
Yaybu Documentation
Release 3.0

John Carr, Doug Winter

September 04, 2013

CONTENTS

i

ii

Yaybu Documentation, Release 3.0

Yaybu is a push based configuration management tool written in Python with the goal of helping you tame your
servers. You describe your infrastructure in a simple and flexible YAML-like language and Yaybu works out what
needs to happen to deploy your updates.

Contents:

CONTENTS 1

Yaybu Documentation, Release 3.0

2 CONTENTS

CHAPTER

ONE

INSTALLING YAYBU

1.1 Latest stable release

1.1.1 Ubuntu

The latest release is packaged as deb packages and is available via a PPA for recent versions of Ubuntu:

sudo add-apt-repository ppa:yaybu-team/stable
sudo apt-get update
sudo apt-get install python-yaybu

1.1.2 OSX

A .dmg is available from the releases page at GitHub.

Drag the Yaybu icon into your Applications folder. When you first run Yaybu it will prompt you to install command
line tools. This will simply create a symlink from /usr/local/bin/yaybu to command line tools embedded
inside the Yaybu bundle.

You can drop Yaybufile files onto the Yaybu dock icon to automatically start a Yaybu shell for a project.

1.2 Nightlies

1.2.1 Ubuntu

An unstable ‘nightly’ PPA is available for lucid and precise. You can use it like this:

sudo add-apt-repository ppa:yaybu-team/nightly
sudo apt-get update
sudo apt-get install python-yaybu

1.2.2 OSX

The latest build is available from here. Install it like you would install a stable version.

It’s automatic update feed is pointed at the nightlies channel.

3

https://github.com/yaybu/yaybu/releases
https://yaybu.com/nightlies/osx/Yaybu-latest.dmg

Yaybu Documentation, Release 3.0

4 Chapter 1. Installing Yaybu

CHAPTER

TWO

QUICKSTART

Here are some quick and simple Yaybu examples to show you what you can do right now and we are working on.

2.1 Yaybufile

To use Yaybu you write first need to write a Yaybufile. This describes the infrastructure you want to deploy.

Here is an example that provisions 2 compute nodes with different hosting providers and sets up subdomains for them.
Yaybu is quite happy talking to Amazon EC2, BigV and Gandi DNS all from the same deployment:

new Provisioner as instance1:
new Compute as server:

driver:
id: BIGV
key: yourusername
secret: yourpassword
account: youraccountname

image: precise
name: test_at_bigv

user: root
password: aez5Eep4

resources:
- File:

name: /etc/heartbeat.conf
template: heartbeat.conf.j2
template_args:

partner: {{ instance2.public_ip }}

new Provisioner as instance2:
new Compute as server:

driver:
id: EC2
key: yourusername
secret: yourpassword

image: ami-57afb223
name: test_at_ec2

user: root
public_key: instance2.pub

5

Yaybu Documentation, Release 3.0

private_key: instance2.priv

resources:
- File:

name: /etc/heartbeat.conf
template: heartbeat.conf.j2
template_args:

partner: {{ instance1.public_ip }}

new Zone as dns:
driver:

id: GANDI
key: yourgandikey

domain: example.com

records:
- name: instance1

data: {{ instance1.server.public_ip }}
- name: instance2

data: {{ instance2.server.public_ip }}

2.2 Yaybu commands

Currently the following commands are available:

yaybu up Apply the configuration specified in your Yaybufile

yaybu destroy If your configuration creates external resources like virtual machines, then this command will
destroy it.

yaybu expand Print out a YAML dump of your configuration after all variables have been expanded and any
ifs/fors/etc have been applied.

yaybu ssh SSH into a server using the connection details specified in your configuration file.

You can do yaybu help COMMAND to learn more about each of these.

2.3 Yaybu parts

Parts are the building blocks that you connect together to describe your services and how to deploy them. There are
several core ones at the moment.

2.3.1 Compute

The Compute part can be used to create and destroy services in various cloud services supported by libcloud.

2.3.2 Provisioner

The Provisioner part provides idempotent configuration of UNIX servers that can be accessed by SSH. It can be
connected to Compute part to create and deploy to a new cloud server, or it can be pointed at a static set of SSH
connection details to deploy to a dedicated server.

6 Chapter 2. Quickstart

Yaybu Documentation, Release 3.0

The part needs connection details, these are provided through the server parameter:

new Provisioner as provisioner:
server:

fqdn: example.com
port: 22
username: root
password: penguin55
private_key: path/to/id_rsa

The part deploys a list of resources provided by the resources parameter. These are idempotent - when used
correctly they only make changes that need making, which means that you can see quite clearly what has been changed
by an update deployment and it is safe to run repeatedly.

For detailed documentation of the resources you can you see the online documention.

2.3.3 Zone

The Zone part uses the libcloud DNS API to manage DNS entries in various cloud services.

2.4 Keeping secrets secret

You can reference encrypted yay files in your Yaybufile:

include "mysecrets.yay.gpg"

Any include of a .gpg file is automatically decrypted, using your gpg-agent to prompt for any passphrases that
are required.

Additionally the file ~/.yaybu/defaults.yay.gpg is automatically loaded when Yaybu starts. This is useful
for storing your credentials/tokens outside of your code repository and easily injected them into multiple projects.

For vim users, vim-gnupg is a gret way to transparently edit your GPG armored configuration files.

2.4. Keeping secrets secret 7

https://yaybu.readthedocs.org/en/latest/provisioner.html#built-in-resources
https://github.com/jamessan/vim-gnupg

Yaybu Documentation, Release 3.0

8 Chapter 2. Quickstart

CHAPTER

THREE

COMMAND LINE

The main command line in yaybu is yaybu. If you run it with no arguments it will drop you into an interactive shell
where you can run the various subcommands.

Most subcommands will need a config file. By default yaybu will search for a Yaybufile in the current directory.
It will also check in parent directories. If you want to force it to use a different config file you can use the -c option:

yaybu -c myconfig.yay test

Your configuration can declare variables that it takes on the command line. This is covered in Runtime arguments. If
you have defined an argument called instance then you can use it with a command like this:

yaybu up instance=test1234

3.1 expand

Running yaybu expand evaluates your configuration without making any changes and prints to stdout a YAML or
JSON representation. This is useful for checking that your loops, conditionals and variables have been evaluated as
you expected by inspection.

3.2 test

The yaybu test command will run various tests on your configuration to try and find errors before you do an actual
deployment. We can’t guarantee success but we can:

• Check any assets you depend on exist

• Check your templates for errors

• Check that any dependencies or relationships you have created between parts or resources are valid

• Check your credentials for all the services you will be accessing

3.3 up

yaybu up is the command that will actually deploy your configuration.

In order to protect your infrastructure this will automatically perform a self-test of your configuration before starting.

If you haven’t defined any parts in your configuration then this command will not do anything.

9

Yaybu Documentation, Release 3.0

This command takes --resume or --no-resume. These flags control whether or not yaybu remembers trigger
states between deployments. This is convered in more detail in the Provisioner section.

3.4 destroy

When you run yaybu destroy yaybu will examine all the parts you have defined in your configuration and ask
them to destroy themselves:

$ yaybu destroy
[*] Destroying load balancer ’test_lb’
[*] Destroying node ’test1’
[*] Destroying node ’test2’

3.5 ssh

The yaybu ssh takes an expression and solves it against the configuration. For example, if you had a list of servers
you could:

yaybu ssh myservers[2]

This would start an SSH connection to the 3rd server in the list (the first server is at position 0).

If Yaybu is aware of a particular username, port, password or SSH key needed to access that server it will use it.
Otherwise it will fall back to using for SSH agent.

10 Chapter 3. Command Line

CHAPTER

FOUR

RUNTIME ARGUMENTS

By setting yaybu.options you can allow some parts of your configuration to be set at runtime. These are then
available in the yaybu.argv dictionary.

4.1 Defining arguments

4.1.1 Strings

The string argument type is the simplest. You need to specify a name and can optionally set a default:

yaybu:
options:

- name: username
type: string
default: john

A string is actually the default type of argument. So you don’t need to specify the type:

yaybu:
options:

- name: username
default: john

4.1.2 Integer

The integer argument validates that the argument provided by your end user is indeed a valid integer. It can by
defined like this:

yaybu:
options:

- name: num_servers
type: integer
default: 1

4.1.3 Boolean

The boolean argument type takes a value of no, 0, off or false and interprets it as a negative. yes, 1, on or
true is interpreted as a positive. Other values trigger validation. You can use it like this:

11

Yaybu Documentation, Release 3.0

yaybu:
options:

- name: on_off_toggle
type: boolean
default: on

4.2 Using arguments

The arguments defined via yaybu.options are available at runtime using the yaybu.argv mapping.

One use of this is to combine it with the Compute part to create a configuration that can be deployed multiple times
with no changes:

yaybu:
options:

- name: instance
default: cloud

new Compute as server:
name: myproject-{{ yaybu.argv.instance }}
driver:

id: EC2
key: secretkey
secret: secretsecret

image: imageid
size: t1.micro

If i were to run this configuration several times:

yaybu up
yaybu up instance=take2
yaybu up instance=take3

Then i woulld have 3 instances running:

• myproject-cloud

• myproject-take2

• myproject-take3

12 Chapter 4. Runtime arguments

CHAPTER

FIVE

COMPUTE INSTANCES

The Compute part can be used to create and destroy services in various cloud services supported by libcloud as well
as various local VM tools.

Creating a simple compute node will look something like this:

new Compute as server:
name: test123456

driver:
id: BIGV
key: yourusername
secret: yourpassword
account: youraccountname

image: precise

user: root
password: aez5Eep4

In this example we are creating a server via BigV, but because our cloud support is underpinned by libcloud we support
many hosting providers.

5.1 Options

Any compute instances you create must have a unique name. This lets yaybu keep track of it between yaybu apply
invocations.

Use the driver argument to configure a libcloud driver for your hosting service. Specific driver sub arguments are
discussed in the sections below.

You can choose an base image using the image argument. For the common case an image id is enough:

new Compute as server:
image: ami-f7445d83

You can choose an instance size by passing a size name:

new Compute as server:
size: t1.micro

Some servers don’t have the concept of size but you can control the resources assigned in a more granular way:

13

http://www.bigv.io/

Yaybu Documentation, Release 3.0

new Computer as server:
size:

processors: 5

See the driver specific options below for more information on what tweaks you can pass to a backend.

You must choose a username that can be used to log in with.

If you provide a public_key file and are using a driver that supports it Yaybu will automatically load it into the
created instance to enable key based authentication.

If you provide a password and the backend supports it then Yaybu will automatically set the account password for
the newly created instance.

The Compute part does not look at the private_key attribute, but as it is common to use the Compute part
directly with a Provisioner part, which does check for it, you will often see it specified:

new Provisioner as vm1:
new Compute as server:

private_key: path/to/privatekey

5.2 Supported services

5.2.1 BigV

Our BigV support is implemented via the libcloud library but is currently residing in the Yaybu codebase. As you can
set the password for an instance when it is created there is no preparation to do to create a bigv instance, other than
creating a bigv account.

Your Yaybufile looks like this:

new Provisioner as vm1:
new Compute as server:

name: test123456

driver:
id: BIGV
key: yourusername
secret: yourpassword
account: youraccountname

image: precise

user: root
password: aez5Eep4

resources:
- Package:

name: git-core

This example will create a new vm called test123456. You will be able to log in as root using the password
aez5Eep4 (though you should use pwgen to come up with something better).

14 Chapter 5. Compute instances

http://www.bigv.io/
https://github.com/apache/libcloud

Yaybu Documentation, Release 3.0

5.2.2 EC2

Provisioning of AWS instances is supported out of the box using libcloud. You will need to have set up an SSH key in
the Amazon control panel and either have the path to the private part of that key or have added it to your ssh-agent.

You’ll need something like this in your Yaybufile:

new Compute as server:
name: myappserver

driver:
id: EC2_EU_WEST
key: mykey
secret: mysecret

size: t1.micro
image: ami-4f504f3b

user: ubuntu
ex_keyname: mykey
private_key: mykey.pem

ex_keyname is the name of the SSH key pair in the amazon console. private_key is the corresponding private
key.

We recently merged a patch upstream to do away with ex_keyname. In future Yaybu will be able to automatically
upload a public_key for you in the same way it can for other backends.

5.2.3 VMWare

You’ll need a copy of VMWare Workstation, VMWare Fusion or VMWare Player. You’ll need a base image to use.
My checklist when creating mine is:

• Is openssh-server installed?

• Is there a user with passphraseless sudo access to root?

• Have I deleted the /etc/udev/rules.d/70-persistent-net.rules?

When you are done, shut down the VM and get the path to its VMX file.

Now your Yaybufile looks like this:

new Compute as server:
name: mytest vm

driver:
id: VMWARE

image:
id: ~/vmware/ubuntu/ubuntu.vmx

user: ubuntu

5.3 Community supported services

By using libcloud to support the services in the previous section, the following services are also available. Please adopt
your favourite and help improve documentation for it.

5.3. Community supported services 15

Yaybu Documentation, Release 3.0

5.3.1 Cloudstack

The driver id for CloudStack is CLOUDSTACK:

new Compute as server:
name: new_cloudstack_server

driver:
id: CLOUDSTACK
host: yourcloudstackhost.com
path: /api/2.0
key: yourkey
secret: yoursecret

image: yourimageid
size: yoursizeid

Note: The CloudStack libcloud driver could be updated to allow the user to inject SSH keys, but this is not currently
in progress.

5.3.2 Digital Ocean

The driver if for Digital Ocean is DIGITAL_OCEAN:

new Compute as server:
name: new_digital_ocean_server

driver:
id: DIGITAL_OCEAN
key: yourkey
secret: yoursecret

image: yourimageid
size: yoursizeid

Note: The Digitial Ocean libcloud driver could be updated to allow the user to inject SSH keys, but this is not
currently in progress.

5.3.3 Gandi

The driver id for Gandi is GANDI:

new Compute as server:
name: new_gandi_server

driver:
id: GANDI
key: yourkey
secret: yoursecret

image: yourimageid
size: yoursizeid

16 Chapter 5. Compute instances

http://cloudstack.apache.org/
http://www.digitalocean.com
http://www.gandi.net

Yaybu Documentation, Release 3.0

5.3.4 GoGrid

5.3.5 IBM SCE

5.3.6 Linode

5.3.7 OpenStack

5.3.8 Rackspace

5.3.9 SoftLayer

5.3.10 And more

The libcloud project supports a lot of compute services. The goal is that any cloud service supported by libcloud can
be controlled using Yaybu, and any fixes to improve that support will be pushed upstream.

5.4 Adding support for your other hosting services

Depending on what you are doing there are different requirements.

If you have prepepared images and simply want to stop and start them then the only requirement is that you are using
a version of libcloud that supports that service (and exposes it as a public driver).

If you want to use your hosting service in conjuction with a Provisioner part you will additionally need:

• SSH to be installed and working in the base image you choose.

• You have credentials that can obtain root access

– Either the service lets you set a password/SSH key at create time

– Or the base image has credentials baked into it that you can use

5.4. Adding support for your other hosting services 17

http://libcloud.apache.org/docs/compute/supported_providers.html

Yaybu Documentation, Release 3.0

18 Chapter 5. Compute instances

CHAPTER

SIX

PROVISIONER

The Provisioner part provides idempotent configuration of UNIX servers that can be accessed by SSH. It can be
connected to Compute part to create and deploy to a new cloud server, or it can be pointed at a static set of SSH
connection details to deploy to a dedicated server.

The part needs connection details, these are provided through the server parameter:

new Provisioner as provisioner:
server:

fqdn: example.com
port: 22
username: root
password: penguin55
private_key: path/to/id_rsa

resources:
- File:

name: /etc/my.cnf
template: mytemplate.j2
template_args:

hello: world

To provision to a server, Yaybu needs to be able to access it. In particular you MUST make sure that:

• Yaybu has passwordless access over ssh to the server.

• Yaybu has passwordless access to sudo. The best way to achieve this is to ensure you are in the appropriate
group (‘admin’ or ‘sudo’ on Ubuntu for example, depending on which version). Then add the NOPASSWD:
directive to the appropriate group.

6.1 Options

You specify a list of resources to apply to a designated server.

The resources are specified as a list of simple files, directories, users, etc that are executed in order:

resources:
- File:

name: /etc/my.cnf
static: staticfile.cnf

- User:
name: django

19

Yaybu Documentation, Release 3.0

You can pass the following settings to the server argument:

fqdn A fully qualified domain name to connect to (via SSH). An IP can also be used if required.

port The port to connect to. This is optional, and port 22 will be used if not provied.

username The ssh username to login as. If this isn’t root then Yaybu will attempt to use sudo when it requires root
access to perform a task.

password The ssh password to login with.

private_key An RSA or DSA private key that can be used to log in to the target server.

resources The provisioner part expresses server configuration in units called “resources”. These are things like
files, init.d services or unix accounts.

If you do not provide a private_key or a password Yaybu will fallback to trying keys in your ssh keyring. If
you provide both then it will prefer to use a password.

6.2 Built-in resources

This section describes the built-in resources you can use to describe your server configuration.

6.2.1 File

A provider for this resource will create or amend an existing file to the provided specification.

For example, the following will create the /etc/hosts file based on a static local file:

extend resources:
- File:

name: /etc/hosts
owner: root
group: root
mode: 644
static: my_hosts_file

The following will create a file using a jinja2 template, and will back up the old version of the file if necessary:

extend resources:
- File:

name: /etc/email_addresses
owner: root
group: root
mode: 644
template: email_addresses.j2
template_args:

foo: foo@example.com
bar: bar@example.com

backup: /etc/email_addresses.{year}-{month}-{day}

The available parameters are:

name The full path to the file this resource represents.

owner A unix username or UID who will own created objects. An owner that begins with a digit will be interpreted
as a UID, otherwise it will be looked up using the python ‘pwd’ module.

group A unix group or GID who will own created objects. A group that begins with a digit will be interpreted as a
GID, otherwise it will be looked up using the python ‘grp’ module.

20 Chapter 6. Provisioner

Yaybu Documentation, Release 3.0

mode A mode representation as an octal. This can begin with leading zeros if you like, but this is not required. DO
NOT use yaml Octal representation (0o666), this will NOT work.

static A static file to copy into this resource. The file is located on the yaybu path, so can be colocated with your
recipes.

template A jinja2 template, used to generate the contents of this resource. The template is located on the yaybu
path, so can be colocated with your recipes

template_args The arguments passed to the template.

6.2.2 Directory

A directory on disk. Directories have limited metadata, so this resource is quite limited.

For example:

extend resources:
- Directory:

name: /var/local/data
owner: root
group: root
mode: 0755

The available parameters are:

name The full path to the directory on disk

owner The unix username who should own this directory, by default this is ‘root’

group The unix group who should own this directory, by default this is ‘root’

mode The octal mode that represents this directory’s permissions, by default this is ‘755’.

parents Create parent directories as needed, using the same ownership and permissions, this is False by default.

6.2.3 Link

A resource representing a symbolic link. The link will be from name to to. If you specify owner, group and/or mode
then these settings will be applied to the link itself, not to the object linked to.

For example:

extend resources:
- Link:

name: /etc/init.d/exampled
to: /usr/local/example/sbin/exampled
owner: root
group: root

The available parameters are:

name The name of the file this resource represents.

owner A unix username or UID who will own created objects. An owner that begins with a digit will be interpreted
as a UID, otherwise it will be looked up using the python ‘pwd’ module.

group A unix group or GID who will own created objects. A group that begins with a digit will be interpreted as a
GID, otherwise it will be looked up using the python ‘grp’ module.

to The pathname to which to link the symlink. Dangling symlinks ARE considered errors in Yaybu.

6.2. Built-in resources 21

Yaybu Documentation, Release 3.0

6.2.4 Execute

Execute a command. This command is executed in a shell subprocess.

For example:

extend resources:
- Execute:

name: core_packages_apt_key
command: apt-key adv --keyserver keyserver.ubuntu.com --recv-keys {{source.key}}

A much more complex example. This shows executing a command if a checkout synchronises:

extend resources:
for bi in flavour.base_images:
- Execute:

name: base-image-{{bi}}
policy:
apply:

when: sync
on: /var/local/checkouts/ci

command: ./vmbuilder-{{bi}}
cwd: /var/local/checkouts/ci
user: root

The available parameters are:

name The name of this resource. This should be unique and descriptive, and is used so that resources can reference
each other.

command If you wish to run a single command, then this is the command.

commands If you wish to run multiple commands, provide a list

cwd The current working directory in which to execute the command.

environment The environment to provide to the command, for example:

extend resources:
- Execute:

name: example
command: echo $FOO
environment:

FOO: bar

returncode The expected return code from the command, defaulting to 0. If the command does not return this
return code then the resource is considered to be in error.

user The user to execute the command as.

group The group to execute the command as.

umask The umask to use when executing this command

unless A command to run to determine is this execute should be actioned

creates The full path to a file that execution of this command creates. This is used like a “touch test” in a Makefile.
If this file exists then the execute command will NOT be executed.

touch The full path to a file that yaybu will touch once this command has completed successfully. This is used like
a “touch test” in a Makefile. If this file exists then the execute command will NOT be executed.

22 Chapter 6. Provisioner

Yaybu Documentation, Release 3.0

6.2.5 Checkout

This represents a “working copy” from a Source Code Management system. This could be provided by, for example,
Subversion or Git remote repositories.

Note that this is ‘a checkout’, not ‘to checkout’. This represents the resource itself on disk. If you change the details
of the working copy (for example changing the branch) the provider will execute appropriate commands (such as svn
switch) to take the resource to the desired state.

For example:

extend resources:
- Checkout:

name: /usr/src/myapp
repository: https://github.com/myusername/myapp
scm: git

The available parameters are:

name The full path to the working copy on disk.

repository The identifier for the repository - this could be an http url for subversion or a git url for git, for example.

branch The name of a branch to check out, if required.

tag The name of a tag to check out, if required.

revision The revision to check out or move to.

scm The source control management system to use, e.g. subversion, git.

scm_username The username for the remote repository

scm_password The password for the remote repository.

user The user to perform actions as, and who will own the resulting files. The default is root.

group The group to perform actions as. The default is to use the primary group of user.

mode A mode representation as an octal. This can begin with leading zeros if you like, but this is not required. DO
NOT use yaml Octal representation (0o666), this will NOT work.

6.2.6 Package

Represents an operating system package, installed and managed via the OS package management system. For example,
to ensure these three packages are installed:

extend resources:
- Package:

name: apache2

The available parameters are:

name The name of the package. This can be a single package or a list can be supplied.

version The version of the package, if only a single package is specified and the appropriate provider supports it
(the Apt provider does not support it).

purge When removing a package, whether to purge it or not.

6.2. Built-in resources 23

Yaybu Documentation, Release 3.0

6.2.7 User

A resource representing a UNIX user in the password database. The underlying implementation currently uses the
“useradd” and “usermod” commands to implement this resource.

This resource can be used to create, change or delete UNIX users.

For example:

extend resources:
- User:

name: django
fullname: Django Software Owner
home: /var/local/django
system: true
disabled-password: true

The available parameters are:

name The username this resource represents.

password The encrypted password, as returned by crypt(3). You should make sure this password respects the
system’s password policy.

fullname The comment field for the password file - generally used for the user’s full name.

home The full path to the user’s home directory.

uid The user identifier for the user. This must be a non-negative integer.

gid The group identifier for the user. This must be a non-negative integer.

group The primary group for the user, if you wish to specify it by name.

groups A list of supplementary groups that the user should be a member of.

append A boolean that sets how to apply the groups a user is in. If true then yaybu will add the user to groups as
needed but will not remove a user from a group. If false then yaybu will replace all groups the user is a member
of. Thus if a process outside of yaybu adds you to a group, the next deployment would remove you again.

system A boolean representing whether this user is a system user or not. This only takes effect on creation - a user
cannot be changed into a system user once created without deleting and recreating the user.

shell The full path to the shell to use.

disabled_password A boolean for whether the password is locked for this account.

disabled_login A boolean for whether this entire account is locked or not.

6.2.8 Group

A resource representing a unix group stored in the /etc/group file. groupadd and groupmod are used to actually
make modifications.

For example:

extend resources:
- Group:

name: zope
system: true

The available parameters are:

24 Chapter 6. Provisioner

Yaybu Documentation, Release 3.0

name The name of the unix group.

gid The group ID associated with the group. If this is not specified one will be chosen.

system Whether or not this is a system group - i.e. the new group id will be taken from the system group id list.

password The password for the group, if required

6.2.9 Service

This represents service startup and shutdown via an init daemon.

The available parameters are:

name A unique name representing an initd service. This would normally match the name as it appears in /etc/init.d.

priority Priority of the service within the boot order. This attribute will have no effect when using a dependency
or event based init.d subsystem like upstart or systemd.

start A command that when executed will start the service. If not provided, the provider will use the default service
start invocation for the init.d system in use.

stop A command that when executed will start the service. If not provided, the provider will use the default service
stop invocation for the init.d system in use.

restart A command that when executed will restart the service. If not provided, the provider will use the default
service restart invocation for the init.d system in use. If it is not possible to automatically determine if the restart
script is avilable the service will be stopped and started instead.

reconfig A command that when executed will make the service reload its configuration file.

running A comamnd to execute to determine if a service is running. Should have an exit code of 0 for success.

pidfile Where the service creates its pid file. This can be provided instead of running as an alternative way of
checking if a service is running or not.

6.3 Dependencies between resources

Resources are always applied in the order they are listed in the resources property. You can rely on this to build
repeatble and reliable processes. However this might not be enough. There are a couple of other ways to express
relationships between resources.

One example is when you want to run a script only if you have deployed a new version of your code:

resources:
- Checkout:

name: /usr/local/src/mycheckout
repository: git://github.com/example/example_project

- Execute:
name: install-requirements
command: /var/sites/myapp/bin/pip install -r /usr/local/src/mycheckout/requirements.txt
policy:

execute:
when: sync
on: Checkout[/usr/local/src/mycheckout]

When the Checkout step pulls in a change from a repository, the Execute resource will apply its execute policy.

You can do the same for monitoring file changes too:

6.3. Dependencies between resources 25

Yaybu Documentation, Release 3.0

resources:
- File:

name: /etc/apache2/security.conf
static: apache2/security.conf

- Execute:
name: restart-apache
commands:

- apache2ctl configtest
- apache2ctl graceful

policy:
execute:

when: apply
on: File[/etc/apache2/security.conf]

Sometimes you can’t use File (perhaps buildout or maven or similar generates a config file for you), but you
still want to trigger a command when a file changes during deployment:

resources:
- Execute:

name: buildout
command: buildout -c production.cfg
watches:

- /var/sites/mybuildout/parts/apache.cfg

- Execute:
name: restart-apache
commands:

- apache2ctl configtest
- apache2ctl graceful

policy:
execute:

when: watched
on: File[/var/sites/mybuildout/parts/apache.cfg]

This declares that the buildout step might change a File (the apache.cfg). Subsequent step can then subscribe
to File[/var/sites/mybuildout/parts/apache.cfg] as though it was an ordinary file.

All of these examples use a trigger system. When a trigger has been set yaybu will remember it between invocations.
Consider the following example:

resources:
- File:

name: /etc/apache2/sites-enabled/mydemosite

- Directory:
name: /var/local/tmp/this/paths/parent/dont/exist

- Execute:
name: restart-apache2
command: /etc/init.d/apache2 restart
policy:

execute:
when: apply
on: File[/etc/apache2/sites-enabled/mydemosite]

When it is run it will create a file in the /etc/apache2/sites-enabled folder. Yaybu knows that the
Execute[restart-apache2] step must be run later. It will record a trigger for the Execute statement in
/var/run/yaybu/. If the Directory[] step fails and yaybu terminates then the next time yaybu is execute it

26 Chapter 6. Provisioner

Yaybu Documentation, Release 3.0

will instruct you to use the --resume or --no-resume command line option. If you --resume it will remember
that it needs to restart apache2. If you choose --no-resume it will not remember, and apache will not be restarted.

6.4 Examples

6.4.1 Deploy to an existing server or VM

To deploy to your current computer by SSH you can use a Yaybufile like this:

new Provisioner as provisioner:

resources:
- File:

name: /some_empty_file

- Execute:
name: hello_world
command: touch /hello_world
creates: /hello_world

server:
fqdn: localhost
username: root
password: penguin55
private_key: path/to/key

6.4. Examples 27

Yaybu Documentation, Release 3.0

28 Chapter 6. Provisioner

CHAPTER

SEVEN

MANAGING CLOUD LOAD BALANCERS

Yaybu can manage your load balancers using a LoadBalancer part. They run as soon as all of the inputs become
valid, as opposed to when the program encounters them.

A basic setup looks like this:

new LoadBalancer as lb:
name: myprojectlb

driver:
id: ELB
key: yourawskey
secret: yourawssecret

Listen on port 80 for http access
port: 80
protocol: http
algorithm: round-robin

members:
- {{ server1 }}

7.1 Options

You must specify a name when creating a LoadBalanacer part. Some backends will use this as a unique id for the
load balancer. Take care to avoid duplicating load balancer names in different configurations!

The driver section contains the settings used by libcloud to initialize a driver. This typically includes account
information - a access key and secret, a username and password, or similar.

You must specify a port for the load balancer to listen on.

The load balancer needs to know what protocol it is balancing. For example, if it is handling SSL connections
it can act as an SSL terminator but to do this it needs to know it is an SSL protocol. Not all balancers support all
protocols, and Yaybu doesn’t expose SSL support at the moment. You can set protocol to one of:

• http

• https

• tcp

• ssl

29

Yaybu Documentation, Release 3.0

Some load balancers let you choose an algorithm. This is the method by which the load balancer distributes traffic.
It can be one of:

random Incoming connections are assigned to a backend at random

round-robin Incoming connections are passed to a backend in a circular fashion without any considering of pri-
ority.

least-connections Incoming connections are passed to the backend with the least number of active connections
with the assumption that it must have the most free capacity.

weighted-round-robin Same as round-robin, but also factors in a weight factor for each member

weighted-least-connections Same as least-connections, but also factors in a weight factor for each
member

The members input is a list of all compute resources that load will be spread over. There are a few variations here.

If you are doing load balancing for port 80 and forwarding to port 80 on the backend VM’s then you can:

new LoadBalancer as lb:
<snip>
members:

- {{ server1 }}
- {{ server2 }}

In this example server1 and server2 are Compute parts defined elsewhere in your configuration.

However if you are using different ports on the backend servers you can:

new LoadBalancer as lb:
<snip>
members:

- instance: {{ server1 }}
port: 8080

Not all backends support this, and an error will be raised before deployment starts if it is not.

There are 2 main types of cloud load balancer. The first accepts IP addresses and ports. If you pass a Compute node
to this type of load balancer Yaybu will determine it’s IP automatically. But you can pass ip addresses manually:

new LoadBalancer as lb:
<snip>
members:

- ip: 192.168.0.1
port: 8080

Other load balancers expect to be give a list of compute instance ids. Again, Yaybu will do the right thing if given
Compute parts. But you can also give it id values directly:

new LoadBalancer as lb:
<snip>
members:

- id: ec2123ab
port: 8080

7.2 Outputs

The part exposes a number of output variables to other Yaybu parts.

Each load balancer that is created has a unique id. In some cases this may be the same as the name.

30 Chapter 7. Managing cloud load balancers

Yaybu Documentation, Release 3.0

A load balancer has a public_ip. This is the public facing method of accessing the load balancer.

7.3 Supported services

Using libcloud to implement this part allows us to support a number of DNS services. Some of these receive more
extensive real world testing than others and are listed in this section.

7.3.1 Elastic Load Balancing

The driver id for Elastic Load Balancing is ELB:

new LoadBalancer as lb:
name: my-load-balancer

driver:
id: ELB
key: myaccesskey
secret: myaccesssecret
region: eu-west-1

port: 80
protocol: http
algorithm: round-robin

The default is just a
ex_memebers_availability_zones:

- a
- b

members:
- id: ec2123

For this driver:

• After creating a balancer you cannot change its settings (you can continue to add and remove members).

• protocol must be either tcp or http.

• algorithm must be ?.....?

• members are managed by instance id. You cannot set the backend port.

• ex_members_availability_zones is an ELB specific extension that controls which Amazon availabilty
zones a balancer is in.

7.4 Community supported services

By using libcloud to support the services in the previous section, the following services are also available:

7.4.1 Brightbox

The driver id for brightbox is BRIGHTBOX:

7.3. Supported services 31

Yaybu Documentation, Release 3.0

new LoadBalancer as lb:
name: my-load-balancer

driver:
id: BRIGHTBOX
key: acc-43ks4
secret: mybrightboxsecret

port: 80
protocol: http
algorithm: round-robin

members:
- id: ec2123

For the Brightbox loadbalancer:

• protocol must be http or tcp

• algorithm must be round-robin or least-connections

• members are managed by instance id, and you cannot set the backend port (your backends must listen on the
same port as your load balancer).

7.4.2 Cloudstack

The driver id for cloudstack is not currently set upstream, so it is currently unavailable.

For the CloudStack loadbalancer:

• After creating a balancer you cannot change its setting (you can continue to add and remove members).

• protocol must be tcp

• algorithm must be round-robin or least-connections

• members are managed by instance id. You cannot set the backend port.

7.4.3 GoGrid

The driver id for GoGrid is GOGRID:

new LoadBalancer as lb:
name: my-load-balancer

driver:
id: GOGRID
key: myaccesskey
secret: myaccesssecret

port: 80
protocol: http
algorithm: round-robin

members:
- id: ec2123

For this driver:

• protocol must be http

32 Chapter 7. Managing cloud load balancers

Yaybu Documentation, Release 3.0

• algorithm must be round-robin or least-connections

• members are managed by ip. Each backend can use a different port.

7.4.4 Ninefold

The driver id for Ninefold is NINEFOLD:

new LoadBalancer as lb:
name: my-load-balancer

driver:
id: NINEFOLD
key: myaccesskey
secret: myaccesssecret

port: 80
protocol: http
algorithm: round-robin

members:
- id: ec2123

Ninefold uses CloudStack, so see that section for additional notes.

7.4.5 Rackspace

The driver id for Rackspace load balancing is RACKSPACE_UK:

new LoadBalancer as lb:
name: my-load-balancer

driver:
id: RACKSPACE_UK
key: myaccesskey
secret: myaccesssecret

port: 80
protocol: http
algorithm: round-robin

members:
- id: ec2123

For this driver:

• After creating a balancer you can later change its settings.

• The list of supported protocol options is dynamic and fetched from Rackspace at runtime.

• algorithm must be one of random, round-robin, least-connections,
weighted-round-robin or weighted-least-connections.

• members are managed by ip/port pairs.

7.4. Community supported services 33

Yaybu Documentation, Release 3.0

34 Chapter 7. Managing cloud load balancers

CHAPTER

EIGHT

MANAGING CLOUD BASED DNS

Yaybu can manage your DNS using a Zone part. A basic setup looks like this:

new Zone as mydns:
driver:

id: GANDI
key: yourgandikey

domain: example.com

records:
- name: mail

data: 173.194.41.86
type: A

- name: www
data: www.example.org
type: CNAME

In this example, when you run yaybu apply this part will look for a zone named example.com and create it if it
does not exist. It will ensure that all the records given exist and are of the right type and have the right data.

8.1 Options

Use the driver argument to find and initialize a libcloud DNS driver. You must specify an id so that the right
service is targetted. Other variables include users and secrets and are described in the service-specific notes below.

You must specify a domain. If a zone for this domain doesn’t exist it will be created.

You must provide a list of DNS records to publish in the zone. At the very least you will specify a name and data
but other options are available:

name For example www or pop. You do not need to specify a fully qualified domain name.

type The type of DNS record - for example A or CNAME.

data The data to put in the DNS record. This varies between record types, but is typically an IP address for A records
or a fully qualified domain name for a CNAME record.

ttl How long this record can be cached for, specified in seconds. Specifying 86400 seconds would mean that if a
DNS record was changed some DNS servers could be returning the old value for up to 24 hours.

35

Yaybu Documentation, Release 3.0

8.2 Supported services

Using libcloud to implement this part allows us to support a number of DNS services. Some of these receive more
extensive real world testing than others and are listed in this section.

8.2.1 Gandi

The driver id for Gandi is GANDI:

new Zone as dns:
driver:

id: GANDI
key: yourgandikey

domain: example.com

records:
- name: www

data: 192.168.0.1

TTL can only be set on records.

Gandi supports the following record types:

• NS

• MX

• A

• AAAA

• CNAME

• TXT

• SRV

• SPF

• WKS

• LOC

8.2.2 Route53

The driver id for Route53 is ROUTE53:

new Zone as dns:
domain: example.com

driver:
id: ROUTE53
key: youraccountkey
secret: youraccountsecret

records:
- name: www

data: 192.168.0.1

36 Chapter 8. Managing cloud based DNS

http://www.gandi.net/
http://aws.amazon.com/route53/

Yaybu Documentation, Release 3.0

TTL can only be set on records.

Route53 supports the following record types:

• NS

• MX

• A

• AAAA

• CNAME

• TXT

• SRV

• PTR

• SOA

• SPF

• TXT

8.3 Community supported services

By using libcloud to support the services in the previous section, the following services are also available:

8.3.1 HostVirtual

The driver id for HostVirtual is HOSTVIRTUAL:

new Zone as dns:
domain: example.com

driver:
id: HOSTVIRTUAL
key: yourkey
secret: yoursecret

records:
- name: www

data: 192.168.0.1

TTL can be set by zone and by record.

HostVirtual supports the following recort types:

• A

• AAAA

• CNAME

• MX

• TXT

• NS

• SRV

8.3. Community supported services 37

http://www.vr.org/

Yaybu Documentation, Release 3.0

8.3.2 Linode

The driver id for Linode is LINODE:

new Zone as dns:
domain: example.com

driver:
id: LINODE
key: yourlinodeikey
secret: yourlinodesecret

records:
- name: www

data: 192.168.0.1

TTL can be set by zone and by record.

Linode supports the following record types:

• NS

• MX

• A

• AAAA

• CNAME

• TXT

• SRV

8.3.3 RackSpace

The driver id for Rackspace DNS is RACKSPACE_UK or RACKSPACE_US:

new Zone as dns:
domain: example.com

driver:
id: RACKSPACE_UK
user_id: rackspace_user_id
key: rackspace_secret_key

records:
- name: www

data: 192.168.0.1

TTL can be set by zone and by record.

Rackspace supports the following record types:

• A

• AAAA

• CNAME

• MX

• NS

38 Chapter 8. Managing cloud based DNS

https://www.linode.com/wiki/index.php/Linode_DNS
http://www.rackspace.com/cloud/dns/

Yaybu Documentation, Release 3.0

• TXT

• SRV

8.3.4 Zerigo

The driver id for Zerigo is ZERIGO:

new Zone as dns:
domain: example.com

driver:
id: ZERIGO
key: youraccountkey
secret: youraccountsecret

records:
- name: www

data: 192.168.0.1

TTL can be set by zone and by record.

Zerigo supports The following record types:

• A

• AAAA

• CNAME

• MX

• REDIRECT

• TXT

• SRV

• NAPTR

• NS

• PTR

• SPF

• GEO

• URL

8.3. Community supported services 39

http://www.zerigo.com/managed-dns

Yaybu Documentation, Release 3.0

40 Chapter 8. Managing cloud based DNS

CHAPTER

NINE

SYNCING STATIC FILES TO CLOUD
SERVICES

The StaticContainer part allows static assets to be synchronised from one container to another. The primary use
case is to upload assets from your local drive to the cloud.

A simple invocation looks like this:

new StaticContainer as my_static_files:
source: local/path

destination:
id: S3
key: yourawskey
secret: yourawssecret
container: target_container

This will sync the contents of a local folder to a destination container.

If the source and destination have incompatible approaches to hashing StaticContainer will automatically gen-
erate and store a manifest in the target destination.

Any service that can be used as a destination can also be used as a source, so this also works:

new StaticContainer as my_static_files:
source:

id: S3
key: yourawskey
secret: yourawssecret
container: source_container

destination:
id: S3
key: yourawskey
secret: yourawssecret
container: target_container

9.1 Options

There are 2 main options for StaticContainer. The source and destination.

source can either be a simple string with a path to local files or it can describe a libcloud driver:

41

Yaybu Documentation, Release 3.0

source:
id: S3
key: yourawskey
secret: yourawssecret
container: source_container

The destination must be a set of driver parameters as above.

The exact options vary based on the driver that you use, and this is covered in more detail below.

9.2 Supported drivers

Using libcloud to implement this part allows us to support a number of DNS services. Some of these receive more
extensive real world testing than others and are listed in this section.

9.2.1 Local files

You can synchronise from and to any folder that is accessible locally use the LOCAL driver:

new StaticContainer as my_static_files:
source: ~/source

destination:
id: LOCAL
key: yourawskey
secret: yourawssecret
container: target_container

9.2.2 S3

The driver id for S3 is S3:

new StaticContainer as my_static_files:
source: ~/source

destination:
id: S3
key: yourawskey
secret: yourawssecret
container: target_container

9.3 Community supported drivers

By using libcloud to support the services in the previous section, the following services are also available:

42 Chapter 9. Syncing static files to cloud services

Yaybu Documentation, Release 3.0

9.3.1 Azure Blobs

9.3.2 CloudFiles

9.3.3 Google Storage

9.3.4 Nimbus

9.3.5 Ninefold

9.3. Community supported drivers 43

Yaybu Documentation, Release 3.0

44 Chapter 9. Syncing static files to cloud services

CHAPTER

TEN

COMBINING PARTS

You can combine the parts in different ways using the yay language.

10.1 Create and provision a cloud server

You can use a Compute part to provide the server key of the Provisioner part:

new Provisioner as vm1:
new Compute as server:

name: mytestvm1
driver:

id: VMWARE
image:

id: /home/john/vmware/ubuntu/ubuntu.vmx
user: ubuntu

resources:
- Package:

name: git-core

When the Provisioner part tries to access server.fqdn the Compute part will automatically find an existing
mytestvm1 or create a new one if needed.

10.2 Create a new instance and automatically set up DNS

You can use the IP from a Compute part in other parts just by using it like any other variable:

new Compute as server:
name: mytestserver
driver:

id: EC2
key: secretkey
secret: secretsecret

image: imageid
size: t1.micro

new Zone as dns:
driver:

id: ROUTE53
key: secretkey
secret: secret

45

Yaybu Documentation, Release 3.0

domain: mydomain.com
records:

- name: www
type: A
data: {{ server.public_ip }}

10.3 Create and provision interdependent cloud servers

You can refer to server A from the configuration for server B and vice versa and Yaybu will satisfy the dependcies
automatically:

new Provisioner as vm1:
new Compute as server:

name: mytestvm1
driver:

id: VMWARE
image:

id: /home/john/vmware/ubuntu/ubuntu.vmx
user: ubuntu

resources:
- File:

name: /etc/foo
template: sometemplate.j2
template_args:

vm2_ip: {{ vm2.server.public_ips[0] }}

new Provisioner as vm2:
new Compute as server:

name: mytestvm2
driver:

id: VMWARE
image:

id: /home/john/vmware/ubuntu/ubuntu.vmx
user: ubuntu

resources:
- File:

name: /etc/foo
template: sometemplate.j2
template_args:

vm1_ip: {{ vm1.server.public_ips[0] }}

here a templated File on mytestvm1 needs the IP address of mytestvm2. mytestvm2 needs the IP address of
mytestvm1. Yaybu is able to work out that it should activate both Compute parts first, then proceed to provision
both template files to the instances.

46 Chapter 10. Combining parts

CHAPTER

ELEVEN

LANGUAGE TOUR

Yay is a non-strict language that supports lazy evaluation. It is a sort of mutant child of YAML and Python, with some
of the features of both.

There are some significant differences from YAML and this absolutely does not attempt to implement the more esoteric
parts of YAML.

A particularly significant restriction is that keys may not contain whitespace. keys in a configuration language are
expected to be simple bare terms. This also helpfully keeps the magic smoke firmly inside our parser.

It is important to understand that for any line of input it is imperative “pythonish” or declarative “yamlish”. It actually
works well and we find it very easy to read, for example:

a: b
if a == ’b’:

c: d

It is pretty clear that some of those lines are declarative and some are imperative. When in pythonish mode it works
just as you would expect from python, when in yamlish mode it works as a declarative language for defining terms.

11.1 Mappings

A mapping is a set of key value pairs. They key is a string and the value can be any type supported by Yay. All Yay
files will contain at least one mapping:

site-domain: www.yaybu.com
number-of-zopes: 12
in-production: true

You can nest them as well, as deep as you need to. Like in Python, the relationships between each item is based on the
amount of indentation:

interfaces:
eth0:

interfaces: 192.168.0.1
dhcp: yes

11.2 List

You can create a list of things by creating an intended bulleted list:

47

Yaybu Documentation, Release 3.0

packages:
- python-yay
- python-yaybu
- python-libvirt

If you need to express an empty list you can also do:

packages: []

11.3 Variable Expansion

If you were to specify the same Yaybu recipe over and over again you would be able to pull out a lot of duplication.
You can create templates with placeholders in and avoid that. Lets say you were deploying into a directory based on a
customer project id:

projectcode: MyCustomer-145

resources:
- Directory:

name: /var/local/sites/{{projectcode}}

- Checkout:
name: /var/local/sites/{{projectcode}}/src
repository: svn://mysvnserver/{{projectcode}}

If you variables are in mappings you can access them using . as seperator. You can also access specific items in lists
with []:

projects:
- name: www.foo.com
projectcode: Foo-1
checkout:

repository: http://github.com/isotoma/foo
branch: master

resources:
- Checkout:

repository: /var/local/sites/{{projects[0].checkout.repository}}

Sometimes you might only want to optionally set variables in your configuration. Here we pickup project.id if
its set, but fall back to project.name:

project:
name: www.baz.com

example_key: {{project.id else project.name}}

11.4 Including Files

You can import a recipe using the yay extends feature. If you had a template foo.yay:

resources:
- Directory:

name: /var/local/sites/{{projectcode}}

48 Chapter 11. Language Tour

Yaybu Documentation, Release 3.0

- Checkout:
name: /var/local/sites/{{projectcode}}/src
repository: svn://mysvnserver/{{projectcode}}

You can reuse this recipe in bar.yay like so:

include "foo.yay"

include foo.bar.includes

projectcode: MyCustomer-145

11.5 Search paths

You can add a directory to the search path:

search "/var/yay/includes"

search foo.bar.searchpath

11.6 Configuration

::

configure openers:

foo: bar baz: quux

configure basicauth: zip: zop

11.7 Ephemeral keys

These will not appear in the output:

for a in b
set c = d.foo.bar.baz
set d = dsds.sdsd.sewewe
set e = as.ew.qw
foo: c

11.8 Extending Lists

If you were to specify resources twice in the same file, or indeed across multiple files, the most recently specified one
would win:

resources:
- foo
- bar

resources:
- baz

11.5. Search paths 49

Yaybu Documentation, Release 3.0

If you were to do this, resources would only contain baz. Yay has a function to allow appending to predefined lists:
append:

resources:
- foo
- bar

extend resources:
- baz

11.9 Conditions

foo:
if averylongvariablename == anotherverylongvariablename and \

yetanothervariable == d and e == f:

bar:
quux:

foo:
bar: baz

elif blah == something:
moo: mah

else:
- baz

11.10 For Loops

You might want to have a list of project codes and then define multiple resources for each item in that list. You would
do something like this:

projectcodes:
MyCustomer-100
MyCustomer-72

extend resources:

for p in projectcodes:
- Directory:

name: /var/local/sites/{{p}}

for q in p.qcodes:
- Checkout:

name: /var/local/sites/{{p}}/src
repository: svn://mysvnserver/{{q}}

You can also have conditions:

fruit:
- name: apple

price: 5
- name: lime

price: 10

50 Chapter 11. Language Tour

Yaybu Documentation, Release 3.0

cheap:
for f in fruit if f.price < 10:

- {{f}}

You might need to loop over a list within a list:

staff:
- name: Joe
devices:

- macbook
- iphone

- name: John
devices:

- air
- iphone

stuff:
for s in staff:

for d in s.devices:
{{d}}

This will produce a single list that is equivalent to:

stuff:
- macbook
- iphone
- air
- iphone

You can use a for against a mapping too - you will iterate over its keys. A for over a mapping with a condition might
look like this:

fruit:
recognised as decimal integers since they look a bit like them
apple: 5
lime: 10
strawberry: 1

cheap:
for f in fruit:

if fruit[f] < 10:
{{f}}

That would return a list with apple and strawberry in it. The list will be sorted alphabetically: mappings are generally
unordered but we want the iteration order to be stable.

11.11 Select

The select statement is a way to have conditions in your configuration.

Lets say host.distro contains your Ubuntu version and you want to install difference packages based on the distro.
You could do something like:

packages:
select distro:

karmic:

11.11. Select 51

Yaybu Documentation, Release 3.0

- python-setuptools
lucid:

- python-distribute
- python-zc.buildout

11.12 Function calls

Any sandboxed python function can be called where an expression would exist in a yay statement:

set foo = sum(a)
for x in range(foo):

- x

11.13 Class bindings

Classes can be constructed on-the-fly:

parts:
web:

new Compute:
foo: bar
% for x in range(4)

baz: x

Classes may have special side-effects, or provide additional data, at runtime.

Each name for a class will be looked up in a registry for a concrete implementation that is implemented in python.

11.14 Macros

Macros provided parameterised blocks that can be reused, rather like a function.

you can define a macro with:

macro mymacro:
foo: bar
baz: {{thing}}

You can then call it later:

foo:
for q in x:

call mymacro:
thing: {{q}}

11.15 Prototypes

Prototypes contain a default mapping which you can then override. You can think of a prototype as a class that you
can then extend.

In their final form, they behave exactly like mappings:

52 Chapter 11. Language Tour

Yaybu Documentation, Release 3.0

prototype DjangoSite:
set self = here

name: www.example.com

sitedir: /var/local/sites/{{ self.name }}
rundir: /var/run/{{ self.name }}
tmpdir: /var/tmp/{{ self.name }}

resources:
- Directory:

name: {{ self.tmpdir }}

- Checkout:
name: {{ self.sitedir}}
source: git://github.com/

some_key:
new DjangoSite:

name: www.mysite.com

11.16 Here

Here is a reserved word that expands to the nearest parent node that is a mapping.

You can use it to refer to siblings:

some_data:
sitename: www.example.com
sitedir: /var/www/{{ here.sitename }}

You can use it with set to refer to specific points of the graph:

some_data:
set self = here

nested:
something: goodbye
mapping: {{ self.something }} # Should be ’hello’
other_mapping: {{ here.something }} # Should be ’goodbye’

something: hello

11.16. Here 53

Yaybu Documentation, Release 3.0

54 Chapter 11. Language Tour

CHAPTER

TWELVE

PROTECTING YOUR SECRETS, KEYS
AND CERTIFICATES

Yaybu natively supports the use of GPG as a way to protect both secret variables in your configuration files and the
use of encrypted assets when using the Provisioner part.

12.1 Installing GPG

On an Ubuntu machine GPG can be installed with:

sudo apt-get install gnupg

On OSX you can install a pre-built binary produced by the GPGTools team, or you can install it using brew:

brew install gnupg

12.2 Creating a GPG key

If you want to encrypt your secrets for multiple recipients you will need a GPG key. We tend to follow the advice of
Debian when creating new keys and as such:

• You should go for a 4096 bit key

• You should avoid SHA1 as your preferred hash

You can generate a signing and encryption key has follows:

paul@jolt:~$ gpg --gen-key
gpg (GnuPG) 1.4.10; Copyright (C) 2008 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

gpg: directory ‘/home/paul/.gnupg’ created
gpg: new configuration file ‘/home/paul/.gnupg/gpg.conf’ created
gpg: WARNING: options in ‘/home/paul/.gnupg/gpg.conf’ are not yet active during this run
gpg: keyring ‘/home/paul/.gnupg/secring.gpg’ created
gpg: keyring ‘/home/paul/.gnupg/pubring.gpg’ created
Please select what kind of key you want:

(1) RSA and RSA (default)
(2) DSA and Elgamal
(3) DSA (sign only)

55

https://gpgtools.org/
http://brew.sh
http://keyring.debian.org/creating-key.html

Yaybu Documentation, Release 3.0

(4) RSA (sign only)
Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 4096
Requested keysize is 4096 bits
Please specify how long the key should be valid.

0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years

Key is valid for? (0) 0
Key does not expire at all
Is this correct? (y/N) y

You need a user ID to identify your key; the software constructs the user ID
from the Real Name, Comment and E-mail Address in this form:

"Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Paul Ubbot
E-mail address: pubbot@example.com
Comment:
You selected this USER-ID:

"Paul Ubbot <pubbot@example.com>"

Change (N)ame, (C)omment, (E)-mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, use the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

Not enough random bytes available. Please do some other work to give
the OS a chance to collect more entropy! (Need 284 more bytes)
+++++
...............................+++++
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, use the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
......+++++
.......+++++
gpg: /home/paul/.gnupg/trustdb.gpg: trustdb created
gpg: key D770E8A9 marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
pub 4096R/D770E8A9 2013-08-28

Key fingerprint = 746B 2477 FB6F CCC6 46C2 D5D2 288C EF6D D770 E8A9
uid Paul Ubbot <pubbot@example.com>
sub 4096R/49BEE9E3 2013-08-28

You now have a GPG key.

Ideally you should sign the keys of the people you are working with to build a web of trust, however there is no
requirement to do so. There are excellent resources online for holding a key signing event.

56 Chapter 12. Protecting your secrets, keys and certificates

https://wiki.debian.org/Keysigning

Yaybu Documentation, Release 3.0

In order to encrypt for you collaborators will need a copy of the public portion of your key. You can publish your key
like so:

gpg --keyserver pgp.mit.edu --send-key D770E8A9

Anyone can retrieve your public key like so:

gpg --keyserver pgp.mit.edu --recv-keys D770E8A9

12.3 Encrypting your configuration

You might have a secrets.yay that looks like this:

secrets:
aws: somepassword
rackspace: abetterpassw0rd

You can encrypt it for your new key like this:

gpg -e -r D770E8A9 secrets.yay

You can use e-mail addresses as well:

gpg -e -r pubbot@example.com secrets.yay

In both cases a secrets.yay.gpg will be generated, which you can then reference from your Yaybufile:

include "secrets.yay.gpg"

new Compute as myserver:
driver:

id: EC2
key: myawskey
secret: {{ secrets.aws }}

<snip>

12.4 Encrypting your provisioner assets

The Provisioner part is GPG aware. If you were copying a file to a server that was a secret you could encrypt it as
above and then refer to it from File parts:

new Provisioner as p:
resources:

- File:
name: /etc/defaults/foobar
static: foobar.gpg

In this situation Yaybu would notify you when it changed the file, but it wouldn’t show a diff as it knows the file is
encrypted and so secret.

12.5 Integration with VIM

We are big fans of the vim-gnupg plugin which allows you to:

12.3. Encrypting your configuration 57

https://github.com/jamessan/vim-gnupg

Yaybu Documentation, Release 3.0

vi secrets.yay.gpg

It will transparently decrypt the file, allow you to edit the text contents, then when you save it will re-encrypt it. It will
preserve the same recipients, which is very useful if you are working with a team.

58 Chapter 12. Protecting your secrets, keys and certificates

CHAPTER

THIRTEEN

CHANGE SOURCES

13.1 EXPERIMENTAL: Provisioning on commit (via Travis CI)

Travis CI has a mechansim to encrypt secrets. It also has a hook that is run on success. This means we can have yaybu
perform system orchestration tasks on commit + successful CI run without having to run any of our own servers.

Here is a simple Yaybufile:

yaybu:
options:

- name: BIGV_KEY
- name: BIGV_SECRET
- name: BIGV_ACCOUNT
- name: BIGV_ROOT_PASSWORD
default: penguin55

new Provisioner as myexample:
new Compute as server:

driver:
id: BIGV
key: {{ yaybu.argv.BIGV_KEY }}
secret: {{ yaybu.argv.BIGV_SECRET }}

image: precise

name: myexample

user: root
password: {{ yaybu.argv.BIGV_ROOT_PASSWORD }}

resources:
- Package:

name: git-core

- Checkout:
name: /tmp/yaybu
scm: git
repository: https://github.com/yaybu/example

The yaybu.options section allows us to define arguments that can be passed to yaybu via the command line. You
can define defaults to use if no such argument is passed in.

Now we can encrypt these details using the travis command line tool:

59

Yaybu Documentation, Release 3.0

travis encrypt BIGV_KEY=myusername --add env.global
travis encrypt BIGV_SECRET=password --add env.global
travis encrypt BIGV_ACCOUNT=myaccount --add env.global
travis encrypt BIGV_ROOT_PASSWORD=password --add env.global

And here is what your .travis.yml looks like:

language: python
pythons:

- "2.6"

env:
global:
- secure: <YOUR_ENCRYPTED_STRINGS>

script:
- true # This is where you would normally run your tests

after_success:
- sudo add-apt-repository yaybu-team/yaybu
- sudo apt-get update
- sudo apt-get install python-yaybu
- yaybu up BIGV_KEY=$BIGV_KEY BIGV_SECRET=$BIGV_SECRET BIGV_ACCOUNT=$BIGV_ACCOUNT BIGV_ROOT_PASSWORD=$BIGV_ROOT_PASSWORD

13.2 EXPERIMENTAL: Provisioning on commit

This uses a new command, yaybu run. This puts yaybu into a mode where it continues to run, rather than deploying
then exiting. Parts can set up listeners to respond to external events like commits or monitoring systems.

To deploy on commit you can use a Yaybufile like this:

new GitChangeSource as changesource:
polling-interval: 10
repository: https://github.com/isotoma/yaybu

new Provisioner as myexample:
new Compute as server:

driver:
id: EC2_EU_WEST
key: mykey
secret: mysecret

size: t1.micro
image: ami-4f504f3b

ex_keyname: mysshkey
name: myexample

user: ubuntu
private_key: mysshkey.pem

resources:
- Package:

name: git-core

- Checkout:
name: /tmp/yaybu

60 Chapter 13. Change Sources

Yaybu Documentation, Release 3.0

scm: git
repository: {{ changesource.repository }}
revision: {{ changesource.master }}

The GitChangeSource part polls and sets {{changesource.master}} with the SHA of the current commit.

This example changesource polls to learn if a new commit has occurred. This is only because the part is an example
implementation - it could easily be a webhook or zeromq push event.

The Checkout resource uses the master property of changesource. Yaybu can use this dependency information
to know that the Provisioner that owns the Checkout is stale and needs applying every time master changes.

If your Yaybufile contained another Provisioner that didn’t have such a Checkout (perhaps its the database
server) then Yaybu would equally know not to deploy to it on commit.

13.2. EXPERIMENTAL: Provisioning on commit 61

Yaybu Documentation, Release 3.0

62 Chapter 13. Change Sources

CHAPTER

FOURTEEN

HACKING ON YAYBU

If you are going to hack on Yaybu please stop by IRC and say hi! We are on OFTC in #yaybu.

The source code is available on GitHub - please fork it and send us pull requests!

The main components you might want to hack on are:

yaybu The main app. You’ll need to change this to add new CLI subcommands or add new Parts. yay The con-
figuration language runtime. You will need to change this to improve parsing, the runtime graph, file transports, etc.
yaybu.app This contains a small OSX application and build scripts to package Yaybu for OSX. You will probably need
to fork this to fix OSX specific bugs.

To get a development environment with required dependencies:

virtualenv .
./bin/pip install -r requirements.txt

NOTE: Currently the testrunner will try and run a set of integration tests against an ubuntu chroot. These tests are only
run on ubuntu systems with the following packages installed:

sudo apt-get install fakechroot fakeroot debootstrap cowdancer

To run the test:

./bin/nose2

Then write a configuration file called Yaybufile:

And run it with:

./bin/yaybu up

63

Yaybu Documentation, Release 3.0

64 Chapter 14. Hacking on yaybu

CHAPTER

FIFTEEN

INDICES AND TABLES

• genindex

• modindex

• search

65

