
yodel Documentation
Release 0.3.0

Romain Clement

October 28, 2014

Contents

1 yodel package 3
1.1 Submodules . 3
1.2 Module contents . 14

2 Indices and tables 15

Python Module Index 17

i

ii

yodel Documentation, Release 0.3.0

Contents:

Contents 1

yodel Documentation, Release 0.3.0

2 Contents

CHAPTER 1

yodel package

1.1 Submodules

1.1.1 yodel.analysis module

This module provides classes for audio signal analysis such as spectral analysis.

class yodel.analysis.DFT(size)
Bases: builtins.object

The Discrete Fourier Transform allows to convert a time-domain signal into a frequency-domain spectrum.

Warning: It should not be used in practice for computational reasons, and should only be used for testing
purposes. Instead, prefer using the FFT.

Reference: “Digital Signal Processing, a practical guide for engineers and scientists”, Steven W. Smith

__init__(size)
Initialize the Discrete Fourier Transform.

Parameters size – length of the DFT (should only be a power of 2)

forward(real_signal, real_spec, imag_spec)
Compute the complex spectrum of a given real time-domain signal

Parameters

• real_signal – real time-domain input signal

• real_spec – real-part of the output complex spectrum

• imag_spec – imaginary-part of the output complex spectrum

inverse(real_spec, imag_spec, real_signal)
Compute the real time-domain signal of a given complex spectrum

Parameters

• real_spec – real-part of the complex spectrum

• imag_spec – imaginary-part of the complex spectrum

• real_signal – real time-domain output signal

class yodel.analysis.FFT(size)
Bases: builtins.object

3

yodel Documentation, Release 0.3.0

The Fast Fourier Transform is a faster algorithm for performing the DFT. It allows converting a time-domain
signal into a frequency-domain spectrum.

Reference: “Digital Signal Processing, a practical guide for engineers and scientists”, Steven W. Smith

__init__(size)
Initialize the Fast Fourier Transform.

Parameters size – length of the FFT (should only be a power of 2)

forward(real_signal, real_spec, imag_spec)
Compute the complex spectrum of a given real time-domain signal

Parameters

• real_signal – real time-domain input signal

• real_spec – real-part of the output complex spectrum

• imag_spec – imaginary-part of the output complex spectrum

inverse(real_spec, imag_spec, real_signal)
Compute the real time-domain signal of a given complex spectrum

Parameters

• real_spec – real-part of the complex spectrum

• imag_spec – imaginary-part of the complex spectrum

• real_signal – real time-domain output signal

class yodel.analysis.Window(size)
Bases: builtins.object

An analysis window function allows to reduce unwanted frequencies when performing spectrum analysis.

__init__(size)
Initialize the analysis window. By default, a flat window is applied. Use one of the provided methods to
make it Hanning or Hamming.

Parameters size – length of the analysis window

blackman(size)
Make a Blackman analysis window.

Parameters size – length of the analysis window

hamming(size)
Make a Hamming analysis window.

Parameters size – length of the analysis window

hanning(size)
Make a Hanning analysis window.

Parameters size – length of the analysis window

process(input_signal, output_signal)
Perform windowing on an input signal.

Parameters

• input_signal – input signal to be windowed

• output_signal – resulting windowed signal

4 Chapter 1. yodel package

yodel Documentation, Release 0.3.0

rectangular(size)
Make a rectangular (flat) window. This type of window does not have any affect when applied on an input
signal.

Parameters size – length of the analysis window

1.1.2 yodel.complex module

This module provides utility functions for complex numbers.

yodel.complex.modulus(real, imag)
Compute the modulus of a complex number.

Parameters

• real – real part of the complex number

• imag – imaginary part of the complex number

Return type modulus of complex number

yodel.complex.phase(real, imag)
Compute the phase of a complex number.

Parameters

• real – real part of the complex number

• imag – imaginary part of the complex number

Return type phase of complex number

1.1.3 yodel.conversion module

This module provides utility functions for various math conversions.

yodel.conversion.db2lin(dbval)
Convert a decibel (dB) value to the linear scale.

Parameters dbval – decibel value

Return type linear value

yodel.conversion.lin2db(linval)
Convert a linear value to the decibel (dB) scale.

Parameters linval – linear value

Return type decibel value

1.1.4 yodel.delay module

This module provides classes for delaying signals.

class yodel.delay.DelayLine(samplerate, maxdelay=1000, delay=0)
Bases: builtins.object

A delayline allows to delay a given signal by a certain amount of time or samples. Time-varying delay is
allowed.

1.1. Submodules 5

yodel Documentation, Release 0.3.0

__init__(samplerate, maxdelay=1000, delay=0)
Create a delayline.

Parameters

• samplerate – sample-rate in Hz

• maxdelay – maximum allowed delay in ms

• delay – initial delay in ms

clear()
Clear the current samples in the delayline with zeros. Every other state is kept (current delay, max delay).

process(input_signal, output_signal)
Delay an input signal by the current amount of delay.

Parameters

• input_signal – signal to be delayed

• output_signal – resulting delayed signal

process_sample(input_sample)
Delay an input sample by the current amount of delay.

Parameters input_signal – sample to be delayed

Returns resulting delayed sample

set_delay(delay)
Specify a new time delay value.

Parameters delay – new delay value in ms

1.1.5 yodel.filter module

This module provides classes for audio signal filtering.

class yodel.filter.Biquad
Bases: builtins.object

A biquad filter is a 2-poles/2-zeros filter allowing to perform various kind of filtering. Signal attenuation is at a
rate of 12 dB per octave.

Reference: “Cookbook formulae for audio EQ biquad filter coefficients”, Robert Bristow-Johnson
(http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt)

__init__()
Create an inactive biquad filter with a flat frequency response. To make the filter active, use one of the pro-
vided methods: low_pass(), high_pass(), band_pass(), all_pass(), notch(), peak(),
low_shelf(), high_shelf() and custom().

all_pass(samplerate, center, resonance)
Make an all-pass filter.

Parameters

• samplerate – sample-rate in Hz

• center – center frequency in Hz

• resonance – resonance or Q-factor

6 Chapter 1. yodel package

http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt

yodel Documentation, Release 0.3.0

band_pass(samplerate, center, resonance)
Make a band-pass filter.

Parameters

• samplerate – sample-rate in Hz

• center – center frequency in Hz

• resonance – resonance or Q-factor

custom(a0, a1, a2, b0, b1, b2)
Make a custom filter.

Parameters

• a0 – a[0] coefficient

• a1 – a[1] coefficient

• a2 – a[2] coefficient

• b0 – b[0] coefficient

• b1 – b[1] coefficient

• b2 – b[2] coefficient

high_pass(samplerate, cutoff, resonance)
Make a high-pass filter.

Parameters

• samplerate – sample-rate in Hz

• cutoff – cut-off frequency in Hz

• resonance – resonance or Q-factor

high_shelf(samplerate, cutoff, resonance, dbgain)
Make a high-shelf filter.

Parameters

• samplerate – sample-rate in Hz

• cutoff – cut-off frequency in Hz

• resonance – resonance or Q-factor

• dbgain – gain in dB

low_pass(samplerate, cutoff, resonance)
Make a low-pass filter.

Parameters

• samplerate – sample-rate in Hz

• cutoff – cut-off frequency in Hz

• resonance – resonance or Q-factor

low_shelf(samplerate, cutoff, resonance, dbgain)
Make a low-shelf filter.

Parameters

• samplerate – sample-rate in Hz

1.1. Submodules 7

yodel Documentation, Release 0.3.0

• cutoff – cut-off frequency in Hz

• resonance – resonance or Q-factor

• dbgain – gain in dB

notch(samplerate, center, resonance)
Make a notch filter.

Parameters

• samplerate – sample-rate in Hz

• center – center frequency in Hz

• resonance – resonance or Q-factor

peak(samplerate, center, resonance, dbgain)
Make a peak filter.

Parameters

• samplerate – sample-rate in Hz

• center – center frequency in Hz

• resonance – resonance or Q-factor

• dbgain – gain in dB

process(x, y)
Filter an input signal. Can be used for in-place filtering.

Parameters

• x – input buffer

• y – output buffer

process_sample(x)
Filter a single sample and return the filtered sample.

Parameters x – input sample

Return type filtered sample

reset()
Make the filter inactive with a flat frequency response.

class yodel.filter.Comb(samplerate, delay, gain)
Bases: builtins.object

A comb filter combines the input signal with a delayed copy of itself. Three types are available: feedback,
feedforward and allpass.

References: “Physical Audio Signal Processing”, Julius O. Smith (https://ccrma.stanford.edu/~jos/pasp/Comb_Filters.html)

“Introduction to Computer Music”, Nick Collins

__init__(samplerate, delay, gain)
Create a comb filter. By default, it is an allpass but one can select another type with feedback(),
feedforward() and allpass() methods.

Parameters

• samplerate – sample-rate in Hz

• delay – delay in ms

8 Chapter 1. yodel package

https://ccrma.stanford.edu/~jos/pasp/Comb_Filters.html

yodel Documentation, Release 0.3.0

• gain – gain between -1 and +1

allpass(delay, gain)
Make a feedforward comb filter.

Parameters

• delay – delay in ms

• gain – gain between -1 and + 1

feedback(delay, gain)
Make a feedback comb filter.

Parameters

• delay – delay in ms

• gain – gain between -1 and + 1

feedforward(delay, gain)
Make a feedforward comb filter.

Parameters

• delay – delay in ms

• gain – gain between -1 and + 1

process(input_signal, output_signal)
Filter an input signal.

Parameters

• input_signal – input signal

• output_signal – filtered signal

process_sample(input_sample)
Filter a single sample.

Parameters input_sample – input sample

Returns filtered sample

reset()
Clear the current comb filter state.

set_delay(delay)
Change the current delay of the comb filter.

Parameters delay – delay in ms

set_gain(gain)
Change the current gain of the comb filter.

Parameters gain – gain between -1 and + 1

class yodel.filter.Convolution(framesize, impulse_response)
Bases: builtins.object

The convolution filter performs FIR filtering using a provided impulse response signal.

Warning: It should not be used in practice for computational reasons, and should only be used for testing
purposes. Instead, prefer using the FastConvolution.

Reference: “Digital Signal Processing, a practical guide for engineers and scientists”, Steven W. Smith

1.1. Submodules 9

yodel Documentation, Release 0.3.0

__init__(framesize, impulse_response)
Create a convolution filter.

Parameters

• framesize – framesize of input buffers to be filtered

• impulse_response – the impulse response signal to used

process(input_signal, output_signal)
Filter an input signal with the impulse response. The length of the input signal must be the one defined at
filter creation.

The filtered output signal will be of the same length. The ‘tail’ of the convolution will be added to the
beginning of the next filtered signal.

To obtain the ‘tail’ of the convolution without filtering another signal, simply process an input signal filled
with zeros.

Parameters

• input_signal – input signal to be filtered

• output_signal – filtered signal

class yodel.filter.Custom(samplerate, framesize)
Bases: builtins.object

A custom filter allows to design precisely the frequency response of a digital filter. The filtering is then per-
formed with a FastConvolution filter.

Reference: “Digital Signal Processing, a practical guide for engineers and scientists”, Steven W. Smith

__init__(samplerate, framesize)
Create a custom filter with a flat frequency response. By default, the filter has a latency of (framesize/2)
samples.

Parameters

• samplerate – sample-rate in Hz

• framesize – framesize of input buffers to be filtered

design(freqresponse, db=True)
Create the filter impulse response from the specified frequency response.

The response must represent the desired spectrum, and of size (Nfft/2+1). The latency of the filter will be
of (Nfft/2) samples.

The values of the frequency bands can either be specified in linear scale (1 being flat) or in dB scale (0
being flat).

Parameters

• freqresponse – desired frequency response

• db – True if the frequency response is specified in dB

process(input_signal, output_signal)
Filter an input signal with the custom impulse response. The length of the input signal must be the one
defined at filter creation.

As with Convolution, the filtered output signal will be of the same length. The ‘tail’ of the convolution
will be added to the beginning of the next filtered signal.

10 Chapter 1. yodel package

yodel Documentation, Release 0.3.0

To obtain the ‘tail’ of the convolution without filtering another signal, simply process an input signal filled
with zeros.

Parameters

• input_signal – input signal to be filtered

• output_signal – filtered signal

class yodel.filter.FastConvolution(framesize, impulse_response)
Bases: builtins.object

The fast convolution filter performs FIR filtering using a provided impulse response signal.

This filter uses a faster algorithm than standard Convolution, based on the yodel.analysis.FFT.

Reference: “Digital Signal Processing, a practical guide for engineers and scientists”, Steven W. Smith

__init__(framesize, impulse_response)
Create a fast convolution filter.

Parameters

• framesize – framesize of input buffers to be filtered

• impulse_response – the impulse response signal to used

process(input_signal, output_signal)
Filter an input signal with the impulse response. The length of the input signal must be the one defined at
filter creation.

The filtered output signal will be of the same length. The ‘tail’ of the convolution will be added to the
beginning of the next filtered signal.

To obtain the ‘tail’ of the convolution without filtering another signal, simply process an input signal filled
with zeros.

Parameters

• input_signal – input signal to be filtered

• output_signal – filtered signal

class yodel.filter.ParametricEQ(samplerate, bands)
Bases: builtins.object

A parametric equalizer provides multi-band equalization of audio signals. The center frequency, the resonance
and the amplification (in dB) can be controlled individually for each frequency band.

__init__(samplerate, bands)
Create a parametric equalizer with a given number of frequency bands.

Parameters

• samplerate – sample-rate in Hz

• bands – number of bands (at least 2)

process(input_signal, output_signal)
Filter an input signal. Can be used for in-place filtering.

Parameters

• input_signal – input buffer

• output_signal – filtered buffer

1.1. Submodules 11

yodel Documentation, Release 0.3.0

set_band(band, center, resonance, dbgain)
Change the parameters for the selected frequency band.

Parameters

• band – index of the band (from 0 to (total number of bands - 1))

• cutoff – cut-off frequency in Hz

• resonance – resonance or Q-factor

• dbgain – gain in dB

class yodel.filter.SinglePole
Bases: builtins.object

A single pole filter is used to perform low-pass and high-pass filtering. Signal attenuation is at a rate of 6 dB per
octave.

Reference: “Digital Signal Processing, a practical guide for engineers and scientists”, Steven W. Smith

__init__()
Create an inactive single pole filter with a flat frequency response. To make the filter active, use one of the
provided methods: low_pass() and high_pass().

high_pass(samplerate, cutoff)
Make a high-pass filter.

Parameters

• samplerate – sample-rate in Hz

• cutoff – cut-off frequency in Hz

low_pass(samplerate, cutoff)
Make a low-pass filter.

Parameters

• samplerate – sample-rate in Hz

• cutoff – cut-off frequency in Hz

process(x, y)
Filter an input signal. Can be used for in-place filtering.

Parameters

• x – input buffer

• y – output buffer

process_sample(x)
Filter a single sample and return the filtered sample.

Parameters x – input sample

Return type filtered sample

reset()
Create an inactive single pole filter with a flat frequency response. To make the filter active, use one of the
provided methods.

class yodel.filter.StateVariable
Bases: builtins.object

12 Chapter 1. yodel package

yodel Documentation, Release 0.3.0

A state variable filter provides simultaneously low-pass, high-pass, band-pass and band-reject filtering. Like the
Biquad filter, signal attenuation is at a rate of 12 dB per octave. Nevertheless, the filter becomes unstable at
higher frequencies (around one sixth of the sample-rate).

__init__()
Create an inactive state variable filter with a flat frequency response. To make the filter active, use the
set() method.

process(x, hp, bp, lp, br)
Filter an input signal. Can be used for in-place filtering.

Parameters

• x – input buffer

• hp – high-pass filtered output

• bp – band-pass filtered output

• lp – low-pass filtered output

• br – band-reject filtered output

process_sample(x)
Filter a single sample and return the filtered samples.

Parameters x – input sample

Return type tuple (high-pass, band-pass, low-pass, band-reject)

reset()
Make the filter inactive with a flat frequency response.

set(samplerate, cutoff, resonance)
Specify the parameters of the filter.

Parameters

• samplerate – sample-rate in Hz

• cutoff – cut-off frequency in Hz

• resonance – resonance or Q-factor

class yodel.filter.WindowedSinc(samplerate, framesize)
Bases: builtins.object

A windowed sinc filter allows to separate one frequency band from another, using low_pass(),
high_pass(), band_pass() and band_reject() forms. Windowing is done using a Blackman
yodel.analysis.Window. The filtering is performed with a FastConvolution filter.

Reference: “Digital Signal Processing, a practical guide for engineers and scientists”, Steven W. Smith

__init__(samplerate, framesize)
Create a windowed sinc filter with a flat frequency response.

Parameters

• samplerate – sample-rate in Hz

• framesize – framesize of input buffers to be filtered

band_pass(center, bandwidth)
Make a band-pass filter with given center frequency and bandwidth. Lowering the bandwidth will increase
the size of the kernel filter, thus increasing the roll-off rate but also the computation cost.

Parameters

1.1. Submodules 13

yodel Documentation, Release 0.3.0

• center – center frequency in Hz

• bandwidth – frequency band width in Hz

band_reject(center, bandwidth)
Make a band-reject filter with given center frequency and bandwidth. Lowering the bandwidth will in-
crease the size of the kernel filter, thus increasing the roll-off rate but also the computation cost.

Parameters

• center – center frequency in Hz

• bandwidth – frequency band width in Hz

high_pass(cutoff, bandwidth)
Make a high-pass filter with given cutoff frequency and bandwidth. Lowering the bandwidth will increase
the size of the kernel filter, thus increasing the roll-off rate but also the computation cost.

Parameters

• cutoff – cut-off frequency in Hz

• bandwidth – frequency band width in Hz

low_pass(cutoff, bandwidth)
Make a low-pass filter with given cutoff frequency and bandwidth. Lowering the bandwidth will increase
the size of the kernel filter, thus increasing the roll-off rate but also the computation cost.

Parameters

• cutoff – cut-off frequency in Hz

• bandwidth – frequency band width in Hz

1.2 Module contents

Yodel (the Swiss Army knife for your sound) is an easy-to-use python package for digital audio signal processing,
analysis and synthesis. It is meant to provide a comprehensive set of tools to manipulate audio signals. It can be used
for prototyping as well as developing audio applications in Python.

14 Chapter 1. yodel package

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

15

yodel Documentation, Release 0.3.0

16 Chapter 2. Indices and tables

Python Module Index

y
yodel, 14
yodel.analysis, 3
yodel.complex, 5
yodel.conversion, 5
yodel.delay, 5
yodel.filter, 6

17

yodel Documentation, Release 0.3.0

18 Python Module Index

Index

Symbols
__init__() (yodel.analysis.DFT method), 3
__init__() (yodel.analysis.FFT method), 4
__init__() (yodel.analysis.Window method), 4
__init__() (yodel.delay.DelayLine method), 5
__init__() (yodel.filter.Biquad method), 6
__init__() (yodel.filter.Comb method), 8
__init__() (yodel.filter.Convolution method), 9
__init__() (yodel.filter.Custom method), 10
__init__() (yodel.filter.FastConvolution method), 11
__init__() (yodel.filter.ParametricEQ method), 11
__init__() (yodel.filter.SinglePole method), 12
__init__() (yodel.filter.StateVariable method), 13
__init__() (yodel.filter.WindowedSinc method), 13

A
all_pass() (yodel.filter.Biquad method), 6
allpass() (yodel.filter.Comb method), 9

B
band_pass() (yodel.filter.Biquad method), 6
band_pass() (yodel.filter.WindowedSinc method), 13
band_reject() (yodel.filter.WindowedSinc method), 14
Biquad (class in yodel.filter), 6
blackman() (yodel.analysis.Window method), 4

C
clear() (yodel.delay.DelayLine method), 6
Comb (class in yodel.filter), 8
Convolution (class in yodel.filter), 9
Custom (class in yodel.filter), 10
custom() (yodel.filter.Biquad method), 7

D
db2lin() (in module yodel.conversion), 5
DelayLine (class in yodel.delay), 5
design() (yodel.filter.Custom method), 10
DFT (class in yodel.analysis), 3

F
FastConvolution (class in yodel.filter), 11
feedback() (yodel.filter.Comb method), 9
feedforward() (yodel.filter.Comb method), 9
FFT (class in yodel.analysis), 3
forward() (yodel.analysis.DFT method), 3
forward() (yodel.analysis.FFT method), 4

H
hamming() (yodel.analysis.Window method), 4
hanning() (yodel.analysis.Window method), 4
high_pass() (yodel.filter.Biquad method), 7
high_pass() (yodel.filter.SinglePole method), 12
high_pass() (yodel.filter.WindowedSinc method), 14
high_shelf() (yodel.filter.Biquad method), 7

I
inverse() (yodel.analysis.DFT method), 3
inverse() (yodel.analysis.FFT method), 4

L
lin2db() (in module yodel.conversion), 5
low_pass() (yodel.filter.Biquad method), 7
low_pass() (yodel.filter.SinglePole method), 12
low_pass() (yodel.filter.WindowedSinc method), 14
low_shelf() (yodel.filter.Biquad method), 7

M
modulus() (in module yodel.complex), 5

N
notch() (yodel.filter.Biquad method), 8

P
ParametricEQ (class in yodel.filter), 11
peak() (yodel.filter.Biquad method), 8
phase() (in module yodel.complex), 5
process() (yodel.analysis.Window method), 4
process() (yodel.delay.DelayLine method), 6
process() (yodel.filter.Biquad method), 8

19

yodel Documentation, Release 0.3.0

process() (yodel.filter.Comb method), 9
process() (yodel.filter.Convolution method), 10
process() (yodel.filter.Custom method), 10
process() (yodel.filter.FastConvolution method), 11
process() (yodel.filter.ParametricEQ method), 11
process() (yodel.filter.SinglePole method), 12
process() (yodel.filter.StateVariable method), 13
process_sample() (yodel.delay.DelayLine method), 6
process_sample() (yodel.filter.Biquad method), 8
process_sample() (yodel.filter.Comb method), 9
process_sample() (yodel.filter.SinglePole method), 12
process_sample() (yodel.filter.StateVariable method), 13

R
rectangular() (yodel.analysis.Window method), 4
reset() (yodel.filter.Biquad method), 8
reset() (yodel.filter.Comb method), 9
reset() (yodel.filter.SinglePole method), 12
reset() (yodel.filter.StateVariable method), 13

S
set() (yodel.filter.StateVariable method), 13
set_band() (yodel.filter.ParametricEQ method), 11
set_delay() (yodel.delay.DelayLine method), 6
set_delay() (yodel.filter.Comb method), 9
set_gain() (yodel.filter.Comb method), 9
SinglePole (class in yodel.filter), 12
StateVariable (class in yodel.filter), 12

W
Window (class in yodel.analysis), 4
WindowedSinc (class in yodel.filter), 13

Y
yodel (module), 14
yodel.analysis (module), 3
yodel.complex (module), 5
yodel.conversion (module), 5
yodel.delay (module), 5
yodel.filter (module), 6

20 Index

	yodel package
	Submodules
	Module contents

	Indices and tables
	Python Module Index

