

Welcome to yeadon’s documentation!

This package calculates the masses, center of mass positions, and inertia
tensors that correspond to the human inertia model developed by Yeadon [1]. The
package allows for the input of both measurements from
human subjects and configuration variables (joint angles) with which one can
orient the model. Additionally, the package allows for 3D visualization of the
model using the package.

One possible use of the package is to incorporate the inertial properties of an
actual human into a rigid body dynamics model that contains a human. Then, the
model containing the human can be compared to experiments performed with the
same human.

This package was developed during the Summer of 2011 at the University of
California, Davis, to aid with the bicycle research of Jason Moore and Dale
Luke Peterson in the Sports Biomechanics Lab of Professor Mont Hubbard. Jason
Moore had a multibody dynamics model of a human riding a bicycle, and performed
experiments with humans riding a bicycle. To compare his model to his
experiments, he needed the inertial properties of the human riding the bicycle.
That’s what this package was able to provide him [2]. Learn more about the
Sports Biomechanics Lab at biosport.ucdavis.edu [http://biosport.ucdavis.edu].

Here is a video that introduces the basics of this package:
http://youtu.be/o-5Ss6YLY0I.

Contents

	Overview

	Usage

	Measurements

	Configuration

	Release Notes

	API Documentation

Installation

The README.rst file in the source distribution of this packge contains
installation instructions.

Website navigation

	Index

	Module Index

References

[1] M. R. Yeadon, 1990. The Simulation of Aerial Movement-ii. Mathematical
Inertia Model of the Human Body. Journal of Biomechanics, 23:67-74.

[2] J. Moore, 2012. Human Control of a Bicycle. University of California,
Davis. [http://moorepants.github.io/dissertation/physicalparameters.html#human-parameters]

Overview

This page describes the basics of Yeadon’s inertia model. It is expected that
the user of this package has read Yeadon’s 1990 papers, especially Yeadon
1990-ii. There are four related papers, identified by numerals i-iv.

Here is a summary of his four papers:

	i: motivation, conceptual description of joints, obtaining orientation angles
from film

	ii: modeling human geometry using stadium solids

	iii: inertia transforms and angular momentum of the stadium solids

	iv: simulation verification

The Measurements page in this documentation describes the particularly
relevant parts of paper ii, while the Configuration page does the same
for paper iv.

Yeadon models a human using 39 stadium solids and 1 semi-ellipsoid (for the
head). These 40 solids make up 11 rigid body segments, which are connected to
each other via joints (e.g., the knee). This relatively simple geometry allows
for one to swiftly calculate quantities relevant for dynamics. These quantities
are mass, center of mass positions, and inertia tensors. These quantities can
be obtained in the global reference frame, or in the local frame of a segment
or solid.

One can use this package to incorporate a human into equations of motion,
though this endeavor is left to the user. The package does not deal at all
with angular momentum (the topic of paper iii).

There are a few differences between Yeadon’s model described in his
publications and the model implemented in this package. Here are some of the
bigger ones:

	In Yeadon’s model, the global frame of the human is defined in a complicated
way that depends on the configuration of the human. In this package, the
global frame does not depend on the configuration.

	In Yeadon’s model, the orientation of the legs are related to each other, so
that there are less degrees of freedom than there are joint angles
(generalized coordinates). No joint angles are coupled in this package.

	Yeadon provides the option of formulating the model with additional joints
for the feet and hands. Here, the feet and hands are rigid parts of the legs
and forearms, respectively.

	Yeadon labels the solids with indices starting from 1 (s1 is the first
solid), while this package indexes the solids from 0 (s0 is the first solid).
The labels for the segments (e.g. A1, J1, etc.) are unchanged.

	Both packages allow making the model symmetric (averaging both the two arms
and the two legs), but do so in different ways. We average the input
measurements for the limbs, and then proceed to compute masses, center of
mass positions, and inertia tensors with these averaged measurements. Yeadon,
however, enforces symmetry by averaging these three quantities as the last
step (the measurements across limbs are not averaged).

Usage

This page shows how one can use yeadon once it’s installed.

Three different interfaces

There are three ways of using the yeadon package: through the text-based
user interface (UI), through the graphical user interafce (GUI), and through a
Python interpreter or in your own Python code. The can run the UI by entering
the following in a terminal or command window:

$ yeadon --ui

or by entering a Python interpreter and executing the following:

import yeadon
yeadon.start_ui()

The interface will guide you through its use. You can enter in
measurements, then configuration (joint angles), and then can modify joint
angles, access data, or use one of the features listed below.

The GUI is run by entering the following in a terminal or command window:

$ yeadon --gui

or by entering a Python interpreter and executing the following:

>>> yeadon.start_gui()

The last way is through the API in a Python script or module. You import the
module and then create a Human:

>>> import yeadon
>>> human = yeadon.Human(<measfilename>, <CFGfilename>)

where <measfilename> and <CFGfilename> are either paths to .txt
files, or are dictionaries. The <CFGfilename> argument is optional. If not
provided, the human is created in a default configuration. See
Measurements or Configuration for more detail. With an instance
of Human, we can access inertia properties of the entire human, of
its segments (e.g. limbs), or of the individual solids that make up the
segments.

Attributes of Human

Suppose we have an instance of Human, named chad. Before we show
what one can do with a Human, we present the attributes that
represent the human’s segments. There is an attribute for each segment, whose
name is the same as that used by Yeadon.

	chad.P pelvis

	chad.T thorax

	chad.C chest-head

	chad.A1 left upper arm

	chad.A2 left forearm-hand

	chad.B1 right upper arm

	chad.B2 right forearm-hand

	chad.J1 left thigh

	chad.J2 left shank-foot

	chad.K1 right thigh

	chad.K2 right shank-foot

Also, one can access a list of all these segments, perhaps for iteration, via
the chad.segments attribute. The solids that make up each segment can be
accessed through the solids attribute of each of the Segments’s above:

>>> chad.P.solids[0].label
's0: hip joint centre'

Setting the configuration

One can set the configuration of the model using a <CFGfilename> as
described above, or by using the chad.set_CFG() method:

>>> chad.set_CFG('somersault', 0.5 * 3.1416)

When one calls this method, the inertia properties are recomputed. The list of
configuration variables is stored in Human.CFGnames.

Summary of functionality

Print inertia properties

This is the quickest way to get the relevant information out of the model.
There are methods to print the properties of the entire human, of segments,
or of solids. The following prints the inertia properties for the entire
human:

>>> chad.print_properties()
Mass (kg): 58.2004885884

COM in global frame from bottom center of pelvis (Ls0) (m):
[[1.62144613e-17]
[0.00000000e+00]
[1.19967938e-02]]

Inertia tensor in global frame about human's COM (kg-m^2):
[[9.63093850e+00 2.20795600e-20 6.10622664e-16]
[2.20795600e-20 9.99497872e+00 2.70396625e-36]
[6.10622664e-16 2.70396625e-36 5.45117742e-01]]

The following shows how one can print the inertia properties for the
J1, or left thigh, segment:

>>> chad.J1.print_properties()
J1: Left thigh properties:

Mass (kg): 8.50477532204

COM in segment's frame from segment's origin (m):
[[0.]
[0.]
[0.19276748]]

COM in global frame from bottom center of pelvis (Ls0) (m):
[[0.081]
[0.]
[-0.19276748]]

Inertia tensor in segment's frame about segment's COM (kg-m^2):
[[0.14109999 0. 0.]
[0. 0.14109999 0.]
[0. 0. 0.02718329]]

Inertia tensor in global frame about segment's COM (kg-m^2):
[[1.41099994e-01 0.00000000e+00 1.39507727e-17]
[0.00000000e+00 1.41099994e-01 0.00000000e+00]
[1.39507727e-17 0.00000000e+00 2.71832899e-02]]

Lastly, there is a method for each segment that prints the inertia
properties of the individual solids that make up the segment (output not
shown):

>>> chad.J1.print_solid_properties()

Below, we delve into more detail about what these quantities are.

Return inertia properties

It may be desirable to directly access the kinematics information and
inertia properties from the attributes. Below, we show the
docstrings for these properties, as can be accessed in an IPython interpreter. Also, one can obtain iinformation about the data
type of the properties using help(<property>) (e.g.,
help(chad.mass)). The docstrings make reference to the bottom center of the
pelvis (Ls0), the origin of the segment/solid; and the global and
segment frames. These locations and frames are descrbed in
Configuration.

There are three inertia properties for the human overall:

>>> chad.mass?
...Docstring: Mass of the human, in units of kg....

>>> chad.center_of_mass?
...Docstring: Center of mass of the human, a np.ndarray, in units of m,
expressed the global frame, from the bottom center of the pelvis
(center of the Ls0 stadium)....

>>> chad.inertia?
...Docstring: Inertia matrix/dyadic of the human, a np.matrix, in units
of kg-m^2, about the center of mass of the human, expressed in the
global frame....

For each segment, there are five properties that are related to inertia,
and three related strictly to kinematics:

>>> chad.J1.mass?
...Docstring: Mass of the segment, in units of kg....

>>> chad.J1.rel_center_of_mass?
...Docstring: Center of mass of the segment, a np.ndarray, in units of
m, expressed in the frame of the segment, from the origin of the
segment....

>>> chad.J1.center_of_mass?
...Docstring: Center of mass of the segment, a np.ndarray, in units of
m, expressed in the global frame, from the bottom center of the
pelvis....

>>> chad.J1.rel_inertia?
...Docstring: Inertia matrix/dyadic of the segment, a np.matrix, in
units of kg-m^2, about the center of mass of the segment, expressed in
the frame of the segment....

>>> chad.J1.inertia?
...Docstring: Inertia matrix/dyadic of the segment, a np.matrix, in
units of kg-m^2, about the center of mass of the human, expressed in
the global frame....

>>> chad.J1.pos?
...Docstring: Position of the origin of the segment, a np.ndarray, in
units of m, expressed in the global frame, from the bottom center of
the pelvis (Ls0)....

>>> chad.J1.end_pos?
...Docstring: Position of the center of the last (farthest from pelvis)
stadium in this segment, a np.ndarray, in units of m, expressed in the
global frame, from the bottom center of the pelvis (Ls0)....

>>> chad.J1.rot_mat?
...Docstring: Rotation matrix specifying the orientation of this
segment relative to the orientation of the global frame, a np.matrix,
unitless. Multiplying a vector expressed in this segment's frame with
this rotation matrix on the left gives that same vector, but expressed
in the global frame....

The attributes for the solids are similar to those for the segments, except
that they do not have a rot_mat attribute (their rot_mat is that of
the segment containing them):

>>> chad.J1.solids[0].mass?
...Docstring: Mass of the solid, in units of kg....

>>> chad.J1.solids[0].center_of_mass?
...Docstring: Center of mass of the solid, a np.ndarray, in units of m,
expressed in the global frame, from the bottom center of the pelvis
(Ls0)....

>>> chad.J1.solids[0].inertia?
...Docstring: Inertia matrix/dyadic of the solid, a np.matrix, in units
of kg-m^2, about the center of mass of the human, expressed in the
global frame....

>>> chad.J1.solids[0].rel_center_of_mass?
...Docstring: Center of mass of the solid, a np.ndarray, in units of m,
expressed in the frame of the solid, from the origin of the solid....

>>> chad.J1.solids[0].rel_inertia?
...Docstring: Inertia matrix/dyadic of the solid, a np.matrix, in units
of kg-m^2, about the center of mass of the solid, expressed in the
frame of the solid....

>>> chad.J1.solids[0].pos?
...Docstring: Position of the origin of the solid, which is the center
of the surface closest to the pelvis, a np.ndarray, in units of m,
expressed in the global frame, from the bottom center of the pelvis
(Ls0)....

>>> chad.J1.solids[0].end_pos?
...Docstring: Position of the point on the solid farthest from the
origin along the longitudinal axis of the segment, a np.ndarray, in
units of m, expressed in the global frame, from the bottom center of
the pelvis (Ls0)....

Draw

One can create a window with a 3D rendering of the human model. The
rendering portrays the human with the given measurements and specified
configuration:

>>> chad.draw()

Scale by mass

The mass of the human that we calculate probably doesn’t match that of the
actual human subject being modeled. We calculate this mass using densities from
literature. If you measure the human’s actual mass and want to use that in
yeadon, we can change the model’s mass to this measured mass by scaling these
densities. This can be done via the measurement input file by providing a
positive value for totalmass (see measurement file template) or by a call
to the chad.scale_human_by_mass() method.

Symmetry

One can average the measurements for the left and right limbs to create
symmetrical limbs. This may be desirable depending on your use of the package.
This symmetry is imposed by default. It can be changed by setting the keyword
argument symmetric of the Human constructor to False. The symmetry
of the model cannot be modified after the Human is constructed.

Combine inertia

One can obtain inertia properties for a combination of solids and/or segments.
This is done via the chad.combine_inertia() method. See API Documentation for
more information.

Transform inertia tensor

By default, the inertia tensor of the human is expressed in the global frame,
whose origin is located at the bottom center of the pelvis (Ls0), and whose
orientation is shown in Configuration, draw() and the GUI. To
transform the inertia tensor so it’s expressed in a different frame, you can
use chad.inertia_transformed().

File input/output

The measurements can be written to a text file using
chad.write_measurements(). The configuration can be written using
chad.write_CFG(). The measurements can be written to a text file that is
ready for Yeadon’s ISEG Fortran code using chad.write_meas_for_ISEG().

Measurements

Here we describe the measurements that need to be taken to define a human with
this model, and we provide some guidance for taking those measurements and
getting them into the code.

The stadium shape and the stadium solid

The human is composed of 11 rigid body segments. Each segment is defined as a
loft across a number of 2D parallel stadium shapes, which are defined below. In
one case, a segment contains a semi-ellipsoid solid. The model is customized to
an individual via 95 anthropomorphic measurements to define the stadia and the
distances between them.

A stadium shape, show in the figure below, can be defined via any of the
following 4 sets of 2 parameters:

	a radius [image: r] and thickness [image: t],

	a perimeter [image: p] and width [image: w] along the stadium’s longitudinal
axis

	a perimeter [image: p] and a depth [image: d = 2r].

	a depth [image: d] and a width [image: w].

[image: _images/stadium.png]
A circle can be defined by a stadium whose thickness is zero, [image: t = 0].

Stadium solids are defined by two parallel stadia, as well as the height
[image: h] of the solid between the two stadia (i.e., a loft between the two
stadium cross sections).

Specification of all measurements

The figure below specifies all 95 measurements.

To define the stadium solids that make up the human model, one takes the
measurements outlined here. The measurements consist of lengths [image: L]
(different from heights), perimeters [image: p], widths [image: w], and depths
[image: d].

By measuring the parameters that define the stadia (also called levels), and
the distance between these stadia, we define 39 stadium solids. Each stadium is
shared by two stadium solids, except for the stadia at the end of the hands and
feet. In general, the stadia are defined by measuring perimeter and width,
since these are easier to measure. There are a few exceptions
though, and these are described further down the page.

[image: _images/measurements.png]
It is lengths, not heights, that you measure off the subjects. That is, the
length measurements are sums of heights, not the individual heights of the
stadium solids. For example, The “length” for the Ls5 acromion level
is measured from Ls0, the hip joint centre, not from Ls4. The figure above
lists the level from which the length for other levels are measured.

Scaling densities via a measured mass

The mass of the model is estimated from the measurements described above, along
with densities for the various segments taken from the literature. In the case
that you also measure the mass of the individual being modeled, it is possible
to scale the densities so that the total mass of the human is that which you
have measured. See Usage for a brief explanation on how to do this.

Exceptions to the general measurement practice

There are a number of exceptions to the general scheme of measurements required
by the model.

	Length exceptions: Lengths to arm level 1 and leg levels 2 and 7 are not
measured. The length from La0 to La1 (or Lb0 to Lb2) is set internally
as half the length from La0 to La2 (or Lb0 to Lb2). The lengths to leg
levels 2 and 7 are calculated as averages of the two lengths around leg
levels 2 and 7. Thus, perimeters, etc. at these levels should be measured
halfway between the surrounding levels (i.e., perimeter of the La1 stadium
is measured at the point in in the arm halfway between La0 and La2).

	Levels that are circles (zero-thickness stadia): Arm levels 0-3 (the
first four arm levels) and leg levels 0-5 and 7 (the first six and the
arch). For these, only a perimeter measurement is required (no width or
depth is measured).

	Depth measurements: As far as measurements are concerned, the only
difference between a depth and a width is that a depth is measured anterior
to posterior (front to back), while widths are measured medio-laterally
(side to side) when the subject is in the configuration as drawn in the
diagram above. Depths are measured at the Ls5 acromion, and the Lj6, Lk6
heel.

	The neck: The base of the neck, which is also located at level Ls5,
acromion, is modeled as circular. Its radius is set internally from
the acromion perimeter measurement. This means that the acromion perimeter
should be measured about the base of the neck.

Getting measurements into the model

There are two options for getting measurements into the model:

	Use the meastemplate.txt input text file in the misc/ directory, or
here, to define all measurements. The
file uses the YAML [http://www.yaml.org/] syntax. This syntax allows you to treat the input
file as a Python script in which you simply define a number of variables.
See comments within the file for further details.

	Provide a python dictionary, containing all the appropriate
fields, to the yeadon.human.Human constructor. You can obtain a
sample dictionary from the variable yeadon.human.Human.meas. The
keys for the dictionary are the names of the variables in the
meastemplate.txt file, as strings.

Internally, the package uses units of meters for the measurements. However, it
may be that you have worked with different units in gathering the measurements.
In the case that you are using an input text file to specify measurements
(i.e., meastemplate.txt), you can define the measurements using the units you
desire, and the package will perform the unit conversion for you. This is done
by providing a value for the variable measurementconversionfactor in the
text file, as shown in meastemplate.txt. This is a number that converts the
units of your measurements into meters. For example, if you took measurements
in millimeters, you should give this variable the value 0.001. If you are
providing measurements via a dictionary, the measurements must be in units of
meters.

Sample measurement files

	Here are measurement data files for three people we measured:

	
	male1

	male2

	male3

	female1

Configuration

The configuration of the human is set by 21 joint angles. The image below
describes all the joints and the joint angles between the segments of the
human.

There are two ways to provide the configuration to the package:

	A configuration text file, such as CFGtemplate.txt in misc/, or
here. This file follows YAML [http://www.yaml.org] syntax.

	A dictionary with the correct keys to the constructor of
yeadon.human.Human. The keys are exactly as written in the image
below. One can also access the yeadon.human.Human.CFG variable to
see what the dictionary looks like.

Frames

Here, we use the term frame to mean a coordinate system: something with an
origin and orientation (sometimes a frame does not include an origin, and is
just a vector basis).

The global frame is located at the bottom center of the pelvis stadium,
Ls0. The [image: x] and [image: z] axes are in a frontal plane, with the
[image: x] axis directed to the left and the [image: z] axis oriented superiorly.
The [image: y] axis is directed in the posterior direction.

Each segment has its own frame. The origins of the segment frames are denoted
by the black dots, and are at the location of a joint center between two
segments. Solids have their own frame as well, which share the same
orientation of the segment containing them, but are shifted along the
longitudinal ([image: z]) axis of the segment.

Each segment is rotated relative to its parent segment through body fixed
x-y-z rotations (x-y-z Euler angles) as specified in M. R. Yeadon, “The
simulation of aerial movement–i. The determination of orientation angles from
film data.,” Journal of biomechanics, vol. 23, no. 1, pp. 59–66, Jan. 1990.

Location of joint centers

Here is a description of the points at which segments are connected to each
other (that is, the location of joint centers):

	The joint centers for the legs, for segments J1 and K1, are located at
[image: (t,0,0)] and [image: (-t,0,0)] in the frame of the s0 solid,
respectively, where [image: t] is the thickness of the Ls0 stadium (see
Measurements for solid/stadium labels).

	The joint centers of the arms are at the Ls4 level, at the midpoint of the
semicircular arcs of the Ls4 stadium.

	The two joint centers in the torso are centered along the z-axis of the
stadia.

[image: _images/configuration.png]

Release Notes

Future releases

See issues on github at https://github.com/chrisdembia/yeadon/issues.

v1.4.0

	Dropped support for Python < 3.7 (including 2.7).

	Replaced yaml.load with yaml.safe_load.

	Fixed pretty printing of results to work with newer NumPy versions.

v1.3.0

	Now supports Python 3.

v1.2.1

	Pinned the bicycle example to specific dependencies.

	Added version.py.

	Removed Mayavi print statements.

	Added badges to the README.

	Added citation note to the README.

v1.2

	Added two examples, PRs #98, #101.

v1.1

	Fixed somersault mispelling, issue #67.

	Now, configuration variables indicate proper sense. For example, flexion
means flexion; not extension.

	Fixed serious bug in the computation of inertia tensors in different
reference frames. The calculation of all solids’ and segments’ inertia
tensors in the global frame was incorrect, PRs #79, #80.

	Now, use a consistent definition for rotation matrices: now, all rotation
matrices R are of the form v_a = R * v_b, PR #88.

	Added a center of mass sphere to the GUI visualization, PR #95.

	Made mass center sphere and inertia ellipsoid off by default in the GUI, PR
#93.

	Fixed default orientation of human in GUI visualization, PR #93.

	Improved the printing of human, segement, and solid properties, PR #81.

	Renamed rotate3_inertia to rotate_inertia and changed its definition
to match the rotation matrix definitions in the rest of the software, PR
#79.

	Setuptools now recommended, PR #72.

	yeadon.__version__ now works, PR #69.

	Fixed Sphinx warnings in the docs.

v1.0

	Fairly thorough unit tests.

	Clarified documentation and docstrings.

	Improved the way rotation matrices are formed.

	Moved visualization to the MayaVi library, and introduced a GUI.

	Introduced the yeadon.human.Human.inertia_transformed() method.

	Use of python properties for inertia properties and other important
attributes.

	Improved setup/build/installation process.

v0.8 on 18 July 2011

This is the first release.

API Documentation

The user only interacts with the yeadon.human module. The interface
to the other modules is only useful to developers.

yeadon Package

	human Module

	segment Module

	solid Module

human Module

The human module defines the Human class, which is composed of Segment’s.
The Human class has methods to define the constituent segments from inputs,
calculates their properties, and manages file input/output.

	
class yeadon.human.Human(meas_in, CFG=None, symmetric=True, density_set='Dempster')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
CFGbounds = [[-3.141592653589793, 3.141592653589793], [-3.141592653589793, 3.141592653589793], [-3.141592653589793, 3.141592653589793], [-1.5707963267948966, 3.141592653589793], [-1.5707963267948966, 1.5707963267948966], [-1.5707963267948966, 1.5707963267948966], [-1.5707963267948966, 1.5707963267948966], [-3.141592653589793, 1.5707963267948966], [-4.71238898038469, 1.5707963267948966], [-3.141592653589793, 3.141592653589793], [-3.141592653589793, 1.5707963267948966], [-1.5707963267948966, 4.71238898038469], [-3.141592653589793, 3.141592653589793], [-3.141592653589793, 0.0], [-3.141592653589793, 0.0], [-3.141592653589793, 1.5707963267948966], [-1.5707963267948966, 1.5707963267948966], [-3.141592653589793, 1.5707963267948966], [-1.5707963267948966, 1.5707963267948966], [0, 3.141592653589793], [0, 3.141592653589793]]

	

	
CFGnames = ('somersault', 'tilt', 'twist', 'PTsagittalFlexion', 'PTbending', 'TCspinalTorsion', 'TCsagittalSpinalFlexion', 'CA1extension', 'CA1adduction', 'CA1rotation', 'CB1extension', 'CB1abduction', 'CB1rotation', 'A1A2extension', 'B1B2extension', 'PJ1extension', 'PJ1adduction', 'PK1extension', 'PK1abduction', 'J1J2flexion', 'K1K2flexion')

	

	
calc_properties(self)

	Calculates the mass, center of mass, and inertia tensor of the
human. The quantities are calculated from the segment quantities.

	
center_of_mass

	Center of mass of the human, a np.ndarray, in units of m, expressed
the global frame, from the bottom center of the pelvis (center of the
Ls0 stadium).

	
combine_inertia(self, objlist)

	Returns the inertia properties of a combination of solids
and/or segments of the human, using the fixed human frame (or the
modified fixed frame as given by the user). Be careful with inputs:
do not specify a solid that is part of a segment that you have also
specified. This method does not assign anything to any object
attributes (it is ‘const’), it simply returns the desired quantities.

See documentation for description of the global frame.

	Parameters

	
	objlisttuple

	Tuple of strings that identify a solid or segment. The
strings can be any of the following:

	solids: ‘s0’ through ‘s7’, ‘a0’ through ‘a6’, ‘b0’ through ‘b6’,
‘j0’ through ‘j8’, ‘k0’ through ‘k8’

	segments: ‘P’, ‘T’, ‘C’, ‘A1’, ‘A2’, ‘B1’, ‘B2’, ‘J1’, ‘J2’,
‘K1’, ‘K2’

	Returns

	
	combined_massfloat

	Sum of the masses of the input solids and/or segments.

	combined_COMnp.array (3,1)

	Position of the center of mass of the input solids and/or segments,
expressed in the global frame .

	combined_inertianp.matrix (3,3)

	Inertia tensor about the combined_COM, expressed in the global frame.

	
draw(self, mlabobj=None, gui=False)

	Draws the human in 3D in a new window using MayaVi.
The mouse can be used to control or explore the 3D view.

	Parameters

	
	mlabobjmayavi.mlab, optional, default=None

	A mayavi mlab object. If None a new one will be created.

	gui: boolean, optional, default=False

	If false the mlab.show() command will be called and the scene
will be displayed to the screen.

	
get_segment_by_name(self, name)

	Returns a segment given its name.

	
inertia

	Inertia matrix/dyadic of the human, a np.matrix, in units of
kg-m^2, about the center of mass of the human, expressed in the global
frame.

	
inertia_transformed(self, pos=None, rotmat=None)

	Returns an inertia tensor of the human with respect to the
position provided in pos and a new frame that is defined by
rotation relative to the global frame with the direction cosine
matrix rotmat. The position is to be provided from the origin of
the global frame, which is at the center of the Ls0 stadium (bottom
of pelvis), and its components are expressed in the basis of the
global frame. This method does NOT alter any attributes of the Human
(it is ‘const’).

	Parameters

	
	posarray_like, (3,), (1, 3), or (3, 1), optional

	Position vector from the origin (center of Ls0) to the point
about which the user desires the inertia tensor. This position
vector must be expressed in the global reference frame. If not
provided, the tensor is given about the center of mass of the
human.

	rotmatnp.matrix (3,3), optional

	If not provided, the returned tensor is expressed in the global
frame, else the returned tensor is expressed in the rotated
reference frame. Consider N to be the global frame and B to be
the frame in which the user desires the inertia tensor. Then
rotmat is the rotation matrix that converts a vector expressed
in the basis B to a vector expressed in the basis N (i.e. vN =
rotmat * vB). That is, the columns of rotmat are the unit
vectors b_x, b_y, and b_z, each expressed in the basis given by
the unit vectors n_x, n_y, n_z.

	Returns

	
	transformednp.matrix (3,3)

	If B is the frame in which the user desires the inertia tensor,
this method returns ^{B}I^{H/P}, where P is the point specified
by pos, and H is the human system.

Notes

If N is the global frame, B is the frame in which the user desires
the inertia tensor, then rotmat = ^{N}R^{B}.

	
mass

	Mass of the human, in units of kg.

	
measnames = ('Ls1L', 'Ls2L', 'Ls3L', 'Ls4L', 'Ls5L', 'Ls6L', 'Ls7L', 'Ls8L', 'Ls0p', 'Ls1p', 'Ls2p', 'Ls3p', 'Ls5p', 'Ls6p', 'Ls7p', 'Ls0w', 'Ls1w', 'Ls2w', 'Ls3w', 'Ls4w', 'Ls4d', 'La2L', 'La3L', 'La4L', 'La5L', 'La6L', 'La7L', 'La0p', 'La1p', 'La2p', 'La3p', 'La4p', 'La5p', 'La6p', 'La7p', 'La4w', 'La5w', 'La6w', 'La7w', 'Lb2L', 'Lb3L', 'Lb4L', 'Lb5L', 'Lb6L', 'Lb7L', 'Lb0p', 'Lb1p', 'Lb2p', 'Lb3p', 'Lb4p', 'Lb5p', 'Lb6p', 'Lb7p', 'Lb4w', 'Lb5w', 'Lb6w', 'Lb7w', 'Lj1L', 'Lj3L', 'Lj4L', 'Lj5L', 'Lj6L', 'Lj8L', 'Lj9L', 'Lj1p', 'Lj2p', 'Lj3p', 'Lj4p', 'Lj5p', 'Lj6p', 'Lj7p', 'Lj8p', 'Lj9p', 'Lj8w', 'Lj9w', 'Lj6d', 'Lk1L', 'Lk3L', 'Lk4L', 'Lk5L', 'Lk6L', 'Lk8L', 'Lk9L', 'Lk1p', 'Lk2p', 'Lk3p', 'Lk4p', 'Lk5p', 'Lk6p', 'Lk7p', 'Lk8p', 'Lk9p', 'Lk8w', 'Lk9w', 'Lk6d')

	

	
print_properties(self, precision=5, suppress=True)

	Prints human mass, center of mass, and inertia.

	Parameters

	
	precisioninteger, default=5

	The precision for floating point representation.

	suppressboolean, default=True

	Print very small values as 0 instead of scientific notation.

Notes

See numpy.set_printoptions for more details on the optional
arguments.

	
scale_human_by_mass(self, measmass)

	Takes a measured mass and scales all densities by that mass so that
the mass of the human is the same as the mesaured mass. Mass must be
in units of kilograms to be consistent with the densities used.

	Parameters

	
	measmassfloat

	Measured mass of the human in kilograms.

	
segment_names = ['head-neck', 'shoulders', 'thorax', 'abdomen-pelvis', 'upper-arm', 'forearm', 'hand', 'thigh', 'lower-leg', 'foot']

	

	
segmental_densities = {'Chandler': {'abdomen-pelvis': 853, 'foot': 1091, 'forearm': 1052, 'hand': 1080, 'head-neck': 1056, 'lower-leg': 1078, 'shoulders': 853, 'thigh': 1020, 'thorax': 853, 'upper-arm': 1005}, 'Clauser': {'abdomen-pelvis': 1019, 'foot': 1084, 'forearm': 1089, 'hand': 1109, 'head-neck': 1070, 'lower-leg': 1085, 'shoulders': 1019, 'thigh': 1044, 'thorax': 1019, 'upper-arm': 1056}, 'Dempster': {'abdomen-pelvis': 1010, 'foot': 1100, 'forearm': 1130, 'hand': 1160, 'head-neck': 1110, 'lower-leg': 1090, 'shoulders': 1040, 'thigh': 1050, 'thorax': 920, 'upper-arm': 1070}}

	

	
set_CFG(self, varname, value)

	Allows the user to set a single configuration variable in CFG. CFG
is a dictionary that holds all 21 configuration variables. Then, this
function validates and updates the human model with the new
configuration variable.

	Parameters

	
	varnamestr

	Must be a valid name of a configuration variable.

	valuefloat

	New value for the configuration variable identified by varname.
Units are radians. This value will be validated for joint angle
limits.

	
set_CFG_dict(self, CFG)

	Allows the user to pass an entirely new CFG dictionary with which
to update the human object. Ensure that the dictionary is of the
right format (ideally obtain it from a Human object with Human.CFG
and modify it). After configuration is update, the segments are
updated.

	Parameters

	
	CFGdict

	Stores the 21 joint angles.

	
update(self)

	Redefines all solids and then calls yeadon.Human._update_segments.
Called by the method yeadon.Human.scale_human_by_mass. The method is
to be used in instances in which measurements change.

	
write_CFG(self, CFGfname)

	Writes the keys and values of the self.CFG dict to a .txt file.
Text file is formatted using YAML syntax.

	Parameters

	
	CFGfnamestr

	Filename or path to configuration output .txt file

	
write_meas_for_ISEG(self, fname)

	Writes the values of the self.meas dict to a .txt file that is
formidable as input to Yeadon’s ISEG fortran code that performs
similar calculations to this package. ISEG is published in Yeadon’s
dissertation.

	Parameters

	
	fnamestr

	Filename or path for ISEG .txt input file.

	
write_measurements(self, fname)

	Writes the keys and values of the self.meas dict to a text file.
Units of measurements is meters.

	Parameters

	
	fnamestr

	Filename or path to measurement output .txt file.

segment Module

Segment objects are used by the human module. A segment has a position, and
an orientation. All constituent solids of a segment have the same orientation.
That is to say that the base of the segment is at a joint in the human. The
user does not interact with this module.

	
class yeadon.segment.Segment(label, pos, rot_mat, solids, color, build_toward_positive_z=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
calc_properties(self)

	Calculates the segment’s center of mass with respect to the bottm
center of the pelvis (Ls0) and the segment’s inertia in the global
frame but about the segment’s center of mass.

	
calc_rel_properties(self)

	Calculates the mass, relative/local center of mass, and
relative/local inertia tensor (about the segment’s center of mass).
Also computes the center of mass of each constituent solid with
respect to the segment’s base in the segment’s reference frame.

	
center_of_mass

	Center of mass of the segment, a np.ndarray, in units of m,
expressed in the global frame, from the bottom center of the pelvis
(Ls0).

	
draw_mayavi(self, mlabobj)

	Draws in a MayaVi window all the solids within this segment.

	
end_pos

	Position of the center of the last (farthest from pelvis) stadium in
this segment, a np.ndarray, in units of m, expressed in the global
frame, from the bottom center of the pelvis (Ls0).

	
inertia

	Inertia matrix of the segment, a np.matrix, in units of kg-m^2,
about the center of mass of the human, expressed in the global
frame.

	
mass

	Mass of the segment, in units of kg.

	
pos

	Position of the origin of the segment, a np.ndarray, in units of m,
expressed in the global frame, from the bottom center of the pelvis
(Ls0).

	
print_properties(self, precision=5, suppress=True)

	Prints mass, center of mass (in segment and global frames),
and inertia (in solid and global frames).

	Parameters

	
	precisioninteger, default=5

	The precision for floating point representation.

	suppressboolean, default=True

	Print very small values as 0 instead of scientific notation.

Notes

See numpy.set_printoptions for more details on the optional
arguments.

	
print_solid_properties(self, precision=5, suppress=True)

	Calls the print_properties() member method of each of this
segment’s solids. See the solid class’s definition of
print_properties(self) for more detail.

	Parameters

	
	precisioninteger, default=5

	The precision for floating point representation.

	suppressboolean, default=True

	Print very small values as 0 instead of scientific notation.

Notes

See numpy.set_printoptions for more details on the optional
arguments.

	
rel_center_of_mass

	Center of mass of the segment, a np.ndarray, in units of m,
expressed in the frame of the segment, from the origin of the
segment.

	
rel_inertia

	Inertia matrix/dyadic of the segment, a np.matrix, in units of
kg-m^2, about the center of mass of the segment, expressed in the frame
of the segment.

	
rot_mat

	Rotation matrix specifying the orientation of this segment relative
to the orientation of the global frame, a np.matrix, unitless.
Multiplying a vector expressed in this segment’s frame with this
rotation matrix on the left gives that same vector, but expressed in
the global frame.

solid Module

Solid objects are used by the segment module. A solid has a position, and
orientation (defined by a rotation matrix). This module also contains the
class definition for stadium objects, which are used to construct
StadiumSolid solids. The Solid class has two subclasses: the StadiumSolid and
Semiellipsoid classes.

	
class yeadon.solid.Semiellipsoid(label, density, baseperim, height)

	Bases: yeadon.solid.Solid

Semiellipsoid.

	
calc_rel_properties(self)

	Calculates mass, relative center of mass, and relative/local
inertia, according to somewhat commonly availble formulae.

	
draw_mayavi(self, mlabobj, col)

	Draws the semiellipsoid in 3D using MayaVi.

	Parameters

	
	mlabobj :

	The MayaVi object we can draw on.

	coltuple (3,)

	Color as an rgb tuple, with values between 0 and 1.

	
n_mesh_points = 30

	

	
class yeadon.solid.Solid(label, density, height)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Solid. Has two subclasses, stadiumsolid and semiellipsoid. This base
class manages setting orientation, and calculating properties.

	
alpha = 0.5

	

	
calc_properties(self)

	Sets the center of mass and inertia of the solid, both with respect
to the fixed human frame.

	
center_of_mass

	Center of mass of the solid, a np.ndarray of shape (3,1), in
units of m, expressed in the global frame, from the bottom center of
the pelvis (Ls0).

	
draw_mayavi(self, mlabobj, col)

	

	
end_pos

	Position of the point on the solid farthest from the origin along
the longitudinal axis of the segment, a np.ndarray of shape (3,1),
in units of m, expressed in the global frame, from the bottom center
of the pelvis (Ls0).

	
inertia

	Inertia matrix of the solid, a np.matrix of shape (3,3), in units
of kg-m^2, about the center of mass of the human, expressed in the
global frame.

	
mass

	Mass of the solid, a float in units of kg.

	
pos

	Position of the origin of the solid, which is the center of the
surface closest to the pelvis, a np.ndarray of shape (3,1), in units
of m, expressed in the global frame, from the bottom center of the
pelvis (Ls0).

	
print_properties(self, precision=5, suppress=True)

	Prints mass, center of mass (in solid and global frames), and
inertia (in solid and global frames).

The solid’s origin is at the bottom center of the proximal stadium
(or stadium closest to the pelvis, Ls0).

	Parameters

	
	precisioninteger, default=5

	The precision for floating point representation.

	suppressboolean, default=True

	Print very small values as 0 instead of scientific notation.

Notes

See numpy.set_printoptions for more details on the optional
arguments.

	
rel_center_of_mass

	Center of mass of the solid, a np.ndarray of shape (3,1), in
units of m, expressed in the frame of the solid, from the origin of
the solid.

	
rel_inertia

	Inertia matrix of the solid, a np.matrix of shape (3,3), in units
of kg-m^2, about the center of mass of the solid, expressed in the
frame of the solid.

	
set_orientation(self, proximal_pos, rot_mat, build_toward_positive_z)

	Sets the position, rotation matrix of the solid, and calculates
the “absolute” properties (center of mass, and inertia tensor) of the
solid.

	Parameters

	
	proximal_posnp.array (3,1)

	Position of center of proximal end of solid in the absolute fixed
coordinates of the human.

	rot_matnp.matrix (3,3)

	Orientation of solid, with respect to the fixed coordinate system.

	build_toward_positive_zbool, optional

	The order of the solids in the parent segment matters. By default
they are stacked on top of each other in the segment’s local +z
direction. If this is set to False, then they are stacked in the
local -z direction. This is done so that, for example, in the default
configuration, the arms are directed down.

	
class yeadon.solid.Stadium(label, inID, in1, in2=None, alignment='ML')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Stadium, the 2D shape.

	
validStadiaLabels = {'La0': 'shoulder joint centre', 'La1': 'mid-arm', 'La2': 'elbow joint centre', 'La3': 'maximum forearm perimeter', 'La4': 'wrist joint centre', 'La5': 'base of thumb', 'La6': 'knuckles', 'La7': 'fingernails', 'Lb0': 'shoulder joint centre', 'Lb1': 'mid-arm', 'Lb2': 'elbow joint centre', 'Lb3': 'maximum forearm perimeter', 'Lb4': 'wrist joint centre', 'Lb5': 'base of thumb', 'Lb6': 'knuckles', 'Lb7': 'fingernails', 'Lj0': 'hip joint centre', 'Lj1': 'crotch', 'Lj2': 'mid-thigh', 'Lj3': 'knee joint centre', 'Lj4': 'maximum calf perimeter', 'Lj5': 'ankle joint centre', 'Lj6': 'heel', 'Lj7': 'arch', 'Lj8': 'ball', 'Lj9': 'toe nails', 'Lk0': 'hip joint centre', 'Lk1': 'crotch', 'Lk2': 'mid-thigh', 'Lk3': 'knee joint centre', 'Lk4': 'maximum calf perimeter', 'Lk5': 'ankle joint centre', 'Lk6': 'heel', 'Lk7': 'arch', 'Lk8': 'ball', 'Lk9': 'toe nails', 'Ls0': 'hip joint centre', 'Ls1': 'umbilicus', 'Ls2': 'lowest front rib', 'Ls3': 'nipple', 'Ls4': 'shoulder joint centre', 'Ls5': 'acromion', 'Ls6': 'beneath nose', 'Ls7': 'above ear'}

	

	
class yeadon.solid.StadiumSolid(label, density, stadium0, stadium1, height)

	Bases: yeadon.solid.Solid

Stadium solid. Derived from the solid class.

	
calc_rel_properties(self)

	Calculates mass, relative center of mass, and relative/local
inertia, according to formulae in Appendix B of Yeadon 1990-ii. If the
stadium solid is arranged anteroposteriorly, the inertia is rotated
by pi/2 about the z axis.

	
draw_mayavi(self, mlabobj, col)

	Draws the initial stadium in 3D using MayaVi.

	Parameters

	
	mlabobjmayavi.soemthing

	The MayaVi object we can draw on.

	coltuple (3,)

	Color as an rgb tuple, with values between 0 and 1.

 Python Module Index

 y

 		 	

 		
 y	

 	[image: -]
 	
 yeadon	

 	
 	
 yeadon.__init__	

 	
 	
 yeadon.human	

 	
 	
 yeadon.segment	

 	
 	
 yeadon.solid	

Index

 A
 | C
 | D
 | E
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | U
 | V
 | W
 | Y

A

 	
 	alpha (yeadon.solid.Solid attribute)

C

 	
 	calc_properties() (yeadon.human.Human method)

 	(yeadon.segment.Segment method)

 	(yeadon.solid.Solid method)

 	calc_rel_properties() (yeadon.segment.Segment method)

 	(yeadon.solid.Semiellipsoid method)

 	(yeadon.solid.StadiumSolid method)

 	
 	center_of_mass (yeadon.human.Human attribute)

 	(yeadon.segment.Segment attribute)

 	(yeadon.solid.Solid attribute)

 	CFGbounds (yeadon.human.Human attribute)

 	CFGnames (yeadon.human.Human attribute)

 	combine_inertia() (yeadon.human.Human method)

D

 	
 	draw() (yeadon.human.Human method)

 	draw_mayavi() (yeadon.segment.Segment method)

 	(yeadon.solid.Semiellipsoid method)

 	(yeadon.solid.Solid method)

 	(yeadon.solid.StadiumSolid method)

E

 	
 	end_pos (yeadon.segment.Segment attribute)

 	(yeadon.solid.Solid attribute)

G

 	
 	get_segment_by_name() (yeadon.human.Human method)

H

 	
 	Human (class in yeadon.human)

I

 	
 	inertia (yeadon.human.Human attribute)

 	(yeadon.segment.Segment attribute)

 	(yeadon.solid.Solid attribute)

 	
 	inertia_transformed() (yeadon.human.Human method)

M

 	
 	mass (yeadon.human.Human attribute)

 	(yeadon.segment.Segment attribute)

 	(yeadon.solid.Solid attribute)

 	
 	measnames (yeadon.human.Human attribute)

N

 	
 	n_mesh_points (yeadon.solid.Semiellipsoid attribute)

P

 	
 	pos (yeadon.segment.Segment attribute)

 	(yeadon.solid.Solid attribute)

 	print_properties() (yeadon.human.Human method)

 	(yeadon.segment.Segment method)

 	(yeadon.solid.Solid method)

 	
 	print_solid_properties() (yeadon.segment.Segment method)

R

 	
 	rel_center_of_mass (yeadon.segment.Segment attribute)

 	(yeadon.solid.Solid attribute)

 	
 	rel_inertia (yeadon.segment.Segment attribute)

 	(yeadon.solid.Solid attribute)

 	rot_mat (yeadon.segment.Segment attribute)

S

 	
 	scale_human_by_mass() (yeadon.human.Human method)

 	Segment (class in yeadon.segment)

 	segment_names (yeadon.human.Human attribute)

 	segmental_densities (yeadon.human.Human attribute)

 	Semiellipsoid (class in yeadon.solid)

 	
 	set_CFG() (yeadon.human.Human method)

 	set_CFG_dict() (yeadon.human.Human method)

 	set_orientation() (yeadon.solid.Solid method)

 	Solid (class in yeadon.solid)

 	Stadium (class in yeadon.solid)

 	StadiumSolid (class in yeadon.solid)

U

 	
 	update() (yeadon.human.Human method)

V

 	
 	validStadiaLabels (yeadon.solid.Stadium attribute)

W

 	
 	write_CFG() (yeadon.human.Human method)

 	
 	write_meas_for_ISEG() (yeadon.human.Human method)

 	write_measurements() (yeadon.human.Human method)

Y

 	
 	yeadon.__init__ (module)

 	yeadon.human (module)

 	
 	yeadon.segment (module)

 	yeadon.solid (module)

 _static/comment-bright.png

_images/configuration.png
Notes/Key:
@ denotes a joint cenire
X is a rotation vector into the page.

Black vectors denote the local coordinate frame of the segment they are within. Despite the
vectors' locations, the local coordinate systems of the segments always have their origin

at the segments' oint centre.

Each green vector represents a configuration variable. Use the right-hand-rule on these vectors
to determine the positive direction of the configuration variable.

CBirotation CAfrotation / CAtextension

CB1abduction AtA2extension

ALY

alTorsion

A
<E bitzoxension

PTbending X ——n
PTaagitalFlexion

——> somersault

PJtextension

~

PK1abduction

PJtadduction §

~

PKiextension

J1d2flexion

~

KiKflexion

_static/down-pressed.png

_images/measurements.png
Key:
® denotes a joint centre

Segments P, T, C, A1, A2, B1, B2, J1, J2, K1, K2 are separated by alterating colors.

Levels are denoted as L<s># with <s> roughly denoting a body part, and # denoting the #-th level in the segment
Measurements are denoled as L<s>#<t>, with <t> denoting the type of measurement

There are 4 types of measurements:
L denotes a length measurement, not necessarily measured from previous leve:

Ls1L-Ls5L measured from Ls0; Ls6L-LsBL measured from Ls5

La2LLadL measured from La0; LaSL-La7L measured from Lad (same for segment b)

Li1L, Lj3L-Lj5L measured from Ljo; Lj6L, LiBL-Lj9L measured from Ljs (same for segment k)
p denotes a perimeter measurement, must have 2 < piw <1t
w denotes a width (medio-lateral, or side to side) measurement
d denotes a depth (anterior-posterior, or front to back) measurement

evel, label, measurements needed
Ls8" top of head L

Ls7 above ear Lp La0 shoulder joint centre p

Lat* mid-arm p

La2 elbow joint centre Lp.

La3 maximum forearm perimeter Lp
Lad wist oint centre Lp,w
Las base of thumb Lp,w
La6 knuckles Lp.w

La fingernails Lp.w

Ls6 bencath nose Lp
Ls5% acromion Lp
Lsa® shoulder oin centre Liwid
Ls3 nipple Lpw——
Ls2 lowest frortio Lpw-
Ls1 umbilicus Lp,w

L0 hip joint centre Lp.w — Ljo° hip oint centre

~
~ Ljt croteh Lp

segment, label, solids®

C chest-head s3-s7

T thorax 52

P pelvis s0-51 .
AT left upper arm a0-at

A2 leftforearm-hand a2-a6
B1 right upper arm b-b1
B2 right forearm-hand b2-06
J1 left thigh j0-2

J2 eft shank-foot j3-18

K1 right thigh k0-k2

K2 right shank-foot k3-k8

Lj3 knee joint centre Lp
— Lj4 maximum calf perimeter L.p

[

Lj5 ankle joint centre L,p

Lj67 heel L,
L7 archp

L8 ball Lpw

Lj9 toe nails Lpw.

Notes:
Total mass can be measured in order to scale the default densities used for the solids (otherwise, mass is estimated).
1150 s the only semi-elipsoidal solid
2 two stadia at this level, one for 54 and one for s5. The parameters for the s4 stadium are calculated
from Ls4's stadium. Ls5 perimeter measured around neck.
3 depthis measured in lieu of perimeter since arms interfere and width is measured with respect to the shoulder joint centers
4 LaL is not measured, but s instead set as half of La2L
5 stadium (circle) perimeter s calculated from the dimensions of the stadium at Ls0.
6 Li2L is not measured, butis instead set as the average of Lj1L and LjaL.
7 Li§'s (and Lk6's) stadia are the only stadia oriented anteroposteriorly.
8 Li7L is not measured, butis instead set as the average of Lj6L and LjsL.
9 Yeadon's 1990 paper indexes the solids from 1. while this formulations indexes from 0.

_static/down.png

_static/comment-close.png

_static/comment.png

_images/math/27d463da4622be5b3ef1d4176ced7d7a323c6425.png

_static/minus.png

_images/math/293fb39e1b93282c804a86186e721b32f829f1b2.png

_static/plus.png

_images/stadium.png

_images/math/276f7e256cbddeb81eee42e1efc348f3cb4ab5f8.png

_static/file.png

_images/math/311ba51c4e721b8fd11a1e3339a7a29a8fd605e4.png

_images/math/5ec053cf70dc1c98cc297322250569eda193e7a4.png

_static/up-pressed.png

_images/math/683f2dd9129a91d21aaf1c04afa6f78b39d4cb0a.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to yeadon’s documentation!

 		
 Overview

 		
 Usage

 		
 Three different interfaces

 		
 Attributes of Human

 		
 Setting the configuration

 		
 Summary of functionality

 		
 Print inertia properties

 		
 Return inertia properties

 		
 Draw

 		
 Scale by mass

 		
 Symmetry

 		
 Combine inertia

 		
 Transform inertia tensor

 		
 File input/output

 		
 Measurements

 		
 The stadium shape and the stadium solid

 		
 Specification of all measurements

 		
 Scaling densities via a measured mass

 		
 Exceptions to the general measurement practice

 		
 Getting measurements into the model

 		
 Sample measurement files

 		
 Configuration

 		
 Frames

 		
 Location of joint centers

 		
 Release Notes

 		
 Future releases

 		
 v1.4.0

 		
 v1.3.0

 		
 v1.2.1

 		
 v1.2

 		
 v1.1

 		
 v1.0

 		
 v0.8 on 18 July 2011

 		
 API Documentation

 		
 yeadon Package

 		
 human Module

 		
 segment Module

 		
 solid Module

_images/math/a59f68a4202623bb859a7093f0316bf466e6f75d.png

_images/math/ae2b750f71e1fc0daaa3de9a85d42794d7cd1326.png

_images/math/7d18e301247447e4600046af051b2bfe857faaa0.png

_images/math/82596558b540b9a30478165b2a5eac2787b8470d.png
1. 0,0

_images/math/eaa6ad49a7f78fe5a13b486690163bf2dc7e3e60.png

_images/math/ecd1ee2a1cd226b40c37e079aca62398d4b774f5.png

_images/math/b1ee01e0dd5fa65f4124ecab315fbd91516d8bf3.png
(£,0,0)

_images/math/b9d10b54744d07746b97f53c55eb98046fd76c8c.png

_static/ajax-loader.gif

