Yellowbrick Documentation
Release v1.5

The scikit-yb developers

Aug 21, 2022

CONTENTS

1 Recommended Learning Path 3
2 Contributing 5
3 Concepts & API 7
4 Visualizers 9
4.1 Feature Visualization e e e e e e e e e e 9
4.2 Classification Visualization e e e e e e 9
4.3 Regression Visualization L. 10
4.4 Clustering Visualization e e e e e e e e 10
4.5 Model Selection Visualizationo e e e e e e e e e 10
4.6 Target Visualization L 10
47 Text Visualization e e e e e e e e e e e e e 10
5 Getting Help 11
6 Find a Bug? 13
7 Open Source 15
8 Table of Contents 17
8.1 Quick Start e e e e e e e e e e e e e e e e 17
8.2 Model Selection Tutorial e e e e e e 25
8.3 Visualizersand APL L e e e e e e 34
84 ONEliners i i e e e e e e e e e e e e 376
8.5 Contributing e e e e e e e e e e 387
8.6 Effective Matplotlib L e e 412
8.7 Yellowbrick for Teachers e e 418
8.8 Gallery e e 418
8.9 AbOUL e e e e e e e e e 424
8.10 Frequently Asked QUEStIONS o o i e e e e e e e e e e e e e 429
8.11 User Testing Instructions o o i e e 432
8.12 Codeof Conduct e e e e e e e e e e e e e e 434
8.13 Changelog L e e e 434
.14 GOVEIMANCE . . . v v v v v v e 453
9 Indices and tables 489
Python Module Index 491

Index 493

Yellowbrick Documentation, Release v1.5

Class Prediction Error for GaussianNB

8000
8
3 6000
5
3
g
s
S 4000
2
£
2
2000
— I
0 —_——
= 9 <
5 8 =
actual class
Residuals for Ridge Model
"
g
-4

®mm TrainR?=0.610 '
o mmm TestR?=0628 | |

10 20 EY 'y 50 60 0

Predicted Value Distribution

KMeans Intercluster Distance Map (via MDS)

U4

N

® /mz //
membersmp‘i ! —

A f\\/ ®

fe

PCt

PC2

250000

200000

150000

distortion score

100000

50000

P Recall Curve for L
i
—— binary PR curve
~=+ Avg Precision=0.95
00 02 04 06 08
Recall

Prediction Error for Lasso
== bestfit
70—~ identity
® R?=0.628

50
> 40
EY
’ 3
10
L,
0 2 N 4 N 0 70
y
Distortion Score Elbow for KMeans Clustering
4 5 6 7 8 9 10

(or score)

error

00

156

155

154

153

1152

1151

1150

1149

cluster label
IS

Threshold Plot for RandomForestClassifier

— precision
—— recal
—f

- =044
— queve rate

02 04 06 08 10
discrimination threshold

LassoCV Alpha Error

alpha

Silhouette Plot of KMeans Clustering for 1000 Samples in 9 Centers

01 00 01 02 03 04 05 06 07 08 09

silhouette coefficient values

Yellowbrick extends the Scikit-Learn API to make model selection and hyperparameter tuning easier. Under the hood,

it’s using Matplotlib.

CONTENTS

Yellowbrick Documentation, Release v1.5

2 CONTENTS

CHAPTER
ONE

RECOMMENDED LEARNING PATH

. Check out the Quick Start, try the Model Selection Tutorial, and check out the Oneliners.

. Use Yellowbrick in your work, referencing the Visualizers and API for assistance with specific visualizers and
detailed information on optional parameters and customization options.

. Star us on GitHub and follow us on Twitter (@scikit_yb) so that you’ll hear about new visualizers as soon as
they’re added.

https://github.com/DistrictDataLabs/yellowbrick/
https://twitter.com/scikit_yb

Yellowbrick Documentation, Release v1.5

4 Chapter 1. Recommended Learning Path

CHAPTER
TWO

CONTRIBUTING

Interested in contributing to Yellowbrick? Yellowbrick is a welcoming, inclusive project and we would love to have
you. We follow the Python Software Foundation Code of Conduct.

No matter your level of technical skill, you can be helpful. We appreciate bug reports, user testing, feature requests,
bug fixes, product enhancements, and documentation improvements.

Check out the Contributing guide!
If you’ve signed up to do user testing, head over to the User Testing Instructions.
Please consider joining the Google Groups Listserv listserve so you can respond to questions.

Thank you for your contributions!

http://www.python.org/psf/codeofconduct/
https://groups.google.com/forum/#!forum/yellowbrick

Yellowbrick Documentation, Release v1.5

6 Chapter 2. Contributing

CHAPTER
THREE

CONCEPTS & API

Yellowbrick Documentation, Release v1.5

8 Chapter 3. Concepts & API

CHAPTER
FOUR

VISUALIZERS

The primary goal of Yellowbrick is to create a sensical API similar to Scikit-Learn.

Visualizers are the core objects in Yellowbrick. They are similar to transformers in Scikit-Learn. Visualizers can wrap
a model estimator - similar to how the “ModelCV” (e.g. RidgeCV, LassoCV) methods work.

Some of our most popular visualizers include:

4.1 Feature Visualization

* Rank Features: pairwise ranking of features to detect relationships

* Parallel Coordinates: horizontal visualization of instances

* Radial Visualization: separation of instances around a circular plot

* PCA Projection: projection of instances based on principal components

* Manifold Visualization: high dimensional visualization with manifold learning

e Joint Plots: direct data visualization with feature selection

4.2 Classification Visualization

* Class Prediction Error: shows error and support in classification

Classification Report: visual representation of precision, recall, and F1

ROC/AUC Curves: receiver operator characteristics and area under the curve

Precision-Recall Curves: precision vs recall for different probability thresholds

Confusion Matrices: visual description of class decision making

Discrimination Threshold: find a threshold that best separates binary classes

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html

Yellowbrick Documentation, Release v1.5

4.3 Regression Visualization

Prediction Error Plot: find model breakdowns along the domain of the target
Residuals Plot: show the difference in residuals of training and test data
Alpha Selection: show how the choice of alpha influences regularization

Cook’s Distance: show the influence of instances on linear regression

Clustering Visualization

K-Elbow Plot: select k using the elbow method and various metrics
Silhouette Plot: select k by visualizing silhouette coefficient values

Intercluster Distance Maps: show relative distance and size/importance of clusters

Model Selection Visualization

Validation Curve: tune a model with respect to a single hyperparameter
Learning Curve: show if a model might benefit from more data or less complexity
Feature Importances: rank features by importance or linear coefficients for a specific model

Recursive Feature Elimination: find the best subset of features based on importance

4.6 Target Visualization

con

Balanced Binning Reference: generate a histogram with vertical lines showing the recommended value point to
bin the data into evenly distributed bins

Class Balance: see how the distribution of classes affects the model

Feature Correlation: display the correlation between features and dependent variables

Text Visualization

Term Frequency: visualize the frequency distribution of terms in the corpus

t-SNE Corpus Visualization: use stochastic neighbor embedding to project documents
Dispersion Plot: visualize how key terms are dispersed throughout a corpus

UMAP Corpus Visualization: plot similar documents closer together to discover clusters

PosTag Visualization: plot the counts of different parts-of-speech throughout a tagged corpus

and more! Visualizers are being added all the time. Check the examples (or even the develop branch). Feel free to
tribute your ideas for new Visualizers!

10

Chapter 4. Visualizers

https://github.com/DistrictDataLabs/yellowbrick/tree/develop

CHAPTER
FIVE

GETTING HELP

Can’t get someting to work? Here are places you can find help.
1. The docs (you’re here!).
2. Stack Overflow. If you ask a question, please tag it with “yellowbrick”.
3. The Yellowbrick Google Groups Listserv.

4. You can also Tweet or direct message us on Twitter @scikit_yb.

11

http://stackoverflow.com/questions/tagged/yellowbrick
https://groups.google.com/forum/#!forum/yellowbrick
https://twitter.com/scikit_yb

Yellowbrick Documentation, Release v1.5

12 Chapter 5. Getting Help

CHAPTER
SIX

FIND A BUG?

Check if there’s already an open issue on the topic. If needed, file an issue.

13

https://github.com/DistrictDataLabs/yellowbrick/issues/
https://github.com/DistrictDataLabs/yellowbrick/issues/

Yellowbrick Documentation, Release v1.5

14 Chapter 6. Find a Bug?

CHAPTER
SEVEN

OPEN SOURCE

The Yellowbrick license is an open source Apache 2.0 license. Yellowbrick enjoys a very active developer community;
please consider Contributing!

Yellowbrick is hosted on GitHub. The issues and pull requests are tracked there.

15

https://github.com/DistrictDataLabs/yellowbrick/blob/master/LICENSE.txt
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/DistrictDataLabs/yellowbrick/
https://github.com/DistrictDataLabs/yellowbrick/issues/
https://github.com/DistrictDataLabs/yellowbrick/pulls

Yellowbrick Documentation, Release v1.5

16 Chapter 7. Open Source

CHAPTER
EIGHT

TABLE OF CONTENTS

8.1 Quick Start

If you’re new to Yellowbrick, this guide will get you started and help you include visualizers in your machine learning
workflow. Before we begin, however, there are several notes about development environments that you should consider.

Yellowbrick has two primary dependencies: scikit-learn and matplotlib. If you do not have these Python packages, they
will be installed alongside Yellowbrick. Note that Yellowbrick works best with scikit-learn version 0.20 or later and
matplotlib version 3.0.1 or later. Both of these packages require some C code to be compiled, which can be difficult on
some systems, like Windows. If you’re having trouble, try using a distribution of Python that includes these packages
like Anaconda.

Yellowbrick is also commonly used inside of a Jupyter Notebook alongside Pandas data frames. Notebooks make it
especially easy to coordinate code and visualizations; however, you can also use Yellowbrick inside of regular Python
scripts, either saving figures to disk or showing figures in a GUI window. If you’re having trouble with this, please
consult matplotlib’s backends documentation.

Note: Jupyter, Pandas, and other ancillary libraries like the Natural Language Toolkit (NLTK) for text visualizers are
not installed with Yellowbrick and must be installed separately.

8.1.1 Installation

Yellowbrick is a Python 3 package and works well with 3.4 or later. The simplest way to install Yellowbrick is from
PyPI with pip, Python’s preferred package installer.

$ pip install yellowbrick

Note that Yellowbrick is an active project and routinely publishes new releases with more visualizers and updates. In
order to upgrade Yellowbrick to the latest version, use pip as follows.

$ pip install -U yellowbrick

You can also use the -U flag to update scikit-learn, matplotlib, or any other third party utilities that work well with
Yellowbrick to their latest versions.

If you’re using Anaconda, you can take advantage of the conda utility to install the Anaconda Yellowbrick package:

conda install -c districtdatalabs yellowbrick

If you’re having trouble with installation, please let us know on GitHub.

17

http://scikit-learn.org/
http://matplotlib.org/
https://anaconda.org
http://jupyter.org/
http://pandas.pydata.org/
https://matplotlib.org/faq/usage_faq.html#what-is-a-backend
https://pypi.python.org/pypi/yellowbrick
https://docs.python.org/3/installing/
https://conda.io/docs/intro.html
https://anaconda.org/DistrictDataLabs/yellowbrick

Yellowbrick Documentation, Release v1.5

Once installed, you should be able to import Yellowbrick without an error, both in Python and inside of Jupyter note-
books. Note that because of matplotlib, Yellowbrick does not work inside of a virtual environment on macOS without
jumping through some hoops.

8.1.2 Using Yellowbrick

The Yellowbrick API is specifically designed to play nicely with scikit-learn. The primary interface is therefore a
Visualizer — an object that learns from data to produce a visualization. Visualizers are scikit-learn Estimator objects
and have a similar interface along with methods for drawing. In order to use visualizers, you simply use the same
workflow as with a scikit-learn model, import the visualizer, instantiate it, call the visualizer’s £it () method, then in
order to render the visualization, call the visualizer’s show() method.

For example, there are several visualizers that act as transformers, used to perform feature analysis prior to fitting a
model. The following example visualizes a high-dimensional data set with parallel coordinates:

from yellowbrick.features import ParallelCoordinates

visualizer = ParallelCoordinates()
visualizer.fit_transform(X, y)
visualizer.show()

As you can see, the workflow is very similar to using a scikit-learn transformer, and visualizers are intended to be
integrated along with scikit-learn utilities. Arguments that change how the visualization is drawn can be passed into
the visualizer upon instantiation, similarly to how hyperparameters are included with scikit-learn models.

The show() method finalizes the drawing (adding titles, axes labels, etc) and then renders the image on your behalf.
If you’re in a Jupyter notebook, the image should just appear in the notebook output. If you're in a Python script, a
GUI window should open with the visualization in interactive form. However, you can also save the image to disk by
passing in a file path as follows:

visualizer.show(outpath="pcoords.png")

The extension of the filename will determine how the image is rendered. In addition to the .png extension, .pdf is
also commonly used for high-quality publication ready images.

Note: Data input to Yellowbrick is identical to that of scikit-learn. Datasets are usually described with a variable X
(sometimes referred to simply as data) and an optional variable y (usually referred to as the target). The required data X
is a table that contains instances (or samples) which are described by features. X is therefore a two-dimensional matrix
with a shape of (n, m) where n is the number of instances (rows) and m is the number of features (columns). X can be
a Pandas DataFrame, a NumPy array, or even a Python lists of lists.

The optional target data, y, is used to specify the ground truth in supervised machine learning. y is a vector (a one-
dimensional array) that must have length n — the same number of elements as rows in X. y can be a Pandas Series, a
Numpy array, or a Python list.

Visualizers can also wrap scikit-learn models for evaluation, hyperparameter tuning and algorithm selection. For
example, to produce a visual heatmap of a classification report, displaying the precision, recall, F1 score, and support
for each class in a classifier, wrap the estimator in a visualizer as follows:

from yellowbrick.classifier import ClassificationReport
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()

(continues on next page)

18 Chapter 8. Table of Contents

http://scikit-learn.org/stable/developers/contributing.html#apis-of-scikit-learn-objects

Yellowbrick Documentation, Release v1.5

(continued from previous page)

visualizer = ClassificationReport(model)

visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.show()

Only two additional lines of code are required to add visual evaluation of the classifier model, the instantiation of a
ClassificationReport visualizer that wraps the classification estimator and a call to its show() method. In this
way, Visualizers enhance the machine learning workflow without interrupting it.

The class-based API is meant to integrate with scikit-learn directly, however on occasion there are times when you just
need a quick visualization. Yellowbrick supports quick functions for taking advantage of this directly. For example,
the two visual diagnostics could have been instead implemented as follows:

from sklearn.linear_model import LogisticRegression

from yellowbrick.features import parallel_coordinates
from yellowbrick.classifier import classification_report

Displays parallel coordinates
g = parallel_coordinates(X, y)

Displays classification report
g = classification_report(LogisticRegression(), X, y)

These quick functions give you slightly less control over the machine learning workflow, but quickly get you diagnostics
on demand and are very useful in exploratory processes.

8.1.3 Walkthrough

Let’s consider a regression analysis as a simple example of the use of visualizers in the machine learning workflow.
Using a bike sharing dataset based upon the one uploaded to the UCI Machine Learning Repository, we would like to
predict the number of bikes rented in a given hour based on features like the season, weather, or if it’s a holiday.

Note: We have updated the dataset from the UCI ML repository to make it a bit easier to load into Pandas; make sure
you download the Yellowbrick version of the dataset using the load_bikeshare method below. Please also note that
Pandas is required to follow the supplied code. Pandas can be installed using pip install pandas if you haven’t
already installed it.

We can load our data using the yellowbrick.datasets module as follows:

import pandas as pd
from yellowbrick.datasets import load_bikeshare

X, vy = load_bikeshare()
print(X.head())

This prints out the first couple lines of our dataset which looks like:

season year month hour holiday weekday workingday weather temp \
0 1 0 1) 0 6 0 1 0.24

(continues on next page)

8.1. Quick Start 19

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

Yellowbrick Documentation, Release v1.5

(continued from previous page)

B W N =
e

feelslike
0.2879
0.2727
0.2727
0.2879
0.2879

A wNn R

[= I — I~ R~]
e

humidity
0.81
0.380
0.80
0.75
0.75

1

2

3

4
windspeed
0.0
0.0
0.0
0.0
0.0

(=B — I —]

[e) BN B e) o))

(= — I — I —

=R e
(=]
Do
N

The machine learning workflow is the art of creating model selection triples, a combination of features, algorithm, and
hyperparameters that uniquely identifies a model fitted on a specific data set. As part of our feature selection, we want
to identify features that have a linear relationship with each other, potentially introducing covariance into our model and
breaking OLS (guiding us toward removing features or using regularization). We can use the Rank Features visualizer

to compute Pearson correlations between all pairs of features as follows:

from yellowbrick.features import Rank2D

visualizer = Rank2D(algorithm="pearson")

visualizer. fit_transform(X)
visualizer.show()

season
year
month
hour
holiday
weekday
workingday
weather
temp
feelslike
humidity

windspeed

season

year

Pearson Ranking of 12 Features

month

hour

holiday

weekday

workingday

weather

temp

feelslike

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

humidity
windspeed

This figure shows us the Pearson correlation between pairs of features such that each cell in the grid represents two

20

Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

features identified in order on the x and y axes and whose color displays the magnitude of the correlation. A Pearson
correlation of 1.0 means that there is a strong positive, linear relationship between the pairs of variables and a value of
-1.0 indicates a strong negative, linear relationship (a value of zero indicates no relationship). Therefore we are looking
for dark red and dark blue boxes to identify further.

In this chart, we see that the features temp and feelslike have a strong correlation and also that the feature season
has a strong correlation with the feature month. This seems to make sense; the apparent temperature we feel outside
depends on the actual temperature and other airquality factors, and the season of the year is described by the month!
To dive in deeper, we can use the Direct Data Visualization (JointPlotVisualizer) to inspect those relationships.

from yellowbrick.features import JointPlotVisualizer

visualizer = JointPlotVisualizer(columns=['temp', 'feelslike'])
visualizer.fit_transform(X, y)
visualizer.show()

500

1.0 - @ pearson=0.988 :’
°®
.:.'l‘. |

il
| ol

0.4

feelslike
o
(o))
[)
[]
[]
[
L .}
oD
[]

0.

oo B

0.0 0.2 0.4 0.6 0.8 1.0 0 1000
temp

N
(]

()

()

()
am» o
[
(VENNDe

[T
(Do
oy

[

This visualizer plots a scatter diagram of the apparent temperature on the y axis and the actual measured temperature
on the x axis and draws a line of best fit using a simple linear regression. Additionally, univariate distributions are
shown as histograms above the x axis for temp and next to the y axis for feelslike. The JointPlotVisualizer gives
an at-a-glance view of the very strong positive correlation of the features, as well as the range and distribution of each
feature. Note that the axes are normalized to the space between zero and one, a common technique in machine learning
to reduce the impact of one feature over another.

This plot is very interesting because there appear to be some outliers in the dataset. These instances may need to be
manually removed in order to improve the quality of the final model because they may represent data input errors, and
potentially train the model on a skewed dataset which would return unreliable model predictions. The first instance of
outliers occurs in the temp data where the feelslike value is approximately equal to 0.25 - showing a horizontal line

8.1. Quick Start 21

Yellowbrick Documentation, Release v1.5

of data, likely created by input error.

We can also see that more extreme temperatures create an exaggerated effect in perceived temperature; the colder it is,
the colder people are likely to believe it to be, and the warmer it is, the warmer it is perceived to be, with moderate
temperatures generally having little effect on individual perception of comfort. This gives us a clue that feelslike
may be a better feature than temp - promising a more stable dataset, with less risk of running into outliers or errors.

We can ultimately confirm the assumption by training our model on either value, and scoring the results. If the temp
value is indeed less reliable, we should remove the temp variable in favor of feelslike . In the meantime, we will

use the feelslike value due to the absence of outliers and input error.

At this point, we can train our model; let’s fit a linear regression to our model and plot the residuals.

from yellowbrick.regressor import ResidualsPlot
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

Create training and test sets
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.1

visualizer = ResidualsPlot(LinearRegression())
visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.show()

Residuals for LinearRegression Model

400 mmmm Train R?2=0.388
o TestR%2=0.393

200

Residuals

-200

-400

—600

-100 0 100 200 300
Predicted Value

400

400
200
0
-200
-400
-600
500 O 1000
Distribution

The residuals plot shows the error against the predicted value (the number of riders), and allows us to look for het-

22

Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

eroskedasticity in the model; e.g. regions in the target where the error is greatest. The shape of the residuals can
strongly inform us where OLS (ordinary least squares) is being most strongly affected by the components of our model
(the features). In this case, we can see that the lower predicted number of riders results in lower model error, and
conversely that the the higher predicted number of riders results in higher model error. This indicates that our model
has more noise in certain regions of the target or that two variables are colinear, meaning that they are injecting error
as the noise in their relationship changes.

The residuals plot also shows how the model is injecting error, the bold horizontal line at residuals = @ is no error,
and any point above or below that line indicates the magnitude of error. For example, most of the residuals are negative,
and since the score is computed as actual - expected, this means that the expected value is bigger than the actual
value most of the time; e.g. that our model is primarily guessing more than the actual number of riders. Moreover,
there is a very interesting boundary along the top right of the residuals graph, indicating an interesting effect in model
space; possibly that some feature is strongly weighted in the region of that model.

Finally the residuals are colored by training and test set. This helps us identify errors in creating train and test splits.
If the test error doesn’t match the train error then our model is either overfit or underfit. Otherwise it could be an error
in shuffling the dataset before creating the splits.

Along with generating the residuals plot, we also measured the performance by “scoring” our model on the test data, e.g.
the code snippet visualizer.score(X_test, y_test). Because we used a linear regression model, the scoring
consists of finding the R-squared value of the data, which is a statistical measure of how close the data are to the
fitted regression line. The R-squared value of any model may vary slightly between prediction/test runs, however it
should generally be comparable. In our case, the R-squared value for this model was only 0.328, suggesting that linear
correlation may not be the most appropriate to use for fitting this data. Let’s see if we can fit a better model using
regularization, and explore another visualizer at the same time.

import numpy as np

from sklearn.linear_model import RidgeCV
from yellowbrick.regressor import AlphaSelection

alphas = np.logspace(-10, 1, 200)

visualizer = AlphaSelection(RidgeCV(alphas=alphas))
visualizer.fit(X, y)

visualizer.show()

When exploring model families, the primary thing to consider is how the model becomes more complex. As the model
increases in complexity, the error due to variance increases because the model is becoming more overfit and cannot
generalize to unseen data. However, the simpler the model is the more error there is likely to be due to bias; the model
is underfit and therefore misses its target more frequently. The goal therefore of most machine learning is to create a
model that is just complex enough, finding a middle ground between bias and variance.

For a linear model, complexity comes from the features themselves and their assigned weight according to the model.
Linear models therefore expect the least number of features that achieves an explanatory result. One technique to
achieve this is regularization, the introduction of a parameter called alpha that normalizes the weights of the coefficients
with each other and penalizes complexity. Alpha and complexity have an inverse relationship, the higher the alpha, the
lower the complexity of the model and vice versa.

The question therefore becomes how you choose alpha. One technique is to fit a number of models using cross-
validation and selecting the alpha that has the lowest error. The AlphaSelection visualizer allows you to do just
that, with a visual representation that shows the behavior of the regularization. As you can see in the figure above, the
error decreases as the value of alpha increases up until our chosen value (in this case, 3.181) where the error starts to
increase. This allows us to target the bias/variance trade-off and to explore the relationship of regularization methods
(for example Ridge vs. Lasso).

We can now train our final model and visualize it with the PredictionError visualizer:

8.1. Quick Start 23

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression.score
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression.score

Yellowbrick Documentation, Release v1.5

+2.013e4 RidgeCV Alpha Error

— ridge
-=: a=2.466
3.8

3.6

error (or score)
w
S

w
N}

3.0

2.8

alpha

from sklearn.linear_model import Ridge
from yellowbrick.regressor import PredictionError

visualizer = PredictionError(Ridge(alpha=3.181))
visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.show()

The prediction error visualizer plots the actual (measured) vs. expected (predicted) values against each other. The
dotted black line is the 45 degree line that indicates zero error. Like the residuals plot, this allows us to see where error
is occurring and in what magnitude.

In this plot, we can see that most of the instance density is less than 200 riders. We may want to try orthogonal matching
pursuit or splines to fit a regression that takes into account more regionality. We can also note that that weird topology
from the residuals plot seems to be fixed using the Ridge regression, and that there is a bit more balance in our model
between large and small values. Potentially the Ridge regularization cured a covariance issue we had between two
features. As we move forward in our analysis using other model forms, we can continue to utilize visualizers to quickly
compare and see our results.

Hopefully this workflow gives you an idea of how to integrate Visualizers into machine learning with scikit-learn
and inspires you to use them in your work and write your own! For additional information on getting started with
Yellowbrick, check out the Model Selection Tutorial. After that you can get up to speed on specific visualizers detailed
in the Visualizers and API.

24 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Prediction Error for Ridge

— /7
® R? =0.408 /
== best fit ,
= = identity s

800

600

200

0 200 400 600 800

8.2 Model Selection Tutorial

In this tutorial, we are going to look at scores for a variety of Scikit-Learn models and compare them using visual
diagnostic tools from Yellowbrick in order to select the best model for our data.

8.2.1 The Model Selection Triple

Discussions of machine learning are frequently characterized by a singular focus on model selection. Be it logistic
regression, random forests, Bayesian methods, or artificial neural networks, machine learning practitioners are often
quick to express their preference. The reason for this is mostly historical. Though modern third-party machine learning
libraries have made the deployment of multiple models appear nearly trivial, traditionally the application and tuning of
even one of these algorithms required many years of study. As a result, machine learning practitioners tended to have
strong preferences for particular (and likely more familiar) models over others.

However, model selection is a bit more nuanced than simply picking the “right” or “wrong” algorithm. In practice, the
workflow includes:

1. selecting and/or engineering the smallest and most predictive feature set
2. choosing a set of algorithms from a model family, and
3. tuning the algorithm hyperparameters to optimize performance.

The model selection triple was first described in a 2015 SIGMOD paper by Kumar et al. In their paper, which concerns
the development of next-generation database systems built to anticipate predictive modeling, the authors cogently ex-
press that such systems are badly needed due to the highly experimental nature of machine learning in practice. “Model

8.2. Model Selection Tutorial 25

http://scikit-learn.org
http://www.scikit-yb.org
http://cseweb.ucsd.edu/~arunkk/vision/SIGMODRecord15.pdf

Yellowbrick Documentation, Release v1.5

selection,” they explain, “is iterative and exploratory because the space of [model selection triples] is usually infinite,
and it is generally impossible for analysts to know a priori which [combination] will yield satisfactory accuracy and/or
insights.”

Recently, much of this workflow has been automated through grid search methods, standardized APIs, and GUI-based
applications. In practice, however, human intuition and guidance can more effectively hone in on quality models than
exhaustive search. By visualizing the model selection process, data scientists can steer towards final, explainable models
and avoid pitfalls and traps.

The Yellowbrick library is a diagnostic visualization platform for machine learning that allows data scientists to steer the
model selection process. Yellowbrick extends the Scikit-Learn API with a new core object: the Visualizer. Visualizers
allow visual models to be fit and transformed as part of the Scikit-Learn Pipeline process, providing visual diagnostics
throughout the transformation of high dimensional data.

8.2.2 About the Data

This tutorial uses the mushrooms data from the Yellowbrick Example Datasets module. Our objective is to predict if
a mushroom is poisonous or edible based on its characteristics.

Note: The YB version of the mushrooms data differs from the mushroom dataset from the UCI Machine Learning
Repository. The Yellowbrick version has been deliberately modified to make modeling a bit more of a challenge.

The data include descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus
and Lepiota Family. Each species was identified as definitely edible, definitely poisonous, or of unknown edibility and
not recommended (this latter class was combined with the poisonous one).

Our data contains information for 3 nominally valued attributes and a target value from 8124 instances of mushrooms
(4208 edible, 3916 poisonous).

Let’s load the data:

from yellowbrick.datasets import load_mushroom

X, y = load_mushroom()
print(X[:5]) # inspect the first five rows

shape surface color
0 convex smooth yellow
1 bell smooth white
2 convex scaly white
3 convex smooth gray
4 convex scaly yellow

8.2.3 Feature Extraction

Our data, including the target, is categorical. We will need to change these values to numeric ones for machine learning.
In order to extract this from the dataset, we’ll have to use scikit-learn transformers to transform our input dataset into
something that can be fit to a model. Luckily, scikit-learn does provide transformers for converting categorical labels
into numeric integers: sklearn.preprocessing.LabelEncoder and sklearn.preprocessing.OneHotEncoder.

We’ll use a combination of scikit-learn’s Pipeline object (here’s a great post on using pipelines by Zac Stewart),
OneHotEncoder, and LabelEncoder:

26 Chapter 8. Table of Contents

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://zacstewart.com/2014/08/05/pipelines-of-featureunions-of-pipelines.html
https://twitter.com/zacstewart

Yellowbrick Documentation, Release v1.5

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder, LabelEncoder

Label-encode targets before modeling
y = LabelEncoder().fit_transform(y)

One-hot encode columns before modeling
model = Pipeline([
('one_hot_encoder', OneHotEncoder()),
('estimator', estimator)

D

8.2.4 Modeling and Evaluation

Common metrics for evaluating classifiers

Precision is the number of correct positive results divided by the number of all positive results (e.g. How many of the
mushrooms we predicted would be edible actually were?).

Recall is the number of correct positive results divided by the number of positive results that should have been returned
(e.g. How many of the mushrooms that were poisonous did we accurately predict were poisonous?).

The F1 score is a measure of a test’s accuracy. It considers both the precision and the recall of the test to compute the
score. The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its
best value at 1 and worst at 0.

precision = true positives / (true positives + false positives)
recall = true positives / (false negatives + true positives)

F1 score = 2 * ((precision * recall) / (precision + recall))

Now we’re ready to make some predictions!

Let’s build a way to evaluate multiple estimators — first using traditional numeric scores (which we’ll later compare to
some visual diagnostics from the Yellowbrick library).

from sklearn.metrics import fl_score

from sklearn.pipeline import Pipeline

from sklearn.svm import LinearSVC, NuSVC, SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.preprocessing import OneHotEncoder, LabelEncoder

from sklearn.linear_model import LogisticRegressionCV, LogisticRegression, SGDClassifier
from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier,.
—RandomForestClassifier

models = [
SVC(gamma="auto"'), NuSVC(gamma='auto'), LinearSVCQ),
SGDClassifier(max_iter=100, tol=1e-3), KNeighborsClassifier(),
LogisticRegression(solver="'1bfgs'), LogisticRegressionCV(cv=3),
BaggingClassifier(), ExtraTreesClassifier(n_estimators=300),
RandomForestClassifier(n_estimators=300)

(continues on next page)

8.2. Model Selection Tutorial 27

Yellowbrick Documentation, Release v1.5

(continued from previous page)

def score_model(X, y, estimator, **kwargs):

e

Test various estimators.
y = LabelEncoder().fit_transform(y)
model = Pipeline([
('one_hot_encoder', OneHotEncoder()),
('estimator', estimator)

D

Instantiate the classification model and visualizer
model . fit (X, y, **kwargs)

expected y
predicted = model.predict(X)

Compute and return F1 (harmonic mean of precision and recall)
print("{}: ".format(estimator.__class__.__name__, fl_score(expected, predicted)))

for model in models:
score_model (X, y, model)

SVC: 0.6624286455630514

NuSVC: 0.6726016476215785

LinearSVC: 0.6583804143126177
SGDClassifier: ©.5582697992842696
KNeighborsClassifier: 0.6581185045215279
LogisticRegression: 0.6580434509606933
LogisticRegressionCV: 0.6583804143126177
BaggingClassifier: 0.6879633373770051
ExtraTreesClassifier: 0.6871364804544838
RandomForestClassifier: 0.687643484132343

Preliminary Model Evaluation

Based on the results from the F1 scores above, which model is performing the best?

8.2.5 Visual Model Evaluation

Now let’s refactor our model evaluation function to use Yellowbrick’s ClassificationReport class, a model visu-
alizer that displays the precision, recall, and F1 scores. This visual model analysis tool integrates numerical scores as
well as color-coded heatmaps in order to support easy interpretation and detection, particularly the nuances of Type I
and Type II error, which are very relevant (lifesaving, even) to our use case!

Type I error (or a “false positive) is detecting an effect that is not present (e.g. determining a mushroom is poisonous
when it is in fact edible).

28 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Type II error (or a “false negative”) is failing to detect an effect that is present (e.g. believing a mushroom is edible

when it is in fact poisonous).

from sklearn.pipeline import Pipeline
from yellowbrick.classifier import ClassificationReport

def visualize_model (X, y, estimator, **kwargs):

i

Test various estimators.

y = LabelEncoder().fit_transform(y)

model = Pipeline([
('one_hot_encoder', OneHotEncoder()),
('estimator', estimator)

D

Instantiate the classification model and visualizer

visualizer = ClassificationReport(
model, classes=['edible', 'poisonous'],
cmap="Y1Gn", size=(600, 360), **kwargs

)

visualizer.fit(X, y)

visualizer.score(X, y)

visualizer.show()

for model in models:
visualize_model (X, y, model)

SVC Classification Report

poisonous

edible 0.685 0.695

1.0

0.8

0.6

04

0.2

0.0

8.2. Model Selection Tutorial

29

Yellowbrick Documentation, Release v1.5

NuSVC Classification Report

1.0
poisonous 0.701 0673 08
0.6
04
edible 0.693 0717
0.2
0.0
& » O
ﬁ} ¢
LinearSVC Classification Report 10
. 0.8
poIsonous
0.6
04
edible 0.683 0.671
0.2
0.0
e > N
5 &

30 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

SGDClassifier Classification Report

poisonous

04

edible
0.2

0.0

KNeighborsClassifier Classification Report

poisonous 0.698

04

edible 0.681
0.2

0.0

8.2. Model Selection Tutorial 31

Yellowbrick Documentation, Release v1.5

LogisticRegression Classification Report

poisonous

04

edible 0.682
0.2

0.0

LogisticRegressionCV Classification Report

poisonous

04

edible 0.683
0.2

0.0

32 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

BaggingClassifier Classification Report

.

poisonous 0.730

edible

ExtraTreesClassifier Classification Report

poisonous 0.730

edible

653}

0.738

0.687

0.739

04

0.2

0.0

04

0.2

0.0

8.2. Model Selection Tutorial

33

Yellowbrick Documentation, Release v1.5

RandomForestClassifier Classification Report

1.0

. 0.8
poisonous

0.6
0.4
edible
0.2

0.0

8.2.6 Reflection

1. Which model seems best now? Why?
2. Which is most likely to save your life?

3. How is the visual model evaluation experience different from numeric model evaluation?

8.3 Visualizers and API

Welcome to the API documentation for Yellowbrick! This section contains a complete listing of the currently available,
production-ready visualizers along with code examples of how to use them. You may use the following links to navigate
to the reference material for each visualization.

8.3.1 Example Datasets

Yellowbrick hosts several datasets wrangled from the UCI Machine Learning Repository to present the examples used
throughout this documentation. These datasets are hosted in our CDN and must be downloaded for use. Typically,
when a user calls one of the data loader functions, e.g. 1load_bikeshare() the data is automatically downloaded if
it’s not already on the user’s computer. However, for development and testing, or if you know you will be working
without internet access, it might be easier to simply download all the data at once.

The data downloader script can be run as follows:

$ python -m yellowbrick.download

This will download all of the data to the fixtures directory inside of the Yellowbrick site packages. You can specify
the location of the download either as an argument to the downloader script (use --help for more details) or by setting

34 Chapter 8. Table of Contents

http://archive.ics.uci.edu/ml/

Yellowbrick Documentation, Release v1.5

the $YELLOWBRICK_DATA environment variable. This is the preferred mechanism because this will also influence how
data is loaded in Yellowbrick.

Note: Developers who have downloaded data from Yellowbrick versions earlier than v1.0 may experience some
problems with the older data format. If this occurs, you can clear out your data cache by running python -m
yellowbrick.download --cleanup. This will remove old datasets and download the new ones. You can also
use the --no-download flag to simply clear the cache without re-downloading data. Users who are having difficulty
with datasets can also use this or they can uninstall and reinstall Yellowbrick using pip.

Once you have downloaded the example datasets, you can load and use them as follows:

from yellowbrick.datasets import load_bikeshare

X, yv = load_bikeshare() # returns features and targets for the bikeshare dataset

Each dataset has a README . md with detailed information about the data source, attributes, and target as well as other
metadata. To get access to the metadata or to more precisely control your data access you can return the dataset directly
from the loader as follows:

dataset = load_bikeshare(return_dataset=True)
print(dataset.README)

df = dataset.to_dataframe()
df.head()

Datasets
Unless otherwise specified, most of the documentation examples currently use one or more of the listed datasets. Here is
a complete listing of all datasets in Yellowbrick and the analytical tasks with which they are most commonly associated:
* Bikeshare: suitable for regression
* Concrete: suitable for regression
 Credit: suitable for classification/clustering
e Energy: suitable for regression
* Game: suitable for multi-class classification
* Hobbies: suitable for text analysis/classification
e Mushroom: suitable for classification/clustering
e Occupancy: suitable for classification
» Spam: suitable for binary classification
* Walking: suitable for time series analysis/clustering

e NFL: suitable for clustering

8.3. Visualizers and API 35

Yellowbrick Documentation, Release v1.5

Bikeshare

This dataset contains the hourly and daily count of rental bikes between years 2011 and 2012 in Capital bikeshare
system with the corresponding weather and seasonal information.

Samples total 17379
Dimensionality | 12

Features real, positive
Targets ints, 1-977
Task(s) regression

Description

Bike sharing systems are new generation of traditional bike rentals where whole process from membership, rental and
return back has become automatic. Through these systems, user is able to easily rent a bike from a particular position
and return back at another position. Currently, there are about over 500 bike-sharing programs around the world which
is composed of over 500 thousands bicycles. Today, there exists great interest in these systems due to their important
role in traffic, environmental and health issues.

Apart from interesting real world applications of bike sharing systems, the characteristics of data being generated by
these systems make them attractive for the research. Opposed to other transport services such as bus or subway, the
duration of travel, departure and arrival position is explicitly recorded in these systems. This feature turns bike sharing
system into a virtual sensor network that can be used for sensing mobility in the city. Hence, it is expected that most
of important events in the city could be detected via monitoring these data.

Citation

Downloaded from the UCI Machine Learning Repository on May 4, 2017.

Fanaee-T, Hadi, and Gama, Joao, ‘Event labeling combining ensemble detectors and background knowledge’, Progress
in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg

Loader

yellowbrick.datasets.loaders.load_bikeshare (data_home=None, return_dataset=False)

Loads the bike sharing univariate dataset that is well suited to regression tasks. The dataset contains 17379
instances with 12 integer and real valued attributes and a continuous target.

The Yellowbrick datasets are hosted online and when requested, the dataset is downloaded to your local computer
for use. Note that if the dataset hasn’t been downloaded before, an Internet connection is required. However, if
the data is cached locally, no data will be downloaded. Yellowbrick checks the known signature of the dataset
with the data downloaded to ensure the download completes successfully.

Datasets are stored alongside the code, but the location can be specified with the data_home parameter or the
$YELLOWBRICK_DATA envvar.

Parameters

data_home
[str, optional] The path on disk where data is stored. If not passed in, it is looked up from
$YELLOWBRICK_DATA or the default returned by get_data_home.

36 Chapter 8. Table of Contents

https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

Yellowbrick Documentation, Release v1.5

return_dataset
[bool, default=False] Return the raw dataset object instead of X and y numpy arrays to get
access to alternative targets, extra features, content and meta.

Returns

X
[array-like with shape (n_instances, n_features) if return_dataset=False] A pandas
DataFrame or numpy array describing the instance features.

y
[array-like with shape (n_instances,) if return_dataset=False] A pandas Series or numpy ar-
ray describing the target vector.

dataset

[Dataset instance if return_dataset=True] The Yellowbrick Dataset object provides an inter-
face to accessing the data in a variety of formats as well as associated metadata and content.

Concrete

Concrete is the most important material in civil engineering. The concrete compressive strength is a highly nonlinear
function of age and ingredients.

Samples total 1030
Dimensionality | 9

Features real
Targets float, 2.3-82.6
Task(s) regression

Description

Given are the variable name, variable type, the measurement unit and a brief description. The concrete compressive
strength is the regression problem. The order of this listing corresponds to the order of numerals along the rows of the
database.

Citation

Downloaded from the UCI Machine Learning Repository on October 13, 2016.

Yeh, I-C. “Modeling of strength of high-performance concrete using artificial neural networks.” Cement and Concrete
research 28.12 (1998): 1797-1808.

Loader

yellowbrick.datasets.loaders.load_concrete(data_home=None, return_dataset=False)

Loads the concrete multivariate dataset that is well suited to regression tasks. The dataset contains 1030 instances
and 8 real valued attributes with a continuous target.

The Yellowbrick datasets are hosted online and when requested, the dataset is downloaded to your local computer
for use. Note that if the dataset hasn’t been downloaded before, an Internet connection is required. However, if
the data is cached locally, no data will be downloaded. Yellowbrick checks the known signature of the dataset
with the data downloaded to ensure the download completes successfully.

8.3. Visualizers and API 37

https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength

Yellowbrick Documentation, Release v1.5

Datasets are stored alongside the code, but the location can be specified with the data_home parameter or the
$YELLOWBRICK_DATA envvar.

Parameters

data_home
[str, optional] The path on disk where data is stored. If not passed in, it is looked up from
$YELLOWBRICK_DATA or the default returned by get_data_home.

return_dataset
[bool, default=False] Return the raw dataset object instead of X and y numpy arrays to get
access to alternative targets, extra features, content and meta.

Returns

X
[array-like with shape (n_instances, n_features) if return_dataset=False] A pandas
DataFrame or numpy array describing the instance features.

y
[array-like with shape (n_instances,) if return_dataset=False] A pandas Series or numpy ar-
ray describing the target vector.

dataset

[Dataset instance if return_dataset=True] The Yellowbrick Dataset object provides an inter-
face to accessing the data in a variety of formats as well as associated metadata and content.

Credit

This research aimed at the case of customers’ default payments in Taiwan and compares the predictive accuracy of
probability of default among six data mining methods.

Samples total 30000
Dimensionality | 24

Features real, int
Targets int, O or 1
Task(s) classification

Description

This research aimed at the case of customers’ default payments in Taiwan and compares the predictive accuracy of
probability of default among six data mining methods. From the perspective of risk management, the result of predictive
accuracy of the estimated probability of default will be more valuable than the binary result of classification - credible
or not credible clients. Because the real probability of default is unknown, this study presented the novel “Sorting
Smoothing Method” to estimate the real probability of default. With the real probability of default as the response
variable (Y), and the predictive probability of default as the independent variable (X), the simple linear regression
result (Y = A + BX) shows that the forecasting model produced by artificial neural network has the highest coefficient
of determination; its regression intercept (A) is close to zero, and regression coefficient (B) to one. Therefore, among
the six data mining techniques, artificial neural network is the only one that can accurately estimate the real probability
of default.

38 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Citation

Downloaded from the UCI Machine Learning Repository on October 13, 2016.

Yeh, I. C., & Lien, C. H. (2009). The comparisons of data mining techniques for the predictive accuracy of probability
of default of credit card clients. Expert Systems with Applications, 36(2), 2473-2480.

Loader

yellowbrick.datasets.loaders.load_credit (data_home=None, return_dataset=False)

Loads the credit multivariate dataset that is well suited to binary classification tasks. The dataset contains 30000
instances and 23 integer and real value attributes with a discrete target.

The Yellowbrick datasets are hosted online and when requested, the dataset is downloaded to your local computer
for use. Note that if the dataset hasn’t been downloaded before, an Internet connection is required. However, if
the data is cached locally, no data will be downloaded. Yellowbrick checks the known signature of the dataset
with the data downloaded to ensure the download completes successfully.

Datasets are stored alongside the code, but the location can be specified with the data_home parameter or the
$YELLOWBRICK_DATA envvar.

Parameters

data_home
[str, optional] The path on disk where data is stored. If not passed in, it is looked up from
$YELLOWBRICK_DATA or the default returned by get_data_home.

return_dataset
[bool, default=False] Return the raw dataset object instead of X and y numpy arrays to get
access to alternative targets, extra features, content and meta.

Returns

X
[array-like with shape (n_instances, n_features) if return_dataset=False] A pandas
DataFrame or numpy array describing the instance features.

y
[array-like with shape (n_instances,) if return_dataset=False] A pandas Series or numpy ar-
ray describing the target vector.

dataset

[Dataset instance if return_dataset=True] The Yellowbrick Dataset object provides an inter-
face to accessing the data in a variety of formats as well as associated metadata and content.

Energy

The dataset was created by Angeliki Xifara (angxifara ‘@’ gmail.com, Civil/Structural Engineer) and was processed by
Athanasios Tsanas (tsanasthanasis ‘@’ gmail.com, Oxford Centre for Industrial and Applied Mathematics, University
of Oxford, UK).

Samples total 768
Dimensionality | 8

Features real, int
Targets float, 6.01-43.1
Task(s) regression, classification

8.3. Visualizers and API 39

http://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

Yellowbrick Documentation, Release v1.5

Description

We perform energy analysis using 12 different building shapes simulated in Ecotect. The buildings differ with respect
to the glazing area, the glazing area distribution, and the orientation, amongst other parameters. We simulate various
settings as functions of the afore-mentioned characteristics to obtain 768 building shapes. The dataset comprises 768
samples and 8 features, aiming to predict two real valued responses. It can also be used as a multi-class classification
problem if the response is rounded to the nearest integer.

Example

The energy dataset contains a multi-target supervised dataset for both the heating and the cooling load of buildings.
By default only the heating load is returned for most examples. To perform a multi-target regression, simply access the
dataframe and select both the heating and cooling load columns as follows:

from yellowbrick.datasets import load_energy
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split as tts

features = [

"relative compactness",

"surface area",

"wall area",

"roof area",

"overall height",

"orientation",

"glazing area",

"glazing area distribution",
]
target = ["heating load", "cooling load"]

df = load_energy(return_dataset=True).to_dataframe()
X, y = df[features], df[target]

X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2)

model = RandomForestRegressor().fit(X_train, y_train)
model .score(X_test, y_test)

Note that not all regressors support multi-target regression, one simple strategy in this case is to use a sklearn.
multioutput.MultiOutputRegressor, which fits an estimator for each target.

Citation

Downloaded from the UCI Machine Learning Repository March 23, 2015.

A. Tsanas, A. Xifara: ‘Accurate quantitative estimation of energy performance of residential buildings using statis-
tical machine learning tools’, Energy and Buildings, Vol. 49, pp. 560-567, 2012

For further details on the data analysis methodology:

A. Tsanas, ‘Accurate telemonitoring of Parkinson’s disease symptom severity using nonlinear speech signal pro-
cessing and statistical machine learning’, D.Phil. thesis, University of Oxford, 2012

40 Chapter 8. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor
http://archive.ics.uci.edu/ml/datasets/Energy+efficiency

Yellowbrick Documentation, Release v1.5

Loader

yellowbrick.datasets.loaders.load_energy (data_home=None, return_dataset=False)

Loads the energy multivariate dataset that is well suited to multi-output regression and classification tasks. The
dataset contains 768 instances and 8 real valued attributes with two continous targets.

The Yellowbrick datasets are hosted online and when requested, the dataset is downloaded to your local computer
for use. Note that if the dataset hasn’t been downloaded before, an Internet connection is required. However, if
the data is cached locally, no data will be downloaded. Yellowbrick checks the known signature of the dataset
with the data downloaded to ensure the download completes successfully.

Datasets are stored alongside the code, but the location can be specified with the data_home parameter or the
$YELLOWBRICK_DATA envvar.

Parameters

data_home
[str, optional] The path on disk where data is stored. If not passed in, it is looked up from
$YELLOWBRICK_DATA or the default returned by get_data_home.

return_dataset
[bool, default=False] Return the raw dataset object instead of X and y numpy arrays to get
access to alternative targets, extra features, content and meta.

Returns

X
[array-like with shape (n_instances, n_features) if return_dataset=False] A pandas
DataFrame or numpy array describing the instance features.

y
[array-like with shape (n_instances,) if return_dataset=False] A pandas Series or numpy ar-
ray describing the target vector.

dataset

[Dataset instance if return_dataset=True] The Yellowbrick Dataset object provides an inter-
face to accessing the data in a variety of formats as well as associated metadata and content.

Game

The dataset was created and donated to the UCI ML Repository by John Tromp (tromp ‘@’ cwi.nl).

Samples total 67557
Dimensionality | 42

Features categorical
Targets str: {“win”, “loss”, “draw” }
Task(s) classification

8.3. Visualizers and API 41

Yellowbrick Documentation, Release v1.5

Description

This database contains all legal 8-ply positions in the game of connect-4 in which neither player has won yet, and in
which the next move is not forced.

The symbol x represents the first player; o the second. The dataset contains the state of the game by representing each
position in a 6x7 grid board. The outcome class is the game theoretical value for the first player.

Example

Note that to use the game dataset the categorical data in the features array must be encoded numerically. There are a
number of numeric encoding mechanisms such as the sklearn.preprocessing.0OrdinalEncoder or the sklearn.
preprocessing.OneHotEncoder that may be used as follows:

from sklearn.preprocessing import OneHotEncoder
from yellowbrick.datasets import load_game

X, vy = load_game()
X = OneHotEncoder() . fit_transform(X)

Citation

Downloaded from the UCI Machine Learning Repository on May 4, 2017.

Loader

yellowbrick.datasets.loaders.load_game (data_home=None, return_dataset=False)

Load the Connect-4 game multivariate and spatial dataset that is well suited to multiclass classification tasks.
The dataset contains 67557 instances with 42 categorical attributes and a discrete target.

Note that the game data is stored with categorical features that need to be numerically encoded before use with
scikit-learn estimators. We recommend the use of the sklearn.preprocessing.OneHotEncoder for this task
and to develop a Pipeline using this dataset.

The Yellowbrick datasets are hosted online and when requested, the dataset is downloaded to your local computer
for use. Note that if the dataset hasn’t been downloaded before, an Internet connection is required. However, if
the data is cached locally, no data will be downloaded. Yellowbrick checks the known signature of the dataset
with the data downloaded to ensure the download completes successfully.

Datasets are stored alongside the code, but the location can be specified with the data_home parameter or the
$YELLOWBRICK_DATA envvar.

Parameters

data_home
[str, optional] The path on disk where data is stored. If not passed in, it is looked up from
$YELLOWBRICK_DATA or the default returned by get_data_home.

return_dataset
[bool, default=False] Return the raw dataset object instead of X and y numpy arrays to get
access to alternative targets, extra features, content and meta.

Returns

42 Chapter 8. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html#sklearn.preprocessing.OrdinalEncoder
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder
https://archive.ics.uci.edu/ml/datasets/Connect-4

Yellowbrick Documentation, Release v1.5

X
[array-like with shape (n_instances, n_features) if return_dataset=False] A pandas
DataFrame or numpy array describing the instance features.

y
[array-like with shape (n_instances,) if return_dataset=False] A pandas Series or numpy ar-
ray describing the target vector.

dataset

[Dataset instance if return_dataset=True] The Yellowbrick Dataset object provides an inter-
face to accessing the data in a variety of formats as well as associated metadata and content.

Hobbies

The Baleen hobbies corpus contains 448 files in 5 categories.

Samples total 448
Dimensionality | 23738

Features strings (tokens)
Targets str: {*“books”, “cinema”, “cooking”, “gaming”, “sports”}
Task(s) classification, clustering

Description

The hobbies corpus is a text corpus wrangled from the Baleen RSS Corpus in order to enable students and readers to
practice different techniques in Natural Language Processing. For more information see Applied Text Analysis with
Python: Enabling Language-Aware Data Products with Machine Learning and the associated code repository. It is
structured as:

Documents and File Size

books: 72 docs (4.1MiB)

e cinema: 100 docs (9.2MiB)
* cooking: 30 docs (3.0MiB)
* gaming: 128 docs (8.8MiB)
e sports: 118 docs (15.9MiB)

Document Structure

Overall:

* 7,420 paragraphs (16.562 mean paragraphs per file)

* 14,251 sentences (1.921 mean sentences per paragraph).
By Category:

* books: 844 paragraphs and 2,030 sentences

 cinema: 1,475 paragraphs and 3,047 sentences

8.3. Visualizers and API 43

https://github.com/DistrictDataLabs/baleen
https://www.amazon.com/Applied-Text-Analysis-Python-Language-Aware/dp/1491963042
https://www.amazon.com/Applied-Text-Analysis-Python-Language-Aware/dp/1491963042
https://github.com/foxbook/atap

Yellowbrick Documentation, Release v1.5

 cooking: 1,190 paragraphs and 2,425 sentences
e gaming: 1,802 paragraphs and 3,373 sentences
* sports: 2,109 paragraphs and 3,376 sentences

Words and Vocabulary

Word count of 288,520 with a vocabulary of 23,738 (12.154 lexical diversity).
* books: 41,851 words with a vocabulary size of 7,838
* cinema: 69,153 words with a vocabulary size of 10,274
* cooking: 37,854 words with a vocabulary size of 5,038
» gaming: 70,778 words with a vocabulary size of 9,120

* sports: 68,884 words with a vocabulary size of 8,028

Example

The hobbies corpus loader returns a Corpus object with the raw text associated with the data set. This must be vector-
ized into a numeric form for use with scikit-learn. For example, you could use the sklearn. feature_extraction.
text.TfidfVectorizer as follows:

from yellowbrick.datasets import load_hobbies

from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split as tts

corpus = load_hobbies()
X = TfidfVectorizer().fit_transform(corpus.data)
y = LabelEncoder().fit_transform(corpus.target)

X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2)

model = MultinomialNB(Q).fit(X_train, y_train)
model .score(X_test, y_test)

For more detail on text analytics and machine learning with scikit-learn, please refer to “Working with Text Data” in
the scikit-learn documentation.

Citation

Exported from S3 on: Jan 21, 2017 at 06:42.

Bengfort, Benjamin, Rebecca Bilbro, and Tony Ojeda. Applied Text Analysis with Python: Enabling Language-aware
Data Products with Machine Learning. ” O’Reilly Media, Inc.”, 2018.

44 Chapter 8. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

Yellowbrick Documentation, Release v1.5

Loader

yellowbrick.datasets.loaders.load_hobbies (data_home=None)

Loads the hobbies text corpus that is well suited to classification, clustering, and text analysis tasks. The dataset
contains 448 documents in 5 categories with 7420 paragraphs, 14251 sentences, 288520 words, and a vocabulary
of 23738.

The Yellowbrick datasets are hosted online and when requested, the dataset is downloaded to your local computer
for use. Note that if the dataset hasn’t been downloaded before, an Internet connection is required. However, if
the data is cached locally, no data will be downloaded. Yellowbrick checks the known signature of the dataset
with the data downloaded to ensure the download completes successfully.

Datasets are stored alongside the code, but the location can be specified with the data_home parameter or the
$YELLOWBRICK_DATA envvar.

Parameters

data_home
[str, optional] The path on disk where data is stored. If not passed in, it is looked up from
$YELLOWBRICK_DATA or the default returned by get_data_home.

Returns

dataset
[Corpus] The Yellowbrick Corpus object provides an interface to accessing the text docu-
ments and metadata associated with the corpus.

Mushroom

From Audobon Society Field Guide; mushrooms described in terms of physical characteristics; classification: poi-
sonous or edible.

Samples total 8124
Dimensionality | 4 (reduced from 22)

Features categorical
Targets str: {“edible”, “poisonous”}
Task(s) classification

Description

This data set includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the
Agaricus and Lepiota Family (pp. 500-525). Each species is identified as definitely edible, definitely poisonous, or of
unknown edibility and not recommended. This latter class was combined with the poisonous one. The Guide clearly
states that there is no simple rule for determining the edibility of a mushroom; no rule like “leaflets three, let it be” for
Poisonous Oak and Ivy.

8.3. Visualizers and API 45

Yellowbrick Documentation, Release v1.5

Citation

Downloaded from the UCI Machine Learning Repository on February 28, 2017.
Schlimmer, Jeffrey Curtis. “Concept acquisition through representational adjustment.” (1987).

Langley, Pat. “Trading off simplicity and coverage in incremental concept learning.” Machine Learning Proceedings
1988 (2014): 73.

Duch, Wtodzistaw, Rafat Adamczak, and Krzysztof Grabczewski. “Extraction of logical rules from training data using
backpropagation networks.” The 1st Online Workshop on Soft Computing. 1996.

Duch, Wlodzislaw, Rafal Adamczak, and Krzysztof Grabczewski. “Extraction of crisp logical rules using constrained
backpropagation networks.” (1997).

Loader

yellowbrick.datasets.loaders.load_mushroom(data_home=None, return_dataset=False)

Loads the mushroom multivariate dataset that is well suited to binary classification tasks. The dataset contains
8123 instances with 3 categorical attributes and a discrete target.

The Yellowbrick datasets are hosted online and when requested, the dataset is downloaded to your local computer
for use. Note that if the dataset hasn’t been downloaded before, an Internet connection is required. However, if
the data is cached locally, no data will be downloaded. Yellowbrick checks the known signature of the dataset
with the data downloaded to ensure the download completes successfully.

Datasets are stored alongside the code, but the location can be specified with the data_home parameter or the
$YELLOWBRICK_DATA envvar.

Parameters

data_home
[str, optional] The path on disk where data is stored. If not passed in, it is looked up from
$YELLOWBRICK_DATA or the default returned by get_data_home.

return_dataset
[bool, default=False] Return the raw dataset object instead of X and y numpy arrays to get
access to alternative targets, extra features, content and meta.

Returns

X
[array-like with shape (n_instances, n_features) if return_dataset=False] A pandas
DataFrame or numpy array describing the instance features.

y
[array-like with shape (n_instances,) if return_dataset=False] A pandas Series or numpy ar-
ray describing the target vector.

dataset

[Dataset instance if return_dataset=True] The Yellowbrick Dataset object provides an inter-
face to accessing the data in a variety of formats as well as associated metadata and content.

46 Chapter 8. Table of Contents

https://archive.ics.uci.edu/ml/datasets/Mushroom

Yellowbrick Documentation, Release v1.5

Occupancy

Experimental data used for binary classification (room occupancy) from Temperature, Humidity, Light and CO2.
Ground-truth occupancy was obtained from time stamped pictures that were taken every minute.

Samples total 20560

Dimensionality 6

Features real, positive

Targets int: {1 for occupied, O for not occupied}
Task(s) classification

Samples per class | imbalanced

Description

Three data sets are submitted, for training and testing. Ground-truth occupancy was obtained from time stamped
pictures that were taken every minute. For the journal publication, the processing R scripts can be found on GitHub.

Citation

Downloaded from the UCI Machine Learning Repository on October 13, 2016.

Candanedo, Luis M., and Véronique Feldheim. “Accurate occupancy detection of an office room from light, temper-
ature, humidity and CO 2 measurements using statistical learning models.” Energy and Buildings 112 (2016): 28-39.

yellowbrick.datasets.loaders.load_occupancy (data_home=None, return_dataset=False)

Loads the occupancy multivariate, time-series dataset that is well suited to binary classification tasks. The dataset
contains 20560 instances with 5 real valued attributes and a discrete target.

The Yellowbrick datasets are hosted online and when requested, the dataset is downloaded to your local computer
for use. Note that if the dataset hasn’t been downloaded before, an Internet connection is required. However, if
the data is cached locally, no data will be downloaded. Yellowbrick checks the known signature of the dataset
with the data downloaded to ensure the download completes successfully.

Datasets are stored alongside the code, but the location can be specified with the data_home parameter or the
$YELLOWBRICK_DATA envvar.

Parameters

data_home
[str, optional] The path on disk where data is stored. If not passed in, it is looked up from
$YELLOWBRICK_DATA or the default returned by get_data_home.

return_dataset
[bool, default=False] Return the raw dataset object instead of X and y numpy arrays to get
access to alternative targets, extra features, content and meta.

Returns

X
[array-like with shape (n_instances, n_features) if return_dataset=False] A pandas
DataFrame or numpy array describing the instance features.

y
[array-like with shape (n_instances,) if return_dataset=False] A pandas Series or numpy ar-
ray describing the target vector.
8.3. Visualizers and API 47

https://github.com/LuisM78/Occupancy-detection-data
https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+

Yellowbrick Documentation, Release v1.5

dataset
[Dataset instance if return_dataset=True] The Yellowbrick Dataset object provides an inter-
face to accessing the data in a variety of formats as well as associated metadata and content.

Spam

Classifying Email as Spam or Non-Spam.

Samples total 4601
Dimensionality | 57

Features real, integer
Targets int: {1 for spam, O for not spam}
Task(s) classification

Description

The “spam” concept is diverse: advertisements for products/web sites, make money fast schemes, chain letters, pornog-
raphy...

Our collection of spam e-mails came from our postmaster and individuals who had filed spam. Our collection of non-
spam e-mails came from filed work and personal e-mails, and hence the word ‘george’ and the area code ‘650’ are
indicators of non-spam. These are useful when constructing a personalized spam filter. One would either have to blind
such non-spam indicators or get a very wide collection of non-spam to generate a general purpose spam filter.

Determine whether a given email is spam or not.

~7% misclassification error. False positives (marking good mail as spam) are very undesirable.If we insist on zero false
positives in the training/testing set, 20-25% of the spam passed through the filter.

Citation

Downloaded from the UCI Machine Learning Repository on March 23, 2018.
Cranor, Lorrie Faith, and Brian A. LaMacchia. “Spam!.” Communications of the ACM 41.8 (1998): 74-83.

Loader

yellowbrick.datasets.loaders.load_spam(data_home=None, return_dataset=False)

Loads the email spam dataset that is weill suited to binary classification and threshold tasks. The dataset contains
4600 instances with 57 integer and real valued attributes and a discrete target.

The Yellowbrick datasets are hosted online and when requested, the dataset is downloaded to your local computer
for use. Note that if the dataset hasn’t been downloaded before, an Internet connection is required. However, if
the data is cached locally, no data will be downloaded. Yellowbrick checks the known signature of the dataset
with the data downloaded to ensure the download completes successfully.

Datasets are stored alongside the code, but the location can be specified with the data_home parameter or the
$YELLOWBRICK_DATA envvar.

Parameters

48 Chapter 8. Table of Contents

https://archive.ics.uci.edu/ml/datasets/spambase

Yellowbrick Documentation, Release v1.5

data_home
[str, optional] The path on disk where data is stored. If not passed in, it is looked up from
$YELLOWBRICK_DATA or the default returned by get_data_home.

return_dataset
[bool, default=False] Return the raw dataset object instead of X and y numpy arrays to get
access to alternative targets, extra features, content and meta.

Returns

X
[array-like with shape (n_instances, n_features) if return_dataset=False] A pandas
DataFrame or numpy array describing the instance features.

y
[array-like with shape (n_instances,) if return_dataset=False] A pandas Series or numpy ar-
ray describing the target vector.

dataset

[Dataset instance if return_dataset=True] The Yellowbrick Dataset object provides an inter-
face to accessing the data in a variety of formats as well as associated metadata and content.

Walking

The dataset collects data from an Android smartphone positioned in the chest pocket. Accelerometer Data are collected
from 22 participants walking in the wild over a predefined path. The dataset is intended for Activity Recognition re-
search purposes. It provides challenges for identification and authentication of people using motion patterns. Sampling
frequency of the accelerometer: DELAY_FASTEST with network connections disabled.

Samples total 149331
Dimensionality | 4

Features real
Targets int, 1-22
Task(s) classification, clustering

Description

In this article, a novel technique for user’s authentication and verification using gait as a biometric unobtrusive pattern
is proposed. The method is based on a two stages pipeline. First, a general activity recognition classifier is personalized
for an specific user using a small sample of her/his walking pattern. As a result, the system is much more selective with
respect to the new walking pattern. A second stage verifies whether the user is an authorized one or not. This stage is
defined as a one-class classification problem. In order to solve this problem, a four-layer architecture is built around
the geometric concept of convex hull. This architecture allows to improve robustness to outliers, modeling non-convex
shapes, and to take into account temporal coherence information. Two different scenarios are proposed as validation
with two different wearable systems. First, a custom high-performance wearable system is built and used in a free
environment. A second dataset is acquired from an Android-based commercial device in a ‘wild’ scenario with rough
terrains, adversarial conditions, crowded places and obstacles. Results on both systems and datasets are very promising,
reducing the verification error rates by an order of magnitude with respect to the state-of-the-art technologies.

8.3. Visualizers and API 49

Yellowbrick Documentation, Release v1.5

Citation

Downloaded from the UCI Machine Learning Repository on August 23, 2018.

Casale, Pierluigi, Oriol Pujol, and Petia Radeva. “Personalization and user verification in wearable systems using
biometric walking patterns.” Personal and Ubiquitous Computing 16.5 (2012): 563-580.

Loader

yellowbrick.datasets.loaders.load_walking(data_home=None, return_dataset=False)

NFL

Loads the walking activity dataset that is weill suited to clustering and multi-label classification tasks. The
dataset contains multi-variate time series data with 149,332 real valued measurements across 22 unique walkers.

The Yellowbrick datasets are hosted online and when requested, the dataset is downloaded to your local computer
for use. Note that if the dataset hasn’t been downloaded before, an Internet connection is required. However, if
the data is cached locally, no data will be downloaded. Yellowbrick checks the known signature of the dataset
with the data downloaded to ensure the download completes successfully.

Datasets are stored alongside the code, but the location can be specified with the data_home parameter or the
$YELLOWBRICK_DATA envvar.

Parameters

data_home
[str, optional] The path on disk where data is stored. If not passed in, it is looked up from
$YELLOWBRICK_DATA or the default returned by get_data_home.

return_dataset
[bool, default=False] Return the raw dataset object instead of X and y numpy arrays to get
access to alternative targets, extra features, content and meta.

Returns

X
[array-like with shape (n_instances, n_features) if return_dataset=False] A pandas
DataFrame or numpy array describing the instance features.

y
[array-like with shape (n_instances,) if return_dataset=False] A pandas Series or numpy ar-
ray describing the target vector.

dataset

[Dataset instance if return_dataset=True] The Yellowbrick Dataset object provides an inter-
face to accessing the data in a variety of formats as well as associated metadata and content.

This dataset is comprised of statistics on all eligible receivers from the 2018 NFL regular season.

Samples total 494
Dimensionality | 20

Features str, int
Targets N/A
Task(s) clustering

50

Chapter 8. Table of Contents

https://archive.ics.uci.edu/ml/datasets/User+Identification+From+Walking+Activity

Yellowbrick Documentation, Release v1.5

Description

The dataset consists of an aggregate of all relevant statistics for eligible receivers that played in at least 1 game and had
at least 1 target throughout the season. This is not limited to players specifically designated as wide-receivers, but may
include other positions such as running-backs and tight-ends.

Citation

Redistributed with the permission of Sports Reference LL.C on June 11, 2019 via email.

Sports Reference LLC, “2018 NFL Receiving,” Pro-Football-Reference.com - Pro Football Statistics and History. [On-
line]. Available here. [Accessed: 18-Jun-2019]

Loader

yellowbrick.datasets.loaders.load_nfl (data_home=None, return_dataset=False)

Loads the football receivers dataset that is well suited to clustering tasks. The dataset contains 494 instances
with 28 integer, real valued, and categorical attributes and a discrete target.

The Yellowbrick datasets are hosted online and when requested, the dataset is downloaded to your local computer
for use. Note that if the dataset hasn’t been downloaded before, an Internet connection is required. However, if
the data is cached locally, no data will be downloaded. Yellowbrick checks the known signature of the dataset
with the data downloaded to ensure the download completes successfully.

Datasets are stored alongside the code, but the location can be specified with the data_home parameter or the
$YELLOWBRICK_DATA envvar.

Parameters

data_home
[str, optional] The path on disk where data is stored. If not passed in, it is looked up from
$YELLOWBRICK_DATA or the default returned by get_data_home.

return_dataset
[bool, default=False] Return the raw dataset object instead of X and y numpy arrays to get
access to alternative targets, extra features, content and meta.

Returns

X
[array-like with shape (n_instances, n_features) if return_dataset=False] A pandas
DataFrame or numpy array describing the instance features.

y
[array-like with shape (n_instances,) if return_dataset=False] A pandas Series or numpy ar-
ray describing the target vector.

dataset

[Dataset instance if return_dataset=True] The Yellowbrick Dataset object provides an inter-
face to accessing the data in a variety of formats as well as associated metadata and content.

Yellowbrick has included these datasets in our package for demonstration purposes only. The datasets have been repack-
aged with the permission of the authors or in accordance with the terms of use of the source material. If you use a
Yellowbrick wrangled dataset, please be sure to cite the original author.

8.3. Visualizers and API 51

https://www.pro-football-reference.com/years/2018/receiving.htm

Yellowbrick Documentation, Release v1.5

API Reference

By default, the dataset loaders return a features table, X, and a target vector y when called. If the user has Pandas
installed, the data types will be a pd.DataFrame and pd.Series respectively, otherwise the data will be returned as
numpy arrays. This functionality ensures that the primary use of the datasets, to follow along with the documentation
examples, is as simple as possible. However, advanced users may note that there does exist an underlying object with
advanced functionality that can be accessed as follows:

dataset = load_occupancy(return_dataset=True)

There are two basic types of dataset, the Dataset which is used for rabular data loaded from a CSV and the Corpus,
used to load fext corpora from disk. Both types of dataset give access to a readme file, a citation in BibTex format,
json metadata that describe the fields and target, and different data types associated with the underlying datasset. Both
objects are also responsible for locating the dataset on disk and downloading it safely if it doesn’t exist yet. For more
on how Yellowbrick downloads and stores data, please see Local Storage.

Tabular Data

Most example datasets are returned as tabular data structures loaded either from a .csv file (using Pandas) or from dtype
encoded .npz file to ensure correct numpy arrays are returned. The Dataset object loads the data from these stored
files, preferring to use Pandas if it is installed. It then uses metadata to slice the DataFrame into a feature matrix and
target array. Using the dataset directly provides extra functionality, and can be retrieved as follows:

from yellowbrick.datasets import load_concrete
dataset = load_concrete(return_dataset=True)

For example if you wish to get the raw data frame you can do so as follows:

df = dataset.to_dataframe()
df.head()

There may be additional columns in the DataFrame that were part of the original dataset but were excluded from the
featureset. For example, the energy dataset contains two targets, the heating and the cooling load, but only the heating
load is returned by default. The api documentation that follows describes in details the metadata properties and other
functionality associated with the Dataset:

class yellowbrick.datasets.base.Dataset (name, url=None, signature=None, data_home=None)
Bases: BaseDataset

Datasets contain a reference to data on disk and provide utilities for quickly loading files and objects into a variety
of formats. The most common use of the Dataset object is to load example datasets provided by Yellowbrick to
run the examples in the documentation.

The dataset by default will return the data as a numpy array, however if Pandas is installed, it is possible to access
the data as a DataFrame and Series object. In either case, the data is represented by a features table, X and a
target vector, y.

Parameters

name
[str] The name of the dataset; should either be a folder in data home or specified in the
yellowbrick.datasets. DATASETS variable. This name is used to perform all lookups and
identify the dataset externally.

data_home
[str, optional] The path on disk where data is stored. If not passed in, it is looked up from
YELLOWBRICK_DATA or the default returned by get_data_home.

52 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

url
[str, optional] The web location where the archive file of the dataset can be downloaded from.

signature
[str, optional] The signature of the data archive file, used to verify that the latest version of
the data has been downloaded and that the download hasn’t been corrupted or modified in
anyway.
property README
Returns the contents of the README.md file that describes the dataset in detail and contains attribution
information.
property citation
Returns the contents of the citation.bib file that describes the source and provenance of the dataset or to cite
for academic work.
contents()
Contents returns a list of the files in the data directory.

download (replace=False)

Download the dataset from the hosted Yellowbrick data store and save it to the location specified by
get_data_home. The downloader verifies the download completed successfully and safely by compar-
ing the expected signature with the SHA 256 signature of the downloaded archive file.

Parameters

replace
[bool, default: False] If the data archive already exists, replace the dataset. If this is False
and the dataset exists, an exception is raised.
property meta
Returns the contents of the meta.json file that describes important attributes about the dataset and modifies
the behavior of the loader.
to_data()

Returns the data contained in the dataset as X and y where X is the features matrix and y is the target vector.
If pandas is installed, the data will be returned as DataFrame and Series objects. Otherwise, the data will
be returned as two numpy arrays.

Returns

X
[array-like with shape (n_instances, n_features)] A pandas DataFrame or numpy array de-
scribing the instance features.

y
[array-like with shape (n_instances,)] A pandas Series or numpy array describing the target
vector.
to_dataframe()

Returns the entire dataset as a single pandas DataFrame.
Returns

df
[DataFrame with shape (n_instances, n_columns)] A pandas DataFrame containing the
complete original data table including all targets (specified by the meta data) and all features
(including those that might have been filtered out).

8.3.

Visualizers and API 53

Yellowbrick Documentation, Release v1.5

to_numpy ()

Returns the dataset as two numpy arrays: X and y.
Returns

X
[array-like with shape (n_instances, n_features)] A numpy array describing the instance
features.

y
[array-like with shape (n_instances,)] A numpy array describing the target vector.
to_pandas()
Returns the dataset as two pandas objects: X and y.

Returns

X
[DataFrame with shape (n_instances, n_features)] A pandas DataFrame containing feature
data and named columns.

y
[Series with shape (n_instances,)] A pandas Series containing target data and an index that
matches the feature DataFrame index.

Text Corpora

Yellowbrick supports many text-specific machine learning visualizations in the yellowbrick.text module. To facilitate
these examples and show an end-to-end visual diagnostics workflow that includes text preprocessing, Yellowbrick
supports a Corpus dataset loader that provides access to raw text data from individual documents. Most notably used
with the hobbies corpus, a collection of blog posts from different topics that can be used for text classification tasks.

A text corpus is composed of individual documents that are stored on disk in a directory structure that also identifies
document relationships. The file name of each document is a unique file ID (e.g. the MDS5 hash of its contents). For
example, the hobbies corpus is structured as follows:

data/hobbies

README . md

books
| — 56d62a53c1808113ffb87f1f.txt
| L— 5745a9c7c180810be6efd70b. txt
L— cinema
| — 56d629b5c1808113ffb87d8f. txt
| L 57408e5fc180810bebe574c8. txt
L— cooking
| — 56d62b25c1808113ffb8813b. txt
| L— 573f0728c180810be6e2575c. txt
L— gaming
| — 56d62654c1808113ffb87938. txt
| L 574585d7c180810bebef7ffc. txt
L— sports
— 56d62adec1808113ffb88054. txt
L— 56d70f17c180810560aec345.txt

Unlike the Dataset, corpus dataset loaders do not return X and y specially prepared for machine learning. Instead,
these loaders return a Corpus object, which can be used to get a more detailed view of the dataset. For example, to list
the unique categories in the corpus, you would access the 1abels property as follows:

54 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

from yellowbrick.datasets import load_hobbies

corpus = load_hobbies()
corpus.labels

Addtionally, you can access the list of the absolute paths of each file, which allows you to read individual documents
or to use scikit-learn utilties that read the documents streaming one at a time rather than loading them into memory all
at once.

with open(corpus.files[8], 'r') as f:
print(f.read())

To get the raw text data and target labels, use the data and target properties.

X, y = corpus.data, corpus.target

For more details on the other metadata properties associated with the Corpus, please refer to the API reference below.
For more detail on text analytics and machine learning with scikit-learn, please refer to “Working with Text Data” in
the scikit-learn documentation.

class yellowbrick.datasets.base.Corpus (name, url=None, signature=None, data_home=None)
Bases: BaseDataset
Corpus datasets contain a reference to documents on disk and provide utilities for quickly loading text data for

use in machine learning workflows. The most common use of the corpus is to load the text analysis examples
from the Yellowbrick documentation.

Parameters

name
[str] The name of the corpus; should either be a folder in data home or specified in the
yellowbrick.datasets. DATASETS variable. This name is used to perform all lookups and
identify the corpus externally.

data_home
[str, optional] The path on disk where data is stored. If not passed in, it is looked up from
YELLOWBRICK_DATA or the default returned by get_data_home.

url
[str, optional] The web location where the archive file of the corpus can be downloaded from.

signature
[str, optional] The signature of the data archive file, used to verify that the latest version of
the data has been downloaded and that the download hasn’t been corrupted or modified in
anyway.
property README
Returns the contents of the README.md file that describes the dataset in detail and contains attribution
information.
property citation
Returns the contents of the citation.bib file that describes the source and provenance of the dataset or to cite
for academic work.
contents()

Contents returns a list of the files in the data directory.

8.3. Visualizers and API 55

https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

Yellowbrick Documentation, Release v1.5

property data

Read all of the documents from disk into an in-memory list.

download (replace=False)

Download the dataset from the hosted Yellowbrick data store and save it to the location specified by
get_data_home. The downloader verifies the download completed successfully and safely by compar-
ing the expected signature with the SHA 256 signature of the downloaded archive file.

Parameters

replace
[bool, default: False] If the data archive already exists, replace the dataset. If this is False
and the dataset exists, an exception is raised.
property files
Returns the list of file names for all documents.
property labels
Return the unique labels assigned to the documents.

property meta
Returns the contents of the meta.json file that describes important attributes about the dataset and modifies
the behavior of the loader.
property root
Discovers and caches the root directory of the corpus.
property target
Returns the label associated with each item in data.

Local Storage

Yellowbrick datasets are stored in a compressed format in the cloud to ensure that the install process is as streamlined
and lightweight as possible. When you request a dataset via the loader module, Yellowbrick checks to see if it has been
downloaded already, and if not, it downloads it to your local disk.

By default the dataset is stored, uncompressed, in the site-packages folder of your Python installation alongside
the Yellowbrick code. This means that if you install Yellowbrick in multiple virtual environments, the datasets will be
downloaded multiple times in each environment.

To cleanup downloaded datasets, you may use the download module as a command line tool. Note, however, that
this will only cleanup the datasets in the yellowbrick package that is on the $PYTHON_PATH of the environment you’re
currently in.

$ python -m yellowbrick.download --cleanup --no-download

Alternatively, because the data is stored in the same directory as the code, you can simply pip uninstall
yellowbrick to cleanup the data.

A better option may be to use a single dataset directory across all virtual environments. To specify this directory, you
must set the $YELLOWBRICK_DATA environment variable, usually by adding it to your bash profile so it is exported
every time you open a terminal window. This will ensure that you have only downloaded the data once.

$ export YELLOWBRICK_DATA="~/.yellowbrick"
$ python -m yellowbrick.download -f
$ 1s $YELLOWBRICK_DATA

56 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

To identify the location that the Yellowbrick datasets are stored for your installation of Python/Yellowbrick, you can
use the get_data_home function:

yellowbrick.datasets.path.get_data_home (path=None)
Return the path of the Yellowbrick data directory. This folder is used by dataset loaders to avoid downloading
data several times.

By default, this folder is colocated with the code in the install directory so that data shipped with the package can
be easily located. Alternatively it can be set by the $YELLOWBRICK_DATA environment variable, or programmat-
ically by giving a folder path. Note that the '~' symbol is expanded to the user home directory, and environment
variables are also expanded when resolving the path.

8.3.2 Anscombe’s Quartet

Yellowbrick has learned Anscombe’s lesson—which is why we believe that visual diagnostics are vital to machine
learning.

import yellowbrick as yb
import matplotlib.pyplot as plt

g = yb.anscombe()
plt.show()

15.0
12.5
10.0
7.5
50

25
0.0

15.0
12.5 ®
10.0

75 . e
50

25

0.0
00 25 50 75 100 125 150 00 25 50 75 100 125 150

8.3. Visualizers and API 57

Yellowbrick Documentation, Release v1.5

API Reference

Plots Anscombe’s Quartet as an illustration of the importance of visualization.

yellowbrick.anscombe.anscombe ()

Creates 2x2 grid plot of the 4 anscombe datasets for illustration.

8.3.3 Feature Analysis Visualizers

Feature analysis visualizers are designed to visualize instances in data space in order to detect features or targets that
might impact downstream fitting. Because ML operates on high-dimensional data sets (usually at least 35), the visu-
alizers focus on aggregation, optimization, and other techniques to give overviews of the data. It is our intent that the
steering process will allow the data scientist to zoom and filter and explore the relationships between their instances
and between dimensions.

At the moment we have the following feature analysis visualizers implemented:
* Rank Features: rank single and pairs of features to detect covariance
* RadViz Visualizer: plot data points along axes ordered around a circle to detect separability
* Parallel Coordinates: plot instances as lines along vertical axes to detect classes or clusters
* PCA Projection: project higher dimensions into a visual space using PCA
* Manifold Visualization: visualize high dimensional data using manifold learning
* Direct Data Visualization: (aka Jointplots) plot 2D correlation between features and target

Feature analysis visualizers implement the Transformer API from scikit-learn, meaning they can be used as inter-
mediate transform steps in a Pipeline (particularly a VisualPipeline). They are instantiated in the same way, and
then fit and transform are called on them, which draws the instances correctly. Finally show is called which finalizes
and displays the image.

Feature Analysis Imports

NOTE that all these are available for import directly from the “‘yellowbrick.features .
—module

from yellowbrick.features.rankd import Rankl1D, Rank2D

from yellowbrick.features.radviz import RadViz

from yellowbrick.features.pcoords import ParallelCoordinates

from yellowbrick.features.jointplot import JointPlotVisualizer

from yellowbrick.features.pca import PCADecomposition

from yellowbrick.features.manifold import Manifold

RadViz Visualizer

RadViz is a multivariate data visualization algorithm that plots each feature dimension uniformly around the circum-
ference of a circle then plots points on the interior of the circle such that the point normalizes its values on the axes
from the center to each arc. This mechanism allows as many dimensions as will easily fit on a circle, greatly expanding
the dimensionality of the visualization.

Data scientists use this method to detect separability between classes. E.g. is there an opportunity to learn from the
feature set or is there just too much noise?

If your data contains rows with missing values (numpy .nan), those missing values will not be plotted. In other words,
you may not get the entire picture of your data. RadViz will raise a DataWarning to inform you of the percent missing.

58 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

If you do receive this warning, you may want to look at imputation strategies. A good starting place is the scikit-learn
Imputer.

Visualizer RadialVisualizer
Quick Method | radviz()

Models Classification, Regression
Workflow Feature Engineering

from yellowbrick.datasets import load_occupancy
from yellowbrick.features import RadViz

Load the classification dataset
X, y = load_occupancy()

Specify the target classes
classes = ["unoccupied", "occupied"]

Instantiate the visualizer
visualizer = RadViz(classes=classes)

visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.transform(X) # Transform the data
visualizer.show() # Finalize and render the figure

RadViz for 5 Features

relative humidity I unoccupied
occupied

light

temperature

humidity

For regression, the RadViz visualizer should use a color sequence to display the target information, as opposed to

8.3. Visualizers and API 59

http://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
http://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html

Yellowbrick Documentation, Release v1.5

discrete colors.

Quick Method

The same functionality above can be achieved with the associated quick method radviz. This method will build the
RadViz object with the associated arguments, fit it, then (optionally) immediately show the visualization.

from yellowbrick.features.radviz import radviz
from yellowbrick.datasets import load_occupancy

#Load the classification dataset
X, y = load_occupancy()

Specify the target classes
classes = ["unoccupied", "occupied"]

Instantiate the visualizer
radviz(X, y, classes=classes)

RadViz for 5 Features

relative humidity I unoccupied
occupied

light

temperature

humidity

60 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

API Reference

Implements radviz for feature analysis.

yellowbrick. features.radviz.RadViz

alias of RadialVisualizer

class yellowbrick.features.radviz.RadialVisualizer (ax=None, features=None, classes=None,
colors=None, colormap=None, alpha=1.0,
**kwargs)

Bases: DataVisualizer

RadViz is a multivariate data visualization algorithm that plots each axis uniformely around the circumference
of a circle then plots points on the interior of the circle such that the point normalizes its values on the axes from
the center to each arc.

Parameters

ax
[matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

features
[list, default: None] a list of feature names to use The names of the features specified by the
columns of the input dataset. This length of this list must match the number of columns in
X, otherwise an exception will be raised on £it().

classes
[list, default: None] a list of class names for the legend The class labels for each class in y,
ordered by sorted class index. These names act as a label encoder for the legend, identifying
integer classes or renaming string labels. If omitted, the class labels will be taken from the
unique values in y.

Note that the length of this list must match the number of unique values in y, otherwise an
exception is raised. This parameter is only used in the discrete target type case and is ignored
otherwise.

colors
[list or tuple, default: None] optional list or tuple of colors to colorize lines A single color
to plot all instances as or a list of colors to color each instance according to its class. If not
enough colors per class are specified then the colors are treated as a cycle.

colormap
[string or cmap, default: None] optional string or matplotlib cmap to colorize lines The
colormap used to create the individual colors. If classes are specified the colormap is used
to evenly space colors across each class.

alpha
[float, default: 1.0] Specify a transparency where 1 is completely opaque and 0 is completely
transparent. This property makes densely clustered points more visible.

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

8.3. Visualizers and API 61

Yellowbrick Documentation, Release v1.5

Examples

>>> visualizer = RadViz()
>>> visualizer.fit(X, y)
>>> visualizer.transform(X)
>>> visualizer.show()

Attributes

features_
[ndarray, shape (n_features,)] The names of the features discovered or used in the visualizer
that can be used as an index to access or modify data in X. If a user passes feature names in,
those features are used. Otherwise the columns of a DataFrame are used or just simply the
indices of the data array.

classes_
[ndarray, shape (n_classes,)] The class labels that define the discrete values in the target. Only
available if the target type is discrete. This is guaranteed to be strings even if the classes are
a different type.

draw(X, y, **kwargs)

Called from the fit method, this method creates the radviz canvas and draws each instance as a class or
target colored point, whose location is determined by the feature data set.

finalize(**kwargs)

Sets the title and adds a legend. Removes the ticks from the graph to make a cleaner visualization.
Parameters

kwargs: generic keyword arguments.

Notes

Generally this method is called from show and not directly by the user.

fit (X, y=None, **kwargs)

The fit method is the primary drawing input for the visualization since it has both the X and y data required
for the viz and the transform method does not.

Parameters

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features

y
[ndarray or Series of length n] An array or series of target or class values

kwargs
[dict] Pass generic arguments to the drawing method

Returns

self
[instance] Returns the instance of the transformer/visualizer

static normalize(X)

MinMax normalization to fit a matrix in the space [0,1] by column.

62 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

yellowbrick. features.radviz.radviz (X, y=None, ax=None, features=None, classes=None, colors=None,
colormap=None, alpha=1.0, show=True, **kwargs)

Displays each feature as an axis around a circle surrounding a scatter plot whose points are each individual
instance.

This helper function is a quick wrapper to utilize the RadialVisualizer (Transformer) for one-off analysis.
Parameters

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features

y
[ndarray or Series of length n, default:None] An array or series of target or class values

ax
[matplotlib Axes, default: None] The axes to plot the figure on.

features
[list of strings, default: None] The names of the features or columns

classes
[list of strings, default: None] The names of the classes in the target

colors
[list or tuple of colors, default: None] Specify the colors for each individual class

colormap
[string or matplotlib cmap, default: None] Sequential colormap for continuous target

alpha
[float, default: 1.0] Specify a transparency where 1 is completely opaque and 0 is completely
transparent. This property makes densely clustered points more visible.

show: bool, default: True
If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize()

kwargs
[dict] Keyword arguments passed to the visualizer base classes.

Returns
viz
[RadViz] Returns the fitted, finalized visualizer

Rank Features

Rank1D and Rank2D evaluate single features or pairs of features using a variety of metrics that score the features on
the scale [-1, 1] or [0, 1] allowing them to be ranked. A similar concept to SPLOMs, the scores are visualized on a
lower-left triangle heatmap so that patterns between pairs of features can be easily discerned for downstream analysis.

In this example, we’ll use the credit default data set from the UCI Machine Learning repository to rank features. The
code below creates our instance matrix and target vector.

Visualizers Rank1D, Rank2D

Quick Methods | rank1d(), rank2d()

Models General Linear Models

Workflow Feature engineering and model selection

8.3. Visualizers and API 63

Yellowbrick Documentation, Release v1.5

Rank 1D

A one-dimensional ranking of features utilizes a ranking algorithm that takes into account only a single feature at a time
(e.g. histogram analysis). By default we utilize the Shapiro-Wilk algorithm to assess the normality of the distribution
of instances with respect to the feature. A barplot is then drawn showing the relative ranks of each feature.

from yellowbrick.datasets import load_credit
from yellowbrick.features import Rank1D

Load the credit dataset
X, vy = load_credit()

Instantiate the 1D visualizer with the Shapiro ranking algorithm
visualizer = RanklD(algorithm="'shapiro"')

visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.transform(X) # Transform the data
visualizer.show() # Finalize and render the figure

Shapiro Ranking of 23 Features

limit

sex

edu
married
age
apr_delay
may_delay
jun_delay
jul_delay
aug_delay
sep_delay
apr_bill
may_bill
jun_bill
jul_bill
aug_bill
sep_bill
apr_pay
may_pay
jun_pay
jul_pay
aug_pay
sep_pay

0.

o
o
N
o©
D
o
o
o
e

64 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Rank 2D

A two-dimensional ranking of features utilizes a ranking algorithm that takes into account pairs of features at a time
(e.g. joint plot analysis). The pairs of features are then ranked by score and visualized using the lower left triangle of
a feature co-occurence matrix.

By default, the Rank2D visualizer utilizes the Pearson correlation score to detect colinear relationships.

from yellowbrick.datasets import load_credit
from yellowbrick.features import Rank2D

Load the credit dataset
X, v = load_credit()

Instantiate the visualizer with the Pearson ranking algorithm
visualizer = Rank2D(algorithm="'pearson')

visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.transform(X) # Transform the data
visualizer.show() # Finalize and render the figure

Pearson Ranking of 23 Features
1.00

limit
sex
edu
married
age
apr_delay 0.50
may_delay
jun_delay
jul_delay I 0.25
aug_delay
sep_delay
apr_bill 0.00
may_bill
jun_bill
jul_bill -0.25
aug_hill
sep_bill
apr_pay -0.50
may_pay
jun_pay
jul_pay
aug_pay
sep_pay

0.75

-0.75

-1.00

limit

sex

edu
married
jul_pay
aug_pay
sep_pay

Alternatively, we can utilize the covariance ranking algorithm, which attempts to compute the mean value of the product
of deviations of variates from their respective means. Covariance loosely attempts to detect a colinear relationship
between features. Compare the output from Pearson above to the covariance ranking below.

8.3. Visualizers and API 65

Yellowbrick Documentation, Release v1.5

from yellowbrick.datasets import load_credit
from yellowbrick.features import Rank2D

Load the credit dataset
X, vy = load_credit()

Instantiate the visualizer with the covariance ranking algorithm
visualizer = Rank2D(algorithm="'covariance')

visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.transform(X) # Transform the data
visualizer.show() # Finalize and render the figure

Covariance Ranking of 23 Features

limit 1.00

sex

edu
married
age
apr_delay
may_delay
jun_delay
jul_delay
aug_delay
sep_delay
apr_bill
may_bill
jun_bill
jul_bill
aug_bill
sep_hill
apr_pay
may_pay
jun_pay
jul_pay
aug_pay
sep_pay

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

E X ST O 22222 >2===== = > > > > > >

EUlT OO TS ooooo0o0®8B8B®T T

() T 0 o O o oD o 0 0 0 Q0 Q

= CIJ:“5cthva.)q.)cp,_lII_|I|||||||
< T, T T T T O >~c S o —

= 1011 1885250535352 %

2SS9 1S T O g c="3n

Quick Methods

Similar functionality can be achieved using the one line quick methods, rankld and rank2d. These functions in-
stantiate and fit their respective visualizer on the data and immediately show it without having to use the class-based
APL

from yellowbrick.datasets import load_concrete
from yellowbrick.features import rankld, rank2d

Load the concrete dataset

(continues on next page)

66 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

(continued from previous page)

X, _ = load_concrete()
_, axes = plt.subplots(ncols=2, figsize=(8,4))

rankld(X, ax=axes[0], show=False)
rank2d(X, ax=axes[1], show=False)

plt.show()
Shapiro Ranking of 8 Features

1.00

cement _ Pearson Ranking of 8 Features 0.75
slag

slag 0.50

ash 0.25

0.00

coarse -0.25

fine ~0.50

age
~ o -0.75
5 = 7 3 ~1.00

API Reference

Implements 1D (histograms) and 2D (joint plot) feature rankings.

class yellowbrick.features.rankd.Rank1D(ax=None, algorithm="shapiro', features=None, orient="h',
show_feature_names=True, color=None, **kwargs)

Bases: RankDBase

Rank1D computes a score for each feature in the data set with a specific metric or algorithm (e.g. Shapiro-Wilk)
then returns the features ranked as a bar plot.

Parameters

ax
[matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

algorithm
[one of {‘shapiro’, }, default: ‘shapiro’] The ranking algorithm to use, default is ‘Shapiro-
Wilk.

features
[list] A list of feature names to use. If a DataFrame is passed to fit and features is None,
feature names are selected as the columns of the DataFrame.

8.3. Visualizers and API 67

Yellowbrick Documentation, Release v1.5

orient
[‘h’ or ‘v’, default="h’] Specifies a horizontal or vertical bar chart.

show_feature_names
[boolean, default: True] If True, the feature names are used to label the x and y ticks in the
plot.

color: string
Specify color for barchart

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Examples

>>> visualizer = Rank1D()
>>> visualizer.fit(X, y)
>>> visualizer.transform(X)
>>> visualizer.show()

Attributes

ranks_
[ndarray] An array of rank scores with shape (n,), where n is the number of features. It is
computed during fit.

draw (**kwargs)

Draws the bar plot of the ranking array of features.

ranking_methods = {'shapiro': <function Rank1D.<lambda>>}

class yellowbrick. features.rankd.Rank2D (ax=None, algorithm='pearson’, features=None,
colormap='RdBu_r', show_feature_names=True, **kwargs)

Bases: RankDBase

Rank2D performs pairwise comparisons of each feature in the data set with a specific metric or algorithm (e.g.
Pearson correlation) then returns them ranked as a lower left triangle diagram.

Parameters

ax
[matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

algorithm
[str, default: ‘pearson’] The ranking algorithm to use, one of: ‘pearson’, ‘covariance’, ‘spear-
man’, or ‘kendalltau’.

features
[list] A list of feature names to use. If a DataFrame is passed to fit and features is None,
feature names are selected as the columns of the DataFrame.

colormap
[string or cmap, default: ‘RdBu_r’] optional string or matplotlib cmap to colorize lines Use
either color to colorize the lines on a per class basis or colormap to color them on a continuous
scale.

68 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

show_feature_names
[boolean, default: True] If True, the feature names are used to label the axis ticks in the plot.

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Notes

These parameters can be influenced later on in the visualization process, but can and should be set as early as
possible.

Examples

>>> visualizer = Rank2D()
>>> visualizer.fit(X, y)
>>> visualizer.transform(X)
>>> visualizer.show()

Attributes

ranks_
[ndarray] An array of rank scores with shape (n,n), where n is the number of features. It is
computed during fit.

draw(**kwargs)
Draws the heatmap of the ranking matrix of variables.

ranking_methods = {'covariance': <function Rank2D.<lambda>>, 'kendalltau':
<function Rank2D.<lambda>>, 'pearson': <function Rank2D.<lambda>>, 'spearman':
<function Rank2D.<lambda>>}

yellowbrick. features.rankd.rankld(X, y=None, ax=None, algorithm="shapiro’, features=None, orient="h',
show_feature_names=True, color=None, show=True, **kwargs)

Scores each feature with the algorithm and ranks them in a bar plot.

This helper function is a quick wrapper to utilize the Rank1D Visualizer (Transformer) for one-off analysis.

Parameters
X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features
y
[ndarray or Series of length n] An array or series of target or class values
ax
[matplotlib axes] the axis to plot the figure on.
algorithm
[one of {‘shapiro’, }, default: ‘shapiro’] The ranking algorithm to use, default is ‘Shapiro-
Wilk.
features

[list] A list of feature names to use. If a DataFrame is passed to fit and features is None,
feature names are selected as the columns of the DataFrame.

8.3. Visualizers and API 69

Yellowbrick Documentation, Release v1.5

orient
[‘h’ or ‘v’] Specifies a horizontal or vertical bar chart.

show_feature_names
[boolean, default: True] If True, the feature names are used to label the axis ticks in the plot.

color: string
Specify color for barchart

show: bool, default: True

If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize ()

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visual-
ization as defined in other Visualizers.

Returns
viz
[Rank1D] Returns the fitted, finalized visualizer.
yellowbrick. features.rankd.rank2d (X, y=None, ax=None, algorithm="pearson’, features=None,

colormap="RdBu_r', show_feature_names=True, show=True,
**ewargs)

Rank2D quick method

Rank2D performs pairwise comparisons of each feature in the data set with a specific metric or algorithm (e.g.
Pearson correlation) then returns them ranked as a lower left triangle diagram.

Parameters

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features to perform
the pairwise compairsons on.

y
[ndarray or Series of length n, default: None] An array or series of target or class values,
optional (not used).

ax
[matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

algorithm
[str, default: ‘pearson’] The ranking algorithm to use, one of: ‘pearson’, ‘covariance’, ‘spear-
man’, or ‘kendalltau’.

features
[list] A list of feature names to use. If a DataFrame is passed to fit and features is None,
feature names are selected as the columns of the DataFrame.

colormap

[string or cmap, default: ‘RdBu_r’] optional string or matplotlib cmap to colorize lines Use
either color to colorize the lines on a per class basis or colormap to color them on a continuous
scale.

show_feature_names
[boolean, default: True] If True, the feature names are used to label the axis ticks in the plot.

70 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

show: bool, default: True
If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize ()

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Returns
viz
[Rank2D] Returns the fitted, finalized visualizer that created the Rank2D heatmap.

Parallel Coordinates

Parallel coordinates is multi-dimensional feature visualization technique where the vertical axis is duplicated horizon-
tally for each feature. Instances are displayed as a single line segment drawn from each vertical axes to the location
representing their value for that feature. This allows many dimensions to be visualized at once; in fact given infinite
horizontal space (e.g. a scrolling window), technically an infinite number of dimensions can be displayed!

Data scientists use this method to detect clusters of instances that have similar classes, and to note features that have
high variance or different distributions. We can see this in action after first loading our occupancy classification dataset.

Visualizer ParallelCoordinates
Quick Method | parallel_coordinates()
Models Classification

Workflow Feature analysis

from yellowbrick.features import ParallelCoordinates
from yellowbrick.datasets import load_occupancy

Load the classification data set
X, y = load_occupancy()

Specify the features of interest and the classes of the target
features = [

"temperature", "relative humidity", "light", "C02", "humidity"
]

classes = ["unoccupied", "occupied"]

Instantiate the visualizer
visualizer = ParallelCoordinates(
classes=classes, features=features, sample=0.05, shuffle=True

Fit and transform the data to the visualizer
visualizer.fit_transform(X, y)

Finalize the title and axes then display the visualization
visualizer.show()

By inspecting the visualization closely, we can see that the combination of transparency and overlap gives us the sense
of groups of similar instances, sometimes referred to as “braids”. If there are distinct braids of different classes, it
suggests that there is enough separability that a classification algorithm might be able to discern between each class.

8.3. Visualizers and API 71

Yellowbrick Documentation, Release v1.5

Parallel Coordinates for 5 Features

2000 occupied
I unoccupied

1750

1500

1250

1000

750

500

250

0

temperature relative humidity light CO2 humidity

Unfortunately, as we inspect this class, we can see that the domain of each feature may make the visualization hard
to interpret. In the above visualization, the domain of the 1ight feature is from in [®, 1600], far larger than the
range of temperature in [50, 96]. To solve this problem, each feature should be scaled or normalized so they are
approximately in the same domain.

Normalization techniques can be directly applied to the visualizer without pre-transforming the data (though you could
also do this) by using the normalize parameter. Several transformers are available; try using minmax, maxabs,
standard, 11, or 12 normalization to change perspectives in the parallel coordinates as follows:

from yellowbrick.features import ParallelCoordinates
from yellowbrick.datasets import load_occupancy

Load the classification data set
X, y = load_occupancy()

Specify the features of interest and the classes of the target
features = [

"temperature", "relative humidity", "light", "C02", "humidity"
]

classes = ["unoccupied", "occupied"]

Instantiate the visualizer

visualizer = ParallelCoordinates(
classes=classes, features=features,
normalize="standard', sample=0.05, shuffle=True,

(continues on next page)

72 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

(continued from previous page)

Fit the visualizer and display it
visualizer.fit_transform(X, y)
visualizer.show()

Parallel Coordinates for 5 Features

occupied
I unoccupied

temperature relative humidity light CO2 humidity

Now we can see that each feature is in the range [-3, 3] where the mean of the feature is set to zero and each feature
has a unit variance applied between [-1, 1] (because we’re using the StandardScaler via the standard normalize
parameter). This version of parallel coordinates gives us a much better sense of the distribution of the features and if
any features are highly variable with respect to any one class.

Faster Parallel Coordinates

Parallel coordinates can take a long time to draw since each instance is represented by a line for each feature. Worse,
this time is not well spent since a lot of overlap in the visualization makes the parallel coordinates less understandable.
We propose two solutions to this:

1. Use sample=0.2 and shuffle=True parameters to shuffle and sample the dataset being drawn on the figure.
The sample parameter will perform a uniform random sample of the data, selecting the percent specified.

2. Use the fast=True parameter to enable “fast drawing mode”.

The “fast” drawing mode vastly improves the performance of the parallel coordinates drawing algorithm by drawing
each line segment by class rather than each instance individually. However, this improved performance comes at a cost,
as the visualization produced is subtly different; compare the visualizations in fast and standard drawing modes below:

8.3. Visualizers and API 73

Yellowbrick Documentation, Release v1.5

Standard Parallel Coordinates

™

Fast Parallel Coordinates

Chapter 8. Table of Contents

74

Yellowbrick Documentation, Release v1.5

As you can see the “fast” drawing algorithm does not have the same build up of color density where instances of the
same class intersect. Because there is only one line per class, there is only a darkening effect between classes. This can
lead to a different interpretation of the plot, though it still may be effective for analytical purposes, particularly when
you're plotting a lot of data. Needless to say, the performance benefits are dramatic:

Speed Improvement of Fast Parallel Coordinates

500

400

300

speedup factor

200

100

1 2 3 4 5 6 7 8 9 10
dataset size (number of repeats in Iris dataset)

Quick Method

The same functionality above can be achieved with the associated quick method parallel_coordinates. This
method will build the ParallelCoordinates object with the associated arguments, fit it, then (optionally) imme-
diately show it.

from yellowbrick.features.pcoords import parallel_coordinates
from yellowbrick.datasets import load_occupancy

Load the classification data set
X, y = load_occupancy()

Specify the features of interest and the classes of the target
features = [

"temperature", "relative humidity", "light", "C02", "humidity"
1

classes = ["unoccupied", "occupied"]

Instantiate the visualizer
visualizer = parallel_coordinates(X, y, classes=classes, features=features)

8.3. Visualizers and API 75

Yellowbrick Documentation, Release v1.5

Parallel Coordinates for 5 Features

occupied
2000 BN unoccupied

1500

1000

500

0

temperature relative humidity light CO2 humidity

API Reference

Implementation of parallel coordinates for multi-dimensional feature analysis.

class yellowbrick.features.pcoords.ParallelCoordinates (ax=None, features=None, classes=None,
normalize=None, sample=1.0,
random_state=None, shuffle=False,
colors=None, colormap=None,
alpha=None, fast=False, vlines=True,
vilines_kwds=None, **kwargs)

Bases: DataVisualizer

Parallel coordinates displays each feature as a vertical axis spaced evenly along the horizontal, and each instance
as a line drawn between each individual axis. This allows you to detect braids of similar instances and separability
that suggests a good classification problem.

Parameters

ax
[matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

features
[list, default: None] a list of feature names to use If a DataFrame is passed to fit and features
is None, feature names are selected as the columns of the DataFrame.

classes
[list, default: None] a list of class names for the legend The class labels for each class in y,

76 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

ordered by sorted class index. These names act as a label encoder for the legend, identifying
integer classes or renaming string labels. If omitted, the class labels will be taken from the
unique values in y.

Note that the length of this list must match the number of unique values in y, otherwise an
exception is raised.

normalize
[string or None, default: None] specifies which normalization method to use, if any Current
supported options are ‘minmax’, ‘maxabs’, ‘standard’, ‘11°, and ‘12°.

sample
[float or int, default: 1.0] specifies how many examples to display from the data If int, spec-
ifies the maximum number of samples to display. If float, specifies a fraction between 0 and
1 to display.

random_state
[int, RandomState instance or None] If int, random_state is the seed used by the random
number generator; If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used by np.random; only
used if shuffle is True and sample < 1.0

shuffle
[boolean, default: True] specifies whether sample is drawn randomly

colors
[list or tuple, default: None] A single color to plot all instances as or a list of colors to color
each instance according to its class. If not enough colors per class are specified then the
colors are treated as a cycle.

colormap
[string or cmap, default: None] The colormap used to create the individual colors. If classes
are specified the colormap is used to evenly space colors across each class.

alpha
[float, default: None] Specify a transparency where 1 is completely opaque and 0 is com-
pletely transparent. This property makes densely clustered lines more visible. If None, the
alpha is set to 0.5 in “fast” mode and 0.25 otherwise.

fast
[bool, default: False] Fast mode improves the performance of the drawing time of parallel
coordinates but produces an image that does not show the overlap of instances in the same
class. Fast mode should be used when drawing all instances is too burdensome and sampling
is not an option.

vlines
[boolean, default: True] flag to determine vertical line display

vlines_kwds
[dict, default: None] options to style or display the vertical lines, default: None

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

8.3. Visualizers and API

77

Yellowbrick Documentation, Release v1.5

Examples

>>> visualizer = ParallelCoordinates()
>>> visualizer.fit(X, y)

>>> visualizer.transform(X)

>>> visualizer.show()

Attributes

n_samples_
[int] number of samples included in the visualization object

features_
[ndarray, shape (n_features,)] The names of the features discovered or used in the visualizer
that can be used as an index to access or modify data in X. If a user passes feature names in,
those features are used. Otherwise the columns of a DataFrame are used or just simply the
indices of the data array.

classes_
[ndarray, shape (n_classes,)] The class labels that define the discrete values in the target. Only
available if the target type is discrete. This is guaranteed to be strings even if the classes are
a different type.

NORMALIZERS = {'11': Normalizer(norm='1l1'), 'l2': Normalizer(), 'maxabs':
MaxAbsScaler(), 'minmax': MinMaxScaler(), 'standard': StandardScaler()}

draw(X, y, **kwargs)
Called from the fit method, this method creates the parallel coordinates canvas and draws each instance and
vertical lines on it.

Parameters

X
[ndarray of shape n x m] A matrix of n instances with m features

y
[ndarray of length n] An array or series of target or class values

kwargs
[dict] Pass generic arguments to the drawing method
draw_classes (X, y, **kwargs)

Draw the instances colored by the target y such that each line is a single class. This is the “fast” mode of
drawing, since the number of lines drawn equals the number of classes, rather than the number of instances.
However, this drawing method sacrifices inter-class density of points using the alpha parameter.

Parameters

X
[ndarray of shape n x m] A matrix of n instances with m features

y
[ndarray of length n] An array or series of target or class values
draw_instances(X, y, **kwargs)
Draw the instances colored by the target y such that each line is a single instance. This is the “slow” mode

of drawing, since each instance has to be drawn individually. However, in so doing, the density of instances
in braids is more apparent since lines have an independent alpha that is compounded in the figure.

78 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

This is the default method of drawing.
Parameters

X
[ndarray of shape n x m] A matrix of n instances with m features

y
[ndarray of length n] An array or series of target or class values

Notes

This method can be used to draw additional instances onto the parallel coordinates before the figure is
finalized.

finalize(**kwargs)
Performs the final rendering for the multi-axis visualization, including setting and rendering the vertical
axes each instance is plotted on. Adds a title, a legend, and manages the grid.

Parameters

kwargs: generic keyword arguments.

Notes

Generally this method is called from show and not directly by the user.

fit (X, y=None, **kwargs)
The fit method is the primary drawing input for the visualization since it has both the X and y data required
for the viz and the transform method does not.

Parameters

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features

y
[ndarray or Series of length n] An array or series of target or class values

kwargs
[dict] Pass generic arguments to the drawing method

Returns

self
[instance] Returns the instance of the transformer/visualizer

yellowbrick. features.pcoords.parallel_coordinates(X, y, ax=None, features=None, classes=None,
normalize=None, sample=1.0,
random_state=None, shuffle=False, colors=None,
colormap=None, alpha=None, fast=False,
vlines=True, vlines_kwds=None, show=True,
**kwargs)

Displays each feature as a vertical axis and each instance as a line.

This helper function is a quick wrapper to utilize the ParallelCoordinates Visualizer (Transformer) for one-off
analysis.

Parameters

8.3. Visualizers and API 79

Yellowbrick Documentation, Release v1.5

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features

y
[ndarray or Series of length n] An array or series of target or class values

ax
[matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

features
[list, default: None] a list of feature names to use If a DataFrame is passed to fit and features
is None, feature names are selected as the columns of the DataFrame.

classes
[list, default: None] a list of class names for the legend If classes is None and a y value is
passed to fit then the classes are selected from the target vector.

normalize
[string or None, default: None] specifies which normalization method to use, if any Current
supported options are ‘minmax’, ‘maxabs’, ‘standard’, ‘11°, and ‘12°.

sample

[float or int, default: 1.0] specifies how many examples to display from the data If int, spec-
ifies the maximum number of samples to display. If float, specifies a fraction between 0 and
1 to display.

random_state
[int, RandomState instance or None] If int, random_state is the seed used by the random
number generator; If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used by np.random; only
used if shuffle is True and sample < 1.0

shuffle
[boolean, default: True] specifies whether sample is drawn randomly

colors
[list or tuple, default: None] optional list or tuple of colors to colorize lines Use either color
to colorize the lines on a per class basis or colormap to color them on a continuous scale.

colormap
[string or cmap, default: None] optional string or matplotlib cmap to colorize lines Use either
color to colorize the lines on a per class basis or colormap to color them on a continuous scale.

alpha
[float, default: None] Specify a transparency where 1 is completely opaque and O is com-
pletely transparent. This property makes densely clustered lines more visible. If None, the
alpha is set to 0.5 in “fast” mode and 0.25 otherwise.

fast
[bool, default: False] Fast mode improves the performance of the drawing time of parallel
coordinates but produces an image that does not show the overlap of instances in the same
class. Fast mode should be used when drawing all instances is too burdensome and sampling
is not an option.

vlines
[boolean, default: True] flag to determine vertical line display

vlines_kwds
[dict, default: None] options to style or display the vertical lines, default: None

80 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

show
[bool, default: True] If True, calls show(), which in turn calls plt.show() however you
cannot call plt.savefig from this signature, nor clear_figure. If False, simply calls
finalize()

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Returns
viz
[ParallelCoordinates] Returns the fitted, finalized visualizer

PCA Projection

The PCA Decomposition visualizer utilizes principal component analysis to decompose high dimensional data into
two or three dimensions so that each instance can be plotted in a scatter plot. The use of PCA means that the projected
dataset can be analyzed along axes of principal variation and can be interpreted to determine if spherical distance
metrics can be utilized.

Visualizer PCA

Quick Method | pca_decomposition()
Models Classification/Regression
Workflow Feature Engineering/Selection

from yellowbrick.datasets import load_credit
from yellowbrick.features import PCA

Specify the features of interest and the target
X, v = load_credit()
classes = ['account in default', 'current with bills']

visualizer = PCA(scale=True, classes=classes)
visualizer. fit_transform(X, y)
visualizer.show()

The PCA projection can also be plotted in three dimensions to attempt to visualize more principal components and get
a better sense of the distribution in high dimensions.

from yellowbrick.datasets import load_credit
from yellowbrick.features import PCA

X, vy = load_credit()
classes = ['account in default', 'current with bills']

visualizer = PCA(

scale=True, projection=3, classes=classes
)
visualizer. fit_transform(X, y)
visualizer.show()

8.3. Visualizers and API 81

Yellowbrick Documentation, Release v1.5

Principal Component Plot

Y Il account in default
current with bills

PC,

PC,

Biplot

The PCA projection can be enhanced to a biplot whose points are the projected instances and whose vectors represent
the structure of the data in high dimensional space. By using proj_features=True, vectors for each feature in the
dataset are drawn on the scatter plot in the direction of the maximum variance for that feature. These structures can
be used to analyze the importance of a feature to the decomposition or to find features of related variance for further
analysis.

from yellowbrick.datasets import load_concrete
from yellowbrick.features import PCA

Load the concrete dataset
X, y = load_concrete()

visualizer = PCA(scale=True, proj_features=True)
visualizer. fit_transform(X, y)
visualizer.show()

from yellowbrick.datasets import load_concrete
from yellowbrick.features import PCA

X, y = load_concrete()

visualizer = PCA(scale=True, proj_features=True, projection=3)

(continues on next page)

82 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Principal Component Plot

I account in default
current with bills

!
PC;

(continued from previous page)

visualizer.fit_transform(X, y)
visualizer.show()

Quick Method

The same functionality above can be achieved with the associated quick method pca_decomposition. This method
will build the PCA object with the associated arguments, fit it, then (optionally) immediately show it.

from yellowbrick.datasets import load_credit
from yellowbrick.features import pca_decomposition

Specify the features of interest and the target

X, y = load_credit()
classes = ['account in default', 'current with bills']

Create, fit, and show the visualizer

pca_decomposition(
X, y, scale=True, classes=classes

)

8.3. Visualizers and API 83

Yellowbrick Documentation, Release v1.5

Principal Component Plot
80

70

60

50

water

PC,

40

30

20

10

°

PC,

API Reference

Decomposition based feature visualization with PCA.

class yellowbrick.features.pca.PCA(ax=None, features=None, classes=None, scale=True, projection=2,
proj_features=False, colors=None, colormap=None, alpha=0.75,
random_state=None, colorbar=True, heatmap=False, **kwargs)

Bases: ProjectionVisualizer

Produce a two or three dimensional principal component plot of a data array projected onto its largest sequential
principal components. It is common practice to scale the data array X before applying a PC decomposition.
Variable scaling can be controlled using the scale argument.

Parameters

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in, the
current axes will be used (or generated if required).

features
[list, default: None] The names of the features specified by the columns of the input dataset.
This length of this list must match the number of columns in X, otherwise an exception will
be raised on £fit ().

classes
[list, default: None] The class labels for each class in y, ordered by sorted class index. These
names act as a label encoder for the legend, identifying integer classes or renaming string
labels. If omitted, the class labels will be taken from the unique values in y.

84 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Principal Component Plot

80

70

60

~ 40

Note that the length of this list must match the number of unique values in y, otherwise an
exception is raised. This parameter is only used in the discrete target type case and is ignored
otherwise.

scale
[bool, default: True] Boolean that indicates if user wants to scale data.

projection
[int or string, default: 2] The number of axes to project into, either 2d or 3d. To plot 3d plots
with matplotlib, please ensure a 3d axes is passed to the visualizer, otherwise one will be

created using the current figure.

proj_features
[bool, default: False] Boolean that indicates if the user wants to project the features in the

projected space. If True the plot will be similar to a biplot.

colors
[list or tuple, default: None] A single color to plot all instances as or a list of colors to color

each instance according to its class in the discrete case or as an ordered colormap in the
sequential case. If not enough colors per class are specified then the colors are treated as a

cycle.

colormap
[string or cmap, default: None] The colormap used to create the individual colors. In the

discrete case it is used to compute the number of colors needed for each class and in the
continuous case it is used to create a sequential color map based on the range of the target.

alpha

8.3.

Visualizers and API

85

Yellowbrick Documentation, Release v1.5

Principal Component Plot

o Il account in default
current with bills

PC,

PC,

[float, default: 0.75] Specify a transparency where 1 is completely opaque and 0 is completely
transparent. This property makes densely clustered points more visible.

random_state
[int, RandomState instance or None, optional (default None)] This parameter sets the random
state on this solver. If the input X is larger than 500x500 and the number of components
to extract is lower than 80% of the smallest dimension of the data, then the more efficient
randomized solver is enabled.

colorbar
[bool, default: True] If the target_type is “continous” draw a colorbar to the right of the
scatter plot. The colobar axes is accessible using the cax property.

heatmap
[bool, default: False] Add a heatmap showing contribution of each feature in the principal
components. Also draws a colorbar for readability purpose. The heatmap is accessible using
lax property and colorbar using uax property.

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

86 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Examples

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> X = iris.data

>>> y = iris.target

>>> visualizer = PCAQ)

>>> visualizer.fit_transform(X, y)
>>> visualizer.show()

Attributes

pca_components_
[ndarray, shape (n_features, n_components)] This tells about the magnitude of each feature
in the pricipal components. This is primarily used to draw the biplots.

classes_
[ndarray, shape (n_classes,)] The class labels that define the discrete values in the target. Only
available if the target type is discrete. This is guaranteed to be strings even if the classes are
a different type.

features_
[ndarray, shape (n_features,)] The names of the features discovered or used in the visualizer
that can be used as an index to access or modify data in X. If a user passes feature names in,
those features are used. Otherwise the columns of a DataFrame are used or just simply the
indices of the data array.

range_
[(min y, max y)] A tuple that describes the minimum and maximum values in the target.
Only available if the target type is continuous.

draw(Xp, y)
Plots a scatterplot of points that represented the decomposition, pca_features_, of the original features, X,
projected into either 2 or 3 dimensions.

If 2 dimensions are selected, a colorbar and heatmap can also be optionally included to show the magnitude
of each feature value to the component.

Parameters

Xp
[array-like of shape (n, 2) or (n, 3)] The matrix produced by the transform() method.

y
[array-like of shape (n,), optional] The target, used to specify the colors of the points.

Returns

self.ax
[matplotlib Axes object] Returns the axes that the scatter plot was drawn on.

finalize(**kwargs)
Draws the title, labels, legends, heatmap, and colorbar as specified by the keyword arguments.

fit (X, y=None, **kwargs)
Fits the PCA transformer, transforms the data in X, then draws the decomposition in either 2D or 3D space
as a scatter plot.

Parameters

8.3.

Visualizers and API 87

Yellowbrick Documentation, Release v1.5

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features.

y
[ndarray or Series of length n] An array or series of target or class values.

Returns

sel[fvisualizer] Returns self for use in Pipelines.
property lax
The axes of the heatmap below scatter plot.
layout (divider=None)
Creates the layout for colorbar and heatmap, adding new axes for the heatmap if necessary and modifying
the aspect ratio. Does not modify the axes or the layout if self.heatmap is False or None.
Parameters

divider: AxesDivider
An AxesDivider to be passed among all layout calls.

property random_state

transform(X, y=None, **kwargs)

Calls the internal fransform method of the scikit-learn PCA transformer, which performs a dimensionality
reduction on the input features X. Next calls the draw method of the Yellowbrick visualizer, finally returning
a new array of transformed features of shape (1len(X), projection).

Parameters

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features.

y
[ndarray or Series of length n] An array or series of target or class values.

Returns

Xp
[ndarray or DataFrame of shape n x m] Returns a new array-like object of transformed
features of shape (len(X), projection).

property uax
The axes of the colorbar, bottom of scatter plot. This is the colorbar for heatmap and not for the scatter plot.
yellowbrick. features.pca.pca_decomposition (X, y=None, ax=None, features=None, classes=None,
scale=True, projection=2, proj_features=False,
colors=None, colormap=None, alpha=0.75,

random_state=None, colorbar=True, heatmap=False,
show=True, **kwargs)

Produce a two or three dimensional principal component plot of the data array X projected onto its largest sequen-
tial principal components. It is common practice to scale the data array X before applying a PC decomposition.
Variable scaling can be controlled using the scale argument.

Parameters

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features.

88 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

[ndarray or Series of length n] An array or series of target or class values.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in, the
current axes will be used (or generated if required).

features
[list, default: None] The names of the features specified by the columns of the input dataset.
This length of this list must match the number of columns in X, otherwise an exception will
be raised on fit().

classes
[list, default: None] The class labels for each class in y, ordered by sorted class index. These
names act as a label encoder for the legend, identifying integer classes or renaming string
labels. If omitted, the class labels will be taken from the unique values in y.

Note that the length of this list must match the number of unique values in y, otherwise an
exception is raised. This parameter is only used in the discrete target type case and is ignored
otherwise.

scale
[bool, default: True] Boolean that indicates if user wants to scale data.

projection
[int or string, default: 2] The number of axes to project into, either 2d or 3d. To plot 3d plots
with matplotlib, please ensure a 3d axes is passed to the visualizer, otherwise one will be
created using the current figure.

proj_features
[bool, default: False] Boolean that indicates if the user wants to project the features in the
projected space. If True the plot will be similar to a biplot.

colors
[list or tuple, default: None] A single color to plot all instances as or a list of colors to color
each instance according to its class in the discrete case or as an ordered colormap in the
sequential case. If not enough colors per class are specified then the colors are treated as a
cycle.

colormap
[string or cmap, default: None] The colormap used to create the individual colors. In the
discrete case it is used to compute the number of colors needed for each class and in the
continuous case it is used to create a sequential color map based on the range of the target.

alpha
[float, default: 0.75] Specify a transparency where 1 is completely opaque and 0 is completely
transparent. This property makes densely clustered points more visible.

random_state
[int, RandomState instance or None, optional (default None)] This parameter sets the random
state on this solver. If the input X is larger than 500x500 and the number of components
to extract is lower than 80% of the smallest dimension of the data, then the more efficient
randomized solver is enabled.

colorbar
[bool, default: True] If the target_type is “continous” draw a colorbar to the right of the
scatter plot. The colobar axes is accessible using the cax property.

heatmap
[bool, default: False] Add a heatmap showing contribution of each feature in the principal

8.3. Visualizers and API

89

Yellowbrick Documentation, Release v1.5

components. Also draws a colorbar for readability purpose. The heatmap is accessible using
lax property and colorbar using uax property.

show
[bool, default: True] If True, calls show(), which in turn calls plt.show() however you
cannot call plt.savefig from this signature, nor clear_figure. If False, simply calls
finalize()

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Examples

>>> from sklearn import datasets

>>> iris = datasets.load_iris()

>>> X = iris.data

>>> y = iris.target

>>> pca_decomposition(X, y, colors=['r', 'g', 'b'], projection=3)

Attributes

pca_components_
[ndarray, shape (n_features, n_components)] This tells about the magnitude of each feature
in the pricipal components. This is primarily used to draw the biplots.

classes_
[ndarray, shape (n_classes,)] The class labels that define the discrete values in the target. Only
available if the target type is discrete. This is guaranteed to be strings even if the classes are
a different type.

features_
[ndarray, shape (n_features,)] The names of the features discovered or used in the visualizer
that can be used as an index to access or modify data in X. If a user passes feature names in,
those features are used. Otherwise the columns of a DataFrame are used or just simply the
indices of the data array.

range_
[(min y, max y)] A tuple that describes the minimum and maximum values in the target.
Only available if the target type is continuous.

Manifold Visualization

The Manifold visualizer provides high dimensional visualization using manifold learning to embed instances de-
scribed by many dimensions into 2, thus allowing the creation of a scatter plot that shows latent structures in data.
Unlike decomposition methods such as PCA and SVD, manifolds generally use nearest-neighbors approaches to em-
bedding, allowing them to capture non-linear structures that would be otherwise lost. The projections that are produced
can then be analyzed for noise or separability to determine if it is possible to create a decision space in the data.

Visualizer Manifold

Quick Method | manifold_embedding()
Models Classification, Regression
Workflow Feature Engineering

90 Chapter 8. Table of Contents

http://scikit-learn.org/stable/modules/manifold.html

Yellowbrick Documentation, Release v1.5

t-SNE Manifold (fit in 5.71 seconds)

Yo *‘ 70

- 50

'1. .; ‘ +
° 4

L]
o L ’
~ “ ." % ; » 30
[Dot ’:4 20
.h o

."‘ ’ 10

Using 8 features

The Manifold visualizer allows access to all currently available scikit-learn manifold implementations by specifying
the manifold as a string to the visualizer. The currently implemented default manifolds are as follows:

Manifold Description

"lle" Locally Linear Embedding (LLE) uses many local linear decompositions to preserve globally non-
linear structures.

"ltsa" LTSA LLE: local tangent space alignment is similar to LLE in that it uses locality to preserve neigh-
borhood distances.

"hessian" | Hessian LLE an LLE regularization method that applies a hessian-based quadratic form at each neigh-
borhood

"modified'| Modified LLE applies a regularization parameter to LLE.

"isomap" | Isomap seeks a lower dimensional embedding that maintains geometric distances between each in-
stance.

"mds" MDS: multi-dimensional scaling uses similarity to plot points that are near to each other close in the
embedding.

"spectral’| Spectral Embedding a discrete approximation of the low dimensional manifold using a graph repre-
sentation.

"tsne" t-SNE: converts the similarity of points into probabilities then uses those probabilities to create an
embedding.

Each manifold algorithm produces a different embedding and takes advantage of different properties of the underlying
data. Generally speaking, it requires multiple attempts on new data to determine the manifold that works best for the
structures latent in your data. Note however, that different manifold algorithms have different time, complexity, and

resource requirements.

Manifolds can be used on many types of problems, and the color used in the scatter plot can describe the target instance.
In an unsupervised or clustering problem, a single color is used to show structure and overlap. In a classification problem

8.3. Visualizers and API

91

http://scikit-learn.org/stable/modules/manifold.html#locally-linear-embedding
http://scikit-learn.org/stable/modules/manifold.html#local-tangent-space-alignment
http://scikit-learn.org/stable/modules/manifold.html#hessian-eigenmapping
http://scikit-learn.org/stable/modules/manifold.html#modified-locally-linear-embedding
http://scikit-learn.org/stable/modules/manifold.html#isomap
http://scikit-learn.org/stable/modules/manifold.html#multi-dimensional-scaling-mds
http://scikit-learn.org/stable/modules/manifold.html#spectral-embedding
http://scikit-learn.org/stable/modules/manifold.html#t-distributed-stochastic-neighbor-embedding-t-sne

Yellowbrick Documentation, Release v1.5

discrete colors are used for each class. In a regression problem, a color map can be used to describe points as a heat
map of their regression values.

Discrete Target

In a classification or clustering problem, the instances can be described by discrete labels - the classes or categories
in the supervised problem, or the clusters they belong to in the unsupervised version. The manifold visualizes this by
assigning a color to each label and showing the labels in a legend.

from yellowbrick.features import Manifold
from yellowbrick.datasets import load_occupancy

Load the classification dataset
X, y = load_occupancy()
classes = ["unoccupied", "occupied"]

Instantiate the visualizer
viz = Manifold(manifold="tsne", classes=classes)

viz.fit_transform(X, y) # Fit the data to the visualizer
viz.show() # Finalize and render the figure

t-SNE Manifold (fit in 141.16 seconds)

o EEE unoccupied
occupied

Using 5 features

The visualization also displays the amount of time it takes to generate the embedding; as you can see, this can take a
long time even for relatively small datasets. One tip is scale your data using the StandardScalar; another is to sample
your instances (e.g. using train_test_split to preserve class stratification) or to filter features to decrease sparsity
in the dataset.

92 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

One common mechanism is to use SelectKBest to select the features that have a statistical correlation with the target
dataset. For example, we can use the £_classif score to find the 3 best features in our occupancy dataset.

from sklearn.pipeline import Pipeline
from sklearn.feature_selection import f_classif, SelectKBest

from yellowbrick.features import Manifold
from yellowbrick.datasets import load_occupancy

Load the classification dataset
X, y = load_occupancy()
classes = ["unoccupied", "occupied"]

Create a pipeline
model = Pipeline([
("selectk", SelectKBest(k=3, score_func=f_classif)),
("viz", Manifold(manifold="isomap", n_neighbors=10, classes=classes)),

D

model . fit_transform(X, y) # Fit the data to the model
model .named_steps['viz'].show() # Finalize and render the figure

Isomap Manifold (fit in 277.10 seconds)

I unoccupied
occupied

b ® o9

Using 3 features

8.3. Visualizers and API 93

Yellowbrick Documentation, Release v1.5

Continuous Target

For a regression target or to specify color as a heat-map of continuous values, specify target_type="continuous".
Note that by default the param target_type="auto" is set, which determines if the target is discrete or continuous
by counting the number of unique values in y.

from yellowbrick.features import Manifold
from yellowbrick.datasets import load_concrete

Load the regression dataset
X, y = load_concrete()

Instantiate the visualizer
viz = Manifold(manifold="isomap", n_neighbors=10)

viz.fit_transform(X, y) # Fit the data to the visualizer
viz.show() # Finalize and render the figure

Isomap Manifold (fit in 0.45 seconds)

e 80
°
' 70
LS
G- 4|
» () 60
50
o e
, ... i - e > [1
o:" Pt o GFe N 40
L
r- = w
O
A ¥ 2
J;‘«?
'.0 10
°

Using 8 features

94 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Quick Method

The same functionality above can be achieved with the associated quick method manifold_embedding. This method
will build the Manifold object with the associated arguments, fit it, then (optionally) immediately show the visualiza-
tion.

from yellowbrick.features.manifold import manifold_embedding
from yellowbrick.datasets import load_concrete

Load the regression dataset
X, y = load_concrete()

Instantiate the visualizer
manifold_embedding(X, y, manifold="isomap", n_neighbors=10)

Isomap Manifold (fit in 0.44 seconds)

X
ln 70

» ﬂ.f_t 60
50
[] ..
, ® - e) ®
[]
0&e® PRSEE 1Y ' W 40
[
< 0
:*".T
P 4 20
&9
A0
[r 10
™

Using 8 features

API Reference

Use manifold algorithms for high dimensional visualization.

class yellowbrick.features.manifold.Manifold(ax=None, manifold='mds', n_neighbors=None,
features=None, classes=None, colors=None,
colormap=None, target_type='auto’, projection=2,
alpha=0.75, random_state=None, colorbar=True,
**kwargs)

Bases: ProjectionVisualizer

8.3. Visualizers and API 95

Yellowbrick Documentation, Release v1.5

The Manifold visualizer provides high dimensional visualization for feature analysis by embedding data into 2
dimensions using the sklearn.manifold package for manifold learning. In brief, manifold learning algorithms are
unsuperivsed approaches to non-linear dimensionality reduction (unlike PCA or SVD) that help visualize latent
structures in data.

The manifold algorithm used to do the embedding in scatter plot space can either be a transformer or a string
representing one of the already specified manifolds as follows:

Manifold Description

"lle" Locally Linear Embedding
"ltsa" LTSA LLE

"hessian" Hessian LLE

"modified" | Modified LLE

"isomap" Isomap

"mds" Multi-Dimensional Scaling
"spectral™ | Spectral Embedding
"tsne" t-SNE

Each of these algorithms embeds non-linear relationships in different ways, allowing for an exploration of various
structures in the feature space. Note however, that each of these algorithms has different time, memory and
complexity requirements; take special care when using large datasets!

The Manifold visualizer also shows the specified target (if given) as the color of the scatter plot. If a classification
or clustering target is given, then discrete colors will be used with a legend. If a regression or continuous target
is specified, then a colormap and colorbar will be shown.

Parameters

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None, the current axes
will be used or generated if required.

manifold
[str or Transformer, default: “mds”] Specify the manifold algorithm to perform the embed-
ding. Either one of the strings listed in the table above, or an actual scikit-learn transformer.
The constructed manifold is accessible with the manifold property, so as to modify hyperpa-
rameters before fit.

n_neighbors
[int, default: None] Many manifold algorithms are nearest neighbors based, for those that are,
this parameter specfies the number of neighbors to use in the embedding. If n_neighbors is
not specified for those embeddings, it is set to 5 and a warning is issued. If the manifold
algorithm doesn’t use nearest neighbors, then this parameter is ignored.

features
[list, default: None] The names of the features specified by the columns of the input dataset.
This length of this list must match the number of columns in X, otherwise an exception will
be raised on £fit().

classes
[list, default: None] The class labels for each class in y, ordered by sorted class index. These
names act as a label encoder for the legend, identifying integer classes or renaming string
labels. If omitted, the class labels will be taken from the unique values in y.

Note that the length of this list must match the number of unique values in y, otherwise an
exception is raised. This parameter is only used in the discrete target type case and is ignored
otherwise.

96

Chapter 8. Table of Contents

http://scikit-learn.org/stable/modules/manifold.html#locally-linear-embedding
http://scikit-learn.org/stable/modules/manifold.html#local-tangent-space-alignment
http://scikit-learn.org/stable/modules/manifold.html#hessian-eigenmapping
http://scikit-learn.org/stable/modules/manifold.html#modified-locally-linear-embedding
http://scikit-learn.org/stable/modules/manifold.html#isomap
http://scikit-learn.org/stable/modules/manifold.html#multi-dimensional-scaling-mds
http://scikit-learn.org/stable/modules/manifold.html#spectral-embedding
http://scikit-learn.org/stable/modules/manifold.html#t-distributed-stochastic-neighbor-embedding-t-sne

Yellowbrick Documentation, Release v1.5

colors
[list or tuple, default: None] A single color to plot all instances as or a list of colors to color
each instance according to its class in the discrete case or as an ordered colormap in the
sequential case. If not enough colors per class are specified then the colors are treated as a
cycle.

colormap
[string or cmap, default: None] The colormap used to create the individual colors. In the
discrete case it is used to compute the number of colors needed for each class and in the
continuous case it is used to create a sequential color map based on the range of the target.

target_type
[str, default: “auto”] Specify the type of target as either “discrete” (classes) or “continuous”
(real numbers, usually for regression). If “auto”, then it will attempt to determine the type
by counting the number of unique values.

If the target is discrete, the colors are returned as a dict with classes being the keys. If
continuous the colors will be list having value of color for each point. In either case, if no
target is specified, then color will be specified as the first color in the color cycle.

projection
[int or string, default: 2] The number of axes to project into, either 2d or 3d. To plot 3d plots
with matplotlib, please ensure a 3d axes is passed to the visualizer, otherwise one will be
created using the current figure.

alpha
[float, default: 0.75] Specify a transparency where 1 is completely opaque and O is completely
transparent. This property makes densely clustered points more visible.

random_state
[int or RandomState, default: None] Fixes the random state for stochastic manifold algo-
rithms.

colorbar
[bool, default: True] If the target_type is “continous” draw a colorbar to the right of the
scatter plot. The colobar axes is accessible using the cax property.

kwargs
[dict] Keyword arguments passed to the base class and may influence the feature visualization
properties.

Notes

Specifying the target as 'continuous' or 'discrete' will influence how the visualizer is finally displayed,
don’t rely on the automatic determination from the Manifold!

Scaling your data with the standard scalar before applying it to the visualizer is a great way of increasing per-
formance. Additionally using the SelectKBest transformer may also improve performance and lead to better
visualizations.

Warning: Manifold visualizers have extremly varying time, resource, and complexity requirements. Sam-
pling data or features may be necessary in order to finish a manifold computation.

See also:

The Scikit-Learn discussion on Manifold Learning.

8.3. Visualizers and API 97

http://scikit-learn.org/stable/modules/manifold.html

Yellowbrick Documentation, Release v1.5

Examples

>>> viz = Manifold(manifold='isomap', target='discrete')
>>> viz.fit_transform(X, y)
>>> viz.show()

Attributes

fit_time_
[yellowbrick.utils.timer.Timer] The amount of time in seconds it took to fit the Manifold.

classes_
[ndarray, shape (n_classes,)] The class labels that define the discrete values in the target. Only
available if the target type is discrete. This is guaranteed to be strings even if the classes are
a different type.

features_
[ndarray, shape (n_features,)] The names of the features discovered or used in the visualizer
that can be used as an index to access or modify data in X. If a user passes feature names in,
those features are used. Otherwise the columns of a DataFrame are used or just simply the
indices of the data array.

range_
[(min y, max y)] A tuple that describes the minimum and maximum values in the target.
Only available if the target type is continuous.

ALGORITHMS = {'hessian': LocallyLinearEmbedding(method="hessian'), 'isomap':
Isomap(), 'lle': LocallyLinearEmbedding(), 'ltsa':
LocallyLinearEmbedding(method="'1ltsa'), 'mds': MDS(), 'modified':
LocallyLinearEmbedding(method="modified'), 'spectral': SpectralEmbedding(), 'tsne':
TSNE(init="pca')}

draw(Xp, y=None)

Draws the points described by Xp and colored by the points in y. Can be called multiple times before
finalize to add more scatter plots to the axes, however £it () must be called before use.

Parameters

Xp
[array-like of shape (n, 2) or (n, 3)] The matrix produced by the transform() method.

y
[array-like of shape (n,), optional] The target, used to specify the colors of the points.

Returns

self.ax
[matplotlib Axes object] Returns the axes that the scatter plot was drawn on.

finalize()
Add title and modify axes to make the image ready for display.
fit (X, y=None, **kwargs)
Fits the manifold on X and transforms the data to plot it on the axes. See fit_transform() for more details.
Parameters

X
[array-like of shape (n, m)] A matrix or data frame with n instances and m features

98 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

y
[array-like of shape (n,), optional] A vector or series with target values for each instance in
X. This vector is used to determine the color of the points in X.

Returns

self
[Manifold] Returns the visualizer object.

fit_transform(X, y=None, **kwargs)

Fits the manifold on X and transforms the data to plot it on the axes. The optional y specified can be used
to declare discrete colors. If the target is set to ‘auto’, this method also determines the target type, and
therefore what colors will be used.

Note also that fit records the amount of time it takes to fit the manifold and reports that information in the
visualization.

Parameters

X
[array-like of shape (n, m)] A matrix or data frame with n instances and m features

y
[array-like of shape (n,), optional] A vector or series with target values for each instance in
X. This vector is used to determine the color of the points in X.

Returns
Xprime
[array-like of shape (n, 2)] Returns the 2-dimensional embedding of the instances.

property manifold

Property containing the manifold transformer constructed from the supplied hyperparameter. Use this prop-

erty to modify the manifold before fit with manifold.set_params().
transform(X, y=None, **kwargs)

Returns the transformed data points from the manifold embedding.

Parameters

X
[array-like of shape (n, m)] A matrix or data frame with n instances and m features

y
[array-like of shape (n,), optional] The target, used to specify the colors of the points.

Returns

Xprime
[array-like of shape (n, 2)] Returns the 2-dimensional embedding of the instances.

yellowbrick. features.manifold.manifold_embedding (X, y=None, ax=None, manifold="mds’,
n_neighbors=None, features=None, classes=None,
colors=None, colormap=None, target_type='"auto’,
projection=2, alpha=0.75, random_state=None,
colorbar=True, show=True, **kwargs)

Quick method for Manifold visualizer.

The Manifold visualizer provides high dimensional visualization for feature analysis by embedding data into 2
dimensions using the sklearn.manifold package for manifold learning. In brief, manifold learning algorithms are
unsuperivsed approaches to non-linear dimensionality reduction (unlike PCA or SVD) that help visualize latent
structures in data.

8.3. Visualizers and API 99

Yellowbrick Documentation, Release v1.5

See also:

See Manifold for more details.

Parameters

X
[array-like of shape (n, m)] A matrix or data frame with n instances and m features where m
> 2.

y
[array-like of shape (n,), optional] A vector or series with target values for each instance in
X. This vector is used to determine the color of the points in X.

ax
[matplotlib.Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

manifold

[str or Transformer, default: “lle”’] Specify the manifold algorithm to perform the embed-
ding. Either one of the strings listed in the table above, or an actual scikit-learn transformer.
The constructed manifold is accessible with the manifold property, so as to modify hyperpa-
rameters before fit.

n_neighbors
[int, default: None] Many manifold algorithms are nearest neighbors based, for those that are,
this parameter specfies the number of neighbors to use in the embedding. If n_neighbors is
not specified for those embeddings, it is set to 5 and a warning is issued. If the manifold
algorithm doesn’t use nearest neighbors, then this parameter is ignored.

features
[list, default: None] The names of the features specified by the columns of the input dataset.
This length of this list must match the number of columns in X, otherwise an exception will
be raised on fit().

classes
[list, default: None] The class labels for each class in y, ordered by sorted class index. These
names act as a label encoder for the legend, identifying integer classes or renaming string
labels. If omitted, the class labels will be taken from the unique values in y.

Note that the length of this list must match the number of unique values in y, otherwise an
exception is raised. This parameter is only used in the discrete target type case and is ignored
otherwise.

colors
[list or tuple, default: None] A single color to plot all instances as or a list of colors to color
each instance according to its class in the discrete case or as an ordered colormap in the
sequential case. If not enough colors per class are specified then the colors are treated as a
cycle.

colormap
[string or cmap, default: None] The colormap used to create the individual colors. In the
discrete case it is used to compute the number of colors needed for each class and in the
continuous case it is used to create a sequential color map based on the range of the target.

target_type
[str, default: “auto”] Specify the type of target as either “discrete” (classes) or “continuous”
(real numbers, usually for regression). If “auto”, then it will attempt to determine the type
by counting the number of unique values.

100 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

If the target is discrete, the colors are returned as a dict with classes being the keys. If
continuous the colors will be list having value of color for each point. In either case, if no
target is specified, then color will be specified as the first color in the color cycle.

projection
[int or string, default: 2] The number of axes to project into, either 2d or 3d. To plot 3d plots
with matplotlib, please ensure a 3d axes is passed to the visualizer, otherwise one will be
created using the current figure.

alpha
[float, default: 0.75] Specify a transparency where 1 is completely opaque and 0 is completely
transparent. This property makes densely clustered points more visible.

random_state
[int or RandomState, default: None] Fixes the random state for stochastic manifold algo-
rithms.

colorbar
[bool, default: True] If the target_type is “continous” draw a colorbar to the right of the
scatter plot. The colobar axes is accessible using the cax property.

show: bool, default: True
If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize()

kwargs
[dict] Keyword arguments passed to the base class and may influence the feature visualization
properties.

Returns
viz
[Manifold] Returns the fitted, finalized visualizer

Direct Data Visualization
Sometimes for feature analysis you simply need a scatter plot to determine the distribution of data. Machine learning

operates on high dimensional data, so the number of dimensions has to be filtered. As a result these visualizations are
typically used as the base for larger visualizers; however you can also use them to quickly plot data during ML analysis.

Joint Plot Visualization

The JointPlotVisualizer plots a feature against the target and shows the distribution of each via a histogram on
each axis.

Visualizer JointPlot

Quick Method | joint_plot()

Models Classification/Regression
Workflow Feature Engineering/Selection

from yellowbrick.datasets import load_concrete
from yellowbrick.features import JointPlotVisualizer

Load the dataset
X, v = load_concrete()

(continues on next page)

8.3. Visualizers and API 101

Yellowbrick Documentation, Release v1.5

(continued from previous page)

Instantiate the visualizer
visualizer = JointPlotVisualizer(columns="cement")

visualizer. fit_transform(X, y) # Fit and transform the data
visualizer.show() # Finalize and render the figure

40
20
0
=0. [J
80 ® pearson=0.498 LPY ' ® * ®
°% o8 ® 9
70 e ® $s)
. ° $.
Y
60 ‘ e i i‘
% 1 o‘ L d
50 o
© @ 8 [:
2 w0 <. ™
® o
[} e ©
30 ® o
[] .' ...
20 ®
[J
10
0
100 200 300 400 500 0 50
cement
The JointPlotVisualizer can also be used to compare two features.
from yellowbrick.datasets import load_concrete
from yellowbrick.features import JointPlotVisualizer
Load the dataset
X, y = load_concrete()
Instantiate the visualizer
visualizer = JointPlotVisualizer(columns=["cement", "ash"])
visualizer. fit_transform(X, y) # Fit and transform the data
visualizer.show() # Finalize and render the figure

In addition, the JointPlotVisualizer can be plotted with hexbins in the case of many, many points.

from yellowbrick.datasets import load_concrete

(continues on next page)

102 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

40
20

o Lt

200 ...‘ ® pearson=-0.397
175 ([J { 1
@
& A s o

150
} Py e
125 "0 e o '. °

100 ‘ ® o..":’o o o

[)
75 .

ash

=TT "y =

50

25 [® |

0 OO0 I GEDOI WO © IR OGP 90° B ¢ Ge —

100 200 300 400 500 0 500
cement

(continued from previous page)

from yellowbrick.features import JointPlotVisualizer

Load the dataset
X, y = load_concrete()

Instantiate the visualizer
visualizer = JointPlotVisualizer(columns="cement", kind="hexbin")

visualizer. fit_transform(X, y) # Fit and transform the data
visualizer.show() # Finalize and render the figure

Quick Method

The same functionality above can be achieved with the associated quick method joint_plot. This method will build
the JointPlot object with the associated arguments, fit it, then (optionally) immediately show it.

from yellowbrick.datasets import load_concrete
from yellowbrick.features import joint_plot

Load the dataset
X, y = load_concrete()

(continues on next page)

8.3. Visualizers and API 103

Yellowbrick Documentation, Release v1.5

40

20

0 Lt

80

70

100 200 300 400 500 0 50
cement

(continued from previous page)

Instantiate the visualizer
visualizer = joint_plot(X, y, columns="cement")

API Reference

class yellowbrick.features. jointplot.JointPlot (ax=None, columns=None, correlation="'pearson’,

kind="scatter', hist=True, alpha=0.65,
Jjoint_kws=None, hist_kws=None, **kwargs)

Bases: FeatureVisualizer

Joint plots are useful for machine learning on multi-dimensional data, allowing for the visualization of complex
interactions between different data dimensions, their varying distributions, and even their relationships to the
target variable for prediction.

The Yellowbrick JointPlot can be used both for pairwise feature analysis and feature-to-target plots. For
pairwise feature analysis, the columns argument can be used to specify the index of the two desired columns in
X. If y is also specified, the plot can be colored with a heatmap or by class. For feature-to-target plots, the user
can provide either X and y as 1D vectors, or a columns argument with an index to a single feature in X to be
plotted against y.

Histograms can be included by setting the hist argument to True for a frequency distribution, or to "density"
for a probability density function. Note that histograms requires matplotlib 2.0.2 or greater.

Parameters

104

Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

40

® pearson=0.498 [}

80

70

60

50

40

target

30

20

10

100 200 300 400 500 0 50
cement

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required). This is considered the base axes where
the the primary joint plot is drawn. It will be shifted and two additional axes added above
(xhax) and to the right (yhax) if hist=True.

columns
[int, str, [int, int], [str, str], default: None] Determines what data is plotted in the joint plot
and acts as a selection index into the data passed to fit (X, y). This data therefore must be
indexable by the column type (e.g. an int for a numpy array or a string for a DataFrame).

If None is specified then either both X and y must be 1D vectors and they will be plotted
against each other or X must be a 2D array with only 2 columns. If a single index is specified
then the data is indexed as X[columns] and plotted jointly with the target variable, y. If
two indices are specified then they are both selected from X, additionally in this case, if y is
specified, then it is used to plot the color of points.

Note that these names are also used as the x and y axes labels if they aren’t specified in the
joint_kws argument.

correlation
[str, default: ‘pearson’] The algorithm used to compute the relationship between the variables
in the joint plot, one of: ‘pearson’, ‘covariance’, ‘spearman’, ‘kendalltau’.

kind
[strin {‘scatter’, ‘hex’}, default: ‘scatter’] The type of plot to render in the joint axes. Note
that when kind="hex’ the target cannot be plotted by color.

8.3. Visualizers and API 105

Yellowbrick Documentation, Release v1.5

hist
[{True, False, None, ‘density’, ‘frequency’}, default: True] Draw histograms showing the
distribution of the variables plotted jointly. If set to ‘density’, the probability density function
will be plotted. If set to True or ‘frequency’ then the frequency will be plotted. Requires
Matplotlib >= 2.0.2.

alpha
[float, default: 0.65] Specify a transparency where 1 is completely opaque and 0 is completely
transparent. This property makes densely clustered points more visible.

{joint, hist}_kws
[dict, default: None] Additional keyword arguments for the plot components.

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Examples

>>> viz = JointPlot(columns=["temp", "humidity"])
>>> viz.fit(X, y)
>>> viz.show()

Attributes

corr_
[float] The correlation or relationship of the data in the joint plot, specified by the correlation
algorithm.

correlation_methods = {'covariance': <function JointPlot.<lambda>>, 'kendalltau':
<function JointPlot.<lambda>>, 'pearson': <function JointPlot.<lambda>>,
'spearman': <function JointPlot.<lambda>>}

draw(x, y, xlabel=None, ylabel=None)
Draw the joint plot for the data in x and y.

Parameters

X,y
[1D array-like] The data to plot for the x axis and the y axis

xlabel, ylabel
[str] The labels for the x and y axes.

finalize (**kwargs)
Finalize executes any remaining image modifications making it ready to show.

fit (X, y=None)

Fits the JointPlot, creating a correlative visualization between the columns specified during initialization

and the data and target passed into fit:

¢ If self.columns is None then X and y must both be specified as 1D arrays or X must be a 2D array with

only 2 columns.

* If self.columns is a single int or str, that column is selected to be visualized against the target y.

* If self.columns is two ints or strs, those columns are visualized against each other. If y is specified then

it is used to color the points.

106 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

This is the main entry point into the joint plot visualization.

Parameters

X

[array-like] An array-like object of either 1 or 2 dimensions depending on self.columns.
Usually this is a 2D table with shape (n, m)

y

[array-like, default: None] An vector or 1D array that has the same length as X. May be
used to either directly plot data or to color data points.

property xhax

The axes of the histogram for the top of the JointPlot (X-axis)

property yhax
The axes of the histogram for the right of the JointPlot (Y-axis)

yellowbrick. features. jointplot.joint_plot (X, y, ax=None, columns=None, correlation="'pearson’,

kind='scatter', hist=True, alpha=0.65, joint_kws=None,
hist_kws=None, show=True, **kwargs)

Joint plots are useful for machine learning on multi-dimensional data, allowing for the visualization of complex
interactions between different data dimensions, their varying distributions, and even their relationships to the
target variable for prediction.

The Yellowbrick JointPlot can be used both for pairwise feature analysis and feature-to-target plots. For
pairwise feature analysis, the columns argument can be used to specify the index of the two desired columns in
X. If y is also specified, the plot can be colored with a heatmap or by class. For feature-to-target plots, the user
can provide either X and y as 1D vectors, or a columns argument with an index to a single feature in X to be
plotted against y.

Histograms can be included by setting the hist argument to True for a frequency distribution, or to "density"
for a probability density function. Note that histograms requires matplotlib 2.0.2 or greater.

Parameters

X

ax

[array-like] An array-like object of either 1 or 2 dimensions depending on self.columns.
Usually this is a 2D table with shape (n, m)

[array-like, default: None] An vector or 1D array that has the same length as X. May be used
to either directly plot data or to color data points.

[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required). This is considered the base axes where
the the primary joint plot is drawn. It will be shifted and two additional axes added above
(xhax) and to the right (yhax) if hist=True.

columns

[int, str, [int, int], [str, str], default: None] Determines what data is plotted in the joint plot
and acts as a selection index into the data passed to fit (X, y). This data therefore must be
indexable by the column type (e.g. an int for a numpy array or a string for a DataFrame).

If None is specified then either both X and y must be 1D vectors and they will be plotted
against each other or X must be a 2D array with only 2 columns. If a single index is specified
then the data is indexed as X[columns] and plotted jointly with the target variable, y. If
two indices are specified then they are both selected from X, additionally in this case, if y is
specified, then it is used to plot the color of points.

8.3. Visualizers and API

107

Yellowbrick Documentation, Release v1.5

Note that these names are also used as the x and y axes labels if they aren’t specified in the
joint_kws argument.

correlation
[str, default: ‘pearson’] The algorithm used to compute the relationship between the variables
in the joint plot, one of: ‘pearson’, ‘covariance’, ‘spearman’, ‘kendalltau’.

kind
[strin {‘scatter’, ‘hex’}, default: ‘scatter’] The type of plot to render in the joint axes. Note
that when kind="hex’ the target cannot be plotted by color.

hist
[{True, False, None, ‘density’, ‘frequency’}, default: True] Draw histograms showing the
distribution of the variables plotted jointly. If set to ‘density’, the probability density function
will be plotted. If set to True or ‘frequency’ then the frequency will be plotted. Requires
Matplotlib >=2.0.2.

alpha
[float, default: 0.65] Specify a transparency where 1 is completely opaque and O is completely
transparent. This property makes densely clustered points more visible.

{joint, hist}_kws
[dict, default: None] Additional keyword arguments for the plot components.

show
[bool, default: True] If True, calls show(), which in turn calls plt.show() however you
cannot call plt.savefig from this signature, nor clear_figure. If False, simply calls
finalize()

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Attributes

corr_
[float] The correlation or relationship of the data in the joint plot, specified by the correlation
algorithm.

8.3.4 Target Visualizers

Target visualizers specialize in visually describing the dependent variable for supervised modeling, often referred to as
y or the target.

The following visualizations are currently implemented:

* Balanced Binning Reference: Generate histogram with vertical lines showing the recommended value point to
bin data into evenly distributed bins.

* Class Balance: Visual inspection of the target to show the support of each class to the final estimator.

* Feature Correlation: Plot correlation between features and dependent variables.

Target Visualizers Imports

from yellowbrick.target import BalancedBinningReference
from yellowbrick.target import ClassBalance

from yellowbrick.target import FeatureCorrelation

108 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Balanced Binning Reference

Frequently, machine learning problems in the real world suffer from the curse of dimensionality; you have fewer training
instances than you’d like and the predictive signal is distributed (often unpredictably!) across many different features.

Sometimes when the your target variable is continuously-valued, there simply aren’t enough instances to predict these
values to the precision of regression. In this case, we can sometimes transform the regression problem into a classifi-
cation problem by binning the continuous values into makeshift classes.

To help the user select the optimal number of bins, the BalancedBinningReference visualizer takes the target vari-
able y as input and generates a histogram with vertical lines indicating the recommended value points to ensure that
the data is evenly distributed into each bin.

Visualizer BalancedBinningReference

Quick Method | balanced_binning_reference()

Models Classification

Workflow Feature analysis, Target analysis, Model selection

from yellowbrick.datasets import load_concrete
from yellowbrick.target import BalancedBinningReference

Load the concrete dataset
X, y = load_concrete()

Instantiate the visualizer
visualizer = BalancedBinningReference()

visualizer. fit(y) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

Quick Method

The same functionality above can be achieved with the associated quick method balanced_binning_reference.
This method will build the BalancedBinningReference object with the associated arguments, fit it, then (optionally)
immediately show it.

from yellowbrick.datasets import load_concrete
from yellowbrick.target import balanced_binning_reference

Load the dataset
X, y = load_concrete()

Use the quick method and immediately show the figure
balanced_binning_reference(y)

See also:

To learn more, please read Rebecca Bilbro’s article “Creating Categorical Variables from Continuous Data.”

8.3. Visualizers and API 109

https://rebeccabilbro.github.io/better-binning

Yellowbrick Documentation, Release v1.5

500

400

300

200

100

API Reference

Implements histogram with vertical lines to help with balanced binning.

class yellowbrick.target.binning.BalancedBinningReference (ax=None, target=None, bins=4,
**kwargs)

Bases: TargetVisualizer

BalancedBinningReference generates a histogram with vertical lines showing the recommended value point to
bin your data so they can be evenly distributed in each bin.

Parameters

ax
[matplotlib Axes, default: None] This is inherited from FeatureVisualizer and is defined
within BalancedBinningReference.

target
[string, default: “y”’] The name of the y variable

bins
[number of bins to generate the histogram, default: 4]
kwargs

[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

110 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

500

400

300

200

100

Notes

These parameters can be influenced later on in the visualization process, but can and should be set as early as
possible.

Examples

>>> visualizer = BalancedBinningReference()
>>> visualizer.fit(y)
>>> visualizer.show()

Attributes
bin_edges_

[binning reference values]

draw(y, **kwargs)
Draws a histogram with the reference value for binning as vertical lines.

Parameters

y
[an array of one dimension or a pandas Series]

8.3. Visualizers and API 111

Yellowbrick Documentation, Release v1.5

finalize(**kwargs)

Adds the x-axis label and manages the tick labels to ensure they’re visible.
Parameters

kwargs: generic keyword arguments.

Notes

Generally this method is called from show and not directly by the user.

fit(y, **kwargs)
Sets up y for the histogram and checks to ensure that y is of the correct data type. Fit calls draw.

Parameters

y
[an array of one dimension or a pandas Series]

kwargs
[dict] keyword arguments passed to scikit-learn APL.

yellowbrick.target.binning.balanced_binning_reference(y, ax=None, target="y', bins=4, show=True,
**kwargs)

BalancedBinningReference generates a histogram with vertical lines showing the recommended value point to
bin your data so they can be evenly distributed in each bin.

Parameters

y
[an array of one dimension or a pandas Series]

ax
[matplotlib Axes, default: None] This is inherited from FeatureVisualizer and is defined
within BalancedBinningReference.

target
[string, default: “y”’] The name of the y variable

bins
[number of bins to generate the histogram, default: 4]

show
[bool, default: True] If True, calls show(), which in turn calls plt.show(). However, you
cannot call plt.savefig from this signature, nor clear_figure. If False, simply calls
finalizeQ).

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Returns

visualizer
[BalancedBinningReference] Returns fitted visualizer

112 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Class Balance

One of the biggest challenges for classification models is an imbalance of classes in the training data. Severe class
imbalances may be masked by relatively good F1 and accuracy scores — the classifier is simply guessing the majority
class and not making any evaluation on the underrepresented class.

There are several techniques for dealing with class imbalance such as stratified sampling, down sampling the majority
class, weighting, etc. But before these actions can be taken, it is important to understand what the class balance is in
the training data. The ClassBalance visualizer supports this by creating a bar chart of the support for each class, that
is the frequency of the classes’ representation in the dataset.

Visualizer ClassBalance

Quick Method | class_balance()

Models Classification

Workflow Feature analysis, Target analysis, Model selection

from yellowbrick.datasets import load_game
from yellowbrick.target import ClassBalance

Load the classification dataset
X, v = load_game()

Instantiate the visualizer

visualizer = ClassBalance(labels=["draw", "loss", "win"])
visualizer.fit(y) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

The resulting figure allows us to diagnose the severity of the balance issue. In this figure we can see that the "win"
class dominates the other two classes. One potential solution might be to create a binary classifier: "win" vs "not
win" and combining the "loss" and "draw" classes into one class.

Warning: The ClassBalance visualizer interface has changed in version 0.9, a classification model is no longer
required to instantiate the visualizer, it can operate on data only. Additionally, the signature of the fit method has
changed from fit(X, y=None) to fit(y_train, y_test=None), passing in X is no longer required.

If a class imbalance must be maintained during evaluation (e.g. the event being classified is actually as rare as
the frequency implies) then stratified sampling should be used to create train and test splits. This ensures that the
test data has roughly the same proportion of classes as the training data. While scikit-learn does this by default in
train_test_split and other cv methods, it can be useful to compare the support of each class in both splits.

The ClassBalance visualizer has a “compare” mode, where the train and test data can be passed to fit (), creating
a side-by-side bar chart instead of a single bar chart as follows:

from sklearn.model_selection import TimeSeriesSplit

from yellowbrick.datasets import load_occupancy
from yellowbrick.target import ClassBalance

Load the classification dataset
X, y = load_occupancy()

(continues on next page)

8.3. Visualizers and API 113

Yellowbrick Documentation, Release v1.5

Class Balance for 67,557 Instances

40000

30000

support

20000

10000

draw loss win

(continued from previous page)

Create the training and test data

tscv = TimeSeriesSplit()

for train_index, test_index in tscv.split(X):
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]

Instantiate the visualizer

visualizer = ClassBalance(labels=["unoccupied", "occupied"])
visualizer.fit(y_train, y_test) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

This visualization allows us to do a quick check to ensure that the proportion of each class is roughly similar in both
splits. This visualization should be a first stop particularly when evaluation metrics are highly variable across different
splits.

Note: This example uses TimeSeriesSplit to split the data into the training and test sets. For more information on
this cross-validation method, please refer to the scikit-learn documentation.

114 Chapter 8. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html

Yellowbrick Documentation, Release v1.5

Class Balance for 20,560 Instances

14000 Il train
test

12000

10000

8000

support

6000

4000

2000

unoccupied occupied

Quick Method

The same functionalities above can be achieved with the associated quick method class_balance. This method will
build the ClassBalance object with the associated arguments, fit it, then (optionally) immediately show it.

from yellowbrick.datasets import load_game
from yellowbrick.target import class_balance

Load the dataset
X, v = load_game()

Use the quick method and immediately show the figure
class_balance(y)

API Reference

Class balance visualizer for showing per-class support.
class yellowbrick.target.class_balance.ClassBalance (ax=None, labels=None, colors=None,
colormap=None, **kwargs)
Bases: TargetVisualizer
One of the biggest challenges for classification models is an imbalance of classes in the training data. The

ClassBalance visualizer shows the relationship of the support for each class in both the training and test data by
displaying how frequently each class occurs as a bar graph.

8.3. Visualizers and API 115

Yellowbrick Documentation, Release v1.5

Class Balance for 67,557 Instances

40000

30000

support

20000

10000

0 -

draw loss win

The ClassBalance visualizer can be displayed in two modes:
1. Balance mode: show the frequency of each class in the dataset.
2. Compare mode: show the relationship of support in train and test data.
These modes are determined by what is passed to the £it () method.
Parameters

ax

[matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

labels: list, optional
A list of class names for the x-axis if the target is already encoded. Ensure that the labels
are ordered lexicographically with respect to the values in the target. A common use case is

to pass LabelEncoder.classes_ as this parameter. If not specified, the labels in the data
will be used.

colors: list of strings
Specify colors for the barchart (will override colormap if both are provided).

colormap
[string or matplotlib cmap] Specify a colormap to color the classes.

kwargs: dict, optional

Keyword arguments passed to the super class. Here, used to colorize the bars in the his-
togram.

116 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Examples

To simply observe the balance of classes in the target:

>>> viz = ClassBalance().fit(y)
>>> viz.show()

To compare the relationship between training and test data:

>>> _, _, y_train, y_test = train_test_split(X, y, test_size=0.2)
>>> viz = ClassBalance()

>>> viz.fit(y_train, y_test)

>>> viz.show()

Attributes

classes_
[array-like] The actual unique classes discovered in the target.

support_
[array of shape (n_classes,) or (2, n_classes)] A table representing the support of each class
in the target. It is a vector when in balance mode, or a table with two rows in compare mode.

draw()

Renders the class balance chart on the specified axes from support.

finalize (**kwargs)

Finalizes the figure for drawing by setting a title, the legend, and axis labels, removing the grid, and making
sure the figure is correctly zoomed into the bar chart.

Parameters

kwargs: generic keyword arguments.

Notes

Generally this method is called from show and not directly by the user.

fit (y_train, y_test=None)

Fit the visualizer to the the target variables, which must be 1D vectors containing discrete (classification)
data. Fit has two modes:

1. Balance mode: if only y_train is specified
2. Compare mode: if both train and test are specified

In balance mode, the bar chart is displayed with each class as its own color. In compare mode, a side-by-side
bar chart is displayed colored by train or test respectively.

Parameters

y_train
[array-like] Array or list of shape (n,) that contains discrete data.

y_test
[array-like, optional] Array or list of shape (m,) that contains discrete data. If specified, the
bar chart will be drawn in compare mode.

8.3.

Visualizers and API 117

Yellowbrick Documentation, Release v1.5

yellowbrick.target.class_balance.class_balance(y_train, y_test=None, ax=None, labels=None,
color=None, colormap=None, show=True, **kwargs)

Quick method:

One of the biggest challenges for classification models is an imbalance of classes in the training data. This
function vizualizes the relationship of the support for each class in both the training and test data by displaying
how frequently each class occurs as a bar graph.

The figure can be displayed in two modes:
1. Balance mode: show the frequency of each class in the dataset.
2. Compare mode: show the relationship of support in train and test data.

Balance mode is the default if only y_train is specified. Compare mode happens when both y_train and y_test
are specified.

Parameters

y_train
[array-like] Array or list of shape (n,) that containes discrete data.

y_test
[array-like, optional] Array or list of shape (m,) that contains discrete data. If specified, the
bar chart will be drawn in compare mode.

ax
[matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

labels: list, optional
A list of class names for the x-axis if the target is already encoded. Ensure that the labels
are ordered lexicographically with respect to the values in the target. A common use case is
to pass LabelEncoder.classes_ as this parameter. If not specified, the labels in the data
will be used.

colors: list of strings
Specify colors for the barchart (will override colormap if both are provided).

colormap
[string or matplotlib cmap] Specify a colormap to color the classes.

show
[bool, default: True] If True, calls show(), which in turn calls plt.show() however you
cannot call plt.savefig from this signature, nor clear_figure. If False, simply calls
finalize()

kwargs: dict, optional
Keyword arguments passed to the super class. Here, used to colorize the bars in the his-
togram.

Returns

visualizer
[ClassBalance] Returns the fitted visualizer

118 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Feature Correlation

This visualizer calculates Pearson correlation coeflicients and mutual information between features and the dependent
variable. This visualization can be used in feature selection to identify features with high correlation or large mutual
information with the dependent variable.

Pearson Correlation

The default calculation is Pearson correlation, which is performed with scipy.stats.pearsonr.

Visualizer FeatureCorrelation

Quick Method | feature_correlation()

Models Regression/Classification/Clustering
Workflow Feature Engineering/Model Selection

from sklearn import datasets
from yellowbrick.target import FeatureCorrelation

Load the regression dataset
data = datasets.load_diabetes()
X, y = data['data'], data['target']

Create a list of the feature names
features = np.array(data['feature_names'])

Instantiate the visualizer
visualizer = FeatureCorrelation(labels=features)

visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

Mutual Information - Regression

Mutual information between features and the dependent variable is calculated with sklearn. feature_selection.
mutual_info_classif when method="mutual_info-classification' and mutual_info_regression when
method="mutual_info-regression’'. It is very important to specify discrete features when calculating mutual
information because the calculation for continuous and discrete variables are different. See scikit-learn documentation
for more details.

from sklearn import datasets
from yellowbrick.target import FeatureCorrelation

Load the regression dataset
data = datasets.load_diabetes()
X, y = data['data'], data['target']

Create a list of the feature names
features = np.array(data['feature_names'])

Create a list of the discrete features

(continues on next page)

8.3. Visualizers and API 119

http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html

Yellowbrick Documentation, Release v1.5

Features correlation with dependent variable

s6
s5
s4
s3
s2
sl
bp
bmi
sex

age

-0.4 -0.2 0.0 0.2 0.4 0.6
Pearson Correlation

(continued from previous page)

discrete = [False for
discrete[1] = True

in range(len(features))]

Instantiate the visualizer
visualizer = FeatureCorrelation(method="mutual_info-regression', labels=features)

visualizer.fit(X, y, discrete_features=discrete, random_state=0)
visualizer.show()

Mutual Information - Classification

By fitting with a pandas DataFrame, the feature labels are automatically obtained from the column names. This vi-
sualizer also allows sorting of the bar plot according to the calculated mutual information (or Pearson correlation
coefficients) and selecting features to plot by specifying the names of the features or the feature index.

import pandas as pd

from sklearn import datasets
from yellowbrick.target import FeatureCorrelation

Load the regression dataset
data = datasets.load_wine()

(continues on next page)

120 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Features correlation with dependent variable

age

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Mutual Information

(continued from previous page)

data['data'], data['target']
pd.DataFrame(X, columns=datal'feature_names'])

X,y
X_pd

Create a list of the features to plot
features = ['alcohol', 'ash', 'hue', 'proline', 'total_phenols']

Instaniate the visualizer
visualizer = FeatureCorrelation(
method="mutual_info-classification', feature_names=features, sort=True

)
visualizer.fit(X_pd, y) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

8.3. Visualizers and API 121

Yellowbrick Documentation, Release v1.5

Features correlation with dependent variable

proline

alcohol

hue

total_phenols

ash

0.0 0.1 0.2 0.3 0.4 0.5
Mutual Information

Quick Method

The same functionality above can be achieved with the associated quick method feature_correlation. This method
will build the FeatureCorrelation object with the associated arguments, fit it, then (optionally) immediately show
it

import numpy as np

from sklearn import datasets

import matplotlib.pyplot as plt

from yellowbrick.target.feature_correlation import feature_correlation

#Load the diabetes dataset
data = datasets.load_iris()
X, y = data['data'], data['target']

features = np.array(data['feature_names'])
visualizer = feature_correlation(X, y, labels=features)
plt.tight_layout()

122 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Features correlation with dependent variable

petal width (cm)

petal length (cm)

sepal width (cm)

sepal length (cm)

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Pearson Correlation

API Reference

Feature Correlation to Dependent Variable Visualizer.

class yellowbrick.target.feature_correlation.FeatureCorrelation(ax=None, method='pearson’,
labels=None, sort=Fulse,
feature_index=None,
feature_names=None,
color=None, **kwargs)

Bases: TargetVisualizer
Displays the correlation between features and dependent variables.

This visualizer can be used side-by-side with yellowbrick.features.JointPlotVisualizer that plots a
feature against the target and shows the distribution of each via a histogram on each axis.

Parameters

ax
[matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

method
[str, default: ‘pearson’] The method to calculate correlation between features and target.
Options include:

e ‘pearson’, which uses scipy.stats.pearsonr

8.3. Visualizers and API 123

Yellowbrick Documentation, Release v1.5

* ‘mutual_info-regression’, which uses mutual_info-regression from sklearn.
feature_selection

¢ ‘mutual_info-classification’, which uses mutual_info_classif from sklearn.
feature_selection

labels
[list, default: None] A list of feature names to use. If a DataFrame is passed to fit and features
is None, feature names are selected as the column names.

sort
[boolean, default: False] If false, the features are are not sorted in the plot; otherwise features
are sorted in ascending order of correlation.

feature_index
[list,] A list of feature index to include in the plot.

feature_names
[list of feature names] A list of feature names to include in the plot. Must have labels or the
fitted data is a DataFrame with column names. If feature_index is provided, feature_names
will be ignored.

color: string
Specify color for barchart

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Examples

>>> viz = FeatureCorrelation()
>>> viz. fit(X, y)
>>> viz.show()

Attributes

features_
[np.array] The feature labels

scores_
[np.array] Correlation between features and dependent variable.

draw()
Draws the feature correlation to dependent variable, called from fit.

finalize()
Finalize the drawing setting labels and title.
fit(X, y, **kwargs)
Fits the estimator to calculate feature correlation to dependent variable.
Parameters

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features

y
[ndarray or Series of length n] An array or series of target or class values

124 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

kwargs
[dict] Keyword arguments passed to the fit method of the estimator.

Returns

self
[visualizer] The fit method must always return self to support pipelines.

yellowbrick.target.feature_correlation.feature_correlation(X, y, ax=None, method='pearson’,
labels=None, sort=Fualse,
feature_index=None,
feature_names=None, color=None,
show=True, **kwargs)

Displays the correlation between features and dependent variables.

This visualizer can be used side-by-side with yellowbrick.features.JointPlotVisualizer that plots a feature against
the target and shows the distribution of each via a histogram on each axis.

Parameters

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features

[ndarray or Series of length n] An array or series of target or class values

ax
[matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

method
[str, default: ‘pearson’] The method to calculate correlation between features and target.
Options include:

 ‘pearson’, which uses scipy.stats.pearsonr

* ‘mutual_info-regression’, which uses mutual_info-regression from sklearn.
feature_selection

¢ ‘mutual_info-classification’, which uses mutual_info_classif from sklearn.
feature_selection

labels
[list, default: None] A list of feature names to use. If a DataFrame is passed to fit and features
is None, feature names are selected as the column names.

sort
[boolean, default: False] If false, the features are are not sorted in the plot; otherwise features
are sorted in ascending order of correlation.

feature_index
[list,] A list of feature index to include in the plot.

feature_names
[list of feature names] A list of feature names to include in the plot. Must have labels or the
fitted data is a DataFrame with column names. If feature_index is provided, feature_names
will be ignored.

color: string
Specify color for barchart

8.3. Visualizers and API 125

Yellowbrick Documentation, Release v1.5

show: bool, default: True
If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize ()

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Returns

visualizer
[FeatureCorrelation] Returns the fitted visualizer.

8.3.5 Regression Visualizers

Regression models attempt to predict a target in a continuous space. Regressor score visualizers display the instances in
model space to better understand how the model is making predictions. We currently have implemented three regressor
evaluations:

* Residuals Plot: plot the difference between the expected and actual values
* Prediction Error Plot: plot the expected vs. actual values in model space
* Alpha Selection: visual tuning of regularization hyperparameters

Estimator score visualizers wrap Scikit-Learn estimators and expose the Estimator API such that they have £fit(),
predict(), and score() methods that call the appropriate estimator methods under the hood. Score visualizers can
wrap an estimator and be passed in as the final step in a Pipeline or VisualPipeline.

Regression Evaluation Imports

from sklearn.linear_model import Ridge, Lasso
from sklearn.model_selection import train_test_split

from yellowbrick.regressor import PredictionError, ResidualsPlot
from yellowbrick.regressor.alphas import AlphaSelection

Residuals Plot

Residuals, in the context of regression models, are the difference between the observed value of the target variable (y)
and the predicted value (¥), i.e. the error of the prediction. The residuals plot shows the difference between residuals
on the vertical axis and the dependent variable on the horizontal axis, allowing you to detect regions within the target
that may be susceptible to more or less error.

Visualizer ResidualsPlot
Quick Method | residuals_plot()
Models Regression
Workflow Model evaluation

from sklearn.linear_model import Ridge
from sklearn.model_selection import train_test_split

from yellowbrick.datasets import load_concrete
from yellowbrick.regressor import ResidualsPlot

(continues on next page)

126 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

(continued from previous page)

Load a regression dataset
X, y = load_concrete()

Create the train and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Instantiate the linear model and visualizer
model = Ridge()
visualizer = ResidualsPlot(model)

visualizer.fit(X_train, y_train) # Fit the training data to the visualizer
visualizer.score(X_test, y_test) # Evaluate the model on the test data
visualizer.show() # Finalize and render the figure

Residuals for Ridge Model

30 mmm TrainR2=0.610 o0 .0 n 30

2 0
TestR?=0.628 py @ 93 R L
20

20

10
o
i)
S 0
i)
0
(0]
04
-10
-20
1
-30 -30
0. |
10 20 30 40 50 60 70 80 0 50
Predicted Value Distribution

A common use of the residuals plot is to analyze the variance of the error of the regressor. If the points are randomly
dispersed around the horizontal axis, a linear regression model is usually appropriate for the data; otherwise, a non-
linear model is more appropriate. In the case above, we see a fairly random, uniform distribution of the residuals against
the target in two dimensions. This seems to indicate that our linear model is performing well. We can also see from
the histogram that our error is normally distributed around zero, which also generally indicates a well fitted model.

Note that if the histogram is not desired, it can be turned off with the hist=False flag:

visualizer = ResidualsPlot(model, hist=False)

(continues on next page)

8.3. Visualizers and API 127

Yellowbrick Documentation, Release v1.5

(continued from previous page)

visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.show()

Residuals for Ridge Model

30 mmm TrainR2=0.610 o0 o0
2= .
TestR“=0.628 o g

20

10

Residuals
o

-10

10 20 30 40 50 60 70 80
Predicted Value

Warning: The histogram on the residuals plot requires matplotlib 2.0.2 or greater. If you are using an earlier
version of matplotlib, simply set the hist=False flag so that the histogram is not drawn.

Histogram can be replaced with a Q-Q plot, which is a common way to check that residuals are normally distributed. If
the residuals are normally distributed, then their quantiles when plotted against quantiles of normal distribution should
form a straight line. The example below shows, how Q-Q plot can be drawn with a gqqplot=True flag. Notice that
hist has to be set to False in this case.

visualizer = ResidualsPlot(model, hist=False, qgplot=True)
visualizer.fit(X_train, y_train)

visualizer.score(X_test, y_test)

visualizer.show()

128 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Residuals for Ridge Model Q-Q plot
30

20

10
[%]
2
<
L] IS
g o S
[0} >
@ @
-10 2
(@]

-20

-30 mmm TrainR?=0.610
e TestR?=0.628 % o
10 20 30 40 50 60 70 80 -2 0
Predicted Value Theoretical quantiles

Quick Method

30

20

10

-10

Similar functionality as above can be achieved in one line using the associated quick method, residuals_plot. This
method will instantiate and fit a ResidualsPlot visualizer on the training data, then will score it on the optionally

provided test data (or the training data if it is not provided).

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split as tts

from yellowbrick.datasets import load_concrete
from yellowbrick.regressor import residuals_plot

Load the dataset and split into train/test splits
X, y = load_concrete()

X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2, shuffle=True)

Create the visualizer, fit, score, and show it

viz = residuals_plot(RandomForestRegressor(), X_train, y_train, X_test, y_test)

8.3. Visualizers and API

129

Yellowbrick Documentation, Release v1.5

Residuals for RandomForestRegressor Model

® EEE Train R?2=0.984
20 TestR?2=0.938 20
15 15
10 10
o
[2) |
(_5 5
=}
=]
3
o 0
-5
-10
-15 ® -15

10 20 30 40 50 60 70 80 0 200
Predicted Value Distribution

API Reference

Visualize the residuals between predicted and actual data for regression problems

class yellowbrick.regressor.residuals.ResidualsPlot (estimator, ax=None, hist=True, qqplot=False,
train_color="b’, test_color='g’,
line_color="#111111", train_alpha=0.75,
test_alpha=0.75, is_fitted="auto', **kwargs)

Bases: RegressionScoreVisualizer
A residual plot shows the residuals on the vertical axis and the independent variable on the horizontal axis.

If the points are randomly dispersed around the horizontal axis, a linear regression model is appropriate for the
data; otherwise, a non-linear model is more appropriate.

Parameters

estimator
[a Scikit-Learn regressor] Should be an instance of a regressor, otherwise will raise a Yel-
lowbrickTypeError exception on instantiation. If the estimator is not fitted, it is fit when the
visualizer is fitted, unless otherwise specified by is_fitted.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

hist
[{True, False, None, ‘density’, ‘frequency’}, default: True] Draw a histogram showing the

130 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

distribution of the residuals on the right side of the figure. Requires Matplotlib >= 2.0.2. If
set to ‘density’, the probability density function will be plotted. If set to True or ‘frequency’
then the frequency will be plotted.

qgplot
[{True, False}, default: False] Draw a Q-Q plot on the right side of the figure, comparing

the quantiles of the residuals against quantiles of a standard normal distribution. Q-Q plot
and histogram of residuals can not be plotted simultaneously, either hist or ggplot has to be
set to False.

train_color
[color, default: ‘b’] Residuals for training data are ploted with this color but also given an
opacity of 0.5 to ensure that the test data residuals are more visible. Can be any matplotlib
color.

test_color
[color, default: ‘g’] Residuals for test data are plotted with this color. In order to create
generalizable models, reserved test data residuals are of the most analytical interest, so these
points are highlighted by having full opacity. Can be any matplotlib color.

line_color
[color, default: dark grey] Defines the color of the zero error line, can be any matplotlib
color.

train_alpha
[float, default: 0.75] Specify a transparency for traininig data, where 1 is completely opaque
and 0 is completely transparent. This property makes densely clustered points more visible.

test_alpha
[float, default: 0.75] Specify a transparency for test data, where 1 is completely opaque and
0 is completely transparent. This property makes densely clustered points more visible.

is_fitted
[bool or str, default="auto’] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If ‘auto’ (default), a helper method will check if the estimator is fitted before fitting it again.

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

8.3. Visualizers and API 131

Yellowbrick Documentation, Release v1.5

Notes

ResidualsPlot is a ScoreVisualizer, meaning that it wraps a model and its primary entry point is the score()
method.

The residuals histogram feature requires matplotlib 2.0.2 or greater.

Examples

>>> from yellowbrick.regressor import ResidualsPlot
>>> from sklearn.linear_model import Ridge

>>> model = ResidualsPlot(Ridge())

>>> model.fit(X_train, y_train)

>>> model.score(X_test, y_test)

>>> model. show()

Attributes

train_score_
[float] The R2 score that specifies the goodness of fit of the underlying regression model to
the training data.

test_score_
[float] The R"2 score that specifies the goodness of fit of the underlying regression model to
the test data.

draw(y_pred, residuals, train=False, **kwargs)

Draw the residuals against the predicted value for the specified split. It is best to draw the training split
first, then the test split so that the test split (usually smaller) is above the training split; particularly if the
histogram is turned on.

Parameters

y_pred
[ndarray or Series of length n] An array or series of predicted target values

residuals
[ndarray or Series of length n] An array or series of the difference between the predicted
and the target values

train
[boolean, default: False] If False, draw assumes that the residual points being plotted are
from the test data; if True, draw assumes the residuals are the train data.

Returns

ax
[matplotlib Axes] The axis with the plotted figure

finalize(**kwargs)
Prepares the plot for rendering by adding a title, legend, and axis labels. Also draws a line at the zero
residuals to show the baseline.

Parameters

kwargs: generic keyword arguments.

132 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Notes

Generally this method is called from show and not directly by the user.

fit(X, y, **kwargs)

Parameters

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features

y
[ndarray or Series of length n] An array or series of target values

kwargs: keyword arguments passed to Scikit-Learn APIL.
Returns

self
[ResidualsPlot] The visualizer instance

property hax
Returns the histogram axes, creating it only on demand.
property qqax
Returns the Q-Q plot axes, creating it only on demand.
score (X, y=None, train=False, **kwargs)
Generates predicted target values using the Scikit-Learn estimator.
Parameters

X
[array-like] X (also X_test) are the dependent variables of test set to predict

y
[array-like] y (also y_test) is the independent actual variables to score against

train
[boolean] If False, score assumes that the residual points being plotted are from the test
data; if True, score assumes the residuals are the train data.

Returns

score

[float] The score of the underlying estimator, usually the R-squared score for regression
estimators.

yellowbrick.regressor.residuals.residuals_plot (estimator, X_train, y_train, X_test=None, y_test=None,
ax=None, hist=True, qqplot=False, train_color="b’,
test_color="g’", line_color=#I111111",
train_alpha=0.75, test_alpha=0.75, is_fitted='auto’',
show=True, **kwargs)

ResidualsPlot quick method:
A residual plot shows the residuals on the vertical axis and the independent variable on the horizontal axis.

If the points are randomly dispersed around the horizontal axis, a linear regression model is appropriate for the
data; otherwise, a non-linear model is more appropriate.

Parameters

8.3. Visualizers and API 133

Yellowbrick Documentation, Release v1.5

estimator
[a Scikit-Learn regressor] Should be an instance of a regressor, otherwise will raise a Yel-
lowbrickTypeError exception on instantiation. If the estimator is not fitted, it is fit when the
visualizer is fitted, unless otherwise specified by is_fitted.

X _train
[ndarray or DataFrame of shape n x m] A feature array of n instances with m features the
model is trained on. Used to fit the visualizer and also to score the visualizer if test splits are
not directly specified.

y_train
[ndarray or Series of length n] An array or series of target or class values. Used to fit the
visualizer and also to score the visualizer if test splits are not specified.

X_test
[ndarray or DataFrame of shape n x m, default: None] An optional feature array of n instances
with m features that the model is scored on if specified, using X_train as the training data.

y_test
[ndarray or Series of length n, default: None] An optional array or series of target or class
values that serve as actual labels for X_test for scoring purposes.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

hist
[{True, False, None, ‘density’, ‘frequency’}, default: True] Draw a histogram showing the
distribution of the residuals on the right side of the figure. Requires Matplotlib >=2.0.2. If
set to ‘density’, the probability density function will be plotted. If set to True or ‘frequency’
then the frequency will be plotted.

qqplot
[{True, False}, default: False] Draw a Q-Q plot on the right side of the figure, comparing

the quantiles of the residuals against quantiles of a standard normal distribution. Q-Q plot
and histogram of residuals can not be plotted simultaneously, either hist or ggplot has to be
set to False.

train_color
[color, default: ‘b’] Residuals for training data are ploted with this color but also given an
opacity of 0.5 to ensure that the test data residuals are more visible. Can be any matplotlib
color.

test_color
[color, default: ‘g’] Residuals for test data are plotted with this color. In order to create
generalizable models, reserved test data residuals are of the most analytical interest, so these
points are highlighted by having full opacity. Can be any matplotlib color.

line_color
[color, default: dark grey] Defines the color of the zero error line, can be any matplotlib
color.

train_alpha
[float, default: 0.75] Specify a transparency for traininig data, where 1 is completely opaque
and 0 is completely transparent. This property makes densely clustered points more visible.

test_alpha
[float, default: 0.75] Specify a transparency for test data, where 1 is completely opaque and
0 is completely transparent. This property makes densely clustered points more visible.

134 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

is_fitted
[bool or str, default="auto’] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If ‘auto’ (default), a helper method will check if the estimator is fitted before fitting it again.

show: bool, default: True
If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize ()

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Returns
viz
[ResidualsPlot] Returns the fitted ResidualsPlot that created the figure.

Prediction Error Plot
A prediction error plot shows the actual targets from the dataset against the predicted values generated by our model.

This allows us to see how much variance is in the model. Data scientists can diagnose regression models using this
plot by comparing against the 45 degree line, where the prediction exactly matches the model.

Visualizer PredictionError
Quick Method | prediction_error()
Models Regression

Workflow Model Evaluation

from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split

from yellowbrick.datasets import load_concrete
from yellowbrick.regressor import PredictionError

Load a regression dataset
X, y = load_concrete()

Create the train and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Instantiate the linear model and visualizer
model = Lasso()
visualizer = PredictionError (model)

visualizer.fit(X_train, y_train) # Fit the training data to the visualizer
visualizer.score(X_test, y_test) # Evaluate the model on the test data
visualizer.show() # Finalize and render the figure

8.3. Visualizers and API 135

Yellowbrick Documentation, Release v1.5

Prediction Error for Lasso

| Py
® R?=0.628 PRe
70 == pestfit ° 7o
— = identity ° e
° - °
60 ® oo o
[] .0/ e 7
G ¢ /7 /’: ¢
50 ces ®)4 ‘z’:
° oo &0 - ®
°
¢ o e |» ",. ’l
P d
o b L)
°. %, SHBE
30 [] ./ .' ®
o‘& ¢
o 7 ‘
o w ([]
20 ':3 e
[(Yr 2
//
10,
/
/
10 20 30 40 50 60 70
y

Quick Method

The same functionality can be achieved with the associated quick method prediction_error. This method will build
the PredictionError object with the associated arguments, fit it, then (optionally) immediately show the visualiza-
tion.

from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split

from yellowbrick.datasets import load_concrete
from yellowbrick.regressor import prediction_error

Load a regression dataset
X, y = load_concrete()

Create the train and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Instantiate the linear model and visualizer
model = Lasso()
visualizer = prediction_error(model, X_train, y_train, X_test, y_test)

136 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Prediction Error for Lasso

® R?=0.628

70 == bestfit ®
= = identity o ®
/’
60 L 09 7
[) .0/
® 4 o0 e
50 bl o 3o l.r
e 00 ® 70
) oo & 0 -
[70 L)
e (/v - ‘ ®
o @

> 40 e .,".‘ “
30
O o

4
0,

API Reference

Comparison of the predicted vs. actual values for regression problems

class yellowbrick.regressor.prediction_error.PredictionError (estimator, ax=None,
shared_limits=True, bestfit=True,
identity=True, alpha=0.75,
is_fitted="auto', **kwargs)

Bases: RegressionScoreVisualizer

70

The prediction error visualizer plots the actual targets from the dataset against the predicted values generated by
our model(s). This visualizer is used to detect noise or heteroscedasticity along a range of the target domain.

Parameters

estimator

[a Scikit-Learn regressor] Should be an instance of a regressor, otherwise will raise a Yel-
lowbrickTypeError exception on instantiation. If the estimator is not fitted, it is fit when the
visualizer is fitted, unless otherwise specified by is_fitted.

ax

[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the

current axes will be used (or generated if required).

shared_limits

[bool, default: True] If shared_limits is True, the range of the X and Y axis limits will be
identical, creating a square graphic with a true 45 degree line. In this form, it is easier to
diagnose under- or over- prediction, though the figure will become more sparse. To localize

8.3. Visualizers and API

137

Yellowbrick Documentation, Release v1.5

points, set shared_limits to False, but note that this will distort the figure and should be
accounted for during analysis.

bestfit
[bool, default: True] Draw a linear best fit line to estimate the correlation between the pre-
dicted and measured value of the target variable. The color of the bestfit line is determined
by the 1ine_color argument.

identity
[bool, default: True] Draw the 45 degree identity line, y=x in order to better show the rela-
tionship or pattern of the residuals. E.g. to estimate if the model is over- or under- estimating
the given values. The color of the identity line is a muted version of the 1ine_color argu-
ment.

alpha
[float, default: 0.75] Specify a transparency where 1 is completely opaque and O is completely
transparent. This property makes densely clustered points more visible.

is_fitted
[bool or str, default="auto’] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If ‘auto’ (default), a helper method will check if the estimator is fitted before fitting it again.

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Notes

PredictionError is a ScoreVisualizer, meaning that it wraps a model and its primary entry point is the score()
method.

Examples

>>> from yellowbrick.regressor import PredictionError
>>> from sklearn.linear_model import Lasso

>>> model = PredictionError(Lasso())

>>> model.fit(X_train, y_train)

>>> model.score(X_test, y_test)

>>> model . show()

Attributes

score_
[float] The R"2 score that specifies the goodness of fit of the underlying regression model to
the test data.

draw(y, y_pred)
Parameters

y
[ndarray or Series of length n] An array or series of target or class values

y_pred
[ndarray or Series of length n] An array or series of predicted target values

138 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Returns
ax
[matplotlib Axes] The axis with the plotted figure
finalize(**kwargs)

Finalizes the figure by ensuring the aspect ratio is correct and adding the identity line for comparison. Also
adds a title, axis labels, and the legend.

Parameters

kwargs: generic keyword arguments.

Notes

Generally this method is called from show and not directly by the user.
score (X, y, **kwargs)

The score function is the hook for visual interaction. Pass in test data and the visualizer will create predic-

tions on the data and evaluate them with respect to the test values. The evaluation will then be passed to
draw() and the result of the estimator score will be returned.

Parameters

X
[array-like] X (also X_test) are the dependent variables of test set to predict
y
[array-like] y (also y_test) is the independent actual variables to score against
Returns

score
[float]

yellowbrick.regressor.prediction_error.prediction_error (estimator, X_train, y_train, X_test=None,

y_test=None, ax=None,
shared_limits=True, bestfit=True,
identity=True, alpha=0.75, is_fitted='"auto',
show=True, **kwargs)
Quickly plot a prediction error visualizer

Plot the actual targets from the dataset against the predicted values generated by our model(s).

This helper function is a quick wrapper to utilize the PredictionError ScoreVisualizer for one-off analysis.

Parameters

estimator

[the Scikit-Learn estimator (should be a regressor)] Should be an instance of a regressor,
otherwise will raise a YellowbrickTypeError exception on instantiation. If the estimator is
not fitted, it is fit when the visualizer is fitted, unless otherwise specified by is_fitted.

X _train
[ndarray or DataFrame of shape n x m] A feature array of n instances with m features the

model is trained on. Used to fit the visualizer and also to score the visualizer if test splits are
not directly specified.

y_train

[ndarray or Series of length n] An array or series of target or class values. Used to fit the
visualizer and also to score the visualizer if test splits are not specified.

8.3. Visualizers and API 139

Yellowbrick Documentation, Release v1.5

X_test
[ndarray or DataFrame of shape n x m, default: None] An optional feature array of n instances
with m features that the model is scored on if specified, using X_train as the training data.

y_test
[ndarray or Series of length n, default: None] An optional array or series of target or class
values that serve as actual labels for X_test for scoring purposes.

ax
[matplotlib Axes] The axes to plot the figure on.

shared_limits
[bool, default: True] If shared_limits is True, the range of the X and Y axis limits will be
identical, creating a square graphic with a true 45 degree line. In this form, it is easier to
diagnose under- or over- prediction, though the figure will become more sparse. To localize
points, set shared_limits to False, but note that this will distort the figure and should be
accounted for during analysis.

bestfit
[bool, default: True] Draw a linear best fit line to estimate the correlation between the pre-
dicted and measured value of the target variable. The color of the bestfit line is determined
by the 1ine_color argument.

identity: bool, default: True
Draw the 45 degree identity line, y=x in order to better show the relationship or pattern of
the residuals. E.g. to estimate if the model is over- or under- estimating the given values.
The color of the identity line is a muted version of the 1ine_color argument.

alpha
[float, default: 0.75] Specify a transparency where 1 is completely opaque and O is completely
transparent. This property makes densely clustered points more visible.

is_fitted
[bool or str, default="auto’] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If ‘auto’ (default), a helper method will check if the estimator is fitted before fitting it again.

show: bool, default: True
If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize ()

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Returns

ax
[matplotlib Axes] Returns the axes that the prediction error plot was drawn on.

140 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Alpha Selection

Regularization is designed to penalize model complexity, therefore the higher the alpha, the less complex the model,
decreasing the error due to variance (overfit). Alphas that are too high on the other hand increase the error due to bias
(underfit). It is important, therefore to choose an optimal alpha such that the error is minimized in both directions.

The AlphaSelection Visualizer demonstrates how different values of alpha influence model selection during the
regularization of linear models. Generally speaking, alpha increases the affect of regularization, e.g. if alpha is zero
there is no regularization and the higher the alpha, the more the regularization parameter influences the final model.

Visualizer AlphaSelection

Quick Method | alphas()

Models Regression

Workflow Model selection, Hyperparameter tuning

For Estimators with Built-in Cross-Validation

The AlphaSelection visualizer wraps a “RegressionCV” model and visualizes the alpha/error curve. Use this vi-
sualization to detect if the model is responding to regularization, e.g. as you increase or decrease alpha, the model
responds and error is decreased. If the visualization shows a jagged or random plot, then potentially the model is not
sensitive to that type of regularization and another is required (e.g. L1 or Lasso regularization).

Note: The AlphaSelection visualizer requires a “RegressorCV” model, e.g. a specialized class that performs cross-
validated alpha-selection on behalf of the model. See the ManualAlphaSelection visualizer if your regression model
does not include cross-validation.

import numpy as np

from sklearn.linear_model import LassoCV
from yellowbrick.datasets import load_concrete
from yellowbrick.regressor import AlphaSelection

Load the regression dataset
X, y = load_concrete()

Create a list of alphas to cross-validate against
alphas = np.logspace(-10, 1, 400)

Instantiate the linear model and visualizer
model = LassoCV(alphas=alphas)

visualizer = AlphaSelection(model)
visualizer.fit(X, y)

visualizer.show()

8.3. Visualizers and API 141

Yellowbrick Documentation, Release v1.5

LassoCV Alpha Error

128

127

126

error (or score)
=
N
(6]

124

123

122

For Estimators without Built-in Cross-Validation

Most scikit-learn Estimators with alpha parameters have a version with built-in cross-validation. However, if the

regressor you wish to use doesn’t have an associated “CV” estimator, or for some reason you wo

uld like to specify more

control over the alpha selection process, then you can use the ManualAlphaSelection visualizer. This visualizer is
essentially a wrapper for scikit-learn’s cross_val_score method, fitting a model for each alpha specified.

import numpy as np

from sklearn.linear_model import Ridge
from yellowbrick.datasets import load_concrete
from yellowbrick.regressor import ManualAlphaSelection

Load the regression dataset
X, y = load_concrete()

Create a list of alphas to cross-validate against
alphas = np.logspace(l, 4, 50)

Instantiate the visualizer
visualizer = ManualAlphaSelection(
RidgeQ,
alphas=alphas,
cv=12,

(continues on next page)

142 Chapter 8

. Table of Contents

Yellowbrick Documentation, Release v1.5

(continued from previous page)

scoring="neg_mean_squared_error"

visualizer.fit(X, y)
visualizer.show()

-122.9

-123.0

-123.1

error (or score)

|
N
N
w
N}

-123.3

Quick Methods

2000

Ridge Alpha Error

— ridge
==+ Qmax =10000.000
==+ Qmip =10.000

4000 6000 8000 10000
alpha

The same functionality above can be achieved with the associated quick method alphas. This method will build the
AlphaSelection Visualizer object with the associated arguments, fit it, then (optionally) immediately show it.

from sklearn.linear_model import LassoCV
from yellowbrick.regressor.alphas import alphas

from yellowbrick.datasets import load_energy

Load dataset

X, vy = load_energy()

Use the quick method and immediately show the figure
alphas(LassoCV(random_state=0), X, y)

The ManualAlphaSelection visualizer can also be used as a oneliner:

8.3. Visualizers and API

143

Yellowbrick Documentation, Release v1.5

LassoCV Alpha Error

100

90

80

70

60

error (or score)

50

40

30

0 100 200 300 400 500 600
alpha

from sklearn.linear_model import ElasticNet
from yellowbrick.regressor.alphas import manual_alphas

from yellowbrick.datasets import load_energy

Load dataset
X, vy = load_energy()

Instantiate a model
model = ElasticNet(tol=0.01, max_iter=10000)

Use the quick method and immediately show the figure
manual_alphas(model, X, y, cv=6)

144 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

ElasticNet Alpha Error

0.890

error (or score)
©
o]
[o¢]
6]

©
©
©
o

0.875

— elasticnet
—-—— Omax = 0.000
== Omin =0.010

0.000 0.002 0.004 0.006 0.008 0.010
alpha

API Reference

Implements alpha selection visualizers for regularization

class yellowbrick.regressor.alphas.AlphaSelection(estimator, ax=None, is_fitted='auto’, **kwargs)
Bases: RegressionScoreVisualizer

The Alpha Selection Visualizer demonstrates how different values of alpha influence model selection during the
regularization of linear models. Generally speaking, alpha increases the affect of regularization, e.g. if alpha
is zero there is no regularization and the higher the alpha, the more the regularization parameter influences the
final model.

Regularization is designed to penalize model complexity, therefore the higher the alpha, the less complex the
model, decreasing the error due to variance (overfit). Alphas that are too high on the other hand increase the
error due to bias (underfit). It is important, therefore to choose an optimal Alpha such that the error is minimized
in both directions.

To do this, typically you would you use one of the “RegressionCV” models in Scikit-Learn. E.g. instead of
using the Ridge (L2) regularizer, you can use RidgeCV and pass a list of alphas, which will be selected based
on the cross-validation score of each alpha. This visualizer wraps a “RegressionCV”” model and visualizes the
alpha/error curve. Use this visualization to detect if the model is responding to regularization, e.g. as you increase
or decrease alpha, the model responds and error is decreased. If the visualization shows a jagged or random plot,
then potentially the model is not sensitive to that type of regularization and another is required (e.g. L1 or Lasso
regularization).

Parameters

estimator

8.3. Visualizers and API 145

Yellowbrick Documentation, Release v1.5

[a Scikit-Learn regressor] Should be an instance of a regressor, and specifically one whose
name ends with “CV” otherwise a will raise a YellowbrickTypeError exception on instantia-
tion. To use non-CV regressors see: ManualAlphaSelection. If the estimator is not fitted,
it is fit when the visualizer is fitted, unless otherwise specified by is_fitted.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

is_fitted
[bool or str, default="auto’] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If ‘auto’ (default), a helper method will check if the estimator is fitted before fitting it again.

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Notes
This class expects an estimator whose name ends with “CV”. If you wish to use some other estimator, please see
the ManualAlphaSelection Visualizer for manually iterating through all alphas and selecting the best one.

This Visualizer hooks into the Scikit-Learn API during £it (). In order to pass a fitted model to the Visualizer,
call the draw() method directly after instantiating the visualizer with the fitted model.

Note, each “RegressorCV” module has many different methods for storing alphas and error. This visualizer
attempts to get them all and is known to work for RidgeCV, LassoCV, LassoLarsCV, and ElasticNetCV. If your
favorite regularization method doesn’t work, please submit a bug report.

For RidgeCV, make sure store_cv_values=True.

Examples

>>> from yellowbrick.regressor import AlphaSelection
>>> from sklearn.linear_model import LassoCV

>>> model = AlphaSelection(LassoCV())

>>> model . fit (X, y)

>>> model.show()

draw()

Draws the alpha plot based on the values on the estimator.

finalize()
Prepare the figure for rendering by setting the title as well as the X and Y axis labels and adding the legend.
fit(X, y, **kwargs)

A simple pass-through method; calls fit on the estimator and then draws the alpha-error plot.

class yellowbrick.regressor.alphas.ManualAlphaSelection(estimator, ax=None, alphas=None,

cv=None, scoring=None, **kwargs)
Bases: AlphaSelection
The AlphaSelection visualizer requires a “RegressorCV”, that is a specialized class that performs cross-

validated alpha-selection on behalf of the model. If the regressor you wish to use doesn’t have an associated
“CV” estimator, or for some reason you would like to specify more control over the alpha selection process, then

146

Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

you can use this manual alpha selection visualizer, which is essentially a wrapper for cross_val_score, fitting
a model for each alpha specified.

Parameters

estimator
[an unfitted Scikit-Learn regressor] Should be an instance of an unfitted regressor, and
specifically one whose name doesn’t end with “CV”. The regressor must support a call
to set_params (alpha=alpha) and be fit multiple times. If the regressor name ends with
“CV” a YellowbrickValueError is raised.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

alphas
[ndarray or Series, default: np.logspace(-10, 2, 200)] An array of alphas to fit each model
with

cv
[int, cross-validation generator or an iterable, optional] Determines the cross-validation split-
ting strategy. Possible inputs for cv are:

¢ None, to use the default 3-fold cross validation,

* integer, to specify the number of folds in a (Stratified)KFold,
* An object to be used as a cross-validation generator.

* An iterable yielding train, test splits.

This argument is passed to the sklearn.model_selection.cross_val_score method
to produce the cross validated score for each alpha.

scoring
[string, callable or None, optional, default: None] A string (see model evaluation documen-
tation) or a scorer callable object / function with signature scorer (estimator, X, y).

This argument is passed to the sklearn.model_selection.cross_val_score method
to produce the cross validated score for each alpha.

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Notes

This class does not take advantage of estimator-specific searching and is therefore less optimal and more time
consuming than the regular “RegressorCV” estimators.

. Visualizers and API 147

Yellowbrick Documentation, Release v1.5

Examples

>>> from yellowbrick.regressor import ManualAlphaSelection
>>> from sklearn.linear_model import Ridge
>>> model = ManualAlphaSelection(

Ridge(), cv=12, scoring='neg_mean_squared_error'

<)

>>> model . fit(X, y)
>>> model . show()

draw()
Draws the alphas values against their associated error in a similar fashion to the AlphaSelection visualizer.
fit(X, y, **args)

The fit method is the primary entry point for the manual alpha selection visualizer. It sets the alpha param
for each alpha in the alphas list on the wrapped estimator, then scores the model using the passed in X and
y data set. Those scores are then aggregated and drawn using matplotlib.

yellowbrick.regressor.alphas.alphas(estimator, X, y=None, ax=None, is_fitted="auto', show=True,

*rkwargs)

Quick Method: The Alpha Selection Visualizer demonstrates how different values of alpha influence model
selection during the regularization of linear models. Generally speaking, alpha increases the affect of regulariza-
tion, e.g. if alpha is zero there is no regularization and the higher the alpha, the more the regularization parameter
influences the final model.

Parameters

estimator
[a Scikit-Learn regressor] Should be an instance of a regressor, and specifically one whose
name ends with “CV” otherwise a will raise a YellowbrickTypeError exception on instantia-
tion. To use non-CV regressors see: ManualAlphaSelection. If the estimator is not fitted,
it is fit when the visualizer is fitted, unless otherwise specified by is_fitted.

X

[ndarray or DataFrame of shape n x m] A matrix of n instances with m features.
y

[ndarray or Series of length n] An array or series of target values.
ax

[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

is_fitted
[bool or str, default="auto’] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If ‘auto’ (default), a helper method will check if the estimator is fitted before fitting it again.

show
[bool, default: True] If True, calls show(), which in turn calls plt.show() however you
cannot call plt.savefig from this signature, nor clear_figure. If False, simply calls
finalize()

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

148

Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Returns

visualizer
[AlphaSelection] Returns the alpha selection visualizer

yellowbrick.regressor.alphas.manual_alphas(estimator, X, y=None, ax=None, alphas=None, cv=None,

scoring=None, show=True, **kwargs)

Quick Method: The Manual Alpha Selection Visualizer demonstrates how different values of alpha influence
model selection during the regularization of linear models. Generally speaking, alpha increases the affect of
regularization, e.g. if alpha is zero there is no regularization and the higher the alpha, the more the regularization
parameter influences the final model.

Parameters

estimator
[an unfitted Scikit-Learn regressor] Should be an instance of an unfitted regressor, and
specifically one whose name doesn’t end with “CV”. The regressor must support a call
to set_params (alpha=alpha) and be fit multiple times. If the regressor name ends with
“CV” a YellowbrickValueError is raised.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

alphas
[ndarray or Series, default: np.logspace(-10, 2, 200)] An array of alphas to fit each model
with

cv
[int, cross-validation generator or an iterable, optional] Determines the cross-validation split-
ting strategy. Possible inputs for cv are:

¢ None, to use the default 3-fold cross validation,

* integer, to specify the number of folds in a (Stratified)KFold,
* An object to be used as a cross-validation generator.

* An iterable yielding train, test splits.

This argument is passed to the sklearn.model_selection.cross_val_score method
to produce the cross validated score for each alpha.

scoring
[string, callable or None, optional, default: None] A string (see model evaluation documen-
tation) or a scorer callable object / function with signature scorer (estimator, X, y).

This argument is passed to the sklearn.model_selection.cross_val_score method
to produce the cross validated score for each alpha.

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Returns

visualizer
[AlphaSelection] Returns the alpha selection visualizer

8.3.

Visualizers and API 149

Yellowbrick Documentation, Release v1.5

Cook’s Distance

Cook’s Distance is a measure of an observation or instances’ influence on a linear regression. Instances with a large
influence may be outliers, and datasets with a large number of highly influential points might not be suitable for linear
regression without further processing such as outlier removal or imputation. The CooksDistance visualizer shows a
stem plot of all instances by index and their associated distance score, along with a heuristic threshold to quickly show
what percent of the dataset may be impacting OLS regression models.

Visualizer CooksDistance

Quick Method | cooks_distance()
Models General Linear Models
Workflow Dataset/Sensitivity Analysis

from yellowbrick.regressor import CooksDistance
from yellowbrick.datasets import load_concrete

Load the regression dataset

X, y = load_concrete()

Instantiate and fit the visualizer
visualizer = CooksDistance()

visualizer.fit(X, y)
visualizer.show()

influence (1)

0.030

0.025

0.020

0.015

0.010

0.005

0.000

200

Cook's Distance Outlier Detection

400

600
instance index

—— 7.38% > (I = 2)

800 1000

The presence of so many highly influential points suggests that linear regression may not be suitable for this dataset.

150

Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

One or more of the four assumptions behind linear regression might be being violated; namely one of: independence
of observations, linearity of response, normality of residuals, or homogeneity of variance (“homoscedasticity”). We
can check the latter three conditions using a residual plot:

from sklearn.linear_model import LinearRegression
from yellowbrick.regressor import ResidualsPlot

Instantiate and fit the visualizer

model = LinearRegression()
visualizer_residuals = ResidualsPlot(model)
visualizer_residuals.fit(X, y)
visualizer_residuals.show()

Residuals for LinearRegression Model

30 30

B Train R2=0.615
o o o

20

10

Residuals
o

-10

10 20 30 40 50 60 70 80 O 50
Predicted Value Distribution

The residuals appear to be normally distributed around 0, satisfying the linearity and normality conditions. However,
they do skew slightly positive for larger predicted values, and also appear to increase in magnitude as the predicted
value increases, suggesting a violation of the homoscedasticity condition.

Given this information, we might consider one of the following options: (1) using a linear regression anyway, (2)
using a linear regression after removing outliers, and (3) resorting to other regression models. For the sake of il-
lustration, we will go with option (2) with the help of the Visualizer’s public learned parameters distance_ and
influence_threshold_:

i_less_influential = (visualizer.distance_ <= visualizer.influence_threshold_)
X_1i, y_1li = X[i_less_influential], y[i_less_influentiall]

model = LinearRegression()

(continues on next page)

8.3. Visualizers and API 151

Yellowbrick Documentation, Release v1.5

(continued from previous page)

visualizer_residuals = ResidualsPlot(model)
visualizer_residuals.fit(X_1li, y_li)
visualizer_residuals.show()

Residuals for LinearRegression Model

) B TranR?=0.748 |
L J
° |
20 % L 20
o
@
10 °
o
[%) [)
3]
=}
=]
g 0
04
[)
-10
-20
20 40 60 80 0 50
Predicted Value Distribution

The violations of the linear regression assumptions addressed earlier appear to be diminished. The goodness-of-fit
measure has increased from 0.615 to 0.748, which is to be expected as there is less variance in the response variable
after outlier removal.

Quick Method

Similar functionality as above can be achieved in one line using the associated quick method, cooks_distance. This
method will instantiate and fit a CooksDistance visualizer on the training data, then will score it on the optionally
provided test data (or the training data if it is not provided).

from yellowbrick.datasets import load_concrete
from yellowbrick.regressor import cooks_distance

Load the regression dataset
X, y = load_concrete()

Instantiate and fit the visualizer
cooks_distance(
X, v,

(continues on next page)

152 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

(continued from previous page)

draw_threshold=True,
linefmt="C0-", markerfmt=",6"

Cook's Distance Outlier Detection

0.030 ——- 7.38% > (lr=7)

0.025

0.020

0.015

influence (1)

0.010

0.005

N R

0.000

0 200 400 600 800 1000
instance index

API Reference

Visualize the influence and leverage of individual instances on a regression model.

class yellowbrick.regressor.influence.CooksDistance (ax=None, draw_threshold=True, linefimt="'CO-',
markerfmt=",", **kwargs)

Bases: Visualizer

Cook’s Distance is a measure of how influential an instance is to the computation of a regression, e.g. if the
instance is removed would the estimated coeficients of the underlying model be substantially changed? Because
of this, Cook’s Distance is generally used to detect outliers in standard, OLS regression. In fact, a general rule of
thumb is that D(i) > 4/n is a good threshold for determining highly influential points as outliers and this visualizer
can report the percentage of data that is above that threshold.

This implementation of Cook’s Distance assumes Ordinary Least Squares regression, and therefore embeds a
sklearn.linear_model.LinearRegression under the hood. Distance is computed via the non-whitened
leverage of the projection matrix, computed inside of £it (). The results of this visualizer are therefore similar
to, but not as advanced, as a similar computation using statsmodels. Computing the influence for other regression
models requires leave one out validation and can be expensive to compute.

8.3. Visualizers and API 153

Yellowbrick Documentation, Release v1.5

See also:

For a longer discussion on detecting outliers in regression and computing leverage and influence, see linear
regression in python, outliers/leverage detect by Huiming Song.

Parameters

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

draw_threshold
[bool, default: True] Draw a horizontal line at D(i) == 4/n to easily identify the most influen-
tial points on the final regression. This will also draw a legend that specifies the percentage
of data points that are above the threshold.

linefmt
[str, default: ‘CO-’] A string defining the properties of the vertical lines of the stem plot,
usually this will be a color or a color and a line style. The default is simply a solid line with
the first color of the color cycle.

markerfmt
[str, default: ‘'] A string defining the properties of the markers at the stem plot heads. The
default is “pixel”, e.g. basically no marker head at the top of the stem plot.

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the final visu-
alization (e.g. size or title parameters).

Notes

Cook’s Distance is very similar to DFFITS, another diagnostic that is meant to show how influential a point is in
a statistical regression. Although the computed values of Cook’s and DFFITS are different, they are conceptually
identical and there even exists a closed-form formula to convert one value to another. Because of this, we have
chosen to implement Cook’s distance rather than or in addition to DFFITS.

Attributes

distance_
[array, 1D] The Cook’s distance value for each instance specified in X, e.g. an 1D array with
shape (X.shape[0],).

p_values_
[array, 1D] The p values associated with the F-test of Cook’s distance distribution. A 1D
array whose shape matches distance_.

influence_threshold_
[float] A rule of thumb influence threshold to determine outliers in the regression model,
defined as It=4/n.

outlier_percentage_
[float] The percentage of instances whose Cook’s distance is greater than the influnce thresh-
old, the percentage is 0.0 <= p <= 100.0.

draw()

Draws a stem plot where each stem is the Cook’s Distance of the instance at the index specified by the x
axis. Optionaly draws a threshold line.

154 Chapter 8. Table of Contents

http://bit.ly/2If2fga
http://bit.ly/2If2fga

Yellowbrick Documentation, Release v1.5

finalize()
Prepares the visualization for presentation and reporting.
Fit(X, y)

Computes the leverage of X and uses the residuals of a sklearn.linear_model.LinearRegression to
compute the Cook’s Distance of each observation in X, their p-values and the number of outliers defined
by the number of observations supplied.

Parameters

X
[array-like, 2D] The exogenous design matrix, e.g. training data.

y
[array-like, 1D] The endogenous response variable, e.g. target data.

Returns

self
[CooksDistance] Fit returns the visualizer instance.

yellowbrick.regressor.influence.cooks_distance(X, y, ax=None, draw_threshold=True, linefmt="'CO-',

markerfmt=",", show=True, **kwargs)

Cook’s Distance is a measure of how influential an instance is to the computation of a regression, e.g. if the
instance is removed would the estimated coeficients of the underlying model be substantially changed? Because
of this, Cook’s Distance is generally used to detect outliers in standard, OLS regression. In fact, a general rule of
thumb is that D(i) > 4/n is a good threshold for determining highly influential points as outliers and this visualizer
can report the percentage of data that is above that threshold.

This implementation of Cook’s Distance assumes Ordinary Least Squares regression, and therefore embeds a
sklearn.linear_model.LinearRegression under the hood. Distance is computed via the non-whitened
leverage of the projection matrix, computed inside of £it (). The results of this visualizer are therefore similar
to, but not as advanced, as a similar computation using statsmodels. Computing the influence for other regression
models requires leave one out validation and can be expensive to compute.

See also:

For a longer discussion on detecting outliers in regression and computing leverage and influence, see linear
regression in python, outliers/leverage detect by Huiming Song.

Parameters

X
[array-like, 2D] The exogenous design matrix, e.g. training data.

[array-like, 1D] The endogenous response variable, e.g. target data.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

draw_threshold
[bool, default: True] Draw a horizontal line at D(i) == 4/n to easily identify the most influen-
tial points on the final regression. This will also draw a legend that specifies the percentage
of data points that are above the threshold.

linefmt
[str, default: ‘CO-’] A string defining the properties of the vertical lines of the stem plot,
usually this will be a color or a color and a line style. The default is simply a solid line with
the first color of the color cycle.

8.3. Visualizers and API 155

http://bit.ly/2If2fga
http://bit.ly/2If2fga

Yellowbrick Documentation, Release v1.5

markerfmt: str, default: ¢,
A string defining the properties of the markers at the stem plot heads. The default is “pixel”,
e.g. basically no marker head at the top of the stem plot.

show: bool, default: True
If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize ()

kwargs

[dict] Keyword arguments that are passed to the base class and may influence the final visu-
alization (e.g. size or title parameters).

8.3.6 Classification Visualizers

Classification models attempt to predict a target in a discrete space, that is assign an instance of dependent variables
one or more categories. Classification score visualizers display the differences between classes as well as a number of
classifier-specific visual evaluations. We currently have implemented the following classifier evaluations:

e Classification Report: A visual classification report that displays precision, recall, and F1 per-class as a heatmap.

Confusion Matrix: A heatmap view of the confusion matrix of pairs of classes in multi-class classification.

ROCAUC: Graphs the receiver operating characteristics and area under the curve.

Precision-Recall Curves: Plots the precision and recall for different probability thresholds.

Class Balance: Visual inspection of the target to show the support of each class to the final estimator.

Class Prediction Error: An alternative to the confusion matrix that shows both support and the difference be-
tween actual and predicted classes.

Discrimination Threshold: Shows precision, recall, f1, and queue rate over all thresholds for binary classifiers
that use a discrimination probability or score.

Estimator score visualizers wrap scikit-learn estimators and expose the Estimator API such that they have fit(),
predict(), and score() methods that call the appropriate estimator methods under the hood. Score visualizers can
wrap an estimator and be passed in as the final step in a Pipeline or VisualPipeline.

Classifier Evaluation Imports

from
from
from
from

from
from
from
from
from
from

sklearn.naive_bayes import GaussianNB

sklearn.linear_model import LogisticRegression
sklearn.ensemble import RandomForestClassifier
sklearn.model_selection import train_test_split

yellowbrick.target import ClassBalance

yellowbrick.classifier
yellowbrick.classifier
yellowbrick.classifier
yellowbrick.classifier
yellowbrick.classifier

import ROCAUC

import PrecisionRecallCurve
import ClassificationReport
import ClassPredictionError
import DiscriminationThreshold

156

Chapter 8

. Table of Contents

Yellowbrick Documentation, Release v1.5

Classification Report

The classification report visualizer displays the precision, recall, F1, and support scores for the model. In order to sup-
port easier interpretation and problem detection, the report integrates numerical scores with a color-coded heatmap.
All heatmaps are in the range (0.0, 1.0) to facilitate easy comparison of classification models across different clas-
sification reports.

Visualizer ClassificationReport
Quick Method | classification_report()
Models Classification

Workflow Model evaluation

from sklearn.model_selection import TimeSeriesSplit
from sklearn.naive_bayes import GaussianNB

from yellowbrick.classifier import ClassificationReport
from yellowbrick.datasets import load_occupancy

Load the classification dataset
X, y = load_occupancy()

Specify the target classes
classes = ["unoccupied", "occupied"]

Create the training and test data

tscv = TimeSeriesSplit()

for train_index, test_index in tscv.split(X):
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]

Instantiate the classification model and visualizer
model = GaussianNB()
visualizer = ClassificationReport(model, classes=classes, support=True)

visualizer.fit(X_train, y_train) # Fit the visualizer and the model
visualizer.score(X_test, y_test) # Evaluate the model on the test data
visualizer.show() # Finalize and show the figure

The classification report shows a representation of the main classification metrics on a per-class basis. This gives a
deeper intuition of the classifier behavior over global accuracy which can mask functional weaknesses in one class of
a multiclass problem. Visual classification reports are used to compare classification models to select models that are
“redder”, e.g. have stronger classification metrics or that are more balanced.

The metrics are defined in terms of true and false positives, and true and false negatives. Positive and negative in this
case are generic names for the classes of a binary classification problem. In the example above, we would consider true
and false occupied and true and false unoccupied. Therefore a true positive is when the actual class is positive as is
the estimated class. A false positive is when the actual class is negative but the estimated class is positive. Using this
terminology the metrics are defined as follows:

precision
Precision can be seen as a measure of a classifier’s exactness. For each class, it is defined as the ratio of true
positives to the sum of true and false positives. Said another way, “for all instances classified positive, what
percent was correct?”

8.3. Visualizers and API 157

Yellowbrick Documentation, Release v1.5

GaussianNB Classification Report

1.0
0.8

occupied
0.4

unoccupied
0.2
0.0

recall

Recall is a measure of the classifier’s completeness; the ability of a classifier to correctly find all positive instances.
For each class, it is defined as the ratio of true positives to the sum of true positives and false negatives. Said
another way, “for all instances that were actually positive, what percent was classified correctly?”

f1 score
The F, score is a weighted harmonic mean of precision and recall such that the best score is 1.0 and the worst
is 0.0. Generally speaking, F; scores are lower than accuracy measures as they embed precision and recall into
their computation. As a rule of thumb, the weighted average of F; should be used to compare classifier models,
not global accuracy.

support
Support is the number of actual occurrences of the class in the specified dataset. Imbalanced support in the
training data may indicate structural weaknesses in the reported scores of the classifier and could indicate the
need for stratified sampling or rebalancing. Support doesn’t change between models but instead diagnoses the
evaluation process.

Note: This example uses TimeSeriesSplit to split the data into the training and test sets. For more information on
this cross-validation method, please refer to the scikit-learn documentation.

158 Chapter 8. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html

Yellowbrick Documentation, Release v1.5

Quick Method

The same functionality above can be achieved with the associated quick method classification_report. This
method will build the ClassificationReport object with the associated arguments, fit it, then (optionally) immedi-
ately show it.

from sklearn.model_selection import TimeSeriesSplit
from sklearn.naive_bayes import GaussianNB

from yellowbrick.datasets import load_occupancy
from yellowbrick.classifier import classification_report

Load the classification data set
X, y = load_occupancy()

Specify the target classes
classes = ["unoccupied", "occupied"]

Create the training and test data

tscv = TimeSeriesSplit()

for train_index, test_index in tscv.split(X):
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]

Instantiate the visualizer
visualizer = classification_report(
GaussianNB(), X_train, y_train, X_test, y_test, classes=classes, support=True

API Reference

Visual classification report for classifier scoring.

class yellowbrick.classifier.classification_report.ClassificationReport (estimator, ax=None,
classes=None,
cmap="YIOrRd',
support=None,
encoder=None,
is_fitted="auto',
force_model=False,
colorbar=True,
fontsize=None,
**kwargs)

Bases: ClassificationScoreVisualizer

Classification report that shows the precision, recall, F1, and support scores for the model. Integrates numerical
scores as well as a color-coded heatmap.

Parameters

estimator
[estimator] A scikit-learn estimator that should be a classifier. If the model is not a classifier,
an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted,
unless otherwise specified by is_fitted.

8.3. Visualizers and API 159

Yellowbrick Documentation, Release v1.5

occupied 0.999

GaussianNB Classification Report
1.0

0.8

1097

0.4
unoccupied 0.999 0.669
0.2
0.0
’,%\0\\ edz}\ © Qoé
-\
Q&o \ 6\&

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If not specified the current
axes will be used (or generated if required).

classes
[list of str, defult: None] The class labels to use for the legend ordered by the index of the
sorted classes discovered in the £it () method. Specifying classes in this manner is used to
change the class names to a more specific format or to label encoded integer classes. Some
visualizers may also use this field to filter the visualization for specific classes. For more
advanced usage specify an encoder rather than class labels.

cmap
[string, default: 'Y10rRd'] Specify a colormap to define the heatmap of the predicted class
against the actual class in the classification report.

support: {True, False, None, ‘percent’, ‘count’}, default: None
Specify if support will be displayed. It can be further defined by whether support should be
reported as a raw count or percentage.

encoder
[dict or LabelEncoder, default: None] A mapping of classes to human readable labels. Often
there is a mismatch between desired class labels and those contained in the target variable
passed to fit () or score (). The encoder disambiguates this mismatch ensuring that classes
are labeled correctly in the visualization.

is_fitted
[bool or str, default="auto] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.

160

Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

If “auto” (default), a helper method will check if the estimator is fitted before fitting it again.

force_model
[bool, default: False] Do not check to ensure that the underlying estimator is a classifier. This
will prevent an exception when the visualizer is initialized but may result in unexpected or
unintended behavior.

colorbar
[bool, default: True] Specify if the color bar should be present

fontsize
[int or None, default: None] Specify the font size of the x and y labels

kwargs
[dict] Keyword arguments passed to the visualizer base classes.

Examples

>>> from yellowbrick.classifier import ClassificationReport
>>> from sklearn.linear_model import LogisticRegression
>>> viz = ClassificationReport(LogisticRegression())

>>> viz.fit(X_train, y_train)

>>> viz.score(X_test, y_test)

>>> viz.show()

Attributes

classes_
[ndarray of shape (n_classes,)] The class labels observed while fitting.

class_count_
[ndarray of shape (n_classes,)] Number of samples encountered for each class during fitting.

score_
[float] An evaluation metric of the classifier on test data produced when score() is called.
This metric is between 0 and 1 — higher scores are generally better. For classifiers, this score
is usually accuracy, but ensure you check the underlying model for more details about the
score.

scores_
[dict of dicts] Outer dictionary composed of precision, recall, f1, and support scores with
inner dictionaries specifiying the values for each class listed.

draw()
Renders the classification report across each axis.

finalize (**kwargs)
Adds a title and sets the axis labels correctly. Also calls tight layout to ensure that no parts of the figure are
cut off in the final visualization.

Parameters

kwargs: generic keyword arguments.

. Visualizers and API 161

Yellowbrick Documentation, Release v1.5

Notes

Generally this method is called from show and not directly by the user.
score(X, y)

Generates the Scikit-Learn classification report.
Parameters

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features

y
[ndarray or Series of length n] An array or series of target or class values

Returns

score_
[float] Global accuracy score

yellowbrick.classifier.classification_report.classification_report (estimator, X_train, y_train,
X_test=None, y_test=None,
ax=None, classes=None,
cmap="YIOrRd',
support=None,
encoder=None,
is_fitted="auto',
force_model=False,
show=True, colorbar=True,
fontsize=None, **kwargs)

Classification Report

Displays precision, recall, F1, and support scores for the model. Integrates numerical scores as well as color-
coded heatmap.

Parameters

estimator
[estimator] A scikit-learn estimator that should be a classifier. If the model is not a classifier,

an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted,
unless otherwise specified by is_fitted.

X train
[ndarray or DataFrame of shape n x m] A feature array of n instances with m features the
model is trained on. Used to fit the visualizer and also to score the visualizer if test splits are
not directly specified.

y_train
[ndarray or Series of length n] An array or series of target or class values. Used to fit the
visualizer and also to score the visualizer if test splits are not specified.

X_test
[ndarray or DataFrame of shape n x m, default: None] An optional feature array of n instances
with m features that the model is scored on if specified, using X_train as the training data.

y_test

[ndarray or Series of length n, default: None] An optional array or series of target or class
values that serve as actual labels for X_test for scoring purposes.

162 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If not specified the current
axes will be used (or generated if required).

classes
[list of str, defult: None] The class labels to use for the legend ordered by the index of the
sorted classes discovered in the £it () method. Specifying classes in this manner is used to
change the class names to a more specific format or to label encoded integer classes. Some
visualizers may also use this field to filter the visualization for specific classes. For more
advanced usage specify an encoder rather than class labels.

cmap
[string, default: 'Y10rRd'] Specify a colormap to define the heatmap of the predicted class
against the actual class in the classification report.

support: {True, False, None, ‘percent’, ‘count’}, default: None
Specify if support will be displayed. It can be further defined by whether support should be
reported as a raw count or percentage.

encoder
[dict or LabelEncoder, default: None] A mapping of classes to human readable labels. Often
there is a mismatch between desired class labels and those contained in the target variable
passed to £fit () or score (). The encoder disambiguates this mismatch ensuring that classes
are labeled correctly in the visualization.

is_fitted
[bool or str, default="auto’] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If ‘auto’ (default), a helper method will check if the estimator is fitted before fitting it again.

force_model
[bool, default: False] Do not check to ensure that the underlying estimator is a classifier. This
will prevent an exception when the visualizer is initialized but may result in unexpected or
unintended behavior.

show: bool, default: True
If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize ()

colorbar
[bool, default: True] Specify if the color bar should be present

fontsize
[int or None, default: None] Specify the font size of the x and y labels

kwargs
[dict] Keyword arguments passed to the visualizer base classes.

Returns
viz
[ClassificationReport] Returns the fitted, finalized visualizer

. Visualizers and API 163

Yellowbrick Documentation, Release v1.5

Confusion Matrix

The ConfusionMatrix visualizer is a ScoreVisualizer that takes a fitted scikit-learn classifier and a set of test X
and y values and returns a report showing how each of the test values predicted classes compare to their actual classes.
Data scientists use confusion matrices to understand which classes are most easily confused. These provide similar
information as what is available in a ClassificationReport, but rather than top-level scores, they provide deeper
insight into the classification of individual data points.

Below are a few examples of using the ConfusionMatrix visualizer; more information can be found by looking at the
scikit-learn documentation on confusion matrices.

Visualizer ConfusionMatrix
Quick Method | confusion_matrix()
Models Classification
Workflow Model evaluation

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split as tts
from sklearn.linear_model import LogisticRegression

from yellowbrick.classifier import ConfusionMatrix

We'll use the handwritten digits data set from scikit-learn.

Each feature of this dataset is an 8x8 pixel image of a handwritten number.
Digits.data converts these 64 pixels into a single array of features
digits = load_digits(Q)

X = digits.data

y = digits.target

X_train, X_test, y_train, y_test = tts(X, y, test_size =0.2, random_state=11)
model = LogisticRegression(multi_class="auto", solver="liblinear")

The ConfusionMatrix visualizer taxes a model
cm = ConfusionMatrix(model, classes=[0,1,2,3,4,5,6,7,8,9])

Fit fits the passed model. This is unnecessary if you pass the visualizer a pre-fitted.
—model
cm. fit(X_train, y_train)

To create the ConfusionMatrix, we need some test data. Score runs predict() on the data
and then creates the confusion_matrix from scikit-learn.
cm.score(X_test, y_test)

How did we do?
cm. show()

164 Chapter 8. Table of Contents

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

Yellowbrick Documentation, Release v1.5

LogisticRegression Confusion Matrix

True Class

o — (V] (40} <t Lo [{e] M~ 0] (o))
Predicted Class

Plotting with Class Names

Class names can be added to a ConfusionMatrix plot using the label_encoder argument. The label_encoder
can be a sklearn.preprocessing.LabelEncoder (or anything with an inverse_transform method that performs the
mapping), or a dict with the encoding-to-string mapping as in the example below:

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split as tts

from yellowbrick.classifier import ConfusionMatrix

iris = load_iris()

X = iris.data

y = iris.target

classes = iris.target_names

X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2)

model = LogisticRegression(multi_class="auto", solver="liblinear")
iris_cm = ConfusionMatrix(

model, classes=classes,
label_encoder={0: 'setosa', 1: 'versicolor', 2: 'virginica'}

(continues on next page)

8.3. Visualizers and API 165

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html

Yellowbrick Documentation, Release v1.5

(continued from previous page)

iris_cm.fit(X_train, y_train)
iris_cm.score(X_test, y_test)
iris_cm.show()

LogisticRegression Confusion Matrix

setosa

versicolor

True Class

virginica

setosa
versicolor
virginica

Predicted Class

Quick Method

The same functionality above can be achieved with the associated quick method confusion_matrix. This method
will build the ConfusionMatrix object with the associated arguments, fit it, then (optionally) immediately show it.
In the below example we can see how a LogisticRegression struggles to effectively model the credit dataset (hint:
check out Rank2D to examine for multicollinearity!).

from yellowbrick.datasets import load_credit

from yellowbrick.classifier import confusion_matrix

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split as tts

#Load the classification dataset
X, v = load_credit()

#Create the train and test data

(continues on next page)

166 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

(continued from previous page)

X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2)

Instantiate the visualizer with the classification model
confusion_matrix(
LogisticRegression(),
X_train, y_train, X_test, y_test,
classes=['not_defaulted', 'defaulted']
)
plt.tight_layout()

LogisticRegression Confusion Matrix

not_defaulted

True Class

defaulted 1355

defaulted

not_defaulted

Predicted Class

API Reference

Visual confusion matrix for classifier scoring.

class yellowbrick.classifier.confusion_matrix.ConfusionMatrix (estimator, ax=None,
sample_weight=None,
percent=False, classes=None,
encoder=None, cmap="YIOrRd',
fontsize=None, is_fitted='auto’,
force_model=False, **kwargs)

Bases: ClassificationScoreVisualizer

Creates a heatmap visualization of the sklearn.metrics.confusion_matrix(). A confusion matrix shows each com-
bination of the true and predicted classes for a test data set.

8.3. Visualizers and API 167

Yellowbrick Documentation, Release v1.5

The default color map uses a yellow/orange/red color scale. The user can choose between displaying values as
the percent of true (cell value divided by sum of row) or as direct counts. If percent of true mode is selected,
100% accurate predictions are highlighted in green.

Requires a classification model.
Parameters

estimator
[estimator] A scikit-learn estimator that should be a classifier. If the model is not a classifier,
an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted,
unless otherwise specified by is_fitted.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If not specified the current
axes will be used (or generated if required).

sample_weight: array-like of shape = [n_samples], optional
Passed to confusion_matrix to weight the samples.

percent: bool, default: False
Determines whether or not the confusion_matrix is displayed as counts or as a percent of
true predictions. Note, if specifying a subset of classes, percent should be set to False or
inaccurate figures will be displayed.

classes
[list of str, defult: None] The class labels to use for the legend ordered by the index of the
sorted classes discovered in the £it () method. Specifying classes in this manner is used to
change the class names to a more specific format or to label encoded integer classes. Some
visualizers may also use this field to filter the visualization for specific classes. For more
advanced usage specify an encoder rather than class labels.

encoder
[dict or LabelEncoder, default: None] A mapping of classes to human readable labels. Often
there is a mismatch between desired class labels and those contained in the target variable
passed to £fit () or score (). The encoder disambiguates this mismatch ensuring that classes
are labeled correctly in the visualization.

cmap
[string, default: 'Y10rRd'] Specify a colormap to define the heatmap of the predicted class
against the actual class in the confusion matrix.

fontsize
[int, default: None] Specify the fontsize of the text in the grid and labels to make the matrix
a bit easier to read. Uses rcParams font size by default.

is_fitted
[bool or str, default="auto] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If “auto” (default), a helper method will check if the estimator is fitted before fitting it again.

force_model
[bool, default: False] Do not check to ensure that the underlying estimator is a classifier. This
will prevent an exception when the visualizer is initialized but may result in unexpected or
unintended behavior.

kwargs
[dict] Keyword arguments passed to the visualizer base classes.

168 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Examples

>>> from yellowbrick.classifier import ConfusionMatrix
>>> from sklearn.linear_model import LogisticRegression
>>> viz = ConfusionMatrix(LogisticRegression())

>>> viz.fit(X_train, y_train)

>>> viz.score(X_test, y_test)

>>> viz.show()

Attributes

classes_
[ndarray of shape (n_classes,)] The class labels observed while fitting.

class_counts_
[ndarray of shape (n_classes,)] Number of samples encountered for each class supporting
the confusion matrix.

score_
[float] An evaluation metric of the classifier on test data produced when score () is called.
This metric is between 0 and 1 — higher scores are generally better. For classifiers, this score
is usually accuracy, but ensure you check the underlying model for more details about the
metric.

confusion_matrix_

[array, shape = [n_classes, n_classes]] The numeric scores of the confusion matrix.

draw()
Renders the classification report; must be called after score.

finalize(**kwargs)

Finalize executes any subclass-specific axes finalization steps.
Parameters

kwargs: dict
generic keyword arguments.

Notes
The user calls show and show calls finalize. Developers should implement visualizer-specific finalization
methods like setting titles or axes labels, etc.

score(X, y)
Draws a confusion matrix based on the test data supplied by comparing predictions on instances X with the
true values specified by the target vector y.

Parameters

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features

y
[ndarray or Series of length n] An array or series of target or class values

Returns

8.3. Visualizers and API 169

Yellowbrick Documentation, Release v1.5

score_
[float] Global accuracy score

show (outpath=None, **kwargs)

Makes the magic happen and a visualizer appear! You can pass in a path to save the figure to disk with
various backends, or you can call it with no arguments to show the figure either in a notebook or in a GUI
window that pops up on screen.

Parameters

outpath: string, default: None
path or None. Save figure to disk or if None show in window

clear_figure: boolean, default: False
When True, this flag clears the figure after saving to file or showing on screen. This is
useful when making consecutive plots.

kwargs: dict
generic keyword arguments.

Notes

Developers of visualizers don’t usually override show, as it is primarily called by the user to render the
visualization.

yellowbrick.classifier.confusion_matrix.confusion_matrix(estimator, X_train, y_train, X_test=None,
y_test=None, ax=None,
sample_weight=None, percent=False,
classes=None, encoder=None,
cmap="YIOrRd', fontsize=None,
is_fitted="auto', force_model=False,
show=True, **kwargs)

Confusion Matrix

Creates a heatmap visualization of the sklearn.metrics.confusion_matrix(). A confusion matrix shows each com-
bination of the true and predicted classes for a test data set.

The default color map uses a yellow/orange/red color scale. The user can choose between displaying values as
the percent of true (cell value divided by sum of row) or as direct counts. If percent of true mode is selected,
100% accurate predictions are highlighted in green.

Requires a classification model.
Parameters

estimator
[estimator] A scikit-learn estimator that should be a classifier. If the model is not a classifier,
an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted,
unless otherwise specified by is_fitted.

X_train
[array-like, 2D] The table of instance data or independent variables that describe the outcome

of the dependent variable, y. Used to fit the visualizer and also to score the visualizer if test
splits are not specified.

y_train
[array-like, 2D] The vector of target data or the dependent variable predicted by X. Used to
fit the visualizer and also to score the visualizer if test splits are not specified.

170 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

X_test: array-like, 2D, default: None
The table of instance data or independent variables that describe the outcome of the depen-
dent variable, y. Used to score the visualizer if specified.

y_test: array-like, 1D, default: None
The vector of target data or the dependent variable predicted by X. Used to score the visual-
izer if specified.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If not specified the current
axes will be used (or generated if required).

sample_weight: array-like of shape = [n_samples], optional
Passed to confusion_matrix to weight the samples.

percent: bool, default: False
Determines whether or not the confusion_matrix is displayed as counts or as a percent of
true predictions. Note, if specifying a subset of classes, percent should be set to False or
inaccurate figures will be displayed.

classes
[list of str, defult: None] The class labels to use for the legend ordered by the index of the
sorted classes discovered in the £it () method. Specifying classes in this manner is used to
change the class names to a more specific format or to label encoded integer classes. Some
visualizers may also use this field to filter the visualization for specific classes. For more
advanced usage specify an encoder rather than class labels.

encoder
[dict or LabelEncoder, default: None] A mapping of classes to human readable labels. Often
there is a mismatch between desired class labels and those contained in the target variable
passed to £fit () or score (). The encoder disambiguates this mismatch ensuring that classes
are labeled correctly in the visualization.

cmap
[string, default: 'Y10rRd'] Specify a colormap to define the heatmap of the predicted class
against the actual class in the confusion matrix.

fontsize
[int, default: None] Specify the fontsize of the text in the grid and labels to make the matrix
a bit easier to read. Uses rcParams font size by default.

is_fitted
[bool or str, default="auto”’] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If “auto” (default), a helper method will check if the estimator is fitted before fitting it again.

force_model
[bool, default: False] Do not check to ensure that the underlying estimator is a classifier. This
will prevent an exception when the visualizer is initialized but may result in unexpected or
unintended behavior.

show: bool, default: True
If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize()

kwargs
[dict] Keyword arguments passed to the visualizer base classes.

Returns

. Visualizers and API 171

Yellowbrick Documentation, Release v1.5

viz
[ConfusionMatrix] Returns the fitted, finalized visualizer

ROCAUC

A ROCAUC (Receiver Operating Characteristic/Area Under the Curve) plot allows the user to visualize the tradeoff
between the classifier’s sensitivity and specificity.

The Receiver Operating Characteristic (ROC) is a measure of a classifier’s predictive quality that compares and visual-
izes the tradeoff between the model’s sensitivity and specificity. When plotted, a ROC curve displays the true positive
rate on the Y axis and the false positive rate on the X axis on both a global average and per-class basis. The ideal point
is therefore the top-left corner of the plot: false positives are zero and true positives are one.

This leads to another metric, area under the curve (AUC), which is a computation of the relationship between false
positives and true positives. The higher the AUC, the better the model generally is. However, it is also important to
inspect the “steepness” of the curve, as this describes the maximization of the true positive rate while minimizing the
false positive rate.

Visualizer ROCAUC

Quick Method | roc_auc()
Models Classification
Workflow Model evaluation

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

from yellowbrick.classifier import ROCAUC
from yellowbrick.datasets import load_spam

Load the classification dataset
X, y = load_spam()

Create the training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

Instantiate the visualizer with the classification model
model = LogisticRegression(multi_class="auto", solver="liblinear")

visualizer = ROCAUC(model, classes=["not_spam", "is_spam"])
visualizer.fit(X_train, y_train) # Fit the training data to the visualizer
visualizer.score(X_test, y_test) # Evaluate the model on the test data
visualizer.show() # Finalize and show the figure

Warning: Versions of Yellowbrick =< v0.8 had a bug that triggered an IndexError when attempting binary
classification using a Scikit-learn-style estimator with only a decision_function. This has been fixed as of v0.9,
where the micro, macro, and per-class parameters of ROCAUC are set to False for such classifiers.

172 Chapter 8. Table of Contents

https://github.com/DistrictDataLabs/yellowbrick/blob/develop/examples/rebeccabilbro/rocauc_bug_research.ipynb

Yellowbrick Documentation, Release v1.5

ROC Curves for LogisticRegression

1.0
- AH -
s
2=
ol
08
’
f
9
©
g o6
(0]
2
G
@]
a -
[.-
0.2
0.0 =
0.0 0.2 0.4

—— ROC of class not_spam, AUC = 0.96
ROC of class is_spam, AUC = 0.96
micro-average ROC curve, AUC = 0.96
macro-average ROC curve, AUC = 0.96

0.6 0.8 1.0

False Positive Rate

Multi-class ROCAUC Curves

Yellowbrick’s ROCAUC Visualizer does allow for plotting multiclass classification curves. ROC curves are typically
used in binary classification, and in fact the Scikit-Learn roc_curve metric is only able to perform metrics for binary
classifiers. Yellowbrick addresses this by binarizing the output (per-class) or to use one-vs-rest (micro score) or one-
vs-all (macro score) strategies of classification.

from sklearn.linear_model import RidgeClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OrdinalEncoder, LabelEncoder

from yellowbrick.classifier import ROCAUC
from yellowbrick.datasets import load_game

#

X,

#
X

y

#

Load multi-class classification dataset
y = load_game()

Encode the non-numeric columns
= OrdinalEncoder().fit_transform(X)
LabelEncoder () .fit_transform(y)

Create the train and test data

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

(continues on next page)

8.3. Visualizers and API

173

Yellowbrick Documentation, Release v1.5

(continued from previous page)

Instaniate the classification model and visualizer
model = RidgeClassifier()

visualizer = ROCAUC(model, classes=["win", "loss", "draw"])
visualizer.fit(X_train, y_train) # Fit the training data to the visualizer
visualizer.score(X_test, y_test) # Evaluate the model on the test data
visualizer.show() # Finalize and render the figure

ROC Curves for RidgeClassifier

1.0

0.8
2
©
x 06
()
=
k%)
o
o
$ 04
|_

! . .
! —— ROC of class win, AUC = 0.62
02 ROC of class loss, AUC = 0.62
—— ROC of class draw, AUC = 0.63
’ ==+ micro-average ROC curve, AUC = 0.81
==+ macro-average ROC curve, AUC = 0.62
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Warning: The target y must be numeric for this figure to work, or update to the latest version of sklearn.

By default with multi-class ROCAUC visualizations, a curve for each class is plotted, in addition to the micro- and
macro-average curves for each class. This enables the user to inspect the tradeoff between sensitivity and specificity on
a per-class basis. Note that for multi-class ROCAUC, at least one of the micro, macro, or per_class parameters must
be set to True (by default, all are set to True).

174 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Quick Method

The same functionality above can be achieved with the associated quick method roc_auc. This method will build the
ROCAUC object with the associated arguments, fit it, then (optionally) immediately show it

from yellowbrick.classifier.rocauc import roc_auc
from yellowbrick.datasets import load_credit

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

#Load the classification dataset
X, v = load_credit()

#Create the train and test data
X_train, X_test, y_train, y_test = train_test_split(X,y)

Instantiate the visualizer with the classification model

model = LogisticRegression()

roc_auc(model, X_train, y_train, X_test=X_test, y_test=y_test, classes=['not_defaulted',
—'defaulted'])

ROC Curves for LogisticRegression
1.0

0.8

True Positive Rate

—— ROC of class not_defaulted, AUC = 0.65
ROC of class defaulted, AUC = 0.65
micro-average ROC curve, AUC = 0.83
macro-average ROC curve, AUC = 0.65

0.4 0.6 0.8 1.0
False Positive Rate

8.3. Visualizers and API 175

Yellowbrick Documentation, Release v1.5

API Reference

Implements visual ROC/AUC curves for classification evaluation.

class yellowbrick.classifier.rocauc.ROCAUC(estimator, ax=None, micro=True, macro=True,

per_class=True, binary=False, classes=None,
encoder=None, is_fitted='"auto’, force_model=False,
**kwargs)

Bases: ClassificationScoreVisualizer

Receiver Operating Characteristic (ROC) curves are a measure of a classifier’s predictive quality that compares
and visualizes the tradeoff between the models’ sensitivity and specificity. The ROC curve displays the true
positive rate on the Y axis and the false positive rate on the X axis on both a global average and per-class basis.
The ideal point is therefore the top-left corner of the plot: false positives are zero and true positives are one.

This leads to another metric, area under the curve (AUC), a computation of the relationship between false posi-
tives and true positives. The higher the AUC, the better the model generally is. However, it is also important to
inspect the “steepness” of the curve, as this describes the maximization of the true positive rate while minimizing
the false positive rate. Generalizing “steepness” usually leads to discussions about convexity, which we do not
get into here.

Parameters

estimator
[estimator] A scikit-learn estimator that should be a classifier. If the model is not a classifier,
an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted,
unless otherwise specified by is_fitted.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If not specified the current
axes will be used (or generated if required).

micro
[bool, default: True] Plot the micro-averages ROC curve, computed from the sum of all true
positives and false positives across all classes. Micro is not defined for binary classification
problems with estimators with only a decision_function method.

macro
[bool, default: True] Plot the macro-averages ROC curve, which simply takes the average
of curves across all classes. Macro is not defined for binary classification problems with
estimators with only a decision_function method.

per_class
[bool, default: True] Plot the ROC curves for each individual class. This should be set to false
if only the macro or micro average curves are required. For true binary classifiers, setting
per_class=False will plot the positive class ROC curve, and per_class=True will use 1-P (1)
to compute the curve of the negative class if only a decision_function method exists on the
estimator.

binary
[bool, default: False] This argument quickly resets the visualizer for true binary classification
by updating the micro, macro, and per_class arguments to False (do not use in conjunction
with those other arguments). Note that this is not a true hyperparameter to the visualizer, it
just collects other parameters into a single, simpler argument.

classes
[list of str, defult: None] The class labels to use for the legend ordered by the index of the
sorted classes discovered in the £it () method. Specifying classes in this manner is used to
change the class names to a more specific format or to label encoded integer classes. Some

176

Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

visualizers may also use this field to filter the visualization for specific classes. For more
advanced usage specify an encoder rather than class labels.

encoder
[dict or LabelEncoder, default: None] A mapping of classes to human readable labels. Often
there is a mismatch between desired class labels and those contained in the target variable
passed to £fit () or score (). The encoder disambiguates this mismatch ensuring that classes
are labeled correctly in the visualization.

is_fitted
[bool or str, default="auto] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If “auto” (default), a helper method will check if the estimator is fitted before fitting it again.

force_model
[bool, default: False] Do not check to ensure that the underlying estimator is a classifier. This
will prevent an exception when the visualizer is initialized but may result in unexpected or
unintended behavior.

kwargs
[dict] Keyword arguments passed to the visualizer base classes.

Notes

ROC curves are typically used in binary classification, and in fact the Scikit-Learn roc_curve metric is only
able to perform metrics for binary classifiers. As aresult it is necessary to binarize the output or to use one-vs-rest
or one-vs-all strategies of classification. The visualizer does its best to handle multiple situations, but exceptions
can arise from unexpected models or outputs.

Another important point is the relationship of class labels specified on initialization to those drawn on the curves.
The classes are not used to constrain ordering or filter curves; the ROC computation happens on the unique
values specified in the target vector to the score method. To ensure the best quality visualization, do not use a
LabelEncoder for this and do not pass in class labels.

See also:

http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

Examples

>>> from yellowbrick.classifier import ROCAUC

>>> from sklearn.linear_model import LogisticRegression

>>> from sklearn.model_selection import train_test_split

>>> data = load_data("occupancy")

>>> features = ["temp", "relative humidity", "light", "C02", "humidity"]
>>> X_train, X_test, y_train, y_test = train_test_split(X, y)

>>> 0z = ROCAUC(LogisticRegression())

>>> oz.fit(X_train, y_train)

>>> oz.score(X_test, y_test)

>>> 0z.show()

Attributes

classes_
[ndarray of shape (n_classes,)] The class labels observed while fitting.

8.3. Visualizers and API 177

http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

Yellowbrick Documentation, Release v1.5

class_count_
[ndarray of shape (n_classes,)] Number of samples encountered for each class during fitting.

score_
[float] An evaluation metric of the classifier on test data produced when score () is called.
This metric is between 0 and 1 — higher scores are generally better. For classifiers, this score
is usually accuracy, but if micro or macro is specified this returns an F1 score.

target_type_
[string] Specifies if the detected classification target was binary or multiclass.

draw()
Renders ROC-AUC plot. Called internally by score, possibly more than once
Returns
ax

[the axis with the plotted figure]

finalize(**kwargs)
Sets a title and axis labels of the figures and ensures the axis limits are scaled between the valid ROCAUC
score values.

Parameters

kwargs: generic keyword arguments.

Notes

Generally this method is called from show and not directly by the user.

fit (X, y=None)

Fit the classification model.

score (X, y=None)

Generates the predicted target values using the Scikit-Learn estimator.
Parameters

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features

y
[ndarray or Series of length n] An array or series of target or class values

Returns

score_
[float] Global accuracy unless micro or macro scores are requested.

yellowbrick.classifier.rocauc.roc_auc(estimator, X_train, y_train, X_test=None, y_test=None, ax=None,
micro=True, macro=True, per_class=True, binary=False,
classes=None, encoder=None, is_fitted='auto’,
force_model=False, show=True, **kwargs)

ROCAUC

Receiver Operating Characteristic (ROC) curves are a measure of a classifier’s predictive quality that compares
and visualizes the tradeoff between the models’ sensitivity and specificity. The ROC curve displays the true
positive rate on the Y axis and the false positive rate on the X axis on both a global average and per-class basis.
The ideal point is therefore the top-left corner of the plot: false positives are zero and true positives are one.

178 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

This leads to another metric, area under the curve (AUC), a computation of the relationship between false posi-
tives and true positives. The higher the AUC, the better the model generally is. However, it is also important to
inspect the “steepness” of the curve, as this describes the maximization of the true positive rate while minimizing
the false positive rate. Generalizing “steepness” usually leads to discussions about convexity, which we do not
get into here.

Parameters

estimator
[estimator] A scikit-learn estimator that should be a classifier. If the model is not a classifier,
an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted,
unless otherwise specified by is_fitted.

X_train
[array-like, 2D] The table of instance data or independent variables that describe the outcome
of the dependent variable, y. Used to fit the visualizer and also to score the visualizer if test
splits are not specified.

y_train
[array-like, 2D] The vector of target data or the dependent variable predicted by X. Used to
fit the visualizer and also to score the visualizer if test splits not specified.

X_test: array-like, 2D, default: None
The table of instance data or independent variables that describe the outcome of the depen-
dent variable, y. Used to score the visualizer if specified.

y_test: array-like, 1D, default: None
The vector of target data or the dependent variable predicted by X. Used to score the visual-
izer if specified.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If not specified the current
axes will be used (or generated if required).

test_size
[float, default=0.2] The percentage of the data to reserve as test data.

random_state
[int or None, default=None] The value to seed the random number generator for shuffling
data.

micro
[bool, default: True] Plot the micro-averages ROC curve, computed from the sum of all true
positives and false positives across all classes. Micro is not defined for binary classification
problems with estimators with only a decision_function method.

macro
[bool, default: True] Plot the macro-averages ROC curve, which simply takes the average
of curves across all classes. Macro is not defined for binary classification problems with
estimators with only a decision_function method.

per_class
[bool, default: True] Plot the ROC curves for each individual class. This should be set to false
if only the macro or micro average curves are required. For true binary classifiers, setting
per_class=False will plot the positive class ROC curve, and per_class=True will use 1-P(1)
to compute the curve of the negative class if only a decision_function method exists on the
estimator.

binary
[bool, default: False] This argument quickly resets the visualizer for true binary classification

8.3. Visualizers and API 179

Yellowbrick Documentation, Release v1.5

by updating the micro, macro, and per_class arguments to False (do not use in conjunction
with those other arguments). Note that this is not a true hyperparameter to the visualizer, it
just collects other parameters into a single, simpler argument.

classes
[list of str, defult: None] The class labels to use for the legend ordered by the index of the
sorted classes discovered in the £it () method. Specifying classes in this manner is used to
change the class names to a more specific format or to label encoded integer classes. Some
visualizers may also use this field to filter the visualization for specific classes. For more
advanced usage specify an encoder rather than class labels.

encoder
[dict or LabelEncoder, default: None] A mapping of classes to human readable labels. Often
there is a mismatch between desired class labels and those contained in the target variable
passedto £fit () or score(). The encoder disambiguates this mismatch ensuring that classes
are labeled correctly in the visualization.

is_fitted
[bool or str, default="auto”’] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If “auto” (default), a helper method will check if the estimator is fitted before fitting it again.

force_model
[bool, default: False] Do not check to ensure that the underlying estimator is a classifier. This
will prevent an exception when the visualizer is initialized but may result in unexpected or
unintended behavior.

show: bool, default: True
If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize()

kwargs
[dict] Keyword arguments passed to the visualizer base classes.

Returns

viz
[ROCAUC] Returns the fitted, finalized visualizer object

ROC curves are typically used in binary classification, and in fact the Scikit-Learn roc_curve metric is only
able to perform metrics for binary classifiers. As aresult it is necessary to binarize the output or to use one-vs-rest
or one-vs-all strategies of classification. The visualizer does its best to handle multiple situations, but exceptions
can arise from unexpected models or outputs.

Another important point is the relationship of class labels specified on initialization to those drawn on the curves.
The classes are not used to constrain ordering or filter curves; the ROC computation happens on the unique
values specified in the target vector to the score method. To ensure the best quality visualization, do not use a
LabelEncoder for this and do not pass in class labels.

https://bit.ly/2IORWO2

180

Chapter 8. Table of Contents

https://bit.ly/2IORWO2

Yellowbrick Documentation, Release v1.5

Examples

>>> from yellowbrick.classifier import ROCAUC

>>> from sklearn.linear_model import LogisticRegression

>>> data = load_data("occupancy™)

>>> features = ["temp", "relative humidity", "light", "C02", "humidity"]
>>> X = data[features].values

>>> y = data.occupancy.values

>>> roc_auc(LogisticRegression(), X, y)

Precision-Recall Curves

The PrecisionRecallCurve shows the tradeoff between a classifier’s precision, a measure of result relevancy, and
recall, a measure of completeness. For each class, precision is defined as the ratio of true positives to the sum of true
and false positives, and recall is the ratio of true positives to the sum of true positives and false negatives.

Visualizer PrecisionRecallCurve
Quick Method | precision_recall_curve()
Models Classification

Workflow Model evaluation

precision
Precision can be seen as a measure of a classifier’s exactness. For each class, it is defined as the ratio of true
positives to the sum of true and false positives. Said another way, “for all instances classified positive, what
percent was correct?”

recall
Recall is a measure of the classifier’s completeness; the ability of a classifier to correctly find all positive instances.
For each class, it is defined as the ratio of true positives to the sum of true positives and false negatives. Said
another way, “for all instances that were actually positive, what percent was classified correctly?”

average precision
Average precision expresses the precision-recall curve in a single number, which represents the area under the
curve. It is computed as the weighted average of precision achieved at each threshold, where the weights are the
differences in recall from the previous thresholds.

Both precision and recall vary between 0 and 1, and in our efforts to select and tune machine learning models, our goal
is often to try to maximize both precision and recall, i.e. a model that returns accurate results for the majority of classes
it selects. This would result in a PrecisionRecallCurve visualization with a high area under the curve.

Binary Classification

The base case for precision-recall curves is the binary classification case, and this case is also the most visually inter-
pretable. In the figure below we can see the precision plotted on the y-axis against the recall on the x-axis. The larger
the filled in area, the stronger the classifier. The red line annotates the average precision.

import matplotlib.pyplot as plt

from yellowbrick.datasets import load_spam

from sklearn.linear_model import RidgeClassifier

from yellowbrick.classifier import PrecisionRecallCurve
from sklearn.model_selection import train_test_split as tts

(continues on next page)

8.3. Visualizers and API 181

Yellowbrick Documentation, Release v1.5

(continued from previous page)

Load the dataset and split into train/test splits
X, y = load_spam()

X_train, X_test, y_train, y_test = tts(
X, y, test_size=0.2, shuffle=True, random_state=0

Create the visualizer, fit, score, and show it

viz = PrecisionRecallCurve(RidgeClassifier(random_state=0))
viz.fit(X_train, y_train)

viz.score(X_test, y_test)

viz.show()

Precision-Recall Curve for RidgeClassifier

c
o
)
8]
g
o
0.4
0.2
—— Binary PR curve
==+ Avg. precision=0.94
0.0
0.0 0.2 0.4 0.6 0.8 1.0
Recall

One way to use PrecisionRecallCurves is for model comparison, by examining which have the highest average
precision. For instance, the below visualization suggest that a LogisticRegression model might be better than a
RidgeClassifier for this particular dataset:

Precision-recall curves are one of the methods used to evaluate a classifier’s quality, particularly when classes are very
imbalanced. The below plot suggests that our classifier improves when we increase the weight of the “spam” case
(which is 1), and decrease the weight for the “not spam” case (which is 0).

from yellowbrick.datasets import load_spam
from sklearn.linear_model import LogisticRegression

(continues on next page)

182 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Precision-Recall Curve for RidgeClassifier Precision-Recall Curve for LogisticRegression
1.0 1.0

c c
§e) RS
82} 2
[&] O
g g
804 Q04
0.2 0.2
—— Binary PR curve -~ Binary PR curve
==+ Avg. precision=0.94 ===+ Avg. precision=0.95
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall

(continued from previous page)

from yellowbrick.classifier import PrecisionRecallCurve
from sklearn.model_selection import train_test_split as tts

Load the dataset and split into train/test splits
X, y = load_spam()

X_train, X_test, y_train, y_test = tts(
X, y, test_size=0.2, shuffle=True, random_state=0

Specify class weights to shift the threshold towards spam classification
weights = {0:0.2, 1:0.8}

Create the visualizer, fit, score, and show it

viz = PrecisionRecallCurve(
LogisticRegression(class_weight=weights, random_state=0)

)

viz.fit(X_train, y_train)

viz.score(X_test, y_test)

viz.show()

8.3. Visualizers and API 183

Yellowbrick Documentation, Release v1.5

Precision-Recall Curve for LogisticRegression

c
o
@
(8]
g
o
0.4
0.2
—— Binary PR curve
==+ Avg. precision=0.96
0.0
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Multi-Label Classification

To support multi-label classification, the estimator is wrapped in a OneVsRestClassifier to produce binary comparisons
for each class (e.g. the positive case is the class and the negative case is any other class). The precision-recall curve can
then be computed as the micro-average of the precision and recall for all classes (by setting micro=True), or individual
curves can be plotted for each class (by setting per_class=True):

from sklearn.ensemble import RandomForestClassifier

from sklearn.preprocessing import LabelEncoder, OrdinalEncoder
from sklearn.model_selection import train_test_split as tts
from yellowbrick.classifier import PrecisionRecallCurve

from yellowbrick.datasets import load_game

Load dataset and encode categorical variables
X, v = load_game()

X = OrdinalEncoder().fit_transform(X)

y = LabelEncoder().fit_transform(y)

X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2, shuffle=True)

Create the visualizer, fit, score, and show it

viz = PrecisionRecallCurve(
RandomForestClassifier(n_estimators=10),
per_class=True,

(continues on next page)

184 Chapter 8. Table of Contents

http://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html

Yellowbrick Documentation, Release v1.5

(continued from previous page)

cmap="Setl"
)
viz.fit(X_train, y_train)
viz.score(X_test, y_test)
viz.show()

Precision-Recall Curve for RandomForestClassifier

1.0
0.8
0.6
c
o
0
(@]
g
o
0.4
0.2 —— PRfor class 0 (area=0.22)
PR for class 1 (area=0.74)
PR for class 2 (area=0.93)
==+ Avg. precision=0.86
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Recall

A more complex Precision-Recall curve can be computed, however, displaying the each curve individually, along with
F1-score ISO curves (e.g. that show the relationship between precision and recall for various F1 scores).

from sklearn.naive_bayes import MultinomialNB

from sklearn.preprocessing import LabelEncoder, OrdinalEncoder
from sklearn.model_selection import train_test_split as tts
from yellowbrick.classifier import PrecisionRecallCurve

from yellowbrick.datasets import load_game

Load dataset and encode categorical variables
X, v = load_game()
X = OrdinalEncoder().fit_transform(X)

Encode the target (we'll use the encoder to retrieve the class labels)
encoder = LabelEncoder()

y = encoder. fit_transform(y)

X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2, shuffle=True)

(continues on next page)

8.3. Visualizers and API 185

Yellowbrick Documentation, Release v1.5

(continued from previous page)

Create the visualizer, fit, score, and show it
viz = PrecisionRecallCurve(

MultinomialNB(),
classes=encoder.classes_,
colors=["purple", "cyan", "blue"],

iso_f1_curves=True,
per_class=True,
micro=False
)
viz.fit(X_train, y_train)
viz.score(X_test, y_test)
viz.show()

Precision-Recall Curve for MultinomialNB

1.0
0.8
f1=0.8
\
0.6
c
o
@
§ f1=0.6
o
0.4
f]_ =04
02 | —— PR for class draw (area=0.13)
PR for class loss (area=0.30) f1=0.2
—— PR for class win (area=0.72)
==+ Avg. precision=0.63
0.0
0.0 0.2 0.4 0.6 0.8 1.0
Recall
See also:

Scikit-Learn: Model Selection with Precision Recall Curves

186

Chapter 8. Table of Contents

http://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html

Yellowbrick Documentation, Release v1.5

Quick Method

Similar functionality as above can be achieved in one line using the associated quick method,
precision_recall_curve. This method will instantiate and fit a PrecisionRecallCurve visualizer on the
training data, then will score it on the optionally provided test data (or the training data if it is not provided).

from sklearn.naive_bayes import BernoulliNB

from sklearn.model_selection import train_test_split as tts
from yellowbrick.classifier import precision_recall_curve
from yellowbrick.datasets import load_spam

Load the dataset and split into train/test splits
X, y = load_spam()

X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2, shuffle=True)

Create the visualizer, fit, score, and show it
viz = precision_recall_curve(BernoulliNB(), X_train, y_train, X_test, y_test)

Precision-Recall Curve for BernoulliNB

c
0
0
(6]
g
o
0.4
0.2
—— Binary PR curve
==+ Avg. precision=0.92
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Recall

8.3. Visualizers and API 187

Yellowbrick Documentation, Release v1.5

API Reference

Implements Precision-Recall curves for classification models.

class yellowbrick.classifier.prcurve.PrecisionRecallCurve (estimator, ax=None, classes=None,
colors=None, cmap=None,
encoder=None, fill_area=True,
ap_score=True, micro=True,
iso_fl_curves=False,
iso_fl_values=(0.2, 0.4, 0.6, 0.8),
per_class=False, fill_opacity=0.2,
line_opacity=0.8, is_fitted='auto’,
Jorce_model=False, **kwargs)

Bases: ClassificationScoreVisualizer

Precision-Recall curves are a metric used to evaluate a classifier’s quality, particularly when classes are very
imbalanced. The precision-recall curve shows the tradeoff between precision, a measure of result relevancy, and
recall, a measure of completeness. For each class, precision is defined as the ratio of true positives to the sum of
true and false positives, and recall is the ratio of true positives to the sum of true positives and false negatives.

A large area under the curve represents both high recall and precision, the best case scenario for a classifier,
showing a model that returns accurate results for the majority of classes it selects.

Parameters

estimator
[estimator] A scikit-learn estimator that should be a classifier. If the model is not a classifier,
an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted,
unless otherwise specified by is_fitted.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If not specified the current

axes will be used (or generated if required).

classes
[list of str, default: None] The class labels to use for the legend ordered by the index of the
sorted classes discovered in the £it () method. Specifying classes in this manner is used to
change the class names to a more specific format or to label encoded integer classes. Some
visualizers may also use this field to filter the visualization for specific classes. For more
advanced usage specify an encoder rather than class labels.

colors
[list of strings, default: None] An optional list or tuple of colors to colorize the curves when
per_class=True. If per_class=False, this parameter will be ignored. If both colors
and cmap are provided, cmap will be ignored.

cmap
[string or Matplotlib colormap, default: None] An optional string or Matplotlib colormap to
colorize the curves when per_class=True. If per_class=False, this parameter will be
ignored. If both colors and cmap are provided, cmap will be ignored.

encoder
[dict or LabelEncoder, default: None] A mapping of classes to human readable labels. Often
there is a mismatch between desired class labels and those contained in the target variable
passed to fit () or score (). The encoder disambiguates this mismatch ensuring that classes
are labeled correctly in the visualization.

fill_area
[bool, default: True] Fill the area under the curve (or curves) with the curve color.

188 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

ap_score
[bool, default: True] Annotate the graph with the average precision score, a summary of the
plot that is computed as the weighted mean of precisions at each threshold, with the increase
in recall from the previous threshold used as the weight.

micro
[bool, default: True] If multi-class classification, draw the precision-recall curve for the
micro-average of all classes. In the multi-class case, either micro or per-class must be set
to True. Ignored in the binary case.

iso_f1_curves
[bool, default: False] Draw ISO F1-Curves on the plot to show how close the precision-recall
curves are to different F1 scores.

iso_f1_values
[tuple , default: (0.2, 0.4, 0.6, 0.8)] Values of f1 score for which to draw ISO F1-Curves

per_class
[bool, default: False] If multi-class classification, draw the precision-recall curve for each
class using a OneVsRestClassifier to compute the recall on a per-class basis. In the multi-
class case, either micro or per-class must be set to True. Ignored in the binary case.

fill_opacity
[float, default: 0.2] Specify the alpha or opacity of the fill area (0 being transparent, and 1.0
being completly opaque).

line_opacity
[float, default: 0.8] Specify the alpha or opacity of the lines (0 being transparent, and 1.0
being completly opaque).

is_fitted
[bool or str, default="auto] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If “auto” (default), a helper method will check if the estimator is fitted before fitting it again.

force_model
[bool, default: False] Do not check to ensure that the underlying estimator is a classifier. This
will prevent an exception when the visualizer is initialized but may result in unexpected or
unintended behavior.

kwargs
[dict] Keyword arguments passed to the visualizer base classes.

Notes

To support multi-label classification, the estimator is wrapped in a OneVsRestClassifier to produce binary
comparisons for each class (e.g. the positive case is the class and the negative case is any other class). The
precision-recall curve can then be computed as the micro-average of the precision and recall for all classes (by
setting micro=True), or individual curves can be plotted for each class (by setting per_class=True).

Note also that some parameters of this visualizer are learned on the score method, not only on fit.
See also:

https://bit.ly/2kOleCC

8.3. Visualizers and API 189

https://bit.ly/2kOIeCC

Yellowbrick Documentation, Release v1.5

Examples

>>> from yellowbrick.classifier import PrecisionRecallCurve
>>> from sklearn.model_selection import train_test_split

>>> from sklearn.svm import LinearSVC

>>> X_train, X_test, y_train, y_test = train_test_split(X, y)
>>> viz = PrecisionRecallCurve(LinearSVC())

>>> viz.fit(X_train, y_train)

>>> viz.score(X_test, y_test)

>>> viz.show()

Attributes

target_type_
[str] Either "binary" or "multiclass" depending on the type of target fit to the visual-
izer. If "multiclass" then the estimator is wrapped in a OneVsRestClassifier classification
strategy.

score_
[float or dict of floats] Average precision, a summary of the plot as a weighted mean of
precision at each threshold, weighted by the increase in recall from the previous threshold.
In the multiclass case, a mapping of class/metric to the average precision score.

precision_
[array or dict of array with shape=[n_thresholds + 1]] Precision values such that element i
is the precision of predictions with score >= thresholds[i] and the last element is 1. In the
multiclass case, a mapping of class/metric to precision array.

recall_
[array or dict of array with shape=[n_thresholds + 1]] Decreasing recall values such that
element i is the recall of predictions with score >= thresholds[i] and the last element is 0. In
the multiclass case, a mapping of class/metric to recall array.

classes_
[ndarray of shape (n_classes,)] The class labels observed while fitting.

class_count_
[ndarray of shape (n_classes,)] Number of samples encountered for each class during fitting.

draw()

Draws the precision-recall curves computed in score on the axes.
finalize(Q)

Finalize the figure by adding titles, labels, and limits.
fit (X, y=None)

Fit the classification model; if y is multi-class, then the estimator is adapted with a OneVsRestClassifier
strategy, otherwise the estimator is fit directly.

score(X, y)
Generates the Precision-Recall curve on the specified test data.

Returns

score_
[float] Average precision, a summary of the plot as a weighted mean of precision at each
threshold, weighted by the increase in recall from the previous threshold.

190 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

yellowbrick.classifier.prcurve.precision_recall_curve(estimator, X_train, y_train, X_test=None,
y_test=None, ax=None, classes=None,
colors=None, cmap=None, encoder=None,
fill_area=True, ap_score=True, micro=True,
iso_fl_curves=False, iso_fl_values=(0.2, 0.4,
0.6, 0.8), per_class=False, fill_opacity=0.2,
line_opacity=0.8, is_fitted="auto’,
force_model=False, show=True, **kwargs)

Precision-Recall Curve

Precision-Recall curves are a metric used to evaluate a classifier’s quality, particularly when classes are very
imbalanced. The precision-recall curve shows the tradeoff between precision, a measure of result relevancy, and
recall, a measure of completeness. For each class, precision is defined as the ratio of true positives to the sum of
true and false positives, and recall is the ratio of true positives to the sum of true positives and false negatives.

A large area under the curve represents both high recall and precision, the best case scenario for a classifier,
showing a model that returns accurate results for the majority of classes it selects.

Parameters

estimator
[estimator] A scikit-learn estimator that should be a classifier. If the model is not a classifier,
an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted,
unless otherwise specified by is_fitted.

X_train
[ndarray or DataFrame of shape n x m] A feature array of n instances with m features the
model is trained on. Used to fit the visualizer and also to score the visualizer if test splits are
not directly specified.

y_train
[ndarray or Series of length n] An array or series of target or class values. Used to fit the
visualizer and also to score the visualizer if test splits are not specified.

X_test
[ndarray or DataFrame of shape n x m, default: None] An optional feature array of n instances
with m features that the model is scored on if specified, using X_train as the training data.

y_test
[ndarray or Series of length n, default: None] An optional array or series of target or class
values that serve as actual labels for X_test for scoring purposes.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If not specified the current
axes will be used (or generated if required).

classes
[list of str, default: None] The class labels to use for the legend ordered by the index of the
sorted classes discovered in the £it () method. Specifying classes in this manner is used to
change the class names to a more specific format or to label encoded integer classes. Some
visualizers may also use this field to filter the visualization for specific classes. For more
advanced usage specify an encoder rather than class labels.

colors
[list of strings, default: None] An optional list or tuple of colors to colorize the curves when
per_class=True. If per_class=False, this parameter will be ignored. If both colors
and cmap are provided, cmap will be ignored.

cmap
[string or Matplotlib colormap, default: None] An optional string or Matplotlib colormap to

8.3. Visualizers and API 191

Yellowbrick Documentation, Release v1.5

colorize the curves when per_class=True. If per_class=False, this parameter will be
ignored. If both colors and cmap are provided, cmap will be ignored.

encoder
[dict or LabelEncoder, default: None] A mapping of classes to human readable labels. Often
there is a mismatch between desired class labels and those contained in the target variable
passed to £fit () or score (). The encoder disambiguates this mismatch ensuring that classes
are labeled correctly in the visualization.

fill_area
[bool, default: True] Fill the area under the curve (or curves) with the curve color.

ap_score
[bool, default: True] Annotate the graph with the average precision score, a summary of the
plot that is computed as the weighted mean of precisions at each threshold, with the increase
in recall from the previous threshold used as the weight.

micro
[bool, default: True] If multi-class classification, draw the precision-recall curve for the
micro-average of all classes. In the multi-class case, either micro or per-class must be set
to True. Ignored in the binary case.

iso_f1_curves
[bool, default: False] Draw ISO F1-Curves on the plot to show how close the precision-recall
curves are to different F1 scores.

iso_f1_values
[tuple , default: (0.2, 0.4, 0.6, 0.8)] Values of f1 score for which to draw ISO FI1-Curves

per_class
[bool, default: False] If multi-class classification, draw the precision-recall curve for each
class using a OneVsRestClassifier to compute the recall on a per-class basis. In the multi-
class case, either micro or per-class must be set to True. Ignored in the binary case.

fill_opacity
[float, default: 0.2] Specify the alpha or opacity of the fill area (0 being transparent, and 1.0
being completly opaque).

line_opacity
[float, default: 0.8] Specify the alpha or opacity of the lines (0 being transparent, and 1.0
being completly opaque).

is_fitted
[bool or str, default="auto] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If “auto” (default), a helper method will check if the estimator is fitted before fitting it again.

force_model
[bool, default: False] Do not check to ensure that the underlying estimator is a classifier. This
will prevent an exception when the visualizer is initialized but may result in unexpected or
unintended behavior.

show: bool, default: True
If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize ()

kwargs
[dict] Keyword arguments passed to the visualizer base classes.

Returns

192 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

viz
[PrecisionRecallCurve] Returns the visualizer that generates the curve visualization.

Class Prediction Error

The Yellowbrick ClassPredictionError plot is a twist on other and sometimes more familiar classification model
diagnostic tools like the Confusion Matrix and Classification Report. Like the Classification Report, this plot shows
the support (number of training samples) for each class in the fitted classification model as a stacked bar chart. Each
bar is segmented to show the proportion of predictions (including false negatives and false positives, like a Confusion
Matrix) for each class. You can use a ClassPredictionError to visualize which classes your classifier is having a
particularly difficult time with, and more importantly, what incorrect answers it is giving on a per-class basis. This can
often enable you to better understand strengths and weaknesses of different models and particular challenges unique to
your dataset.

The class prediction error chart provides a way to quickly understand how good your classifier is at predicting the right
classes.

Visualizer ClassPredictionError
Quick Method | class_prediction_error()
Models Classification

Workflow Model evaluation

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from yellowbrick.classifier import ClassPredictionError

Create classification dataset

X, y = make_classification(
n_samples=1000, n_classes=5, n_informative=3, n_clusters_per_class=1,
random_state=36,

classes = ["apple", "kiwi", "pear", "banana", "orange']

Perform 80/20 training/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20,
random_state=42)
Instantiate the classification model and visualizer
visualizer = ClassPredictionError(
RandomForestClassifier(random_state=42, n_estimators=10), classes=classes

Fit the training data to the visualizer
visualizer.fit(X_train, y_train)

Evaluate the model on the test data
visualizer.score(X_test, y_test)

Draw visualization
visualizer.show()

8.3. Visualizers and API 193

Yellowbrick Documentation, Release v1.5

Class Prediction Error for RandomForestClassifier

40
[}
(2]
K]
o
3 30 B apple
5 Kiwi
9] I pear
o
5 Il banana
o 20 orange
Q0
IS
=}
c
10
0
[} = =] (4]
= 2 © c)
= = 8 g 5
S IS
actual class

In the above example, while the RandomForestClassifier appears to be fairly good at correctly predicting apples
based on the features of the fruit, it often incorrectly labels pears as kiwis and mistakes kiwis for bananas.

By contrast, in the following example, the RandomForestClassifier does a great job at correctly predicting accounts

in default, but it is a bit of a coin toss in predicting account holders who stayed current on bills.

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from yellowbrick.classifier import ClassPredictionError
from yellowbrick.datasets import load_credit

X, vy = load_credit()

classes = ['account in default', 'current with bills']

Perform 80/20 training/test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20,
random_state=42)

Instantiate the classification model and visualizer

visualizer = ClassPredictionError(
RandomForestClassifier(n_estimators=10), classes=classes

Fit the training data to the visualizer

(continues on next page)

194 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

(continued from previous page)

visualizer.fit(X_train, y_train)

Evaluate the model on the test data
visualizer.score(X_test, y_test)

Draw visualization
visualizer.show()

Class Prediction Error for RandomForestClassifier

5000
4000
[}
[}
<
o
2
2 3000
g Il account in default
a current with bills
©
5 2000
Ke)
S
>
[
1000
0]
= [2]
3 =
© o
© <
© =
£ =
= g
(o] =
3 3
©
actual class

Quick Method

Similar functionality as above can be achieved in one line using the associated quick method,
class_prediction_error. This method will instantiate and fit a ClassPredictionError visualizer on the
training data, then will score it on the optionally provided test data (or the training data if it is not provided).

from sklearn.svm import LinearSVC

from sklearn.model_selection import train_test_split as tts
from yellowbrick.classifier import class_prediction_error
from yellowbrick.datasets import load_occupancy

Load the dataset and split into train/test splits
X, y = load_occupancy()
X_train, X_test, y_train, y_test = tts(

(continues on next page)

8.3. Visualizers and API 195

Yellowbrick Documentation, Release v1.5

(continued from previous page)

X, y, test_size=0.2, shuffle=True

class_prediction_error(
LinearSVC(random_state=42),
X_train, y_train, X_test, y_test,
classes=["vacant", "occupied"]

Class Prediction Error for LinearSVC
3500

3000

N
(6]
o
o

N
o
o
o

Il vacant
occupied

number of predicted class
[
(&)
o
o

1000

500

)
c
@
Q
@
>

occupied

actual class

API Reference

Shows the balance of classes and their associated predictions.

class yellowbrick.classifier.class_prediction_error.ClassPredictionError (estimator, ax=None,
classes=None,
encoder=None,
is_fitted='"auto',
force_model=False,
**kwargs)

Bases: ClassificationScoreVisualizer
Class Prediction Error chart that shows the support for each class in the fitted classification model displayed as

a stacked bar. Each bar is segmented to show the distribution of predicted classes for each class. It is initialized
with a fitted model and generates a class prediction error chart on draw.

196 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Parameters

estimator
[estimator] A scikit-learn estimator that should be a classifier. If the model is not a classifier,
an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted,
unless otherwise specified by is_fitted.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If not specified the current
axes will be used (or generated if required).

classes
[list of str, defult: None] The class labels to use for the legend ordered by the index of the
sorted classes discovered in the £it () method. Specifying classes in this manner is used to
change the class names to a more specific format or to label encoded integer classes. Some
visualizers may also use this field to filter the visualization for specific classes. For more
advanced usage specify an encoder rather than class labels.

encoder
[dict or LabelEncoder, default: None] A mapping of classes to human readable labels. Often
there is a mismatch between desired class labels and those contained in the target variable
passedto £fit () or score(). The encoder disambiguates this mismatch ensuring that classes
are labeled correctly in the visualization.

is_fitted
[bool or str, default="auto] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If “auto” (default), a helper method will check if the estimator is fitted before fitting it again.

force_model
[bool, default: False] Do not check to ensure that the underlying estimator is a classifier. This
will prevent an exception when the visualizer is initialized but may result in unexpected or
unintended behavior.

kwargs
[dict] Keyword arguments passed to the visualizer base classes.

Attributes

classes_
[ndarray of shape (n_classes,)] The class labels observed while fitting.

class_count_
[ndarray of shape (n_classes,)] Number of samples encountered for each class during fitting.

score_
[float] An evaluation metric of the classifier on test data produced when score () is called.
This metric is between 0 and 1 — higher scores are generally better. For classifiers, this score
is usually accuracy, but ensure you check the underlying model for more details about the
score.

predictions_
[ndarray] An ndarray of predictions whose rows are the true classes and whose columns are
the predicted classes

draw()

Renders the class prediction error across the axis.

Returns

8.3.

Visualizers and API 197

Yellowbrick Documentation, Release v1.5

ax
[Matplotlib Axes] The axes on which the figure is plotted

finalize(**kwargs)

Adds a title and axis labels to the visualizer, ensuring that the y limits zoom the visualization in to the area
of interest. Finalize also calls tight layout to ensure that no parts of the figure are cut off.

Notes

Generally this method is called from show and not directly by the user.
score (X, y)
Generates a 2D array where each row is the count of the predicted classes and each column is the true class

Parameters

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features

y
[ndarray or Series of length n] An array or series of target or class values

Returns

score_
[float] Global accuracy score

yellowbrick.classifier.class_prediction_error.class_prediction_error (estimator, X_train,
y_train, X_test=None,
y_test=None, ax=None,
classes=None,
encoder=None,
is_fitted='auto',
force_model=False,
show=True, **kwargs)

Class Prediction Error

Divides the dataset X and y into train and test splits, fits the model on the train split, then scores the model on
the test split. The visualizer displays the support for each class in the fitted classification model displayed as a
stacked bar plot. Each bar is segmented to show the distribution of predicted classes for each class.

Parameters

estimator
[estimator] A scikit-learn estimator that should be a classifier. If the model is not a classifier,
an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted,
unless otherwise specified by is_fitted.

X train
[ndarray or DataFrame of shape n x m] A feature array of n instances with m features the
model is trained on. Used to fit the visualizer and also to score the visualizer if test splits are

not directly specified.

y_train
[ndarray or Series of length n] An array or series of target or class values. Used to fit the
visualizer and also to score the visualizer if test splits are not specified.

X_test

[ndarray or DataFrame of shape n x m, default: None] An optional feature array of n instances
with m features that the model is scored on if specified, using X_train as the training data.

198 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

y_test
[ndarray or Series of length n, default: None] An optional array or series of target or class
values that serve as actual labels for X_test for scoring purposes.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If not specified the current
axes will be used (or generated if required).

classes
[list of str, defult: None] The class labels to use for the legend ordered by the index of the
sorted classes discovered in the £it () method. Specifying classes in this manner is used to
change the class names to a more specific format or to label encoded integer classes. Some
visualizers may also use this field to filter the visualization for specific classes. For more
advanced usage specify an encoder rather than class labels.

encoder
[dict or LabelEncoder, default: None] A mapping of classes to human readable labels. Often
there is a mismatch between desired class labels and those contained in the target variable
passed to fit () or score (). The encoder disambiguates this mismatch ensuring that classes
are labeled correctly in the visualization.

is_fitted
[bool or str, default="auto] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If “auto” (default), a helper method will check if the estimator is fitted before fitting it again.

force_model
[bool, default: False] Do not check to ensure that the underlying estimator is a classifier. This
will prevent an exception when the visualizer is initialized but may result in unexpected or
unintended behavior.

show: bool, default: True
If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize ()

kwargs: dict
Keyword arguments passed to the visualizer base classes.

Returns
viz
[ClassPredictionError] Returns the fitted, finalized visualizer

Discrimination Threshold

Caution: This visualizer only works for binary classification.

A visualization of precision, recall, f1 score, and queue rate with respect to the discrimination threshold of a binary
classifier. The discrimination threshold is the probability or score at which the positive class is chosen over the negative
class. Generally, this is set to 50% but the threshold can be adjusted to increase or decrease the sensitivity to false
positives or to other application factors.

Visualizer DiscriminationThreshold
Quick Method | discrimination_threshold()
Models Classification

Workflow Model evaluation

8.3. Visualizers and API 199

Yellowbrick Documentation, Release v1.5

from sklearn.linear_model import LogisticRegression

from yellowbrick.classifier import DiscriminationThreshold
from yellowbrick.datasets import load_spam

Load a binary classification dataset
X, y = load_spam()

Instantiate the classification model and visualizer
model = LogisticRegression(multi_class="auto", solver="liblinear")
visualizer = DiscriminationThreshold(model)

visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

Threshold Plot for LogisticRegression
1.0 ; o

0.8

0.6

score

0.4

precision

0.2 recalll
—f
———- £=0.42
—— queue rate
0.0
0.0 0.2 0.4 0.6 0.8 1.0

discrimination threshold

One common use of binary classification algorithms is to use the score or probability they produce to determine cases
that require special treatment. For example, a fraud prevention application might use a classification algorithm to
determine if a transaction is likely fraudulent and needs to be investigated in detail. In the figure above, we present
an example where a binary classifier determines if an email is “spam” (the positive case) or “not spam” (the negative
case). Emails that are detected as spam are moved to a hidden folder and eventually deleted.

Many classifiers use either a decision_function to score the positive class or a predict_proba function to compute
the probability of the positive class. If the score or probability is greater than some discrimination threshold then the
positive class is selected, otherwise, the negative class is.

Generally speaking, the threshold is balanced between cases and set to 0.5 or 50% probability. However, this threshold

200 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

may not be the optimal threshold: often there is an inverse relationship between precision and recall with respect to a
discrimination threshold. By adjusting the threshold of the classifier, it is possible to tune the F1 score (the harmonic
mean of precision and recall) to the best possible fit or to adjust the classifier to behave optimally for the specific
application. Classifiers are tuned by considering the following metrics:

 Precision: Anincrease in precision is a reduction in the number of false positives; this metric should be optimized
when the cost of special treatment is high (e.g. wasted time in fraud preventing or missing an important email).

* Recall: An increase in recall decrease the likelihood that the positive class is missed; this metric should be
optimized when it is vital to catch the case even at the cost of more false positives.

* F1 Score: The F1 score is the harmonic mean between precision and recall. The fbeta parameter determines
the relative weight of precision and recall when computing this metric, by default set to 1 or F1. Optimizing this
metric produces the best balance between precision and recall.

* Queue Rate: The “queue” is the spam folder or the inbox of the fraud investigation desk. This metric describes
the percentage of instances that must be reviewed. If review has a high cost (e.g. fraud prevention) then this must
be minimized with respect to business requirements; if it doesn’t (e.g. spam filter), this could be optimized to
ensure the inbox stays clean.

In the figure above we see the visualizer tuned to look for the optimal F1 score, which is annotated as a threshold of
0.43. The model is run multiple times over multiple train/test splits in order to account for the variability of the model
with respect to the metrics (shown as the fill area around the median curve).

Quick Method

The same functionality above can be achieved with the associated quick method discrimination_threshold. This
method will build the DiscriminationThreshold object with the associated arguments, fit it, then (optionally) im-
mediately show it

from yellowbrick.classifier.threshold import discrimination_threshold
from yellowbrick.datasets import load_occupancy
from sklearn.neighbors import KNeighborsClassifier

#Load the classification dataset
X, y = load_occupancy()

Instantiate the visualizer with the classification model
model = KNeighborsClassifier(3)

discrimination_threshold(model, X, y)

API Reference

DiscriminationThreshold visualizer for probabilistic classifiers.

class yellowbrick.classifier.threshold.DiscriminationThreshold(estimator, ax=None, n_trials=>50,
cv=0.1, fbeta=1.0,
argmax=fscore', exclude=None,
quantiles=array([0.1, 0.5, 0.9]),
random_state=None,
is_fitted="auto',
force_model=False, **kwargs)

Bases: ModelVisualizer

8.3. Visualizers and API 201

Yellowbrick Documentation, Release v1.5

1.0

0.8

0.6

score

0.4

0.2

0.0

0.0

Threshold Plot for KNeighborsClassifier
—=:|L =

—— precision
recall

— f1

---- tr=0.67

— (ueue rate

0.2 0.4 0.6 0.8 1.0
discrimination threshold

Visualizes how precision, recall, fl score, and queue rate change as the discrimination threshold increases. For
probabilistic, binary classifiers, the discrimination threshold is the probability at which you choose the positive
class over the negative. Generally this is set to 50%, but adjusting the discrimination threshold will adjust sensi-
tivity to false positives which is described by the inverse relationship of precision and recall with respect to the
threshold.

The visualizer also accounts for variability in the model by running multiple trials with different train and test
splits of the data. The variability is visualized using a band such that the curve is drawn as the median score of
each trial and the band is from the 10th to 90th percentile.

The visualizer is intended to help users determine an appropriate threshold for decision making (e.g. at what
threshold do we have a human review the data), given a tolerance for precision and recall or limiting the number
of records to check (the queue rate).

Parameters

estimator
[estimator] A scikit-learn estimator that should be a classifier. If the model is not a classifier,
an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted,
unless otherwise specified by is_fitted.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If not specified the current
axes will be used (or generated if required).

n_trials
[integer, default: 50] Number of times to shuffle and split the dataset to account for noise
in the threshold metrics curves. Note if cv provides > 1 splits, the number of trials will be

202

Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

n_trials * cv.get_n_splits()

cv
[float or cross-validation generator, default: 0.1] Determines the splitting strategy for each
trial. Possible inputs are:

* float, to specify the percent of the test split
* object to be used as cross-validation generator

This attribute is meant to give flexibility with stratified splitting but if a splitter is provided,
it should only return one split and have shuffle set to True.

fbeta
[float, 1.0 by default] The strength of recall versus precision in the F-score.

argmax
[str or None, default: ‘fscore’] Annotate the threshold maximized by the supplied metric (see
exclude for the possible metrics to use). If None or passed to exclude, will not annotate the
graph.

exclude
[str or list, optional] Specify metrics to omit from the graph, can include:

e "precision"
* "recall"

e "queue_rate"
e "fscore"

Excluded metrics will not be displayed in the graph, nor will they be available in
thresholds_; however, they will be computed on fit.

quantiles
[sequence, default: np.array([0.1, 0.5, 0.9])] Specify the quantiles to view model variability
across a number of trials. Must be monotonic and have three elements such that the first
element is the lower bound, the second is the drawn curve, and the third is the upper bound.
By default the curve is drawn at the median, and the bounds from the 10th percentile to the
90th percentile.

random_state
[int, optional] Used to seed the random state for shuffling the data while composing different
train and test splits. If supplied, the random state is incremented in a deterministic fashion
for each split.

Note that if a splitter is provided, it’s random state will also be updated with this random
state, even if it was previously set.

is_fitted
[bool or str, default="auto”’] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If “auto” (default), a helper method will check if the estimator is fitted before fitting it again.

force_model
[bool, default: False] Do not check to ensure that the underlying estimator is a classifier. This
will prevent an exception when the visualizer is initialized but may result in unexpected or
unintended behavior.

kwargs
[dict] Keyword arguments passed to the visualizer base classes.

8.3. Visualizers and API 203

Yellowbrick Documentation, Release v1.5

Notes
The term “discrimination threshold” is rare in the literature. Here, we use it to mean the probability at which the
positive class is selected over the negative class in binary classification.

Classification models must implement either a decision_function or predict_proba method in order to be
used with this class. A YellowbrickTypeError is raised otherwise.

Caution: This method only works for binary, probabilistic classifiers.

See also:
For a thorough explanation of discrimination thresholds, see: Visualizing Machine Learning Thresholds to Make
Better Business Decisions by Insight Data.

Attributes

thresholds_
[array] The uniform thresholds identified by each of the trial runs.

cv_scores_
[dict of arrays of len(thresholds_)] The values for all included metrics including the
upper and lower bounds of the metrics defined by quantiles.

draw()
Draws the cv scores as a line chart on the current axes.
finalize(**kwargs)

Sets a title and axis labels on the visualizer and ensures that the axis limits are scaled to valid threshold
values.

Parameters

kwargs: generic keyword arguments.

Notes

Generally this method is called from show and not directly by the user.

fit(X, y, **kwargs)

Fit is the entry point for the visualizer. Given instances described by X and binary classes described in the
target y, fit performs n trials by shuffling and splitting the dataset then computing the precision, recall, f1,
and queue rate scores for each trial. The scores are aggregated by the quantiles expressed then drawn.

Parameters

X
[ndarray or DataFrame of shape n x m] A matrix of n instances with m features

y
[ndarray or Series of length n] An array or series of target or class values. The target y

must be a binary classification target.

kwargs: dict
keyword arguments passed to Scikit-Learn API.

Returns

204 Chapter 8. Table of Contents

http://blog.insightdatalabs.com/visualizing-classifier-thresholds/
http://blog.insightdatalabs.com/visualizing-classifier-thresholds/

Yellowbrick Documentation, Release v1.5

self
[instance] Returns the instance of the visualizer

raises: YellowbrickValueError
If the target y is not a binary classification target.

yellowbrick.classifier.threshold.discrimination_threshold(estimator, X, y, ax=None, n_trials=50,
cv=0.1, fbeta=1.0, argmax=/fscore',
exclude=None, quantiles=array([0.1,
0.5, 0.9]), random_state=None,
is_fitted="auto', force_model=False,
show=True, **kwargs)

Discrimination Threshold

Visualizes how precision, recall, f1 score, and queue rate change as the discrimination threshold increases. For
probabilistic, binary classifiers, the discrimination threshold is the probability at which you choose the positive
class over the negative. Generally this is set to 50%, but adjusting the discrimination threshold will adjust sensi-
tivity to false positives which is described by the inverse relationship of precision and recall with respect to the
threshold.

See also:

See DiscriminationThreshold for more details.

Parameters

estimator
[estimator] A scikit-learn estimator that should be a classifier. If the model is not a classifier,
an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted,
unless otherwise specified by is_fitted.

[ndarray or DataFrame of shape n x m] A matrix of n instances with m features

[ndarray or Series of length n] An array or series of target or class values. The target y must
be a binary classification target.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If not specified the current
axes will be used (or generated if required).

n_trials
[integer, default: 50] Number of times to shuffle and split the dataset to account for noise
in the threshold metrics curves. Note if cv provides > 1 splits, the number of trials will be
n_trials * cv.get_n_splits()

cv
[float or cross-validation generator, default: 0.1] Determines the splitting strategy for each
trial. Possible inputs are:

* float, to specify the percent of the test split
* object to be used as cross-validation generator

This attribute is meant to give flexibility with stratified splitting but if a splitter is provided,
it should only return one split and have shuffle set to True.

fbeta
[float, 1.0 by default] The strength of recall versus precision in the F-score.

8.3. Visualizers and API 205

Yellowbrick Documentation, Release v1.5

argmax
[str or None, default: ‘fscore’] Annotate the threshold maximized by the supplied metric (see
exclude for the possible metrics to use). If None or passed to exclude, will not annotate the
graph.

exclude
[str or list, optional] Specify metrics to omit from the graph, can include:

e "precision"
e "recall"

e "queue_rate"
e "fscore"

Excluded metrics will not be displayed in the graph, nor will they be available in
thresholds_; however, they will be computed on fit.

quantiles
[sequence, default: np.array([0.1, 0.5, 0.9])] Specify the quantiles to view model variability
across a number of trials. Must be monotonic and have three elements such that the first
element is the lower bound, the second is the drawn curve, and the third is the upper bound.
By default the curve is drawn at the median, and the bounds from the 10th percentile to the
90th percentile.

random_state
[int, optional] Used to seed the random state for shuffling the data while composing different
train and test splits. If supplied, the random state is incremented in a deterministic fashion
for each split.

Note that if a splitter is provided, it’s random state will also be updated with this random
state, even if it was previously set.

is_fitted
[bool or str, default="auto] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If “auto” (default), a helper method will check if the estimator is fitted before fitting it again.

force_model
[bool, default: False] Do not check to ensure that the underlying estimator is a classifier. This
will prevent an exception when the visualizer is initialized but may result in unexpected or
unintended behavior.

show
[bool, default: True] If True, calls show(), which in turn calls plt.show() however you
cannot call plt.savefig from this signature, nor clear_figure. If False, simply calls
finalize()

kwargs
[dict] Keyword arguments passed to the visualizer base classes.

Returns
viz
[DiscriminationThreshold] Returns the fitted and finalized visualizer object.

206 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Notes
The term “discrimination threshold” is rare in the literature. Here, we use it to mean the probability at which the
positive class is selected over the negative class in binary classification.

Classification models must implement either a decision_function or predict_proba method in order to be
used with this class. A YellowbrickTypeError is raised otherwise.

See also:

For a thorough explanation of discrimination thresholds, see: Visualizing Machine Learning Thresholds to Make
Better Business Decisions by Insight Data.

Examples

>>> from yellowbrick.classifier.threshold import discrimination_threshold
>>> from sklearn.linear_model import LogisticRegression

>>> from yellowbrick.datasets import load_occupancy

>>> X, y = load_occupancy()

>>> model = LogisticRegression(multi_class="auto", solver="liblinear")
>>> discrimination_threshold(model, X, y)

8.3.7 Clustering Visualizers

Clustering models are unsupervised methods that attempt to detect patterns in unlabeled data. There are two primary
classes of clustering algorithm: agglomerative clustering links similar data points together, whereas centroidal clus-
tering attempts to find centers or partitions in the data. Yellowbrick provides the yellowbrick.cluster module to
visualize and evaluate clustering behavior. Currently we provide several visualizers to evaluate centroidal mechanisms,
particularly K-Means clustering, that help us to discover an optimal K parameter in the clustering metric:

e Elbow Method: visualize the clusters according to some scoring function, look for an “elbow” in the curve.
* Silhouette Visualizer: visualize the silhouette scores of each cluster in a single model.
e [ntercluster Distance Maps: visualize the relative distance and size of clusters.

Because it is very difficult to score a clustering model, Yellowbrick visualizers wrap scikit-learn clusterer estimators
via their fit() method. Once the clustering model is trained, then the visualizer can call show() to display the
clustering evaluation metric.

Elbow Method

The KElbowVisualizer implements the “elbow’ method to help data scientists select the optimal number of clusters
by fitting the model with a range of values for K. If the line chart resembles an arm, then the “elbow” (the point of
inflection on the curve) is a good indication that the underlying model fits best at that point. In the visualizer “elbow”
will be annotated with a dashed line.

To demonstrate, in the following example the KE1bowVisualizer fits the KMeans model for a range of K values from
4 to 11 on a sample two-dimensional dataset with 8 random clusters of points. When the model is fit with 8 clusters,
we can see a line annotating the “elbow” in the graph, which in this case we know to be the optimal number.

Visualizer KElbowVisualizer
Quick Method | kelbow_visualizer()
Models Clustering

Workflow Model evaluation

8.3. Visualizers and API 207

http://blog.insightdatalabs.com/visualizing-classifier-thresholds/
http://blog.insightdatalabs.com/visualizing-classifier-thresholds/

Yellowbrick Documentation, Release v1.5

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

from yellowbrick.cluster import KElbowVisualizer

Generate synthetic dataset with 8 random clusters
X, y = make_blobs(n_samples=1000, n_features=12, centers=8, random_state=42)

Instantiate the clustering model and visualizer
model = KMeans()
visualizer = KElbowVisualizer(model, k=(4,12))

visualizer.fit(X) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

Distortion Score Elbow for KMeans Clustering

1
175000 : ——- elbowat k=7, score =26333.181

150000
125000
100000

75000

distortion score

50000

I
|
I
I
I
I
|
|
|
I
I
|
I
|
I
I
|
I
|
I
I
I
I
|
I
25000 \
I
|
1
7
k

By default, the scoring parameter metric is set to distortion, which computes the sum of squared distances from
each point to its assigned center. However, two other metrics can also be used with the KElbowVisualizer —
silhouette and calinski_harabasz. The silhouette score calculates the mean Silhouette Coefficient of all
samples, while the calinski_harabasz score computes the ratio of dispersion between and within clusters.

The KElbowVisualizer also displays the amount of time to train the clustering model per K as a dashed green line,
but is can be hidden by setting timings=False. In the following example, we’ll use the calinski_harabasz score
and hide the time to fit the model.

from sklearn.cluster import KMeans

(continues on next page)

208 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

(continued from previous page)

from sklearn.datasets import make_blobs
from yellowbrick.cluster import KElbowVisualizer

Generate synthetic dataset with 8 random clusters
X, y = make_blobs(n_samples=1000, n_features=12, centers=8, random_state=42)

Instantiate the clustering model and visualizer
model = KMeans()
visualizer = KElbowVisualizer(
model, k=(4,12), metric='calinski_harabasz', timings=False

)
visualizer.fit(X) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

Calinski Harabasz Score Elbow for KMeans Clustering

1
4500 ~ ——~ elbow at k =8, score =4478.793

4000
3500
3000
2500

2000

calinski harabasz score

1500

1000

500

1
I
|
I
|
I
I
|
I
|
I
I
|
I
I
I
I
I
I
|
I
I
|
I
|
I
I
|
I
|
1
8

By default, the parameter locate_elbow is set to True, which automatically find the “elbow’ which likely corresponds
to the optimal value of k using the “knee point detection algorithm”. However, users can turn off the feature by setting
locate_elbow=False. You can read about the implementation of this algorithm at “Knee point detection in Python”
by Kevin Arvai.

In the following example, we’ll use the calinski_harabasz score and turn off locate_elbow feature.

from sklearn.cluster import KMeans

(continues on next page)

8.3. Visualizers and API 209

https://github.com/arvkevi/kneed

Yellowbrick Documentation, Release v1.5

(continued from previous page)

from sklearn.datasets import make_blobs
from yellowbrick.cluster import KElbowVisualizer

Generate synthetic dataset with 8 random clusters
X, y = make_blobs(n_samples=1000, n_features=12, centers=8, random_state=42)

Instantiate the clustering model and visualizer
model = KMeans()
visualizer = KElbowVisualizer(
model, k=(4,12), metric='calinski_harabasz', timings=False, locate_elbow=False

)
visualizer.fit(X) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

Calinski Harabasz Score Elbow for KMeans Clustering

4500

4000

3500

3000

2500

2000

calinski harabasz score

1500

1000

500

It is important to remember that the “elbow” method does not work well if the data is not very clustered. In this case,
you might see a smooth curve and the optimal value of K will be unclear.

210 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Quick Method

The same functionality above can be achieved with the associated quick method kelbow_visualizer. This method
will build the KElbowVisualizer object with the associated arguments, fit it, then (optionally) immediately show the
visualization.

from sklearn.cluster import KMeans
from yellowbrick.cluster.elbow import kelbow_visualizer
from yellowbrick.datasets.loaders import load_nfl

X, v = load_nflQ

Use the quick method and immediately show the figure
kelbow_visualizer(KMeans(random_state=4), X, k=(2,10))

1e7 Distortion Score Elbow for KMeans Clustering

I
—=—=- elbow at k =4, score =3798313.189

1.4

1.2

1.0

0.8

distortion score

0.6

0.4

0.2

G S N —

8.3. Visualizers and API 211

Yellowbrick Documentation, Release v1.5

API Reference

Implements the elbow method for determining the optimal number of clusters. https://bl.ocks.org/rpgove/

00601f3b656618e9136b

class yellowbrick.cluster.elbow.KElbowVisualizer (estimator, ax=None, k=10, metric='distortion’,
distance_metric="euclidean’, timings=True,
locate_elbow=True, **kwargs)

Bases: ClusteringScoreVisualizer

The K-Elbow Visualizer implements the “elbow” method of selecting the optimal number of clusters for K-
means clustering. K-means is a simple unsupervised machine learning algorithm that groups data into a specified
number (k) of clusters. Because the user must specify in advance what k to choose, the algorithm is somewhat

naive — it assigns all members to k clusters even if that is not the right k for the dataset.

The elbow method runs k-means clustering on the dataset for a range of values for k (say from 1-10) and then
for each value of k computes an average score for all clusters. By default, the distortion score is computed,
the sum of square distances from each point to its assigned center. Other metrics can also be used such as the
silhouette score, the mean silhouette coefficient for all samples or the calinski_harabasz score, which

computes the ratio of dispersion between and within clusters.

When these overall metrics for each model are plotted, it is possible to visually determine the best value for k. If
the line chart looks like an arm, then the “elbow” (the point of inflection on the curve) is the best value of k. The
“arm” can be either up or down, but if there is a strong inflection point, it is a good indication that the underlying

model fits best at that point.
Parameters

estimator
[a scikit-learn clusterer] Should be an instance of an unfitted clusterer, specifically KMeans
or MiniBatchKMeans. If it is not a clusterer, an exception is raised.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

k
[integer, tuple, or iterable] The k values to compute silhouette scores for. If a single integer
is specified, then will compute the range (2,k). If a tuple of 2 integers is specified, then k will
be in np.arange(k[0], k[1]). Otherwise, specify an iterable of integers to use as values for k.
metric

[string, default: "distortion"] Select the scoring metric to evaluate the clusters. The de-
fault is the mean distortion, defined by the sum of squared distances between each observation
and its closest centroid. Other metrics include:

* distortion: mean sum of squared distances to centers
¢ silhouette: mean ratio of intra-cluster and nearest-cluster distance
* calinski_harabasz: ratio of within to between cluster dispersion

distance_metric
[str or callable, default="euclidean’] The metric to use when calculating distance between
instances in a feature array. If metric is a string, it must be one of the options allowed
by sklearn’s metrics.pairwise.pairwise_distances. If X is the distance array itself, use met-
ric="precomputed”.

timings
[bool, default: True] Display the fitting time per k to evaluate the amount of time required to

212 Chapter 8. Table of Contents

https://bl.ocks.org/rpgove/0060ff3b656618e9136b
https://bl.ocks.org/rpgove/0060ff3b656618e9136b

Yellowbrick Documentation, Release v1.5

train the clustering model.

locate_elbow
[bool, default: True] Automatically find the “elbow” or “knee” which likely corresponds to
the optimal value of k using the “knee point detection algorithm”. The knee point detection
algorithm finds the point of maximum curvature, which in a well-behaved clustering problem
also represents the pivot of the elbow curve. The point is labeled with a dashed line and
annotated with the score and k values.

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Notes

If you get a visualizer that doesn’t have an elbow or inflection point, then this method may not be working. The
elbow method does not work well if the data is not very clustered; in this case, you might see a smooth curve and
the value of k is unclear. Other scoring methods, such as BIC or SSE, also can be used to explore if clustering is
a correct choice.

For a discussion on the Elbow method, read more at Robert Gove’s Block website. For more on the knee point
detection algorithm see the paper “Finding a “kneedle” in a Haystack”.

See also:

The scikit-learn documentation for the silhouette_score and calinski_harabasz_score. The default,
distortion_score, is implemented in yellowbrick.cluster.elbow.

Examples

>>> from yellowbrick.cluster import KElbowVisualizer
>>> from sklearn.cluster import KMeans

>>> model = KElbowVisualizer(KMeans(), k=10)

>>> model. fit(X)

>>> model . show()

Attributes

k_scores_
[array of shape (n,) where n is no. of k values] The silhouette score corresponding to each k
value.

k_timers_
[array of shape (n,) where n is no. of k values] The time taken to fit n KMeans model
corresponding to each k value.

elbow_value_
[integer] The optimal value of k.

elbow_score_

[float] The silhouette score corresponding to the optimal value of k.

draw()

Draw the elbow curve for the specified scores and values of K.

8.3. Visualizers and API 213

https://bl.ocks.org/rpgove/0060ff3b656618e9136b
https://raghavan.usc.edu//papers/kneedle-simplex11.pdf
https://bit.ly/2LYWjYb
https://bit.ly/2ItAgts

Yellowbrick Documentation, Release v1.5

finalize()
Prepare the figure for rendering by setting the title as well as the X and Y axis labels and adding the legend.
fit (X, y=None, **kwargs)

Fits n KMeans models where n is the length of self.k_values_, storing the silhouette scores in the
self.k_scores_ attribute. The “elbow” and silhouette score corresponding to it are stored in self.
elbow_value and self.elbow_score respectively. This method finishes up by calling draw to create
the plot.

property metric_color
property timing_color
property vline_color

yellowbrick.cluster.elbow.kelbow_visualizer (model, X, y=None, ax=None, k=10, metric='distortion’,
distance_metric='euclidean’, timings=True,
locate_elbow=True, show=True, **kwargs)

Quick Method:
model

[a Scikit-Learn clusterer] Should be an instance of an unfitted clusterer, specifically KMeans or
MiniBatchKMeans. If it is not a clusterer, an exception is raised.

X
[array-like of shape (n, m)] A matrix or data frame with n instances and m features

y
[array-like of shape (n,), optional] A vector or series representing the target for each instance

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the current axes will
be used (or generated if required).

k
[integer, tuple, or iterable] The k values to compute silhouette scores for. If a single integer is specified,
then will compute the range (2,k). If a tuple of 2 integers is specified, then k will be in np.arange(k[0],
k[1]). Otherwise, specify an iterable of integers to use as values for k.

metric

[string, default: "distortion'"] Select the scoring metric to evaluate the clusters. The default is the mean
distortion, defined by the sum of squared distances between each observation and its closest centroid. Other
metrics include:

* distortion: mean sum of squared distances to centers

¢ silhouette: mean ratio of intra-cluster and nearest-cluster
distance

* calinski_harabasz: ratio of within to between cluster dispersion

distance_metric
[str or callable, default="euclidean’] The metric to use when calculating distance between instances
in a feature array. If metric is a string, it must be one of the options allowed by sklearn’s met-
rics.pairwise.pairwise_distances. If X is the distance array itself, use metric=""precomputed”.

timings
[bool, default: True] Display the fitting time per k to evaluate the amount of time required to train the
clustering model.

214 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

locate_elbow
[bool, default: True] Automatically find the “elbow” or “knee” which likely corresponds to the optimal
value of k using the “knee point detection algorithm”. The knee point detection algorithm finds the point
of maximum curvature, which in a well-behaved clustering problem also represents the pivot of the elbow
curve. The point is labeled with a dashed line and annotated with the score and k values.

show
[bool, default: True] If True, calls show(), which in turn calls plt.show() however you cannot call p1t.
savefig from this signature, nor clear_figure. If False, simply calls finalize()

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualization as defined
in other Visualizers.

Returns

viz
[KElbow Visualizer] The kelbow visualizer, fitted and finalized.

Silhouette Visualizer

The Silhouette Coeflicient is used when the ground-truth about the dataset is unknown and computes the density of
clusters computed by the model. The score is computed by averaging the silhouette coefficient for each sample, com-
puted as the difference between the average intra-cluster distance and the mean nearest-cluster distance for each sample,
normalized by the maximum value. This produces a score between 1 and -1, where 1 is highly dense clusters and -1 is
completely incorrect clustering.

The Silhouette Visualizer displays the silhouette coefficient for each sample on a per-cluster basis, visualizing which
clusters are dense and which are not. This is particularly useful for determining cluster imbalance, or for selecting a
value for K by comparing multiple visualizers.

Visualizer SilhouetteVisualizer
Quick Method | silhouette_visualizer()
Models Clustering

Workflow Model evaluation

Examples and demo

from sklearn.cluster import KMeans

from yellowbrick.cluster import SilhouetteVisualizer
from yellowbrick.datasets import load_nfl

Load a clustering dataset
X, v = load_nflQ

Specify the features to use for clustering
features = ['Rec', 'Yds', 'TD', 'Fmb', 'Ctch_Rate']
X = X.query('Tgt >= 20') [features]

Instantiate the clustering model and visualizer
model = KMeans(5, random_state=42)
visualizer = SilhouetteVisualizer(model, colors='yellowbrick')

(continues on next page)

8.3. Visualizers and API 215

Yellowbrick Documentation, Release v1.5

(continued from previous page)

visualizer.fit(X) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

Silhouette Plot of KMeans Clustering for 260 Samples in 5 Centers

1
‘ ‘ ‘ ‘ ‘ ‘ I ==+ Average Silhouette Score
4

3
©
o
IS
5 2
7]
>
C
1
0
-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
silhouette coefficient values
Quick Method

The same functionality above can be achieved with the associated quick method silhouette_visualizer. This method
will build the Silhouette Visualizer object with the associated arguments, fit it, then (optionally) immediately show it.

from sklearn.cluster import KMeans

from yellowbrick.cluster import silhouette_visualizer
from yellowbrick.datasets import load_credit

Load a clustering dataset
X, v = load_credit()

Specify rows to cluster: under 40 y/o and have either graduate or university education
X = X[(X['age'] <= 40) & (X['edu'].isin([1,2]))]

Use the quick method and immediately show the figure
silhouette_visualizer(KMeans(5, random_state=42), X, colors='yellowbrick")

216 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

cluster label

API Reference

Silhouette Plot of KMeans Clustering for 18941 Samples in 5 Centers
, — 1

1

1

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
silhouette coefficient values

Implements visualizers that use the silhouette metric for cluster evaluation.

class yellowbrick.cluster.silhouette.SilhouetteVisualizer (estimator, ax=None, colors=None,

is_fitted="auto', **kwargs)

Bases: ClusteringScoreVisualizer

The Silhouette Visualizer displays the silhouette coefficient for each sample on a per-cluster basis, visually evalu-
ating the density and separation between clusters. The score is calculated by averaging the silhouette coefficient
for each sample, computed as the difference between the average intra-cluster distance and the mean nearest-
cluster distance for each sample, normalized by the maximum value. This produces a score between -1 and
+1, where scores near +1 indicate high separation and scores near -1 indicate that the samples may have been

assigned to the wrong cluster.

In SilhouetteVisualizer plots, clusters with higher scores have wider silhouettes, but clusters that are less cohesive
will fall short of the average score across all clusters, which is plotted as a vertical dotted red line.

This is particularly useful for determining cluster imbalance, or for selecting a value for K by comparing multiple

visualizers.
Parameters

estimator

[a Scikit-Learn clusterer] Should be an instance of a centroidal clustering algorithm (KMeans
or MiniBatchKMeans). If the estimator is not fitted, it is fit when the visualizer is fitted,
unless otherwise specified by is_fitted.

8.3. Visualizers and API

217

Yellowbrick Documentation, Release v1.5

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

colors
[iterable or string, default: None] A collection of colors to use for each cluster group. If
there are fewer colors than cluster groups, colors will repeat. May also be a Yellowbrick or
matplotlib colormap string.

is_fitted
[bool or str, default="auto’] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If ‘auto’ (default), a helper method will check if the estimator is fitted before fitting it again.

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Examples

>>> from yellowbrick.cluster import SilhouetteVisualizer
>>> from sklearn.cluster import KMeans

>>> model = SilhouetteVisualizer (KMeans(10))

>>> model. fit(X)

>>> model. show()

Attributes

silhouette_score_
[float] Mean Silhouette Coefficient for all samples. Computed via scikit-learn
sklearn.metrics.silhouette_score.

silhouette_samples_
[array, shape = [n_samples]] Silhouette Coefficient for each samples. Computed via scikit-

learn sklearn.metrics.silhouette_samples.

n_samples_
[integer] Number of total samples in the dataset (X.shape[0])

n_clusters_
[integer] Number of clusters (e.g. n_clusters or k value) passed to internal scikit-learn model.

y_tick_pos_
[array of shape (n_clusters,)] The computed center positions of each cluster on the y-axis

draw(labels)
Draw the silhouettes for each sample and the average score.

Parameters

labels
[array-like] An array with the cluster label for each silhouette sample, usually computed
with predict (). Labels are not stored on the visualizer so that the figure can be redrawn
with new data.

finalize()
Prepare the figure for rendering by setting the title and adjusting the limits on the axes, adding labels and a
legend.

218 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

fit (X, y=None, **kwargs)

Fits the model and generates the silhouette visualization.

yellowbrick.cluster.silhouette.silhouette_visualizer (estimator, X, y=None, ax=None, colors=None,
is_fitted="auto', show=True, **kwargs)

Quick Method: The Silhouette Visualizer displays the silhouette coefficient for each sample on a per-cluster
basis, visually evaluating the density and separation between clusters. The score is calculated by averaging the
silhouette coefficient for each sample, computed as the difference between the average intra-cluster distance and
the mean nearest-cluster distance for each sample, normalized by the maximum value. This produces a score
between -1 and +1, where scores near +1 indicate high separation and scores near -1 indicate that the samples
may have been assigned to the wrong cluster.

Parameters

estimator
[a Scikit-Learn clusterer] Should be an instance of a centroidal clustering algorithm (KMeans
or MiniBatchKMeans). If the estimator is not fitted, it is fit when the visualizer is fitted,
unless otherwise specified by is_fitted.

X
[array-like of shape (n, m)] A matrix or data frame with n instances and m features

y
[array-like of shape (n,), optional] A vector or series representing the target for each instance

ax
[matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

colors
[iterable or string, default: None] A collection of colors to use for each cluster group. If
there are fewer colors than cluster groups, colors will repeat. May also be a Yellowbrick or
matplotlib colormap string.

is_fitted
[bool or str, default="auto’] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If ‘auto’ (default), a helper method will check if the estimator is fitted before fitting it again.

show
[bool, default: True] If True, calls show(), which in turn calls plt.show() however you
cannot call plt.savefig from this signature, nor clear_figure. If False, simply calls
finalize()

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Returns
viz

[SilhouetteVisualizer] The silhouette visualizer, fitted and finalized.

8.3. Visualizers and API 219

Yellowbrick Documentation, Release v1.5

Intercluster Distance Maps

Intercluster distance maps display an embedding of the cluster centers in 2 dimensions with the distance to other centers
preserved. E.g. the closer to centers are in the visualization, the closer they are in the original feature space. The clusters
are sized according to a scoring metric. By default, they are sized by membership, e.g. the number of instances that
belong to each center. This gives a sense of the relative importance of clusters. Note however, that because two clusters
overlap in the 2D space, it does not imply that they overlap in the original feature space.

Visualizer InterclusterDistance
Quick Method | intercluster_distance()
Models Clustering

Workflow Model evaluation

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

from yellowbrick.cluster import InterclusterDistance

Generate synthetic dataset with 12 random clusters
X, y = make_blobs(n_samples=1000, n_features=12, centers=12, random_state=42)

Instantiate the clustering model and visualizer
model = KMeans(6)
visualizer = InterclusterDistance(model)

visualizer.fit(X) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

Quick Method

The same functionality above can be achieved with the associated quick method intercluster_distance. This method will
build the InterclusterDistance object with the associated arguments, fit it, then (optionally) immediately show it.

from yellowbrick.datasets import load_nfl
from sklearn.cluster import MiniBatchKMeans
from yellowbrick.cluster import intercluster_distance

X, _ = load_nfl(Q
intercluster_distance(MiniBatchKMeans(5, random_state=777), X)

API Reference

Implements Intercluster Distance Map visualizations.

class yellowbrick.cluster.icdm.InterclusterDistance (estimator, ax=None, min_size=400,
max_size=25000, embedding="mds’,
scoring="membership', legend=True,
legend_loc='"lower left', legend_size=1.5,
random_state=None, is_fitted="auto’, **kwargs)

220 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

KMeans Intercluster Distance Map (via MDS)

1

<> :

PC1

membership

~
7 \\\

AN N

E “‘—A‘F 84

]

\ 1

\ /l 0
\\ P

S~ =l 250

PC2

Bases: ClusteringScoreVisualizer

Intercluster distance maps display an embedding of the cluster centers in 2 dimensions with the distance to other
centers preserved. E.g. the closer to centers are in the visualization, the closer they are in the original feature
space. The clusters are sized according to a scoring metric. By default, they are sized by membership, e.g. the
number of instances that belong to each center. This gives a sense of the relative importance of clusters. Note
however, that because two clusters overlap in the 2D space, it does not imply that they overlap in the original
feature space.

Parameters

estimator
[a Scikit-Learn clusterer] Should be an instance of a centroidal clustering algorithm (or a
hierarchical algorithm with a specified number of clusters). Also accepts some other models
like LDA for text clustering. If it is not a clusterer, an exception is raised. If the estimator is
not fitted, it is fit when the visualizer is fitted, unless otherwise specified by is_fitted.

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

min_size
[int, default: 400] The size, in points, of the smallest cluster drawn on the graph. Cluster
sizes will be scaled between the min and max sizes.

max_size
[int, default: 25000] The size, in points, of the largest cluster drawn on the graph. Cluster

8.3.

Visualizers and API 221

Yellowbrick Documentation, Release v1.5

PC1

MiniBatchKMeans Intercluster Distance Map (via MDS)

membership

sizes will be scaled between the min and max sizes.

embedding

PC2

2

[default: ‘mds’] The algorithm used to embed the cluster centers in 2 dimensional space so
that the distance between clusters is represented equivalently to their relationship in feature
spaceself. Embedding algorithm options include:

* mds: multidimensional scaling

* tsne: stochastic neighbor embedding

scoring

[default: ‘membership’] The scoring method used to determine the size of the clusters drawn
on the graph so that the relative importance of clusters can be viewed. Scoring method

options include:

* membership: number of instances belonging to each cluster

legend

[bool, default: True] Whether or not to draw the size legend onto the graph, omit the legend
to more easily see clusters that overlap.

legend_loc

[str, default: “lower left”’] The location of the legend on the graph, used to move the legend
out of the way of clusters into open space. The same legend location options for matplotlib

are used here.

See also:

https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.legend

222

Chapter 8. Table of Contents

https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.legend

Yellowbrick Documentation, Release v1.5

legend_size
[float, default: 1.5] The size, in inches, of the size legend to inset into the graph.

random_state
[int or RandomState, default: None] Fixes the random state for stochastic embedding algo-
rithms.

is_fitted
[bool or str, default="auto’] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If ‘auto’ (default), a helper method will check if the estimator is fitted before fitting it again.

kwargs
[dict] Keyword arguments passed to the base class and may influence the feature visualization
properties.

Notes

Currently the only two embeddings supported are MDS and TSNE. Soon to follow will be PCoA and a customized
version of PCoA for LDA. The only supported scoring metric is membership, but in the future, silhouette scores
and cluster diameter will be added.

In terms of algorithm support, right now any clustering algorithm that has a learned cluster_centers_ and
labels_ attribute will work with the visualizer. In the future, we will update this to work with hierarchical
clusterers that have n_components and LDA.

Attributes

cluster_centers_
[array of shape (n_clusters, n_features)] Searches for or creates cluster centers for the speci-
fied clustering algorithm.

embedded_centers_
[array of shape (n_clusters, 2)] The positions of all the cluster centers on the graph.

scores_
[array of shape (n_clusters,)] The scores of each cluster that determine its size on the graph.

fit_time
- [Tirr:er] The time it took to fit the clustering model and perform the embedding.
property cluster_centers_
Searches for or creates cluster centers for the specified clustering algorithm. This algorithm ensures that
that the centers are appropriately drawn and scaled so that distance between clusters are maintained.
draw()

Draw the embedded centers with their sizes on the visualization.

finalize()

Finalize the visualization to create an “origin grid” feel instead of the default matplotlib feel. Set the title,
remove spines, and label the grid with components. This function also adds a legend from the sizes if
required.

fit (X, y=None)

Fit the clustering model, computing the centers then embeds the centers into 2D space using the embedding
method specified.

8.3. Visualizers and API 223

Yellowbrick Documentation, Release v1.5

property lax
Returns the legend axes, creating it only on demand by creating a 2”” by 2 inset axes that has no grid, ticks,
spines or face frame (e.g is mostly invisible). The legend can then be drawn on this axes.

property transformer

Creates the internal transformer that maps the cluster center’s high dimensional space to its two dimensional
space.

yellowbrick.cluster.icdm.intercluster_distance (estimator, X, y=None, ax=None, min_size=400,

max_size=25000, embedding="mds’,
scoring="membership’, legend=True,
legend_loc="lower left', legend_size=1.5,
random_state=None, is_fitted="auto', show=True,
**kwargs)

Quick Method: Intercluster distance maps display an embedding of the cluster centers in 2 dimensions with the
distance to other centers preserved. E.g. the closer to centers are in the visualization, the closer they are in
the original feature space. The clusters are sized according to a scoring metric. By default, they are sized by
membership, e.g. the number of instances that belong to each center. This gives a sense of the relative importance
of clusters. Note however, that because two clusters overlap in the 2D space, it does not imply that they overlap
in the original feature space.

Parameters

estimator
[a Scikit-Learn clusterer] Should be an instance of a centroidal clustering algorithm (or a
hierarchical algorithm with a specified number of clusters). Also accepts some other models
like LDA for text clustering. If it is not a clusterer, an exception is raised. If the estimator is
not fitted, it is fit when the visualizer is fitted, unless otherwise specified by is_fitted.

[array-like of shape (n, m)] A matrix or data frame with n instances and m features

[array-like of shape (n,), optional] A vector or series representing the target for each instance

ax
[matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

min_size
[int, default: 400] The size, in points, of the smallest cluster drawn on the graph. Cluster
sizes will be scaled between the min and max sizes.

max_size
[int, default: 25000] The size, in points, of the largest cluster drawn on the graph. Cluster
sizes will be scaled between the min and max sizes.

embedding
[default: ‘mds’] The algorithm used to embed the cluster centers in 2 dimensional space so
that the distance between clusters is represented equivalently to their relationship in feature
spaceself. Embedding algorithm options include:

* mds: multidimensional scaling
* tsne: stochastic neighbor embedding

scoring
[default: ‘membership’] The scoring method used to determine the size of the clusters drawn
on the graph so that the relative importance of clusters can be viewed. Scoring method
options include:

224

Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

* membership: number of instances belonging to each cluster

legend
[bool, default: True] Whether or not to draw the size legend onto the graph, omit the legend
to more easily see clusters that overlap.

legend_loc
[str, default: “lower left”’] The location of the legend on the graph, used to move the legend
out of the way of clusters into open space. The same legend location options for matplotlib
are used here.

See also:
https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.legend

legend_size
[float, default: 1.5] The size, in inches, of the size legend to inset into the graph.

random_state
[int or RandomState, default: None] Fixes the random state for stochastic embedding algo-
rithms.

is_fitted
[bool or str, default="auto’] Specify if the wrapped estimator is already fitted. If False, the
estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified.
If ‘auto’ (default), a helper method will check if the estimator is fitted before fitting it again.

show
[bool, default: True] If True, calls show(), which in turn calls plt.show() however you
cannot call plt.savefig from this signature, nor clear_figure. If False, simply calls
finalize()

kwargs
[dict] Keyword arguments passed to the base class and may influence the feature visualization
properties.

Returns
viz
[InterclusterDistance] The intercluster distance visualizer, fitted and finalized.

8.3.8 Model Selection Visualizers

Yellowbrick visualizers are intended to steer the model selection process. Generally, model selection is a search problem
defined as follows: given N instances described by numeric properties and (optionally) a target for estimation, find a
model described by a triple composed of features, an algorithm and hyperparameters that best fits the data. For most
purposes the “best” triple refers to the triple that receives the best cross-validated score for the model type.

The yellowbrick.model_selection package provides visualizers for inspecting the performance of cross validation
and hyper parameter tuning. Many visualizers wrap functionality found in sklearn.model_selection and others
build upon it for performing multi-model comparisons.

The currently implemented model selection visualizers are as follows:

* Validation Curve: visualizes how the adjustment of a hyperparameter influences training and test scores to tune
the bias/variance trade-off.

e Learning Curve: shows how the size of training data influences the model to diagnose if a model suffers more
from variance error vs. bias error.

* Cross Validation Scores: displays cross-validated scores as a bar chart with average as a horizontal line.

8.3. Visualizers and API 225

https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.legend

Yellowbrick Documentation, Release v1.5

 Feature Importances: rank features by relative importance in a model
* Recursive Feature Elimination: select a subset of features by importance
 Feature Dropping Curve: select subsets of features randomly

Model selection makes heavy use of cross validation to measure the performance of an estimator. Cross validation
splits a dataset into a training data set and a test data set; the model is fit on the training data and evaluated on the test
data. This helps avoid a common pitfall, overfitting, where the model simply memorizes the training data and does not
generalize well to new or unknown input.

There are many ways to define how to split a dataset for cross validation. For more information on how scikit-learn
implements these mechanisms, please review Cross-validation: evaluating estimator performance in the scikit-learn
documentation.

Validation Curve

Model validation is used to determine how effective an estimator is on data that it has been trained on as well as how
generalizable it is to new input. To measure a model’s performance we first split the dataset into training and test splits,
fitting the model on the training data and scoring it on the reserved test data.

In order to maximize the score, the hyperparameters of the model must be selected which best allow the model to operate
in the specified feature space. Most models have multiple hyperparameters and the best way to choose a combination of
those parameters is with a grid search. However, it is sometimes useful to plot the influence of a single hyperparameter
on the training and test data to determine if the estimator is underfitting or overfitting for some hyperparameter values.

Visualizer ValidationCurve

Quick Method | validation_curve()
Models Classification and Regression
Workflow Model Selection

In our first example, we’ll explore using the ValidationCurve visualizer with a regression dataset and in the second,
a classification dataset. Note that any estimator that implements £it () and predict () and has an appropriate scoring
mechanism can be used with this visualizer.

import numpy as np

from yellowbrick.datasets import load_energy
from yellowbrick.model_selection import ValidationCurve

from sklearn.tree import DecisionTreeRegressor

Load a regression dataset
X, y = load_energy(Q

viz = ValidationCurve(
DecisionTreeRegressor(), param_name="max_depth",
param_range=np.arange(l, 11), cv=10, scoring="r2"

Fit and show the visualizer
viz.fit(X, y)
viz.show()

To further customize this plot, the visualizer also supports a markers parameter that changes the marker style.

226 Chapter 8. Table of Contents

http://scikit-learn.org/stable/modules/cross_validation.html

Yellowbrick Documentation, Release v1.5

Validation Curve for DecisionTreeRegressor

—4— Training Score
Cross Validation Score

10 + + + + +
0.9
o
3
308
0.7
0.6
2 4 6 8 10
max_depth

After loading and wrangling the data, we initialize the ValidationCurve with aDecisionTreeRegressor. Decision
trees become more overfit the deeper they are because at each level of the tree the partitions are dealing with a smaller
subset of data. One way to deal with this overfitting process is to limit the depth of the tree. The validation curve
explores the relationship of the "max_depth" parameter to the R2 score with 10 shuffle split cross-validation. The
param_range argument specifies the values of max_depth, here from 1 to 10 inclusive.

We can see in the resulting visualization that a depth limit of less than 5 levels severely underfits the model on this
data set because the training score and testing score climb together in this parameter range, and because of the high
variability of cross validation on the test scores. After a depth of 7, the training and test scores diverge, this is because
deeper trees are beginning to overfit the training data, providing no generalizability to the model. However, because
the cross validation score does not necessarily decrease, the model is not suffering from high error due to variance.

In the next visualizer, we will see an example that more dramatically visualizes the bias/variance tradeoff.

from sklearn.svm import SVC
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import StratifiedKFold

Load a classification data set
X, v = load_game()

Encode the categorical data with one-hot encoding
X = OneHotEncoder().fit_transform(X)

Create the validation curve visualizer
cv = StratifiedKFold(12)

(continues on next page)

8.3. Visualizers and API 227

Yellowbrick Documentation, Release v1.5

(continued from previous page)

param_range = np.logspace(-6, -1, 12)

viz = ValidationCurve(
SVC(), param_name="gamma', param_range=param_range,
logx=True, cv=cv, scoring="f1_weighted", n_jobs=8,

)

viz. fit(X, y)
viz.show()

Validation Curve for SVC

—4— Training Score
0.85 Cross Validation Score

0.80
075

0.70

score

0.65

0.60

0.55

gamma

After loading data and one-hot encoding it using the Pandas get_dummies function, we create a stratified k-folds cross-
validation strategy. The hyperparameter of interest is the gamma of a support vector classifier, the coefficient of the
RBF kernel. Gamma controls how much influence a single example has, the larger gamma is, the tighter the support
vector is around single points (overfitting the model).

In this visualization we see a definite inflection point around gamma=0. 1. At this point the training score climbs rapidly
as the SVC memorizes the data, while the cross-validation score begins to decrease as the model cannot generalize to
unseen data.

Warning: Note that running this and the next example may take a long time. Even with parallelism using n_jobs=8,
it can take several hours to go through all the combinations. Reducing the parameter range and minimizing the
amount of cross-validation can speed up the validation curve visualization.

*

Validation curves can be performance intensive since they are training n_params * n_splits models and scoring

228 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

them. It is critically important to ensure that the specified hyperparameter range is correct, as we will see in the next
example.

from sklearn.neighbors import KNeighborsClassifier

cv = StratifiedKFold(4)
param_range = np.arange(3, 20, 2)

oz = ValidationCurve(
KNeighborsClassifier(), param_name="n_neighbors",
param_range=param_range, cv=cv, scoring="f1_weighted", n_jobs=4,

)
Using the same game dataset as in the SVC example
oz.fit(X, y)
oz.show()
Validation Curve for KNeighborsClassifier
._-—‘—-%_.—-———-"—-_.__ b i
L b _‘_‘———‘
0.80
0.75
o
8 070
0.65
0.60

—4— Training Score
Cross Validation Score

4 6 8 10 12 14 16 18
n_neighbars

The k nearest neighbors (kNN) model is commonly used when similarity is important to the interpretation of the model.
Choosing k is difficult, the higher k is the more data is included in a classification, creating more complex decision
topologies, whereas the lower k is, the simpler the model is and the less it may generalize. Using a validation curve
seems like an excellent strategy for choosing k, and often it is. However in the example above, all we can see is a
decreasing variability in the cross-validated scores.

This validation curve poses two possibilities: first, that we do not have the correct param_range to find the best k and
need to expand our search to larger values. The second is that other hyperparameters (such as uniform or distance based
weighting, or even the distance metric) may have more influence on the default model than k by itself does. Although
validation curves can give us some intuition about the performance of a model to a single hyperparameter, grid search

8.3. Visualizers and API 229

Yellowbrick Documentation, Release v1.5

is required to understand the performance of a model with respect to multiple hyperparameters.
See also:

This visualizer is based on the validation curve described in the scikit-learn documentation: Validation Curves. The
visualizer wraps the validation_curve function and most of the arguments are passed directly to it.

Quick Method

Similar functionality as above can be achieved in one line using the associated quick method, validation_curve.
This method will instantiate and fit a ValidationCurve visualizer.

import numpy as np

from yellowbrick.datasets import load_energy
from yellowbrick.model_selection import validation_curve

from sklearn.tree import DecisionTreeRegressor

Load a regression dataset
X, y = load_energy()

viz = validation_curve(
DecisionTreeRegressor(), X, y, param_name="max_depth",
param_range=np.arange(l, 11), cv=10, scoring="r2",

Validation Curve for DecisionTreeRegressor

—4§— Training Score
Cross Validation Score

L0 ‘ + + + +
0.9
2
3
308
0.7
0.6
2 4 6 8 10
max_depth

230 Chapter 8. Table of Contents

http://scikit-learn.org/stable/modules/learning_curve.html#validation-curve
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html#sklearn.model_selection.validation_curve

Yellowbrick Documentation, Release v1.5

API Reference

Implements a visual validation curve for a hyperparameter.

class yellowbrick.model_selection.validation_curve.ValidationCurve (estimator, param_name,
param_range, ax=None,
logx=False, groups=None,
cv=None, scoring=None,
n_jobs=1,
pre_dispatch="all’,
markers="-d', **kwargs)

Bases: ModelVisualizer

Visualizes the validation curve for both test and training data for a range of values for a single hyperparame-
ter of the model. Adjusting the value of a hyperparameter adjusts the complexity of a model. Less complex
models suffer from increased error due to bias, while more complex models suffer from increased error due to
variance. By inspecting the training and cross-validated test score error, it is possible to estimate a good value
for a hyperparameter that balances the bias/variance trade-off.

The visualizer evaluates cross-validated training and test scores for the different hyperparameters supplied. The
curve is plotted so that the x-axis is the value of the hyperparameter and the y-axis is the model score. This is
similar to a grid search with a single hyperparameter.

The cross-validation generator splits the dataset k times, and scores are averaged over all k runs for the training
and test subsets. The curve plots the mean score, and the filled in area suggests the variability of cross-validation
by plotting one standard deviation above and below the mean for each split.

Parameters

estimator
[a scikit-learn estimator] An object that implements fit and predict, can be a classifier,
regressor, or clusterer so long as there is also a valid associated scoring metric.

Note that the object is cloned for each validation.

param_name
[string] Name of the parameter that will be varied.

param_range
[array-like, shape (n_values,)] The values of the parameter that will be evaluated.

ax
[matplotlib. Axes object, optional] The axes object to plot the figure on.

logx
[boolean, optional] If True, plots the x-axis with a logarithmic scale.

groups
[array-like, with shape (n_samples,)] Optional group labels for the samples used while split-
ting the dataset into train/test sets.

cv
[int, cross-validation generator or an iterable, optional] Determines the cross-validation split-
ting strategy. Possible inputs for cv are:

¢ None, to use the default 3-fold cross-validation,
* integer, to specify the number of folds.
* An object to be used as a cross-validation generator.

* An iterable yielding train/test splits.

8.3. Visualizers and API 231

Yellowbrick Documentation, Release v1.5

see the scikit-learn cross-validation guide for more information on the possible strategies
that can be used here.

scoring
[string, callable or None, optional, default: None] A string or scorer callable object / function
with signature scorer(estimator, X, y). See scikit-learn model evaluation documen-
tation for names of possible metrics.

n_jobs
[integer, optional] Number of jobs to run in parallel (default 1).
pre_dispatch

[integer or string, optional] Number of predispatched jobs for parallel execution (default is
all). The option can reduce the allocated memory. The string can be an expression like

‘2*n_jobs’.

markers
[string, default: ‘-d’] Matplotlib style markers for points on the plot points Options: ‘-, ‘-+’,
6_0’, ‘_*” ‘—V” ‘-h?, 6_d7

kwargs

[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Notes

This visualizer is essentially a wrapper for the sklearn.model_selection.learning_curve utility, dis-
cussed in the validation curves documentation.

See also:

The documentation for the learning_curve function, which this visualizer wraps.

Examples

>>> import numpy as np

>>> from yellowbrick.model_selection import ValidationCurve

>>> from sklearn.svm import SVC

>>> pr = np.logspace(-6,-1,5)

>>> model = ValidationCurve(SVC(), param_name="gamma', param_range=pr)
>>> model . fit(X, y)

>>> model. show()

Attributes

train_scores_
[array, shape (n_ticks, n_cv_folds)] Scores on training sets.

train_scores_mean_
[array, shape (n_ticks,)] Mean training data scores for each training split

train_scores_std__
[array, shape (n_ticks,)] Standard deviation of training data scores for each training split

test_scores_
[array, shape (n_ticks, n_cv_folds)] Scores on test set.

232 Chapter 8. Table of Contents

https://bit.ly/2MMQAI7
https://bit.ly/2KlumeB
https://bit.ly/2Yz9sBB

Yellowbrick Documentation, Release v1.5

test_scores_mean_
[array, shape (n_ticks,)] Mean test data scores for each test split

test_scores_std_
[array, shape (n_ticks,)] Standard deviation of test data scores for each test split

draw (**kwargs)

Renders the training and test curves.
finalize(**kwargs)

Add the title, legend, and other visual final touches to the plot.
fit (X, y=None)

Fits the validation curve with the wrapped estimator and parameter array to the specified data. Draws
training and test score curves and saves the scores to the visualizer.

Parameters

X

[array-like, shape (n_samples, n_features)] Training vector, where n_samples is the number
of samples and n_features is the number of features.

y
[array-like, shape (n_samples) or (n_samples, n_features), optional] Target relative to X
for classification or regression; None for unsupervised learning.

Returns

self

[instance] Returns the instance of the validation curve visualizer for use in pipelines and
other sequential transformers.

yellowbrick.model_selection.validation_curve.validation_curve (estimator, X, y, param_name,
param_range, ax=None,
logx=False, groups=None,
cv=None, scoring=None,
n_jobs=1, pre_dispatch="all’,
show=True, markers='-d',
**hwargs)

Displays a validation curve for the specified param and values, plotting both the train and cross-validated test

scores. The validation curve is a visual, single-parameter grid search used to tune a model to find the best balance
between error due to bias and error due to variance.

This helper function is a wrapper to use the ValidationCurve in a fast, visual analysis.
Parameters

estimator

[a scikit-learn estimator] An object that implements fit and predict, can be a classifier,
regressor, or clusterer so long as there is also a valid associated scoring metric.

Note that the object is cloned for each validation.

[array-like, shape (n_samples, n_features)] Training vector, where n_samples is the number
of samples and n_features is the number of features.

[array-like, shape (n_samples) or (n_samples, n_features), optional] Target relative to X for
classification or regression; None for unsupervised learning.

8.3. Visualizers and API 233

Yellowbrick Documentation, Release v1.5

param_name
[string] Name of the parameter that will be varied.

param_range
[array-like, shape (n_values,)] The values of the parameter that will be evaluated.

ax
[matplotlib.Axes object, optional] The axes object to plot the figure on.

logx
[boolean, optional] If True, plots the x-axis with a logarithmic scale.

groups
[array-like, with shape (n_samples,)] Optional group labels for the samples used while split-
ting the dataset into train/test sets.

cv
[int, cross-validation generator or an iterable, optional] Determines the cross-validation split-
ting strategy. Possible inputs for cv are:

¢ None, to use the default 3-fold cross-validation,

* integer, to specify the number of folds.

* An object to be used as a cross-validation generator.
* An iterable yielding train/test splits.

see the scikit-learn cross-validation guide for more information on the possible strategies
that can be used here.

scoring
[string, callable or None, optional, default: None] A string or scorer callable object / function
with signature scorer(estimator, X, y). See scikit-learn model evaluation documen-
tation for names of possible metrics.

n_jobs
[integer, optional] Number of jobs to run in parallel (default 1).

pre_dispatch
[integer or string, optional] Number of predispatched jobs for parallel execution (default is
all). The option can reduce the allocated memory. The string can be an expression like
‘2*n_jobs’.

show: bool, default: True
If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize ()

markers
[string, default: ‘-d’] Matplotlib style markers for points on the plot points Options: ‘-, ‘-+’,
‘_0’, ‘_*” ‘—V” 6-h7’ 6_d7

kwargs

[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers. These arguments are also passed to the show () method,
e.g. can pass a path to save the figure to.

Returns

visualizer
[ValidationCurve] The fitted visualizer

234 Chapter 8. Table of Contents

https://bit.ly/2MMQAI7

Yellowbrick Documentation, Release v1.5

Learning Curve

Visualizer LearningCurve

Quick Method | learning_curve()

Models Classification, Regression, Clustering
Workflow Model Selection

A learning curve shows the relationship of the training score versus the cross validated test score for an estimator with
a varying number of training samples. This visualization is typically used to show two things:

1. How much the estimator benefits from more data (e.g. do we have “enough data” or will the estimator get better
if used in an online fashion).

2. If the estimator is more sensitive to error due to variance vs. error due to bias.

Consider the following learning curves (generated with Yellowbrick, but from Plotting Learning Curves in the scikit-
learn documentation):

Learning Curve for GaussianNB Learning Curve for SVC
1.00 —e— Training Score - & 4 - o]
Cross Validation Score

0.85

0.90
o o
9 Q
& 085 &

0.80

0.75 —e— Training Score

Cross Validation Score
250 500 750 1000 1250 1500 250 500 750 1000 1250 1500
Training Instances Training Instances

If the training and cross-validation scores converge together as more data is added (shown in the left figure), then the
model will probably not benefit from more data. If the training score is much greater than the validation score then the
model probably requires more training examples in order to generalize more effectively.

The curves are plotted with the mean scores, however variability during cross-validation is shown with the shaded areas
that represent a standard deviation above and below the mean for all cross-validations. If the model suffers from error
due to bias, then there will likely be more variability around the training score curve. If the model suffers from error
due to variance, then there will be more variability around the cross validated score.

Note: Learning curves can be generated for all estimators that have £it () and predict () methods as well as a single
scoring metric. This includes classifiers, regressors, and clustering as we will see in the following examples.

8.3. Visualizers and API 235

http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html

Yellowbrick Documentation, Release v1.5

Classification

In the following example, we show how to visualize the learning curve of a classification model. After loading a
DataFrame and performing categorical encoding, we create a StratifiedKFold cross-validation strategy to ensure all
of our classes in each split are represented with the same proportion. We then fit the visualizer using the £1_weighted
scoring metric as opposed to the default metric, accuracy, to get a better sense of the relationship of precision and recall
in our classifier.

import numpy as np

from sklearn.model_selection import StratifiedKFold
from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import OneHotEncoder, LabelEncoder

from yellowbrick.datasets import load_game
from yellowbrick.model_selection import LearningCurve

Load a classification dataset
X, vy = load_game()

Encode the categorical data
X = OneHotEncoder().fit_transform(X)
y = LabelEncoder() .fit_transform(y)

Create the learning curve visualizer
cv = StratifiedKFold(n_splits=12)
sizes = np.linspace(0.3, 1.0, 10)

Instantiate the classification model and visualizer
model = MultinomialNB()
visualizer = LearningCurve(
model, cv=cv, scoring='fl weighted', train_sizes=sizes, n_jobs=4

)
visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

This learning curve shows high test variability and a low score up to around 30,000 instances, however after this level
the model begins to converge on an F1 score of around 0.6. We can see that the training and test scores have not yet
converged, so potentially this model would benefit from more training data. Finally, this model suffers primarily from
error due to variance (the CV scores for the test data are more variable than for training data) so it is possible that the
model is overfitting.

Regression

Building a learning curve for a regression is straight forward and very similar. In the below example, after loading our
data and selecting our target, we explore the learning curve score according to the coefficient of determination or R2
score.

from sklearn.linear_model import RidgeCV

from yellowbrick.datasets import load_energy

(continues on next page)

236 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Learning Curve for MultinomialNB
—@— Training Score

Cross Validation Score
0.75

0.70

0.65

0.60

Score

0.55

0.50

0.45

20000 30000 40000 50000 60000
Training Instances

(continued from previous page)

from yellowbrick.model_selection import LearningCurve

Load a regression dataset
X, y = load_energy()

Instantiate the regression model and visualizer
model = RidgeCV()
visualizer = LearningCurve(model, scoring='r2")

visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

This learning curve shows a very high variability and much lower score until about 350 instances. It is clear that this
model could benefit from more data because it is converging at a very high score. Potentially, with more data and a
larger alpha for regularization, this model would become far less variable in the test data.

8.3. Visualizers and API 237

Yellowbrick Documentation, Release v1.5

Learning Curve for RidgeCV

1 c o T ~ ~
0
o -1
[}
(]
n
-2
-3 ~ —@— Training Score
Cross Validation Score
100 200 300 400 500 600
Training Instances
Clustering

Learning curves also work for clustering models and can use metrics that specify the shape or organization of clusters
such as silhouette scores or density scores. If the membership is known in advance, then rand scores can be used to
compare clustering performance as shown below:

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

from yellowbrick.model_selection import LearningCurve

Generate synthetic dataset with 5 random clusters
X, y = make_blobs(n_samples=1000, centers=5, random_state=42)

Instantiate the clustering model and visualizer
model = KMeans()
visualizer = LearningCurve(model, scoring="adjusted_rand_score", random_state=42)

visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

Unfortunately, with random data these curves are highly variable, but serve to point out some clustering-specific items.
First, note the y-axis is very narrow, roughly speaking these curves are converged and actually the clustering algorithm
is performing very well. Second, for clustering, convergence for data points is not necessarily a bad thing; in fact we
want to ensure as more data is added, the training and cross-validation scores do not diverge.

238 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Learning Curve for KMeans

0.80 =@— Training Score
Cross Validation Score

0.78

0.76

<]
@
—C—
0.72 /
0.70
0.68
100 200 300 400 500 600 700 800

Training Instances

Quick Method

The same functionality can be achieved with the associated quick method learning_curve. This method will build
the LearningCurve object with the associated arguments, fit it, then (optionally) immediately show the visualization.

from sklearn.linear_model import RidgeCV

from yellowbrick.datasets import load_energy
from yellowbrick.model_selection import learning_curve

Load a regression dataset
X, y = load_energy(Q)

learning_curve(RidgeCV(), X, y, scoring='r2")

See also:

This visualizer is based on the validation curve described in the scikit-learn documentation: Learning Curves. The
visualizer wraps the learning_curve function and most of the arguments are passed directly to it.

8.3. Visualizers and API 239

http://scikit-learn.org/stable/modules/learning_curve.html#learning-curve
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html#sklearn.model_selection.learning_curve

Yellowbrick Documentation, Release v1.5

Learning Curve for RidgeCV

@ L 4 a 0. D

Score

-3 ~ —@— Training Score
Cross Validation Score

100 200 300 400 500 600
Training Instances

API Reference

Implements a learning curve visualization for model selection.

class yellowbrick.model_selection.learning_curve.LearningCurve (estimator, ax=None,
groups=None,
train_sizes=array([0.1, 0.325,
0.55, 0.775, 1.0]), cv=None,
scoring=None, ex-
ploit_incremental_learning=False,
n_jobs=1, pre_dispatch="all’,
shuffle=False,
random_state=None, **kwargs)

Bases: ModelVisualizer

Visualizes the learning curve for both test and training data for different training set sizes. These curves can act
as a proxy to demonstrate the implied learning rate with experience (e.g. how much data is required to make
an adequate model). They also demonstrate if the model is more sensitive to error due to bias vs. error due to
variance and can be used to quickly check if a model is overfitting.

The visualizer evaluates cross-validated training and test scores for different training set sizes. These curves are
plotted so that the x-axis is the training set size and the y-axis is the score.

The cross-validation generator splits the whole dataset k times, scores are averaged over all k runs for the training
subset. The curve plots the mean score for the k splits, and the filled in area suggests the variability of the cross-
validation by plotting one standard deviation above and below the mean for each split.

240 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Parameters

estimator
[a scikit-learn estimator] An object that implements fit and predict, can be a classifier,
regressor, or clusterer so long as there is also a valid associated scoring metric.

Note that the object is cloned for each validation.

ax
[matplotlib.Axes object, optional] The axes object to plot the figure on.

groups
[array-like, with shape (n_samples,)] Optional group labels for the samples used while split-
ting the dataset into train/test sets.

train_sizes
[array-like, shape (n_ticks,)] default: np.linspace(0.1,1.0,5)

Relative or absolute numbers of training examples that will be used to generate the learning
curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training
set, otherwise it is interpreted as absolute sizes of the training sets.

cv
[int, cross-validation generator or an iterable, optional] Determines the cross-validation split-
ting strategy. Possible inputs for cv are:

¢ None, to use the default 3-fold cross-validation,

* integer, to specify the number of folds.

* An object to be used as a cross-validation generator.
* An iterable yielding train/test splits.

see the scikit-learn cross-validation guide for more information on the possible strategies
that can be used here.

scoring
[string, callable or None, optional, default: None] A string or scorer callable object / function
with signature scorer(estimator, X, y). See scikit-learn model evaluation documen-
tation for names of possible metrics.

exploit_incremental_learning
[boolean, default: False] If the estimator supports incremental learning, this will be used to
speed up fitting for different training set sizes.

n_jobs
[integer, optional] Number of jobs to run in parallel (default 1).

pre_dispatch
[integer or string, optional] Number of predispatched jobs for parallel execution (default is
all). The option can reduce the allocated memory. The string can be an expression like
‘2*n_jobs’.

shuffle

[boolean, optional] Whether to shuffle training data before taking prefixes of it based
on “train_sizes .

random_state
[int, RandomState instance or None, optional (default=None)] If int, random_state is the seed
used by the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance used
by np.random. Used when shuffle is True.

8.3. Visualizers and API 241

https://bit.ly/2MMQAI7

Yellowbrick Documentation, Release v1.5

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Notes

This visualizer is essentially a wrapper for the sklearn.model_selection.learning_curve utility, dis-
cussed in the validation curves documentation.

See also:

The documentation for the learning_curve function, which this visualizer wraps.

Examples

>>> from yellowbrick.model_selection import LearningCurve
>>> from sklearn.naive_bayes import GaussianNB

>>> model = LearningCurve(GaussianNB())

>>> model. fit(X, y)

>>> model.show()

Attributes

train_sizes_
[array, shape = (n_unique_ticks,), dtype int] Numbers of training examples that has been
used to generate the learning curve. Note that the number of ticks might be less than n_ticks
because duplicate entries will be removed.

train_scores_
[array, shape (n_ticks, n_cv_folds)] Scores on training sets.

train_scores_mean_
[array, shape (n_ticks,)] Mean training data scores for each training split

train_scores_std_
[array, shape (n_ticks,)] Standard deviation of training data scores for each training split

test_scores_
[array, shape (n_ticks, n_cv_folds)] Scores on test set.

test_scores_mean_
[array, shape (n_ticks,)] Mean test data scores for each test split

test_scores_std_
[array, shape (n_ticks,)] Standard deviation of test data scores for each test split

draw (**kwargs)

Renders the training and test learning curves.
finalize(**kwargs)

Add the title, legend, and other visual final touches to the plot.
fit (X, y=None)

Fits the learning curve with the wrapped model to the specified data. Draws training and test score curves
and saves the scores to the estimator.

Parameters

242 Chapter 8. Table of Contents

https://bit.ly/2KlumeB
https://bit.ly/2Yz9sBB

Yellowbrick Documentation, Release v1.5

X
[array-like, shape (n_samples, n_features)] Training vector, where n_samples is the number
of samples and n_features is the number of features.

y
[array-like, shape (n_samples) or (n_samples, n_features), optional] Target relative to X
for classification or regression; None for unsupervised learning.

Returns

self
[instance] Returns the instance of the learning curve visualizer for use in pipelines and
other sequential transformers.

yellowbrick.model_selection.learning_curve.learning_curve (estimator, X, y, ax=None, groups=None,
train_sizes=array([0.1, 0.325, 0.55,
0.775, 1.0]), cv=None, scoring=None,
exploit_incremental_learning=False,
n_jobs=1, pre_dispatch="all’,
shuffle=False, random_state=None,
show=True, **kwargs)

Displays a learning curve based on number of samples vs training and cross validation scores. The learning curve
aims to show how a model learns and improves with experience.

This helper function is a quick wrapper to utilize the LearningCurve for one-off analysis.
Parameters

estimator
[a scikit-learn estimator] An object that implements fit and predict, can be a classifier,
regressor, or clusterer so long as there is also a valid associated scoring metric.

Note that the object is cloned for each validation.

X
[array-like, shape (n_samples, n_features)] Training vector, where n_samples is the number
of samples and n_features is the number of features.

y
[array-like, shape (n_samples) or (n_samples, n_features), optional] Target relative to X for
classification or regression; None for unsupervised learning.

ax
[matplotlib.Axes object, optional] The axes object to plot the figure on.

groups

[array-like, with shape (n_samples,)] Optional group labels for the samples used while split-
ting the dataset into train/test sets.

train_sizes
[array-like, shape (n_ticks,)] default: np.linspace(0.1,1.0,5)

Relative or absolute numbers of training examples that will be used to generate the learning
curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training
set, otherwise it is interpreted as absolute sizes of the training sets.

cv
[int, cross-validation generator or an iterable, optional] Determines the cross-validation split-
ting strategy. Possible inputs for cv are:

¢ None, to use the default 3-fold cross-validation,

8.3. Visualizers and API 243

Yellowbrick Documentation, Release v1.5

* integer, to specify the number of folds.
* An object to be used as a cross-validation generator.
* An iterable yielding train/test splits.

see the scikit-learn cross-validation guide for more information on the possible strategies
that can be used here.

scoring
[string, callable or None, optional, default: None] A string or scorer callable object / function
with signature scorer(estimator, X, y). See scikit-learn model evaluation documen-
tation for names of possible metrics.

exploit_incremental_learning
[boolean, default: False] If the estimator supports incremental learning, this will be used to
speed up fitting for different training set sizes.

n_jobs
[integer, optional] Number of jobs to run in parallel (default 1).

pre_dispatch
[integer or string, optional] Number of predispatched jobs for parallel execution (default is
all). The option can reduce the allocated memory. The string can be an expression like
‘2*n_jobs’.

shuffle

[boolean, optional] Whether to shuffle training data before taking prefixes of it based
on “train_sizes .

random_state
[int, RandomState instance or None, optional (default=None)] If int, random_state is the seed
used by the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance used
by np.random. Used when shuffle is True.

show
[bool, default: True] If True, calls show(), which in turn calls plt.show() however you
cannot call plt.savefig from this signature, nor clear_figure. If False, simply calls
finalize()

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers. These arguments are also passed to the show() method,
e.g. can pass a path to save the figure to.

Returns

visualizer
[LearningCurve] Returns the fitted visualizer.

244 Chapter 8. Table of Contents

https://bit.ly/2MMQAI7

Yellowbrick Documentation, Release v1.5

Cross Validation Scores

Visualizer CVScores

Quick Method | cv_scores()

Models Classification, Regression
Workflow Model Selection

Generally we determine whether a given model is optimal by looking at it’s F1, precision, recall, and accuracy (for
classification), or it’s coefficient of determination (R2) and error (for regression). However, real world data is often
distributed somewhat unevenly, meaning that the fitted model is likely to perform better on some sections of the data
than on others. Yellowbrick’s CVScores visualizer enables us to visually explore these variations in performance using
different cross validation strategies.

Cross Validation

Cross-validation starts by shuffling the data (to prevent any unintentional ordering errors) and splitting it into k folds.
Then k models are fit on % of the data (called the training split) and evaluated on % of the data (called the test split).
The results from each evaluation are averaged together for a final score, then the final model is fit on the entire dataset
for operationalization.

In Yellowbrick, the CVScores visualizer displays cross-validated scores as a bar chart (one bar for each fold) with the
average score across all folds plotted as a horizontal dotted line.

Classification

In the following example, we show how to visualize cross-validated scores for a classification model. After loading our
occupancy data as a DataFrame, we created a StratifiedKFold cross-validation strategy to ensure all of our classes
in each split are represented with the same proportion. We then fit the CVScores visualizer using the £1_weighted
scoring metric as opposed to the default metric, accuracy, to get a better sense of the relationship of precision and recall
in our classifier across all of our folds.

from sklearn.model_selection import StratifiedKFold
from sklearn.naive_bayes import MultinomialNB

from yellowbrick.datasets import load_occupancy
from yellowbrick.model_selection import CVScores

(continues on next page)

8.3. Visualizers and API 245

Yellowbrick Documentation, Release v1.5

(continued from previous page)

Load the classification dataset
X, y = load_occupancy()

Create a cross-validation strategy
cv = StratifiedKFold(n_splits=12, shuffle=True, random_state=42)

Instantiate the classification model and visualizer
model = MultinomialNB()
visualizer = CVScores(model, cv=cv, scoring='fl_weighted')

visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

Cross Validation Scores for MultinomialNB

_|---- Mean score = 0.941 e __ o . e d o
0.
0.
0.
0.
0.0
1 2 3 4 5 6 7 8 9 10 11 12

Training Instances

Score
(o] oo

N

N

Our resulting visualization shows that while our average cross-validation score is quite high, there are some splits for
which our fitted MultinomialNB classifier performs significantly less well.

246 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Regression

In this next example we show how to visualize cross-validated scores for a regression model. After loading our energy
data as a DataFrame, we instantiated a simple KFold cross-validation strategy. We then fit the CVScores visualizer
using the r2 scoring metric, to get a sense of the coefficient of determination for our regressor across all of our folds.

from sklearn.linear_model import Ridge
from sklearn.model_selection import KFold

from yellowbrick.datasets import load_energy
from yellowbrick.model_selection import CVScores

Load the regression dataset
X, y = load_energy()

Instantiate the regression model and visualizer
= KFold(n_splits=12, shuffle=True, random_state=42)

model = Ridge()
visualizer = CVScores(model, cv=cv, scoring='r2")

visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.show() # Finalize and render the figure

Cross Validation Scores for Ridge

---- Mean score = 0.909

0. 11 1 111
0.

0.

0.

0.0

Tralnlng Instances

Score
o oo

N

N

As with our classification CVScores visualization, our regression visualization suggests that our Ridge regressor
performs very well (e.g. produces a high coefficient of determination) across nearly every fold, resulting in another

8.3. Visualizers and API 247

Yellowbrick Documentation, Release v1.5

fairly high overall R2 score.

Quick Method

The same functionality above can be achieved with the associated quick method cv_scores. This method
will build the CVScores object with the associated arguments, fit it, then (optionally) immediately show
the visualization.

from sklearn.linear_model import Ridge
from sklearn.model_selection import KFold

from yellowbrick.datasets import load_energy
from yellowbrick.model_selection import cv_scores

Load the regression dataset
X, y = load_energy(Q)

Instantiate the regression model and visualizer
cv = KFold(n_splits=12, shuffle=True, random_state=42)

model = Ridge()
visualizer = cv_scores(model, X, y, cv=cv, scoring='r2")

Cross Validation Scores for Ridge

---- Mean score = 0.909

O. IR S R T I [A—
0.

0.

0.

0.0

Tralnlng Instances

Score
o oo

N

N

248 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

API Reference

Implements cross-validation score plotting for model selection.

class yellowbrick.model_selection.cross_validation.CVScores (estimator, ax=None, cv=None,
scoring=None, color=None,
**kwargs)

Bases: ModelVisualizer

CVScores displays cross-validated scores as a bar chart, with the average of the scores plotted as a horizontal
line.

Parameters

estimator
[a scikit-learn estimator] An object that implements fit and predict, can be a classifier,
regressor, or clusterer so long as there is also a valid associated scoring metric. Note that the
object is cloned for each validation.

ax
[matplotlib. Axes object, optional] The axes object to plot the figure on.

cv
[int, cross-validation generator or an iterable, optional] Determines the cross-validation split-
ting strategy. Possible inputs for cv are:

¢ None, to use the default 3-fold cross-validation,

* integer, to specify the number of folds.

* An object to be used as a cross-validation generator.
* An iterable yielding train/test splits.

See the scikit-learn cross-validation guide for more information on the possible strategies
that can be used here.

scoring
[string, callable or None, optional, default: None] A string or scorer callable object / function
with signature scorer(estimator, X, y).

See scikit-learn cross-validation guide for more information on the possible metrics that can
be used.

color: string
Specify color for barchart

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Attributes

cv_scores_
[ndarray shape (n_splits,)] The cross-validated scores from each subsection of the data

cv_scores_mean_
[float] Average cross-validated score across all subsections of the data

8.3. Visualizers and API 249

https://goo.gl/FS3VU6
https://goo.gl/FS3VU6

Yellowbrick Documentation, Release v1.5

Notes

This visualizer is a wrapper for sklearn.model_selection.cross_val_score.

Refer to the scikit-learn cross-validation guide for more details.

Examples

>>> from sklearn import datasets, svm

>>> iris = datasets.load_iris()

>>> clf = svm.SVC(kernel="linear', C=1)

>>> X = iris.data

>>> y = iris.target

>>> visualizer = CVScores(estimator=clf, cv=5, scoring='fl_macro')
>>> visualizer.fit(X,y)

>>> visualizer.show()

draw (**kwargs)

Creates the bar chart of the cross-validated scores generated from the fit method and places a dashed hori-
zontal line that represents the average value of the scores.

finalize(**kwargs)
Add the title, legend, and other visual final touches to the plot.

fit (X, y, **kwargs)
Fits the learning curve with the wrapped model to the specified data. Draws training and test score curves
and saves the scores to the estimator.

Parameters

X
[array-like, shape (n_samples, n_features)] Training vector, where n_samples is the number
of samples and n_features is the number of features.

y
[array-like, shape (n_samples) or (n_samples, n_features), optional] Target relative to X
for classification or regression; None for unsupervised learning.

Returns

self
[instance]

yellowbrick.model_selection.cross_validation.cv_scores (estimator, X, y, ax=None, cv=None,
scoring=None, color=None, show=True,
**kwargs)

Displays cross validation scores as a bar chart and the average of the scores as a horizontal line
This helper function is a quick wrapper to utilize the CVScores visualizer for one-off analysis.
Parameters

estimator
[a scikit-learn estimator] An object that implements fit and predict, can be a classifier,
regressor, or clusterer so long as there is also a valid associated scoring metric. Note that the
object is cloned for each validation.

250 Chapter 8. Table of Contents

https://goo.gl/4v7dfL
https://goo.gl/FS3VU6

Yellowbrick Documentation, Release v1.5

[array-like, shape (n_samples, n_features)] Training vector, where n_samples is the number
of samples and n_features is the number of features.

[array-like, shape (n_samples) or (n_samples, n_features), optional] Target relative to X for
classification or regression; None for unsupervised learning.

ax
[matplotlib.Axes object, optional] The axes object to plot the figure on.

cv
[int, cross-validation generator or an iterable, optional] Determines the cross-validation split-
ting strategy. Possible inputs for cv are:

¢ None, to use the default 3-fold cross-validation,

* integer, to specify the number of folds.

* An object to be used as a cross-validation generator.
* An iterable yielding train/test splits.

see the scikit-learn

“cross-validation guide <https://goo.gl/FS3VU6>"_

for more information on the possible strategies that can be used here.

scoring
[string, callable or None, optional, default: None] A string or scorer callable object / function
with signature scorer (estimator, X, y).

See scikit-learn cross-validation guide for more information on the possible metrics that can
be used.

color: string
Specify color for barchart

show: bool, default: True
If True, calls show(), which in turn calls plt.show() however you cannot call plt.
savefig from this signature, nor clear_figure. If False, simply calls finalize()

kwargs
[dict] Keyword arguments that are passed to the base class and may influence the visualiza-
tion as defined in other Visualizers.

Returns

visualizer
[CVScores] The fitted visualizer.

Feature Importances

The feature engineering process involves selecting the minimum required features to produce a valid model because the
more features a model contains, the more complex it is (and the more sparse the data), therefore the more sensitive the
model is to errors due to variance. A common approach to eliminating features is to describe their relative importance
to a model, then eliminate weak features or combinations of features and re-evalute to see if the model fairs better
during cross-validation.

Many model forms describe the underlying impact of features relative to each other. In scikit-learn, Deci-
sion Tree models and ensembles of trees such as Random Forest, Gradient Boosting, and Ada Boost provide a
feature_importances_ attribute when fitted. The Yellowbrick FeatureImportances visualizer utilizes this at-
tribute to rank and plot relative importances.

8.3. Visualizers and API 251

https://goo.gl/FS3VU6

Yellowbrick Documentation, Release v1.5

Visualizer FeatureImportances

Quick Method | feature_importances()
Models Classification, Regression
Workflow Model selection, feature selection

Let’s start with an example; first load a classification dataset.

Then we can create a new figure (this is optional, if an Axes isn’t specified, Yellowbrick will use the current figure or
create one). We can then fit a FeatureImportances visualizer with a GradientBoostingClassifier to visualize
the ranked features.

from sklearn.ensemble import RandomForestClassifier

from yellowbrick.datasets import load_occupancy
from yellowbrick.model_selection import FeatureImportances

Load the classification data set
X, y = load_occupancy()

model = RandomForestClassifier(n_estimators=10)
viz = FeatureImportances(model)

viz. fit(X, y)

viz.show()

Feature Importances of 5 Features using RandomForestClassifier

light

temperature

COo2

humidity

relative humidity

0 20 40 60 80 100
relative importance

The above figure shows the features ranked according to the explained variance each feature contributes to the model. In
this case the features are plotted against their relative importance, that is the percent importance of the most important

252 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

feature. The visualizer also contains features_ and feature_importances_ attributes to get the ranked numeric
values.

For models that do not support a feature_importances_ attribute, the FeatureImportances visualizer will also
draw a bar plot for the coef_ attribute that many linear models provide.

When using a model with a coef_ attribute, it is better to set relative=False to draw the true magnitude of the
coefficient (which may be negative). We can also specify our own set of labels if the dataset does not have column
names or to print better titles. In the example below we title case our features for better readability:

from sklearn.linear_model import Lasso
from yellowbrick.datasets import load_concrete
from yellowbrick.model_selection import FeatureImportances

Load the regression dataset
dataset = load_concrete(return_dataset=True)
X, y = dataset.to_data()

Title case the feature for better display and create the visualizer
labels = list(map(lambda s: s.title(), dataset.meta['features']))
viz = FeatureImportances(Lasso(), labels=labels, relative=False)

Fit and show the feature importances
viz. fit(X, y)
viz.show()

Feature Importances of 8 Features using Lasso
Splast
Age
Slag
Fine .

Coarse

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
coefficient value

8.3. Visualizers and API 253

Yellowbrick Documentation, Release v1.5

Note: The interpretation of the importance of coeficients depends on the model; see the discussion below for more
details.

Stacked Feature Importances

Some estimators return a multi-dimensonal array for either feature_importances_ or coef_ attributes. For exam-
ple the LogisticRegression classifier returns a coef_ array in the shape of (n_classes, n_features) in the
multiclass case. These coefficients map the importance of the feature to the prediction of the probability of a spe-
cific class. Although the interpretation of multi-dimensional feature importances depends on the specific estimator
and model family, the data is treated the same in the FeatureImportances visualizer — namely the importances are
averaged.

Taking the mean of the importances may be undesirable for several reasons. For example, a feature may be more
informative for some classes than others. Multi-output estimators also do not benefit from having averages taken across
what are essentially multiple internal models. In this case, use the stack=True parameter to draw a stacked bar chart
of importances as follows:

from yellowbrick.model_selection import FeatureImportances
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris

data = load_iris(Q)
X, vy data.data, data.target

model = LogisticRegression(multi_class="auto", solver="liblinear")
viz = FeatureImportances(model, stack=True, relative=False)

viz. fit(X, y)

viz.show()

Top and Bottom Feature Importances

It may be more illuminating to the feature engineering process to identify the most or least informative features. To
view only the N most informative features, specify the topn argument to the visualizer. Similar to slicing a ranked list
by their importance, if topn is a postive integer, then the most highly ranked features are used. If topn is a negative
integer, then the lowest ranked features are displayed instead.

from sklearn.linear_model import Lasso
from yellowbrick.datasets import load_concrete
from yellowbrick.model_selection import FeatureImportances

Load the regression dataset
dataset = load_concrete(return_dataset=True)
X, y = dataset.to_data()

Title case the feature for better display and create the visualizer
labels = list(map(lambda s: s.title(), dataset.meta['features']))

viz = FeatureImportances(Lasso(), labels=labels, relative=False, topn=3)

Fit and show the feature importances

(continues on next page)

254 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Feature Importances of 4 Features using LogisticRegression

2
3
Il 0
1
Il 2
0
1

-3 -2 -1 0 1 2 3
coefficient value

(continued from previous page)

viz. fit(X, y)
viz.show()

Using topn=3, we can identify the three most informative features in the concrete dataset as splast, cement, and
water. This approach to visualization may assist with factor analysis - the study of how variables contribute to an
overall model. Note that although water has a negative coeflicient, it is the magnitude (absolute value) of the feature that
matters since we are closely inspecting the negative correlation of water with the strength of concrete. Alternatively,
topn=-3 would reveal the three least informative features in the model. This approach is useful to model tuning similar
to Recursive Feature Elimination, but instead of automatically removing features, it would allow you to identify the
lowest-ranked features as they change in different model instantiations. In either case, if you have many features, using
topn can significantly increase the visual and analytical capacity of your analysis.

The topn parameter can also be used when stacked=True. In the context of stacked feature importance graphs, the
information of a feature is the width of the entire bar, or the sum of the absolute value of all coefficients contained
therein.

from yellowbrick.model_selection import FeatureImportances
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris

data = load_iris(Q)
X, y = data.data, data.target

model = LogisticRegression(multi_class="auto", solver="liblinear")

(continues on next page)

8.3. Visualizers and API 255

Yellowbrick Documentation, Release v1.5

Feature Importances of Top 3 Features using Lasso

Splast

Cement

Water

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
coefficient value

(continued from previous page)

viz = FeatureImportances(model, stack=True, relative=False, topn=-3)
viz. fit(X, y)
viz.show()

Discussion

Generalized linear models compute a predicted independent variable via the linear combination of an array of coeffi-
cients with an array of dependent variables. GLMs are fit by modifying the coefficients so as to minimize error and
regularization techniques specify how the model modifies coefficients in relation to each other. As a result, an oppor-
tunity presents itself: larger coeflicients are necessarily “more informative” because they contribute a greater weight
to the final prediction in most cases.

Additionally we may say that instance features may also be more or less “informative” depending on the product of the
instance feature value with the feature coefficient. This creates two possibilities:

1. We can compare models based on ranking of coefficients, such that a higher coefficient is “more informative”.

2. We can compare instances based on ranking of feature/coefficient products such that a higher product is “more
informative”.

In both cases, because the coefficient may be negative (indicating a strong negative correlation) we must rank features
by the absolute values of their coefficients. Visualizing a model or multiple models by most informative feature is
usually done via bar chart where the y-axis is the feature names and the x-axis is numeric value of the coefficient such
that the x-axis has both a positive and negative quadrant. The bigger the size of the bar, the more informative that
feature is.

256 Chapter 8. Table of Contents

Yellowbrick Documentation, Release v1.5

Feature Importances of Bottom 3 Features using LogisticRegression

3
Il 0
1 1
Il 2
0

-3 -2 -1 0 1 2
coefficient value

This method may also be used for instances; but generally there are very many instances relative to th