

Welcome to YOYOW’s documentation!

Introduction

	Introduction to YOYOW
	YOYOW Role Conception

	Private Key System

	Types of Assets

	White Paper

TestNet

	Testnet
	Executable Files for Testnet

	Testnet Web Wallet

	Running the Testnet Node

	Testnet Explorer

	Testnet Public Node

	Running Testnet Wallet

	Others

Usage

	User Registration
	Registering Accounts

	Private Key Authority

	Private Key Saving

	Compiling and Running yoyow-core
	Recommended Hardware Environment

	Installation Dependence:

	Compile Script:

	Running:

Platform

	Introduction to the Platform
	Platform Requirements

	Users Authorizing the Platform

	Platform Related Operations
	Getting Platform Number

	Getting Platform Info

	Checking Platform List

	Creating Platforms

	Undating Platform Info

	Voting for Platforms

	Authorizing Platforms

	Canceling the Platform Authorization

Witness

	Introduction to Witness
	Functions of Witness

	Witness Qualification (Collateral)

	Ways to Become Witnessess

	Rewards of Witnesses

	Witness Election

	Penalty Mechanism for Witnesses

	Witnesses being Offline

	Witness Related FAQ

	Witness Operations
	Witness Node Construction

	Query

	Creating Witnesses

	Updating the Info of Witnesses

	Witness Voting

	Witness being Offline

	Getting Witness Returns

Committee

	Introduction to Committee
	The Responsibilities of Committee

	The Committee Setup

	Candidates for the Committee

	Committee Elections

	Committee Proposals

	Resignation of Committee Members

	Committee Related Operations
	Creating Committee Account

	Updating Committee Account

	Voting for Committee

	Getting Info of Committee Members

	Checking History of Current Candidates

	Checking the Current Committee Proposals Not Implemented

Votes & Pledge

	Voting
	Voting Qualification

	Validity Period of Voting

	Voting Method

	Valid Vote Counting

	Voting Proxies

	Collateral
	Platform Collateral

	Committee Collateral

	Miner Witness Collateral

	Collateral Refunding

Assets

	YOYO Token
	Balance

	Tipping

	The Design of Balance and Tipping

	User-Issued Assets (UIA)
	Issuing Assets

	Advanced Options

	Bonus Points
	Using Bonus Points

	Acquisition of Bonus Points

	Renting Bonus Points

	Gifting Bonus Points

	Asset Related Operations
	Common Transfer

	Query

	About Bonus Points

	User-Issued Assets

API

	Node API Descriptions
	Node Connection Method

	API Classification

	Database API

	History API

	Wallet API Descriptions
	Wallet Connection Method

	2.1 Tools API

	2.2 Queries API

	2.3 Wallet/Private Key Management API

	2.4 Operations/Transactions API

SDK

	YOYOW Middleware Instruction（Nodejs）
	Deployment Start

	Interface Descriptions

Others

	Descriptions of YOYOW Parameter Table and Fees

	Instructions for Exchanges
	Preparation

	Installation

	Starting YOYOW Node

	Starting YOYOW Client

	Accessing the Client via HTTP-RPC

	Processing Deposits

	Process Withdrawal Requests

	Sample Code

	Introduction to Platform Integration
	Introduction to YOYOW Ecology

	Integration Process

	Creating YOYOW Platform Account from scratch
	1. Creating Accounts, Getting Private Keys

	2. Creating Platforms

	More Materials

Indices and tables

	Index

	Module Index

	Search Page

Introduction to YOYOW

YOYOW is named from “You Own Your Own Words”. Its goal is to build a network that applies the blockchain technology and uses decentralized consensus method to price contribution and provide equity returns for the content area, and to build a reasonable content value distribution mechanism, which enables content producers, content investors, content filterers and eco-builders to get reasonable incentives and rewards while building a value network based on users’ content ratings.

Unlike other blockchain systems, YOYOW has designed more user roles, unique key systems and rich asset types by using DPoS consensus mechanism in order to adapt to the ecology of content production.

YOYOW Role Conception

In the system ecology, in order to balance efficiency and fairness, YOYOW has designed a complete user system, including common users, platforms, committees, and witnesses.

Common Users

Common users are the main participants of the YOYOW network. In the YOYOW network, common users share a unified account system on each platform, and have the rights of transfer, election, etc.

Platforms

Common user that deposits a collateral of a certain amount of YOYO tokens can be called a platform. Common users can authorize the platform through the YOYOW wallet, and the authorized platform uses its tipping authority for cross-site login, content rating, content posting, comments, etc., and common users can also revoke authorization at any time.

Committee

The committee is the governing body of the YOYOW network，voted in by the YOYOW users and is responsible for initiating and voting on the proposals. The content of the proposals is mainly to adjust the adjustable parameters of the system, such as the rate of various transactions, the highest scoring weight, etc., including as well the block production interval, block rewards, etc.

Witnesses

The witness is the producer of the block, responsible for collecting the various transactions of the broadcast and packing them into the blocks, so the witnesses producing blocks can also get the corresponding YOYO token as returns.

Private Key System

In the blockchain project, the private key is the top priority of the account. However, when a user does any operation and uses the account private key to sign, it will undoubtedly greatly increase the risk of the account. Considering the different security levels of different authorities, the three-level key system is set in the YOYOW system: the Owner Key, the Active Key, and the Secondary Key.

	The Owner Key is the key of highest authority, and the Owner Key should not be used unless it is absolutely necessary;

	The Active Key can operate the balance;

	The Secondary Key can operate the tipping, and can also be used for posting, giving likes, login authentication, etc.

	In addition to the asset-related 3-level keys, there is also a Memo Key used to encrypt and view the note information for the transactions.

Types of Assets

There are three types of assets in the YOYOW network: YOYO token, user-issued assets (UIA), and bonus points.

YOYO Token

In YOYO’s account, the base asset is YOYO token, and there are two places to store: 『balance』and『tipping』

	『Balance』 has a high level of security, and it is recommended that a large amount of YOYO be stored in the balance.

	『Tipping』is for small amount of savings and transfer. When the user grants the authority of tipping to the platform, the platform can have the right to operate “tipping”, which can be understood as password-free payment.

User-Issued Assets（UIA）

Users can issue custom assets: users can create Tokens that circulate within their own platforms based on their business. A convenient exchange method between the user-issued assets (UIA) and YOYO will be provided subsequently, sharing convenient monetization channels.

Bonus Points

The function of the bonus points is to pay fees. When the account “balance” has a certain amount of YOYO, the system will automatically accumulate points. When paying fees, you can choose to deduct the points. For more information, please refer to: Bonus Points

White Paper

For the content of white paper, please refer to White Paper Download [https://yoyow.org/]

Testnet

Executable Files for Testnet

The executable files for testnet can be downloaded on yoyow-core-testnet [https://github.com/yoyow-org/yoyow-core-testnet/releases]

Testnet Web Wallet

The website address of the web wallet used in testnet: http://demo.yoyow.org:8000/#/

You can register your testnet account in the web wallet. After registration, you will receive 12000 TEST YOYO.

Running the Testnet Node

Set up a testnet node, run the downloaded yoyow_node of the testnet directly, taking the Ubuntu environment as an example.

./yoyow_node --rpc-endpoint 127.0.0.1:8090

Testnet Explorer

Testnet Explorer: https://testnet.explorer.yoyow.org/

Testnet Public Node

If you don’t want to build a testnet full node by yourself, you can use the public full node directly:

websocket interface address: ws://47.52.155.181:10011
jsonrpc interface address: http://47.52.155.181:10011/rpc

Running Testnet Wallet

If using public node，yoyow_client needs to be added -s parameter to specify the node address of the link：

./yoyow_client -s ws://47.52.155.181:10011 -r 0.0.0.0:8091 -H 127.0.0.1:8093

Others

If you encounter any problems in testing, such as insufficient test tokens, please add the WeChat of the assistant: yoyow99; apply for the membership of the YOYOW developer group.

[image: yoyow99]

User Registration

Registering Accounts

The account of the YOYOW platform is a string of numbers (similar to the QQ number). It is assigned by the system when registering, and the nickname function will be released in the future.

Currently, accounts can only be registered through Web Wallet [https://wallet.yoyow.org] or Client Wallet [https://yoyow.org/client1.html].
You can refer to: Web Wallet Registration Method [https://steemit.com/cn/@peterchen145/yoyow-online-wallet-sign-up-tutorial]

Special attention is needed here. The system will generate a private Owner Key when registering. The private key only appears once upon successful registration. Please make sure to back up and save it properly since the web wallet and client wallet will not store your private Owner Key.

Private Key Authority

In the YOYOW system, there are four types of private keys for each account.

	Owner Key: it has the highest authority. It is the priavate key that can modify other authorities of the account. The private key that appears upon successful registration is the Owner Key.

	Active Key: it has the authority to use the assets in the balance, such as controlling the actions of the transfer.

	Secondary Key: it has the authority to use the tipping, including the actions of authorizing the platforms. It is also called tipping Key.

	Memo Key: it is used to check the memo information of the transfer actions.

Authorization at each level is for actions within that level only. No action beyond or below one’s authorization is allowed. Active Key does not have the right to tranfer tipping, and Secondary Key does not have the right to transfer balances either. The private Owner Key does not have the authority to use balances and tipping either, but it can reset the private keys of other authority levels. Other three types of private keys can be reset by importing the Owner Key of the account in the web wallet.

For more info about private keys, you can refer to yoyow private key tutorials [https://steemit.com/cn/@peterchen145/yoyow-keys-tutorial-yoyow]

Private Key Saving

Private Owner Key only appears once upon successful registration. The browser will not save the private key, and neither will YOYOW. It is recommended to save your private Owner Key properly and safely and ensure that it is free from being lost and stolen. It is dangerous to store the private key in plaintext on netdisk or online notes. It is also recommended not to use private Owner Key easily.

In the web wallet, other private keys from lower authority levels will be encrypted using your wallet password and stored in the browser’s local database. The same is true for the client wallet. Your account can be rebuilt using the private Owner Key while certain circumstances (such as switching computer, computer failure or browser crash) lead to the loss of local data on your browser.

Compiling and Running yoyow-core

Recommended Hardware Environment

System configuration: two cores, 4G memory

Recommended System: Ubuntu 16.04 LTS (64-bit)

Installation Dependence:

sudo apt-get update
sudo apt-get install autoconf cmake make automake libtool git libboost-all-dev libssl-dev g++ libcurl4-openssl-dev

Compile Script:

git clone https://github.com/yoyow-org/yoyow-core.git
cd yoyow-core
git checkout yy-mainnet # may substitute "yy-mainnet" with current release tag
git submodule update --init --recursive
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ../
make yoyow_node
make yoyow_client

Running:

After the compilation is completed, two binary files are generated, yoyow_node and yoyow_client.

Yoyow_node is generally called a node program and is mainly used to connect to a blockchain network. The functions include synchronizing data on the chain, broadcasting transactions, and providing basic API, etc.

Yoyow_client is generally called a client program. It further encapsulates the API provided by the node program to provide users with a more friendly API. It also provides private key storage management and cryptographic signature function, so it is also called a wallet program.

Node Program

./programs/yoyow_node/yoyow_node

When the node program runs, it automatically creates a directory witness_node_data_dir that stores data and configuration files. It takes several hours to synchronize all the data. After the synchronization is completed, you can stop the operation with Ctrl+C.

It should be noted that after inputting Ctrl+C, the program will continue to run for a while. Do not type Ctrl+C again. Otherwise, the database will be inconsistent. It may take a long time to replay the next time you start the node.

After receiving Ctrl+C, the program will print out in the log

1553960ms asio main.cpp:238 operator()] Caught SIGINT attempting to exit cleanly
1553960ms th_a main.cpp:251 main] Exiting from signal 2

At this point, wait patiently for the program to exit.

When the node program runs, the websocket interface is not opened by default, and you need to add parameters when executing.

./programs/yoyow_node/yoyow_node --rpc-endpoint 127.0.0.1:8090

You can also directly modify the configuration of rpc-endpoint in the configuration file witness_node_data_dir/config.ini.

Client Program (Wallet)

The client program needs to connect to the websocket interface of the node program at runtime. By default, it will try to connect to 127.0.0.1:8090. You can also use the -s parameter to specify other addresses.

./programs/yoyow_client/yoyow_client -s ws://47.52.155.181:10011

The client program provides a command line that can be interactive. You can perform some operations by typing the relevant commands through the command line.

As mentioned above, the client program saves the private key. For security reasons, in the operation of using the private key, you need to use the password to unlock the client. The password settings and unlock command are as follows:

>>> set_password <PASSWORD>
>>> unlock <PASSWORD>

Then you can import the private key

unlocked >>> import_key <account> <private_key>

More supported commands can be viewed with the help command or by looking at the wallet api documentation.

Introduction to the Platform

The platform is a service provider that provides content storage, user interaction, authorized login and other services in the YOYOW network. The third party can become a platform through the collateral of YOYO tokens, and the committee has the right to revoke the qualification of the platform and impose other penalties when the platform violates the community consensus/regulation.

Platform Requirements

Common accounts need to deposit sufficient collateral to become platform accounts. Currently, 10,000 YOYO is required for collateral. The creation fee of 1000 YOYO is required to create the platform.

Users Authorizing the Platform

Common users can authorize the platform through the YOYOW wallet, and can authorize the platform proxies to use its authentication authority, which can be used for cross-site login, single sign-on, etc., sharing all users in the YOYOW ecosystem.

User authorization essentially means that the common account grants the authority of the tipping to the platform, and the common account can carry out small amount “password-free payment” in the ecosystem constructed by the platform, helping the platform to quickly have Token of strong circulation. The platform can also use its own issued Token. Please refer to UIA.

More information about user authorization can be found in ForPlatforms.

Platform Related Operations

The following related operation commands can be executed in the interactive command line in yoyow_client

Getting Platform Number

get_platform_count

For details, please refer to: get_platform_count

Getting Platform Info

get_platform <owner_account>
get_platform 250926091

For details, please refer to: get_platform

Checking Platform List

list_platforms <lowerbound> <limit> <order_by>
list_platforms 0 5 1

For details, please refer to: list_committee_members

Creating Platforms

create_platform <owner_account> <name> <pledge_amount> <pledge_asset_symbol> <url> <extra_data> <broadcast>
create_platform 223331844 yoyow.club 10000 YOYO "http://yoyow.club" null true

For details, please refer to: create_platform

Undating Platform Info

update_platform <platform_account> <name> <pledge_amount> <pledge_asset_symbol> <url> <extra_data> <broadcast>
update_platform 223331844 NUUUU null null "http://www.example.com" "http://www.example.com" true

For details, please refer to: update_platform

Voting for Platforms

update_platform_votes <voting_account> <platforms_to_add> <platforms_to_remove> <broadcast>
update_platform_votes 250926091 ["223331844"] [] true

For details, please refer to: update_platform_votes

Authorizing Platforms

account_auth_platform <account> <platform_owner> <broadcast>
account_auth_platform 250926091 223331844 true

For details, please refer to: account_auth_platform

Canceling the Platform Authorization

account_cancel_auth_platform <account> <platform_owner> <broadcast>
account_cancel_auth_platform 250926091 223331844 true

For details, please refer to: account_cancel_auth_platform

Introduction to Witness

Functions of Witness

YOYOW uses a consensus mechanism for flexible selection of DPoS + PoS, and witnesses act as “miners” in traditional blockchain projects.

Its core responsibility is packaging transactions (commonly known as “producing blocks”) to maintain a stable network operation; witnesses enjoy the rewards given by the system.

Witness Qualification (Collateral)

Any account with collateral over a certain amount of YOYO can become a witness. Current minimum value for collateral: 10,000 YOYO. Witnesses are free to adjust the amount of collateral at any time.

The operation of witness registration costs 1000 YOYO, and the minimum value for collateral is 10000 YOYO, so at least 11,000 YOYO are required to become witnesses.

Ways to Become Witnessess

There are two ways to become witnesses of YOYOW:

	voting election

	YOYOW collateral

There are three types of witnesses in the above two ways:

	Top witnesses: directly voted in by token holders, ranked according to the number of “effective votes”, being top 11.

	Standby witnesses: directly voted in by token holders, ranked according to the number of “valid votes” and all other candidates apart from the top 11 are weighted according to the number of votes, taking turns to work alongside the top witnesses. Currently, three candidates ranked 12th to 14th are selected in each round.

	Miner witnesses: generated by collateral ranking, weighted according to “valid collateral amount”, taking turns to work. For example, if A, B and C all deposit collateral, and A has six tokens of valid collateral, B has three tokens of valid collateral, and C has one token of valid collateral, then, for the following 100 blocks, it should be arranged that A produces 60 blocks, B produces 30 blocks and C produces 10 blocks. Seven miner witnesses are selected in each round.

To sum up: YOYOW’s witness generation mechanism is based on the “number of votes” and “collateral number”, pre-selecting 21 witnesses (11 + 3 + 7). The selected witnesses take turns to producing blocks, and the round of time is about 63 seconds. When 21 witnesses finish producing blocks, the next round of elections will be automatically carried out.

Rewards of Witnesses

Witnesses will get corresponding rewards every time a block is produced.

According to the resolution of the current committee:

	Top witnesses: 0.3 YOYO for each block

	Standby witnesses: 0.3 YOYO for each block

	Miner witnesses: 0.5 YOYO for each block

Witnesses can withdraw “available” rewards into their balance at any time.

Witness Election

	Top witnesses and standby witnesses are elected according to the ranking of votes. For detailed voting rules please refer to Voting

	Miner witnesses are elected according to the ranking of collateral. For collateral ranking rules, please refer to Collateral

Penalty Mechanism for Witnesses

	Under suspicion of an attempt to double spend: If a witness has two blocks at the same height, it is suspected of attempting to create forks and implement a double spend attack.

	If the network detects this situation, or if someone reports it, after the evidence is recorded, the witness is forced to go offline and some deposits are deducted.

	No rewards for reporting for the time being

Witnesses being Offline

	Go Offline on one’s own：witnesses can set up a temporary offline status on their own when temporary maintenance is required.

	Go offline forcibly: When the witnesses lose blocks, if the last time of the block production is earlier than 24 hours before, the witness is automatically set to be temporarily offline with no further block production arranged, and the position is replaced by the witness of a lower rank.

	Witnesses can be arranged in the later block production if the witnesses reset an online status manually.

Witness Related FAQ

【To be supplemented】

Witness Operations

Witness Node Construction

Complete tutorials for building witnesses can be found in YOYOW Witness Tutorials (Ubuntu) [https://mp.weixin.qq.com/s/l4KfKtUUfaCEp9ykIbIByA]

Query

Getting Info of Witnesses

get_witness <owner_account>
get_witness 132826789

For details, please refer to: get_witness

Query for Witness List

list_witnesses <lower_bound> <limit> <order_by>
list_witnesses 0 5 1

For details, please refer to: list_witnesses

Creating Witnesses

create_witness <owner_account> <block_signing_key> <pledge_amount> <pledge_asset_symbol> <url> <broadcast>
create_witness 223331844 YYW1111111111111111111111111111111114T1Anm 1000000 YOYO "http://www.yoyow.org" true

For details, please refer to: create_witness

Updating the Info of Witnesses

update_witness <witness_account> <block_signing_key> <pledge_amount> <pledge_asset_symbol> <url> <broadcast>
update_witness 223331844 null 100345 YOYO null true

For details, please refer to: update_witness

Witness Voting

update_witness_votes <voting_account> <witnesses_to_add> <witnesses_to_remove> <broadcast>
update_witness_votes 250926091 [abit] [] true

For details, please refer to: update_witness_votes

Witness being Offline

Set an offline status first
update_witness 25638 YYW1111111111111111111111111111111114T1Anm null null null true
and then change the deposit to 0, and the deposit will be returned after 7 days (if no deduction due to misbehaviors)
update_witness 25638 null 0 YOYO null true

Getting Witness Returns

collect_witness_pay <witness_account> <pay_amount> <pay_asset_symbol> <broadcast>
collect_witness_pay 25638 100 YOYO true

Introduction to Committee

A group of committee members voted in by the token holders are responsible for setting parameters of the system operation.

The Responsibilities of Committee

	Adjusting the various system operation parameters, including fees and block production rewards

	The committee has partial decision-making authority

The Committee Setup

	The number of committee members is initially fixed at five, and cannot be modified.

	The tenure of committee members is set at 30 days, and cannot be modified.

	The committee members on the initial list will be appointed by the system, with subsequent committee members decided by votes taken by token holders.

	No remuneration for committee accounts

Candidates for the Committee

	Any account with collateral over a certain amount of YOYO can become a candidate for the committee. The initial figure is set at 1,000 YOYO.

	Only candidates for the committee are qualified to become formal committee members.

Committee Elections

	Each token holder has one vote that can be used for one candidate—that is to say, an account can only support one candidate at a time, and the voter can change their vote at any time.

	Other rules such as voting qualification, total valid votes, validity period for voting, and proxies are used in conjunction with witness voting. Please refer to Voting

	The five candidates with the most votes at re-election time will become the new incumbent committee members. Currently, there is no regulation on minimum votes.

Committee Proposals

	Incumbent committee members can initiate proposals to be voted on by all committee members.

	Each proposal includes the following attributes: proposal content, voting deadline, threshold for voting approval and the date from which it would take effect.

	The threshold for approval will be set in advance according to the type of proposal, and cannot be assigned. Only a threshold for approval has been set for the time being, with no threshold for disapproval.

	A proposal may contain more than one item of content, in which case approval or disapproval of all items is required, and the highest threshold for approval among the various content will be recognized as the threshold for approval.

	The date from which a proposal would take effect must not be later than the end date of the tenure. The date of effect can be backdated, resulting in it “taking immediate effect.”

	There are three statuses for committee votes—approving, abstaining and disapproving. It is assumed that the initiator of the proposal has voted to approve it. Each committee member shall have one vote, which can be changed before it comes into effect.

	Under the condition that the number of affirmative votes has reached the threshold, if the date of effect is in the past, the proposal will come into effect immediately. Otherwise, the proposal will come into force on the planned date of effect.

	Before the close of voting, and before the proposal’s date of effect, voters are allowed to change their votes. However, after the close of voting, no change will be accepted.

	Committee proposals shall be voted on within the tenure. Proposals whose voting has not finished within that time period will be automatically canceled upon the termination of the tenure. Approved proposals will come into effect as planned and the validity of such proposals will not be impacted by the tenure ending.

	Since different preset system parameters have different enabling conditions/methods, a proposals’ entry into force does not mean system parameters will be modified immediately.

Resignation of Committee Members

	Candidates for committee/formal committee members can terminate their capacity as committee members and the system will delay the return of their deposit, which is currently delayed by one day.

	After a formal committee member resigns, their capacity within that tenure will not be impacted, but in the next tenure that committee member will lose all voting rights.

	After resignation, all votes will undergo zero clearing (coming into effect after the re-elections)

	If an application to become a committee member is filed during the delayed release period, the tokens not released will be locked again. However, cleared votes cannot be recovered.

Committee Related Operations

The following related operation commands can be executed in the interactive command line in yoyow_client

Creating Committee Account

create_committee_member <owner_account> <pledge_amount> <pledge_asset_symbol> <url> <broadcast>
create_committee_member 223331844 1000 YOYO "http://www.yoyow.org" true

For details, please refer to: create_committee_member

Updating Committee Account

update_committee_member <committee_member_account> <pledge_amount> <pledge_asset_symbol> <url> <broadcast>
update_committee_member 223331844 1000 YOYO "http://demo.yoyow.org" true

For details, please refer to: update_committee_member

Voting for Committee

update_committee_member_votes <voting_account> <committee_members_to_add> <committee_members_to_remove> <broadcast>
update_committee_member_votes 223331844 ["init1"], [], true

For details, please refer to: update_committee_member_votes

Getting Info of Committee Members

get_committee_member <owner_account>
get_committee_member 25997

For details, please refer to: get_committee_member

Checking History of Current Candidates

list_committee_members <lower_bound> <limit> <order_by>
list_committee_members 0 5 1

For details, please refer to: list_committee_members

Checking the Current Committee Proposals Not Implemented

list_committee_proposals

For details, please refer to: list_committee_members

Voting

YOYOW uses the DPoS consensus algorithm. All token holders are able to choose witnesses and the committee through the voting system, allowing them to make decisions about the YOYOW system.

Voting Qualification

	Voting qualification is assigned to those holders owning a certain amount of tokens. The current value is 10,000 YOYO. Please refer to the field min_governance_voting_balance in Parameter Table [https://yoyow.bts.ai/fees#parameters].

	Accounts included in the committee’s blacklist are disqualified from voting.

Validity Period of Voting

	Users qualified for voting will activate their intention to vote when they vote for the first time. The validity period is T, which is initially set at 90 days.

	If there is any new voting action within the validity period, it will be extended by T, which means, the expiry date will be changed to: the date of the updated voting action + T.

	If there is no new voting action within the validity period, it is assumed that there is no more voting intention.

	If users are disqualified from voting, or have no more voting intention, their votes will become void.

Voting Method

	Committee elections: one vote for one candidate—each account can only support one candidate at a time, and the voter can change the vote at any time

	Witness elections: one vote for numerous candidates—to strengthen consensus, each account can vote for numerous witnesses.

Valid Vote Counting

To enhance the fairness of voting, vote counting also takes into consideration the voters’ number of tokens held, average token volume, time held and other factors.

	When the account activates the voting intention, it begins to accumulate the age of the tokens.

	The number of valid votes is equal to average balance over 60 days, or the current balance of the account (whichever is smaller), which means: number of valid votes = min (average balance within 60 days, current balance). That is to say, when the tokens are transferred in, the age of tokens gradually accumulates and increases the corresponding portion; when the tokens are transferred out, the age of tokens immediately decreases the corresponding portion.

	The number of votes for a candidate is equal to the total number of valid votes from supporters.

	As it takes a lot of effort to count based on the age of the tokens in all accounts, which are updated in real-time, a delayed updating mode is used for vote counting, which means there might be a few deviations from counting based on real-time statistics.

Voting Proxies

	A proxy can be designated for voting activities. For example: when Account A designates Account B as voting proxy, the voter of Account B will receive the valid vote(s) from both A and B. In this case, A is the client and B is the proxy.

	Multi-layered proxies are allowed. For example: Account A designates Account B as its voting proxy, and Account B designates Account C as its voting proxy. However, there are restrictions on the total number of proxy layers.

	Any account cannot designate itself as a voting proxy.

	Whenever there is an action of proxy voting, the validity period of the client’s intention to vote will be updated.

	When the proxy has no intention to vote or no qualification to vote, the proxy relationship will be automatically terminated, and the client’s voting status will be changed to “with no vote for anyone” while the validity period of the client’s intention to vote remains the same.

	When a proxy reactivates their intention to vote, the proxy relationship is not recovered.

Collateral

Currently, the collateral can be used for updating the platform accounts or applying for becoming miner witnesses. Only YOYO is accepted for the collateral.

Platform Collateral

Currently, the minimum collateral value for the platform is 10000 YOYO. The qualification of the platform is evaluated according to the current collateral value, which can be modified by the committee. Please refer to the parameter platform_min_pledge in parameter table [https://yoyow.bts.ai/fees].

Committee Collateral

The minimum collateral value for the committee is 1000 YOYO.

Miner Witness Collateral

	The miner witness calculates the number of blocks to be produced according to the amount of valid collateral of each account. For example, if A, B and C all deposit collateral, and A has six tokens of valid collateral, B has three tokens of valid collateral, and C has one token of valid collateral, then, for the following 100 blocks, it should be arranged that A produces 60 blocks, B produces 30 blocks and C produces 10 blocks.

	The valid collateral will be the average collateral over seven days, or the current collateral (whichever is smaller). That is to say, when the collateral is increased, the valid collateral will increase gradually, and when the collateral decreases or is canceled, the valid collateral will immediately decrease.

Collateral Refunding

The refunding of collateral deposits will be delayed for a certain period of time when the collateral amount is decreased or the collateral is cancelled. Current value: 7 days.

Notes:

	When there are continuous decreases in collateral, the amount will be accumulated and refunded in one lump sum. The time of refund will be delayed on the basis of the time of the last decrease.

	For collateral increases, if there is a collateral deposit to be returned to the current account, that refund will be deducted first, and then the remaining amount will be deducted from the balance of the account.

YOYO Token

The core asset of YOYOW is YOYO.

Balance

We recommend storing most of your YOYO in the balance. The YOYO in the balance can accumulate Bonus Points, which can be used to pay fees.

Tipping

We recommend storing small amount of YOYO in the Tipping. For daily small payments, it is recommended to use Tipping instead of balance.

The Design of Balance and Tipping

Balance and Tipping are designed primarily to balance usability and security. The use of balance and tipping requires two different permissions. The active key controls the balance, and the tipping key (secondary key) controls the tipping.

The authority of tipping can be delegated to the platform to facilitate automated trading in the ecosystem created by the platform, without having to use your own private key for each time so as to reduce risks.

Therefore, the balance is designed to store large amounts of assets, and it is not recommended to deposit too many assets in tipping.

User-Issued Assets (UIA)

YOYOW provides the feature of issuing assets, and common accounts can create and issue a variety of custom assets (UIA).

User-issued assets can be transferred in transactions, so they can be used as rewards for content platforms to replace the traditional point mechanism.

Later, the exchange relationship between YOYO and UIA will be introduced.

Issuing Assets

The web wallet provides a simple operation for issuing assets, and it is convenient to specify the code for issuing the token, the total supply, and the number of decimal points. As shown below:
[image: Issuing Assets]

The fees for issuing assets include the basic fees and the cost per kilobyte. The basic fees are charged according to the length of the Token code. The current basic fees are as follows:

	Token Code Digits
	Basic Fees

	3 Digits
	30000 YOYO

	4 Digits
	3000 YOYO

	5 Digits or more
	300 YOYO

Advanced Options

In addition to the simple feature of UIA, users issuing assets can define more features.

	Whitelist: Assets can optionally be whitelisted. If a whitelist is defined, only whitelisted accounts can hold and use assets.

	Blacklist: The asset enables the blacklist by default. The account in the blacklist cannot hold and use the assets.

	Forced transfers: Assets can be set to allow for forced transfers. If enabled, the issuer of the asset can force transfer or take back such assets in other people’s accounts.

	Restricted transfers: Assets can be set to allow for restricted transfers. If enabled, the originator or recipient of the transfer must be the issuer of the assets.

	Issuance of assets: After the asset is created, it needs to be issued to the account for circulation. If enabled, the issuer of the asset can add a certain amount of such assets to an account. The issue means increasing the current circulation of the asset.

	Modifying the circulation limit: If enabled, the asset issuer can modify the circulation limit of the assets.

For more information, please refer to the API documentation for a detailed description of the request parameters in the Creation of Assets.

Bonus Points

Bonus Points are rewards for YOYO holders. When your account holds YOYO, Bonus Points will be accumulated over time. There is an upper limit for Bonus Points accumulated, and you have to withdraw Bonus Points manually.

Using Bonus Points

At present, the only use of Bonus Points is for paying fees. You can use Bonus Points to offset fees. 100 Bonus Points can be used as 1 YOYO, under the circumstances.

Acquisition of Bonus Points

	When the “balance” of your account reaches a certain amount of YOYO, the system will automatically accumulate Bonus Points for you.

	Bonus Points are withdrawn manually. You can manually withdraw available Bonus Points to your account.

	Rate of Credit Accumulation: the current setting allows you to withdraw Bonus Points equivalent to 1 YOYO per day for every 10,000 YOYO.

Renting Bonus Points

A Bonus Point Rental function will be enabled in the future.

Gifting Bonus Points

Currently, when implementing the “withdrawing Bonus Points” action, you are able to select the account of a contact and withdraw the Bonus Points into their accounts.

Asset Related Operations

The following related operation commands can be executed in the interactive command line in yoyow_client

Common Transfer

transfer <from> <to> <amount> <asset_symbol> <memo> <broadcast>
transfer 250926091 209414065 100 YOYO "memo" true

For details, please refer to: transfer

Query

Checking YOYO Balance in the Account

This function only returns the number of YOYO owned by the account.

list_account_balances <account>
list_account_balances 250926091

For details, please refer to:
list_account_balances

Checking All Assest Balances in the Account

This function does not have an interface for the wallet at the moment, and it can only call the node’s api, such as using wscat to link the websocket port.

{"id":1, "method":"call", "params":[0,"get_account_balances",["250926091", []]]}

For details, please refer to: get_account_balances

About Bonus Points

Checking Bonus Points

Bonus Points can be viewed by using the command “get_full_account” and the “statistics” in the returned results include “csaf”“core balance”“prepaid”, corresponding to “Bonus Points”“Balance”“Tipping”.

get_full_account <account_name_or_id>
get_full_account 250926091

Collecting the Bonus Points for the Time Being

collect_csaf <from> <to> <amount> <asset_symbol> <broadcast>
collect_csaf 250926091 209414065 100 YOYO true

For details, please refer to: collect_csaf

Collecting the Bonus Points Accumulated before a Specific Time

collect_csaf_with_time <from> <to> <amount> <asset_symbol> <time> <broadcast>
collect_csaf_with_time 250926091 209414065 100 YOYO "2018-04-16T02:44:00" true

For details, please refer to: collect_csaf_with_time

User-Issued Assets

There are two core operations for the user-issued assets, including creating assets (create_asset) and issuing assets (issue_asset). The newly created assets are not available (no circulation) and need to be issued to the specified account before they can be used.

Getting Assets Info

get_asset <asset_name_or_id>
get_asset 3

For details, please refer to: get_asset

Checking Assets List

list_assets <lower_bound_symbol> <limit>
list_assets YOYO 4

For details, please refer to: list_assets

Creating Assets

create_asset <issuer> <symbol> <precision> <common> <initial_supply> <broadcast>
create_asset 250926091 TOTOTO 4 {"max_supply":300000,"market_fee_percent":0,"max_market_fee":0,"issuer_permissions":4} 200000 true

For details, please refer to: create_asset

Issuing Assets

issue_asset <to_account> <amount> <symbol> <memo> <broadcast>
issue_asset 250926091 10000 WOWO memo true

For details, please refer to: issue_asset

Updating Assets

update_asset <symbol> <new_issuer> <new_options> <broadcast>
update_asset WOWO null {"max_supply":"2000000000"} true

For details, please refer to: update_asset

Destroying Assets

reserve_asset <from> <amount> <symbol> <broadcast>
reserve_asset 250926091 1000 WOWO true

For details, please refer to: reserve_asset

Node API Descriptions

Contents

	Node API Descriptions

	Node Connection Method

	API Classification

	Database API

	1.1.1 get_required_signatures

	1.1.2 get_accounts_by_uid

	1.1.3 get_account_balances

	1.1.4 get_post

	1.1.5 get_posts_by_platform_poster

	1.1.6 get_required_fee_data

	1.1.7 get_full_accounts_by_uid

	1.1.8 get_witness_by_account

	1.1.9 get_witnesses

	1.1.10 lookup_witnesses

	1.1.11 get_committee_member_by_account

	1.1.12 get_committee_members

	1.1.13 lookup_committee_members

	1.1.14 list_committee_proposals

	1.1.15 lookup_accounts_by_name

	1.1.16 get_platform_by_account

	1.1.17 get_platforms

	1.1.18 lookup_platforms

	1.1.19 get_platform_count

	1.1.20 get_assets

	1.1.21 list_assets

	1.1.22 lookup_asset_symbols

	History API

	1.2.1 get_relative_account_history

Node Connection Method

Testing Environment：

websocket interface address： ws://47.52.155.181:10011
jsonrpc interface address： http://47.52.155.181:10011/rpc

Formal Environment：

websocket interface address：ws://139.198.1.234:9000
jsonrpc interface address： http://139.198.1.234:9000/rpc

	use wscat to connect， wscat installation method [https://www.npmjs.com/package/wscat]

	wscat -c ws://47.52.155.181:10011

	use curl post data to connect

	curl –data ‘{“jsonrpc”: “2.0”, “method”: “call”, “params”: [0, “get_accounts_by_uid”, [[“250926091”]]], “id”: 1}’ http://47.52.155.181:10011/rpc

API Classification

YOYOW’s API classification is similar to BTS. The following focuses on database api and history api. When requesting via websocket, the parameter is a json string in the following format:

{“id”:1, “method”:”call”, “params”:[API level,”function name”,[specific parameters]]}

In use, you need to fill in API level, function name, and specific parameters, of which the API level can be obtained by sending the following strings via websocket:

{“id”:2, “method”:”call”, “params”:[1,”history”,[]]}

For example, the above request will return:

{
 "id": 2,
 "jsonrpc": "2.0",
 "result": 2
}

Here the result is 2, which means that when using the history api, the API level needs to be filled in 2. (Note: not every YOYOW node returns the same configuration; it depends on each node’s limit on exposing the API)

The database API can be called directly by default by specifying the API level to 0 or by querying the result value through using the following strings:

{“id”:2, “method”:”call”, “params”:[1,”database”,[]]}

Database API

1.1.1 get_required_signatures

Return the 3 sets associated with signing the transaction based on the given transaction (which may already contain the signature), and the given set of spare public keys:

A subset of the available spare public key set, can be used to sign the transaction
Public key that may also be needed (not in the signature, nor in the set of spare public keys)
Extra signature already included in the transaction

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	trx

	transaction, may have already contained signature

	available_keys

	array of public keys For example：[“YYW5eDSFYeiqyFRajfPP8tTZMm7fUeyc7H65zmnHtDW4SQJdwqTBD”]

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0,"get_required_signatures",[{"operations":[[0,{"fee":{"total":{"amount":100000,"asset_id":0}},"from":250926091,"to":223331844,"amount":{"amount":100000,"asset_id":0},"extensions":{}}]]}, ["YYW5eDSFYeiqyFRajfPP8tTZM7mfUeyc7H65zmnHtDW4SQJdwqTBD"]]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_accounts_by_uid", [{"operations":[[0,{"fee":{"total":{"amount":100000,"asset_id":0}},"from":250926091,"to":223331844,"amount":{"amount":100000,"asset_id":0},"extensions":{}}]]}, ["YYW5eDSFYeiqyFRajfPP8tTZM7mfUeyc7H65zmnHtDW4SQJdwqTBD"]]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 [
 [
 "YYW5eDSFYeiqyFRajfPP8tTZM7mfUeyc7H65zmnHtDW4SQJdwqTBD"
], //a subset of the available spare public key set, can be used to sign the transaction
 [
 "YYW6fU7Th8uESW9FZnpkhYaTUwtSvn3f2TQxFVA3ef2SSiwdZES71",
 "YYW7UoNSEQAUPvnvoBRVKyPAD9845esnpiK6MgHinsn5yqr5UgT5W"
] //public key that may also be needed (not in the signature, nor in the set of spare public keys)
],
 [] // extra signature already included in the transaction
]
}

1.1.2 get_accounts_by_uid

Return multiple account information based on uid. The quantity must be <= 1000.

If the uid does not exist, the corresponding position result is null .

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	account_uids

	uid array，length is less than 1000 for example：[“250926091”]

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0,"get_accounts_by_uid",[["250926091"]]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_accounts_by_uid", [["250926091"]]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.2.1378",
 "uid": 250926091,
 "name": "yoyo250926091",
 "owner":
 {
 "weight_threshold": 1,
 "account_uid_auths": [],
 "key_auths": [
 ["YYW7UoNSEQAUPvnvoBRVKyPAD9845esnpiK6MgHinsn5yqr5UgT5W", 1]
]
 },
 "active":
 {
 "weight_threshold": 1,
 "account_uid_auths": [],
 "key_auths": [
 ["YYW6fU7Th8uESW9FZnpkhYaTUwtSvn3f2TQxFVA3ef2SSiwdZES71", 1]
]
 },
 "secondary":
 {
 "weight_threshold": 1,
 "account_uid_auths": [],
 "key_auths": [
 ["YYW5eDSFYeiqyFRajfPP8tTZM7mfUeyc7H65zmnHtDW4SQJdwqTBD", 1]
]
 },
 "memo_key": "YYW7SpC4QLY1LRRxFQ2hbYHdAyQo88L8qnPJcDJkiRMugcnFGUGvo",
 "reg_info":
 {
 "registrar": 206336051,
 "referrer": 25997,
 "registrar_percent": 0,
 "referrer_percent": 0,
 "allowance_per_article":
 {
 "amount": 0,
 "asset_id": 0
 },
 "max_share_per_article":
 {
 "amount": 0,
 "asset_id": 0
 },
 "max_share_total":
 {
 "amount": 0,
 "asset_id": 0
 },
 "buyout_percent": 10000
 },
 "can_post": true,
 "can_reply": false,
 "can_rate": false,
 "is_full_member": true,
 "is_registrar": false,
 "is_admin": false,
 "create_time": "2018-04-03T08:21:00",
 "last_update_time": "2018-04-03T08:21:00",
 "active_data": "{}",
 "secondary_data": "{}",
 "statistics": "2.5.1378"
 }]
}

1.1.3 get_account_balances

Query the asset balance based on uid and asset type.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	uid

	uid，for example:”250926091”

	assets

	a list of asset type id, with 0 representing core assets. For example: [0,1]. If the value is empty ([]), return all asset balances in the account

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0,"get_account_balances",["250926091", [0,1]]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_account_balances", ["250926091", [0,1]]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "amount": 1099970704,
 "asset_id": 0
 },
 {
 "amount": 0,
 "asset_id": 1
 }]
}

1.1.4 get_post

Return post information based on platform owner uid, poster uid, and post pid.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	platform_owner

	platform owner id

	poster_uid

	poster id

	post_pid

	post id (for exmaple：1)

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0,"get_post",["223331844",223331844,0,1]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_post", [["250926091"]]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "id": "1.7.14",
 "platform": 223331844,
 "poster": 223331844,
 "post_pid": 1,
 "hash_value": "asdfasdfasdfasdf",
 "extra_data": "{}",
 "title": "post a",
 "body": "post b",
 "create_time": "2018-05-03T12:40:39",
 "last_update_time": "2018-05-03T12:40:39"
 }
}

1.1.5 get_posts_by_platform_poster

Query the list of posts according to the platform owner uid, poster uid, post time period.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	platform_owner

	platform owner id

	poster_uid

	poster id; poster_uid can be null, query all users’ posts at this time.

	create_time_range

	The time limit is limited by two time points whose time orders are not limited. The query range is like this: the earliest time < Posting time <= latest time.

	limit

	the number is limited, not exceeding 100.

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0,"get_posts_by_platform_poster",[223331844, null, ["2018-04-03T12:42:36","2018-05-03T12:42:36"], 100]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_accounts_by_uid", [223331844, null, ["2018-04-03T12:42:36","2018-05-03T12:42:36"], 100]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

The results are sorted by time, with the latest one being the top. If the time is the same, the results are sorted by the actual order of receiving blocks, with the later block reception being in the front.

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.7.14",
 "platform": 223331844,
 "poster": 223331844,
 "post_pid": 1,
 "hash_value": "asdfasdfasdfasdf",
 "extra_data": "{}",
 "title": "post a",
 "body": "post b",
 "create_time": "2018-05-03T12:40:39",
 "last_update_time": "2018-05-03T12:40:39"
 }
]
}

1.1.6 get_required_fee_data

Give a set of operations, return the fee information required for the operation. The API only supports core assets.

wherein，

required_fee_data
{
 account_uid_type fee_payer_uid; // payer uid
 int64_t min_fee; // The lowest total cost and the unit is the value of core asset after being removed the part after the decimal point (same usage as the asset type)
 int64_t min_real_fee; // The lowest real cost (the part that cannot be deducted using tokens), and the unit is the same as above
};

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	ops

	uid array，the length is less than 1000; for example：[“250926091”]

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "get_required_fee_data", [[[0,{"fee":{"total":{"amount":200000,"asset_id":0},"options":{"from_balance":{"amount":200000,"asset_id":0}}},"from":236542328,"to":228984329,"amount":{"amount":100000,"asset_id":0},"extensions":{"from_balance":{"amount":100000,"asset_id":0},"to_balance":{"amount":100000,"asset_id":0}}}]]]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_required_fee_data", [[[0,{"fee":{"total":{"amount":200000,"asset_id":0},"options":{"from_balance":{"amount":200000,"asset_id":0}}},"from":236542328,"to":228984329,"amount":{"amount":100000,"asset_id":0},"extensions":{"from_balance":{"amount":100000,"asset_id":0},"to_balance":{"amount":100000,"asset_id":0}}}]]]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "fee_payer_uid": 236542328,
 "min_fee": 20000,
 "min_real_fee": 0
 }
]
}

1.1.7 get_full_accounts_by_uid

Get the corresponding information based on a set of account uid.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	uids

	uid array，the length is less than 1000; for example：[“250926091”]

	options

	options array

Options The array can have the following parameters

{
optional fetch_account_object;
optional fetch_statistics;
optional fetch_csaf_leases_in;
optional fetch_csaf_leases_out;
optional fetch_voter_object;
optional fetch_witness_object;
optional fetch_witness_votes;
optional fetch_committee_member_object;
optional fetch_committee_member_votes;
optional fetch_platform_object;
optional fetch_platform_votes;
optional fetch_assets;
optional fetch_balances;
}

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "get_full_accounts_by_uid", [["250926091"],{}]]}

{"id":1, "method":"call", "params":[0, "get_full_accounts_by_uid", [["223331844"],{"fetch_assets": true}]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_full_accounts_by_uid", [["250926091"],{}]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 [250926091,
 {
 "account":
 {
 "id": "0.0.0",
 "uid": 0,
 "name": "",
 "owner":
 {
 "weight_threshold": 0,
 "account_uid_auths": [],
 "key_auths": []
 },
 "active":
 {
 "weight_threshold": 0,
 "account_uid_auths": [],
 "key_auths": []
 },
 "secondary":
 {
 "weight_threshold": 0,
 "account_uid_auths": [],
 "key_auths": []
 },
 "memo_key": "YYW1111111111111111111111111111111114T1Anm",
 "reg_info":
 {
 "registrar": 1264,
 "referrer": 1264,
 "registrar_percent": 0,
 "referrer_percent": 0,
 "allowance_per_article":
 {
 "amount": 0,
 "asset_id": 0
 },
 "max_share_per_article":
 {
 "amount": 0,
 "asset_id": 0
 },
 "max_share_total":
 {
 "amount": 0,
 "asset_id": 0
 },
 "buyout_percent": 10000
 },
 "can_post": true,
 "can_reply": false,
 "can_rate": false,
 "is_full_member": false,
 "is_registrar": false,
 "is_admin": false,
 "create_time": "1970-01-01T00:00:00",
 "last_update_time": "1970-01-01T00:00:00",
 "active_data": "{}",
 "secondary_data": "{}",
 "statistics": "2.5.0"
 },
 "statistics":
 {
 "id": "0.0.0",
 "owner": 31120496,
 "total_ops": 0,
 "removed_ops": 0,
 "prepaid": 0,
 "csaf": 0,
 "core_balance": 0,
 "core_leased_in": 0,
 "core_leased_out": 0,
 "average_coins": 0,
 "average_coins_last_update": "1970-01-01T00:00:00",
 "coin_seconds_earned": "0",
 "coin_seconds_earned_last_update": "1970-01-01T00:00:00",
 "total_witness_pledge": 0,
 "releasing_witness_pledge": 0,
 "witness_pledge_release_block_number": 4294967295,
 "last_witness_sequence": 0,
 "uncollected_witness_pay": 0,
 "witness_last_confirmed_block_num": 0,
 "witness_last_aslot": 0,
 "witness_total_produced": 0,
 "witness_total_missed": 0,
 "witness_last_reported_block_num": 0,
 "witness_total_reported": 0,
 "total_committee_member_pledge": 0,
 "releasing_committee_member_pledge": 0,
 "committee_member_pledge_release_block_number": 4294967295,
 "last_committee_member_sequence": 0,
 "can_vote": true,
 "is_voter": false,
 "last_voter_sequence": 0,
 "last_platform_sequence": 0,
 "total_platform_pledge": 0,
 "releasing_platform_pledge": 0,
 "platform_pledge_release_block_number": 4294967295,
 "last_post_sequence": 0
 },
 "csaf_leases_in": [],
 "csaf_leases_out": [],
 "witness_votes": [],
 "committee_member_votes": []
 }]
]
}

Return field description

return the structure definition of full_account in map as：

full_account
{
 account; // account basic info
 statistics; // account dynamic info
 csaf_leases_in; // fee token age borrowing details
 csaf_leases_out; // fee token age lending details
 voter; // summary of account voting information
 witness; // witness information
 witness_votes; // witness vote details (voting votes)
 committee_member; // committee candidate info
 committee_member_votes; // committee election voting details (voting votes)
 platform; // platform information owned by this account
 platform_votes; // platform voting details (voting votes)
 assets; // this account is the asset issuer's asset type id list
 balances; // balance sheet

};

1.1.8 get_witness_by_account

Give the uid of an account, return the corresponding witness information

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	account

	uid array，the length is less than 1000; for example：[“250926091”]

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0,"get_witness_by_account",["132826789"]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_witness_by_account", ["132826789"], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result":
 {
 "id": "1.5.31",
 "account": 132826789,
 "name": "yoyo132826789",
 "sequence": 1,
 "is_valid": true,
 "signing_key": "YYW1111111111111111111111111111111114T1Anm",
 "pledge": "7500000000",
 "pledge_last_update": "2017-09-05T11:39:03",
 "average_pledge": "7500000000",
 "average_pledge_last_update": "2017-09-06T12:05:36",
 "average_pledge_next_update_block": 4294967295,
 "total_votes": 719683655,
 "by_pledge_position": "0",
 "by_pledge_position_last_update": "0",
 "by_pledge_scheduled_time": "45370982250075664161773192435",
 "by_vote_position": "0",
 "by_vote_position_last_update": "0",
 "by_vote_scheduled_time": "472822140789228182032488184547",
 "last_confirmed_block_num": 8168,
 "last_aslot": 8599,
 "total_produced": 25,
 "total_missed": 0,
 "url": ""
 }
}

Return field descriptions

The corresponding field data is only included in the returned result if the corresponding option in options is true.
Among them, the token age borrowing details and lending details are only returned for the top 100 items.

If uid does not exist, there is no corresponding uid in the returned map.

1.1.9 get_witnesses

Give a set of uids, return the corresponding witness information

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	account_uids

	uid array，for example：[132826789,25997]

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "get_witnesses", [[132826789,25997]]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_witnesses", [[132826789,25997]]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.5.31",
 "account": 132826789,
 "name": "yoyo132826789",
 "sequence": 1,
 "is_valid": true,
 "signing_key": "YYW1111111111111111111111111111111114T1Anm",
 "pledge": "7500000000",
 "pledge_last_update": "2017-09-05T11:39:03",
 "average_pledge": "7500000000",
 "average_pledge_last_update": "2017-09-06T12:05:36",
 "average_pledge_next_update_block": 4294967295,
 "total_votes": 719683655,
 "by_pledge_position": "0",
 "by_pledge_position_last_update": "0",
 "by_pledge_scheduled_time": "45370982250075664161773192435",
 "by_vote_position": "0",
 "by_vote_position_last_update": "0",
 "by_vote_scheduled_time": "472822140789228182032488184547",
 "last_confirmed_block_num": 8168,
 "last_aslot": 8599,
 "total_produced": 25,
 "total_missed": 0,
 "url": ""
 },
 {
 "id": "1.5.1",
 "account": 25997,
 "name": "init1",
 "sequence": 1,
 "is_valid": true,
 "signing_key": "YYW71suPihtG7jJAGiVBCkd63ECHYebQaPa894oy3r54zk3eM1itt",
 "pledge": 1000000000,
 "pledge_last_update": "2017-09-12T21:02:45",
 "average_pledge": 1000000000,
 "average_pledge_last_update": "2017-09-13T21:20:30",
 "average_pledge_next_update_block": 4294967295,
 "total_votes": 0,
 "by_pledge_position": "0",
 "by_pledge_position_last_update": "0",
 "by_pledge_scheduled_time": "340282366580656096882718510549",
 "by_vote_position": "0",
 "by_vote_position_last_update": "0",
 "by_vote_scheduled_time": "340282366920938463463374607431768211455",
 "last_confirmed_block_num": 5937330,
 "last_aslot": 6308879,
 "total_produced": 513249,
 "total_missed": 32165,
 "url": ""
 }]
}

1.1.10 lookup_witnesses

List current valid witnesses

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	lower_bound_uid

	Start the query with this as the starting uid, set it to 0 and start from the beginning.

	limit

	Return quantity limit, up to 101

	ops

	Sort type; value range [0, 1, 2]. 0:Sort by uid from big to small; 1: Sort by number of votes; 2: Sort by collateral amount

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "lookup_witnesses", [0,2,1]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "lookup_witnesses", [0,2,1]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.5.31",
 "account": 132826789,
 "name": "yoyo132826789",
 "sequence": 1,
 "is_valid": true,
 "signing_key": "YYW1111111111111111111111111111111114T1Anm",
 "pledge": "7500000000",
 "pledge_last_update": "2017-09-05T11:39:03",
 "average_pledge": "7500000000",
 "average_pledge_last_update": "2017-09-06T12:05:36",
 "average_pledge_next_update_block": 4294967295,
 "total_votes": 701297305,
 "by_pledge_position": "0",
 "by_pledge_position_last_update": "0",
 "by_pledge_scheduled_time": "45370982250075664161773192435",
 "by_vote_position": "0",
 "by_vote_position_last_update": "0",
 "by_vote_scheduled_time": "485218414514968154552378399456",
 "last_confirmed_block_num": 8168,
 "last_aslot": 8599,
 "total_produced": 25,
 "total_missed": 0,
 "url": ""
 },
 {
 "id": "1.5.1",
 "account": 25997,
 "name": "init1",
 "sequence": 1,
 "is_valid": true,
 "signing_key": "YYW71suPihtG7jJAGiVBCkd63ECHYebQaPa894oy3r54zk3eM1itt",
 "pledge": 1000000000,
 "pledge_last_update": "2017-09-12T21:02:45",
 "average_pledge": 1000000000,
 "average_pledge_last_update": "2017-09-13T21:20:30",
 "average_pledge_next_update_block": 4294967295,
 "total_votes": 0,
 "by_pledge_position": "0",
 "by_pledge_position_last_update": "0",
 "by_pledge_scheduled_time": "340282366580656096882718510549",
 "by_vote_position": "0",
 "by_vote_position_last_update": "0",
 "by_vote_scheduled_time": "340282366920938463463374607431768211455",
 "last_confirmed_block_num": 5935462,
 "last_aslot": 6307011,
 "total_produced": 513079,
 "total_missed": 32165,
 "url": ""
 }]
}

1.1.11 get_committee_member_by_account

Give a uid, return the corresponding committee candidate information

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	account

	uid; for example：”250926091”

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "get_committee_member_by_account", [25997]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_committee_member_by_account", [25997], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result":
 {
 "id": "1.4.0",
 "account": 25997,
 "name": "init1",
 "sequence": 1,
 "is_valid": true,
 "pledge": 0,
 "total_votes": 0,
 "url": ""
 }
}

1.1.12 get_committee_members

Get the corresponding information based on a set of account uid.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	committee_member_uids

	uid array; for example：[25997,26264]

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "get_committee_members", [[25997,26264]]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_committee_members", [[25997,26264]]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.4.0",
 "account": 25997,
 "name": "init1",
 "sequence": 1,
 "is_valid": true,
 "pledge": 0,
 "total_votes": 0,
 "url": ""
 },
 {
 "id": "1.4.1",
 "account": 26264,
 "name": "init2",
 "sequence": 1,
 "is_valid": true,
 "pledge": 0,
 "total_votes": 0,
 "url": ""
 }]
}

1.1.13 lookup_committee_members

List the current valid committee candidate list

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	lower_bound_uid

	Start the query with this as the starting uid, set it to 0 and start from the beginning

	limit

	Return quantity limit, up to 101

	ops

	Sort type, value range [0,1,2]. 0:Sort by uid from big to small; 1: Sort by number of votes; 2: Sort by collateral amount

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "lookup_committee_members", [0,2,1]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "lookup_committee_members", [0,2,1]], "id": 1}'

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.4.0",
 "account": 25997,
 "name": "init1",
 "sequence": 1,
 "is_valid": true,
 "pledge": 0,
 "total_votes": 0,
 "url": ""
 },
 {
 "id": "1.4.1",
 "account": 26264,
 "name": "init2",
 "sequence": 1,
 "is_valid": true,
 "pledge": 0,
 "total_votes": 0,
 "url": ""
 }]
}

1.1.14 list_committee_proposals

List all the committee proposals that have not been successfully implemented, including those that are being voted on, have been voted through but have not yet reached the execution time.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

null

Precautions

无

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "list_committee_proposals", []]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "list_committee_proposals", []], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": []
}

1.1.15 lookup_accounts_by_name

Find the account UID by name.

The normal account name is currently yoyo+uid

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	lower_bound_name

	Start the query with this as the starting name, set it to an empty string and start from the beginning.

	limit

	Return quantity limit, up to 1001

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "lookup_accounts_by_name", ["",2]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "lookup_accounts_by_name", ["",2]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 ["abit", 209414065],
 ["agaoye", 209415129]
]
}

1.1.16 get_platform_by_account

Give a uid, return the platform information owned by the corresponding account

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access and authorization limit

null

Request parameters

	account

	one account uid

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "get_platform_by_account", [224006453]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_platform_by_account", [224006453]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "id": "1.6.4",
 "owner": 224006453,
 "name": "dwgMarket",
 "sequence": 1,
 "is_valid": true,
 "total_votes": 0,
 "url": "www.cad1688.com",
 "pledge": 1000000000,
 "pledge_last_update": "2018-04-04T08:38:24",
 "average_pledge": 0,
 "average_pledge_last_update": "2018-04-04T08:38:24",
 "average_pledge_next_update_block": 5712088,
 "extra_data": "{}",
 "create_time": "2018-04-04T08:38:24",
 "last_update_time": "1970-01-01T00:00:00"
 }
}

1.1.17 get_platforms

Give a set of uids, return the corresponding platform information; uid is the owner id of the platform

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	account_uids

	uid list [224006453,217895094]

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "get_platforms", [[224006453,217895094]]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_platforms", [[224006453,217895094]]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.6.4",
 "owner": 224006453,
 "name": "dwgMarket",
 "sequence": 1,
 "is_valid": true,
 "total_votes": 0,
 "url": "www.cad1688.com",
 "pledge": 1000000000,
 "pledge_last_update": "2018-04-04T08:38:24",
 "average_pledge": 0,
 "average_pledge_last_update": "2018-04-04T08:38:24",
 "average_pledge_next_update_block": 5712088,
 "extra_data": "{}",
 "create_time": "2018-04-04T08:38:24",
 "last_update_time": "1970-01-01T00:00:00"
 },
 {
 "id": "1.6.0",
 "owner": 217895094,
 "name": "test-yoyow",
 "sequence": 1,
 "is_valid": true,
 "total_votes": 0,
 "url": "http://demo.yoyow.org/",
 "pledge": 1000000000,
 "pledge_last_update": "2018-02-10T01:03:57",
 "average_pledge": 176601774,
 "average_pledge_last_update": "2018-02-11T06:49:12",
 "average_pledge_next_update_block": 4562164,
 "extra_data": "{\"login\":\"http://192.168.1.184:8280/login\"}",
 "create_time": "2018-02-10T01:03:57",
 "last_update_time": "2018-02-11T06:49:12"
 }]
}

1.1.18 lookup_platforms

Query by platform owner to list the current valid platforms

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	lower_bound_uid

	Start the query with this as the starting uid, set it to 0 and start from the beginning.

	limit

	Return quantity limit, up to 101

	ops

	Sort type, value range [0,1,2], 0: Sort by uid from big to small; 1: Sort by number of votes; 2: Sort by collateral amount

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "lookup_platforms", [0,2,1]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "lookup_platforms", [0,2,1]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.6.0",
 "owner": 217895094,
 "name": "test-yoyow",
 "sequence": 1,
 "is_valid": true,
 "total_votes": 0,
 "url": "http://demo.yoyow.org/",
 "pledge": 1000000000,
 "pledge_last_update": "2018-02-10T01:03:57",
 "average_pledge": 176601774,
 "average_pledge_last_update": "2018-02-11T06:49:12",
 "average_pledge_next_update_block": 4562164,
 "extra_data": "{\"login\":\"http://192.168.1.184:8280/login\"}",
 "create_time": "2018-02-10T01:03:57",
 "last_update_time": "2018-02-11T06:49:12"
 },
 {
 "id": "1.6.4",
 "owner": 224006453,
 "name": "dwgMarket",
 "sequence": 1,
 "is_valid": true,
 "total_votes": 0,
 "url": "www.cad1688.com",
 "pledge": 1000000000,
 "pledge_last_update": "2018-04-04T08:38:24",
 "average_pledge": 0,
 "average_pledge_last_update": "2018-04-04T08:38:24",
 "average_pledge_next_update_block": 5712088,
 "extra_data": "{}",
 "create_time": "2018-04-04T08:38:24",
 "last_update_time": "1970-01-01T00:00:00"
 }]
}

1.1.19 get_platform_count

Return the total number of platforms

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

null

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "get_platform_count", []]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_platform_count", []], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": 5
}

1.1.20 get_assets

Give a set of asset ids, return the details of the corresponding assets.

Parameters：
asset_ids a set of assets id

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	asset_ids

	asset id array; for the time being, only the core asset YOYO is accepted，for example： [0]

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "get_assets", [[0]]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_assets", [[0]]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.3.0",
 "asset_id": 0,
 "symbol": "YOYO",
 "precision": 5,
 "issuer": 1264,
 "options": {
 "max_supply": "200000000000000",
 "market_fee_percent": 0,
 "max_market_fee": "1000000000000000",
 "issuer_permissions": 0,
 "flags": 0,
 "whitelist_authorities": [],
 "blacklist_authorities": [],
 "whitelist_markets": [],
 "blacklist_markets": [],
 "description": ""
 },
 "dynamic_asset_data_id": "2.2.0",
 "dynamic_asset_data": {
 "id": "2.2.0",
 "asset_id": 0,
 "current_supply": "106899730634997",
 "accumulated_fees": 0
 }
 }
]
}

The dynamic_asset_data field in the returned result includes the asset dynamic data details.

1.1.21 list_assets

Query asset details by page. The returned results are sorted in ASCII code order of the asset code.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	lower_bound_symbol

	Start with this as the starting code

	limit

	Return quantity limit, up to 101

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "list_assets", ["YOY",4]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "list_assets", ["YOY",4]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.3.91",
 "asset_id": 91,
 "symbol": "YOYES",
 "precision": 2,
 "issuer": 215074501,
 "options": {
 "max_supply": 1200,
 "market_fee_percent": 0,
 "max_market_fee": 1200,
 "issuer_permissions": 79,
 "flags": 0,
 "whitelist_authorities": [],
 "blacklist_authorities": [],
 "whitelist_markets": [],
 "blacklist_markets": [],
 "description": ""
 },
 "dynamic_asset_data_id": "2.2.91",
 "dynamic_asset_data": {
 "id": "2.2.91",
 "asset_id": 91,
 "current_supply": 0,
 "accumulated_fees": 0
 }
 },
 {
 "id": "1.3.130",
 "asset_id": 130,
 "symbol": "YOYIO",
 "precision": 2,
 "issuer": 254208024,
 "options": {
 "max_supply": 1258000000,
 "market_fee_percent": 0,
 "max_market_fee": 1258000000,
 "issuer_permissions": 79,
 "flags": 0,
 "whitelist_authorities": [],
 "blacklist_authorities": [],
 "whitelist_markets": [],
 "blacklist_markets": [],
 "description": "环保节能"
 },
 "dynamic_asset_data_id": "2.2.130",
 "dynamic_asset_data": {
 "id": "2.2.130",
 "asset_id": 130,
 "current_supply": 1258000000,
 "accumulated_fees": 0
 }
 },
 {
 "id": "1.3.0",
 "asset_id": 0,
 "symbol": "YOYO",
 "precision": 5,
 "issuer": 1264,
 "options": {
 "max_supply": "200000000000000",
 "market_fee_percent": 0,
 "max_market_fee": "1000000000000000",
 "issuer_permissions": 0,
 "flags": 0,
 "whitelist_authorities": [],
 "blacklist_authorities": [],
 "whitelist_markets": [],
 "blacklist_markets": [],
 "description": ""
 },
 "dynamic_asset_data_id": "2.2.0",
 "dynamic_asset_data": {
 "id": "2.2.0",
 "asset_id": 0,
 "current_supply": "106899950291573",
 "accumulated_fees": 0
 }
 },
 {
 "id": "1.3.2",
 "asset_id": 2,
 "symbol": "YOYOW",
 "precision": 5,
 "issuer": 25638,
 "options": {
 "max_supply": "1000000000000",
 "market_fee_percent": 0,
 "max_market_fee": "1000000000000",
 "issuer_permissions": 79,
 "flags": 0,
 "whitelist_authorities": [],
 "blacklist_authorities": [],
 "whitelist_markets": [],
 "blacklist_markets": [],
 "description": ""
 },
 "dynamic_asset_data_id": "2.2.2",
 "dynamic_asset_data": {
 "id": "2.2.2",
 "asset_id": 2,
 "current_supply": 0,
 "accumulated_fees": 0
 }
 }
]
}

1.1.22 lookup_asset_symbols

Give a set of asset codes or ids, return the details of the corresponding assets.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	symbols_or_ids

	Array form, the symbol code or ID of the asset to be retrieved, for example: [“YOYO”] or [0]

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":[0, "lookup_asset_symbols", [[0]]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "lookup_asset_symbols", [[0]]], "id": 1}' http://47.52.155.181:10011/rpc
curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "lookup_asset_symbols", [["YOYO"]]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.3.0",
 "asset_id": 0,
 "symbol": "YOYO",
 "precision": 5,
 "issuer": 1264,
 "options": {
 "max_supply": "200000000000000",
 "market_fee_percent": 0,
 "max_market_fee": "1000000000000000",
 "issuer_permissions": 0,
 "flags": 0,
 "whitelist_authorities": [],
 "blacklist_authorities": [],
 "whitelist_markets": [],
 "blacklist_markets": [],
 "description": ""
 },
 "dynamic_asset_data_id": "2.2.0",
 "dynamic_asset_data": {
 "id": "2.2.0",
 "asset_id": 0,
 "current_supply": "106900048605605",
 "accumulated_fees": 0
 }
 }
]
}

History API

1.2.1 get_relative_account_history

Get account history

Supported format

JSON

Request method

WebSocket; JSON-RPC

Access authorization limit

null

Request parameters

	account

	can be uid or account nickname

	op_type

	the type of limited operation, see the type of operation. When the value is null, all operation types are returned; when 0, all transfer operations are available.

	start

	Query start number（sequence number）

	limit

	Return the total number of results

	end

	When the value is 0, the most recent history of operations can be obtained.

The number of returned results will be in the end - start range; if the limit value is smaller than end - start, the latest operation record that satisfies the limit condition is returned.
The returned results are sorted in the way that the latest ones are returned first.

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://47.52.155.181:10011
{"id":1, "method":"call", "params":["history", "get_relative_account_history", [223331844, null, 1,3,10]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": ["history", "get_relative_account_history", [223331844, null, 1,3,10]], "id": 1}' http://47.52.155.181:10011/rpc

Return results

Each piece of data in the returned list is a pair type. The first element in the pair is the sequence number recorded in the account history, and the second element is the specific operation.

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 [
 10,
 {
 "id": "1.12.48157",
 "op": [
 0,
 {
 "fee": {
 "total": {
 "amount": 20000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 20000,
 "asset_id": 0
 }
 }
 },
 "from": 217895094,
 "to": 223331844,
 "amount": {
 "amount": "200000000000",
 "asset_id": 0
 },
 "extensions": {
 "from_balance": {
 "amount": "200000000000",
 "asset_id": 0
 },
 "to_balance": {
 "amount": "200000000000",
 "asset_id": 0
 }
 }
 }
],
 "result": [
 0,
 {}
],
 "block_timestamp": "2018-05-02T09:24:30",
 "block_num": 6515279,
 "trx_in_block": 0,
 "op_in_trx": 0,
 "virtual_op": 2715
 }
],
 [
 9,
 {
 "id": "1.12.47189",
 "op": [
 22,
 {
 "fee": {
 "total": {
 "amount": 200000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 200000,
 "asset_id": 0
 }
 }
 },
 "voter": 236542328,
 "platform_to_add": [
 223331844
],
 "platform_to_remove": []
 }
],
 "result": [
 0,
 {}
],
 "block_timestamp": "2018-04-16T08:14:57",
 "block_num": 6053313,
 "trx_in_block": 0,
 "op_in_trx": 0,
 "virtual_op": 1157
 }
],
 [
 8,
 {
 "id": "1.12.47149",
 "op": [
 22,
 {
 "fee": {
 "total": {
 "amount": 200000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 200000,
 "asset_id": 0
 }
 }
 },
 "voter": 250926091,
 "platform_to_add": [
 223331844
],
 "platform_to_remove": []
 }
],
 "result": [
 0,
 {}
],
 "block_timestamp": "2018-04-16T03:19:36",
 "block_num": 6049807,
 "trx_in_block": 0,
 "op_in_trx": 0,
 "virtual_op": 1117
 }
]
]
}

Wallet API Descriptions

Contents

	Wallet API Descriptions

	Wallet Connection Method

	Download Method：

	Starting Method：

	2.1 Tools API

	2.1.1 calculate_account_uid

	2.1.2 suggest_brain_key

	2.1.3 get_transaction_id

	2.2 Queries API

	2.2.1 get_account

	2.2.2 get_full_account

	2.2.3 get_relative_account_history

	2.2.4 list_account_balances

	2.2.5 list_accounts_by_name

	2.2.6 get_witness

	2.2.7 list_witnesses

	2.2.8 get_committee_member

	2.2.9 list_committee_members

	2.2.10 list_committee_proposals

	2.2.11 get_platform_count

	2.2.12 get_platform

	2.2.13 list_platforms

	2.2.14 get_asset

	2.2.15 list_assets

	2.3 Wallet/Private Key Management API

	2.3.1 save_wallet_file

	2.3.2 set_password

	2.3.3 unlock

	2.3.4 lock

	2.3.5 import_key

	2.3.6 dump_private_keys

	2.3.7 list_my_accounts_cached

	2.4 Operations/Transactions API

	2.4.1 transfer

	2.4.2 create_witness

	2.4.3 update_witness

	2.4.4 create_committee_member

	2.4.5 update_committee_member

	2.4.6 set_voting_proxy

	2.4.7 update_witness_votes

	2.4.8 update_committee_member_votes

	2.4.9 collect_csaf_with_time

	2.4.10 collect_csaf

	2.4.11 create_platform

	2.4.12 update_platform

	2.4.13 update_platform_votes

	2.4.14 account_auth_platform

	2.4.15 account_cancel_auth_platform

	2.4.16 create_asset

	2.4.17 update_asset

	2.4.18 enable_allowed_assets

	2.4.19 update_allowed_assets

	2.4.20 issue_asset

	2.4.21 reserve_asset

	2.4.22 override_transfer

Wallet Connection Method

Download Method：

Testnet wallet address [https://github.com/yoyow-org/yoyow-core-testnet/releases]

Official web wallet address [https://github.com/yoyow-org/yoyow-core/releases]

Starting Method：

Using wallet:

It can be through the interactive command line, or through the websocket and http interface.
Refer to Transaction Instructions [https://github.com/yoyow-org/yoyow-core/wiki/%E4%BA%A4%E6%98%93%E6%89%80%E5%AF%B9%E6%8E%A5%E6%8C%87%E5%8D%97%EF%BC%88%E4%B8%AD%E6%96%87%EF%BC%89#%E5%90%AF%E5%8A%A8-yoyow-client]

./yoyow_client -s ws://127.0.0.1:8090/ -r 0.0.0.0:8091 -H 127.0.0.1:8093

Note:

Use -s to specify the IP and port of the connected node program;
Use the -r option to open a websocket interface;
Use the -H option to open an HTTP-RPC service for easy access by our other programs. For example, the script program for processing deposit/withdrawal separately.
Yoyow_node will only listen to the RPC port after the synchronization is completed, so please be patient and wait for the yoyow_node synchronization to complete.
You can start multiple clients to connect to the same yoyow_node. But please be careful not to use the same -H, the monitor will fail because the port is occupied.

The native address is used in the test cases in this document.

websocket interface address： ws://localhost:8091

http rpc interface address： http://localhost:8093

Connection Method：

1. Use wscat to connect to websocket interface:

wscat -c ws://localhost:8091

2. Use curl to connect to websocket interface:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_accounts_by_uid", [["250926091"]]], "id": 1}' http://localhost:8091

3. Use curl to connect http interface:

curl --data '{"method": "call", "params": [0, "get_accounts_by_uid", [["250926091"]]], "id": 1}' http://localhost:8093

Remarks: The difference between websocket and http interface: websocket interface can also use curl to get data, and it will follow jsonrpc format, and the requested and returned json data must carry {“jsonrpc”: “2.0”}. The interface of http does not need to carry the label of {“jsonrpc”: “2.0”}.

2.1 Tools API

2.1.1 calculate_account_uid

Give a number, calculate the corresponding account uid

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	n

	number

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{{"id":1, "method":"call", "params":[0,"calculate_account_uid",[12]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0,"calculate_account_uid",[12]], "id": 1}' http://localhost:8093

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": 3106
}

2.1.2 suggest_brain_key

Randomly generate a brain key and derive a pair of public and private keys based on the brain key

Supported format

JSON

Request Method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

null

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0,"suggest_brain_key",[]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0,"suggest_brain_key",[]], "id": 1}' http://localhost:8091

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "brain_priv_key": "DERIC GIANTRY ALODY TELAR TIRR BOILER BULLIT REACTOR BANISH FLOCCUS SLIPPER PELANOS WEALTHY SOLE RESCRUB RELIMIT",
 "wif_priv_key": "5JXK8jhtJM8jKXcpBHeWahzkfZ9c7ske31TkMR7eMeq1uWirYVD",
 "pub_key": "YYW7jcmGpu6KEUE352VtGB9PTo38Nut5qxXitfSgG6cDmAvxz2yin"
 }
}

2.1.3 get_transaction_id

Return the tx id (transaction ID, or transaction hash) of a given transaction

Supported format

JSON

Request Method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	trx

	Complete transaction in JSON format

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0,"get_transaction_id",[{"operations":[[0,{"fee":{"total":{"amount":100000,"asset_id":0}},"from":250926091,"to":223331844,"amount":{"amount":100000,"asset_id":0},"extensions":{}}]]}]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0,"suggest_brain_key",[{"operations":[[0,{"fee":{"total":{"amount":100000,"asset_id":0}},"from":250926091,"to":223331844,"amount":{"amount":100000,"asset_id":0},"extensions":{}}]]}]], "id": 1}' http://localhost:8091

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": "5ea3a6ee9f030472f83fb436836b602a3a5ed6a5"
}

2.2 Queries API

2.2.1 get_account

Get basic account information

Supported format

JSON

Request Method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	account_name_or_id

	uid or account nickname, for example: “250926091”

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0,"get_account",[250926091]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0,"get_account",[250926091]], "id": 1}' http://localhost:8091

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "id": "1.2.1378",
 "uid": 250926091,
 "name": "yoyo250926091",
 "owner": {
 "weight_threshold": 1,
 "account_uid_auths": [],
 "key_auths": [
 [
 "YYW7UoNSEQAUPvnvoBRVKyPAD9845esnpiK6MgHinsn5yqr5UgT5W",
 1
]
]
 },
 "active": {
 "weight_threshold": 1,
 "account_uid_auths": [],
 "key_auths": [
 [
 "YYW6fU7Th8uESW9FZnpkhYaTUwtSvn3f2TQxFVA3ef2SSiwdZES71",
 1
]
]
 },
 "secondary": {
 "weight_threshold": 1,
 "account_uid_auths": [],
 "key_auths": [
 [
 "YYW5eDSFYeiqyFRajfPP8tTZM7mfUeyc7H65zmnHtDW4SQJdwqTBD",
 1
]
]
 },
 "memo_key": "YYW7SpC4QLY1LRRxFQ2hbYHdAyQo88L8qnPJcDJkiRMugcnFGUGvo",
 "reg_info": {
 "registrar": 206336051,
 "referrer": 25997,
 "registrar_percent": 0,
 "referrer_percent": 0,
 "allowance_per_article": {
 "amount": 0,
 "asset_id": 0
 },
 "max_share_per_article": {
 "amount": 0,
 "asset_id": 0
 },
 "max_share_total": {
 "amount": 0,
 "asset_id": 0
 },
 "buyout_percent": 10000
 },
 "can_post": true,
 "can_reply": false,
 "can_rate": false,
 "is_full_member": true,
 "is_registrar": false,
 "is_admin": false,
 "create_time": "2018-04-03T08:21:00",
 "last_update_time": "2018-04-03T08:21:00",
 "active_data": "{}",
 "secondary_data": "{}",
 "statistics": "2.5.1378"
 }
}

2.2.2 get_full_account

Get account details

Supported format

JSON

Request Method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	account_name_or_id

	uid or account nickname, for example: “250926091”

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0,"get_full_account",[["250926091"]]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "get_full_account", [["250926091"]]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "account": {
 "id": "1.2.1378",
 "uid": 250926091,
 "name": "yoyo250926091",
 "owner": {
 "weight_threshold": 1,
 "account_uid_auths": [],
 "key_auths": [
 [
 "YYW7UoNSEQAUPvnvoBRVKyPAD9845esnpiK6MgHinsn5yqr5UgT5W",
 1
]
]
 },
 "active": {
 "weight_threshold": 1,
 "account_uid_auths": [],
 "key_auths": [
 [
 "YYW6fU7Th8uESW9FZnpkhYaTUwtSvn3f2TQxFVA3ef2SSiwdZES71",
 1
]
]
 },
 "secondary": {
 "weight_threshold": 1,
 "account_uid_auths": [],
 "key_auths": [
 [
 "YYW5eDSFYeiqyFRajfPP8tTZM7mfUeyc7H65zmnHtDW4SQJdwqTBD",
 1
]
]
 },
 "memo_key": "YYW7SpC4QLY1LRRxFQ2hbYHdAyQo88L8qnPJcDJkiRMugcnFGUGvo",
 "reg_info": {
 "registrar": 206336051,
 "referrer": 25997,
 "registrar_percent": 0,
 "referrer_percent": 0,
 "allowance_per_article": {
 "amount": 0,
 "asset_id": 0
 },
 "max_share_per_article": {
 "amount": 0,
 "asset_id": 0
 },
 "max_share_total": {
 "amount": 0,
 "asset_id": 0
 },
 "buyout_percent": 10000
 },
 "can_post": true,
 "can_reply": false,
 "can_rate": false,
 "is_full_member": true,
 "is_registrar": false,
 "is_admin": false,
 "create_time": "2018-04-03T08:21:00",
 "last_update_time": "2018-04-03T08:21:00",
 "active_data": "{}",
 "secondary_data": "{}",
 "statistics": "2.5.1378"
 },
 "statistics": {
 "id": "2.5.1378",
 "owner": 250926091,
 "total_ops": 11,
 "removed_ops": 0,
 "prepaid": 0,
 "csaf": 4200683,
 "core_balance": 1098850704,
 "core_leased_in": 0,
 "core_leased_out": 0,
 "average_coins": 1099970604,
 "average_coins_last_update": "2018-04-12T12:56:00",
 "coin_seconds_earned": "136484730731520",
 "coin_seconds_earned_last_update": "2018-04-12T12:56:00",
 "total_witness_pledge": 0,
 "releasing_witness_pledge": 0,
 "witness_pledge_release_block_number": 4294967295,
 "last_witness_sequence": 0,
 "uncollected_witness_pay": 0,
 "witness_last_confirmed_block_num": 0,
 "witness_last_aslot": 0,
 "witness_total_produced": 0,
 "witness_total_missed": 0,
 "witness_last_reported_block_num": 0,
 "witness_total_reported": 0,
 "total_committee_member_pledge": 0,
 "releasing_committee_member_pledge": 0,
 "committee_member_pledge_release_block_number": 4294967295,
 "last_committee_member_sequence": 0,
 "can_vote": true,
 "is_voter": false,
 "last_voter_sequence": 1,
 "last_platform_sequence": 1,
 "total_platform_pledge": 1000000000,
 "releasing_platform_pledge": 0,
 "platform_pledge_release_block_number": 4294967295,
 "last_post_sequence": 0
 },
 "csaf_leases_in": [],
 "csaf_leases_out": [],
 "witness_votes": [],
 "committee_member_votes": []
 }
}

2.2.3 get_relative_account_history

Get the account history

Supported format

JSON

Request Method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	account

	can be uid or account nickname

	op_type

	the type of limited operation; see the types of operation. When the value is null, all operation types are returned; when 0, all transfer operations are available.

	start

	query start number（sequence number）

	limit

	Return the total number of results

	end

	When the value is 0, the most recent operation record is available.

The number of returned results will be in the end - start range; if the limit value is smaller than end - start, the latest operation record that satisfies the limit condition is returned.
The returned results are sorted in the way that the latest ones are returned first.

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0,"get_relative_account_history",["250926091",null,10,10,0]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0,"get_relative_account_history",["250926091",null,10,10,0]], "id": 1}' http://localhost:8091

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "memo": "",
 "description": "Transfer 1.20000 YOYO from 250926091 to 209414065 (Fee: 0.20000 YOYO)",
 "sequence": 11,
 "op": {
 "id": "1.12.46722",
 "op": [
 0,
 {
 "fee": {
 "total": {
 "amount": 20000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 20000,
 "asset_id": 0
 }
 }
 },
 "from": 250926091,
 "to": 209414065,
 "amount": {
 "amount": 120000,
 "asset_id": 0
 }
 }
],
 "result": [
 0,
 {}
],
 "block_timestamp": "2018-04-12T12:56:21",
 "block_num": 5946192,
 "trx_in_block": 0,
 "op_in_trx": 0,
 "virtual_op": 690
 }
 },
 {
 "memo": "",
 "description": "Transfer 10 YOYO from 250926091 to 209414065 (Fee: 0.20000 YOYO)",
 "sequence": 10,
 "op": {
 "id": "1.12.46721",
 "op": [
 0,
 {
 "fee": {
 "total": {
 "amount": 20000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 20000,
 "asset_id": 0
 }
 }
 },
 "from": 250926091,
 "to": 209414065,
 "amount": {
 "amount": 1000000,
 "asset_id": 0
 }
 }
],
 "result": [
 0,
 {}
],
 "block_timestamp": "2018-04-12T12:55:57",
 "block_num": 5946184,
 "trx_in_block": 0,
 "op_in_trx": 0,
 "virtual_op": 689
 }
 }
]
}

2.2.4 list_account_balances

Get the account balance

Supported format

JSON

Request Method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	account

	uid or account nickname, for example: “250926091”

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0,"list_account_balances",["250926091"]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0,"list_account_balances",["250926091"]], "id": 1}' http://localhost:8091

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "amount": 1098850704,
 "asset_id": 0
 }
]
}

2.2.5 list_accounts_by_name

Find the account UID by name

Supported format

JSON

Request Method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	lowerbound

	Start the query with this as the starting name, set it to the empty string and start from the beginning.

	limit

	Return quantity limit, up to 1001

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0,"list_accounts_by_name",["yoyo",10]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0,"list_accounts_by_name",["yoyo",10]], "id": 1}' http://localhost:8091

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 [
 "yoyo10007071",
 10007071
],
 [
 "yoyo100090928",
 100090928
],
 [
 "yoyo100361976",
 100361976
],
 [
 "yoyo100459405",
 100459405
],
 [
 "yoyo100501159",
 100501159
],
 [
 "yoyo100583445",
 100583445
],
 [
 "yoyo100603302",
 100603302
],
 [
 "yoyo100735531",
 100735531
],
 [
 "yoyo10124233",
 10124233
],
 [
 "yoyo101530854",
 101530854
]
]
}

2.2.6 get_witness

Get witness information.

Supported format

JSON

Request Method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	owner_account

	The parameter can be uid or an account nickname.

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0,"get_witness",["132826789"]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0,"get_witness",["132826789"]], "id": 1}' http://localhost:8091

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "id": "1.5.31",
 "account": 132826789,
 "name": "yoyo132826789",
 "sequence": 1,
 "is_valid": true,
 "signing_key": "YYW1111111111111111111111111111111114T1Anm",
 "pledge": "7500000000",
 "pledge_last_update": "2017-09-05T11:39:03",
 "average_pledge": "7500000000",
 "average_pledge_last_update": "2017-09-06T12:05:36",
 "average_pledge_next_update_block": 4294967295,
 "total_votes": 1023267564,
 "by_pledge_position": "0",
 "by_pledge_position_last_update": "0",
 "by_pledge_scheduled_time": "45370982250075664161773192435",
 "by_vote_position": "0",
 "by_vote_position_last_update": "0",
 "by_vote_scheduled_time": "332544857826054970738151567847",
 "last_confirmed_block_num": 8168,
 "last_aslot": 8599,
 "total_produced": 25,
 "total_missed": 0,
 "url": ""
 }
}

2.2.7 list_witnesses

Query the list of the token age rental (lending) of the specified lender.

Results are sorted by borrower uid from small to large.

Supported format

JSON

Request Method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	lower_bound

	Start the query with this as the starting uid, set it to 0 and start from the beginning.

	limit

	Return quantity limit, up to 101

	order_by

	Sort type. The value range is [0, 1, 2]. 0:Sort by uid from big to small; 1: Sort by number of votes; 2: Sort by collateral amout.

Precautions

The interface uses a pagination design. To get all the witnesses, you can cycle through them until the number of witnesses returned is less than the limit.

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0,"list_witnesses",["132"]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0,"list_witnesses",["132"]], "id": 1}' http://localhost:8091

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.5.1",
 "account": 25997,
 "name": "init1",
 "sequence": 1,
 "is_valid": true,
 "signing_key": "YYW71suPihtG7jJAGiVBCkd63ECHYebQaPa894oy3r54zk3eM1itt",
 "pledge": 1000000000,
 "pledge_last_update": "2017-09-12T21:02:45",
 "average_pledge": 1000000000,
 "average_pledge_last_update": "2017-09-13T21:20:30",
 "average_pledge_next_update_block": 4294967295,
 "total_votes": 0,
 "by_pledge_position": "0",
 "by_pledge_position_last_update": "0",
 "by_pledge_scheduled_time": "340282366580656096882718510549",
 "by_vote_position": "0",
 "by_vote_position_last_update": "0",
 "by_vote_scheduled_time": "340282366920938463463374607431768211455",
 "last_confirmed_block_num": 5994633,
 "last_aslot": 6366418,
 "total_produced": 518458,
 "total_missed": 32186,
 "url": ""
 },
 {
 "id": "1.5.2",
 "account": 26264,
 "name": "init2",
 "sequence": 1,
 "is_valid": true,
 "signing_key": "YYW71suPihtG7jJAGiVBCkd63ECHYebQaPa894oy3r54zk3eM1itt",
 "pledge": 1000000000,
 "pledge_last_update": "2017-09-12T21:02:51",
 "average_pledge": 1000000000,
 "average_pledge_last_update": "2017-09-13T21:20:36",
 "average_pledge_next_update_block": 4294967295,
 "total_votes": 0,
 "by_pledge_position": "0",
 "by_pledge_position_last_update": "0",
 "by_pledge_scheduled_time": "340282366580656096882718510549",
 "by_vote_position": "0",
 "by_vote_position_last_update": "0",
 "by_vote_scheduled_time": "340282366920938463463374607431768211455",
 "last_confirmed_block_num": 5994632,
 "last_aslot": 6366417,
 "total_produced": 518439,
 "total_missed": 32198,
 "url": ""
 },
 {
 "id": "1.5.3",
 "account": 26460,
 "name": "init3",
 "sequence": 1,
 "is_valid": true,
 "signing_key": "YYW71suPihtG7jJAGiVBCkd63ECHYebQaPa894oy3r54zk3eM1itt",
 "pledge": 1000000000,
 "pledge_last_update": "2017-09-12T21:02:54",
 "average_pledge": 1000000000,
 "average_pledge_last_update": "2017-09-13T21:20:39",
 "average_pledge_next_update_block": 4294967295,
 "total_votes": 0,
 "by_pledge_position": "0",
 "by_pledge_position_last_update": "0",
 "by_pledge_scheduled_time": "340282366580656096882718510549",
 "by_vote_position": "0",
 "by_vote_position_last_update": "0",
 "by_vote_scheduled_time": "340282366920938463463374607431768211455",
 "last_confirmed_block_num": 5994636,
 "last_aslot": 6366421,
 "total_produced": 518427,
 "total_missed": 32161,
 "url": ""
 },
 {
 "id": "1.5.4",
 "account": 26861,
 "name": "init4",
 "sequence": 1,
 "is_valid": true,
 "signing_key": "YYW71suPihtG7jJAGiVBCkd63ECHYebQaPa894oy3r54zk3eM1itt",
 "pledge": 1000000000,
 "pledge_last_update": "2017-09-12T21:03:00",
 "average_pledge": 1000000000,
 "average_pledge_last_update": "2017-09-13T21:20:45",
 "average_pledge_next_update_block": 4294967295,
 "total_votes": 0,
 "by_pledge_position": "0",
 "by_pledge_position_last_update": "0",
 "by_pledge_scheduled_time": "340282366580656096882718510549",
 "by_vote_position": "0",
 "by_vote_position_last_update": "0",
 "by_vote_scheduled_time": "340282366920938463463374607431768211455",
 "last_confirmed_block_num": 5994640,
 "last_aslot": 6366425,
 "total_produced": 518441,
 "total_missed": 32137,
 "url": ""
 },
 {
 "id": "1.5.5",
 "account": 27027,
 "name": "init5",
 "sequence": 1,
 "is_valid": true,
 "signing_key": "YYW71suPihtG7jJAGiVBCkd63ECHYebQaPa894oy3r54zk3eM1itt",
 "pledge": 1000000000,
 "pledge_last_update": "2017-09-12T21:05:15",
 "average_pledge": 1000000000,
 "average_pledge_last_update": "2017-09-13T21:23:00",
 "average_pledge_next_update_block": 4294967295,
 "total_votes": 0,
 "by_pledge_position": "0",
 "by_pledge_position_last_update": "0",
 "by_pledge_scheduled_time": "340282366580656096882718510549",
 "by_vote_position": "0",
 "by_vote_position_last_update": "0",
 "by_vote_scheduled_time": "340282366920938463463374607431768211455",
 "last_confirmed_block_num": 5994639,
 "last_aslot": 6366424,
 "total_produced": 518387,
 "total_missed": 32190,
 "url": ""
 }
]
}

2.2.8 get_committee_member

Get the committee member information

Supported format

JSON

Request Method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	owner_account

	Uid or account nickname. For example: “25997”

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0,"get_committee_member",["25997"]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0,"get_committee_member",["25997"]], "id": 1}' http://localhost:8091

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "id": "1.4.0",
 "account": 25997,
 "name": "init1",
 "sequence": 1,
 "is_valid": true,
 "pledge": 0,
 "total_votes": 567814657,
 "url": ""
 }
}

2.2.9 list_committee_members

List the current valid committee candidates

Supported format

JSON

Request Method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	lower_bound

	Start the query with this as the starting uid, set it to 0 and start from the beginning.

	limit

	Return quantity limit, up to 101

	order_by

	Sort type. Value range is [0, 1, 2]. 0:Sort by uid from big to small; 1: Sort by number of votes; 2: Sort by collateral amount.

Precautions

The interface adopts a pagination design. To obtain all the committees, you can call them cyclically until the number of committee members returned is less than the limit.

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0,"list_committee_members",[0,5,1]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0,"list_committee_members",[0,5,1]], "id": 1}' http://localhost:8091

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.4.0",
 "account": 25997,
 "name": "init1",
 "sequence": 1,
 "is_valid": true,
 "pledge": 0,
 "total_votes": 567814657,
 "url": ""
 },
 {
 "id": "1.4.1",
 "account": 26264,
 "name": "init2",
 "sequence": 1,
 "is_valid": true,
 "pledge": 0,
 "total_votes": 0,
 "url": ""
 },
 {
 "id": "1.4.2",
 "account": 26460,
 "name": "init3",
 "sequence": 1,
 "is_valid": true,
 "pledge": 0,
 "total_votes": 0,
 "url": ""
 },
 {
 "id": "1.4.3",
 "account": 26861,
 "name": "init4",
 "sequence": 1,
 "is_valid": true,
 "pledge": 0,
 "total_votes": 0,
 "url": ""
 },
 {
 "id": "1.4.4",
 "account": 27027,
 "name": "init5",
 "sequence": 1,
 "is_valid": true,
 "pledge": 0,
 "total_votes": 0,
 "url": ""
 }
]
}

2.2.10 list_committee_proposals

List all the committee proposals that have not been successfully implemented, including those that are being voted on, have been voted through but have not yet reached the execution time.

Supported format

JSON

Request Method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

null

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "list_committee_proposals", []]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "list_committee_proposals", []], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": []
}

2.2.11 get_platform_count

Get the total number of platforms on the network

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

null

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "get_platform_count", []]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "get_platform_count", []], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": 6
}

2.2.12 get_platform

Get platform object information according to the platform owner account

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	owner_account

	Platform owner account

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "get_platform", ["250926091"]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "update_committee_account", [0, "get_platform", ["250926091"]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "id": "1.6.3",
 "owner": 250926091,
 "name": "NoPlatform",
 "sequence": 1,
 "is_valid": true,
 "total_votes": 0,
 "url": "www.example2.com",
 "pledge": 1000000000,
 "pledge_last_update": "2018-04-03T09:30:48",
 "average_pledge": 396825,
 "average_pledge_last_update": "2018-04-03T09:34:48",
 "average_pledge_next_update_block": 5684416,
 "extra_data": "{}",
 "create_time": "2018-04-03T09:30:48",
 "last_update_time": "2018-04-03T09:34:48"
 }
}

2.2.13 list_platforms

Query by platform owner to list the current valid platforms

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	lower_bound

	Start the query with this as the starting uid, set it to 0 and start from the beginning.

	limit

	Return quantity limit, up to 100

	order_by

	Sort type. The value range is [0, 1, 2]. 0:Sort by uid from big to small; 1: Sort by number of votes; 2: Sort by collateral amount.

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "list_platforms", [0,5,1]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "list_platforms", [0, "list_platforms", [0,5,1]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.6.0",
 "owner": 217895094,
 "name": "test-yoyow",
 "sequence": 1,
 "is_valid": true,
 "total_votes": 0,
 "url": "http://demo.yoyow.org/",
 "pledge": 1000000000,
 "pledge_last_update": "2018-02-10T01:03:57",
 "average_pledge": 176601774,
 "average_pledge_last_update": "2018-02-11T06:49:12",
 "average_pledge_next_update_block": 4562164,
 "extra_data": "{\"login\":\"http://demo.yoyow.org:3000/authLogin\"}",
 "create_time": "2018-02-10T01:03:57",
 "last_update_time": "2018-02-11T06:49:12"
 },
 {
 "id": "1.6.5",
 "owner": 223331844,
 "name": "baidu",
 "sequence": 1,
 "is_valid": true,
 "total_votes": 0,
 "url": "",
 "pledge": 1000000000,
 "pledge_last_update": "2018-04-16T02:52:36",
 "average_pledge": 0,
 "average_pledge_last_update": "2018-04-16T02:52:36",
 "average_pledge_next_update_block": 6050467,
 "extra_data": "",
 "create_time": "2018-04-16T02:52:36",
 "last_update_time": "1970-01-01T00:00:00"
 },
 {
 "id": "1.6.4",
 "owner": 224006453,
 "name": "dwgMarket",
 "sequence": 1,
 "is_valid": true,
 "total_votes": 0,
 "url": "www.cad1688.com",
 "pledge": 1000000000,
 "pledge_last_update": "2018-04-04T08:38:24",
 "average_pledge": 0,
 "average_pledge_last_update": "2018-04-04T08:38:24",
 "average_pledge_next_update_block": 5712088,
 "extra_data": "{}",
 "create_time": "2018-04-04T08:38:24",
 "last_update_time": "1970-01-01T00:00:00"
 }
]
}

2.2.14 get_asset

Return the asset details based on the given asset code or id

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	asset_name_or_id

	Asset symbol or asset id

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "get_asset", [3]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "get_asset", [3]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": "1.3.3",
 "asset_id": 3,
 "symbol": "WOWO",
 "precision": 4,
 "issuer": 223331844,
 "options": {
 "max_supply": "1000000000000000",
 "market_fee_percent": 0,
 "max_market_fee": "1000000000000000",
 "issuer_permissions": 79,
 "flags": 0,
 "whitelist_authorities": [],
 "blacklist_authorities": [],
 "whitelist_markets": [],
 "blacklist_markets": [],
 "description": ""
 },
 "dynamic_asset_data_id": "2.3.3"
}

2.2.15 list_assets

Query asset details by page

The returned results are sorted by the ASCII code order of the asset code.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	lower_bound_symbol

	Start the query with this as the starting code, sorted by the ASCII code of the asset code.

	limit

	Return quantity limit, up to 101

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "list_assets", ["YOY", 4]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "list_assets", ["YOY", 4]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.3.91",
 "asset_id": 91,
 "symbol": "YOYES",
 "precision": 2,
 "issuer": 215074501,
 "options": {
 "max_supply": 1200,
 "market_fee_percent": 0,
 "max_market_fee": 1200,
 "issuer_permissions": 79,
 "flags": 0,
 "whitelist_authorities": [],
 "blacklist_authorities": [],
 "whitelist_markets": [],
 "blacklist_markets": [],
 "description": "卢俊义"
 },
 "dynamic_asset_data_id": "2.2.91",
 "dynamic_asset_data": {
 "id": "2.2.91",
 "asset_id": 91,
 "current_supply": 0,
 "accumulated_fees": 0
 }
 },
 {
 "id": "1.3.130",
 "asset_id": 130,
 "symbol": "YOYIO",
 "precision": 2,
 "issuer": 254208024,
 "options": {
 "max_supply": 1258000000,
 "market_fee_percent": 0,
 "max_market_fee": 1258000000,
 "issuer_permissions": 79,
 "flags": 0,
 "whitelist_authorities": [],
 "blacklist_authorities": [],
 "whitelist_markets": [],
 "blacklist_markets": [],
 "description": "环保节能"
 },
 "dynamic_asset_data_id": "2.2.130",
 "dynamic_asset_data": {
 "id": "2.2.130",
 "asset_id": 130,
 "current_supply": 1258000000,
 "accumulated_fees": 0
 }
 },
 {
 "id": "1.3.0",
 "asset_id": 0,
 "symbol": "YOYO",
 "precision": 5,
 "issuer": 1264,
 "options": {
 "max_supply": "200000000000000",
 "market_fee_percent": 0,
 "max_market_fee": "1000000000000000",
 "issuer_permissions": 0,
 "flags": 0,
 "whitelist_authorities": [],
 "blacklist_authorities": [],
 "whitelist_markets": [],
 "blacklist_markets": [],
 "description": ""
 },
 "dynamic_asset_data_id": "2.2.0",
 "dynamic_asset_data": {
 "id": "2.2.0",
 "asset_id": 0,
 "current_supply": "106901076031525",
 "accumulated_fees": 0
 }
 },
 {
 "id": "1.3.2",
 "asset_id": 2,
 "symbol": "YOYOW",
 "precision": 5,
 "issuer": 25638,
 "options": {
 "max_supply": "1000000000000",
 "market_fee_percent": 0,
 "max_market_fee": "1000000000000",
 "issuer_permissions": 79,
 "flags": 0,
 "whitelist_authorities": [],
 "blacklist_authorities": [],
 "whitelist_markets": [],
 "blacklist_markets": [],
 "description": ""
 },
 "dynamic_asset_data_id": "2.2.2",
 "dynamic_asset_data": {
 "id": "2.2.2",
 "asset_id": 2,
 "current_supply": 0,
 "accumulated_fees": 0
 }
 }
]
}

2.3 Wallet/Private Key Management API

2.3.1 save_wallet_file

Save the wallet file and it will be saved to the yoyo_client executable folder

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

Wallet needs to be in unlock state.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	wallet_filename

	String, the name of the backup file

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "save_wallet_file", ["t3.json"]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "save_wallet_file", ["t3.json"]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result":null
}

2.3.2 set_password

Set the wallet password

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

Wallet needs to be in new or unlocked state.

The new state exists when it is the first time that the wallet has been run, and the password state has not been set.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	password

	Password string, for example: “1234”

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "set_password", ["1234"]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "set_password", ["1234"]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": null
}

2.3.3 unlock

Unlock the wallet

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

The wallet is in locked state.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	password

	Password string, for example: “1234”

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "unlock", ["1234"]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "unlock", ["1234"]], "id": 1}'

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": null
}

2.3.4 lock

Lock the wallet

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

null

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "lock", []]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "lock", []], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": null
}

2.3.5 import_key

Import a private key into your wallet and assign a related account. The private key and account number do not have to be associated.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

Wallet needs to be in unlocked state.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	account_name_or_id

	Account uid or nickname

	wif_key

	Private key string

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "lock", []]}{"id":1, "method":"call", "params":[0, "import_key", ["250926091","5JLaW7u3EC4vVLbTmLo1XeSBGiTeRtqER1UsoLtYbFNnBafgPKG"]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "lock", []]}{"id":1, "method":"call", "params":[0, "import_key", ["250926091","5JLaW7u3EC4vVLbTmLo1XeSBGiTeRtqER1UsoLtYbFNnBafgPKG"]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": true
}

2.3.6 dump_private_keys

List all private keys and corresponding public keys in the wallet

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

Wallet needs to be in unlocked state

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

null

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "dump_private_keys",[]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "dump_private_keys",[]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 [
 "YYW5eDSFYeiqyFRajfPP8tTZM7mfUeyc7H65zmnHtDW4SQJdwqTBD",
 "5HvABsnYU1U7misWHq9mc6mE8QovBiy8H5rVZc3zKztgZsPfFMB"
],
 [
 "YYW6fU7Th8uESW9FZnpkhYaTUwtSvn3f2TQxFVA3ef2SSiwdZES71",
 "5JLaW7u3EC4vVLbTmLo1XeSBGiTeRtqER1UsoLtYbFNnBafgPKG"
]
]
}

2.3.7 list_my_accounts_cached

List the information about all cached accounts in the wallet file (the account specified when the private key was imported)

Note: This cached information is not necessarily synchronized with the data on the chain. To sync, reopen the wallet file.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

Wallet needs to be in unlocked state.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

null

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "list_my_accounts_cached",[]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params": [0, "list_my_accounts_cached",[]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "id": "1.2.1378",
 "uid": 250926091,
 "name": "yoyo250926091",
 "owner": {
 "weight_threshold": 1,
 "account_uid_auths": [],
 "key_auths": [
 [
 "YYW7UoNSEQAUPvnvoBRVKyPAD9845esnpiK6MgHinsn5yqr5UgT5W",
 1
]
]
 },
 "active": {
 "weight_threshold": 1,
 "account_uid_auths": [],
 "key_auths": [
 [
 "YYW6fU7Th8uESW9FZnpkhYaTUwtSvn3f2TQxFVA3ef2SSiwdZES71",
 1
]
]
 },
 "secondary": {
 "weight_threshold": 1,
 "account_uid_auths": [],
 "key_auths": [
 [
 "YYW5eDSFYeiqyFRajfPP8tTZM7mfUeyc7H65zmnHtDW4SQJdwqTBD",
 1
]
]
 },
 "memo_key": "YYW7SpC4QLY1LRRxFQ2hbYHdAyQo88L8qnPJcDJkiRMugcnFGUGvo",
 "reg_info": {
 "registrar": 206336051,
 "referrer": 25997,
 "registrar_percent": 0,
 "referrer_percent": 0,
 "allowance_per_article": {
 "amount": 0,
 "asset_id": 0
 },
 "max_share_per_article": {
 "amount": 0,
 "asset_id": 0
 },
 "max_share_total": {
 "amount": 0,
 "asset_id": 0
 },
 "buyout_percent": 10000
 },
 "can_post": true,
 "can_reply": false,
 "can_rate": false,
 "is_full_member": true,
 "is_registrar": false,
 "is_admin": false,
 "create_time": "2018-04-03T08:21:00",
 "last_update_time": "2018-04-03T08:21:00",
 "active_data": "{}",
 "secondary_data": "{}",
 "statistics": "2.5.1378"
 }
]
}

2.4 Operations/Transactions API

The following operations involve key authority. You need to import the relevant private keys. At the same time, ensure that the wallet is in unlocked state.

2.4.1 transfer

Query the platforms according to the uid list

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the active key of the transferrer.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	from

	Transferrer (UID or nickname)

	to

	Transferee (UID or nickname)

	amount

	Amount, if the amount is a decimal, it is recommended to use the string to pass the parameter

	asset_symbol

	token type; the asset type is currently only “YOYO”.

	memo

	Memo (use an empty string “” if without a memo)

	broadcast

	Whether to broadcast，true or false

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "transfer",[250926091, 209414065, "10", "YOYO", "feho", true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "transfer",[250926091, 209414065, "10", "YOYO", "feho", true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 57170,
 "ref_block_prefix": 852086171,
 "expiration": "2018-04-15T03:18:33",
 "operations": [
 [
 0,
 {
 "fee": {
 "total": {
 "amount": 20898,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 20898,
 "asset_id": 0
 }
 }
 },
 "from": 250926091,
 "to": 209414065,
 "amount": {
 "amount": 1000000,
 "asset_id": 0
 },
 "memo": {
 "from": "YYW7SpC4QLY1LRRxFQ2hbYHdAyQo88L8qnPJcDJkiRMugcnFGUGvo",
 "to": "YYW8PK8NtXW6JjtxqPV8QTgw4ejPEg4FgVeNV1maZDGzzNoEbgmr2",
 "nonce": "7783743918290282490",
 "message": "4468a7f3a5ac7fbf8125856381673030"
 }
 }
]
],
 "signatures": [
 "1f0a075215760089cf879b67ee6ba0aaaffa9408cd48c9040eee562909a8d67f5f7bbbb6401aabc69c00cd5d212f65b41204651f33442dc5b5b0056ce38f06c10e"
]
 }
}

2.4.2 create_witness

Create a witness

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the active key of the witness owner.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	owner_account

	Account（UID or nickname）

	block_signing_key

	Block production signature public keys

	pledge_amount

	Collateral amount

	pledge_asset_symbol

	Collateral token type（YOYO）

	url

	Introduction link

	broadcast

	Whether to broadcast

Wherein: if the signature public key is YYW1111111111111111111111111111111114T1Anm, it means temporary offline.

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "create_witness", ["223331844", "YYW1111111111111111111111111111111114T1Anm","1000000", "YOYO", "http://www.yoyow.org", true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "create_witness", ["223331844", "YYW1111111111111111111111111111111114T1Anm","100", "YOYO", "http://www.yoyow.org", true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "ref_block_num": 58457,
 "ref_block_prefix": 2372452101,
 "expiration": "2018-05-03T11:28:36",
 "operations": [[
 13,{
 "fee": {
 "total": {
 "amount": 100000000,
 "asset_id": 0
 }
 },
 "account": 223331844,
 "block_signing_key": "YYW1111111111111111111111111111111114T1Anm",
 "pledge": {
 "amount": "100000000000",
 "asset_id": 0
 },
 "url": "http://www.yoyow.org"
 }
]
],
 "signatures": [
 "202857a37e91889a1c6124a2e3405eff00647b315aa55db7989334e187a5a92c1f0cb4bb00531fa525e53f26403e8bd323a9e46f8289b0039ed2caeb951f70eb28"
]
}

2.4.3 update_witness

Modify witness information

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the active key of the witness owner.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	witness_account

	Account（UID or nickname）

	block_signing_key

	New block production signature public key; enter null if without modification

	pledge_amount

	New collateral amount; enter null if without modification

	pledge_asset_symbol

	New collateral token type (YOYO); enter null if without modification

	url

	New intro link; enter null if without modification

	broadcast

	Whether to broadcast

Among them, the amount of the collateral and the token type must appear at the same time or not at the same time, the current token type can only be YOYO.

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "update_witness", ["223331844", null,"100345", "YOYO", null, true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "update_witness", ["223331844", null,"100345", "YOYO", null, true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 13103,
 "ref_block_prefix": 3050749194,
 "expiration": "2018-05-04T04:17:42",
 "operations": [
 [
 14,
 {
 "fee": {
 "total": {
 "amount": 1000000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 1000000,
 "asset_id": 0
 }
 }
 },
 "account": 223331844,
 "new_pledge": {
 "amount": "10034500000",
 "asset_id": 0
 }
 }
]
],
 "signatures": [
 "1f6503a1e7dd15d1d9d5fe9cdaddddea39acf40071bd5621458b9abf3e0c8709f63fedfac89adc571fcc8af20fe6beb9f94d93d47256d3170b314e87153492357e"
]
 }
}

2.4.4 create_committee_member

Create a committee candidate identity

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	owner_account

	Account（UID or nickname）

	pledge_amount

	Collateral amount

	pledge_asset_symbol

	Collateral token type（YOYO）

	url

	into link

	broadcast

	Whether to broadcast

Precautions

Among the assets found, only YOYO can actually be used.

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "create_committee_member", ["223331844","1000", "YOYO", "http://www.yoyow.org", true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "create_committee_member", ["223331844","1000", "YOYO", "http://www.yoyow.org", true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 13153,
 "ref_block_prefix": 1417310192,
 "expiration": "2018-05-04T04:20:12",
 "operations": [
 [
 8,
 {
 "fee": {
 "total": {
 "amount": 10000000,
 "asset_id": 0
 }
 },
 "account": 223331844,
 "pledge": {
 "amount": 100000000,
 "asset_id": 0
 },
 "url": "http://www.yoyow.org"
 }
]
],
 "signatures": [
 "1f2b34fe5e2437be46d83ec2f0f4482e1b5df509131131c41eeb16e484df5e4ea96df19f82be294433bc751e84d6dcc28073e758ad7de1ca48c4b36fb2d41b2def"
]
 }
}

2.4.5 update_committee_member

Modify committee candidate information

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	committee_member_account

	Account（UID or nickname）

	pledge_amount

	New collateral amount; enter null if without modification

	pledge_asset_symbol

	New collateral token type (YOYO); enter null if without modification

	url

	New intro link; enter null if without modification

	broadcast

	Whether to broadcast

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "update_committee_member", ["223331844", "10234", "YOYO", null, true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "update_committee_account", ["250926091","10000", "YOYO", null, true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 13189,
 "ref_block_prefix": 2763581564,
 "expiration": "2018-05-04T04:22:00",
 "operations": [
 [
 9,
 {
 "fee": {
 "total": {
 "amount": 1000000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 1000000,
 "asset_id": 0
 }
 }
 },
 "account": 223331844,
 "new_pledge": {
 "amount": 1023400000,
 "asset_id": 0
 }
 }
]
],
 "signatures": [
 "20506ea2aadb44a57ae4bb60c71b0c2002f89410d4941ed83d3323c4bed2f883ee4d045c9a326e331b49770db32799c63b854a67dd4ff998b74f6b457cb7d9157e"
]
 }
}

2.4.6 set_voting_proxy

Set up a voting proxy

Account A sets account B as a voting proxy, and the number of votes obtained by the voting object of B is the number of valid votes of A + the number of valid votes of B. A is called the client, and B is called the proxy.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the active key of the client.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	account_to_modify

	Client account（UID or nickname）

	voting_account

	Proxy account（set the proxy with a UID or nickname; null is for canceling the proxy）

	broadcast

	Whether to broadcast

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "set_voting_proxy", ["250926091", "abit", true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "set_voting_proxy", ["250926091", "abit", true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 18995,
 "ref_block_prefix": 2835940919,
 "expiration": "2018-04-16T02:06:36",
 "operations": [
 [
 5,
 {
 "fee": {
 "total": {
 "amount": 100000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 100000,
 "asset_id": 0
 }
 }
 },
 "voter": 223331844,
 "proxy": 250926091
 }
]
],
 "signatures": [
 "1f793459c8c7e06e80b2b34d2d13a0fb46e5d4f839953f6fae96af16acf389b51c534c35d2f85fe5d9f8e7316b1bb66941c2591e31afe7e5bbfee8802877ad7af0"
]
 }
}

2.4.7 update_witness_votes

Witness voting

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the active key of the voter.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	voting_account

	Account（UID of nickname）

	witnesses_to_add

	Add a list of supported witnesses (UID or nickname)

	witnesses_to_remove

	Remove the list of supported witnesses (UID or nickname)

	broadcast

	Whether to broadcast

Both the witnesses_to_add and the witnesses_to_remove lists can be empty “[]”, indicating that the voting intention is refreshed.

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "update_witness_votes", ["250926091", ["abit"], [], true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "update_witness_votes", ["250926091", ["abit"], [], true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 18961,
 "ref_block_prefix": 1229162670,
 "expiration": "2018-04-16T02:04:54",
 "operations": [
 [
 15,
 {
 "fee": {
 "total": {
 "amount": 200000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 200000,
 "asset_id": 0
 }
 }
 },
 "voter": 250926091,
 "witnesses_to_add": [
 209414065
],
 "witnesses_to_remove": []
 }
]
],
 "signatures": [
 "206badbed989fcf01c93a2eda807976bae29f2e95ca2dcaa83f645be6c3bffcbc178199f4e4816801643cc9ee158fc4e8f450c2082763ac163e1b875bfb82f3a25"
]
 }
}

2.4.8 update_committee_member_votes

The committee election voting

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the active key of the voter.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	voting_account

	Voter account (UID or nickname)

	committee_members_to_add

	Array; add a list of supported committee candidates (UID or nickname)

	committee_members_to_remove

	Array; remove a list of supported committee candidates (UID or nickname)

	broadcast

	Whether to broadcast

Both committee_members_to_add and committee_members_to_remove lists can be empty “[]”, indicating the voting intention is refreshed.

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "update_committee_member_votes", ["250926091", ["init1"], [], true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "update_committee_member_votes", ["250926091", ["init1"], [], true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 19152,
 "ref_block_prefix": 1139468448,
 "expiration": "2018-04-16T02:14:27",
 "operations": [
 [
 10,
 {
 "fee": {
 "total": {
 "amount": 100000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 100000,
 "asset_id": 0
 }
 }
 },
 "voter": 250926091,
 "committee_members_to_add": [
 25997
],
 "committee_members_to_remove": []
 }
]
],
 "signatures": [
 "1f35562e4301c20f293977ffe27399ccf961fc3d5c0c9d928730ed5af03af24637599e30d070032bae887d9db3201c891b1c362dd0324e8bd9b02064d679a65be3"
]
 }
}

2.4.9 collect_csaf_with_time

To collect points, you need to specify the time parameters to collect the points accumulated to the specified time.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

If the Collecting account is the same as Receiving account, It only needs the Secondary Key of the collector.

If the Receiving account is another account, It needs the Active Key of the collector.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	from

	Collecting account（UID or nickname）

	to

	Receiving account（UID or nickname）

	amount

	Collect the amount

	asset_symbol

	Collect the token type (the token type can only be YOYO)

	time

	Specified time，for example: “2018-04-16T02:44:00”. This time is UTC time and must not be 5 minutes before the time of newly produced block on the current chain.

	broadcast

	Whether to broadcast

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "collect_csaf_with_time", ["223331844", "223331844", "0.5", "YOYO", "2018-04-16T02:44:00" true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "collect_csaf_with_time", ["223331844", "223331844", "0.5", "YOYO", "2018-04-16T02:44:00" true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 19813,
 "ref_block_prefix": 1809327617,
 "expiration": "2018-04-16T02:47:30",
 "operations": [
 [
 6,
 {
 "fee": {
 "total": {
 "amount": 100000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 100000,
 "asset_id": 0
 }
 }
 },
 "from": 223331844,
 "to": 223331844,
 "amount": {
 "amount": 50000,
 "asset_id": 0
 },
 "time": "2018-04-16T02:44:00"
 }
]
],
 "signatures": [
 "1f250855fcc4e4ef093c14990411b1cfd41f97de43447e1b6a21cbe26eb95f6c9671b7c0d5ba4365d76018d277086c34c1d73a1f90c817f4d073852c6f041daf72",
 "2061c58d04a7ad9f60af1f145c837f57475d3d1785754527753b1144c1bef445240faa079b5927956be10693711b392b7a52fb55439addacbcee94a40e61f13f84"
]
 }
}

2.4.10 collect_csaf

Collect points and collect points accumulated to the current time (minutes).

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

If the Collecting account is the same as Receiving account, It only needs the Secondary Key of the collector.

If the Receiving account is another account, It needs the Active Key of the collector.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	from

	Collecting account（UID or nickname）

	to

	Receiving account（UID or nickname）

	amount

	Collecting the amount

	asset_symbol

	Collecting the token type (the token type can only be YOYO)

	broadcast

	Whether to broadcast

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "collect_csaf", ["250926091", "250926091", 1, "YOYO", true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "collect_csaf", ["250926091", "250926091", 1, "YOYO", true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 19646,
 "ref_block_prefix": 555752677,
 "expiration": "2018-04-16T02:39:09",
 "operations": [
 [
 6,
 {
 "fee": {
 "total": {
 "amount": 100000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 100000,
 "asset_id": 0
 }
 }
 },
 "from": 250926091,
 "to": 250926091,
 "amount": {
 "amount": 100000,
 "asset_id": 0
 },
 "time": "2018-04-16T02:37:00"
 }
]
],
 "signatures": [
 "203a417b25f10110d8143d7476976abbcbb3490f13432630366e5b0d1d8d7580573c8595e93109af4a55282756b8b4916ae055147cceae1bc7b85f2b0a7f2fa042",
 "2054d3b25618ddaeae499297a483d5490bac77f35bac7dd850645400d7f8001a2265cd997ff62db54740e9fcda52b0bbbaf5aa6d12d3fbcd65a71e2ccf6baa1e1a"
]
 }
}

2.4.11 create_platform

Creating platforms

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the Active key of the applier.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	owner_account

	Creator account

	name

	Platform name

	pledge_amount

	The collateral amount, currently not less than 10,000 YOYO

	pledge_asset_symbol

	collateral token type（YOYO）

	url

	platform link

	extra_data

	Platform additional data

	broadcast

	Whether to broadcast

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "create_platform", ["223331844", "yoyo.club", "10000", "YOYO", "", "", true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "create_platform", ["223331844", "yoyow.club", "10000", "YOYO", "", "", true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 19954,
 "ref_block_prefix": 1357577324,
 "expiration": "2018-04-16T02:54:33",
 "operations": [
 [
 20,
 {
 "fee": {
 "total": {
 "amount": 100007811,
 "asset_id": 0
 }
 },
 "account": 223331844,
 "pledge": {
 "amount": 1000000000,
 "asset_id": 0
 },
 "name": "baidu",
 "url": "",
 "extra_data": ""
 }
]
],
 "signatures": [
 "20534af4af03c6d4001c797dde6ac438a6b3d31c77b94cb8e4b6519e681a289c69370057de58412bb5e3ba8320ab975d33012bb92b20509e3daee6582affce8e80"
]
 }
}

2.4.12 update_platform

Modify platform information

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

null

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	platform_account

	Account（UID or nickname）

	name

	new platform name; enter null if without modification

	pledge_amount

	New collateral amount; enter null if without modification

	pledge_asset_symbol

	New collateral token type (YOYO); enter null if without modification

	url

	New intro link; enter null if without modification

	extra_data

	New platform additional data

	broadcast

	Whether to broadcast

Note:
The amount of the collateral and the token type must appear at the same time or not at the same time. The current token type can only be YOYO.
If the collateral amount is 0, it means closing the platform.

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "update_platform", ["223331844", "NUUUU", null, null, "http://www.example.com", "http://www.example.com", true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "update_platform", ["223331844", "NUUUU", null, null, "http://www.example.com", "http://www.example.com", true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 20262,
 "ref_block_prefix": 1534083365,
 "expiration": "2018-04-16T03:09:57",
 "operations": [
 [
 21,
 {
 "fee": {
 "total": {
 "amount": 1053709,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 1053709,
 "asset_id": 0
 }
 }
 },
 "account": 223331844,
 "new_name": "NUUUU",
 "new_url": "http://www.example.com",
 "new_extra_data": "http://www.example.com"
 }
]
],
 "signatures": [
 "202e8e53a7e58d4b60c7bf7b0d3f8076a6c9b8f7c472c48e61463cff68228e2cf643404bf954f1c7596deb05630942c95057ff397f31753bff069e5754894efcad"
]
 }
}

2.4.13 update_platform_votes

Vote for the platforms

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the Active key of the voter.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	voting_account

	Voter account（UID or nickname）

	platforms_to_add

	Add a list of supported platforms (UID or nickname)

	platforms_to_remove

	Remove a list of supported platforms (UID or nickname)

	broadcast

	Whether to broadcast

Both latforms_to_add and platforms_to_remove lists can be empty, indicating the voting intention is refreshed.

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "update_platform_votes", ["250926091", ["223331844"], [], true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "update_platform_votes", ["250926091", ["223331844"], [], true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 20494,
 "ref_block_prefix": 3288350547,
 "expiration": "2018-04-16T03:21:33",
 "operations": [
 [
 22,
 {
 "fee": {
 "total": {
 "amount": 200000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 200000,
 "asset_id": 0
 }
 }
 },
 "voter": 250926091,
 "platform_to_add": [
 223331844
],
 "platform_to_remove": []
 }
]
],
 "signatures": [
 "20274d50cf4905fe072e3257632335546c386721f2d608cf3939316f7167ddbea55a28616cc790b00aea5bc89b6649e56c04c8121f50a97c2ca4b3f587ac5e922e"
]
 }
}

2.4.14 account_auth_platform

The account authorizes the platform.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

The Owner key

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	account

	Authorizing account（UID or nickname）

	platform_owner

	platform owner account（UID or nickname）

	broadcast

	Whether to broadcast

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "account_auth_platform", ["250926091", "223331844", true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "account_auth_platform", ["250926091", "223331844", true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 26612,
 "ref_block_prefix": 1858930703,
 "expiration": "2018-07-05T02:34:57",
 "operations": [
 [
 23,
 {
 "fee": {
 "total": {
 "amount": 10000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 10000,
 "asset_id": 0
 }
 }
 },
 "uid": 223331844,
 "platform": 250926091
 }
]
],
 "signatures": [
 "200ee643c33b074ad002bc6f4b477ff48dbee76bd3aa1c3c5b3a4c064b1f39581e61f93e957128c1c20737eafa2e09c56f6d0f97468676cfa2a15d04f50da0774c"
]
 }
}

2.4.15 account_cancel_auth_platform

The account unauthorizes the platform.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

The Owner key

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	account

	Authorizing account（UID of nickname）

	platform_owner

	platform owner account（UID or nickname）

	broadcast

	Whether to broadcast

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "account_cancel_auth_platform", ["250926091", "223331844", true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "account_cancel_auth_platform", ["250926091", "223331844", true], "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 26736,
 "ref_block_prefix": 2510951750,
 "expiration": "2018-07-05T02:41:09",
 "operations": [
 [
 24,
 {
 "fee": {
 "total": {
 "amount": 10000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 10000,
 "asset_id": 0
 }
 }
 },
 "uid": 223331844,
 "platform": 250926091
 }
]
],
 "signatures": [
 "2021240ab7c321fad009693c8a598363aa840fcde0f07cc54d72b8c3b7d6e116d4357127328faea805aff7d632fb0a09e2ce6ac203d4a97b2dd30c139548939d38"
]
 }
}

2.4.16 create_asset

Creating assets

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the Active key of the applier.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	issuer

	Creator UID

	symbol

	The symbol to create an asset

	precision

	Precision (retains a few decimal places)

	common

	Options, see the option parameter structure below

	initial_supply

	The initial liquidity is an integer representation, ie: actual amount = initial_supply / (10 ^ precision)

	broadcast

	Whether to broadcast

Option parameter structure

asset_options {
 // The maximum supply that the asset may have at any given time. This can be as big as GRAPHENE_MAX_SHARE_SUPPLY.
 // Special note: The maximum supply is the number of minimum unit of tokens. For example, the maximum supply is 30,000 and the precision is set to 2 so the actual supply is 30000/(10^2)=300 Token. The smallest trading unit is 0.01.
 max_supply = GRAPHENE_MAX_SHARE_SUPPLY;
 // (reserved field, not used yet, must be 0)
 Market_fee_percent = 0;
 // (reserved field, not used yet, must be 0)
 max_market_fee = GRAPHENE_MAX_SHARE_SUPPLY;

 // The logo that the issuer has the right to update
 issuer_permissions = UIA_ASSET_ISSUER_PERMISSION_MASK;
 // current activity flag on this permission
 flags = 0;

 // This asset can be used by a group of whitelisted accounts. If whitelist_authorities is not empty, only accounts in whitelist_authorities can hold, use or transfer assets.
 whitelist_authorities;
 // A set of blacklisted accounts cannot hold and use the assets.
 blacklist_authorities;

 // Define the assets that the asset may trade on the market (reserved fields, not used yet)
 whitelist_markets;
 // Define assets that the asset must not trade on the market, and must not overlap whitelists (reserved fields, not used yet)
 blacklist_markets;

 // Data describing the meaning/purpose of the asset, the fee will be charged according to the size of the description.
 string description;
 };

The issuer_permisisons and flags fields are represented by integers. After the integer is converted to binary, each bit represents a permission or flag. Currently defined as follows:

enum asset_issuer_permission_flags
 {
 white_list = 0x02, // whitelist, if enabled, the asset issuer can control whether others can use the assets ("use" here includes transfers, etc.)
 override_authority = 0x04, // Forced transfer, if enabled, the asset issuer can force a transfer or take back the assets in another person's account
 transfer_restricted = 0x08, // Restricted transfer, if enabled, the originator or recipient of the transfer must be the issuer of the assets
 issue_asset = 0x200, // Issuing the assets, if enabled, the asset issuer can add a certain amount of that assets to an account and increase the current total circulation amount of the assets
 change_max_supply = 0x400, // modifying the circulation limit, if enabled, the asset issuer can modify the circulation limit of the assets
 };

Bits that are not currently in use must be 0 in both issuer_permissions and flags fields.
In the flags field, if a bit is 1, it means that the corresponding parameter is enabled for the asset; if it is 0, it means that it is not enabled.
In the issuer_permissions field, if a bit is 0, it means that the issuer of the asset can modify the corresponding parameter bit in the flags field; if it is 1, it means that it cannot be modified.

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "create_asset", ["250926091","TOTOTO", 4, {"max_supply":300000,"market_fee_percent":0,"max_market_fee":0,"issuer_permissions":4}, 200000, true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "create_asset", ["250926091","TOTOTO", 4, {"max_supply":300000,"market_fee_percent":0,"max_market_fee":0,"issuer_permissions":4}, 200000, true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "ref_block_num": 57735,
 "ref_block_prefix": 998946957,
 "expiration": "2018-07-06T04:31:06",
 "operations": [[
 25,{
 "fee": {
 "total": {
 "amount": 50000000,
 "asset_id": 0
 }
 },
 "issuer": 250926091,
 "symbol": "TOTOTO",
 "precision": 4,
 "common_options": {
 "max_supply": 300000,
 "market_fee_percent": 0,
 "max_market_fee": 0,
 "issuer_permissions": 4,
 "flags": 0,
 "whitelist_authorities": [],
 "blacklist_authorities": [],
 "whitelist_markets": [],
 "blacklist_markets": [],
 "description": ""
 },
 "extensions": {
 "initial_supply": 200000
 }
 }
]
],
 "signatures": [
 "1f32dc80319019ff0c5eff27c9d1e15c7371fcc2825969b8e42a6429fb44c2ac3a75344b382e00c9f7f4af06600b0aff93aa380bf81b94f62b1abe0bfc807fcb6f"
]
}

2.4.17 update_asset

Update asset information

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the Active key of the asset owner.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	symbol

	asset symbol

	new_issuer

	new asset owner

	new_options

	New asset option (see common parameter structure in create_asset); enter null if without modification

	broadcast

	Whether to broadcast

Precautions

This feature is only available to asset issuers.

The precision can only be modified if the current circulation amount is zero.

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "update_asset", ["WOWO", null, {"max_supply":"2000000000"}, true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "update_asset", ["WOWO", null, {"max_supply":"2000000000"}, true]]}, "id": 1}' http://localhost:8091/rpc

Return results

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "ref_block_num": 12862,
 "ref_block_prefix": 653302827,
 "expiration": "2018-05-04T04:05:39",
 "operations": [
 [
 26,
 {
 "fee": {
 "total": {
 "amount": 50000000,
 "asset_id": 0
 }
 },
 "issuer": 223331844,
 "asset_to_update": 3,
 "new_options": {
 "max_supply": 2000000000,
 "market_fee_percent": 0,
 "max_market_fee": "1000000000000000",
 "issuer_permissions": 79,
 "flags": 0,
 "whitelist_authorities": [],
 "blacklist_authorities": [],
 "whitelist_markets": [],
 "blacklist_markets": [],
 "description": ""
 }
 }
]
],
 "signatures": [
 "2030b2b084ab8e47bc2da5c863475776eac2cde1feba4cb3575eb7a7e86f96c9594a9778280c740098a5eec26f84b57993d925d2630c1a3dc31395c9938a676089"
]
 }
}

2.4.18 enable_allowed_assets

The account actively enables or disables the whitelist of account-side assets.

The whitelist is deactivated by default, and when the whitelist is disabled, the account can send and receive any assets.

When the whitelist is enabled, the account can only send and receive assets in the list, and the whitelist can be updated using the update_allowed_assets command.

When the state is changed from deactivated to enabled, there is only “core assets” in the whitelist by default, which is YOYO.

Data is cleared when the whitelist is deactivated from the enabled state. To re-enable it, the required assets need to be re-added.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the Active key of the asset owner.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	account

	Account（UID or nickname）

	enable

	Whether to enable（true is to enable，false is to disable）

	broadcast

	Whether to broadcast

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "enable_allowed_assets", ["250926091", false, true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "issue_asset", "250926091", false, true]], "id": 1}' http://localhost:8091/rpc

Return results

 {
 "ref_block_num": 56000,
 "ref_block_prefix": 3273656390,
 "expiration": "2018-07-06T03:04:21",
 "operations": [[
 34,{
 "fee": {
 "total": {
 "amount": 100000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 100000,
 "asset_id": 0
 }
 }
 },
 "account": 250926091,
 "enable": false
 }
]
],
 "signatures": [

"1f7e06ed28f6017e9a25ee1d165ec1aae330fb87abc9486c264c30f7de2e8d2369077509d61d96df016fbeec55bbd541532b90f35bf2e18278c87369fa87d7158b"
]
 }

2.4.19 update_allowed_assets

Update the whitelist of account-side assets

Updates can only be made when the whitelist is open.
Cannot remove YOYO.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the Active key of the asset owner.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	account

	Account（UID or nickname）

	assets_to_add

	List of assets added to the whitelist (asset code or id)

	assets_to_remove

	List of assets removed from the whitelist (asset code or id)

	broadcast

	Whether to broadcast

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "issue_asset", ["250926091", "100000", "WOWO", "memo", true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "issue_asset", ["250926091", "100000", "WOWO", "memo", true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "ref_block_num": 56441,
 "ref_block_prefix": 3725987382,
 "expiration": "2018-07-06T03:26:24",
 "operations": [[
 35,{
 "fee": {
 "total": {
 "amount": 200000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 200000,
 "asset_id": 0
 }
 }
 },
 "account": 250926091,
 "assets_to_add": [
 3
],
 "assets_to_remove": []
 }
]
],
 "signatures": [
 "200f4362763eef9a5f0de6c461d2dcde77e665ae5ac2d462c89dd1f4ba22b35b7b21662e306d1e52c530815983f284d79b3191ebd4d3fea43f135aff4e21fe39a3",
 "1f199078220bf0d6c2fcf28e0bd4fbf9afc1eb7db241997173a469d88d538d36c03c3299136cf42a030810c5adf250be990029391c0ad7ae8268e5bee4850f07bd"
]
}

2.4.20 issue_asset

Assign the issued assets to an account

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the Active key of the asset owner.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	to_account

	Target account issued

	amount

	amount

	symbol

	asset symbol

	memo

	memo

	broadcast

	Whether to broadcast

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "issue_asset", ["250926091", "100000", "WOWO", "memo", true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "issue_asset", ["250926091", "100000", "WOWO", "memo", true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "ref_block_num": 55598,
 "ref_block_prefix": 1065296620,
 "expiration": "2018-05-03T09:05:39",
 "operations": [[
 27,{
 "fee": {
 "total": {
 "amount": 2008984,
 "asset_id": 0
 }
 },
 "issuer": 223331844,
 "asset_to_issue": {
 "amount": 1000000000,
 "asset_id": 3
 },
 "issue_to_account": 250926091,
 "memo": {
 "from": "YYW8EeMDaSmDg8zLXL272kcm4W7vUF4c4tBkfQpV7N79PBjgGjkDN",
 "to": "YYW7SpC4QLY1LRRxFQ2hbYHdAyQo88L8qnPJcDJkiRMugcnFGUGvo",
 "nonce": "3388232258004121975",
 "message": "fc712e427e57aae3d6819e3427b7f90a"
 }
 }
]
],
 "signatures": [
 "205e29664c74590e1af73aa645374dc25f2900758e5213a3120fdf285d7940d5e66339311a97513cf78bd794916619f5813c940a9e7bc4b942fbd9fed49a2a7d27"
]
}

2.4.21 reserve_asset

Destroy the specified number of specified assets in your account.
After the operation is completed, the total amount of circulation of the asset type is correspondingly reduced.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the Active key of the asset owner.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	from

	Account（UID or nickname）

	amount

	Amount

	symbol

	Token type（asset code）

	broadcast

	Whether to broadcast

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "reserve_asset", ["250926091", "1000", "WOWO", true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "reserve_asset", ["250926091", "1000", "WOWO", true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "ref_block_num": 56703,
 "ref_block_prefix": 1905534427,
 "expiration": "2018-07-06T03:39:30",
 "operations": [[
 28,{
 "fee": {
 "total": {
 "amount": 10000,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 10000,
 "asset_id": 0
 }
 }
 },
 "payer": 250926091,
 "amount_to_reserve": {
 "amount": 10000000,
 "asset_id": 3
 }
 }
]
],
 "signatures": [
 "1f6a2f416a525ae4754a98388cb4464f60f1b77659c5a742d8b76a80d581484ce5681c24aa51c7379acaa8247df49d962cb28b5910e179a7de9c8a48e49fe7cc5a"
]
}

2.4.22 override_transfer

Forced transfer. An asset issuer forces an account to transfer a certain amount of assets to another account.

Only asset issuers can use this feature.

Remarks are encrypted with the issuer’s Memo key, and the transferee can decrypt the remarks, and the transferrer cannot decrypt.

Supported format

JSON

Request method

WebSocket; JSON-RPC

Required private key authority

It needs the Active key and Memo key of the asset issuer.

Access authorization limit

Access level: normal interface

Frequency limit: True

Request parameters

	from

	Transferrer（UID or nickname）

	to

	Transferee（UID or nickname）

	amount

	Amount

	symbol

	Token type（asset code）

	memo

	Memo（use empty string “” if without a memo）

	broadcast

	Whether to broadcast

Precautions

null

Call sample and debug tools

WebSocket:

wscat -c ws://localhost:8091
{"id":1, "method":"call", "params":[0, "override_transfer", ["216494599", "250926091", 2, "SOSO", "memo", true]]}

JSON-RPC:

curl --data '{"jsonrpc": "2.0", "method": "call", "params":[0, "override_transfer", ["216494599", "250926091", 2, "SOSO", "memo", true]], "id": 1}' http://localhost:8091/rpc

Return results

{
 "ref_block_num": 61983,
 "ref_block_prefix": 2781522721,
 "expiration": "2018-07-06T08:03:30",
 "operations": [[
 30,{
 "fee": {
 "total": {
 "amount": 2008984,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 2008984,
 "asset_id": 0
 }
 }
 },
 "issuer": 223331844,
 "from": 216494599,
 "to": 250926091,
 "amount": {
 "amount": 20000,
 "asset_id": 283
 },
 "memo": {
 "from": "YYW5jiVsASqAyUibUb8awgDapFqfjQJo3SfvTEPJHxir8r3ggVtZU",
 "to": "YYW8Z8rtp7oEZFJi7Ar9HC4r4d15jXCVTQ2CAosjSnkSFdbc74GJ3",
 "nonce": "9585190871224727019",
 "message": "b0e7b1997c2142125c0369c4304a33c1"
 }
 }
]
],
 "signatures": [
 "20008db33ea71863fc7f4b97763a34e96e8b9d87714b1445d33c34a6b7bb3015c14d0a130c1ee74946c19b5e992c02249872e1bf601ca24380ebef22e5119a2894"
]
}

YOYOW Middleware Instruction（Nodejs）

Using YOYOW middleware is the easiest way to integrate with the platform. It mainly provides three interfaces: account authorization, platform incentives and content chaining. You can use Docker one-click deployment to get the corresponding API, and easily interact with the YOYOW blockchain.

YOYOW middleware communicates with YOYOW network through the API interface of YOYOW node, which provides platform service providers with convenient access to data on the chain, ensuring that the traditional business codes can also reach the requirements of being on chain with only minimal changes. The specific diagram is as follows:
[image: YOYOW middleware role diagram]

For the creation steps of the platform, please refer to: Create a YOYOW platform account from scratch

Deployment Start

Configuration File Description

The path to the configuration file is in the conf/config.js file in the code path. If you start it in docker mode, you can map the configuration file to the /app/conf directory in the container.

{
 // The api server address, the testnet public api address is as follows, for the official network deployment, please change the address
 apiServer: "ws://47.52.155.181:10011",

 // The validity time of the security request, and the unit is "s". If the requested content exceeds the validity period, it will return 1003 the request has expired.
 secure_ageing: 60,

 // The platform security request verification key can be customized. For details, see "Security Access".
 secure_key: "",

 // Platform owner active key
 active_key: "",

 // Platform owner secondary key
 secondary_key: "",

 // Platform owner memo key
 memo_key: "",

 // Platform id (yoyow id)
 platform_id: "",

 // Whether to use points for the operating fee
 use_csaf: true,

 // Whether the transfer is transferred to the balance, otherwise it is transferred to tipping
 to_balance: false,

 // Wallet authorization page URL, testnet address is as follows, official network address “https://wallet.yoyow.org/#/authorize-service”
 wallet_url: "http://demo.yoyow.org:8000/#/authorize-service",

 // The IP list that is allowed to access； forcing the specific IP address to be specified. "*" or "0.0.0.0" is not supported at this time.
 allow_ip: ["localhost", "127.0.0.1"]
}

Note:

	In the general use scenario, the middleware value needs to use the secondary key and the memo key at most, and just the secondary key and the memo key can satisfy most of the requirements. Do not write the active key into the configuration file unless you are sure you need to use the active key.

	The middleware uses the restriction IP (allow_ip) and encryption request (secure_key) to ensure security. However, it is still strongly recommended that the intranet be deployed and isolated, and the security of the private key is quite important.

	It is recommended to use the point deduction for the operation fee. If the deduction fails, it will directly report the error and will not automatically deduct the tipping as the fee.

Docker One-Click Deployment

docker run -itd --name yoyow-middleware -v <Local configuration file path>:/app/conf -p 3001:3001 yoyoworg/yoyow-middleware

Manual Deployment

	clone source code
git clone git@github.com:yoyow-org/yoyow-node-sdk.git

	Modify middleware configuration；modify the file yoyow-node-sdk/middleware/conf/config.js with reference to the configuration file description ().

	The node library required to install the middleware service; go to the ~/yoyow-node-sdk/middleware/ directory and find npm install.

	Start middleware service
npm start

Normal start as shown below
[image: Normal start situation as shown]

Interface Descriptions

Request Documentation and Examples

1. Basic Query Related Interface

1.1. Get the Specified Account Information

getAccount

Request Type：GET

Request Parameters：

{Number} uid - account id

Request Example：

localhost:3000/api/v1/getAccount?uid=25638

Return Results：

{
 code: results,
 message: return message,
 data: { // user information
 uid: account uid
 name: account name
 owner: owner authority
 active: active authority
 secondary: secondary authority
 memo_key: memo key public key
 reg_info: registration information
 can_post: can post or not
 can_reply: can reply to posts or not
 can_rate: can comment or not
 is_full_member: is full member or not
 is_registrar: is registrar or not
 is_admin: is administrator or not
 statistics: { //user YOYO asset details
 obj_id: asset object id
 core_balance: balance
 prepaid: tipping
 csaf: bonus points
 total_witness_pledge: witnesses' total collateral (collateral amount of creating witnesses by users)
 total_committee_member_pledge: committee total collateral（collateral amount of creating committee by users）
 total_platform_pledge: platform total collateral（collateral amount of creating platforms by users）
 releasing_witness_pledge: witness collateral to be returned
 releasing_committee_member_pledge: committee collateral to be returned
 releasing_platform_pledge: platform collateral to be returned
 }
 assets: [//total assets held by users
 {
 amount: asset amount,
 asset_id: asset id,
 precision: asset precision,
 symbol: asset symbol,
 description: asset description"
 }
 ...
]
 }
}

1.2. Get Recent Activity Records for a Given account

getHistory
Request Type：GET

Request Parameters：

{Number} uid - account id
{Number} op_type - query op type '0' is transfer op, default is null, i.e. query all op types
{Number} start - query start number. When it is 0, the query starts from the latest record. The default is 0.
{Number} limit - the length of the query，the maximum cannot exceed 100, the default is 10.

Request Example：

localhost:3000/api/v1/getHistory?uid=25638&start=1220&limit=30&op_type=0

Return Results：

 {
 code: operation results,
 message: return message,
 data: [] array of history objects
 }

1.3. Verify Whether Block is Unreturnable

confirmBlock

Request Type：GET

Request Parameters：

{Number} block_num - Verified block number

Request Example：

localhost:3000/api/v1/confirmBlock?block_num=4303231

Return Results：

 {
 code: operation results,
 message: return message,
 data: is the block returnable or not
 }

1.4. Get Specified Asset Information

getAsset

Request Type：GET

Request Parameters：

{String | Number} search - asset symbol（capital）or asset id

Request Example：

http://localhost:3001/api/v1/getAsset?search=YOYOW

Return Results：

 {
 code: operation results,
 message: return message,
 data: {
 "id":"1.3.0", - asset object id
 "asset_id":0, - asset id
 "symbol":"YOYO", - asset symbol
 "precision":5, - asset precision
 "issuer":1264, - asset issuer uid
 "options":{
 "max_supply":"200000000000000", - circulation limit
 "market_fee_percent":0, - transaction fee percentage
 "max_market_fee":"1000000000000000", - transaction fee maximum
 "issuer_permissions":0, - asset availability
 "flags":0, - asset authority
 "whitelist_authorities":[], - asset whitelist administrator list
 "blacklist_authorities":[], - asset blacklist administrator list
 "whitelist_markets":[], - trading pair whitelist
 "blacklist_markets":[], - trading pair blacklist
 "description":"" - asset description
 },
 "dynamic_asset_data_id":"2.2.0", - asset dynamic object id
 "dynamic_asset_data":{
 "id":"2.2.0", - asset dynamic object id
 "asset_id":0,
 "current_supply":"107384564466939", - current supply of assets
 "accumulated_fees":0
 },
 "current_supply":"107384564466939", - current supply of assets
 "accumulated_fees":0
 }
 }

1.5. Get Specified Platform Information

getPlatformById

Request Type：GET

Request Parameters：
{Number} uid - platform owner account uid

Request Example：

http://localhost:3001/api/v1/getPlatformById?uid=217895094

Return Results：

{

 "id": "1.6.0", - platform object id
 "owner": 217895094, - platform owner account uid
 "name": "test-yoyow", - platform name
 "sequence": 1,
 "is_valid": true, - is valid or not
 "total_votes": 0, - platform total votes
 "url": "http://demo.yoyow.org/", - platform url address
 "pledge": 1000000000, - platform collateral（YOYO）
 "pledge_last_update": "2018-02-10T01:03:57", - platform collateral last update time
 "average_pledge": 176601774, - platform average collateral
 "average_pledge_last_update": "2018-02-11T06:49:12", - platform average collateral last update time
 "average_pledge_next_update_block": 4562164, - platform average collateral next update block number
 "extra_data": "{}", - platform extra data
 "create_time": "2018-02-10T01:03:57", - platform creating time
 "last_update_time": "2018-02-11T06:49:12" - platform latest update date

 }

2. Platform Incentives Related Interface

2.1. Transfer to Specified User

transfer （requiring security verification request）

Request Type：POST

Request Parameters：

 {Object} cipher - Request ciphertext object，the format is as follows
{
 ct, - ciphertext hexadecimal
 iv, - vector hexadecimal
 s - salt hexadecimal
}

Request Object Structure:

{Number} uid - specified user id
{Number} amount - transfer amount
{Number} asset_id - asset id
{string} memo - memo
{Number} time - operation time

Request Example：refer to security request verification

localhost:3000/api/v1/transfer

Return Results：

{
 code: operation results,
 message: return message,
 data: {
 block_num: operation block number
 txid: operation id
 }
}

2.2. Get Transfer QR Code Text

getQRReceive（this QR code can be used for YOYOW APP）

Request Type：GET

Request Parameters：

{Number} amount - receipt amount （If the receipt note is not filled, the user can enter it in the APP）

{String} memo - receipt memo （If the receipt amount is not filled, the user can enter it in the APP）

{String | Number} asset - transfer asset symbol or asset ID（default is YOYO asset）

Request Example：

http://localhost:3001/api/v1/getQRReceive?amount=98&memo=new transfer&asset_id=0

Return Results：

{
 code: operation results,
 message: return message,
 data: receipt QR code string
}

2.3. Modify (whitelist only) Authorized User Asset Whitelist

updateAllowedAssets (requiring security verification request)

If the user has enabled asset whitelisting, then UIA (user-issued assets) needs to be added to the user’s asset whitelist before transactions such as transfers can be made.

Request Type：POST

Request Parameters：

{Object} cipher - Request object ciphertext object

{
 ct, - cipertext hexadecimal
 iv, - vector hexadecimal
 s - salt hexadecimal
}

Request Object Structure:

{Number} uid - target account id

{Number} asset_id - asset id

Request Example：refer to Security Request Verification

localhost:3000/api/v1/updateAllowedAssets

Return Results：

{
 code: operation results,
 message: return message,
 data: {
 block_num: operation block number
 txid: operation id
 }
}

3. Content Chaining Related Interface

3.1. Send Post (requiring for security verification request)

Request Type：POST

Request Parameters：

{Object} cipher - Request object ciphertext object

{
 ct, - ciphertext hexadecimal
 iv, - vecotr hexadecimal
 s - salt hexadecimal
}

Request Object Structure:

{Number} platform - platform account
{Number} poster - poster account
{Number} post_pid - post number
{String} title - post title
{String} body - post content
{String} extra_data - post extra data
{String} hash_value - hash value, the defalut value will be the sha256 value of the body content if not provided.
{Number} origin_platform - original post platform account（default null）
{Number} origin_poster - original post poster account（default null）
{Number} origin_post_pid - original post number（default null）
{Number} time - operation time

Request Example: refer to Security Request Verification

localhost:3000/api/v1/post

Return Results：

{
 code: operation results,
 message: return message,
 data: {
 block_num: operation block number
 txid: operation id
 }
}

3.2. Update Post

postUpdate (requiring security verification request)

Request Type：POST

Request Parameters：

{Object} cipher - Request object ciphertext object

{
 ct, - ciphertext hexadecimal
 iv, - vector hexadecimal
 s - salt hexadecimal
}

Request Object Structure:

{Number} platform - platform account

{Number} poster - poster account

{Number} post_pid - post number

{String} title - post title

{String} body - post content

{String} extra_data - post extra data

{Number} time - operation time

Note: When modifying the post operation, at least one of title, body and extra_data must appear, and the content of the same field as the original text is different.

Request Example: refer to Security Request Verification

localhost:3000/api/v1/postUpdate

Return Results：

{
 code: operation results,
 message: return message,
 data: {
 block_num: operation block number
 txid: operation id
 }
}

3.3. Get Post

getPost

Request Type：GET

Request Parameters：

{Number} platform - platform account
{Number} poster -poster account
{Number} post_pid - post number

Request Example：

http://localhost:3001/api/v1/getPost?platform=217895094&poster=210425155&post_pid=3

Return Results：

 {
 code: operation results,
 message: return message,
 data: {
 "id":"1.7.12", - post objectId
 "platform":217895094, - platform account
 "poster":210425155, - poster account
 "post_pid":5, - post number
 "hash_value":"bb76a28981710f513479fa0d11fee154795943146f364da699836fb1f375875f", - post body hash value
 "extra_data":"{}", - extra info
 "title":"test title in js for update", - post title
 "body":"test boyd in js for update", - post content
 "create_time":"2018-03-12T10:22:03", - post creating time
 "last_update_time":"2018-03-12T10:23:24", - post latest update time
 "origin_platform", - original post platform account （Only exist for forwarding a post when posting）
 "origin_poster", - original post poster account （Only exist for forwarding a post when posting）
 "origin_post_pid" - original post posting number （Only exist for forwarding a post when posting）
 }
 }

3.4. Get Post List

getPostList

Request Type：GET

Request Parameters：

{Number} platform - platform account
{Number} poster - poster account（default null，query all posts on the platform when it is null）
{Number} limit - load number（default 20）
{String} start - starting time 'yyyy-MM-ddThh:mm:ss' ISOString（When the next page is loaded, the last create_time of the currently loaded data is passed in. If it is not passed, it is loaded from the beginning.）

Request Example：

http://localhost:3001/api/v1/getPostList?platform=217895094&poster=210425155&limit=2&start=2018-03-12T09:35:36

Return Results：

{
 code: operation results,
 message: return message,
 data: [post object（Refer to the returned data structure of getting a single post）]
}

4. About Auth

4.1. Signature Platform

sign

Requst Type：GET

Request Parameters：null

Request Example：

localhost:3000/auth/sign

Return Results：

 {
 code: operation results,
 message: return message,
 data: {
 sign: signature results,
 time: operation time millisecond value,
 platform: platform owner id,
 url: wallet authorization url
 }
 }

4.2 Signature Verification

verify

Request Type：GET

Request Parameters：

{Number} yoyow - account id
{Number} time - operation time millisecond value
{String} sign - signature results

Request Example：

localhost:3000/auth/verify?sign=20724e65c0d763a0cc99436ab79b95c02fbb3f352e3f9f749716b6dac84c1dc27e5e34ff8f0499ba7d94f1d14098c6a60f21f2a24a1597791d8f7dda47559c39a0&time=1517534429858&yoyow=217895094

Return Results：

{
 code: operation results,
 message: return message,
 data: {
 verify: is the signature successful or not,
 name: signed YOYOW user name
 }
}

4.3 Signature Platform Returned QR Code

signQR

Request Type：GET

Request Parameters：

{String} state - The extra data will be sent to the platform together with the user signature information when the platform login interface is invoked. It is used when the platform login interface needs a customized parameter. If there is no such requirement, it may not be transmitted.

Request Example：

localhost:3000/auth/signQR?state=platformCustomParams

Return Results：

{
 code: operation results,
 message: return message,
 data: QR code picture base64 string
}

4.4 Platform Extra Data Protocol Descriptions

platform attributes extra_data extra data
JSON object format string

{
 "login":"http://example/login" //Platform QR code scanning login request interface
 "description":"platform description" //platform description
 "image":"http://example.image.jpg" //platform image，platform image displayed in yoyow app 1.1
 "h5url":"http://exampleH5.com" //Platform h5 address, used to adjust the h5 page without the app jumping
 "packagename":"com.example.app" //Platform android jump
 "urlscheme":"example://" //Platform ios jump
}

4.5 Platform Login by Scanning QR Code

When the wallet App scans QR code and it will access and post signature object to “login” url in extra data.

{
 {Number} yoyow - Current operating user account id
 {String} time - Signature timestamp string
 {String} sign - Signature string
 {String} state - Custom information passed in when the platform is signing (refer to About Auth 4.3 - signQR)
}

the interface provided by the platform must return the following information

{
 {Number} code - operation result 0 means passing. Any non-zero condition is considered an error
 {String} message - operation result description
}

Request for Returning Error Code Status Description

1001 invalid signature type

1002 invalid signature time

1003 request has expired

1004 invalid operation time

1005 invalid operation signature

1006 account information does not match the chain (usually after the private key is restored, using the local data of other computers or the old backup file for authorization operation)

1007 Unauthorized platform

2000 api underlying exception

2001 account does not exist

2002 invalid account

2003 invalid transfer amount

2004 tipping and points are insufficient for paying fees

2005 insufficient tipping

2006 invalid asset symbol or id

3001 Post ID must be the previous post ID +1 of the issuer of the platform (platform post management id)

Security Request Verification

Operations related to financial security, such as transfer, posting, and other write operations, will be verified for their effectiveness in the middleware service. The information of such requests needs to be converted into ciphertext by encryption and then sent to the middleware service. The encryption method uses symmetric encryption AES, and the key is secure_key in the configuration file.

Encryption example (crypto-js version of javascript, other languages use similar AES encryption)

Default mode CBC , padding scheme Pkcs7

For example：transfer operation

 let key = 'customkey123456'; // This key is the same as the secure_key in the config in the middleware.

 let sendObj = {
 "uid": 9638251,
 "amount": 100,
 "asset_id": 0,
 "memo": "hello yoyow",
 "time": Date.now() //time field
 The operation time takes the current time millisecond value.
 Encryption must have this field for verifying the operation time
 }

 let cipher = CryptoJS.AES.encrypt(JSON.stringify(sendObj), key);

 $.ajax({
 url: 'localhost:3000/api/v1/transfer',
 type: 'POST',
 data: {
 ct: cipher.ciphertext.toString(CryptoJS.enc.Hex),
 iv: cipher.iv.toString(),
 s: cipher.salt.toString()
 },
 success: function(res){
 // do something ...
 }
 })

PHP encryption

 function cryptoJsAesEncrypt($passphrase, $value){
 $salt = openssl_random_pseudo_bytes(8);
 $salted = '';
 $dx = '';
 while (strlen($salted) < 48) {
 $dx = md5($dx.$passphrase.$salt, true);
 $salted .= $dx;
 }
 $key = substr($salted, 0, 32);
 $iv = substr($salted, 32,16);
 $encrypted_data = openssl_encrypt($value, 'aes-256-cbc', $key, true, $iv);
 $data = array("ct" => bin2hex($encrypted_data), "iv" => bin2hex($iv), "s" => bin2hex($salt));
 return json_encode($data);
 }

For other operations that require secure request verification, change sendObj according to the documentation

Descriptions of YOYOW Parameter Table and Fees

Please refer to the YOYOW Browser:

	Fees [https://yoyow.bts.ai/fees]

	Chain Parameters [https://yoyow.bts.ai/fees#parameters]

Instructions for Exchanges

We here describe how to integrate your exchange with the YOYOW blockchain step-by-step.

Preparation

Hardware

The recommended hardware by now is a VPS with 2GB of RAM and 20GB HDD. Single core is OK.

Supported platforms:

	Ubuntu 16.04 LTS 64 bit

	Windows Servers 64 bit

We’ll take Ubuntu as an example in this document.

Serivices

Disable the default time-syncing daemon (timedated) and install NTPD:

sudo timedatectl set-ntp false
sudo apt-get -y install ntp

Account

Register an account in https://wallet.yoyow.org. Instruction is here [https://steemit.com/cn/@peterchen145/yoyow-online-wallet-sign-up-tutorial].

Get the private keys of your account. Instruction is here [https://steemit.com/cn/@peterchen145/yoyow-keys-tutorial-yoyow]. We’ll need 3 keys for integration:

	Active key: for transferring funds out

	Secondary key: for collecting points to pay fees

	Memo key: for encrypting/decrypting memos

Business Logic

An exchange uses an account (or more) for processing deposits/withdrawals.

	Deposits: assign a unique identifier to every customer, such as user ID or salted hash of user ID. Every customer transfer funds to the exchange’s account with different identifiers as MEMO so the exchange can know a deposit is from which customer.

	Withdrawals: transfer funds from the exchange’s account to an account the customer requested, with an optional memo that the customer may have requested. An optional memo is needed, because some customers may want to withdraw funds to another exchange directly.

Installation

Please download the “Latest Version” of the executable files (here [https://github.com/yoyow-org/yoyow-core/releases]). After downloading, extract the files.
For example,

https://github.com/yoyow-org/yoyow-core/releases/download/v0.2.1-180313/yoyow-node-v0.2.1-ubuntu-20180313.tgz
https://github.com/yoyow-org/yoyow-core/releases/download/v0.2.1-180313/yoyow-client-v0.2.1-ubuntu-20180313.tgz
tar xzf yoyow-node-v0.2.1-ubuntu-20180313.tgz
tar xzf yoyow-client-v0.2.1-ubuntu-20180313.tgz

Notes: please remember to replace the latest version of node and client program.

Starting YOYOW Node

The node need to be always running. One way to achieve this is to run it with screen. The installation is as follow:

sudo apt-get -y install screen

Start yoyow_node with screen:

screen -S yoyow_node
./yoyow_node --rpc-endpoint 127.0.0.1:8090

Note:

	Start the node with --rpc-endpoint so we can interact with it via RPC call. In the example the node will listen on address 127.0.0.1 and port 8090.

	The following parameters indicate how many history records are kept for each account. The default value is 1000. For exchanges, if there are more recharge and withdrawal records, consider setting a larger value, e.g.:

max-ops-per-account = 1000

modify to

max-ops-per-account = 1000000

It will retain one million data. Earlier data is deleted from memory and cannot be queried quickly (but still recorded on the chain).

	The following two parameters will greatly reduce the memory required for the operation. The principle is not to save the historical data index that is not related to the exchange account.

track-account = [25638]
partial-operations = true

Please replace “25638” with the account ID you need.
Note: The default track-account in config.ini has a “#” symbol and needs to be deleted.

If you need to monitor multiple accounts, use the following configuration:

track-account = [25638,25997]
partial-operations = true

The node then will download blocks from the P2P network. When it’s done (in sync), in the console there will be new messages showing every 3 seconds, like these:

789216ms th_a application.cpp:574 handle_block] Got block: #355797 00056dd54878c05849e2dcd731c9ee364398b0d2 time: 2017-09-18T19:13:09 latency: 216 ms from: 27662/init8 irreversible: 355787 (-10)
792527ms th_a application.cpp:574 handle_block] Got block: #355798 00056dd613f39f1ad6c0c3fdb00a56c60f44ab1c time: 2017-09-18T19:13:12 latency: 526 ms from: 499381505/yoyo499381505 irreversible: 355788 (-10)

If need to terminate the node, press Ctrl+C, or send SIGINT or SIGTERM signal to the process, then wait for a while, the node will stop by itself.

Starting YOYOW Client

First Run

Start anotherscreen session, runyoyow_client inside:

screen -S yoyow_client
./yoyow_client -s ws://127.0.0.1:8090/ -H 127.0.0.1:8091

Note:

	Use -s option to connect the client to the node.

	Use -H option to start a HTTP-RPC service so we can interact with the client from another process, E.G. a script to process funds deposit/withdrawal.

	The node won’t start listening on the RPC port until finished replaying, so please be patient in this case.

	You can connect multiple clients to one node, but don’t use the same -H option.

For the first time when running yoyow_client, after connected to the node, it will show:

Please use the set_password method to initialize a new wallet before continuing
new >>>

So we need to set a password as shown below, and it will be used to create and encrypt a wallet file:

new >>> set_password my-password
set_password my-password
null
locked >>>

When there is already a wallet file, if we run yoyow_client, it will show locked >>> as well.

Then we need to unlock the wallet:

locked >>> unlock my-password
unlock my-password
null
unlocked >>>

Now we import the 3 private keys into the client, they will be encrypted then saved in the wallet file. The syntax is:

import_key [account_ID] [wif_private_key]

Assume your account ID is 123456789, and you have the Active Key, Secondary Key and Memo Key, we need to execute import_key command 3 times, with one time for one key. For example:

unlocked >>> import_key 123456789 5Hqwx3xXMYZ55Pko9nzw34234234nXHcGfNQjNEL23424w7Py
import_key 123456789 5Hqwx3xXMYZ55Pko9nzw34234234nXHcGfNQjNEL23424w7Py
2993104ms th_a wallet.cpp:820 save_wallet_file] saving wallet to file wallet.json
true
unlocked >>> import_key 123456789 5JKoYzQ4sYZoDYwreyrsfsd32466MsCFNoxRE23nExaRi6SY3
import_key 123456789 5JKoYzQ4sYZoDYwreyrsfsd32466MsCFNoxRE23nExaRi6SY3
2993104ms th_a wallet.cpp:820 save_wallet_file] saving wallet to file wallet.json
true
unlocked >>> import_key 123456789 5HttjgBSb45368989etfhsserVtt69cWcExteq6RktpAYXNTT
import_key 123456789 5HttjgBSb45368989etfhsserVtt69cWcExteq6RktpAYXNTT
2993104ms th_a wallet.cpp:820 save_wallet_file] saving wallet to file wallet.json
true
unlocked >>>

Command: info

We can check network status with info command:

unlocked >>> info
info
{
 "head_block_num": 377867,
 "head_block_id": "0005c40b41f6d79d762b1ff81c7affc7ae82a894",
 "head_block_time": "2017-09-18T19:37:39",
 "head_block_age": "0 second old",
 "last_irreversible_block_num": 377857,
 "chain_id": "3505e367fe6cde243f2a1c39bd8e58557e23271dd6cbf4b29a8dc8c44c9af8fe",
 "participation": "100.00000000000000000",
 "active_witnesses": [[
 ...
}

Command: get_block

We can get the details of a specified block with get_block command. The syntax is:

get_block [block_number]

For example:

unlocked >>> get_block 1

Command: get_full_account

We can check the account info with get_full_account command:

unlocked >>> get_full_account 123456789
get_full_account 123456789
{
 "account": {
 "uid": 123456789,
 ...
 },
 "statistics": {
 "owner": 123456789,
 "total_ops": 30220,
 "prepaid": 0,
 "csaf": 37424828,
 "core_balance": "44672014515",
 "core_leased_in": 0,
 ...

Note: the “statistics” data is useful for integration.

	“csaf” means “points”, which are generated by holding YOYO and will be used to pay transaction fees. Balances have 5 decimal digits in YOYOW, and the currency is YOYO, so "csaf": 37424828 means 374.24828 YOYO.

	“core_balance” is balance of the account. "core_balance": "44672014515" means 446,720.14515 YOYO.

	Please be aware that numbers will be surrounded with quotation marks when bigger than 2^32, as shown above for core_balance but not for csaf.

Command: transfer

We can use the transfer command to transfer funds. The syntax is:

transfer [from] [to] [amount] YOYO [memo] [broadcast]

For example:

unlocked >>> transfer 123456789 987654321 1.2345 YOYO "thisismemo" true

Note:

	amount can only have at most 5 decimal digits.

	If setting broadcast to true, the signed transaction will be broadcast to the P2P network. If using false for testing, it will not be broadcast.

Command: get_transaction_id

We can use the get_transaction_id command to get the hash of a transaction. The syntax is:

get_transaction_id [transaction_in_json]

This command is useful for integration.

Command: get_relative_account_history

We can use the get_relative_account_history command to check our transaction history. The syntax is:

get_relative_account_history [account] [operation_type] [start] [limit] [end]

For example:

unlocked >>> get_relative_account_history 123456789 null 1 10 10
unlocked >>> get_relative_account_history 123456789 0 11 10 20

Note:

	For operation_type, use null to get all operations, use 0 to get transfer only.

	For end, use 0 to get the most recent records.

	Result will be in range of [start, end]; if limit is smaller than the number of records in [start, end], the latest records will be returned.

	Result is sorted in “latest first” order.

Command: collect_csaf

We can use the collect_csaf command to collect points which will be needed to pay transaction fees. The syntax is:

collect_csaf [from_account] [to_account] [amount] YOYO [broadcast]

For example:

unlocked >>> collect_csaf 123456789 123456789 10 YOYO true

Note:

	If you have some YOYO in your account, it will accumulate points as time goes by. The accumulation speed has a linear relationship with account balance. Usually for exchanges the accumulated points should be enough to pay transaction fees.

	Points need to be collected through this command before can be used to pay transaction fees.

	Although assets in the account (balance or tipping) can be used to pay transaction fees as well in the back end, current implementation of yoyow_client will only try to pay fees with points (except raw-transaction signing). If you don’t have enough points in the account, most commands will fail. So it’s important to keep a certain amount of points in the account.

How to Close

Press Ctrl+D if the client is running in Ubuntu.

Accessing the Client via HTTP-RPC

When HTTP-RPC is enabled, we can access the client via HTTP-RPC call. All commands are usable. For example:

curl -d '{"jsonrpc": "2.0", "method": "info", "params": [], "id": 1}' http://127.0.0.1:8091/rpc
curl -d '{"jsonrpc": "2.0", "method": "transfer", "params": [123456789,123456789,"1","YOYO",null,true], "id": 1}' http://127.0.0.1:8091/rpc
curl -d '{"jsonrpc": "2.0", "method": "get_relative_account_history", "params": [123456789,0,1,10,10], "id": 1}' http://127.0.0.1:8091/rpc

Note:

	Use http as protocol

	Request /rpc but not /

	Not like the interactive CLI, the results of HTTP-RPC calls are formatted in json

	In the request, amounts have 5 decimal digits; in the response, amounts have no decimal point. Instead, amounts are multiplied by 10^5.

	When entering the amount, it is recommended to use a string for the amount. It is recommended to use the normal decimal format, such as “12345.6789”. Problems may occur if using the scientific notation format such as 1.23456789E4.

Processing Deposits

Checking Node Status

Get the last_irreversible_block_num data with the``info` command (via HTTP-RPC). Only blocks earlier than this block is reliable.

Checking Account History

	Firstly, Use get_relative_account_history command/API to get the latest sequence number:

curl -d '{"jsonrpc": "2.0", "method": "get_relative_account_history", "params": [123456789,0,0,1,0], "id": 1}' http://127.0.0.1:8091/rpc

If the result, response["result"] is empty, it means we have no deposit at all. If it’s not empty, we get response["result"][0]["sequence"] as maximum_sequence.

If maximum_sequence is bigger than the last sequence we’ve saved, it means there are new records to be processed.

	Use get_relative_account_history command/API to check for new records. For example, if last recorded sequence is 100, and maximum_sequence is 200, we can check from 101, for at most 100 records, to 200. Refer to the following commands:

curl -d '{"jsonrpc": "2.0", "method": "get_relative_account_history", "params": [123456789,0,101,100,200], "id": 1}' http://127.0.0.1:8091/rpc

In the returned result, result=response["result"], so result is an array. If the array is empty, it means no new deposit. If it’s not empty, the N’th record result[N] should be like:

 {
 "memo": "a1b2c3d4",
 "description": "Transfer 100 YOYO from 204501630 to 123456789 -- Memo: a1b2c3d4 (Fee: 0.20898 YOYO)",
 "sequence": 101,
 "op": {
 "op": [
 0,
 {
 "fee": {
 "total": {
 "amount": 20898,
 "asset_id": 0
 },
 "options": {
 "from_balance": {
 "amount": 20898,
 "asset_id": 0
 }
 }
 },
 "from": 204501630,
 "to": 123456789,
 "amount": {
 "amount": 10000000,
 "asset_id": 0
 },
 "memo": {
 "from": "YYW6U528P71X6V87765245356aPBPpDwwRp7urUiXYtFLHmrXRsN3u",
 "to": "YYW5eA89yqwerhdfghrjtr3452376trtyU6LD7a1kmvwYa5h51rDxr",
 "nonce": "3457645755345345",
 "message": "0938457345937abcdef3098945"
 },
 "extensions": {
 "from_balance": {
 "amount": 10000000,
 "asset_id": 0
 },
 "to_balance": {
 "amount": 10000000,
 "asset_id": 0
 }
 }
 }
],
 "result": [
 0,
 {
 }
],
 "block_timestamp": "2017-09-08T11:14:15",
 "block_num": 223355,
 "trx_in_block": 0,
 "op_in_trx": 0,
 "virtual_op": 8795
 }
 },

	Get result[N]["op"]["block_num"], if it’s smaller than last_irreversible_block_num, then it’s reliable, and need to be processed.

	Get result[N]["op"]["op"][0], if it’s 0, then it’s a transfer. (Although it should always be 0 if we request transfers only)

	Get result[N]["op"]["op"][1]["to"], if it’s the same as our account ID, then this transfer is a deposit.

	Check if result[N]["op"]["op"][1]["amount"]["asset_id"] is 0. If yes, it means it’s YOYO asset.

	Get result[N]["op"]["op"][1]["amount"]["amount"], it’s the amount. Remember to add the decimal point (5 digits).

	Get result[N]["memo"], it is the memo info of the transfer records. It should have been decrypted already, and it can be an identifier to the customer.

	Save result[N]["sequence"] as the latest processed sequence number for use in the next loop.

	Save result[N]["op"]["trx_in_block"] for later use.

	Use get_block command/API to get this transfer’s transaction ID/Hash (change the parameter to the block_num):

curl -d '{"jsonrpc": "2.0", "method": "get_block", "params": [160000], "id": 1}' http://127.0.0.1:8091/rpc

From the response new_response, save new_response["result"]["transaction_ids"][trx_in_block] as the transaction ID/hash of this deposit for future use.

Note:

	To be able to decrypt memo, the client need to be unlocked, and the memo private key need to be in the wallet.

Process Withdrawal Requests

Check Node Status

To be safe, we can only process withdrawal requests when node status is normal.
Check with the info command/API.

	head_block_time should be no more than 15 seconds old

	participation should be more than 80, which means 80% of block producers are online and at normal statuses.

Checking Account Balance and Points

Check with the get_full_account command/API.

If points are not enough for paying transaction fee, collect more points with collect_csaf command/API.

Sending Funds

	Use the transfer command/API to send out funds.

Note: pay attention to the decimal digits.

Save the returned json for future use.

	Get the transaction ID/hash with get_transaction_id command/API, save it for future use.

Re-check / Follow-up

Similar to the deposit processing steps, when found an outgoing transfer, save the transaction ID/hash, block number and etc. for future use.

Trouble Shooting

Every transaction has an expiration field. If the transaction hasn’t been included in any block for some reason, and the timestamp of block whose number is last_irreversible_block_num is later than the expiration field of the transaction, the transaction won’t be included in current chain, so it’s safe to try to transfer again.

Sample Code

	Ruby: https://github.com/yoyow-org/yoyow-core/blob/master/scripts/exchange.rb

Introduction to Platform Integration

YOYOW is a media public chain based on blockchain technology. Its goal is to build a network that utilizes blockchain technology and uses decentralized consensus method to price contributions and provide equity returns for content production areas, enabling content producers, content investors, content filterers and eco-builders to get reasonable incentives and rewards. YOYOW focuses on the underlying technology and large profit distribution settings, and assigns greater autonomy to integrated platforms and developers. Platforms and developers can build their own blockchain-based content products by relying on YOYOW without much blockchain expertise.

Integration of the media platforms can bring the following advantages:

	Realizing the integration of current business + blockchain, introducing a reasonable incentive mechanism, and effectively enhancing user enthusiasm

	Easily realizing the issuance of token assets and getting convenient token monetization channels

	Can directly get YOYOW incentives

	Can share all current users of YOYOW

Introduction to YOYOW Ecology

User Roles

In the system ecology, in order to balance efficiency and fairness, YOYOW has designed a complete user system, including common users, platforms, committees, and witnesses.

Common Users

Common users are the main participants of the YOYOW network. In the YOYOW network, common users share a unified account system on each platform, and have the rights of transfers, election, etc.

Platforms

The platform is a special kind of user. Common user that deposits a collateral of a certain amount of YOYO tokens can be called a platform.
Common users can authorize the platform through the YOYOW wallet, and the authorized platform uses its Tipping authority for cross-site login, content rating, content posting, comments, etc., and common users can also revoke authorization at any time. After integration, the platforms can get token incentives of the YOYOW network.

Committees

The committee is the governing body of the YOYOW network, responsible for initiating and voting on the proposals. The content of the proposals is mainly to adjust dozens of adjustable parameters of the system, such as the rate of various transactions, the highest scoring weight, etc., including as well the block production interval, block rewards, etc.
The committee candidates are voted in by the users of YOYOW and the users can withdraw their votes at any time to ensure that the resolutions of the committee truly reflect the wishes of the majority of the token holders.

Witnesses

The witness is the producer of the block, responsible for collecting the various transactions of the broadcast and packing them into the blocks, so the witnesses producing blocks can also get the corresponding YOYO token as returns.

The witnesses include Top witnesses, Standby witnesses, and Miner witnesses.

Under the current mechanism, YOYOW users can fully exercise their rights. Both the committee and the witnesses are elected by votes, and all is decided according to the number of votes. Users can vote for an account that is willing to participate in community building and is willing to contribute to the community. At the same time, each vote is valid for 90 days, which guarantees the vitality of the committee and the witness team.

Private Key and Assets

Private Key System

In the blockchain project, the private key is the top priority of the account. However, when a user does any operation and uses the account private key to sign, it will undoubtedly greatly increase the risk of the account. Considering the different security levels of different authorities, the three-level key system is set in the YOYOW system: the Owner Key, the Active Key, and the Secondary Key. The Owner Key is the key of highest authority, and the Owner Key should not be used unless it is absolutely necessary. The Active Key can operate the balance. The Secondary Key can operate the Tipping, and can also be used for posting, giving likes, login authentication, etc.

Simply speaking:

	The Owner key is the core. If other low-level keys are lost, you can use the Owner key to reset and update. Therefore, it must be kept properly and once lost, it cannot be retrieved.

	For fund operations such as transfer, you can use the Active key.

	The users who want to authorize the platforms only need to grant the Secondary key (Tipping authority), through which the platforms can act as proxy for the users to post, give likes and make small-amount transfers.

In addition to the asset-related 3-level keys, there is also a Memo Key used to encrypt and view the note information for the transactions.

Each of the above groups of keys consists of a pair of public and private key pairs. The public key is 53 characters starting with YYW and the private key is 51 characters. Each key can be viewed through web wallet [https://wallet.yoyow.org/] (see: yoyow keys tutorial [https://steemit.com/cn/@peterchen145/yoyow-keys-tutorial-yoyow]). For example:

[image: web wallet private key screenshot]

Types of Assets

There are three types of assets in the YOYOW network: YOYO token, user-issued assets (UIA), and bonus points.

YOYO Token

In YOYO’s account, the base asset is YOYO token, and there are two places to store: 『balance』and『tipping』.

	『Balance』 has a high level of security, and it is recommended that a large amount of YOYO be stored in the balance.

	『Tipping』, which can be understood as password-free payment, is for small amount of savings and transfer. When the user grants the authority of tipping to the platform, the platform can even have the right to operate “Tipping”.

User-Issued Assets（UIA）

Users can issue custom assets: users can create Tokens that circulate within their own platforms based on their business. A convenient exchange method between the user-issued assets (UIA) and YOYO will be provided subsequently, sharing convenient monetization channels.

Bonus Points

Bonus Points are rewards for YOYO holders. When your account holds YOYO, Bonus Points will be accumulated over time. There is an upper limit for Bonus Points accumulated, and you have to withdraw Bonus Points manually.

Using Bonus Points

At present, the only use of Bonus Points is for paying fees. You can use Bonus Points to offset fees. 100 Bonus Points can be used as 1 YOYO.

When the “balance” of your account reaches a certain amount of YOYO, the system will automatically accumulate Bonus Points for you. There is a limit to the highest amount of accumulation.

Using Method for Bonus Points

Bonus Points are withdrawn manually. You can manually withdraw available Bonus Points to your account or other accounts of your contact as incentives. Bonus Points can be rented to others for use.

YOYOW introduces Bonus Points, which can reduce the expenditure of common users’ small amount of fees (content release, likes, etc.) and increase the enthusiasm of users. In other blockchain projects, different levels of fees are required for chain operations. For YOYOW, this bonus point system makes it possible for users to operate for free.

Integration Process

[image: Integration Process Diagram]

Integration Process

Account Registration

To apply for a YOYOW account, you need to submit a registration page. Access the webpage https://wallet.yoyow.org/#/create-account, set the password, and YOYOW will automatically return the account name and account private key. The account name is the number UID (yoyo number), the private key is the Owner key. The private key will not be saved by the system, and will only appear once upon successful registration. It has the highest authority to manage the account. Please save it properly. It is not recommended to save it to a computer, net-disk or cloud note. You can write it on multiple notes and save it to a few more secure locations, ensuring that they will not be lost or leaked.

[image: Registration]

[image: Successful Registration]

After completing the registration, you can view your Owner key, Active key, Secondary key and Memo key in 『Settings』– 『Accounts』.

Updating to Platform Accounts

A common account needs to be upgraded to a platform account to obtain the user’s authorization. The upgraded platform currently needs to deposit a collateral of 10,000 YOYO and a fee of 1000 YOYO. This operation is temporarily performed through the YOYOW client. You need to perform the create_platform operation through the interface, and set the name of the platform, the symbol of the Token and the related url address and other extra data, such as the API access interface provided by the platform.

For details on how to deposit the upgraded platform account, see Creating YOYOW Platform Account from scratch.

Authorization Certification

YOYOW provides an authorization certification similar to OAuth. YOYOW provides middleware to facilitate platform integration. The middleware provides interfaces such as signature platform (sign), signaturea authentication (verify), and return QR code on signature platform (SignQR) (see: 《yoyow-middleware》#About Auth). The platform can generate a binding link through the sign or signQR interface in the SDK, and can verify user authorization through the verify interface. Through authorization, the platform can obtain the user’s Tipping management authority and login authorization.

Authorization Process：

[image: OAuth Process]

Note:

	Considering security issues, the YOYOW middleware SDK is strongly recommended to be deployed separately on intranet machines without opening IP and ports.

	YOYOW middleware SDK requires Tipping authority. When using, remember to modify the default Secondary key and Memo key in the configuration file.

Issuing Assets

The media can issue its own assets as needed, and the number of assets and exchange rates can be set by their own needs. The yoyow platform provides the convenience of circulation and trading for set assets.

The issued assets are temporarily operated by the create_asset function of the wallet client, and the total amount of assets, the transaction rate of the transaction, and the whitelist and blacklist settings need to be specified.

See：《YOYOW Wallet API》#create_assets.

User Incentives

The platform can specify the incentive plan for its own business needs. The target of the incentive can be YOYO or the toekns issued by itself.

Taking Biask as an example, Biask has been integrated to the YOYOW network. In the platform of Biask, the system reward period is one week, and the likes, the like energy and the number of comments obtained by the user’s posted content in a week are regularly counted and a bonus value is calculated, and YOYO token will be issued according to the proportion of the user’s bonus value. According to the user’s activity and content contribution value, the user will have prestige attributes. If praised by users with higher prestige, the users get higher like energy, and the liked users will also get higher rewards. Users can withdraw YOYO from the web wallet to other places for trading.

Paid Reading/Rewards

Through the YOYOW network, the platform can easily integrate to the system of cryptocurrency rewards/paid reading.

The platform can encourage users to forward transactions between them, and build a platform for paid reading and rewarding content based on YOYO assets or assets issued by itself. YoYow’s blockchain service ensures that forwarding transactions between users is secure, non-tamperable, and transparent, thereby motivating users to deliver higher quality content.

More:

	YOYOW Middleware https://github.com/yoyow-org/yoyow-middleware.

Creating YOYOW Platform Account from scratch

This article will take the testnet environment as an example to introduce the operations required to create the platform, such as registering an account in the web wallet and creating a platform through the command line in the cli.

Resources Required:

Official Network：

Web Wallet Address： https://wallet.yoyow.org.Official Network CLI Download： https://github.com/yoyow-org/yoyow-core/releases

Testnet：

Web Wallet Testing Address： http://demo.yoyow.org:8000.Testnet CLI Download： https://github.com/yoyow-org/yoyow-core-testnet/releases/.

1. Creating Accounts, Getting Private Keys

Take the testnet as an example, visit testnet web wallet address [http://demo.yoyow.org:8000] registration or login account:

[image: creating testnet accounts]

The steps for platform owners to get the private keys of different authority levels are as follows: log in to the wallet –> settings on the left menu –> account –> view authority –> click “display private key” on the right side of the corresponding authority key –> enter the password to display the private key –> copy the private key you see to the configuration.

[image: Get Corresponding Private Keys]

2. Creating Platforms

It takes at least 11,000 YOYO to create a platform, of which 10000 is the minimum collateral deposit and 1000 is the platform fee (12000 test tokens are given for testnet registration)

2.1 Starting the Client Wallet

Take the testnet as an example, download the yoyow-client in the corresponding environment from Testnet CLI Download [https://github.com/yoyow-org/yoyow-core-testnet/releases/].

2.1.1 Starting with Parameters

Take Ubuntu as an example, connect the node of the testnet (ws://47.52.155.181:10011)

./yoyow_client -s ws://47.52.155.181:10011

If it prompts “insufficient authority”

sudo chmod a+x *

2.1.2 Starting with a Configuration File

Create a wallet.json file under the same path with the cli wallet

write

{
 "chain_id": "3505e367fe6cde243f2a1c39bd8e58557e23271dd6cbf4b29a8dc8c44c9af8fe",
 "pending_account_registrations": [],
 "pending_witness_registrations": [],
 "labeled_keys": [],
 "blind_receipts": [],
 "ws_server": "ws://47.52.155.181:10011",
 "ws_user": "",
 "ws_password": ""
}

then you can directly run

./yoyow_client

2.2 Setting Wallet Password

Upon successful connection, it shows

Please use the set_password method to initialize a new wallet before continuing

new >>>

Execute

new >>> set_password your password

Return

set_password your password
null
locked >>>

Execute

locked >>> unlock your password

Return

unlock 123
null
unlocked >>>

means successful unlock

2.3 Importing Active Keys

unlocked >>> import_key yoyow account uid active keys

For example:

unlocked >>> import_key 120252179 5JwREzpwb62iEcD6J6WXs2fbn1aSKWQWvGLNCqAEYwS31EHD7i4

Return

1937037ms th_a wallet.cpp:820 save_wallet_file] saving wallet to file wallet.json
true

If it doesn't return true, please check if your uid and private key are correct.

2.4 Creating Platforms

Unlocked >>> create_platform yoyow account uid "platform name" collateral amount currency symbol "platform url address" "platform extra data json string" true

For example:

unlocked >>> create_platform 235145448 "myPlatform" 10000 YOYO "www.example.com" "{}" true

Return

{
 "ref_block_num": 33094,
 "ref_block_prefix": 2124691028,
 "expiration": "2018-02-07T08:40:30",
 "operations": [[
 20,{
 "fee": {
 "total": {
 "amount": 1029296,
 "asset_id": 0
 },
 "options": {
 "from_csaf": {
 "amount": 1029296,
 "asset_id": 0
 }
 }
 },
 "account": 235145448,
 "pledge": {
 "amount": 1000000000,
 "asset_id": 0
 },
 "name": "myPlatform",
 "url": "www.example.com",
 "extra_data": "{}"
 }
]
],
 "signatures": [
 "1f08b704dd5ccf7e05e5dec45b06ad41e6382f5dd528e3f644d52ff4fb29c2040507544d5e94b84d77d70edcd68bb35b0cded0db87816ae64979ba98eeb641d5d7"
]
}

2.5 Updating Platforms

Unlocked >>> update_platform yoyow account uid "platform name" collateral amount currency symbol "platform url address" "platform extra data json string" true

For example:

unlocked >>> update_platform 235145448 "newplatformname" 10000 YOYO null null true

the way of returning is the same with creating a platform

The platform name, platform url address, and platform extra data are filled in with null if there is no change. As the operation in the example, the platform url address and extra data will not be changed.

2.6 Platform Extra Data Protocol

The extra data of extra_data in the platform attribute is optional content. The relevant information in the YOYOW login protocol specifies the JSON object format string format and follows the format below.

{

"login":"http://example/login" Platform scan-code login request interface

"description":"platform description" platform description

"image":"http://example.image.jpg" platform image，platform image displayed in yoyow app 1.1

"h5url":"http://exampleH5.com" Platform h5 address, skip to the h5 page if the app hasn't been installed

"packagename":"com.example.app" Platform android jump

"urlscheme":"example://" Platform ios jump

}

More Materials

	Web Wallet：https://wallet.yoyow.org/

	Client Wallet: https://yoyow.org/client1.html

	DPoS.Club: Creating the best DPoS technology exchange forum [https://dpos.club/topics/node8]

Index

Authors

	Eric (New contributor)

	Anthony

Installation

Install the package with pip:

$ pip install guzzle_sphinx_theme

YOYOW docs

This repo is the for documtents of YOYOW. Please visit 中文版 [https://wiki.yoyow.org/zh/latest/] or English [https://wiki.yoyow.org/en/latest/].

If you are looking for source code. Please visit https://github.com/yoyow-org.

Usage

To use this template, simply update it:

import read-the-docs-template

Private Blockchain

【To be Supplemented】

 _images/oauth_process.png
Yoyow Web
Wallet

User

Platform

Yoyow
Middle-ware

5. Verify the platform info,
login the web wallet, and
authorize the platform.

6. retum 302,
redirect to platform

1. Request for Bind on Account

4. Return 302, redirect to the
web wallet with state infos

7. Access the platform
authorization

10. return the verification result

" Return [sign, time, platform, ur!

8. verify the authorization info

9. Return the verification result

2. yoyow SDK sign

_images/signup.png
Register

Note:
Your password is ot stored n the browser o i central server please ensure that
you remember this password!

Create Account

‘Account Restore

Account Reset

_images/create_asset.png
Token Issue

Token symbol Max Supply
926091

Issue Token

Precision

Token Description

X

Token Symbol
Lo Max Supply o
Precision)

Token Desc

Fees - TEST

Settings

Cancel

_images/joinup_process.png
Account Registration

Updating to Platform Accounts.

Authorization
Certfication

Issuing Assets

User Incentives

Paid Reading/
Rewards

_images/step3.png
Secondary key Secondary key, authorize to media platform operation or tipping account

Private Key
Click to show

QR code

K g L]

Memokey ~ Memo key

RS e,

YYWSVYkqLXqwxaELwkjwiiAvBxcHbYm3vZxonU3 YsAjgrE9AZ8BpY

[

_images/step4.png
Api status: open

Login done

chain_id: 3505e367fe6cde243f2alc39bd8e58557e€23271dd6cbf4b29a8dc8c44c9af8fe
network_name: Test

Api connected......

synced , chainstore ready

HTTP opened port: 3000

_images/signup_success.png
@ Congratulations, registered successfully!

YOYOW ID:
228621637
Account Private Key:

L et T S R
[

Account Pivate Key owns the supreme suthority,can be used for account
recovery and password reset!

Private key is NOT stored in the local walle or browser. Please keep it safe s it
cannot b recovered!

)1 have already backup the Account Private Key.

_images/step1.png
Register

Note:
Your password is ot stored n the browser o i central server please ensure that
you remember this password!

Create Account

‘Account Restore

Account Reset

_images/yoyow99.png

_static/ajax-loader.gif

_images/account_keys.png
#250926091

Token

Contacts

History

Gateway

Overview

m?

Owner key, only can manage other permissions of the account

ﬁ YYW6e91R3cUzDVNZaMgPEU6d3CaRT34wWpSixttdfdhktoX 3Ezsb

Memo key

E -FEI Public Key:

[=]

YYW8VnwiIDpSiGEKPacPN3nPET]LBQcsGnihcRynikEE9Ps8eWCht

(eon e

_images/architecture.png
Web Server

YOYOW
Middleware

YOYOW P2P Network

nav.xhtml

 Table of Contents

 		
 Welcome to YOYOW’s documentation!

 		
 Introduction to YOYOW

 		
 YOYOW Role Conception

 		
 Common Users

 		
 Platforms

 		
 Committee

 		
 Witnesses

 		
 Private Key System

 		
 Types of Assets

 		
 YOYO Token

 		
 User-Issued Assets（UIA）

 		
 Bonus Points

 		
 White Paper

 		
 Testnet

 		
 Executable Files for Testnet

 		
 Testnet Web Wallet

 		
 Running the Testnet Node

 		
 Testnet Explorer

 		
 Testnet Public Node

 		
 Running Testnet Wallet

 		
 Others

 		
 User Registration

 		
 Registering Accounts

 		
 Private Key Authority

 		
 Private Key Saving

 		
 Compiling and Running yoyow-core

 		
 Recommended Hardware Environment

 		
 Installation Dependence:

 		
 Compile Script:

 		
 Running:

 		
 Node Program

 		
 Client Program (Wallet)

 		
 Introduction to the Platform

 		
 Platform Requirements

 		
 Users Authorizing the Platform

 		
 Platform Related Operations

 		
 Getting Platform Number

 		
 Getting Platform Info

 		
 Checking Platform List

 		
 Creating Platforms

 		
 Undating Platform Info

 		
 Voting for Platforms

 		
 Authorizing Platforms

 		
 Canceling the Platform Authorization

 		
 Introduction to Witness

 		
 Functions of Witness

 		
 Witness Qualification (Collateral)

 		
 Ways to Become Witnessess

 		
 Rewards of Witnesses

 		
 Witness Election

 		
 Penalty Mechanism for Witnesses

 		
 Witnesses being Offline

 		
 Witness Related FAQ

 		
 Witness Operations

 		
 Witness Node Construction

 		
 Query

 		
 Getting Info of Witnesses

 		
 Query for Witness List

 		
 Creating Witnesses

 		
 Updating the Info of Witnesses

 		
 Witness Voting

 		
 Witness being Offline

 		
 Getting Witness Returns

 		
 Introduction to Committee

 		
 The Responsibilities of Committee

 		
 The Committee Setup

 		
 Candidates for the Committee

 		
 Committee Elections

 		
 Committee Proposals

 		
 Resignation of Committee Members

 		
 Committee Related Operations

 		
 Creating Committee Account

 		
 Updating Committee Account

 		
 Voting for Committee

 		
 Getting Info of Committee Members

 		
 Checking History of Current Candidates

 		
 Checking the Current Committee Proposals Not Implemented

 		
 Voting

 		
 Voting Qualification

 		
 Validity Period of Voting

 		
 Voting Method

 		
 Valid Vote Counting

 		
 Voting Proxies

 		
 Collateral

 		
 Platform Collateral

 		
 Committee Collateral

 		
 Miner Witness Collateral

 		
 Collateral Refunding

 		
 YOYO Token

 		
 Balance

 		
 Tipping

 		
 The Design of Balance and Tipping

 		
 User-Issued Assets (UIA)

 		
 Issuing Assets

 		
 Advanced Options

 		
 Bonus Points

 		
 Using Bonus Points

 		
 Acquisition of Bonus Points

 		
 Renting Bonus Points

 		
 Gifting Bonus Points

 		
 Asset Related Operations

 		
 Common Transfer

 		
 Query

 		
 Checking YOYO Balance in the Account

 		
 Checking All Assest Balances in the Account

 		
 About Bonus Points

 		
 Checking Bonus Points

 		
 Collecting the Bonus Points for the Time Being

 		
 Collecting the Bonus Points Accumulated before a Specific Time

 		
 User-Issued Assets

 		
 Getting Assets Info

 		
 Checking Assets List

 		
 Creating Assets

 		
 Issuing Assets

 		
 Updating Assets

 		
 Destroying Assets

 		
 Node API Descriptions

 		
 Node Connection Method

 		
 API Classification

 		
 Database API

 		
 1.1.1 get_required_signatures

 		
 1.1.2 get_accounts_by_uid

 		
 1.1.3 get_account_balances

 		
 1.1.4 get_post

 		
 1.1.5 get_posts_by_platform_poster

 		
 1.1.6 get_required_fee_data

 		
 1.1.7 get_full_accounts_by_uid

 		
 1.1.8 get_witness_by_account

 		
 1.1.9 get_witnesses

 		
 1.1.10 lookup_witnesses

 		
 1.1.11 get_committee_member_by_account

 		
 1.1.12 get_committee_members

 		
 1.1.13 lookup_committee_members

 		
 1.1.14 list_committee_proposals

 		
 1.1.15 lookup_accounts_by_name

 		
 1.1.16 get_platform_by_account

 		
 1.1.17 get_platforms

 		
 1.1.18 lookup_platforms

 		
 1.1.19 get_platform_count

 		
 1.1.20 get_assets

 		
 1.1.21 list_assets

 		
 1.1.22 lookup_asset_symbols

 		
 History API

 		
 1.2.1 get_relative_account_history

 		
 Wallet API Descriptions

 		
 Wallet Connection Method

 		
 Download Method：

 		
 Starting Method：

 		
 2.1 Tools API

 		
 2.1.1 calculate_account_uid

 		
 2.1.2 suggest_brain_key

 		
 2.1.3 get_transaction_id

 		
 2.2 Queries API

 		
 2.2.1 get_account

 		
 2.2.2 get_full_account

 		
 2.2.3 get_relative_account_history

 		
 2.2.4 list_account_balances

 		
 2.2.5 list_accounts_by_name

 		
 2.2.6 get_witness

 		
 2.2.7 list_witnesses

 		
 2.2.8 get_committee_member

 		
 2.2.9 list_committee_members

 		
 2.2.10 list_committee_proposals

 		
 2.2.11 get_platform_count

 		
 2.2.12 get_platform

 		
 2.2.13 list_platforms

 		
 2.2.14 get_asset

 		
 2.2.15 list_assets

 		
 2.3 Wallet/Private Key Management API

 		
 2.3.1 save_wallet_file

 		
 2.3.2 set_password

 		
 2.3.3 unlock

 		
 2.3.4 lock

 		
 2.3.5 import_key

 		
 2.3.6 dump_private_keys

 		
 2.3.7 list_my_accounts_cached

 		
 2.4 Operations/Transactions API

 		
 2.4.1 transfer

 		
 2.4.2 create_witness

 		
 2.4.3 update_witness

 		
 2.4.4 create_committee_member

 		
 2.4.5 update_committee_member

 		
 2.4.6 set_voting_proxy

 		
 2.4.7 update_witness_votes

 		
 2.4.8 update_committee_member_votes

 		
 2.4.9 collect_csaf_with_time

 		
 2.4.10 collect_csaf

 		
 2.4.11 create_platform

 		
 2.4.12 update_platform

 		
 2.4.13 update_platform_votes

 		
 2.4.14 account_auth_platform

 		
 2.4.15 account_cancel_auth_platform

 		
 2.4.16 create_asset

 		
 2.4.17 update_asset

 		
 2.4.18 enable_allowed_assets

 		
 2.4.19 update_allowed_assets

 		
 2.4.20 issue_asset

 		
 2.4.21 reserve_asset

 		
 2.4.22 override_transfer

 		
 YOYOW Middleware Instruction（Nodejs）

 		
 Deployment Start

 		
 Configuration File Description

 		
 Docker One-Click Deployment

 		
 Manual Deployment

 		
 Interface Descriptions

 		
 Request Documentation and Examples

 		
 Request for Returning Error Code Status Description

 		
 Security Request Verification

 		
 Descriptions of YOYOW Parameter Table and Fees

 		
 Instructions for Exchanges

 		
 Preparation

 		
 Hardware

 		
 Serivices

 		
 Account

 		
 Business Logic

 		
 Installation

 		
 Starting YOYOW Node

 		
 Starting YOYOW Client

 		
 First Run

 		
 Command: info

 		
 Command: get_block

 		
 Command: get_full_account

 		
 Command: transfer

 		
 Command: get_transaction_id

 		
 Command: get_relative_account_history

 		
 Command: collect_csaf

 		
 How to Close

 		
 Accessing the Client via HTTP-RPC

 		
 Processing Deposits

 		
 Checking Node Status

 		
 Checking Account History

 		
 Process Withdrawal Requests

 		
 Check Node Status

 		
 Checking Account Balance and Points

 		
 Sending Funds

 		
 Re-check / Follow-up

 		
 Trouble Shooting

 		
 Sample Code

 		
 Introduction to Platform Integration

 		
 Introduction to YOYOW Ecology

 		
 User Roles

 		
 Private Key and Assets

 		
 Integration Process

 		
 Account Registration

 		
 Updating to Platform Accounts

 		
 Authorization Certification

 		
 Issuing Assets

 		
 User Incentives

 		
 Paid Reading/Rewards

 		
 Creating YOYOW Platform Account from scratch

 		
 1. Creating Accounts, Getting Private Keys

 		
 2. Creating Platforms

 		
 2.1 Starting the Client Wallet

 		
 2.2 Setting Wallet Password

 		
 2.3 Importing Active Keys

 		
 2.4 Creating Platforms

 		
 2.5 Updating Platforms

 		
 2.6 Platform Extra Data Protocol

 		
 More Materials

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/up-pressed.png

_static/up.png

