

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	Zds Member 1.0 documentation

Zds Member Documentation

Zds Member it’s a fork of zds-site member app to make a reusable application.

Github [https://github.com/firm1/zds-member]

Summary

	Installation

	Configuration
	Specifying files

	Url

	Templates

	Usage
	Custom forms

	Features
	Sign up

	Unsuscribe

	Promote member

	Add karma

	Reset Password

	Django Back-end
	Models

	Views

	Forms

	REST API
	Member’s Infos

	Sanctions

 Copyright 2015, zds-member.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Zds Member 1.0 documentation

Installation

Install the development version:

pip install zds-member

Add member to your INSTALLED_APPS setting:

INSTALLED_APPS = (
 # ...
 "member",
 # ...
)

See the list of settings to modify the default behavior of
zds-member and make adjustments for your website.

Add member.urls to your URLs definition:

urlpatterns = patterns("",
 ...
 url(r"^members/", include("member.urls")),
 ...
)

Once everything is in place make sure you run syncdb (Django 1.4 and 1.6)
or migrate (Django 1.7) to modify the database with the member app
models.

 Copyright 2015, zds-member.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Zds Member 1.0 documentation

Configuration

Configuration and list of available settings for zds-member

Specifying files

ZDS_MEMBER = {
 'bot_account': "admin",
 'anonymous_account': "anonymous",
 'external_account': "external",
 'bot_group': 'bot',
 'members_per_page': 100,
 }

APP_SITE = {
 'name': u"ZesteDeSavoir",
 'litteral_name': u"Zeste de Savoir",
 'email_noreply': "noreply@example.com",
}

ZDS_MEMBER_SETTINGS = {
 'paginator': {
 'folding_limit': 4
 }
 }

Url

in url.py

(r'^members/', include('member.urls'))

Templates

A complete set of working templates is provided with the application. You may use it as it is with a CSS design of yours, re-use it or extend some parts of it.

Relations between templates:

base.html
|_ member
| |_ base.html
| |_ index.html
| |_ login.html
| |_ profile.html
| |_ register
| | |_ base.html
| | |_ index.html
| | |_ send_validation_email.html
| | |_ send_validation_email_success.html
| | |_ success.html
| | |_ token_already_used.html
| | |_ token_failed.html
| | |_ token_success.html
| |_ settings
| | |_ account.html
| | |_ base.html
| | |_ memberip.html
| | |_ profile.html
| | |_ promote.html
| | |_ unregister.html
| | |_ user.html
| |_ new_password
| |_ forgot_password
|_ misc
| |_ badge.part.html
| |_ member_item.part.html

 Copyright 2015, zds-member.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Zds Member 1.0 documentation

Usage

Describes how to use zds-member when it is installed and configured.

Custom forms

You can replace the default forms in views.

Examples:

 Copyright 2015, zds-member.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Zds Member 1.0 documentation

Features

Sign up

The registration of a member is in two phases:

	The member creates their account and provides a username, a password and valid email address.

	A confirmation email is sent with a token that will activate the account.

Warning

	Commas are not allowed in the nickname, which also can not begin or end with spaces.

	The password must be at least 6 characters.

Unsuscribe

Promote member

In order to manage the members directly from the site (ie without having to go through the Django admin interface), a promote interface was developed. This interface allows:

	Add / Remove a member / group (s)

	Add / Delete superuser status to a member

	(De) activate an account

First point allows to pass a member in new group. If other groups are emerging (validator) then it will be possible here also to change it. The second point can provide access to the member at the django interface and this promotion interface. Finally, the last point simply concerns the account activation (normally made by the Member at registration).

It is managed by the PromoteMemberForm form available in the zds/member/forms.py. It’s then visible through the template member/settings/promote.html that may be accessed as root user by the profile of any member.

Add karma

Reset Password

When a member forgets their password, you can reset it. The old password is deleted and the user can choose a new one. For this, he went on the password reset page (``members/reinitialisation /) from the login page.

On this page the user has to enter his username or email address. For this, click on the link to the form. When the user clicks the submit button, a token is randomly generated and is stored in a database.

A message is sent to the user’s email address. This email contains a reset link. This link contains a parameter, the reset token and directs the user to address members/new_password/.

This page allows you to change the user’s password. The user completes the form and clicks the submit button. If the password and the confirmation field and the corresponding password is business rules, the password is changed. The system displays a message confirming the password change.

Warning

	The password must be at least 6 characters.

	The link is valid for one hour. If the user does not click on the link in the allotted time, an error message is displayed.

	The password reset token is valid only once. If the user tries to change their password with the same token, a 404 page is displayed to the user.

 Copyright 2015, zds-member.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Zds Member 1.0 documentation

Django Back-end

Documented files:

	Django Back-end
	Models

	Views

	Forms

Models

	
class member.models.Ban(*args, **kwargs)

	This model stores all sanctions (not only bans).
It stores sanctioned user, the moderator, the type of sanctions, the reason and the date.
Note this stores also un-sanctions.

	
class member.models.KarmaNote(*args, **kwargs)

	A karma note is a tool for staff to store data about a member.
Data are:

	A note (negative values are bad)

	A comment about the member

	A date

This helps the staff to react and stores history of stupidities of a member.

	
class member.models.Profile(*args, **kwargs)

	A user profile. Complementary data of standard Django auth.user.

	
can_read_now()

	Check if you can read a web site content as user.
If you can’t read, you can’t login on website.
This happens when you have been banned (temporarily or definitively)

	Returns:	False if you are banned, True else.

	Return type:	bool [http://docs.python.org/library/functions.html#bool]

	
can_write_now()

	Check if you can write something on a web site as user.
This happens when you have been reading only (temporarily or definitively)

	Returns:	False if you are read only, True else.

	Return type:	bool [http://docs.python.org/library/functions.html#bool]

	
get_absolute_url()

	Absolute URL to the profile page.

	
get_avatar_url()

	Get the avatar URL for this profile.
If the user has defined a custom URL, use it.
If not, use Gravatar.

	Returns:	The avatar URL for this profile

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
get_city()

	Uses geo-localization to get physical localization of a profile through its last IP address.
This works relatively good with IPv4 addresses (~city level), but is very imprecise with IPv6 or exotic internet
providers.

	Returns:	The city and the country name of this profile.

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
is_private()

	Check if the user belong to the bot’s group or not

	Returns:	True if user belong to the bot’s group, False else.

	Return type:	bool [http://docs.python.org/library/functions.html#bool]

	
class member.models.TokenForgotPassword(*args, **kwargs)

	When a user forgot its password, the website sends it an email with a token (embedded in a URL).
If the user has the correct token, it can choose a new password on the dedicated page.
This model stores the tokens for the users that have forgot their passwords, with an expiration date.

	
get_absolute_url()

	

	Returns:	The absolute URL of the “New password” page, including the correct token.

	
class member.models.TokenRegister(*args, **kwargs)

	On registration, a token is send by mail to the user. It must use this token (by clicking on a link) to activate its
account (and prove the email address is correct) and connect itself.
This model stores the registration token for each user, with an expiration date.

	
get_absolute_url()

	

	Returns:	the absolute URL of the account validation page, including the token.

	
member.models.auto_delete_token_on_unregistering(sender, instance, **kwargs)

	This signal receiver deletes forgotten password tokens and registering tokens for the un-registering user;

	
member.models.logout_user(username)

	Logout the member.

	Parameters:	username – the name of the user to logout.

Views

	
class member.views.MemberDetail(**kwargs)

	Displays details about a profile.

	
model

	alias of User

	
class member.views.MemberList(**kwargs)

	Displays the list of registered users.

	
class member.views.RegisterView(**kwargs)

	Create a profile.

	
form_class

	alias of RegisterForm

	
class member.views.SendValidationEmailView(**kwargs)

	Send a validation email on demand.

	
class member.views.UpdateMember(**kwargs)

	Updates a profile.

	
form_class

	alias of ProfileForm

	
class member.views.UpdatePasswordMember(**kwargs)

	User’s settings about his password.

	
class member.views.UpdateUsernameEmailMember(**kwargs)

	User’s settings about his username and email.

	
form_class

	alias of ChangeUserForm

	
member.views.active_account(request)

	Active token for a user.

	
member.views.forgot_password(request)

	If the user forgot his password, he can have a new one.

	
member.views.generate_token_account(request)

	Generate token for account.

	
member.views.get_client_ip(request)

	Retrieve the real IP address of the client.

	
member.views.login_view(request)

	Log in user.

	
member.views.logout_view(request, *args, **kwargs)

	Log out user.

	
member.views.member_from_ip(request, *args, **kwargs)

	Get list of user connected from a particular ip

	
member.views.modify_karma(request, *args, **kwargs)

	Add a Karma note to the user profile

	
member.views.new_password(request)

	Create a new password for a user.

	
member.views.settings_promote(request, *args, **kwargs)

	Manage the admin right of user. Only super user can access

	
member.views.unregister(request, *args, **kwargs)

	allow members to unregister

	
member.views.warning_unregister(request, *args, **kwargs)

	Displays a warning page showing what will happen when user unregisters.

Forms

	
class member.forms.ChangeUserForm(*args, **kwargs)

	Update username and email

	
class member.forms.LoginForm(next=None, *args, **kwargs)

	The login form, including the “remember me” checkbox.

	
class member.forms.MiniProfileForm(*args, **kwargs)

	Updates some profile data: biography, website, avatar URL, signature.

	
class member.forms.NewPasswordForm(identifier, *args, **kwargs)

	Defines a new password (when the current one has been forgotten)

	
class member.forms.ProfileForm(*args, **kwargs)

	Updates main profile rules:

	Display email address to everybody

	Display signatures

	Display menus on hover

	Receive an email when receiving a personal message

	
class member.forms.PromoteMemberForm(*args, **kwargs)

	Promotes a user to an arbitrary group

	
class member.forms.RegisterForm(*args, **kwargs)

	Form to register a new member.

	
clean()

	Cleans the input data and performs following checks:

	Both passwords are the same

	Username doesn’t exist in database

	Username is not empty

	Username doesn’t contain any comma (this will break the personal message system)

	Username doesn’t begin or ends with spaces

	Password is different of username

	Email address is unique through all users

	Email provider is not a forbidden one

Forbidden email providers are stored in forbidden_email_providers.txt on project root.

	Returns:	Cleaned data, and the error messages if they exist.

 Copyright 2015, zds-member.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 previous |

 	Zds Member 1.0 documentation

REST API

Member’s Infos

List

	
GET /api/

	List of website’s members

	Query Parameters:

		
	page_size – number of users. default is 10

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

Details

	
GET /api/(int: user_id)/

	Gets a user given by its identifier.

Example request:

GET /api/800/ HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript
{
 "pk": 800,
 "username": "firm1",
 "is_active": true,
 "date_joined": "2014-07-28T02:57:31",
 "site": "http://zestedesavoir.com",
 "avatar_url": "http://static.wamiz.fr/images/animaux/rongeurs/large/souris.jpg",
 "biography": "I'm beautiful",
 "sign": "cool",
 "show_email": false,
 "show_sign": true,
 "hover_or_click": true,
 "email_for_answer": false,
 "last_visit": "2015-10-20T03:24:06"
}

	Parameters:	
	user_id (int) – user’s unique id

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – there’s no user with this id

	
GET /api/mon-profil/

	Gets informations about identified member

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – user are not authenticated

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – OAuth2 token to authenticate

	
PUT /api/(int: user_id)/

	Updates a user given by its identifier.

	Parameters:	
	user_id (int) – user’s unique id

	JSON Parameters:

		
	pk (int) – user’s unique id

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – there’s no user with this id

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – OAuth2 token to authenticate

Sanctions

Read Only

	
POST /api/(int: user_id)/lecture-seule/

	Applies a read only sanction at a user given.

	Parameters:	
	user_id (int) – user’s unique id

	JSON Parameters:

		
	pk (int) – user id to read only

	ls-jrs (string) – Number of days for the sanction.

	ls-text (string) – Description of the sanction.

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Not authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Insufficient rights to call this procedure. Must to be a staff user.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Not found

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – OAuth2 token to authenticate

	
DELETE /api/(int: user_id)/lecture-seule

	Removes a read only sanction at a user given.

	Parameters:	
	user_id (int) – user’s unique id

	JSON Parameters:

		
	pk (int) – id of read only user

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Not authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Insufficient rights to call this procedure. Must to be a staff user.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Not found

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – OAuth2 token to authenticate

Ban

	
POST /api/(int: user_id)/ban/

	Applies a ban sanction at a user given.

	Parameters:	
	user_id (int) – user’s unique id

	JSON Parameters:

		
	pk (int) – user id to ban

	ban-jrs (string) – Number of days for the sanction.

	ban-text (string) – Description of the sanction.

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Not authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Insufficient rights to call this procedure. Must to be a staff user.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Not found

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – OAuth2 token to authenticate

	
DELETE /api/(int: user_id)/ban/

	Removes a ban sanction at a user given.

	Parameters:	
	user_id (int) – user’s unique id

	JSON Parameters:

		
	pk (int) – id of banned user

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Not authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Insufficient rights to call this procedure. Must to be a staff user.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Not found

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – OAuth2 token to authenticate

 Copyright 2015, zds-member.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Zds Member 1.0 documentation

 HTTP Routing Table

 /api

 			

 		
 /api	

 	
 	
 GET /api/	

 	
 	
 GET /api/(int:user_id)/	

 	
 	
 GET /api/mon-profil/	

 	
 	
 POST /api/(int:user_id)/ban/	

 	
 	
 POST /api/(int:user_id)/lecture-seule/	

 	
 	
 PUT /api/(int:user_id)/	

 	
 	
 DELETE /api/(int:user_id)/ban/	

 	
 	
 DELETE /api/(int:user_id)/lecture-seule	

 Copyright 2015, zds-member.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Zds Member 1.0 documentation

 Python Module Index

 m

 			

 		
 m	

 	[image: -]
 	
 member	

 	
 	
 member.forms	

 	
 	
 member.models	

 	
 	
 member.views	

 Copyright 2015, zds-member.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Zds Member 1.0 documentation

Index

 A
 | B
 | C
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

A

 	

 	active_account() (in module member.views)

 	

 	auto_delete_token_on_unregistering() (in module member.models)

B

 	

 	Ban (class in member.models)

C

 	

 	can_read_now() (member.models.Profile method)

 	can_write_now() (member.models.Profile method)

 	

 	ChangeUserForm (class in member.forms)

 	clean() (member.forms.RegisterForm method)

F

 	

 	forgot_password() (in module member.views)

 	

 	form_class (member.views.RegisterView attribute)

 	

 	(member.views.UpdateMember attribute)

 	(member.views.UpdateUsernameEmailMember attribute)

G

 	

 	generate_token_account() (in module member.views)

 	get_absolute_url() (member.models.Profile method)

 	

 	(member.models.TokenForgotPassword method)

 	(member.models.TokenRegister method)

 	get_avatar_url() (member.models.Profile method)

 	

 	get_city() (member.models.Profile method)

 	get_client_ip() (in module member.views)

I

 	

 	is_private() (member.models.Profile method)

K

 	

 	KarmaNote (class in member.models)

L

 	

 	login_view() (in module member.views)

 	LoginForm (class in member.forms)

 	

 	logout_user() (in module member.models)

 	logout_view() (in module member.views)

M

 	

 	member.forms (module)

 	member.models (module)

 	member.views (module)

 	member_from_ip() (in module member.views)

 	MemberDetail (class in member.views)

 	

 	MemberList (class in member.views)

 	MiniProfileForm (class in member.forms)

 	model (member.views.MemberDetail attribute)

 	modify_karma() (in module member.views)

N

 	

 	new_password() (in module member.views)

 	

 	NewPasswordForm (class in member.forms)

P

 	

 	Profile (class in member.models)

 	ProfileForm (class in member.forms)

 	

 	PromoteMemberForm (class in member.forms)

R

 	

 	RegisterForm (class in member.forms)

 	

 	RegisterView (class in member.views)

S

 	

 	SendValidationEmailView (class in member.views)

 	

 	settings_promote() (in module member.views)

T

 	

 	TokenForgotPassword (class in member.models)

 	

 	TokenRegister (class in member.models)

U

 	

 	unregister() (in module member.views)

 	UpdateMember (class in member.views)

 	

 	UpdatePasswordMember (class in member.views)

 	UpdateUsernameEmailMember (class in member.views)

W

 	

 	warning_unregister() (in module member.views)

 Copyright 2015, zds-member.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		Zds Member 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, zds-member.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

