack again to update objects.xml. If you’re using version control on
your ZenPack’s source directory this would be a good time to commit the resulting changes.

4.4. Monitoring an SNMP Device 29

ZenPack SDK Documentation, Release 2.1.1

Warning: Exporting a ZenPack overwrites files in the objects/ directory. For this reason it is recommended that
files in this directory never be modified by hand.

4.4.3 Device Modeling

This section will cover creation of a custom Device subclass and modeling of device attributes.

For purposes of this example, we’ll add a temp_sensor_count attribute to NetBotz devices. We’ll walk through adding
the attribute to the model, modeling it from the device, and displaying it in the overview screen for NetBotz devices.

Starting in this section we’ll be working with files within the NetBotz ZenPack’s directory. To keep the path names
short, I’ll assume the $ZP_TOP_DIR and $ZP_DIR environment variables have been set as follows.

export ZP_TOP_DIR=/z/ZenPacks.training.NetBotz
export ZP_DIR=$ZP_TOP_DIR/ZenPacks/training/NetBotz

Create the NetBotzDevice Class

A Device subclass should not be confused with a device class. In the previous section we created the /NetBotz device
class from the web interface. Creating a Device subclass means to extend the actual Python class of a Device object.
You’d do this to add new attributes, methods or relationships to special device types.

Use the following steps to create a NetBotzDevice class with a new attribute called temp_sensor_count.

1. Update $ZP_DIR/zenpack.yaml to contain following contents.

name: ZenPacks.training.NetBotz

classes:
NetBotzDevice:

base: [zenpacklib.Device]
label: NetBotz
properties:

temp_sensor_count:
type: int

device_classes:
/NetBotz:

zProperties:
zPythonClass: ZenPacks.training.NetBotz.NetBotzDevice
zSnmpMonitorIgnore: false
zCollectorPlugins:
- training.snmp.NetBotz
- zenoss.snmp.NewDeviceMap
- zenoss.snmp.DeviceMap
- zenoss.snmp.InterfaceMap

1. The name field is mandatory and must match the full Python module name of your ZenPack.

2. The classes section is where we define extensions to the standard Zenoss model. In this case we’re
creating a special device type called NetBotzDevice because we want to add a new property called
temp_sensor_count. See Classes and Relationships for more information on defining classes.

3. The device_classes section allows us to also configure the /NetBotz device class in YAML. Note that we’re
configuring the same options that we already set through the web interface. You can set them either

30 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

way, but once you add a device class to zenpack.yaml you’ll likely find its easier to maintain all of the
information in one place.

The most important property we’re setting on the /NetBotz device class is zPythonClass. This is required
so that the new NetBotzDevice class we’ve defined will be used for devices in this device class.

You’ll also note that we’re adding training.snmp.NetBotz to the list of modeler plugins (zCollectorPlugins)
even though it doesn’t yet exist. This is safe to do, and we’ll shortly be creating the modeler plugin.

2. Reinstall the ZenPack to have the device class changes made.

zenpack --link --install $ZP_TOP_DIR

3. Restart Zope process so the web interface can load our new module.

serviced service restart zope

4. Reset the Python class of our existing device.

Run zendmd and execute the following snippet.

device = find("Netbotz01")
print device.__class__

You should see <class ‘Products.ZenModel.Device.Device’>. We see this instead of the Python class we just
created because the zPythonClass property is only used when a new device is created in a device class, or when
a device is moved into a device class with a differing zPythonClass value.

So we have two options for getting our NetBotz device to use the new Python class we created. We can either
delete the device and add it back, or move it to a different device class and back. Actually, there’s a third option
that I use most frequently to solve this problem. I move it into the same device class using zendmd. Execute the
following snippet within zendmd to reset the device’s Python class.

dmd.Devices.NetBotz.moveDevices('/NetBotz', 'Netbotz01')
commit()

device = find("Netbotz01")
print device.__class__

Now you should see <class ‘ZenPacks.training.NetBotz.NetBotzDevice’> printed. This confirms that our Device
subclass works, and that we’ve configure zPythonClass correctly for the /NetBotz device class.

Find Temperature Sensor Count

Before we can write a modeler plugin to populate our new temp_sensor_count attribute, we need to figure out how to
get the information. There are a few ways we could approach this. One way is to use that NETBOTZV2-MIB as a
reference to see if we can find anything about temperature sensors specifically.

Find temperature information in NETBOTZV2-MIB using the following command.

smidump -f identifiers /usr/share/snmp/mibs/NETBOTZV2-MIB.mib | egrep -i temp

You should see the following in the output:

NETBOTZV2-MIB tempSensorTable table 1.3.6.1.4.1.5528.100.4.1.1
NETBOTZV2-MIB tempSensorEntry row 1.3.6.1.4.1.5528.100.4.1.1.1
NETBOTZV2-MIB tempSensorId column 1.3.6.1.4.1.5528.100.4.1.1.1.1
NETBOTZV2-MIB tempSensorValue column 1.3.6.1.4.1.5528.100.4.1.1.1.2

(continues on next page)

4.4. Monitoring an SNMP Device 31

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

NETBOTZV2-MIB tempSensorErrorStatus column 1.3.6.1.4.1.5528.100.4.1.1.1.3
NETBOTZV2-MIB tempSensorLabel column 1.3.6.1.4.1.5528.100.4.1.1.1.4
NETBOTZV2-MIB tempSensorEncId column 1.3.6.1.4.1.5528.100.4.1.1.1.5
NETBOTZV2-MIB tempSensorPortId column 1.3.6.1.4.1.5528.100.4.1.1.1.6
NETBOTZV2-MIB tempSensorValueStr column 1.3.6.1.4.1.5528.100.4.1.1.1.7
NETBOTZV2-MIB tempSensorValueInt column 1.3.6.1.4.1.5528.100.4.1.1.1.8
NETBOTZV2-MIB tempSensorValueIntF column 1.3.6.1.4.1.5528.100.4.1.1.1.9

You’ll also see another node and a bunch of notification entries. These are related to SNMP traps, and not relevant to
what we’re interested in polling right now.

What we see here is that there isn’t a single OID we can request that will tell us the number of temperature sensors.
We’re going to have to do an snmpwalk of the table then count how many rows are in the response. Specifically
we want to remember the name and OID for the row: tempSensorEntry. Due to the hierarchical nature of a MIBs
representation this is the most specific OID that will return the data we need.

snmpwalk 172.17.0.1 1.3.6.1.4.1.5528.100.4.1.1.1

You’ll see a lot of output that starts with:

NETBOTZV2-MIB::tempSensorId.21604919 = STRING: nbHawkEnc_1_TEMP
NETBOTZV2-MIB::tempSensorId.1095346743 = STRING: nbHawkEnc_0_TEMP
NETBOTZV2-MIB::tempSensorId.1382714817 = STRING: nbHawkEnc_2_TEMP1
NETBOTZV2-MIB::tempSensorId.1382714818 = STRING: nbHawkEnc_2_TEMP2
NETBOTZV2-MIB::tempSensorId.1382714819 = STRING: nbHawkEnc_2_TEMP3
NETBOTZV2-MIB::tempSensorId.1382714820 = STRING: nbHawkEnc_2_TEMP4
NETBOTZV2-MIB::tempSensorId.1382714833 = STRING: nbHawkEnc_3_TEMP1
NETBOTZV2-MIB::tempSensorId.1382714834 = STRING: nbHawkEnc_3_TEMP2
NETBOTZV2-MIB::tempSensorId.1382714865 = STRING: nbHawkEnc_1_TEMP1
NETBOTZV2-MIB::tempSensorId.1382714866 = STRING: nbHawkEnc_1_TEMP2
NETBOTZV2-MIB::tempSensorId.1382714867 = STRING: nbHawkEnc_1_TEMP3
NETBOTZV2-MIB::tempSensorId.1382714868 = STRING: nbHawkEnc_1_TEMP4
NETBOTZV2-MIB::tempSensorId.2169088567 = STRING: nbHawkEnc_3_TEMP
NETBOTZV2-MIB::tempSensorId.3242830391 = STRING: nbHawkEnc_2_TEMP

What you’re seeing above is the tempSensorId column for all 14 rows in the tempSensorTable. Continuing on you will
see 14 rows for each of the other columns in the table.

Create a Modeler Plugin

The next step is to build a modeler plugin. A modeler plugin’s responsibility reach out into the world, gather
data, and plug it into the attributes and relationships of our model classes. In this example, this means to make
the SNMP requests necessary to determine how many temperature sensors a NetBotz device has, and populate our
temp_sensor_count attribute with the result.

Use the following steps to create our modeler plugin.

1. Make the directory that’ll contain our modeler plugin.

mkdir -p $ZP_DIR/modeler/plugins/training/snmp

Note that we’re using our ZenPack’s training namespace, then snmp. This is the recommended approach to
make it clear what protocol the modeler plugin will use, and to avoid our modeler plugin conflicting with one
from someone else’s ZenPack.

2. Create __init__.py or dunder-init files.

32 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

touch $ZP_DIR/modeler/__init__.py
touch $ZP_DIR/modeler/plugins/__init__.py
touch $ZP_DIR/modeler/plugins/training/__init__.py
touch $ZP_DIR/modeler/plugins/training/snmp/__init__.py

These empty __init__.py files are mandatory if we ever expect Python to import modules from these directories.

3. Create $ZP_DIR/modeler/plugins/training/snmp/NetBotz.py with the following contents.

from Products.DataCollector.plugins.CollectorPlugin import (
SnmpPlugin, GetTableMap,
)

class NetBotz(SnmpPlugin):
snmpGetTableMaps = (

GetTableMap(
'tempSensorTable', '1.3.6.1.4.1.5528.100.4.1.1.1', {

'.1': 'tempSensorId',
}

),
)

def process(self, device, results, log):
temp_sensors = results[1].get('tempSensorTable', {})

return self.objectMap({
'temp_sensor_count': len(temp_sensors.keys()),
})

1. Start by importing SnmpPlugin and GetTableMap from Zenoss. SnmpPlugin will handle all of the SNMP
requests for us and present the results in a format we can easily work with. GetTableMap will be used here
because we need to request an SNMP table rather than specific OIDs.

2. Our NetBotz class extends SnmpPlugin. Note that the NetBotz class name must match the filename (mod-
ule name) of the modeler plugin.

3. By defining snmpGetTableMaps as a tuple or list on our class we can add a GetTableMap object that re-
quests that 1.3.6.1.4.1.5528.100.4.1.1.1 row OID and specify that we only want to get the first (.1) column
and name it tempSensorId.

4. The process method will receive a two-element tuple containing the SNMP request results in the request
parameter. The first elememt, results[0], of this tuple would be any direct OID gets of which we didn’t
request any in this plugin. The second element, results[1] will contain a dictionary of the table results. In
this case results[1] would look like the following.

{
'tempSensorTable': {

'21604919': 'nbHawkEnc_1_TEMP',
'1095346743': 'nbHawkEnc_0_TEMP',
'1382714817': 'nbHawkEnc_2_TEMP1',
'1382714818': 'nbHawkEnc_2_TEMP2',
'1382714819': 'nbHawkEnc_2_TEMP3',
'1382714820': 'nbHawkEnc_2_TEMP4',
'1382714833': 'nbHawkEnc_3_TEMP1',
'1382714834': 'nbHawkEnc_3_TEMP2',
'1382714865': 'nbHawkEnc_1_TEMP1',
'1382714866': 'nbHawkEnc_1_TEMP2',

(continues on next page)

4.4. Monitoring an SNMP Device 33

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

'1382714867': 'nbHawkEnc_1_TEMP3',
'1382714868': 'nbHawkEnc_1_TEMP4',
'2169088567': 'nbHawkEnc_3_TEMP',
'3242830391': 'nbHawkEnc_2_TEMP',

},
}

5. We then extract just the tempSensorTable results into temp_sensors to make the next return line a bit easier
to understand.

6. We then return a dictionary that sets the temp_sensor_count key’s value to the number of keys in
temp_sensors. Actually we return a dictionary that’s been wrapped in an ObjectMap by the modeler
plugin’s objectMap utility method.

The process method within all modeler plugins must return one of the following types of data.

• None (makes no changes to the model)

• ObjectMap (to apply directly to the device that’s being modeled)

• RelationshipMap (to apply to a relationship within the device)

• A list containing zero or more ObjectMap and/or RelationShipMap objects.

An ObjectMap is simply a dict wrapped with some meta-data. A RelationshipMap is a list wrapped with
some meta-data and containing zero or more ObjectMap instances.

4. Restart Zope and zenhub to load the new module.

serviced service restart zope
serviced service restart zenhub

Test the Modeler Plugin

Now that we’ve created and enabled a basic modeler plugin, we should test it.

1. Remodel the NetBotz device.

You can do this from the web interface, but I usually use the command line because it can be easier to work with
if further debugging is necessary.

zenmodeler run --device=Netbotz01

2. Execute the following snippet in zendmd.

device = find("Netbotz01")
print device.temp_sensor_count

You should see 14 printed as the number of temperature sensors.

Change the Device Overview

The next step will be to show the number of temperature sensors to users of the web interface. We’ll replace the
Memory/Swap field in the top-left box of the device overview page with the count of temperature sensors.

Follow these steps to customize the device Overview page.

1. Create a directory to store our ZenPack’s JavaScript.

34 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

mkdir -p $ZP_DIR/resources

2. Create $ZP_DIR/resources/device.js with the following contents.

Ext.onReady(function() {
var DEVICE_OVERVIEW_ID = 'deviceoverviewpanel_summary';
Ext.ComponentMgr.onAvailable(DEVICE_OVERVIEW_ID, function(){

var overview = Ext.getCmp(DEVICE_OVERVIEW_ID);
overview.removeField('memory');

overview.addField({
name: 'temp_sensor_count',
fieldLabel: _t('# Temperature Sensors')

});
});

});

1. Wait for Ext to be ready.

2. Find the overview summary panel (top-left on Overview page)

3. Remove the memory field.

4. Add our temp_sensor_count field.

Zenoss uses ExtJS as its JavaScript framework. You can find more in ExtJS’s documentation about manipulating
objects in this way.

Test the Device Overview

That’s it. We can restart Zope and navigate to our NetBotz device’s overview page in the web interface. You should
see # Temperature Sensors label with a value of 14 at the bottom of the top-left panel.

4.4.4 Component Modeling

This section will cover creation of a custom Component subclass, creation of a relationship to our NetBotDevice class,
and modeling of the components to fill the relationship.

In the Device Modeling section we added a temp_sensor_count attribute to our NetBotz devices. This isn’t very useful.
It would be more useful to monitor the temperature being reported by each of these sensors. So that’s what we’ll do.
Modeling each sensor as a component allows Zenoss to automatically discover and monitor sensors regardless of how
many a particular device has.

Find Temperature Sensor Attributes

In the Device Modeling section we used smidump to extract temperature sensor information from NETBOTZV2-MIB.
This will be even more applicable as we decide what attributes and metrics are available on each sensor. Let’s use
smidump and snmpwalk for a refresher on what’s available.

Find temperature information in NETBOTZV2-MIB using the following command.

smidump -f identifiers /usr/share/snmp/mibs/NETBOTZV2-MIB.mib | egrep -i temp

You should see the following in the output:

4.4. Monitoring an SNMP Device 35

ZenPack SDK Documentation, Release 2.1.1

NETBOTZV2-MIB tempSensorTable table 1.3.6.1.4.1.5528.100.4.1.1
NETBOTZV2-MIB tempSensorEntry row 1.3.6.1.4.1.5528.100.4.1.1.1
NETBOTZV2-MIB tempSensorId column 1.3.6.1.4.1.5528.100.4.1.1.1.1
NETBOTZV2-MIB tempSensorValue column 1.3.6.1.4.1.5528.100.4.1.1.1.2
NETBOTZV2-MIB tempSensorErrorStatus column 1.3.6.1.4.1.5528.100.4.1.1.1.3
NETBOTZV2-MIB tempSensorLabel column 1.3.6.1.4.1.5528.100.4.1.1.1.4
NETBOTZV2-MIB tempSensorEncId column 1.3.6.1.4.1.5528.100.4.1.1.1.5
NETBOTZV2-MIB tempSensorPortId column 1.3.6.1.4.1.5528.100.4.1.1.1.6
NETBOTZV2-MIB tempSensorValueStr column 1.3.6.1.4.1.5528.100.4.1.1.1.7
NETBOTZV2-MIB tempSensorValueInt column 1.3.6.1.4.1.5528.100.4.1.1.1.8
NETBOTZV2-MIB tempSensorValueIntF column 1.3.6.1.4.1.5528.100.4.1.1.1.9

Let’s now use snmpwalk to see what these values look like on our NetBotz device.

snmpwalk 172.17.0.1 1.3.6.1.4.1.5528.100.4.1.1.1

You should see a lot of output that begins with the following:

NETBOTZV2-MIB::tempSensorId.21604919 = STRING: nbHawkEnc_1_TEMP
NETBOTZV2-MIB::tempSensorId.1095346743 = STRING: nbHawkEnc_0_TEMP
NETBOTZV2-MIB::tempSensorId.1382714817 = STRING: nbHawkEnc_2_TEMP1
NETBOTZV2-MIB::tempSensorId.1382714818 = STRING: nbHawkEnc_2_TEMP2

Note the 21604919 in the first response. This is the SNMP index of the first temperature sensor, or the first row in the
table. I like to then restrict my snmpwalk results to only show this row with a command like the following.

snmpwalk 172.17.0.1 1.3.6.1.4.1.5528.100.4.1.1.1 | grep "\.21604919 ="

Which will show us the value of each column for that one temperature sensor:

NETBOTZV2-MIB::tempSensorId.21604919 = STRING: nbHawkEnc_1_TEMP
NETBOTZV2-MIB::tempSensorValue.21604919 = INTEGER: 265
NETBOTZV2-MIB::tempSensorErrorStatus.21604919 = INTEGER: normal(0)
NETBOTZV2-MIB::tempSensorLabel.21604919 = STRING: Temperature
NETBOTZV2-MIB::tempSensorEncId.21604919 = STRING: nbHawkEnc_1
NETBOTZV2-MIB::tempSensorPortId.21604919 = STRING:
NETBOTZV2-MIB::tempSensorValueStr.21604919 = STRING: 26.500000
NETBOTZV2-MIB::tempSensorValueInt.21604919 = INTEGER: 26
NETBOTZV2-MIB::tempSensorValueIntF.21604919 = INTEGER: 79

Now we have everything we should need to make decisions about what attributes we should model for our sensors and
which would better be collected as datasources to have thresholds applied and plotted over time on graphs.

My initial thoughts would be to model the following as attributes.

• tempSensorId

• tempSensorEncId (enclosure ID)

• tempSensorPortId

I would then want to collect tempSensorValueStr as a datasource because it offers the best precision. Zenoss is capable
of handling numeric strings so we don’t have to collect tempSensorValue and divide it by 10 like other systems might.

Create a Component Subclass

Use the following steps to create a NetBotzTemperatureSensor class with the attributes discovered above.

36 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

1. Update $ZP_DIR/zenpack.yaml to include the following NetBotzTemperatureSensor entry in the classes
section, and the new class_relationships section.

classes:
NetBotzDevice:

base: [zenpacklib.Device]
label: NetBotz
properties:

temp_sensor_count:
type: int

NetBotzTemperatureSensor:
base: [zenpacklib.Component]
label: Temperature Sensor
properties:

enclosure:
label: Enclosure

port:
label: Port

class_relationships:
- NetBotzDevice 1:MC NetBotzTemperatureSensor

1. It’s important to pick class names that will be unique. The best practice is to use a short prefix based on
the ZenPack’s name followed by the type of thing the class represents as is being done here.

2. Both of the new properties should be strings. Since string is the default type, we don’t need to specify it.
This just leaves the label.

Note: Despite noting above that we always wanted to model the tempSensorId attribute, we aren’t adding
an attribute for it here. This is because DeviceComponent already has both an id and title attribute that
wherein we can store the value of tempSensorId.

3. The class_relationships section is very important. We could never have any temperature sensors in the sys-
tem if we didn’t relate them to something else. The 1:MC between the two class names describes the type
of relationship. Specifically it says that one NetBotzDevice can contain many NetBotzTemperatureSensor
objects. See Relationships for more information.

Test TemperatureSensor Class

With our component class defined and relationships setup we can use zendmd to make sure we didn’t make any
mistakes. Execute the following snippet in zendmd.

from ZenPacks.training.NetBotz.NetBotzTemperatureSensor import
→˓NetBotzTemperatureSensor

sensor = NetBotzTemperatureSensor('test_sensor_01')
device = find("Netbotz01")
device.netBotzTemperatureSensors._setObject(sensor.id, sensor)
sensor = device.netBotzTemperatureSensors._getOb(sensor.id)
print sensor
print sensor.device()

You’ll most likely get the following error when executing the above snippet:

4.4. Monitoring an SNMP Device 37

ZenPack SDK Documentation, Release 2.1.1

Traceback (most recent call last):
File "<console>", line 1, in <module>

AttributeError: netBotzTemperatureSensors

This error is indicating that we have no netBotzTemperatureSensors relationship on the device object. This would
seemingly make no sense because we just added it. The key here is that existing objects like the Netbotz01 device
don’t automatically get new relationships. We have to either delete the device and add it again, or execute the following
in zendmd to create the newly- defined relationship.

device.buildRelations()
commit()

Now you can go back and run the original snippet again. You should see the name of the sensor and device objects
printed if everything worked as planned.

Update the Modeler Plugin

As with the NetBotzDevice class, the next step after creating our model class is to populate it with a modeler plugin.
We could create a new modeler plugin to only capture the temperature sensor components, but we’ll update the NetBotz
modeler plugin we previously created to model the sensors instead.

1. Edit $ZP_DIR/modeler/plugins/training/snmp/NetBotz.py and replace its contents with the
following.

from Products.DataCollector.plugins.CollectorPlugin import (
SnmpPlugin, GetTableMap,
)

class NetBotz(SnmpPlugin):
relname = 'netBotzTemperatureSensors'
modname = 'ZenPacks.training.NetBotz.NetBotzTemperatureSensor'

snmpGetTableMaps = (
GetTableMap(

'tempSensorTable', '1.3.6.1.4.1.5528.100.4.1.1.1', {
'.1': 'tempSensorId',
'.5': 'tempSensorEncId',
'.6': 'tempSensorPortId',
}

),
)

def process(self, device, results, log):
temp_sensors = results[1].get('tempSensorTable', {})

rm = self.relMap()
for snmpindex, row in temp_sensors.items():

name = row.get('tempSensorId')
if not name:

log.warn('Skipping temperature sensor with no name')
continue

rm.append(self.objectMap({
'id': self.prepId(name),
'title': name,

(continues on next page)

38 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

'snmpindex': snmpindex.strip('.'),
'enclosure': row.get('tempSensorEncId'),
'port': row.get('tempSensorPortId'),
}))

return rm

Let’s take a closer look at how we changed the modeler plugin.

1. We added relname and modname as class attributes.

These two settings control the meta-data that will automatically be set when the self.relMap and
self.objectMap methods are called in the process method.

The target relname we should use depends on a couple of things. First, all leading uppercase letters of the
class name will be converted to lowercase, i.e. NetBotzTemperatureSensor becomes netBotzTemperature-
Sensor. Second, the letter “s” is added to the end if it is a to-many relationship, i.e. netBotzTemperature-
Sensor becomes netBotzTemperatureSensors.

Setting relname to netBotzTemperatureSensors will cause the self.relMap call to create a Rela-
tionshipMap that will be applied to the netBotzTemperatureSensors relationship defined on the NetBotzDe-
vice object.

Setting modname to ZenPacks.training.NetBotz.TemperatureSensor will cause the
self.objectMap calls in the process method to create ObjectMap instances that will be turned into instances
of our TemperatureSensor class.

2. We’re now requesting the tempSensorEncId and tempSensorPortId columns be returned in the SNMP table
request results. We’ll use these to populate their corresponding fields on the TemperatureSensor class.

3. Most of the process method has been changed.

We’re now creating a RelationshipMap and appending an ObjectMap to it for each temperature sensor in
the results. We use the self.relMap and self.objectMap utility methods to make this easier.

2. Restart Zope and zenhub to load the changed module.

serviced service restart zope
serviced service restart zenhub

Test the Modeler Plugin

We already added the training.snmp.NetBotz modeler plugin the the /NetBotz device class in an earlier exercise. So
we only need to run zenmodeler to test the temperature sensor modeling updates.

1. Run zenmodeler run --device=Netbotz01

We should see Changes in configuration applied near the end of zenmodeler’s output. The changes referred to
should be 14 temperature sensor objects being created and added to the device’s netBotzTemperatureSensors
relationship.

2. Check the Netbotz01 device in the web interface. The temperature sensors should now be visible.

4.4.5 Component Monitoring

This section covers monitoring component metrics using SNMP. I assume that you’ve completed the Component
Modeling steps and now have temperature sensor components modeled for the NetBotz device. Currently there will

4.4. Monitoring an SNMP Device 39

ZenPack SDK Documentation, Release 2.1.1

be no graphs for these temperature sensors.

We will add collection, thresholding and graphing for the temperature monitored by each sensor.

Find the SNMP OID

In the Component Modeling section we used smidump and snmpwalk to find which values would be useful to model,
and which would be useful to monitor. We found tempSensorValue to be the best OID to use for monitoring a sensor’s
current temperature.

Let’s use snmpwalk again to see what tempSensorValue looks like for all of the sensors on our NetBotz device.

snmpwalk 172.17.0.1 NETBOTZV2-MIB::tempSensorValueStr

This gives of the current temperature (in celsius) for each sensor:

NETBOTZV2-MIB::tempSensorValueStr.21604919 = STRING: 26.500000
NETBOTZV2-MIB::tempSensorValueStr.1095346743 = STRING: 27.000000
NETBOTZV2-MIB::tempSensorValueStr.1382714817 = STRING: 22.100000
NETBOTZV2-MIB::tempSensorValueStr.1382714818 = STRING: 21.100000
NETBOTZV2-MIB::tempSensorValueStr.1382714819 = STRING: 19.600000
NETBOTZV2-MIB::tempSensorValueStr.1382714820 = STRING: 19.900000
NETBOTZV2-MIB::tempSensorValueStr.1382714833 = STRING: 20.500000
NETBOTZV2-MIB::tempSensorValueStr.1382714834 = STRING: 20.100000
NETBOTZV2-MIB::tempSensorValueStr.1382714865 = STRING: 19.700000
NETBOTZV2-MIB::tempSensorValueStr.1382714866 = STRING: 20.500000
NETBOTZV2-MIB::tempSensorValueStr.1382714867 = STRING: 20.100000
NETBOTZV2-MIB::tempSensorValueStr.1382714868 = STRING: 20.000000
NETBOTZV2-MIB::tempSensorValueStr.2169088567 = STRING: 26.600000
NETBOTZV2-MIB::tempSensorValueStr.3242830391 = STRING: 27.400000

As we go on to add a monitoring template below, we’ll need to know what OID to poll to collect this value. The key
to determining this for components with an snmpindex attribute like TemperatureSensor has is to find the OID for the
values above and remove the SNMP index from the end of it. Let’s use snmptranslate to do this.

snmptranslate -On NETBOTZV2-MIB::tempSensorValueStr

This results in the following output:

.1.3.6.1.4.1.5528.100.4.1.1.1.7

This OID (minus the leading .) is what we’ll need.

Add a Monitoring Template

It is important to get the monitoring template’s name correct when adding a monitoring template that will be used for
components. A Zenoss administrator has no control over which monitoring templates will be bound to a component
like they do with monitoring templates that are bound to devices.

How do we know what to name a monitoring template that should be used to monitor our NetBotzTemperatureSensor
components? By default the monitoring template should be named the same as the component class’ label property
with all spaces removed. In the Component Modeling section we set the label for the NetBotzTemperatureSensor class
to be Temperature Sensor. This means out monitoring template should be named TemperatureSensor.

If you’d rather specify the monitoring template’s name, or the names of multiple monitoring templates to use for your
component class, you can do so by specifying an explicit monitoring_templates value for it in zenpack.yaml.

Perform the following steps to create our component’s monitoring template.

40 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

1. Navigate to Advanced -> Monitoring Templates.

2. Add a template.

1. Click the + in the bottom-left of the template list.

2. Set Name to TemperatureSensor

3. Set Template Path to /NetBotz

4. Click SUBMIT

3. Add a data source.

1. Click the + at the top of the Data Sources panel.

2. Set Name to tempSensorValueStr

3. Set Type to SNMP

4. Click SUBMIT

5. Double-click to edit the tempSensorValueStr data source.

6. Set OID to 1.3.6.1.4.1.5528.100.4.1.1.1.7

7. Click SAVE

5. Add a threshold.

1. Click the + at the top of the Thresholds panel.

2. Set Name to high temperature

3. Set Type to MinMaxThreshold

4. Click ADD

5. Double-click to edit the high temperature threshold.

6. Move the datapoint to the list on the right.

7. Set Maximum Value to 32

8. Set Event Class to /Environ

9. Click SAVE

6. Add a graph.

1. Click the + at the top of the Graph Definitions panel.

2. Set Name to Temperature

3. Click SUBMIT

4. Double-click to edit the Temperature graph.

5. Set Units to degrees c.

6. Click SUBMIT

7. Add a graph point.

1. Click to select the Temperature graph.

2. Choose Manage Graph Points from the gear menu.

3. Choose Data Point from the + menu.

4. Choose tempSensorValueStr then click SUBMIT

4.4. Monitoring an SNMP Device 41

ZenPack SDK Documentation, Release 2.1.1

5. Double-click to edit the tempSensorValueStr graph point.

6. Set Name to Temperature

7. Set Format to %7.2lf

8. Click SAVE then SAVE again.

Note: You can also define monitoring templates in zenpack.yaml instead of creating them through the web interface.
See Monitoring Templates for more information.

Test Monitoring Template

You can now refer back to the Test Monitoring Template section of Device Monitoring for using zenperfsnmp to test
the data point collection aspect of your monitoring template.

You can verify that your monitoring template is getting bound to each temperature sensor properly by navigating to one
of the temperature sensors in the web interface and choosing Templates from it’s Display drop-down box. Furthermore,
you can verify that your Temperature graph is shown when choosing Graphs from the temperature sensor’s Display
drop-down.

4.4.6 SNMP Traps

This section covers how to handle SNMP traps.

Zenoss will accept SNMP traps from your devices as soon as you configure those devices to send traps to your Zenoss
server. The zentrap daemon will listen to the standard SNMP trap port of 162/udp and create an event for every trap
that it receives.

However, without you giving Zenoss more information about the contents of those traps, the events will contain
numeric OIDs and be nearly impossible for a human to decipher.

Importing MIBs

Let’s import the NETBOTZV2-MIB that we’ve been working with through these examples.

1. Copy the MIB to /z so containers can read it.

cp /usr/share/snmp/mibs/NETBOTZV2-MIB.mib /z

2. Import the MIB file.

zenmib run --keepMiddleZeros NETBOTZV2-MIB.mib

From which we should get the following output:

Found 1 MIBs to import.
Unable to find a file that defines SNMPv2-SMI
Unable to find a file that defines SNMPv2-TC
Parsed 214 nodes and 256 notifications from NETBOTZV2-MIB
Loaded MIB NETBOTZV2-MIB into the DMD
Loaded 1 MIB file(s)

3. Add the imported MIB to the NetBotz ZenPack.

42 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

1. Navigate to Advanced -> MIBs in the web interface.

2. Select NETBOTZV2-MIB.

3. Choose Add to ZenPack from the gear menu at the bottom of the list.

4. Choose the ZenPacks.training.NetBotz then click SUBMIT.

Simulating SNMP Traps

To more easily configure and test Zenoss’ trap handling, it’s useful to know how to simulate SNMP traps. The
alternative is breaking your real devices in various ways and hoping to be able to get the device to send all of the traps
you need. This isn’t always possible.

Let’s start by picking an SNMP trap to simulate.

1. Navigate to Advanced -> MIBs in the web interface.

2. Choose NETBOTZV2-MIB from the list of MIBs.

3. Choose Traps from the drop-down box in the middle of the right panel.

4. Choose netBotzTempTooHigh in the list of traps.

We’ll now see information about this trap in the bottom-right panel. The first thing to note is the OID. This is all we
need to get started.

Send a Simple Trap

Use the following steps to get your feet wet sending a basic trap.

1. Make sure the zentrap service is running.

If you have stopped the zentrap service, or if you have it configured to manual launch mode, you will need to
start it.

serviced service start zentrap

2. Identify the IP address to which traps should be sent to get to zentrap.

serviced does performs port forwarding on the serviced host to route received SNMP traps to the zentrap con-
tainer. We’re going to be sending simulated SNMP traps from the serviced host, and will need to know what
address to send traps to so they’re received by zentrap.

Run the following command to find the address.

sudo iptables -L FORWARD -n | grep 162

This will output something very close to the following:

ACCEPT udp -- 0.0.0.0/0 172.17.0.29 udp dpt:162

We’ll be sending traps to that 172.17.0.29 address. It may be different on your system.

3. Send an SNMP trap.

Run the following snmptrap command on the serviced host.

sudo snmptrap 172.17.0.29 0 NETBOTZV2-MIB::netBotzTempTooHigh

4.4. Monitoring an SNMP Device 43

ZenPack SDK Documentation, Release 2.1.1

4. Find this netBotzTempTooHigh event in web interface’s event console.

Double-click the “snmp trap netBotzTempTooHigh” event in the event console to see its details. Look for the
following details.

• eventClassKey: This should be netBotzTempTooHigh as decoded using the MIB.

• oid: This is the original undecoded OID.

Send a Full Trap

Now that we’ve proved out a simple trap, we should add variable bindings or varbinds to the trap. If you look at the
netBotzTempTooHigh trap in the Zenoss web interface’s MIB explorer again, you’ll see that there’s an extensive list of
Objects associated with the trap definition. These are variable bindings.

A variable binding allows the device sending the SNMP trap to attach additional information to the trap. In this
example, one of the variable bindings for the netBotzTempTooHigh trap is netBotzV2TrapSensorID. This will give us
a way to know which one of the sensors has exceeded it’s high temperature threshold.

1. Run the following snmptrap command.

sudo snmptrap 172.17.0.29 0 NETBOTZV2-MIB::netBotzTempTooHigh \
NETBOTZV2-MIB::netBotzV2TrapSensorID s 'nbHawkEnc_1_TEMP1'

As you can see, this zentrap command starts exactly the same as in the example. We then add the following
three fields.

1. NETBOTZV2-MIB::netBotzV2TrapSensorID (OID)

2. s (type)

3. 'nbHawkEnc_1_TEMP1' (value)

We can continue to add sets of these three parameters to add as many other variable bindings to the trap as we
want.

Note that the only difference between this event and the simple event is the addition of the net-
BotzV2TrapSensorID field. So now you see how Zenoss take the name/value pairs that are the SNMP trap’s
variable bindings and turn them into name/value pairs within the resulting event.

Mapping SNMP Trap Events

Now that we’re able to create SNMP traps anytime we want, it’s time to use Zenoss’ event mapping system to make
them more useful. The most important field on an incoming event when it comes to mapping is the eventClassKey
field. Fortunately for us, SNMP traps get that great eventClassKey set that gives us a big head start.

1. Map the event.

1. Navigate to Events in the web interface.

2. Select the netBotzTempTooHigh event you just created.

3. Click the toolbar button that looks like a hierarchy. If you hover over it, the tooltip will say Reclassify an
event.

4. Choose the /Environ event class then click SUBMIT

Now the next time a netBotzTempTooHigh trap is received it will be put into the /Environ event class instead
of /Unknown.

2. Enrich the event.

44 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

1. Click the Go to new mapping link to navigate to the new mapping.

2. Click Edit in the left navigation pane.

3. Set Transform to the following:

evt.component = getattr(evt, 'netBotzV2TrapSensorID', '')

This will use the name of the sensor as described by the netBotzV2TrapSensorID variable binding as the
event’s component field.

There are endless possibilities of what you could do within the transform for this event and others. This is just one
practical example.

4.5 Monitoring an HTTP API

This tutorial will describe an efficient approach to monitoring data via a HTTP API. We’ll start by using zenpack.yaml
to extend the Zenoss object model. Then we’ll use a Python modeler plugin to fill out the object model. Then we’ll
use PythonCollector to monitor for events, datapoints and even to update the model.

For purposes of this guide we’ll be building a ZenPack that monitors the weather using The Weather Channel’s Weather
Underground API.

Note: This tutorial assumes your system is already setup as described in Development Environment and Getting
Started.

4.5.1 Weather Underground API

The Weather Underground provides an API that can be used to get all sorts of data related to the weather. Before you
can use most endpoints on the API you must first create an account. Fortunately you can get a Developer account with
all of the bells and whistles for free by signing up at http://www.wunderground.com/weather/api. So go sign up and
get your API key. You’ll need it for the rest of this exercise.

We’ll be using the following APIs for this exercise.

1. AutoComplete

2. Alerts

3. Conditions

AutoComplete API

Both the Alerts and Conditions APIs require that you query for a specific location. It can be hard to know what the
name or code for a location is without doing some manual research. That’s where the AutoComplete API comes in.
You can provide a reasonable name for a location and it will return a list of possible matches along with a unique link
for that location.

We’ll use the AutoComplete API during modeling so that the Zenoss user can enter nearly any city or county name
then let Zenoss do the work of converting that into the link that we’ll subsequently use to query for weather alerts and
conditions.

Here’s an example query for Austin, TX:

http://autocomplete.wunderground.com/aq?query=Austin%2C%20TX

4.5. Monitoring an HTTP API 45

http://www.wunderground.com/weather/api
http://www.wunderground.com/weather/api/d/docs?d=autocomplete-api
http://www.wunderground.com/weather/api/d/docs?d=data/alerts
http://www.wunderground.com/weather/api/d/docs?d=data/conditions

ZenPack SDK Documentation, Release 2.1.1

Note: “Austin%2C%20TX” is the URL encoded version of “Austin, TX”. We will url encode this data when we work
with it.

Here’s the response to that example query for Austin, TX:

{
"RESULTS": [

{
"c": "US",
"l": "/q/zmw:78701.1.99999",
"lat": "30.271158",
"ll": "30.271158 -97.741699",
"lon": "-97.741699",
"name": "Austin, Texas",
"type": "city",
"tz": "America/Chicago",
"tzs": "CDT",
"zmw": "78701.1.99999"

}
]

}

There are a few things to note about this request and response. The first is that we didn’t need to use our API key.
This is because the AutoComplete API doesn’t require an API key. The second is that there’s only a single result for
Austin, TX. The third is the l value which is the unique link to Austin, TX that we can use when accessing the other
API endpoints such as Alerts and Conditions.

Alerts API

The Alerts API provides information about severe weather alerts such as tornado warnings, flood warnings and other
special weather statements. We’ll be collecting these alerts to create corresponding Zenoss events. This way operators
can know when severe weather may be impacting areas of concern.

Here’s an example query for alerts in Austin, TX:

http://api.wunderground.com/api/api_key/alerts/q/zmw:78701.1.99999.
json

Note: Note how the URL ends with /alerts/<link>.json using the l link value from the AutoComplete query for Austin,
TX above.

Here’s the relevant portion of the response to an alerts query. Of course Austin doesn’t have severe weather so we’ll
be looking at Des Moines alerts instead:

{
"alerts": [

{
"date": "1:07 PM CDT on June 16, 2014",
"date_epoch": "1402942020",
"description": "Severe Thunderstorm Warning",
"expires": "2:15 PM CDT on June 16, 2014",
"expires_epoch": "1402946100",
"message": "\nThe National Weather Service in Des Moines has issued

→˓a\n\n* Severe Thunderstorm Warning for...\n southern Crawford County in west
→˓central Iowa...\n western Carroll County in west central Iowa...\n northwestern
→˓Audubon County in west central Iowa...\n\n* until 215 PM CDT\n\n* at 107 PM CDT...a
→˓severe thunderstorm was located 6 miles southwest\n of Earling...or 22 miles
→˓southwest of Denison...moving northeast at\n 25 mph.\n\n Hazard...half dollar size
→˓hail. \n\n Source...radar indicated. \n\n Impact...damage to vehicles is expected.
→˓\n\n* Locations impacted include...\n Denison...Manning...Dunlap...Manilla...Dow
→˓City...Arcadia...Vail...\n Templeton...Westside...Halbur...Arion...gray...Buck
→˓Grove...\n Aspinwall...Denison Municipal Airport and Manning Municipal\n Airport.
→˓\n\nPrecautionary/preparedness actions...\n\nA Tornado Watch remains in effect for
→˓the warned area. Tornadoes can\ndevelop quickly from severe thunderstorms. Although
→˓a tornado is not\nimmediately likely...if one is spotted...act quickly and move to
→˓a\nplace of safety inside a sturdy structure...such as a basement or\nsmall
→˓interior room.\n\nFor your protection move to an interior room on the lowest floor
→˓of a\nbuilding.\n\nTo report severe weather contact your nearest law enforcement
→˓agency.\nThey will send your report to the National Weather Service office in\nDes
→˓Moines .\n\n\nA Tornado Watch remains in effect until 800 PM CDT Monday evening
→˓for\nnorthwest Iowa.\n\nLat...Lon 4219 9506 4176 9481 4173 9509 4186 9510\n 4186
→˓9564 4192 9567 4195 9568\ntime...Mot...loc 1807z 236deg 24kt 4172 9552 \n\nHail...1.
→˓25in\nwind...<50mph\n\n\nRev\n\n\n",

(continues on next page)

46 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

"phenomena": "SV",
"significance": "W",
"type": "WRN",
"tz_long": "America/Chicago",
"tz_short": "CDT"

}
]

}

It’s easy to imagine turning this alert into a Zenoss event. We’ll see how to do this a bit later. The Alerts API
documentation has a link to a document that describes what the phenomena, significance, and type values represent.

Conditions API

The Conditions API provides information about current weather conditions for a given location. The Conditions API
is used in exactly the same way as the Alerts API, and accepts the same link to specify the location. There’s a lot of
numeric data that would be useful to graph and threshold as Zenoss datapoints.

Here’s an example query for conditions in Austin, TX:

http://api.wunderground.com/api/api_key/conditions/q/zmw:78701.1.
99999.json

Here’s the relevant portion of the response to a conditions query:

{
"current_observation": {

"UV": "1",
"dewpoint_c": 11,
"dewpoint_f": 51,
"dewpoint_string": "51 F (11 C)",
"display_location": {

"city": "San Francisco",
"country": "US",
"country_iso3166": "US",
"elevation": "47.00000000",
"full": "San Francisco, CA",
"latitude": "37.77500916",
"longitude": "-122.41825867",
"magic": "1",
"state": "CA",
"state_name": "California",
"wmo": "99999",
"zip": "94101"

},
"estimated": {},
"feelslike_c": "13.9",
"feelslike_f": "57.0",
"feelslike_string": "57.0 F (13.9 C)",
"forecast_url": "http://www.wunderground.com/US/CA/San_Francisco.html",
"heat_index_c": "NA",
"heat_index_f": "NA",
"heat_index_string": "NA",
"history_url": "http://www.wunderground.com/weatherstation/WXDailyHistory.asp?

→˓ID=KCASANFR58",
"icon": "partlycloudy",

(continues on next page)

4.5. Monitoring an HTTP API 47

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

"icon_url": "http://icons.wxug.com/i/c/k/partlycloudy.gif",
"image": {

"link": "http://www.wunderground.com",
"title": "Weather Underground",
"url": "http://icons.wxug.com/graphics/wu2/logo_130x80.png"

},
"local_epoch": "1402931138",
"local_time_rfc822": "Mon, 16 Jun 2014 08:05:38 -0700",
"local_tz_long": "America/Los_Angeles",
"local_tz_offset": "-0700",
"local_tz_short": "PDT",
"nowcast": "",
"ob_url": "http://www.wunderground.com/cgi-bin/findweather/getForecast?

→˓query=37.773285,-122.417725",
"observation_epoch": "1402931132",
"observation_location": {

"city": "SOMA - Near Van Ness, San Francisco",
"country": "US",
"country_iso3166": "US",
"elevation": "49 ft",
"full": "SOMA - Near Van Ness, San Francisco, California",
"latitude": "37.773285",
"longitude": "-122.417725",
"state": "California"

},
"observation_time": "Last Updated on June 16, 8:05 AM PDT",
"observation_time_rfc822": "Mon, 16 Jun 2014 08:05:32 -0700",
"precip_1hr_in": "0.00",
"precip_1hr_metric": " 0",
"precip_1hr_string": "0.00 in (0 mm)",
"precip_today_in": "0.00",
"precip_today_metric": "0",
"precip_today_string": "0.00 in (0 mm)",
"pressure_in": "29.89",
"pressure_mb": "1012",
"pressure_trend": "+",
"relative_humidity": "81%",
"solarradiation": "--",
"station_id": "KCASANFR58",
"temp_c": 13.9,
"temp_f": 57.0,
"temperature_string": "57.0 F (13.9 C)",
"visibility_km": "16.1",
"visibility_mi": "10.0",
"weather": "Scattered Clouds",
"wind_degrees": 238,
"wind_dir": "WSW",
"wind_gust_kph": 0,
"wind_gust_mph": 0,
"wind_kph": 4.8,
"wind_mph": 3.0,
"wind_string": "From the WSW at 3.0 MPH",
"windchill_c": "NA",
"windchill_f": "NA",
"windchill_string": "NA"

}
}

48 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

4.5.2 Create the ZenPack

The first thing we’ll need to do is create the Weather Underground ZenPack. We’ll use zenpacklib to create this
ZenPack from the command line using the following steps. These commands should be run as the zenoss user.

cd /z
zenpacklib --create ZenPacks.training.WeatherUnderground

You should see output similar to the following. Most importantly that zenpack.yaml file is being created.

Creating source directory for ZenPacks.training.WeatherUnderground:
- making directory: ZenPacks.training.WeatherUnderground/ZenPacks/training/

→˓WeatherUnderground
- creating file: ZenPacks.training.WeatherUnderground/setup.py
- creating file: ZenPacks.training.WeatherUnderground/MANIFEST.in
- creating file: ZenPacks.training.WeatherUnderground/ZenPacks/__init__.py
- creating file: ZenPacks.training.WeatherUnderground/ZenPacks/training/__init__.py
- creating file: ZenPacks.training.WeatherUnderground/ZenPacks/training/

→˓WeatherUnderground/datasources/__init__.py
- creating file: ZenPacks.training.WeatherUnderground/ZenPacks/training/

→˓WeatherUnderground/thresholds/__init__.py
- creating file: ZenPacks.training.WeatherUnderground/ZenPacks/training/

→˓WeatherUnderground/parsers/__init__.py
- creating file: ZenPacks.training.WeatherUnderground/ZenPacks/training/

→˓WeatherUnderground/migrate/__init__.py
- creating file: ZenPacks.training.WeatherUnderground/ZenPacks/training/

→˓WeatherUnderground/resources/__init__.py
- creating file: ZenPacks.training.WeatherUnderground/ZenPacks/training/

→˓WeatherUnderground/modeler/__init__.py
- creating file: ZenPacks.training.WeatherUnderground/ZenPacks/training/

→˓WeatherUnderground/tests/__init__.py
- creating file: ZenPacks.training.WeatherUnderground/ZenPacks/training/

→˓WeatherUnderground/libexec/__init__.py
- creating file: ZenPacks.training.WeatherUnderground/ZenPacks/training/

→˓WeatherUnderground/modeler/plugins/__init__.py
- creating file: ZenPacks.training.WeatherUnderground/ZenPacks/training/

→˓WeatherUnderground/lib/__init__.py
- creating file: ZenPacks.training.WeatherUnderground/ZenPacks/training/

→˓WeatherUnderground/__init__.py
- creating file: ZenPacks.training.WeatherUnderground/ZenPacks/training/

→˓WeatherUnderground/zenpack.yaml

Define zProperties and Classes

The zenpack.yaml that’s created within the ZenPack source directory above contains only the absolute minimum to be
a valid YAML file. Let’s take a look at its current contents.

1. First let’s set a couple of environment variables to reduce some typing.

export ZP_TOP_DIR=/z/ZenPacks.training.WeatherUnderground
export ZP_DIR=$ZP_TOP_DIR/ZenPacks/training/WeatherUnderground

2. Now let’s look at the contents of zenpack.yaml.

cd $ZP_DIR
cat zenpack.yaml

4.5. Monitoring an HTTP API 49

ZenPack SDK Documentation, Release 2.1.1

You should only see the following line.

name: ZenPacks.training.WeatherUnderground

3. Replace the contents of zenpack.yaml with the following.

name: ZenPacks.training.WeatherUnderground

zProperties:
DEFAULTS:
category: Weather Underground

zWundergroundAPIKey: {}
zWundergroundLocations:

type: lines
default:
- Austin, TX
- San Jose, CA
- Annapolis, MD

classes:
WundergroundDevice:
base: [zenpacklib.Device]
label: Weather Underground API

WundergroundLocation:
base: [zenpacklib.Component]
label: Location

properties:
country_code:
label: Country Code

timezone:
label: Time Zone

api_link:
label: API Link
grid_display: False

class_relationships:
- WundergroundDevice 1:MC WundergroundLocation

You can see this YAML defines the following important aspects of our ZenPack.

1. The name field is mandatory. It must match the name of the ZenPack’s source directory.

2. The zProperties field contains configuration properties we want the ZenPack to add to the Zenoss
system when it is installed.

Note that DEFAULTS is not added as configuration property. It is a special value that will cause
it’s properties to be added as the default for all of the other listed zProperties. Specifically in this
case it will cause the category of zWundergroundAPIKey and zWundergroundLocations to be set to
Weather Underground. This is a convenience to avoid having to repeatedly type the category
for each added property.

The zWundergroundAPIKey zProperty has an empty dictionary ({}). This is because we want it to
be a string type with an empty default value. These happen to be the defaults so they don’t need to
be specified.

50 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

The zWundergroundLocations property uses the lines type which allows the user to specify multiple
lines of text. Each line will be turned into an element in a list which you can see is also how the
default value is specified. The idea here is that unless the user configures otherwise, we will default
to monitoring weather alerts and conditions for Austin, TX, San Jose, CA, and Annapolis, MD.

3. The classes field contains each of the object classes we want the ZenPack to add.

In this case we’re adding WundergroundDevice which because base is set to Device will be a subclass
or specialization of the standard Zenoss device type. We’re also adding WundergroundLocation
which because base is set to Component will be a subclass of the standard component type.

The label for each is simply the human-friendly name that will be used to refer to the resulting
objects when they’re seen in the Zenoss web interface.

The properties for WundergroundLocation are extra bits of data we want to model from the API
and show to the user in the web interface. order will be used to show the properties in the defined
order, and setting grid_display to false for api_link will allow it be shown in the details panel of the
component, but not in the component grid.

4. class_relationships uses a simple syntax to define a relationship between WundergroundDevice and
WundergroundLocation. Specifically it is saying that each (1) WundergroundDevice object can con-
tain many (MC) WundergroundLocation objects.

Install the ZenPack

Creating the ZenPack with zenpacklib doesn’t install the ZenPack for you. So you must now install the ZenPack in
developer (–link) mode.

1. Run the following command to install the ZenPack in developer mode.

zenpack --link --install $ZP_TOP_DIR

4.5.3 Create a Modeler Plugin

Now that we’ve created a WundergroundLocation component type, we need to create a modeler plugin to create
locations in the database. We’re dealing with a custom HTTP API, so we’ll want to base our modeler plugin on the
PythonPlugin class. This gives us full control of both the collection and processing of the modeling data.

The modeler plugin will pass each location the user has specified in the zWundergroundLocations property to Weather
Underground’s AutoComplete API to retrieve some basic information about the location, and very importantly the l
(link) that uniquely identifies the location. The link will later be used to monitor the alerts and conditions for the
location.

Use the following steps to create our modeler plugin.

1. Make the directory that will contain our modeler plugin.

mkdir -p $ZP_DIR/modeler/plugins/WeatherUnderground

2. Create __init__.py or dunder-init files.

touch $ZP_DIR/modeler/__init__.py
touch $ZP_DIR/modeler/plugins/__init__.py
touch $ZP_DIR/modeler/plugins/WeatherUnderground/__init__.py

These empty __init__.py files are mandatory if we ever expect Python to import modules from these direc-
tories.

4.5. Monitoring an HTTP API 51

ZenPack SDK Documentation, Release 2.1.1

3. Create $ZP_DIR/modeler/plugins/WeatherUnderground/Locations.py with the following
contents.

"""Models locations using the Weather Underground API."""

stdlib Imports
import json
import urllib

Twisted Imports
from twisted.internet.defer import inlineCallbacks, returnValue
from twisted.web.client import getPage

Zenoss Imports
from Products.DataCollector.plugins.CollectorPlugin import PythonPlugin

class Locations(PythonPlugin):

"""Weather Underground locations modeler plugin."""

relname = 'wundergroundLocations'
modname = 'ZenPacks.training.WeatherUnderground.WundergroundLocation'

requiredProperties = (
'zWundergroundAPIKey',
'zWundergroundLocations',
)

deviceProperties = PythonPlugin.deviceProperties + requiredProperties

@inlineCallbacks
def collect(self, device, log):

"""Asynchronously collect data from device. Return a deferred."""
log.info("%s: collecting data", device.id)

apikey = getattr(device, 'zWundergroundAPIKey', None)
if not apikey:

log.error(
"%s: %s not set. Get one from http://www.wunderground.com/weather/

→˓api",
device.id,
'zWundergroundAPIKey')

returnValue(None)

locations = getattr(device, 'zWundergroundLocations', None)
if not locations:

log.error(
"%s: %s not set.",
device.id,
'zWundergroundLocations')

returnValue(None)

rm = self.relMap()

for location in locations:

(continues on next page)

52 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

try:
response = yield getPage(

'http://autocomplete.wunderground.com/aq?query={query}'
.format(query=urllib.quote(location)))

response = json.loads(response)
except Exception, e:

log.error(
"%s: %s", device.id, e)

returnValue(None)

for result in response['RESULTS']:
rm.append(self.objectMap({

'id': self.prepId(result['zmw']),
'title': result['name'],
'api_link': result['l'],
'country_code': result['c'],
'timezone': result['tzs'],
}))

returnValue(rm)

def process(self, device, results, log):
"""Process results. Return iterable of datamaps or None."""
return results

While it looks like there’s quite a bit of code in this modeler plugin, a lot of that is the kind of error handling
you’d want to do in a real modeler plugin. Let’s walk through some of the highlights.

1. Imports

We import the standard json module because the Weather Underground API returns json-encoded re-
sponses that we’ll want to convert to Python data structures.

We import inlineCallBacks and returnValue because the PythonPlugin.collect method should return a De-
ferred so that it can be executed asynchronously by zenmodeler. You don’t need to use inlineCallbacks, but
I find it to be a nice way to make Twisted’s asynchronous callback-based code look more procedural and
be easier to understand. I recommend Dave Peticolas’ excellent Twisted Introduction for learning more
about Twisted. inlineCallback is covered in part 17.

We also import Twisted’s getPage function. This is an extremely easy to use function for asynchronously
fetching a URL.

We import PythonPlugin because it will be the base class for our modeler plugin class. It’s the best choice
for modeling data from HTTP APIs.

2. Locations Class

Remember that your modeler plugin’s class name must match the filename or Zenoss won’t be able to load
it. So because we named the file Locations.py we must name the class Locations.

3. relname and modname Properties

These should be defined in this way for modeler plugins that fill a single relationship like we’re doing in
this case. It states that this modeler plugin creates objects in the device’s wundergroundLocations rela-
tionship, and that it creates objects of the ZenPacks.training.WeatherUnderground.WundergroundLocation
type within this relationship.

4.5. Monitoring an HTTP API 53

http://krondo.com/?page_id=1327

ZenPack SDK Documentation, Release 2.1.1

Where does relname come from? It comes from the WundergroundDevice 1:MC
WundergroundLocation relationship we defined in zenpack.yaml. Because it’s a to-many
relationship to the WundergroundLocation type, zenpacklib will name the relationship by lowercasing the
first letter and adding an “s” to the end to make it plural.

Where does modname come from? It will be <name-of-zenpack>.<name-of- class>.
So because we defined the WundergroundLocation class in zenpack.yaml , and the
ZenPack’s name is ZenPacks.training.WeatherUnderground, the modname will be Zen-
Packs.training.WeatherUnderground.WundergroundLocation.

4. deviceProperties Properties

The class’ deviceProperties property provides a way to get additional device properties available to your
modeler plugin’s collect and process methods. The default properties that will be available for a Python-
Plugin are: id, manageIp, _snmpLastCollection, _snmpStatus, and zCollectorClientTimeout. Our modeler
plugin will also need to know what values the user has set for zWundergroundAPIKey and zWunderground-
Locations. So we add those to the defaults.

5. collect Method

The collect method is something PythonPlugin has, but other base modeler plugin types like SnmpPlugin
don’t. This is because you must write the code to collect the data to be processed, and that’s exactly what
you should do in the collect method.

While the collect method can return either normal results or a Deferred, it is highly recommend to re-
turn a Deferred to keep zenmodeler from blocking while your collect method executes. In this ex-
ample we’ve decorated the method with @inlineCallbacks and have returned out data at the end
with returnValue(rm). This causes it to return a Deferred. By decorating the method with
@inlineCallbacks we’re able to make an asynchronous request to the Weather Underground API
with response = yield getPage(...).

The first thing we do in the collect method is log an informational message to let the user know what
we’re doing. This log will appear in zenmodeler.log, or on the console if we run zenmodeler in the
foreground, or in the web interface when the user manually remodels the device.

Next we make sure that the user has configured a value for zWundergroundAPIKey. This isn’t strictly
necessary here because the modeler plugin only uses Weather Underground’s AutoComplete API which
doesn’t require an API key. I put this check here because I didn’t want to get into a situation where the
locations modeled successfully, but then failed to collect because an API key wasn’t set.

Next we make sure that the user as configured at least one location in zWundergroundLocations. This is
mandatory because this controls what locations will be modeled.

Next we create rm which is a common convention we use in modeler plugins and stands for Relation-
shipMap. Because we set the relname and modname class properties this will create a RelationshipMap
with it’s relname and modname set to the same.

Now we iterate through each location making a call to the AutoComplete API for each. For each matching
location in the response we will append an ObjectMap to rm with some key properties set.

• id is mandatory and should be set to a value unique to all components on the device. If you look back
the example AutoComplete response you’ll see that the zmw property is useful for this purpose. Note
that prepId should always be used for id. It will make any string safe to use as a Zenoss id.

• title will default to the value of id if it isn’t set. It’s usually a good idea to explicitly set it as we’re
doing here. It should be a human-friendly label for the component. The location’s name is a good
candidate for this. It will look something like “Austin, Texas”.

• api_link is a property we defined for the WundergroundLocation class in zenpack.yaml. This is
where we’ll store the returned link or l property. This will be important for monitoring the alerts and
conditions of the location later on.

54 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

• country_code is another property we defined. It’s purely informational and will simply be shown to
the user when they’re viewing the location in the web interface.

• timezeone is another property we defined just for informational purposes.

6. process Method

The process method is usually where you take the data in the results argument and process it into DataMaps
to return. However, in the case of PythonPlugin modeler plugins, the data returned from the collect method
will be passed into process as the results argument. In this case that is already completely processed data.
So we just return it.

4. Restart Zenoss.

After adding a new modeler plugin you must restart Zenoss. During development like this, it would be enough
to just restart Zope and zenhub with the following commands.

serviced service restart zope
serviced service restart zenhub

That’s it. The modeler plugin has been created. Now we just need to do some Zenoss configuration to allow us to use
it.

4.5.4 Add a Device Class

To support adding our special WundergroundDevice devices that we defined in zenpack.yaml to Zenoss we must
create a new device class. This will give us control of the zPythonClass configuration property that defines what type
of devices will be created. It will also allow us to control what modeler plugins and monitoring templates will be used.

Use the following steps to add the device class.

1. Add the following content to the end of $ZP_DIR/zenpack.yaml.

device_classes:
/WeatherUnderground:
zProperties:

zPythonClass: ZenPacks.training.WeatherUnderground.WundergroundDevice
zPingMonitorIgnore: true
zSnmpMonitorIgnore: true
zCollectorPlugins:
- WeatherUnderground.Locations

Let’s take a look at what we’re doing here.

1. First we’re saying the device class is going to be /WeatherUnderground. We add it at the top level
because it doesn’t fall into one of the existing categories like /Server or /Network.

2. Next we set zPythonClass to ZenPacks.training.WeatherUnderground.WundergroundDevice. The
zPythonClass property controls what type of device will be created in this device class. Note that
the value for this is the name of the ZenPack followed by the name of the class we created in the
above classes section.

3. We then set both zPingMonitorIgnore and zSnmpMonitorIgnore to true to prevent any ping or SNMP
monitoring Zenoss would perform on the device by default. Neither of these make sense since we’re
dealing with an HTTP API, not a traditional device.

4. Finally we set zCollectorPlugins to contain the name of the modeler plugin we created in the previ-
ous section. Note that zCollectorPlugins is a lines property, meaning it accepts multiple values in a
list format.

4.5. Monitoring an HTTP API 55

ZenPack SDK Documentation, Release 2.1.1

2. Reinstall the ZenPack to create the device class.

zenpack --link --install $ZP_TOP_DIR

Add a Device

Now would be a good time to add a device to the new device class. There are many ways to add a device to Zenoss.
Either of the following approaches can be easily done from the command line.

Using zendisc

Using zendisc is the easiest way to add device from the command line. However, it only lets you specify the device
class and the device’s address.

Run the following command to add wunderground.com.

zendisc run --deviceclass=/WeatherUnderground --device=wunderground.com

You should see output similar to the following.

INFO zen.ZenModeler: Collecting for device wunderground.com
INFO zen.ZenModeler: No WMI plugins found for wunderground.com
INFO zen.ZenModeler: Python collection device wunderground.com
INFO zen.ZenModeler: plugins: WeatherUnderground.Locations
INFO zen.PythonClient: wunderground.com: collecting data
ERROR zen.PythonClient: wunderground.com: zWundergroundAPIKey not set. Get one from
→˓http://www.wunderground.com/weather/api
INFO zen.PythonClient: Python client finished collection for wunderground.com
WARNING zen.ZenModeler: The plugin WeatherUnderground.Locations returned no results.
INFO zen.ZenModeler: No change in configuration detected
INFO zen.ZenModeler: No command plugins found for wunderground.com
INFO zen.ZenModeler: SNMP monitoring off for wunderground.com
INFO zen.ZenModeler: No portscan plugins found for wunderground.com
INFO zen.ZenModeler: Scan time: 0.02 seconds
INFO zen.ZenModeler: Daemon ZenModeler shutting down

Note: The error about zWundergroundAPIKey not being set is expected because we haven’t set it. The solution
is to go to the wunderground.com device in the web interface and add your API key to the zWundergroundAPIKey
configuration property. After adding the API key you should remodel the device.

Using zenbatchload

Another good way to add a device to Zenoss from the command line is zenbatchload. Using zenbatchload also allows
us to set configuration properties such as zWundergroundAPIKey as the device is added.

Create a /z/wunderground.zenbatchload file with the following contents.

/Devices/WeatherUnderground
wunderground.com zWundergroundAPIKey='<your-api-key>', zWundergroundLocations=[
→˓'Austin, TX', 'Des Moines, IA']

56 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Before you remodel the device, you need to remove the existing device, or its stored state will prevent remodeling.
Find your wunderground.com device in the device list. Select it, and click the Remove Devices button (has a Do Not
Enter icon).

Now run the following command to load from that file.

zenbatchload wunderground.zenbatchload

You should now be able to see a list of locations on the wunderground.com device!

4.5.5 Datasource Plugin (Events)

Now that we have one or more locations modeled on our wunderground.com device, we’ll want to start monitoring
each location. Using PythonCollector we have the ability to create events, record datapoints and even update the
model. We’ll start with an example that creates events from weather alert data.

The idea will be that we’ll create events for locations that have outstanding weather alerts such as tornado warnings.
We’ll try to capture severity data so tornado warnings are higher severity events than something like a frost advisory.

Using PythonCollector

Before using a Python plugin in our ZenPack, we must make sure we install the PythonCollector ZenPack, and make
it a requirement for our ZenPack.

The PythonCollector ZenPack adds the capability to write high performance datasources in Python. They will be col-
lected by the zenpython daemon that comes with the PythonCollector ZenPack. I’d recommend reading the Python-
Collector Documentation for more information.

Installing PythonCollector

The first thing we’ll need to do is to make sure the PythonCollector ZenPack is installed on our system. If it isn’t,
follow these instructions to install it.

1. Download the latest release from the PythonCollector page.

2. Run the following command to install the ZenPack:

zenpack --install ZenPacks.zenoss.PythonCollector-<version>.egg

3. Restart Zenoss.

Add PythonCollector Dependency

Since we’re going to be using PythonCollector capabilities in our ZenPack we must now update our ZenPack to define
the dependency.

Follow these instructions to define the dependency.

1. Navigate to Advanced -> Settings -> ZenPacks.

2. Click into the ZenPacks.training.WeatherUnderground ZenPack.

3. Check ZenPacks.zenoss.PythonCollector in the list of dependencies.

4. Click Save.

5. Export the ZenPack.

4.5. Monitoring an HTTP API 57

http://wiki.zenoss.org/ZenPack:PythonCollector
http://wiki.zenoss.org/ZenPack:PythonCollector
http://wiki.zenoss.org/ZenPack:PythonCollector

ZenPack SDK Documentation, Release 2.1.1

Create the Alerts Plugin

Follow these steps to create the Alerts data source plugin:

1. Create $ZP_DIR/dsplugins.py with the following contents.

"""Monitors current conditions using the Weather Underground API."""

Logging
import logging
LOG = logging.getLogger('zen.WeatherUnderground')

stdlib Imports
import json
import time

Twisted Imports
from twisted.internet.defer import inlineCallbacks, returnValue
from twisted.web.client import getPage

PythonCollector Imports
from ZenPacks.zenoss.PythonCollector.datasources.PythonDataSource import (

PythonDataSourcePlugin,
)

class Alerts(PythonDataSourcePlugin):

"""Weather Underground alerts data source plugin."""

@classmethod
def config_key(cls, datasource, context):

return (
context.device().id,
datasource.getCycleTime(context),
context.id,
'wunderground-alerts',
)

@classmethod
def params(cls, datasource, context):

return {
'api_key': context.zWundergroundAPIKey,
'api_link': context.api_link,
'location_name': context.title,
}

@inlineCallbacks
def collect(self, config):

data = self.new_data()

for datasource in config.datasources:
try:

response = yield getPage(
'http://api.wunderground.com/api/{api_key}/alerts{api_link}.

→˓json'
.format(

api_key=datasource.params['api_key'],

(continues on next page)

58 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

api_link=datasource.params['api_link']))

response = json.loads(response)
except Exception:

LOG.exception(
"%s: failed to get alerts data for %s",
config.id,
datasource.location_name)

continue

for alert in response['alerts']:
severity = None

if int(alert['expires_epoch']) <= time.time():
severity = 0

elif alert['significance'] in ('W', 'A'):
severity = 3

else:
severity = 2

data['events'].append({
'device': config.id,
'component': datasource.component,
'severity': severity,
'eventKey': 'wu-alert-{}'.format(alert['type']),
'eventClassKey': 'wu-alert',

'summary': alert['description'],
'message': alert['message'],

'wu-description': alert['description'],
'wu-date': alert['date'],
'wu-expires': alert['expires'],
'wu-phenomena': alert['phenomena'],
'wu-significance': alert['significance'],
'wu-type': alert['type'],
})

returnValue(data)

Let’s walk through this code to explain what is being done.

1. Logging

The first thing we do is import logging and create LOG as our logger. It’s important that the name of the
logger in the logging.getLogger() begins with zen.. You will not see your logs otherwise.

The stdlib and Twisted imports are almost identical to what we used in the modeler plugin, and they’re
used for the same purposes.

Finally we import PythonDataSourcePlugin from the PythonCollector ZenPack. This is the class our data
source plugin will extend, and basically allows us to write code that will be executed by the zenpython
collector daemon.

2. Alerts Class

Unlike our modeler plugin, there’s no need to make the plugin class’ name the same as the filename. As
we’ll see later when we’re setting up the monitoring template that will use this plugin, there’s no specific

4.5. Monitoring an HTTP API 59

ZenPack SDK Documentation, Release 2.1.1

name for the file or the class required because we configure where to find the plugin in the datasource
configuration within the monitoring template.

3. config_key Class Method

The config_key method must have the @classmethod decorator. It is passed datasource, and context.
The datasource argument will be the actual datasource that the user configures in the monitoring templates
section of the web interface. It has properties such as eventClass, severity, and as you can see a getCy-
cleTime() method that returns the interval at which it should be polled. The context argument will be the
object to which the monitoring template and datasource is bound. In our case this will be a location object
such as Austin, TX.

The purpose of the config_key method is to split monitoring configuration into tasks that will be executed
by the zenpython daemon. The zenpython daemon will create one task for each unique value returned from
config_key. It should be used to optimize the way data is collected. In some cases it is possible to make a
single query to an API to get back data for many components. In these cases it would be wise to remove
context.id from the config_key so we get one task for all components.

In our case, the Weather Underground API must be queried once per location so it makes more sense to
put context.id in the config_key so we get one task per location.

The value returned by config_key will be used when zenpython logs. So adding something like
wunderground-alerts to the end makes it easy to see logs related to collecting alerts in the log file.

The config_key method will only be executed by zenhub. So you must restart zenhub if you make changes
to the config_key method. This also means that if there’s an exception in the config_key method it will
appear in the zenhub log, not zenpython.

4. params Class Method

The params method must have the @classmethod decorator. It is passed the same datasource and
context arguments as config_key.

The purpose of the params method is to copy information from the Zenoss database into the con-
fig.datasources[*] that will be passed as an argument to the collect method. Since the collect method
is run by zenpython it won’t have direct access to the database, so it relies on the params method to
provide it with any information it will need to collect.

In our case you can see that we’re copying the context’s zWundergroundAPIKey, api_link and title proper-
ties. All of these will be used in the collect method.

Just like the config_key method, params will only be executed by zenhub. So be sure to restart zenhub if
you make changes, and look in the zenhub log for errors.

5. collect Method

The collect method does all of the real work. It will be called once per cycletime. It gets passed a config
argument which for the most part has two useful properties: config.id and config.datasources. config.id
will be the device’s id, and config.datasources is a list of the datasources that need to be collected.

You’ll see in the collect method that each datasource in config.datasources has some useful properties.
datasource.component will be the id of the component against which the datasource is run, or blank in
the case of a device-level monitoring template. datasource.params contains whatever the params method
returned.

Within the body of the collect method we see that we create a new data variable using data = self.
new_data(). data is a place where we stick all of the collected events, values and maps. data looks like
the following:

data = {
'events': [],

(continues on next page)

60 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

'values': defaultdict(<type 'dict'>, {}),
'maps': [],

}

Next we iterate over every configured datasource. For each one we make a call to Weather Underground’s
Alerts API, then iterate over each alert in the response creating an event for each.

The following standard fields are being set for every event. You should read Zenoss’ event management
documentation if the purpose of any of these fields is not clear. I highly recommend setting all of these
fields to an appropriate value for any event you send into Zenoss to improve the ability of Zenoss and
Zenoss’ operators to manage the events.

• device: Mandatory. The device id related to the event.

• component: Optional. The component id related to the event.

• severity: Mandatory. The severity for the event.

• eventKey: Optional. A further uniqueness key for the event. Used for de-duplication and clearing.

• eventClassKey: Optional. An identifier for the type of event. Used during event class mapping.

• summary: Mandatory: A (hopefully) short summary of the event. Truncated to 128 characters.

• message: Optional: A longer text description of the event. Not truncated.

You will also see many wu-* fields being added to the event. Zenoss allows arbitrary fields on events so
it can be a good practice to add any further information you get about the event in this way. It can make
understanding and troubleshooting the resulting event easier.

Finally we return data with all of events we appended to it. zenpython will take care of getting the events
sent from this point.

2. Restart Zenoss.

After adding a new datasource plugin you must restart Zenoss. While developing it’s enough to just restart
zenhub with the following command.

serviced service restart zenhub

That’s it. The datasource plugin has been created. Now we just need to do some Zenoss configuration to allow us to
use it.

Configure Monitoring Templates

Rather than use the web interface to manually create a monitoring template, we’ll specify it in our zenpack.yaml
instead.

1. Edit $ZP_DIR/zenpack.yaml and add the templates section below to the existing /WeatherUnderground’ device
class.

device_classes:
/WeatherUnderground:
templates:
Location:
description: Location weather monitoring using the Weather Underground

→˓API.
targetPythonClass: ZenPacks.training.WeatherUnderground.

→˓WundergroundLocation

(continues on next page)

4.5. Monitoring an HTTP API 61

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

datasources:
alerts:
type: Python
plugin_classname: ZenPacks.training.WeatherUnderground.dsplugins.

→˓Alerts
cycletime: "600"

At least some of this should be self-explanatory. The YAML vocabulary has been designed to be as intuitive and
concise as possible. Let’s walk through it.

1. The highest-level element (based on indentation) is /WeatherUnderground/Location. This means to create
a Location monitoring template in the /WeatherUnderground device class.

Note: The monitoring template must be called Location because that is the label for the Wunder-
groundLocation class to which we want the template bound.

2. The description is for documentation purposes and should describe the purpose of the monitoring template.

3. The targetPythonClass is a hint to what type of object the template is meant to be bound to. Currently this
is only used to determine if users should be allowed to manually bind the template to device classes or
devices. Providing a valid component type like we’ve done prevents users from making this mistake.

4. Next we have datasources with a single alerts datasource defined.

The alerts datasource only has three properties:

• type: This is what makes zenpython collect the data.

• plugin_classname: This is the fully-qualified class name for the PythonDataSource plugin we created
that will be responsible for collecting the datasource.

• cycletime: The interval in seconds at which this datasource should be collected.

2. Reinstall the ZenPack to add the monitoring templates.

Some sections of zenpack.yaml such as zProperties and templates only get created when the ZenPack is installed.

Run the usual command to reinstall the ZenPack in development mode.

zenpack --link --install $ZP_TOP_DIR

3. Navigate to Advanced -> Monitoring Templates in the web interface to verify that the Location monitoring
template has been created as defined.

Test Monitoring Weather Alerts

Testing this is a bit tricky since we’ll have to be monitoring a location that currently has an active weather alert.
Fortunately there’s an easy way to find one of these locations.

Follow these steps to test weather alert monitoring:

1. Go to the following URL for the current severe weather map of the United States.

http://www.wunderground.com/severe.asp

2. Click on one of the colored areas. Orange and red are more exciting. This will take you to the text of the
warning. It should reference city or county names.

62 Chapter 4. What about some examples?

http://www.wunderground.com/severe.asp

ZenPack SDK Documentation, Release 2.1.1

3. Update zWundergroundLocations on the wunderground.com device to add one of the cities or counties that has
an active weather alert. For example, “Buffalo, South Dakota”.

4. Remodel the wunderground.com device then verify that the new location is modeled.

5. Run the following command to collect from wunderground.com.

zenpython run -v10 --device=wunderground.com

There will be a lot of output from this command, but we’re mainly looking for an event to be sent for the weather
alert. It will look similar to the following output:

DEBUG zen.zenpython: Queued event (total of 1) {'rcvtime': 1403112635.631883, 'wu-
→˓type': u'FIR', 'wu-significance': u'W', 'eventClassKey': 'wu-alert', 'wu-expires
→˓': u'8:00 PM MDT on June 18, 2014', 'component': '80901.1.99999', 'monitor':
→˓'localhost', 'agent': 'zenpython', 'summary': u'Fire Weather Warning', 'wu-date
→˓': u'3:39 am MDT on June 18, 2014', 'manager': 'zendev.damsel.loc', 'eventKey':
→˓'wu-alert-FIR', 'wu-phenomena': u'FW', 'wu-description': u'Fire Weather Warning
→˓', 'device': 'wunderground.com', 'message': u'\n...Red flag warning remains in
→˓effect from noon today to 8 PM MDT\nthis evening for gusty winds...low relative
→˓humidity and dry fuels for\nfire weather zones 222...226 and 227...\n\n*
→˓affected area...fire weather zones 222...226 and 227.\n\n* Winds...southwest 10
→˓to 20 mph with gusts up to 35 mph.\n\n* Relative humidity...as low as 13
→˓percent.\n\n* Impacts...extreme fire behavior will be possible if a fire \n
→˓starts. \n\nPrecautionary/preparedness actions...\n\nA red flag warning means
→˓that critical fire weather conditions\nare either occurring now...or will
→˓shortly. A combination of\nstrong winds...low relative humidity...and warm
→˓temperatures can\ncontribute to extreme fire behavior.\n\n\n\n\n', 'device_guid
→˓': 'f59e7e4d-be5d-4b86-b005-7357ce58f79c', 'severity': 3}

You should now be able to confirm that this event was created in the Zenoss event console.

4.5.6 Datasource Plugin (Data Points)

We’ve already created a data source plugin that creates Zenoss events for weather alerts. Now we want to use the
Weather Underground Conditions API to monitor current weather conditions for each location. The purpose of this is
to illustrate that these Python data source plugins can also be used to collect datapoints.

Create Conditions Data Source Plugin

Follow these steps to create the Conditions data source plugin:

1. Add the following contents to the end of $ZP_DIR/dsplugins.py.

class Conditions(PythonDataSourcePlugin):

"""Weather Underground conditions data source plugin."""

@classmethod
def config_key(cls, datasource, context):

return (
context.device().id,
datasource.getCycleTime(context),
context.id,
'wunderground-conditions',
)

(continues on next page)

4.5. Monitoring an HTTP API 63

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

@classmethod
def params(cls, datasource, context):

return {
'api_key': context.zWundergroundAPIKey,
'api_link': context.api_link,
'location_name': context.title,
}

@inlineCallbacks
def collect(self, config):

data = self.new_data()

for datasource in config.datasources:
try:

response = yield getPage(
'http://api.wunderground.com/api/{api_key}/conditions{api_

→˓link}.json'
.format(

api_key=datasource.params['api_key'],
api_link=datasource.params['api_link']))

response = json.loads(response)
except Exception:

LOG.exception(
"%s: failed to get conditions data for %s",
config.id,
datasource.location_name)

continue

current_observation = response['current_observation']
for datapoint_id in (x.id for x in datasource.points):

if datapoint_id not in current_observation:
continue

try:
value = current_observation[datapoint_id]
if isinstance(value, basestring):

value = value.strip(' %')

value = float(value)
except (TypeError, ValueError):

Sometimes values are NA or not available.
continue

dpname = '_'.join((datasource.datasource, datapoint_id))
data['values'][datasource.component][dpname] = (value, 'N')

returnValue(data)

Most of the Conditions plugin is almost identical to the Alerts plugin so I won’t repeat what
can be read back in that section. The main difference starts at the current_observation =
response['current_observation'] line of the collect method.

It grabs the current_observation data from the response then iterates over every datapoint configured on the
datasource. This is a nice approach because it allows for some user-flexibility in what datapoints are captured

64 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

from the Conditions API. If the API made temp_c and temp_f available, we could choose to collect temp_c just
by adding a datapoint by that name.

The following line is the most important in terms of explaining how to have your plugin return datapoint values.

data['values'][datasource.component][dpname] = (value, 'N')

We just stick (value, 'N') into the component’s datapoint dictionary. The 'N' is the timestamp at which
the value occurred. If you know the time it should be specified as the integer UNIX timestamp. Use 'N' if you
don’t know. This will use the current time.

2. Restart Zenoss.

After adding a new datasource plugin you must restart Zenoss. While developing it’s enough to just restart
zenhub with the following command.

serviced service restart zenhub

That’s it. The datasource plugin has been created. Now we just need to do some Zenoss configuration to allow us to
use it.

Add Conditions to Monitoring Template

To use this new plugin we’ll add a new datasource and corresponding graphs to the existing Location monitoring
template defined in zenpack.yaml.

Follow these steps to update the monitoring template:

1. Update $ZP_DIR/zenpack.yaml to add the conditions entry within the existing datasources section.

device_classes:
/WeatherUnderground:
templates:
Location:
description: Location weather monitoring using the Weather Underground

→˓API.
targetPythonClass: ZenPacks.training.WeatherUnderground.

→˓WundergroundLocation

datasources:
conditions:
type: Python
plugin_classname: ZenPacks.training.WeatherUnderground.dsplugins.

→˓Conditions
cycletime: "600"

datapoints:
temp_c: GAUGE
feelslike_c: GAUGE
heat_index_c: GAUGE
windchill_c: GAUGE
dewpoint_c: GAUGE
relative_humidity: GAUGE
pressure_mb: GAUGE
precip_1hr_metric: GAUGE
UV: GAUGE
wind_kph: GAUGE
wind_gust_kph: GAUGE

(continues on next page)

4.5. Monitoring an HTTP API 65

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

visibility_km: GAUGE

graphs:
Temperatures:
units: "degrees C."

graphpoints:
Temperature:

dpName: conditions_temp_c
format: "%7.2lf"

Feels Like:
dpName: conditions_feelslike_c
format: "%7.2lf"

Heat Index:
dpName: conditions_heat_index_c
format: "%7.2lf"

Wind Chill:
dpName: conditions_windchilltemp_c
format: "%7.2lf"

Dewpoint:
dpName: conditions_dewpoint_c
format: "%7.2lf"

Relative Humidity:
units: percent
miny: 0
maxy: 100

graphpoints:
Relative Humidity:

dpName: conditions_relative_humidity
format: "%7.2lf%%"

Pressure:
units: millibars
miny: 0

graphpoints:
Pressure:

dpName: conditions_pressure_mb
format: "%7.0lf"

Precipitation:
units: centimeters
miny: 0

graphpoints:
1 Hour:
dpName: conditions_precip_1hr_metric
format: "%7.2lf"

UV Index:
units: UV index

(continues on next page)

66 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

miny: 0
maxy: 12

graphpoints:
UV Index:

dpName: conditions_UV
format: "%7.0lf"

Wind Speed:
units: kph
miny: 0

graphpoints:
Sustained:
dpName: conditions_wind_kph
format: "%7.2lf"

Gust:
dpName: conditions_wind_gust_kph
format: "%7.2lf"

Visibility:
units: kilometers
miny: 0

graphpoints:
Visibility:

dpName: conditions_visibility_km
format: "%7.2lf"

You can refer to Monitoring Templates for more information on creating monitoring templates in YAML.

2. Reinstall the ZenPack to update the monitoring template.

zenpack --link --install $ZP_TOP_DIR

3. Navigate to Advanced -> Monitoring Templates in the web interface to verify that the Location monitoring
template has been updated with the conditions datasource and corresponding graphs.

Test Monitoring Weather Conditions

Follow these steps to test weather condition monitoring:

1. Run the following command to collect from wunderground.com.

zenpython run -v10 --device=wunderground.com

There will be a lot of output from this command, but we’re mainly looking for at least one datapoint being
written. If one works, it’s likely that they all work. Look for a line similar to the following:

DEBUG zen.MetricWriter: publishing metric wunderground.com/conditions_temp_c 14.1
→˓1452024379

4.5. Monitoring an HTTP API 67

ZenPack SDK Documentation, Release 2.1.1

4.5.7 Datasource Plugin (Modeling)

The final capability of Python data source plugins is to make changes to the Zenoss model. This allows a data source
to make changes to the model in the same way that zenmodeler does. Having this capability in a data source allows
modeling more frequently than the normal 12 hour zenmodeler interval.

To demonstrate this through an exercise, we’ll extend the existing Conditions plugin to capture the what the Conditions
API calls weather which is some text that looks like “Scattered Clouds” or “Sunny”. We’ll then show this value for
each location in the web interface.

Note: Model updates are much more expensive operations than creating events or collecting datapoints. It is better to
perform as much modeling as possible using modeler plugins on their typical 12 hour interval, and perform only the
absolutely necessary smaller model updates more frequently using a PythonDataSourcePlugin. Too much modeling
activity can result in the degradation of a Zenoss’ systems overall performance.

Add Modeling to Conditions Data Source Plugin

Follow these steps to add modeling to the Conditions data source plugin:

1. Edit $ZP_DIR/zenpack.yaml.

Add the following weather property to the WundergroundLocation class between the existing timezone and
api_link properties.

weather:
label: Weather

2. Edit $ZP_DIR/dsplugins.py.

Add the following needed import to the top of dsplugins.py.

from Products.DataCollector.plugins.DataMaps import ObjectMap

Add the following code to the Conditions class’ collect method right above the returnValue(data) line
indented one level further. The returnValue(data) line is included in the following update to show where
the new code should be placed.

data['maps'].append(
ObjectMap({

'relname': 'wundergroundLocations',
'modname': 'ZenPacks.training.WeatherUnderground.WundergroundLocation

→˓',
'id': datasource.component,
'weather': current_observation['weather'],
}))

returnValue(data) # existing line

The maps concept here is exactly the same as it is in modeler plugins. data['maps'] can contain anything
that a modeler plugin’s process method can return.

2. Don’t update the Location monitoring template.

We’re adding capability to a datasource that’s already configured. No updates are required to the monitoring
template.

68 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

3. Restart Zenoss.

If we had only updated the collect method of the Conditions plugin we would only need to restart zenpython.
However, because we added the new weather property to the WundergroundLocation class, we must restart
nearly everything, so it’s simpler to restart everything.

Test Modeling Current Weather

Follow these steps to test weather condition monitoring:

1. Run the following command to collect from wunderground.com.

zenpython run -v10 --device=wunderground.com

There will be a lot of output from this command, but we’re looking for the following line which indicates that
our maps were applied:

DEBUG zen.python: wunderground.com 600 21401.1.99999 wunderground-conditions
→˓sending 1 datamaps

2. Navigate to the Locations on the wunderground.com device and verify that each location shows something in its
Weather column.

4.6 Troubleshooting

4.6.1 Using the Python Debugger

One of the most powerful tools when debugging the Python portions of a ZenPack is the Python debugger (pdb). With
pdb you can set breakpoints in your code. When the breakpoints are hit, you get a (pdb) prompt that has full access to
examine the stack and any local or global variables.

To set a breakpoint in your code you add the following line.

import pdb; pdb.set_trace()

As with any code change, you must restart the Zenoss process that executes the code in question.

Pickling data

ZenPackLib v2.0 also adds a decorator, writeDataToFile, that can be used to save real-world results that your plugins
will be processing. This data can then be used to determine why a plugin is not behaving as expected or to create your
own unit tests.

In order to use this decorator, import it from the ZenPackLib zenpack:

from ZenPacks.zenoss.ZenPackLib.lib.helpers.utils import writeDataToFile

Then use as a decorator for your plugin’s process function. writeDataToFile is generic and can be used on any python
function or class method. It does not pickle file or logger objects. You can also specify keywords which, when matched
against an object’s attributes, will cause an object not to be pickled.

4.6. Troubleshooting 69

ZenPack SDK Documentation, Release 2.1.1

class MyPlugin(PythonPlugin):
@writeDataToFile(keywords=['zCommandPassword', 'windows_password'])
def process(self, device, results, log):

'''Perform device specific processing on modeler plugin results'''
rm = self.relMap()
Add data to relationship map
rm.attr1 = results.attr1
rm.attr2 = results.attr2
return rm

The save functionality is disabled unless you use the ZPL_DUMP_DATA environment variable. Be sure to only use in
limited runs or you will end up with a large number of pickle files.

$ export ZPL_DUMP_DATA=1; zenmodeler run -d mydevice; unset ZPL_DUMP_DATA

The pickle file(s) will be written to your /tmp folder using the class name and function name with current timestamp.
Using the definition from above, the file name would be MyPlugin_process_XXXXXX.pickle where XXXXXX is the
time at which the data was processed. Assuming device has either a zCommandPassword or windows_password
attribute, the self, device, and log objects will not be pickled.

Known Issues

• When dumping existing event classes using the zenpacklib tool with –dump-event-classes option, some trans-
forms and/or explanations may show as either unformatted text within double quotes or as formatted text within
single quotes. This is due to how the python yaml package handles strings. Either of these two formats are
acceptable when used in zenpack.yaml.

• ZenPacks using earlier verisons of ZenPackLib logged template changes to the console during installation.
These messages might have disturbed some users due to their wording and logging as “ERROR” status. These
have been revised and now log as informational, but the old format will be displayed when upgrading from a
pre-ZenPacklib 2.0 ZenPack to one using the latest version. Subsequent installs will use the newer format.

4.7 Command Line Reference

While most of zenpacklib’s functionality is as a Python module to be used as a library for helping build ZenPacks,
zenpacklib also acts as a command line script to perform some useful actions.

The zenpacklib script can be run from the command line with:

`$ZENHOME/bin/zenpacklib` (usually `/opt/zenoss/bin/zenpacklib`)

Running the command alone or with –help will return the following (truncated):

Usage: zenpacklib.py [options] [FILENAME|ZENPACK|DEVICE]

ZenPack Conversion:
-t, --dump-templates

export existing monitoring templates to YAML
-e, --dump-event-classes

export existing event classes to YAML
-r, --dump-process-classes

export existing process classes to YAML

ZenPack Development:

(continues on next page)

70 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

-c, --create Create a new ZenPack source directory
-l, --lint check zenpack.yaml syntax for errors
-o, --optimize optimize zenpack.yaml format and DEFAULTS
-d, --diagram print YUML (http://yuml.me/) class diagram source

based on zenpack.yaml
-p, --paths print possible facet paths for a given device and

whether currently filtered.

The following commands are supported:

• -c, –create: Create a new zenpacklib-enabled ZenPack source directory.

• -l, –lint: Provides syntax and correctness on a YAML file.

• -d, –diagram: Export yUML (yuml.me) class diagram from a YAML file.

• -t, –dump-templates: Export existing monitoring templates to YAML.

• -e, –dump-event-classes: Export existing event classes and mappings to YAML.

• -r, –dump-process-classes: Export existing process classes to YAML.

• -p, –paths: Using the specified device, print a report of paths between objects.

• -o, –optimize: Optimize the layout of an existing zenpack.yaml file

• –version: Print zenpacklib version.

4.7.1 create

The —create switch will create a source directory for a zenpacklib-enabled ZenPack. This will include a setup.py,
MANIFEST.in, the namespace and module directories, and a zenpack.yaml in the module directory. It will also make
a copy of zenpacklib.py inside the module directory. This ZenPack will be ready to be installed immediately though it
will contain no functionality yet.

Example usage:

zenpacklib --create ZenPacks.example.MyNewPack

Running the above command would result in the following output.

Creating source directory for ZenPacks.test.ZPLTest2:
- making directory: ZenPacks.test.ZPLTest2/ZenPacks/test/ZPLTest2
- creating file: ZenPacks.test.ZPLTest2/setup.py
- creating file: ZenPacks.test.ZPLTest2/MAINFEST.in
- creating file: ZenPacks.test.ZPLTest2/ZenPacks/__init__.py
- creating file: ZenPacks.test.ZPLTest2/ZenPacks/test/__init__.py
- creating file: ZenPacks.test.ZPLTest2/ZenPacks/test/ZPLTest2/__init__.py
- creating file: ZenPacks.test.ZPLTest2/ZenPacks/test/ZPLTest2/zenpack.yaml

4.7.2 lint

The —lint switch will check the provided YAML file for correctness. It checks that the provided file is syntactically-
valid YAML, and it will also perform many others checks that validate that the contained entries, fields and their values
are valid.

The following example shows an example of using an unrecognized parameter in a monitoring template.

4.7. Command Line Reference 71

ZenPack SDK Documentation, Release 2.1.1

zenpacklib --lint zenpack.yaml
zenpack.yaml:47:9: Unrecognized parameter 'targetPythnoClass' found while processing
→˓RRDTemplateSpec

Note: lint will provide no output if the provided YAML file is found to be correct.

4.7.3 diagram

The —diagram switch will use Classes and Relationships in the provided YAML file to output the source for a yUML
(http://yuml.me) class diagram. For ZenPacks with a non-trivial class model this can provide a useful view of the
model.

Using this example zenpack.yaml:

name: ZenPacks.example.NetBotz

classes:
NetBotzDevice:
base: [zenpacklib.Device]

NetBotzEnclosure:
base: [zenpacklib.Component]

NetBotzSensor:
base: [zenpacklib.Component]

class_relationships:
- NetBotzDevice 1:MC NetBotzEnclosure
- NetBotzDevice 1:MC NetBotzSensor
- NetBotzEnclosure 1:M NetBotzSensor

Then running the following command..

zenpacklib --diagram zenpack.yaml

Would result in the following yUML class diagram source. You can now paste this into http://yuml.me to see what it
looks like.

Classes
[NetBotzDevice]
[NetBotzEnclosure]
[NetBotzSensor]

Inheritence
[Device]^-[NetBotzDevice]
[Component]^-[NetBotzEnclosure]
[Component]^-[NetBotzSensor]

Containing Relationships
[NetBotzDevice]++netBotzEnclosures-netBotzDevice[NetBotzEnclosure]
[NetBotzDevice]++netBotzSensors-netBotzDevice[NetBotzSensor]

Non-Containing Relationships
[NetBotzEnclosure]netBotzSensors-.-netBotzEnclosure++[NetBotzSensor]

72 Chapter 4. What about some examples?

http://yuml.me
http://yuml.me

ZenPack SDK Documentation, Release 2.1.1

4.7.4 paths

The —paths switch shows the paths between defined component classes in the zenpack, using the device name you
have specified as a sample. To obtain useful results, ensure that the device has at least one component of each type
you are interested in.

The paths shown are those used to control which devices will show up in the bottom grid of the zenoss UI when a
component is selected and a target class is selected from the filter dropdown.

The default behavior is to show component of that type that are directly related to the selected component through
1:M or 1:MC relationships, but additional objects that are indirectly related can be added through the use of the
‘extra_paths’ configuration directive. —paths is primarily intended as a debugging tool during the development of
extra_paths patterns to verify that they are having the intended effect.

Example usage:

zenpacklib --paths mydevice

4.7.5 dump-templates

The —dump-templates switch is designed to export monitoring templates already loaded into your Zenoss instance
and associated with a ZenPack. It will export them to the YAML format required for zenpack.yaml. It is up to you to
merge that YAML with your existing zenpack.yaml. file.

Example usage:

zenpacklib --dump-templates ZenPacks.example.BetterAlreadyBeInstalled

4.7.6 dump-event-classes

The —dump-event-classes switch is designed to export event class organizers and mappings already loaded into your
Zenoss instance and associated with a ZenPack. It will export them to the YAML format required for zenpack.yaml. It
is up to you to merge that YAML with your existing zenpack.yaml. file.

Only event classes sourced from the ZenPack’s XML will be exported. Any event classes sourced from the ZenPack’s
YAML will not be exported. If the YAML for these event classes is desired, it should be copied from the ZenPack’s
existing YAML.

Example usage:

zenpacklib --dump-event-classes ZenPacks.example.BetterAlreadyBeInstalled

Note: When dumping existing event classes using the zenpacklib tool with the –dump-event-classes option, some
transforms and/or explanations may show as either unformatted text within double quotes or as formatted text within
single quotes. This is due to how the python yaml package handles strings. Either of these two formats are acceptable
when used in zenpack.yaml.

4.7.7 dump-process-classes

The —dump-process-classes switch is designed to export process class organizers and classes already loaded into your
Zenoss instance and associated with a ZenPack. It will export them to the YAML format required for zenpack.yaml. It
is up to you to merge that YAML with your existing zenpack.yaml. file.

4.7. Command Line Reference 73

ZenPack SDK Documentation, Release 2.1.1

Only process class organizers sourced from the ZenPack’s XML will be exported. Any process class organizers
sourced from the ZenPack’s YAML will not be exported. If the YAML for these process class organizers is desired, it
should be copied from the ZenPack’s existing YAML.

Example usage:

zenpacklib --dump-process-classes ZenPacks.example.BetterAlreadyBeInstalled

4.7.8 optimize

The —optimize switch (experimental) is designed to examine your zenpack.yaml file and rearrange it for brevity and
use of DEFAULTS where detected. Once optimized, the command compares the original YAML file to the optimized
version to ensure that the same objects are created. The change detection, however, is still being improved and may
output false warnings. It is recommended to double-check the optimized YAML output.

Example usage:

zenpacklib --optimize zenpack.yaml

4.7.9 version

The —version switch prints the zenpacklib version.

Example usage:

zenpacklib --version

4.8 YAML Reference

A ZenPack’s functionality can be described via a zenpack.yaml file. The following sections describe the syntax and
capabilities of this YAML file.

4.8.1 ZenPack

The ZenPack YAML file, zenpack.yaml, contains the specification for a ZenPack. It must at at least contain a name
field. It may optionally contain one each of zProperties, device_classes, classes, and class_relationships fields.

The following example shows an example of a zenpack.yaml file with examples of every supported field.

name: ZenPacks.acme.Widgeter

zProperties:
zWidgeterEnable: {}

device_classes:
/Server/ACME/Widgeter: {}

classes:
ACMEWidgeter:
base: [zenpacklib.Device]

(continues on next page)

74 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

ACMEWidget:
base: [zenpacklib.Component]

class_relationships:
- Widgeter 1:MC Widget

link_providers:
Virtual Machine:
link_class: ZenPacks.example.XenServer
catalog: device
device_class: /Server/XenServer
queries: [vm_id:manageIp]

XenServer:
global_search: True
queries: [manageIp:vm_id]

event_classes:
/Status/Acme:
remove: false
description: Acme event class
mappings:
Widget:

eventClassKey: WidgetEvent
sequence: 10
remove: true
transform: "if evt.message.find('Error reading value for') >= 0:\n\
\ evt._action = 'drop'"

process_class_organizers:
Widget:
description: Organizer for Widget process classes
process_classes:
widget:

description: Widget process class
includeRegex: sbin\/widget
excludeRegex: "\\b(vim|tail|grep|tar|cat|bash)\\b"
replaceRegex: .*
replacement: Widget

See the following for more information on each of these fields.

• zProperties

• Device Classes

• Classes and Relationships

• Device Link Providers

• Event Classes

• Process Classes

ZenPack Fields

The following fields are valid for a ZenPack entry.

name

4.8. YAML Reference 75

ZenPack SDK Documentation, Release 2.1.1

Description Name (e.g. ZenPacks.acme.Widgeter). Must begin with “ZenPacks.”.

Required Yes

Type string

Default Value None

zProperties

Description zProperties added by the ZenPack

Required No

Type map<name, zProperty>

Default Value {} (empty map)

device_classes

Description Device classes added by the ZenPack.

Required No

Type map<path, Device Class>

Default Value {} (empty map)

classes

Description Classes for device and component types added by this ZenPack.

Required No

Type map<name, Class>

Default Value {} (empty map)

class_relationships

Description Relationships between classes.

Required No

Type list<Class Relationship>

Default Value [] (empty list)

link_providers

Description Device Link Providers.

Required No

Type list<Link Provider>

Default Value [] (empty list)

event_classes

Description Event Class organizers and mappings

Required No

Type list<Event Class>

Default Value [] (empty list)

process_class_organizers

Description Process Class organizers and mappings

76 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Required No

Type list<Process Class>

Default Value [] (empty list)

4.8.2 zProperties

zProperties are one part of Zenoss’ hierarchical configuration system. They are configuration properties that can be
specified on any device class including the root /Devices class, and on any individual device.

zProperty Inheritance

The most-specific value for a zProperty within the hierarchy will be used for any given device. For instance, given a
device linux1 in the /Server/Linux device class. The value for zSnmpMonitorIgnore will be checked first on the linux1
device. If it is not set locally on the device, the /Server/Linux device class will then be checked. If not set there, /Server
will be checked. Finally the value at / (or /Devices) will be checked as a final resort. Since all zProperties must have a
default values that is set at the root device class, there will always be a value for the zProperty. Even if it is an empty
string.

Adding zProperties

To add a zProperty to your ZenPack you must include a zProperties section in your YAML file. The following example
shows an example of adding two zProperties.

zProperties:
zWidgeterEnable:
category: ACME Widgeter
type: boolean
default: true

zWidgeterInterval:
category: ACME Widgeter
type: string
default: 300

Each of these zProperty entries specifies a category, type and default. These are the only valid fields of the a zProperty
entry. However, each of these fields has a default value that will be used if the field isn’t explicitly specified. For
example, the default value for type is string. So the above example could be shortened slightly by omitting the explicit
type on zWidgeterInterval.

zProperties:
zWidgeterEnable:
category: ACME Widgeter
type: boolean
default: true

zWidgeterInterval:
category: ACME Widgeter
default: 300

There is a special zProperty entry named DEFAULTS that can be used to further shorten definitions in cases where
you’re adding many zProperties. The following example shows how DEFAULTS can be used to replace the duplicated
category property.

4.8. YAML Reference 77

ZenPack SDK Documentation, Release 2.1.1

zProperties:
DEFAULTS:
category: ACME Widgeter

zWidgeterEnable:
type: boolean
default: true

zWidgeterInterval:
default: 300

Since a zProperty is a YAML “mapping”, the minmal specification of a zProperty (name only) would look like:

zProperties:
zWidgeterMinimal: {}

Each zProperty listed in zProperties will be created when the ZenPack is installed, and removed when the ZenPack is
removed.

Note: When changing the default or category for a zProperty in the yaml, it changes in the zenoss system. Removing
a zProperty from yaml will not remove it from the zenoss system. To remove it completely, you must write a migrate
script to remove it.

zProperty Fields

The following fields are valid for a zProperty entry.

name

Description Name (e.g. zWidgeterEnable). Must be begin with a lowercase “z”.

Required Yes

Type string

Default Value implied from key in zProperties map

type

Description Type of property. Valid types:

• boolean

• float

• int

• lines

• long

• password

• string

Required No

Type string

Default Value string

78 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

default

Description Default value for property. Default value depends on the type:

• boolean: false

• lines: []

• password: “” (empty string)

• string: “” (empty string)

• all others: null (None)

Required No

Type varies

Default Value varies

category

Description Category name. (e.g. ACME Widgeter). Used to group related zProperties in the UI.

Required No

Type string

Default Value “” (empty string)

description

Description Notes regarding the purpose and function of this zProperty

Required No

Type string

Default Value “” (empty string)

label

Description Brief description of zProperty

Required No

Type string

Default Value “” (empty string)

Zenoss specific zProperties

When changing modeler bindings using the zDeviceTemplates property, this will take effect on your ZenPack. Any
previously defined bindings will be replaced. The same applies to the device level template bindings using the zCol-
lectorPlugins property.

Note: Beginning with ZenPackLib 2.0, this behavior has changed by default. zProperties will no longer be overwritten
if a target device class already exists (i.e. during an upgrade or if the YAML affects a preexisting class such as
/Devices/Server. Instead, a warning will be displayed to the user during installation, and the target zProperty will be
left alone.

Setting “reset: true” for a specific device class in the YAML will override this behavior, causing the zProperties to be
overritten with the YAML defaults

4.8. YAML Reference 79

ZenPack SDK Documentation, Release 2.1.1

4.8.3 Device Classes

Device classes are the functional categorization mechanism for Zenoss devices. Everything about how a device is
modeled and monitored is controlled by its device class unless the device class configuration is overridden specifically
for the device.

Example device classes that are a default part of every Zenoss system:

• /Discovered

• /Network

• /Server

Device classes are one of the most common items a ZenPack would add to Zenoss.

Adding Device Classes

To add a device class to your ZenPack you must include a device_classes section to your YAML file. The following
example shows an example of adding a device class.

device_classes:
/Server/ACME/Widgeter:
remove: true

The remove field controls whether the device class will be removed from Zenoss if the ZenPack is removed. It defaults
to false. In this example we set it to true because we do want our custom device class removed if the ZenPack that
supports it is removed.

Each device class listed in device_classes will be created when the ZenPack is installed. The device classes will be
created recursively if necessary. Meaning that if the /Server or /Server/ACME device classes don’t already exist, they
will be automatically created.

Since this is a YAML “mapping”, the minmal specification (name only) would look like:

device_classes:
/Server/ACME/Widgeter: {}

Setting zProperties

You can also set zProperty values for each device class. These values will be set each time the ZenPack is installed.

device_classes:
/Server/ACME/Widgeter:
remove: true
zProperties:

zWidgeterEnable: true
zWidgeterInterval: 60

Note: As of version 2.0, zProperties will not be set on existing device classes during ZenPack installation. Developers
wishing to do so should handle these cases via migrate scripts that run during the installation process.

The referenced zProperties must already exist in the Zenoss system, or be added by your ZenPack via a global zProp-
erties entry.

80 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Adding Monitoring Templates

Within each device class entry you can add monitoring templates. See the following example for adding a simple
monitoring template with a single COMMAND datasource.

device_classes:
/Server/ACME/Widgeter:
zProperties:

zDeviceTemplates:
- Device

templates:
Device:
description: ACME Widgeter monitoring.

datasources:
phony:

type: COMMAND
parser: Nagios
commandTemplate: "echo OK|percent=100"

datapoints:
percent: {}

graphs:
Phoniness:
units: percent
miny: 0
maxy: 100

graphpoints:
Phoniness:
dpName: phony_percent
format: "%7.2lf%%"
lineType: AREA

This Device monitoring template will be added to the /Server/ACME/Widgeter device class each time the ZenPack
is installed. This doesn’t explicitly bind the monitoring template to the device class. To do that you need to set
zDeviceTemplates as shown in the example.

See Monitoring Templates for more information on creating monitoring templates.

Device Class Fields

The following fields are valid for a device class entry.

path

Description Path (e.g. /Server/ACME/Widgeter). Must begin with “/”.

Required Yes

Type string

Default Value (implied from key in device_classes map)

description

Description Description used for devtype entry in device multi-add dialog

4.8. YAML Reference 81

ZenPack SDK Documentation, Release 2.1.1

Required No

Type string

Default Value None

create

Description Should the device class be created when the ZenPack is installed?

Required No

Type boolean

Default Value true

remove

Description Should the device class be removed when the ZenPack is removed?

Required No

Type boolean

Default Value false

reset

Description If true, any zProperties defined here will override those of the target device class, if it
exists

Required No

Type boolean

Default Value false

zProperties

Description zProperty values to set on the device class.

Required No

Type map<name, value>

Default Value {} (empty map)

templates

Description Monitoring templates to add to the device class.

Required No

Type map<name, Monitoring Template>

Default Value {} (empty map)

protocol

Description Protocol used for devtype entry in device multi-add dialog

Required No

Type string

Default Value None

Note: The reset option is not the preferred way to handle migration or changes to zProperty values between Zen-
Pack versions. It is likely to cause heartache in cases where the target Device Class is not supplied exclusively by

82 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

the ZenPack, for instance, since there is no way to control which version of the desired zProperty values would be
authoritative or what the expected value should be if a single device class is targeted by multiple ZenPacks. Several
other bad scenarios exist, so use this option with extreme caution and preferably use migration scripts to handle these
types of changes.

4.8.4 Monitoring Templates

Monitoring templates are containers for monitoring configuration. Specifically datasources, thresholds and graphs.
A monitoring template must be created to perform periodic collection of data, associate thresholds with that data, or
define how that data should be graphed.

Location and Binding

Two important concepts in understanding how monitoring templates are used are location and binding. Location is the
device class in which a monitoring template is contained. Binding is the device class, device or component to which a
monitoring template is bound.

A monitoring template’s location is important because it restricts to which devices a the template may be bound.
Assume you have a device named widgeter1 in the /Server/ACME/Widgeter device class that as a monitoring tem-
plate named WidgeterHealth bound. Zenoss will attempt to find a monitoring template named WidgeterHealth in the
following places in the following order.

1. On the widgeter1 device.

2. In the /Server/ACME/Widgeter device class.

3. In the /Server/ACME device class.

4. In the /Server device class.

5. In the / device class.

The first template that matches by name will be used for the device. No template will be bound if no matching template
is found in any of these locations.

It is because of this search up the hierarchy that allows the monitoring template’s location to be used to restrict to
which devices it can be bound. For example, by locating our monitoring template in the /Server/ACME device class
we make it available to be bound for all devices in /Server/ACME and /Server/ACME/Widgeter, but we also make
unavailable to be bound in other device classes such as /Server or /Network/Cisco.

After deciding on the right location for a monitoring template should then decide where it should be bound. Remember
that to cause the template to be used it must be bound. This is done by adding the template’s name to the zDeviceTem-
plates zProperty of a device class. See the following example that shows how to bind the WidgeterHealth monitoring
template to the /Server/ACME/Widgeter device class.

name: ZenPacks.acme.Widgeter

device_classes:
/Server/ACME/Widgeter:
zProperties:

zDeviceTemplates:
- WidgeterHealth

templates:
WidgeterHealth: {}

4.8. YAML Reference 83

ZenPack SDK Documentation, Release 2.1.1

Note that zDeviceTemplates didn’t have to be declared in the ZenPack’s zProperties field because it’s a standard Zenoss
zProperty.

Note: Binding templates using zDeviceTemplates is only applicable for monitoring templates that should be bound
to devices. See Classes and Relationships for information on how monitoring templates are bound to components.

Alternatives to YAML

It’s possible to create monitoring templates and add them to a ZenPack entirely through the Zenoss web interface. If
you don’t have complex or many monitoring templates to create and prefer to click through the web interface, you
may choose to create your monitoring templates this way instead of through the zenpack.yaml file.

There are some advantages to defining monitoring templates in YAML.

• Using text-editor features such as search can be an easier way to make changes than clicking through the web
interface.

• Having monitoring templates defined in the same document as the zProperties they use, and the device classes
they’re bound to can be easier to understand.

• Changes made to monitoring templates in YAML are much more diff-friendly than the same changes made
through the web interface then exported to objects.xml. For those keeping ZenPack source in version control
this can make changes clearer. For the same reason it can also be of benefit when multiple authors are working
on the same ZenPack.

See Command Line Reference for information on the dump_templates option if you’re interested in exporting moni-
toring templates already created in the web interface to YAML.

Adding Monitoring Templates

To add a monitoring template to zenpack.yaml you must first add the device class where it is to be located. Then within
this device class entry you must add a templates field. The following example shows a WidgeterHealth monitoring
template being added to the /Server/ACME/Widgeter device class. It also shows that template being bound to the
device class by setting zDeviceTemplates.

name: ZenPacks.acme.Widgeter

device_classes:
/Server/ACME/Widgeter:
zProperties:

zDeviceTemplates:
- WidgeterHealth

templates:
WidgeterHealth:

description: ACME Widgeter monitoring.

datasources:
health:

type: COMMAND
parser: Nagios
commandTemplate: "echo OK|percent=100"

datapoints:
percent:

(continues on next page)

84 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

rrdtype: GAUGE
rrdmin: 0
rrdmax: 100

thresholds:
unhealthy:
dsnames: [health_percent]
eventClass: /Status
severity: Warning
minval: 90

graphs:
Health:
units: percent
miny: 0
maxy: 0

graphpoints:
Health:
dpName: health_percent
format: "%7.2lf%%"

Many different entry types are shown in the above example. See the references below for more information on each.

Monitoring Template Fields

The following fields are valid for a monitoring template entry.

name

Description Name (e.g. WidgeterHealth). Must be a valid Zenoss object ID.

Required Yes

Type string

Default Value (implied from key in templates map)

description

Description Description of the templates purpose and function.

Required No

Type string

Default Value “” (empty string)

targetPythonClass

Description Python module name (e.g. ZenPacks.acme.Widgeter.Widgeter) to which this template
is intended to be bound.

Required No

Type string

Default Value “” (empty string is equivalent to Products.ZenModel.Device)

datasources

Description Datasources to add to the template.

4.8. YAML Reference 85

ZenPack SDK Documentation, Release 2.1.1

Required No

Type map<name, Datasource>

Default Value {} (empty map)

thresholds

Description Thresholds to add to the template.

Required No

Type map<name, Threshold>

Default Value {} (empty map)

graphs

Description Graphs to add to the template.

Required No

Type map<name, Graph>

Default Value {} (empty map)

Note: ZenPackLib also allows for defining a replacement or additional template by adding “-replacement” or “-
addition” to the end of the template name. For example, a defined Device-replacement template will replace the
existing Device template on a device class. A defined Device-addition template will be applied in addition to the
existing Device template on a device class.

Datasource Fields

The following fields are valid for a datasource entry.

name

Description Name (e.g. health). Must be a valid Zenoss object ID.

Required Yes

Type string

Default Value (implied from key in datasources map)

type

Description Type of datasource. See Datasource Types.

Required Yes

Type string (must be a valid source type)

Default Value None. Must be specified.

enabled

Description Should the datasource be enabled by default?

Required No

Type boolean

Default Value true

86 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

component

Description Value for the component field on events generated by the datasource. Accepts TALES
expressions.

Required No

Type string

Default Value “” (empty string) – can vary depending on type.

eventClass

Description Value for the eventClass field on events generated by the datasource.

Required No

Type string

Default Value “” (empty string) – can vary depending on type.

eventKey

Description Value for the eventKey field on events generated by the datasource.

Required No

Type string

Default Value “” (empty string) – can vary depending on type.

severity

Description Value for the severity field on events generated by the datasource.

Required No

Type integer

Default Value 3 (0=Clear, 1=Debug, 2=Info, 3=Warning, 4=Error, 5=Critical) – can vary depend-
ing on type.

cycletime

Description How often the datasource will be executed in seconds.

Required No

Type integer – can vary depending on type.

Default Value 300 – can vary depending on type.

datapoints

Description Datapoints to add to the datasource.

Required No

Type map<name, Datapoint>

Default Value {} (empty map)

Datasources also allow other ad-hoc options to be added not referenced in the above list. This is because datasources
are an extensible type in Zenoss, and depending on the value of type, other fields may be valid.

4.8. YAML Reference 87

ZenPack SDK Documentation, Release 2.1.1

Datasource Types

The following datasource types are valid on any Zenoss system. They are the default types that are part of the platform.
This list is not exhaustive as datasources types are commonly added by ZenPacks.

SNMP

Description Performs an SNMP GET operation using the oid field.

Availability Zenoss Platform

Additional Fields

oid

Description The SNMP OID to get.

Required Yes

Type string

Default Value “” (empty string)

COMMAND

Description Runs command in commandTemplate field.

Availability Zenoss Platform

Additional Fields

commandTemplate

Description The command to run.

Required No

Type string

Default Value “” (empty string)

usessh:

Description Run command on bound device using SSH, or run it on the Zenoss col-
lector server?

Required No

Type boolean

Default Value false

parser:

Description Parser used to parse output from command.

Required No

Type string (must be a valid parser name)

Default Value Auto

PING

Description Pings (ICMP echo-request) an IP address.

Availability Zenoss Platform

Additional Fields

88 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

cycleTime

Description How many seconds between ping attempts. (note capitalization)

Required No

Type integer

Default Value 60

attempts:

Description How many ping attempts to perform each cycle.

Required No

Type integer

Default Value 2

sampleSize

Description How many echo requests to send with each attempt.

Required No

Type integer

Default Value 1

Built-In

Description No collection. Assumes associated data will be populated by an external mechanism.

Availability Zenoss Platform

Additional Fields None

Custom Datasource and Datapoint Types

Some datasource (and datapoint) types are provided by a particular ZenPack and only available if that ZenPack is
installed. These types often have unique paramters that control their function. ZenPackLib allows the specification
of these parameters, but the degree of documentation for each varies. As a result, designing YAML templates using
these requires a bit of investigation. The available properties depend on the datasource or datapoint type being used.
Currently, examination of the related source code is a good way to investigate them, but an alternative is given below.

The following exmaple demonstrates how to create a YAML template that relies on the Zen-
Packs.zenoss.CalculatedPerformance ZenPack. Please note that the datasource properties used are not documented
below, since they are provided by the CalculatedPerformance ZenPack.

First, we want to determine a list of available parameters, and we can use ZenDMD to display them as follows:

This is the reference class and its properties are documented here.
from Products.ZenModel.RRDDataSource import RRDDataSource as Reference
replace the import path and class with the class you are interested in
from ZenPacks.zenoss.CalculatedPerformance.datasources.AggregatingDataSource \

import AggregatingDataSource as Comparison
this prints out the list of non-standard properties and their types
props = [p for p in Comparison._properties if p not in Reference._properties]
print '\n'.join(['{} ({})'.format(p['id'], p['type']) for p in props])

In this case, we should see the following output:

4.8. YAML Reference 89

ZenPack SDK Documentation, Release 2.1.1

targetMethod (string)
targetDataSource (string)
targetDataPoint (string)
targetRRA (string)
targetAsRate (boolean)
debug (boolean)

An example tempalte using the CalculatedPerformance datasources might resemble the following:

name: ZenPacks.zenoss.ZenPackLib
device_classes:

/Device:
templates:
ExampleCalculatedPerformanceTemplate:

datasources:
standard SNMP datasources
memAvailReal:

type: SNMP
oid: 1.3.6.1.4.1.2021.4.6.0
datapoints:

memAvailReal: GAUGE
memAvailSwap:
type: SNMP
oid: 1.3.6.1.4.1.2021.4.4.0
datapoints:
memAvailSwap: GAUGE

CalculatedPerformance datasources
totalAvailableMemory

type: Calculated Performance
"expression" paramter is unique to the
CalculatedPerformance datasource
expression: memAvailReal + memAvailSwap
datapoints:
totalAvailableMemory: GAUGE

Aggregated Datasource
agg_out_octets:

These are standard parameters
type: Datapoint Aggregator
The following parameters are "extra" parameters,
attributes of the "Datapoint Aggregator" datasource
targetDataSource: ethernetcmascd_64
targetDataPoint: ifHCOutOctets
targetMethod: os.interfaces
AggregatingDataPoint is subclassed from RRDDataPoint and
has the unique "operation" paramter
datapoints:

aggifHCOutOctets:
operation: sum

Further experimentation, though, is required to determine workable values for these properties, and creating templates
manually using the Zenoss GUI is a good way to do so.

Datapoint Fields

The following fields are valid for a datapoint entry.

name

90 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Description Name (e.g. percent). Must be a valid Zenoss object ID.

Required Yes

Type string

Default Value (implied from key in datapoints map)

description

Description Description of the datapoint’s purpose and function.

Required No

Type string

Default Value “” (Inherited from Template description)

rrdtype

Description Type of datapoint. Must be GAUGE or DERIVE.

Required No

Type string (must be either GAUGE or DERIVE)

Default Value GAUGE

rrdmin

Description Minimum allowable value that can be written to the datapoint. Any lower values will
be ignored.

Required No

Type int

Default Value None (no lower-bound on acceptable values)

rrdmax

Description Maximum allowable value that can be written to the datapoint. Any higher values will
be ignored.

Required No

Type int

Default Value None (no upper-bound on acceptable values)

aliases

Description Analytics aliases for the datapoint with optional RPN calculation. Learn more about
Reverse Polish Notiation

Required No

Type map<name, formula>

Default Value {} (empty map)

Example 1 aliases: { datapointName: ‘1024,*’ }

Example 2 aliases: datapointName

Datapoints also allow other ad-hoc options to be added not referenced in the above list. This is because datapoints are
an extensible type in Zenoss, and depending on the value of the datasource’s type, other fields may be valid.

4.8. YAML Reference 91

https://en.wikipedia.org/wiki/Reverse_Polish_notation

ZenPack SDK Documentation, Release 2.1.1

YAML datapoint specification also supports the use of an alternate “shorthand” notation for brevity. Shorthand nota-
tion follows a pattern of RRDTYPE_MIN_X_MAX_X where RRDTYPE is one of “GAUGE, DERIVE, COUNTER,
ABSOLUTE”, and the “MIN_X”/”MAX_X” parameters are optional.

For example, DERIVE, DERIVE_MIN_0, and DERIVE_MIN_0_MAX_100 are all valid shorthand notation.

Threshold Fields

The following fields are valid for a threshold entry.

name

Description Name (e.g. unhealthy). Must be a valid Zenoss object ID.

Required Yes

Type string

Default Value (implied from key in thresholds map)

type

Description Type of threshold. See Threshold Types.

Required No

Type string (must be a valid threshold type)

Default Value MinMaxThreshold

enabled

Description Should the threshold be enabled by default?

Required No

Type boolean

Default Value true

dsnames

Description List of datasource_datapoint combinations to threshold.

Required No

Type list

Default Value [] (empty list)

Example dsnames: [‘status_status’]

eventClass

Description Value for the eventClass field on events generated by the threshold.

Required No

Type string

Default Value /Perf/Snmp – can vary depending on type.

severity

Description Value for the severity field on events generated by the threshold.

Required No

92 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Type int

Default Value 3 (0=Clear, 1=Debug, 2=Info, 3=Warning, 4=Error, 5=Critical) – can vary depend-
ing on type.

escalateCount:

Description Event count after which severity increases

Required No

Type int

Default Value 0

optional:

Description The threshold will not be created if the threshold type is not available and optional is
set to true. Installation will fail if the type is not available and optional is set to false.

Required No

Type boolean

Default Value False

Thresholds also allow other ad-hoc options to be added not referenced in the above list. This is because thresholds are
an extensible type in Zenoss, and depending on the value of the threshold’s type, other fields may be valid.

Threshold Types

The following threshold types are valid on any Zenoss system. They are the default types that are part of the platform.
This list is not exhaustive as additional threshold types can be added by ZenPacks.

MinMaxThreshold:

Description Creates an event if values are below or above specified limits.

Availability Zenoss Platform

Additional Fields

minval

Description The minimum allowable value. Values below this will raise an event.

Required No

Type string – Must evaluate to a number. Accepts Python expressions.

Default Value None (no lower-bound on allowable values)

maxval

Description The maximum allowable value. Values above this will raise an event.

Required No

Type string – Must evaluate to a number. Accepts Python expressions.

Default Value None (no upper-bound on allowable values)

ValueChangeThreshold

Description Creates an event if the value is different than last time it was checked.

Availability Zenoss Platform

4.8. YAML Reference 93

ZenPack SDK Documentation, Release 2.1.1

Additional Fields None

Graph Fields

The following fields are valid for a graph entry.

name

Description Name (e.g. Health). Must be a valid Zenoss object ID.

Required Yes

Type string

Default Value (implied from key in graphs map)

description

Description Description of the graph’s purpose and function.

Required No

Type string

Default Value “” (empty string)

units

Description Units displayed on graph. Used as the y-axis label.

Required No

Type string

Default Value None

miny

Description Value for bottom of y-axis.

Required No

Type integer

Default Value -1 (-1 causes the minimum y-axis to conform to the plotted data)

maxy

Description Value for top of y-axis.

Required No

Type integer

Default Value -1 (-1 causes the maximum y-axis to conform to the plotted data)

log

Description Should the y-axis be a logarithmic scale?

Required No

Type boolean

Default Value false

base

Description Is the plotted data in base 1024 like storage or memory size?

94 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Required No

Type boolean

Default Value false

hasSummary

Description Should the graph legend be shown?

Required No

Type boolean

Default Value true

height

Description The graph’s height in pixels.

Required No

Type integer

Default Value 500

width

Description The graph’s width in pixels.

Required No

Type integer

Default Value 500

graphpoints

Description Graphpoints to add to the graph.

Required No

Type map<name, Graphpoint>

Default Value {} (empty map)

comments

Description List of comments to display in the graph’s legend.

Required No

Type list<string>

Default Value [] (empty list)

Graphpoint Fields

The following fields are valid for a graphpoint entry.

name

Description Name (e.g. Health). Must be a valid Zenoss object ID.

Required Yes

Type string

Default Value (implied from key in templates map)

4.8. YAML Reference 95

ZenPack SDK Documentation, Release 2.1.1

type

Description Type of graphpoint. See GraphPoint Types.

Required No

Type string (must be a valid graphpoint type)

Default Value DataPointGraphPoint

legend

Description Label to be shown for this graphpoint in the legend. The name field will be used if
legend is not set.

Required No

Type string

Default Value None

dpName

Description datasource_datapoint combination to plot.

Required Yes

Type string

Default Value None

Example dpName: ‘status_status’

lineType

Description How to plot the data: “LINE”, “AREA” or “DONTDRAW”.

Required No

Type string

Default Value LINE

lineWidth

Description How thick the line should be for the line type.

Required No

Type integer

Default Value 1

stacked

Description Should this graphpoint be stacked (added) to the last? Ideally both area “AREA” types.

Required No

Type boolean

Default Value false

color

Description Color for the line. Specified as RRGGBB (e.g. 1f77b4).

Required No

Type string

96 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Default Value Cycles through a preset list depending on graphpoint’s sequence.

colorindex

Description Color index for the line. Can be used instead of color to specify the color sequence
number rather than the specific color.

Required No

Type integer

Default Value None

format

Description String format for this graphpoint in the legend (e.g. %7.2lf%s). The format option
follows the RRDTool PRINT Format

Required No

Type string

Default Value “%5.2lf%s”

cFunc

Description Consolidation function. One of AVERAGE, MIN, MAX, LAST.

Required No

Type string

Default Value AVERAGE

limit

Description Maximum permitted value. Value larger than this will be nulled. Not used if negative.

Required No

Type integer

Default Value -1

rpn

Description RPN (Reverse Polish Notation) calculation to apply to datapoint. Learn more about
Reverse Polish Notiation

Required No

Type string

Default Value None

includeThresholds

Description Should thresholds associated with dpName be automatically added to the graph?

Required No

Type boolean

Default Value false

thresholdLegends

Description Mapping of threshold id to legend (string) and color (RRGGBB)

Required No

4.8. YAML Reference 97

https://oss.oetiker.ch/rrdtool/doc/rrdgraph_graph.en.htm
https://en.wikipedia.org/wiki/Reverse_Polish_notation

ZenPack SDK Documentation, Release 2.1.1

Type map

Default Value None

Example thresholdLegends: {threshold_id: {legend: Legend, color: OO1122}}

Graphpoint Types

The following graphpoint types are valid on any Zenoss system. They are the default types that are part of the platform.
This list is not exhaustive as additional graphpoint types can be added by ZenPacks.

ThresholdGraphPoint:

Description Graphpoint that refers to a threshold associated with a datapoint

Availability Zenoss Platform

Additional Fields

threshId

Description Reference to the id of related threshold

Required Yes

Type string – Must evaluate to a related threshold id

Default Value None

CommentGraphPoint

Description Graphopints defining a comment

Availability Zenoss Platform

Additional Fields

text

Description Contextual comments for CommentGraphPoint

Required No

Type string

Default Value None

4.8.5 Classes and Relationships

Classes and relationships form the model that forms the basis for everything Zenoss does. Classes are things like
Device, FileSystem, IpInterface and OSProcess. Relationships state things like a Device contains many FileSystems.
You will need to extend this model when the standard classes and relationships don’t adequately represent the model
of a target your ZenPack is attempting to monitor. For example, a XenServer ZenPack needs to represent concepts like
pools, storage repositories and virtual machines.

Standard Classes

The standard classes exist on all Zenoss systems. If these are the only types of things you care to model and monitor
then you may not need to create your own classes or relationships.

• Device

98 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

– DeviceHW (hw)

* CPU (hw/cpus)

* ExpansionCard (hw/cards)

* Fan (hw/fans)

* HardDisk (hw/harddisks)

* PowerSupply (hw/powersupplies)

* TemperatureSensor (hw/temperaturesensors)

– OperatingSystem (os)

* FileSystem (os/filesystems)

* IpInterface (os/interfaces)

* IpRouteEntry (os/routes)

* OSProcess (os/processes)

* IpService (os/ipservices)

* WinService (os/winservices)

Classes

If you need more than the standard classes provide, you will need to extend one of the following base classes provided
by zenpacklib.

• zenpacklib.Device

• zenpacklib.Component

– zenpacklib.HWComponent

* zenpacklib.CPU

* zenpacklib.ExpansionCard

* zenpacklib.Fan

* zenpacklib.HardDisk

* zenpacklib.PowerSupply

* zenpacklib.TemperatureSensor

– zenpacklib.OSComponent

* zenpacklib.FileSystem

* zenpacklib.IpInterface

* zenpacklib.IpRouteEntry

* zenpacklib.OSProcess

* zenpacklib.Service

· zenpacklib.IpService

· zenpacklib.WinService

4.8. YAML Reference 99

ZenPack SDK Documentation, Release 2.1.1

You use zenpacklib.Device to create new device types of which instances will appear on the Infrastructure screen.
You use zenpacklib.Component to create new component types of which instances will appear under Components
on a device’s left navigation pane. Frequently when ZenPacks need to add new classes, they will add a single new
device type with many new components types. For example, a XenServer ZenPack would add a new device type
called Endpoint which represents the XenAPI management interface. That Endpoint device type would have many
components of types such as Pool, StorageRepository and VirtualMachine.

The other supported classes are proxies for their platform equivalents, and are to be used when you want to extend one
of the platform component types rather than creating a totally new component type.

Relationships

Relationships are Zenoss’ way of saying objects are related to each other. For example, the DeviceHW class contains
many CPUs of the CPU class. You must also declare relationships between classes in your ZenPack. If you only
declare types based on zenpacklib.Device you don’t have to do this because they’ll automatically have a relationship to
their containing device class among other things. However, you must define at least a containing relationship for every
type based on zenpacklib.Component you create. This is because components aren’t contained in any relationship by
default, and every object in Zenoss must be contained somewhere.

zenpacklib supports the following types of relationships.

• One-to-Many Containing (1:MC)

• One-to-Many (1:M)

• Many-to-Many (M:M)

• One-to-One (1:1)

It’s important to understand the different between containing and non-containing relationships. Each component type
must be contained by exactly one relationship. Beyond that a device or component type may have as many non-
containing relationships as you like. This is because every object in Zenoss has a single primary path that describes
where it is stored in the tree that is the Zenoss object database.

A simplified version of XenServer’s classes and relationships provides for a good example. The following list of
relationship states the following: An endpoint contains zero or more pools, each pool contains zero or more storage
repositories and virtual machines, and each storage repository is related to zero or more virtual machines.

• Endpoint 1:MC Pool

• Pool 1:MC StorageRepository

• Pool 1:MC VirtualMachine

• StorageRepository M:M VirtualMachine

Adding Classes and Relationships

To add classes and relationships to zenpack.yaml you add entries to the top-level classes and class_relationships
fields. The following example shows a XenServer Endpoint device type along with Pool, StorageRepository, and
VirtualMachine component types.

name: ZenPacks.example.XenServer

classes:
DEFAULTS:
base: [zenpacklib.Component]

(continues on next page)

100 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

XenServerEndpoint:
base: [zenpacklib.Device]
label: Endpoint

XenServerPool:
label: Pool

properties:
ha_enabled:

type: boolean
label: HA Enabled
short_label: HA

ha_allow_overcommit:
type: boolean
label: HA Allow Overcommit
short_label: Overcommit

XenServerStorageRepository:
label: Storage Repository

properties:
physical_size:

type: int
label: Physical Size
short_label: Size

XenServerVirtualMachine:
label: Virtual Machine

properties:
vcpus_at_startup:

type: int
label: vCPUs at Startup
short_label: vCPUs

class_relationships:
- XenServerEndpoint 1:MC XenServerPool
- XenServerPool 1:MC XenServerStorageRepository
- XenServerPool 1:MC XenServerVirtualMachine
- XenServerStorageRepository M:M XenServerVirtualMachine

Note: DEFAULTS can be used in classes just like in zProperties to avoid repetitively setting the same field for
many entries. Note specifically how XenServerPool, XenServerStorageRepository and XenServerVirtualMachine will
inherit the default while XenServerEndpoint overrides it.

Classes and their properties allow for a wide range of control. See the following section for details.

Extending ZenPackLib Classes

Occasionally, you may wish to add your own custom methods to your YAML-defined classes or otherwise extend
their functionality beyond ZenPackLib’s current capabilities. Doing so requires creating a Python file that imports and
overrides the class you wish to modify, and this is relatively straightforward.

4.8. YAML Reference 101

ZenPack SDK Documentation, Release 2.1.1

Suppose we have a component class called “BasicComponent”, and we want to provide a method called “hello world”
that, when called, will return the string “Hello World” and display it in the component grid.

Our YAML file looks like this:

name: ZenPacks.zenoss.BasicZenPack
class_relationships:
- BasicDevice 1:MC BasicComponent
classes:

BasicDevice:
base: [zenpacklib.Device]

BasicComponent:
base: [zenpacklib.Component]
properties:

hello_world:
this will appear as the column header
in the component grid
label: Hello World
this should be displayed in the component grid
grid_display: true
tells ZenPackLib that this isn't a typical
property like a string, integer, boolean, etc...
api_only: true
this is the type of property
api_backendtype: method

First, the ZenPack’s init file:

$ZPDIR/ZenPacks.zenoss.BasicZenPack/ZenPacks/zenoss/BasicZenPack/__init__.py

should contain the following lines:

from ZenPacks.zenoss.ZenPackLib import zenpacklib
CFG = zenpacklib.load_yaml()
schema = CFG.zenpack_module.schema

Note: For better performance, specify the explicit path(s) to your yaml file. e.g. CFG = zenpack-
lib.load_yaml([os.path.join(os.path.dirname(__file__), “zenpack.yaml”)])

Next, we create the file:

$ZPDIR/ZenPacks.zenoss.BasicZenPack/ZenPacks/zenoss/BasicZenPack/BasicComponent.py

and it should contain the lines:

from . import schema

class BasicComponent(schema.BasicComponent):
"""Class override for BasisComponent"""

From here, we proceed to add our “hello_world” method to obtain:

from . import schema

class BasicComponent(schema.BasicComponent):
"""Class override for BasisComponent"""

(continues on next page)

102 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

def hello_world(self):
return 'Hello World!'

And we’re done.

The “Hello World” column will now display in the component grid, and the string “Hello World!” will be printed in
each row of component output.

We can also override ZenPackLib’s built-in methods, but must be careful doing so to avoid undesirable results. Sup-
posing that our YAML specifies some monitoring templates (not defined here) for BasicComponent, and for some
reason we want to randomly choose which ones are displayed in the GUI. To do so, we need to override the “getR-
RDTemplates” method.

Our YAML file is modified:

name: ZenPacks.zenoss.BasicZenPack
class_relationships:
- BasicDevice 1:MC BasicComponent
classes:

BasicDevice:
base: [zenpacklib.Device]

BasicComponent:
base: [zenpacklib.Component]
properties:

hello_world:
label: Hello World
api_only: true
api_backendtype: method
grid_display: true

monitoring_templates: [ThisTemplate, ThatTemplate]

And we further modify our BaseComponent.py as follows:

import random
from . import schema

class BasicComponent(schema.BasicComponent):
"""Class override for BasisComponent"""
def hello_world(self):

return 'Hello World!'

def getRRDTemplates(self):
""" Safely override the ZenPackLib

getRRDTemplates method, returning
randomly chosen templates. """

templates = []
make sure we call the base method when we override it
for template in super(BasicComponent, self).getRRDTemplates():

rolling the dice
if bool(random.randint(0,1)):

templates.append(template)
return templates

The key point to remember here is the call to:

super(BasicComponent, self).getRRDTemplates()

4.8. YAML Reference 103

ZenPack SDK Documentation, Release 2.1.1

which instructs Python to use the original method before we modify its output. Similar care must be excercised when
overriding built-in methods and properties, assuming a safer method cannot be found.

Support for multiple YAML files (Version 2.0)

For particularly complex ZenPacks the YAML file can grow to be quite large, potentially making management cum-
bersome. To address this concern, ZenPackLib now supports splitting the zenpack.yaml files into multiple files. The
following conditions should be observed when using multiple files:

• The YAML files should have a .yaml extension.

• The “load_yaml” method will detect and load yaml files automatically. This behavior can be overridden by
calling load_yaml(yaml_doc=[doc1, doc2]). In this case the full file paths will need to be specified:

import os
files = ['file1.yaml', 'file2.yaml']
YAML_DOCS = [os.path.join(os.path.dirname(__file__), f) for f in files]
from ZenPacks.zenoss.ZenPackLib import zenpacklib
CFG = zenpacklib.load_yaml(yaml_doc=YAML_DOCS)
schema = CFG.zenpack_module.schema

• The ‘name’ parameter (ZenPack name), if used in multiple files, should be identical between them

• If a given YAML section (device_classes, classes, device_classes, etc) is split between files, then each file should
give the complete path to the defined objects. The following is valid:

File 1
name: ZenPacks.zenoss.BasicZenPack
class_relationships:
- BaseComponent 1:MC AuxComponent
classes:

BasicDevice:
base: [zenpacklib.Device]
monitoring_templates: [BasicDevice]

BasicComponent:
base: [zenpacklib.Component]
monitoring_templates: [BasicComponent]

File 2
class_relationships:
- BaseDevice 1:MC BaseComponent
classes:

SubComponent:
base: [BasicComponent]
monitoring_templates: [SubComponent]

AuxComponent:
base: [SubComponent]
monitoring_templates: [AuxComponent]

• Using conflicting parameters (like setting different DEFAULTS for the same entity in different files) will likely
lead to undesirable results.

Class Fields

The following fields are valid for a class entry.

name

104 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Description Name (e.g. XenServerEndpoint). Must be a valid Python class name.

Required Yes

Type string

Default Value (implied from key in classes map)

base

Description List of base classes to extend. See Classes

Required No

Type list<classname>

Default Value [zenpacklib.Component]

meta_type

Description Globally unique name for the class.

Required No

Type string

Default Value (same as name)

label

Description Human-friendly label for the class.

Required No

Type string

Default Value (same as meta_type)

plural_label

Description Plural form of label.

Required No

Type string

Default Value (same as label with an “s” suffix)

short_label

Description Short form of label. Used as a column header or where space is limited.

Required No

Type string

Default Value (same as label)

plural_short_label

Description Plural form of short_label.

Required No

Type string

Default Value (same as short_label with an “s” suffix)

icon

Description Filename (in resources/) for icon.

4.8. YAML Reference 105

ZenPack SDK Documentation, Release 2.1.1

Required No

Type string

Default Value (same as name with a “.png” suffix in resources/icon/)

label_width

Description Width of label text in pixels.

Required No

Type integer

Default Value 80

plural_label_width

Description Width of plural_label text in pixels.

Required No

Type integer

Default Value (same as label_width + 7)

content_width

Description Expected width of object’s title in pixels.

Required No

Type integer

Default Value (same as label_width)

auto_expand_column

Description Column (property) to auto-expand in component grid.

Required No

Type string

Default Value name

initial_sort_column

Description Column (property) to initially sort in component grid.

Required No

Type string

Default Value name

order

Description Order to display this class among other classes. (1-100)

Required No

Type integer

Default Value 100

Note: The order parameter takes any integer value between 1 and 100. However, it’s behavior depends somewhat
depending on whether it applies to a Class, a Property, or a Relationship. For a relationship, order behavior can further
depend on the type of relationship.

106 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

There is an overall clustering for like items in the GUI component grid, following this order:

1. Containing Components

2. Properties

3. Contained Components

with container relationships listed before visible properties and finally any containing relationships.

Earlier (pre-2.0) versions of ZenPackLib accepted float arguments for order. However, ZenPackLib now “normalizes”
these values behind the scenes to integers between 1 and 100.

filter_display

Description Will related components be filterable by components of this type?

Required No

Type boolean

Default Value true

filter_hide_from

Description Classes for which this class should not show in the filter dropdown.

Required No

Type list<classname>

Default Value [] (empty list)

monitoring_templates

Description List of monitoring template names to bind to components of this type.

Required No

Type list<string>

Default Value [(label with spaces removed)]

properties

Description Properties for this class.

Required No

Type map<name, Class Property>

Default Value {} (empty map)

relationships

Description Relationship overrides for this class.

Required No

Type map<name, Relationship Override>

Default Value {} (empty map)

impacts

Description Relationship or method names that when called return a list of objects that objects of
this class could impact.

Required No

4.8. YAML Reference 107

ZenPack SDK Documentation, Release 2.1.1

Type list<relationship_or_method_name>

Default Value [] (empty list)

impacted_by

Description Relationship or method names that when called return a list of objects that could impact
objects of this class.

Required No

Type list<relationship_or_method_name>

Default Value [] (empty list)

impact_triggers

Description Impact trigger policy definitions for this class.

Required No

Type map<name, Impact Trigger>

Default Value {} (empty map)

dynamicview_views

Description Names of Dynamic Views objects of this class can appear in.

Required No

Type list<dynamicview_view_name>

Default Value [service_view]

dynamicview_group

Description Dynamic View group name for objects of this class. Can be overridden by implement-
ing getDynamicViewGroup() method on class.

Required No

Type string

Default Value (same as plural_short_label)

dynamicview_weight

Description Dynamic View weight for objects of this class. Higher numbers are further to the right.
Can be overridden by implementing getDynamicViewGroup() method on class.

Required No

Type float or int

Default 1000 + order * 10

dynamicview_relations

Description Map of Dynamic View relationships for this class and the relationship or method names
that when called populate them.

Required No

Type map<relationship_name, list<relationship_or_method_name>>

Default Value {} (empty map)

extra_paths

108 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Description By default, components are indexed based upon paths that include objects they have
a direct relationship to. This option allows additional paths to be specified (this can be useful
when indirect containment is used)

Required No

Type list<list<regexp>>

Default Value [] (empty list)

Example 1 [‘resourcePool’, ‘owner’] # from cluster or standalone

Example 2 [‘resourcePool’, ‘(parentResourcePool)+’] # from all parent resource pools, recursively.

Note: Each item in extra_paths is expressed as a tuple of regular expression patterns that are matched in order against
the actual relationship path structure as it is traversed and built up get_facets.

To facilitate matching, we construct a compiled set of regular expressions that can be matched against the entire path
string, from root to leaf.

So:

(‘orgComponent’, ‘(parentOrg)+’)

is transformed into a “pattern stream”, which is a list of regexps that can be applied incrementally as we traverse the
possible paths:

(re.compile(^orgComponent), re.compile(^orgComponent/(parentOrg)+),
re.compile(^orgComponent/(parentOrg)+/?$’)

Once traversal embarks upon a stream, these patterns are matched in order as the traversal proceeds, with the first one
to fail causing recursion to stop. When the final one is matched, then the objects on that relation are matched. Note
that the final one may match multiple times if recursive relationships are in play.

Class Property Fields

The following fields are valid for a class property entry.

name

Description Name (e.g. ha_enabled). Must be a valid Python variable name.

Required Yes

Type string

Default Value (implied from key in properties map)

type

Description Type of property: string, int, float, boolean, lines, password or entity. All types are
strictly enforced except for entity.

Required No

Type string

Default Value string

default

Description Default value for property.

Required No

4.8. YAML Reference 109

ZenPack SDK Documentation, Release 2.1.1

Type (varies depending on type)

Default Value None

label

Description Human-friendly label for the property.

Required No

Type string

Default Value (same as name)

short_label

Description Short form of label. Used as a column header where space is limited.

Required No

Type string

Default Value (same as label)

label_width

Description Width of label text in pixels.

Required No

Type integer

Default Value 80

content_width

Description Expected width of property’s value in pixels.

Required No

Type integer

Default Value (same as label_width)

display

Description Should this property be shown as a column and in details?

Required No

Type boolean

Default Value true

details_display

Description Should this property be shown in details?

Required No

Type boolean

Default Value true

grid_display

Description Should this property be shown as a column?

Required No

Type boolean

110 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Default Value true

order

Description Order to display this property among other properties. (1-100)

Required No

Type integer

Default Value 100

editable

Description Should this property be editable in details?

Required No

Type boolean

Default Value false

renderer

Description JavaScript renderer for property value.

Required No

Type string

Default Value None (renders value as-is)

api_only

Description Should this property be for the API only? The property or method (according to
api_backendtype) must be manually implemented if this is set to true.

Required No

Type boolean

Default Value false

api_backendtype

Description Implementation style for the property if api_only is true. Must be property or method.

Required No

Type string

Default Value property

enum

Description Enumeration map for property. Set to something like {1: ‘OK’, 2: ‘ERROR’} for an
int-type property to provide text representations for property values.

Required No

Type map<value, representation>

Default Value {} (empty map)

datapoint

Description datasource_datapoint value to use as the value for this property. Useful for displaying
the most recent collected datapoint value in the grid or details as any modeled property would
be.

4.8. YAML Reference 111

ZenPack SDK Documentation, Release 2.1.1

Required No

Type string

Default Value None

datapoint_default

Description Default value for property if datapoint is set, but no data exists.

Required No

Type string, integer or float

Default Value None

datapoint_cached

Description Should the value for datapoint be cached for a limited time? Can improve UI perfor-
mance.

Required No

Type boolean

Default Value true

index_type

Description Type of indexing for the property: field or keyword.

Required No

Type string

Default Value None (no indexing)

index_scope

Description Scope of index: device or global. Only applies if index_type is set.

Required No

Type string

Default Value device

Relationship Override Fields

The following fields are valid for a relationship override entry.

name

Description Name (e.g. xenServerPools). Must match a relationship name defined in
class_relationships.

Required Yes

Type string

Default Value (implied from key in relationships map)

label

Description Human-friendly label for the relationship.

Required No

Type string

112 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Default Value (label of class to which the relationship refers)

short_label

Description Short form of label. Used as a column header where space is limited.

Required No

Type string

Default Value (same as label or referred class’ short_label)

label_width

Description Width of label text in pixels.

Required No

Type integer

Default Value (same as referred class’ label width)

content_width

Description Expected width of relationship’s value in pixels. To-Many relationships are shown
simply as a count and will have a shorter width. To-One relationships show a link to the object
and will require a width long enough to accommodate the object’s title.

Required No

Type integer

Default Value (varies depending on relationship type)

display

Description Should this relationship be shown as a column and in details?

Required No

Type boolean

Default Value true

details_display

Description Should this relationship be shown in details?

Required No

Type boolean

Default Value true

grid_display

Description Should this relationship be shown as a column?

Required No

Type boolean

Default Value true

order

Description Order to display this relationship among other relationships and properties. (1-100)

Required No

Type integer

4.8. YAML Reference 113

ZenPack SDK Documentation, Release 2.1.1

Default Value 100

renderer

Description JavaScript renderer for relationship value.

Required No

Type string

Default Value None

render_with_type

Description Should related object be rendered with it’s type? Only applies to To-One relationships.

Required No

Type boolean

Default Value false

Impact Trigger Fields

The following fields are valid for an Impact trigger entry.

name

Description Name (e.g. avail_pct_5). Must be a valid Python variable name.

Required Yes

Type string

Default Value (implied from key in properties map)

policy

Description Type of policy, one of: AVAILABILITY, PERFORMANCE, CAPACITY

Required Yes

Type string

Default Value AVAILABILITY

trigger:

Description Type of trigger, one of: policyPercentageTrigger, policyThresholdTrigger, or nega-
tiveThresholdTrigger

Required Yes

Type string

Default Value policyPercentageTrigger

threshold:

Description Numerical boundary for the trigger

Required Yes

Type int

Default Value 50

state:

114 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Description State of this object when trigger criteria met (see note)

Required Yes

Type str

Default Value UNKNOWN

dependent_state:

Description State of dependent objects meeting trigger criteria (see note)

Required Yes

Type str

Default Value UNKNOWN

Note: Valid values for both state and dependent_state depend on the choice of policy parameter:

• AVAILABILITY: DOWN, UP, DEGRADED, ATRISK, or UNKNOWN

• PERFORMANCE: UNACCEPTABLE, DEGRADED, ACCEPTABLE, or UNKNOWN

• CAPACITY: UNACCEPTABLE, REDUCED, ACCEPTABLE, or UNKNOWN

4.8.6 Device Link Providers

A device link provider is a subscriber interface that gives a hook for adding context-specific html links (for example,
the device links on the Device Details page). Zenpacklib provides a simple class to search the global catalog, device
class catalog, or a device local catalog that match a specific query.

name: ZenPacks.zenoss.BasicZenPack

link_providers:
Virtual Machine:
link_class: ZenPacks.example.XenServer
catalog: device
device_class: /Server/XenServer
queries: [vm_id:manageIp]

XenServer:
global_search: True
queries: [manageIp:vm_id]

To search the global catalog, set global_search to true. If the catalog you wish to search is in a specific device class, set
global_search to false and specify the class name with device_class. To search a catalog on the local device, simply set
global_search to false and do not set device_class. You can use one or more queries to match up devices/components.
In the above example, the XenServer provider will search the global device catalog and match any device’s manageIp
attribute with the current device’s vm_id attribute.

Device Link Provider Fields

The following fields are valid for a device link provider entry.

link_title:

Description Title which will appear on the overview page of the type of device or component.

Required Yes

4.8. YAML Reference 115

ZenPack SDK Documentation, Release 2.1.1

Type string

Default Value (implied from key in relationships map)

global_search:

Description Search the global catalog?

Required No

Type boolean

Default Value false

link_class:

Description Python class on which this provider will apply. You must supply the full python class
name. For example, ‘ZenPacks.example.XenServer.Device.Device’.

Required No

Type string

Default Value ‘Products.ZenModel.Device.Device’

device_class:

Description Device class containing the catalog which to search. You must supply the full device
class name. For example, ‘/Server/XenServer’.

Required No

Type string

Default Value None

catalog:

Description Catalog name on which to search for linked devices/components

Required No

Type string

Default Value ‘device’

queries:

Description Queries to use to match a linked device/component. Each query must be in remote:local
format, meaning that the catalog search will match a remote attribute with a local attribute. The
local search term could also be actual text. Examples: id:manageIp will match the remote id
attribute with the local device’s manageIp attribute, and meta_type:ClusterDevice will match the
meta_type on a remote device to “ClusterDevice”.

Required Yes

Type list<string>

Default Value None

4.8.7 Event Classes

Event Classes are used to group together specific types of events. This can be useful for situations where an event
should be dropped or text should be altered to be more human readable. This is typically done through a python
transform.

116 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

To define a class, supply the path to the class or classes. Then, for each event class, supply the appropriate properties
for the class. These include the option to remove the event class during ZenPack installation/uninstallation, description,
and a transform. You can also define mappings to apply to events based on a key and supply an explanation and/or
resolution to an issue.

Note: When you define an event class and/or mapping which already exists, any settings defined in your ZenPack
will overwrite existing settings.

The following example shows an example of a zenpack.yaml file with an example of a definition of an event class.

name: ZenPacks.acme.Events

event_classes:
/Status/Acme:
remove: false
description: Acme event class
mappings:
Widget:

eventClassKey: WidgetEvent
sequence: 10
remove: true
transform: |-
if evt.message.find('Error reading value for') >= 0:

evt._action = 'drop'

Note: When assigning values to multi-line fields such as transform or example, the best way to preserve whitespace
and readability is to use the

transform: |-

if evt.message.find(‘Error reading value for’) >= 0: evt._action = ‘drop’

style convention demonstrated. As this example demonstrates, the indented line following the “|-“ style character
becomes the first line of the transform, with subsequent whitespace preserved.

Since this is a YAML “mapping”, the minmal specification (name only) would look like:

event_classes:
/Status/Acme: {}

Event Class Fields

The following fields are valid for an event class entry.

path

Description Path to the Event Class (e.g. /Status/Acme). Must begin with “/”.

Required Yes

Type string

Default Value None

description

Description Description of the event class

4.8. YAML Reference 117

ZenPack SDK Documentation, Release 2.1.1

Required No

Type string

Default Value None

create

Description Should the event class be created when the ZenPack is installed?

Required No

Type boolean

Default Value true

remove

Description Should the event class be removed when the ZenPack is removed? This will only apply
to a ZenPack that has created the event class. Any existing event classes not created by the
ZenPack will not be removed. Any event classes created by the platform will also never be
removed.

Required No

Type boolean

Default Value false

reset

Description If true, any zProperties defined here will override those of the target event class, if it
exists

Required No

Type boolean

Default Value false

zProperties

Description zProperty values to set on the event class.

Required No

Type map<name, value>

Default Value {} (empty map)

transform

Description A python expression for transformation.

Required No

Type string (multiline)

Default Value None

mappings

Description Event class mappings

Required No

Type map<name, Event Class Mapping>

Default Value None

118 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Event Class Mapping Fields

The following fields are valid for an event class mapping entry.

name

Description Name of the event class mapping (e.g. WidgetDown).

Required Yes

Type string

Default Value None

zProperties

Description zProperty values to set on the event class mapping.

Required No

Type map<name, value>

Default Value {} (empty map)

eventClassKey

Description Event class key

Required No

Type string

Default Value None

explanation

Description Textual description for matches of this event class mapping. Use in conjunction with
the Resolution field.

Required No

Type string (multiline)

Default Value None

resolution

Description Use the Resolution field to enter resolution instructions for clearing the event.

Required No

Type string (multiline)

Default Value None

sequence

Description Define the match priority. Lower is a higher priority.

Required No

Type integer

Default Value None

rule

Description A python expression to match an event.

Required No

4.8. YAML Reference 119

ZenPack SDK Documentation, Release 2.1.1

Type string

Default Value None

regex

Description A regular expression to match an event.

Required No

Type string

Default Value None

transform

Description A python expression for transformation.

Required No

Type string (multiline)

Default Value None

example

Description Debugging string to use in the regular expression ui testing.

Required No

Type string (multiline)

Default Value None

remove

Description Remove the Mapping when the ZenPack is removed.

Required No

Type boolean

Default Value None

4.8.8 Process Classes

Process Classes are used to define sets of similar running processes using a regular expression. You can then monitor
various aspects of the running processes, such as cpu and memory usage, with a datasource.

To define a class, supply the Process Class Organizer under which the Process Class will reside. Optionally add
a description of the organizer. Then, for each Process Class, supply the processes to include/exclude, description,
and replacement text. You can also optionally override specific zProperties of a process class, such as zMonitor or
zFailSeverity. See the Process Class Fields section below.

The following example shows an example of a zenpack.yaml file with an example of a definition of a process class.

name: ZenPacks.acme.Processes

process_class_organizers:
Widget:
description: Organizer for Widget process classes
process_classes:
widget:

description: Widget process class
includeRegex: sbin\/widget

(continues on next page)

120 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

excludeRegex: "\\b(vim|tail|grep|tar|cat|bash)\\b"
replaceRegex: .*
replacement: Widget

Note: When you define a process class organizer and/or class which already exists, any settings defined in your
ZenPack will overwrite existing settings.

Since this is a YAML “mapping”, the minmal specification (name only) would look like:

process_class_organizers:
Widget: {}

Process Class Organizer Fields

The following fields are valid for a process class organizer entry.

name

Description Name (e.g. Widget or “Widget/ACME”).

Required Yes

Type string

Default Value None

description

Description Description of the process class organizer

Required No

Type string

Default Value None

create

Description Should the process class organizer be created when the ZenPack is installed?

Required No

Type boolean

Default Value true

remove

Description Should the process class organizer be removed when the ZenPack is removed? This
will only apply to a ZenPack that has created the process class organizer. Any existing process
class organizers not created by the ZenPack will not be removed. Any process class organizer
created by the platform will also never be removed.

Required No

Type boolean

Default Value false

reset

4.8. YAML Reference 121

ZenPack SDK Documentation, Release 2.1.1

Description If true, any zProperties defined here will override those of the target process class orga-
nizer, if it exists

Required No

Type boolean

Default Value false

zProperties

Description zProperty values to set on the process class organizer.

Required No

Type map<name, value>

Default Value {} (empty map)

Process Class Fields

The following fields are valid for a process class entry.

name

Description Name of the process class (e.g. widget).

Required Yes

Type string

Default Value None

description

Description Description of the Process Class Organizer

Required No

Type string

Default Value None

zProperties

Description zProperty values to set on the process class.

Required No

Type map<name, value>

Default Value {} (empty map)

includeRegex

Description Include processes matching this regular expression

Required No

Type string

Default Value Name of the process class

excludeRegex

Description Exclude processes matching this regular expression

Required No

122 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Type string

Default Value None

replaceRegex

Description Replace command line text matching this regular expression

Required No

Type string

Default Value None

replacement

Description Text which will replace the command line text that matches replaceRegex

Required No

Type string

Default Value None

monitor

Description Enable monitoring? Overrides parent process class organizer setting.

Required No

Type boolean

Default Value None

alert_on_restart

Description Send event on restart? Overrides parent process class organizer setting.

Required No

Type boolean

Default Value None

fail_severity

Description

Failure event severity. Overrides parent process class organizer setting. Valid values:

• 0=Clear

• 1=Debug

• 2=Info

• 3=Warning

• 4=Error

• 5=Critical)

Required No

Type integer

Default Value None

modeler_lock

Description

4.8. YAML Reference 123

ZenPack SDK Documentation, Release 2.1.1

Lock process components. Overrides parent process class organizer setting. Valid values:

• 0: Unlocked

• 1: Lock from Deletes

• 2: Lock from Updates

Required No

Type integer

Default Value None

send_event_when_blocked

Description Send and event when action is blocked? Overrides parent class organizer setting.

Required No

Type boolean

Default Value None

4.9 Compatibility

Starting with version 2.0, zenpacklib.py will ship as a separately installed ZenPack. This change offers several advan-
tages over the earlier distribution method along with many new features and fixes. Existing ZenPacks based on earlier
versions of zenpacklib.py should coexist peacefully with those based on the newer version, and eventual migration to
version 2.0 should be relatively painless. Future versions of Zenoss-provided ZenPacks will use the newer ZenPackLib
version as they are developed and released.

4.9.1 Migrating ZenPacks to 2.0

For the most part, migrating to ZenPackLib 2.0 should be straightforward and requires minimal changes to your
ZenPack. These largely involve changing import statements where appropriate and removing the older zenpacklib.py
files

Note: ZenPacks based on ZenPackLib 2.0 will need to have a dependency set to prevent potential issues when
installing or removing them. If ZenPackLib 2.0 is not installed, a dependent ZenPack should refuse to install until
the dependency is met. Similarly, ZenPackLib 2.0 should refuse removal if dependent ZenPacks are still installed. To
achieve this, make sure that the INSTALL_REQUIRES variable in the setup.py file contains the following:

INSTALL_REQUIRES = [‘ZenPacks.zenoss.ZenPackLib’]

Please note that “INSTALL_REQUIRES” may already contain entries, and these should be preserved if they exist.

This can also be configured in the GUI if the dependent ZenPack is installed in develop mode.

The __init__.py file will need its import statements changed.

from . import zenpacklib

changes to:

from ZenPacks.zenoss.ZenPackLib import zenpacklib

124 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

while:

CFG = zenpacklib.load_yaml()

remains unchanged unless some of the new logging capabilities are desired such as:

CFG = zenpacklib.load_yaml(verbose=True, level=10)

In addition, the statement (if it exists):

from . import schema

should be changed to:

schema = CFG.zenpack_module.schema

or added if it does not exist.

Note: Care should also be taken to delete the zenpacklib.py and zenpacklib.pyc files in the ZenPack’s source directory,
since leaving them in place may cause unforseen behavior.

Note: Import statements should also be checked throughout any class overrides or other python files, since the
statements will fail if they refer to the older zenpacklib.py.

Note: The tag !ZenPackSpec is not necessary and should be removed from your yaml definitions.

4.9.2 Version 2.0 Logging

Logging has been substantially enhanced for ZenPackLib version 2.0 and provides numerous features to aid during
development or troubleshooting. Logging can now be controlled on a per-ZenPack basis by supplying additional
paramters to the “load_yaml()” method call in the ZenPack’s __init__.py.file:

The verbose parameter, if set to True, will enable logging for this particular ZenPack. We recommend setting verbose
to True during ZenPack development so that various error messages can be seen. We also recommend returning this
value to False prior to release of your ZenPack as some warning messages may not be useful to the end user.

The level paramter controls logging verbosity with the same numeric values used elsewhere in Zenoss. The default
value is 30 (WARNING), but setting this to 20 (INFO) or 10 (DEBUG) may be useful during ZenPack development.

CFG = zenpacklib.load_yaml(verbose=True, level=10)

In this example, logging verbosity is enabled with at the DEBUG level.

Every class in ZenPackLib has a “LOG” attribute that can be called within any class override files you may have. For
example, given the file BasicComponent.py class extension, logging features would be accessed as follows:

from . import schema

class BasicComponent(schema.BasicComponent):
"""Class override for BasisComponent"""
def hello_world(self):

(continues on next page)

4.9. Compatibility 125

ZenPack SDK Documentation, Release 2.1.1

(continued from previous page)

self.LOG.info("You called hello_world")
return 'Hello World!'

Note: Log messages generated within the new logging framework are written to the Zope logger (event.log) and can
be viewed there. Logging used within class extension files will follow the verbosity and level parameters provided to
the “load_yaml” method.

Please note that additional Zope configuration may be required to see log messages, since Zope configuration deter-
mines what is accepted for writing to its event log. For example, if Zope logging is set to “warn”, then any “info” or
“debug” messages will not be logged regardless of the load_yaml parameters used. Zope logging in this case must be
set to “info” for ZPL “info”, “warning”, and “critical” logging.

4.9.3 Older Versions of zenpacklib.py

Note: The following applies to pre-2.0 versions of zenpacklib.py only. Starting with version 2.0, zenpacklib.py will
ship as a separately installed ZenPack designed for use by dependent ZenPacks

Distributing zenpacklib.py with each ZenPack allows different ZenPacks in the same Zenoss system to use different
versions of zenpacklib. This can make things simpler for the ZenPack author as they know which version of zenpacklib
will be used. It will be the one that’s shipped with the ZenPack.

This approach does have the drawback of potentially forcing ZenPacks to be updated to include a new version of
zenpacklib to support a new version of Zenoss. Care will be taken to make each zenpacklib version compatible with
as many versions of Zenoss as possible. Furthermore, care will be taken to make future versions of Zenoss compatible
with existing zenpacklib versions within reason.

The following table describes which versions of Zenoss are supported by different versions of zenpacklib.

zenpacklib Version Zenoss Versions
1.1 4.2 *, 5.0, 5.1, 5.2
1.0 4.2 *, 5.0, 5.1, 5.2

Compatibility only considers <major>.<minor> versions of both zenpacklib and Zenoss. Maintenance or patch re-
leases of each are always considered compatible.

4.9.4 Determining Version

Note: Beginning with version 2.0, you can check the zenpacklib version with either:

zenpacklib –version

from the command line, or by navigating to:

Advanced -> Settings -> ZenPacks

in the Zenoss GUI

You can check which version of zenpacklib you’re using in two ways. The first is by using the version command line
option.

126 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

python zenpacklib.py version

If you have ZenPack code that needs the version it can also be accessed from Python code that has imported zenpacklib
module through the module’s __version__ property.

from . import zenpacklib
zenpacklib.__version__

4.9.5 PyYAML Requirement

Note: Beginning with version 2.0, the ZenPacks.zenoss.ZenPackLib ZenPack will refuse to install unless PyYAML
is already installed

zenpacklib requires that PyYAML be installed in the Zenoss system. PyYAML was not a standard part of a Zenoss
system until Zenoss 5. To use zenpacklib, or to use a ZenPack built with zenpacklib on a Zenoss 4.2 system you must
first make sure that PyYAML is installed.

Note: PyYAML has been added to Zenoss 4.2.5 as of SP457, and Zenoss 4.2.4 as of SP776.

Checking for PyYAML

On your main Zenoss 4.2 server run the following command to check for PyYAML.

su - zenoss -c "python -c 'import yaml;print yaml.version'"

You will see the version of PyYAML if it installed.

3.11

You will see the following error if PyYAML is not installed.

Traceback (most recent call last):
File "<string>", line 1, in <module>

ImportError: No module named yaml

Installing PyYAML

Run the following command to install PyYAML if it isn’t already installed.

su - zenoss -c "easy_install PyYAML"

It’s normal for the easy_install command to print many errors and warnings even when it successfully installs. Run
the first command to verify it’s installed when complete.

If your Zenoss system is distributed to multiple servers for hubs, collectors, or any other reason you will need to update
those hubs and collectors after installing PyYAML to make sure it also gets installed on them.

4.9. Compatibility 127

ZenPack SDK Documentation, Release 2.1.1

4.10 Changes

4.10.1 Version 2.1

Release 2.1.2

Fixes

• Allow Class.filter_hide_from option to also work for contained components (ZPS-5107)

Release 2.1.1

Fixes

• Fix infinite recursion in yaml_load when no yaml files present (ZPS-3880)

• Update default value of threshold’s escalationCount in the documentation (ZPS-4031)

• Ensure device class removal during various upgrade scenarios (ZPS-3906)

• Correct links from ZPL-provided renderers to honor the CSE_VIRTUAL_ROOT (ZEN-30544)

Release 2.1.0

Features

• Support additional GraphPoint subclasses (ZPS-855)

• EventClassInstance, OSProcessClass now support zProperties (ZPS-3636)

• EventClass, OSProcessOrganizer now support zProperties (ZPS-3189, ZPS-3190)

• Add “optional” field for thresholds (ZPS-1666)

• Add support for ZProperty “label” and “description” fields (ZPS-747)

Fixes

• Support Graph “descripton” attribute (ZPS-3696)

• Support ABSOLUTE RRD type (ZPS-1733)

• All organizer classes respect the “create”, “remove”, and “reset” attributes (ZPS-810)

• Refactor unit tests to avoid build issues (ZPS-3035)

• Fix invalid RRD datapoint types (ZPS-1734)

• Update documentation for datapoint description (ZPS-1971)

4.10.2 Version 2.0

Backwards Incompatible Changes

• Any installed ZenPacks using older versions of zenpacklib.py will continue to function unchanged.

• Using version 2.0 is slightly different. The __init__.py file import statements should now contain the following:

128 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

from ZenPacks.zenoss.ZenPackLib import zenpacklib
CFG = zenpacklib.load_yaml()
schema = CFG.zenpack_module.schema

Note: For better performance, specify the explicit path(s) to your yaml file. e.g. CFG = zenpack-
lib.load_yaml([os.path.join(os.path.dirname(__file__), “zenpack.yaml”)])

• zProperties will not be updated automatically on existing device classes. These should be handled on a case
basis by using migrate scripts.

Release 2.0.9

Fixes

• Fix incorrect removal of organizers such as /Status event class (ZPS-2660)

Release 2.0.8

Fixes

• Improve component grid loading performance. (ZPS-2033)

• Fix potential POSKeyError when modeling devices. (ZPS-2371)

• Improved support for multi-line text in YAML (ZPS-444)

• Improved component path reporters for mixin platform proxy classes (ZPS-1262)

• Fix zenpacklib.TestCase when Impact >= 5.2.2 is installed (ZPS-2011)

Release 2.0.7

Fixes

• Fix all the zenpacklib dump options. (ZPS-1601)

• Implement template replacement and addition on device level. (ZPS-1704)

Release 2.0.6

Fixes

• Fix mishandling of 0/clear severity (ZPS-1454)

• Fix attempts to load non-YAML files (ZPS-1483)

• Use appropriate sequence for graph points (ZPS-1361)

• Fix GUI ZenPack export of objects.xml (ZPS-1589)

• Fix datapoint alias shorthand export handling (ZPS-1589)

4.10. Changes 129

ZenPack SDK Documentation, Release 2.1.1

Release 2.0.5

Fixes

• Fix version reported by “zenpacklib –version”. (ZPS-1145)

• Template backups use YYYYMMDDHHMM format instead of unix timestamp.

• Fix failure to back up customized templates during upgrade from pre-2.0 ZenPacks. (ZPS-1195)

• Fix failure to back up customized templates during upgrade. (ZPS-1176)

Release 2.0.4

Fixes

• Fix for missing Dynamic View on some components (ZPS-703)

• Fix for failure to create device classes in uncommon case (ZPS-1012)

• Fix event class mappings with mismatched id and eventClassKey (ZPS-1016)

Release 2.0.3

Fixes

• Preserve ordering when loading multiple YAML files (ZPS-921)

• Fix setting of zProperty values when loading multiple YAML files. (ZPS-925)

Release 2.0.2

Fixes

• Only create a monitoring template if it changes or does not exist (ZPS-570)

• Ensure display of ZPL classes such as OSProcess in GUI elements (ZPS-572, ZPS-651)

Release 2.0.1

Fixes

• Ensure all datapoint attributes export to YAML (ZEN-26593)

• Ensure subsquent installations complete if ZP install fails (ZPS-627)

Release 2.0.0

Features

• zenpacklib is now an installable ZenPack

• Added Event Class definitions (ZEN-24903)

• Support multiple YAML file loading

• Support directory loading for YAML

• Support log verbosity per ZenPack

130 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

• Centralized, per-derived ZenPack logging

• Improved template change detection during install

• Improved type handling of yaml loaded/dumped data

• Support centralized use of older monolithic zenpacklib.py

• Added –optimize parameter to zenpacklib

• Dramatically enhanced unit testing

• Support for using enum proprty with datapoint properties (string/int mapping)

• Ability to call /opt/zenoss/bin/zenpacklib

• Added ZPLCommand to handle running zenpacklib with arguments

• Separated zenpacklib.py classes into module files

• Ability to use ZenPack-provided zenpacklib module

• Added support for Process Class definitions

• Deprecated support for python-based “yaml” specifications

• Support for threshold graphpoint legend and color (ZEN-24904)

• Ability to specify an initial sort column on a component grid

• Performance enhancments for grid display of metrics (ZEN-23870)

• Support for Device Link Providers

• Added troubleshooting aid for easily saving function data(writeDataToFile)

• Avoid setting zProperties on existing device class (ZPS-137)

Fixes

• Fix handling of boolean datasource options (ZEN-25315)

• Merge Detail View groups into ‘Overview’ group (ZEN-24759)

• Ensure that component detail pane honors relation “details_display” (ZEN-24762)

• Update ZenPackLib (ZP) Unit tests (ZEN-24599)

• Ensure that subcomponent nav JS uses relationship label if provided (ZEN-24305)

• Ensure ability to set label or a subclass on an inherited relationship (ZEN-24303)

• Ensure inherited relationship name overrides displayed in details pane (ZEN-24302)

• Ensure extra_paths is working (ZEN-24268)

• Ensure that ‘extra_params’ get applied to template-related objects (ZEN-24083)

• Improved handling of “custom columns exceed 750 pixels” warnings (ZEN-24022)

• Avoid patching _relations on ZPL-derived subclasse (ZEN-24018)

• Incorrect display of nested custom-named relations (ZEN-23995)

• Fix missing relations (ZEN-23968)

• Fix maximum recursion depth exceeded traceback in get_facets (ZEN-23840)

• Allow specifying properties on an inherited relationship (ZEN-23763)

• Zenpacklib logging more helpful and less scary (ZEN-23621)

4.10. Changes 131

ZenPack SDK Documentation, Release 2.1.1

• Batch buildRelations() commits during ZenPack installs (ZEN-22655)

• Support adding devtypes (ZEN-22366)

• Improve ImportError logging in class files (ZEN-22927)

• Ensure non-cached datapoints return current value (ZEN-22288)

• Fix issue when setting datapoint_cached to False (ZEN-22287)

• Set all component property details to correct Python type (ZEN-22057)

• Honor relationship label containing component overrides in component (ZEN-21966)

• Prevent attempts to process relationships not in class_relationships (ZEN-21927)

• Ensure component display properties honored (ZEN-19798)

• Support setting datapoint alias as string (ZEN-19486)

• Check datapoint consistency in template graph points and thresholds (ZEN-19461)

• Check/warn against reserved keyword use (ZEN-19460)

• getRRDTemplateName can return label of base class (ZEN-19025)

• Ensure catalog creation respects spec property indexes (ZEN-18269)

• Ensure device classes can be removed properly (ZEN-18134)

• Ensure that datapoint alias keys do not exceed 31 chars (ZEN-17950)

• Log obscure error with ill-defined relationships (ZEN-16701)

• Fix handling of !ZenPackSpec tag in yaml definitions

4.10.3 Version 1.1

Release 1.1.0

Features

• Add dynamicview_weight class field.

• Add overridable getDynamicViewGroup method to generated classes.

• Class icons beginning with / will be treated as absolute URL paths.

• Improve performance of entity properties in component grids.

• Simplify what device status means to critical event(s) in /Status.

• Improve grid performance with streamlined info adapters

• Add base class proxies for all platform component classes.

Fixes

• Fix tracebacks caused by property datapoint_cached. (ZEN-22287)

• Fix ‘display’ property to honor initialized values. (ZEN-19798)

• Fix wrong template displayed for subclassed component (ZEN-19025)

• Fix inheritance for displayed relationship properties (ZEN-23763)

• Fix traceback in get_facets (maximum recursion depth exceeded) (ZEN-23840)

132 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

• Ensure that ‘extra_params’ get applied to template-related objects (ZEN-24083)

• Fix for lost relationships on ZPL-derived subclasses (ZEN-24018)

• Fix for extra_paths failures (ZEN-24268)

• Fix to gracefully handle unknown relationship properties (ZEN-21927)

• Ensure that inherited relationship names are used (ZEN-24302)

• Ensure that inherited relationship names are displayed consistently (ZEN-24303)

• Ensure that subcomponent nav JS uses relationship label if given (ZEN-24305)

• Fix for setting of zProperty values before zProperty exists

• Fix “unexpected keyword default” message

• Fix support for extending platform component classes. (ZEN-25559)

Documentation

• Fix YAML reference for dynamicview_group class field.

• Fix documentation of default value for dynamicview_views.

• Document new component class proxies such as IpInterface and FileSystem.

4.10.4 Version 1.0

Release 1.0.13

Fixes

• Honor graph and graphpoint ordering in zenpack.yaml. (ZEN-23590)

Release 1.0.12

Fixes

• Fix tracebacks due to stale catalog entries. (ZEN-22592)

• Fix hidden zenpacklib errors due to unitialized logging.

• Prevent setting values on undefined zProperties.

• Drastically reduce catalog creation time.

Documentation

• Add missing types to zProperty documentation.

Release 1.0.11

Fixes

• Only show Dynamic View for components that support it. (ZEN-22391)

• Fix created __init__.py to work with zenpacklib.TestCase. (ZEN-22387)

4.10. Changes 133

ZenPack SDK Documentation, Release 2.1.1

Release 1.0.10

Fixes

• Fix display of nested component container-of-container. (ZEN-21897)

Documentation

• Fix graphpoint lineType documentation.

Release 1.0.9

Fixes

• Fix non-containing setters with standard device types. (ZEN-21747)

• Fix filtering of YAML templates in ZenPack export. (ZEN-21697)

• Prevent backups of unchanged monitoring templates. (ZEN-21719)

Release 1.0.8

Fixes

• Fix various dump_templates issues. (ZEN-18824)

Release 1.0.7

Fixes

• Fix dynamicview_relations type issue.

Release 1.0.6

Fixes

• Make YAML-defined JMX datasources work. (ZEN-21467)

Release 1.0.5

Fixes

• Fix KeyError on install after adding device class. (ZEN-21461)

Release 1.0.4

Features

• TestCase: Automatically load ZenPack’s configure.zcml if it exists.

• Default to checkbox renderer for boolean properties. (ZEN-19585)

Fixes

• TestCase: Fix transaction error without DynamicView or Impact installed.

• Fix entity grid renderer to make it possible to click links into a new tab. (ZEN-19922)

134 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

• Fix enum property type. (ZEN-20769)

Release 1.0.3

Fixes

• Fix testing of SNMP datasources by converting OIDs to string.

• Fix for inherited relationships and properties not appearing in UI.

Release 1.0.2

Fixes

• Log YAML errors more concisely instead of full traceback. (ZEN-17681)

• Fix “[Object]” details panel display for custom renderers. (ZEN-17732)

• Fix handling of nested device class remove field.

• Fix KeyError when removing non-existent device class.

• Fix handling of datapoint rrdtype. (ZEN-18188)

Release 1.0.1

Features

• Add Class.extra_paths for controlling object path indexing.

• Add Class.filter_hide_from option.

Fixes

• Fix handling of class _properties and _relationships.

• Prefix ExtJS components to avoid conflicting zenpacklib versions.

• Fix handling of Class property types.

• Fix py_to_yaml for ZenPacks that subclass ZenPack.

• Remove superfluous YAML type hints from py_to_yaml conversion.

• Fix “Unable to find TEMPLATE_ID” installation error.

• Base component status on events in /Status event class.

• Fix removal of objects when PyYAML isn’t installed.

Release 1.0.0

Features

• Added ability to define ZenPack with YAML.

• Added support for model classes and relationships.

• Added support for zProperties.

• Added support for device classes.

• Added support for monitoring templates.

4.10. Changes 135

ZenPack SDK Documentation, Release 2.1.1

• Added create command for creating ZenPacks from the command line.

• Added lint command to check YAML for correctness.

• Added class_diagram command to create yUML class diagram from YAML.

• Added dump_templates command to export monitoring templates to YAML.

• Added py_to_yaml command to convert old Python specs to YAML.

• Added version command to print zenpacklib’s version.

Documentation

• Added first pass at documentation (http://zenpacklib.zenoss.com/).

4.11 License

zenpacklib is by default licensed under the terms of the GNU General Public License. The terms of GPLv2 prohibit
the redistribution of zenpacklib as part of any software that is not also open source. See Commercial License if you’d
like to use zenpacklib in a closed-source ZenPack.

4.11.1 GNU General Public License

zenpacklib is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

zenpacklib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301

→˓USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it

136 Chapter 4. What about some examples?

http://zenpacklib.zenoss.com/

ZenPack SDK Documentation, Release 2.1.1

if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

4.11. License 137

ZenPack SDK Documentation, Release 2.1.1

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

138 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying

4.11. License 139

ZenPack SDK Documentation, Release 2.1.1

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

140 Chapter 4. What about some examples?

ZenPack SDK Documentation, Release 2.1.1

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

4.11.2 Commercial License

Zenoss, Inc. can provide zenpacklib under an appropriate commercial license if you are interested in developing a
ZenPack, but don’t want to release it as open source software. Contact partner@zenoss.com for more information.

Click Next for information on setting up a development environment.

4.11. License 141

mailto:partner@zenoss.com

	What is zenpacklib?
	What does zenpacklib do?
	Who should use zenpacklib?
	What about some examples?
	Development Environment
	Getting Started
	Tutorials
	Monitoring an SNMP Device
	Monitoring an HTTP API
	Troubleshooting
	Command Line Reference
	YAML Reference
	Compatibility
	Changes
	License

