
YATSM
Release 0.7.0

Jan 13, 2018

Contents

1 About 1

2 User Guide 3

3 Command Line Interface Utilities 21

4 Indices and tables 27

5 References 29

Bibliography 31

i

ii

CHAPTER 1

About

Yet Another Timeseries Model (YATSM) is a Python package for utilizing a collection of timeseries algorithms and
methods designed to monitor the land surface using remotely sensed imagery.

YATSM can be thought of as three components:

1. A library of functions and other objects useful for performing time series analysis, including various statistics
and input/output helpers.

2. Time series analysis algorithm implementations

3. The command line interface (CLI) provides a set of programs that facilitate the running of time series algorithms
on “time series stacks” and the analysis of the results.

1

YATSM, Release 0.7.0

2 Chapter 1. About

CHAPTER 2

User Guide

To get started with YATSM, please follow this user guide:

2.1 Installation

2.1.1 Dependencies

Yet Another TimeSeries Model (YATSM) is written in Python (version 2.7, but 3.5 is soon to be a priority) and utilizes
several C libraries, including the Geographic Data Abstraction Library (GDAL). Package dependencies are most easily
installed using Conda, but may also be installed using your package manager on Linux (see Ubuntu 14.04 example),
Homebrew on Mac OS, or through OSGEO4W on Windows.

However, it is strongly encouraged that you install YATSM into an isolated environment, either using virtualenv for
pip installs or a separate environment using conda, to avoid dependency conflicts with other software.

2.1.2 Conda

Requirements for YATSM may also be installed using conda, Python’s cross-platform and platform agnostic binary
package manager from ContinuumIO. conda makes installation of Python packages, especially scientific packages, a
breeze because it includes compiled library dependencies that remove the need for a compiler or pre-installed libraries.

Installation instructions for conda are available on their docs site conda.pydata.org

Since conda makes installation so easy, installation through conda will install all non-developer dependencies. Install
YATSM using conda into an isolated environment by using the environment.yaml file as follows:

Install
conda env create -n yatsm -f environment.yaml
Activate
source activate yatsm

And as with pip, you need to install YATSM:

3

https://www.python.org/
http://www.gdal.org/
http://conda.pydata.org/docs/
http://brew.sh/
http://trac.osgeo.org/osgeo4w/
https://virtualenv.pypa.io/en/latest/
http://conda.pydata.org/docs/
http://conda.pydata.org/docs/
http://continuum.io/
http://conda.pydata.org/docs/
http://conda.pydata.org/docs/get-started.html
http://conda.pydata.org/docs/
http://conda.pydata.org/docs/
http://conda.pydata.org/docs/

YATSM, Release 0.7.0

Install YATSM
pip install .

2.1.3 virtualenv and pip

virtualenv

Python and GDAL are usually installed on most computing environments that handle geographic data (if not, see an
example of installing these dependencies on Ubuntu 14.04). If you wish to install YATSM on a system with these two
dependencies but you don’t have installation privileges for the Python dependencies, you could install YATSM into a
virtualenv.

virtualenv creates isolated Python environments, thus enabling a user without root privileges to install modules. vir-
tualenv has the added benefit of enabling the installation of specific module versions for single piece of software.

To set up a virtualenv, it must first be available. With root access,

sudo pip install virtualenv

Once virtualenv is installed, users may create a virtualenv for YATSM:

virtualenv yatsm_venv

To activate this isolated Python environment from Bash:

source yatsm_venv/bin/activate

Your terminal prompt will change, denoting the switch to this newly created isolated Python environment.

pip

The basic dependencies for YATSM are included in the requirements.txt file which is by pip as follows:

pip install -r requirements.txt

Additional dependencies are required for some timeseries analysis algorithms or for accelerating the computation in
YATSM. These requirements are separate from the common base installation requirements so that YATSM may be
more modular:

• Long term mean phenological calculations from Melaas et al., 2013

– Requires the R statistical software environment and the rpy2 Python to R interface

– pip install -r requirements/pheno.txt

• Computation acceleration

– GLMNET Fortran wrapper for accelerating Elastic Net or Lasso regularized regression

– Numba for speeding up computation through just in time compilation (JIT)

– pip install -r requirements/accel.txt

A complete installation of YATSM, including acceleration dependencies and additional timeseries analysis dependen-
cies, may be installed using the requirements/all.txt file:

pip install -r requirements/all.txt

4 Chapter 2. User Guide

http://virtualenv.readthedocs.org/en/latest/

YATSM, Release 0.7.0

Finally, install YATSM:

Install YATSM
pip install .

2.1.4 Developer Installation

If you’re interested in helping develop YATSM, you can download the repository using Git and install it in an editable
installation:

git clone https://github.com/ceholden/yatsm.git
cd yatsm/
pip install -e .

Documentation may be built using Sphinx from the docs directory:

cd docs/
make html

2.1.5 Platform Support

YATSM is developed on Linux (CentOS 6, Arch, and Ubuntu 14.04) and has not been tested on any other platforms,
though I have seen it working on Mac OS. I am welcome to any help fixing bugs or better supporting Windows, but I
will not try to support Windows myself.

Ubuntu 14.04

On Ubuntu 14.04, for example, the GDAL build dependencies may be satisfied by installing the following:

sudo apt-get install python2.7-dev
sudo apt-get install gdal-bin libgdal-dev
sudo apt-get install python-gdal

This installation guide will also utilize the pip utility for installing Python modules. pip may be installed or upgraded
following the instructions here, but it is usual preferable to use your package manager:

$ sudo apt-get install python-pip

You will also need two font packages for matplotlib that are not installed with Ubuntu by default:

$ sudo apt-get install libfreetype6-dev libxft-dev

With the GDAL library and pip installed, follow the guide for how to install YATSM below using virtualenv and pip.

2.2 Example Workflow

This section of the guide covers the process of running of the CCDC implementation (yatsm.algorithms.ccdc.
CCDCesque), including the change detection and classification steps of the process, on an example dataset centered
on Harvard Forest in Masssachusetts.

It assumes you have already installed YATSM.

2.2. Example Workflow 5

http://sphinx-doc.org/
http://pip.readthedocs.org/en/latest/installing.html
http://pip.readthedocs.org/en/latest/installing.html

YATSM, Release 0.7.0

2.2.1 Data

The data used in this example are part of the collection of time series subsets described in the landsat_stack repository.

Download at least the p013r030_images.tar.bz2 as described in the repository instructions. Place all downloads in the
directory you want to work in (preferably a new directory), and then unzip the files. The directory structure created
should look similar to the following:

$ tree
p013r030

images
example_img
example_img.aux.xml
example_img.hdr
LE70130301999211EDC00

LE70130301999211EDC00_MTL.txt
LE70130301999211EDC00_stack
LE70130301999211EDC00_stack.aux.xml
LE70130301999211EDC00_stack.hdr

...
LT50130302011316GNC01

LT50130302011316GNC01_MTL.txt
LT50130302011316GNC01_stack
LT50130302011316GNC01_stack.aux.xml
LT50130302011316GNC01_stack.hdr

YATSM
yatsm_r0.npz
yatsm_r100.npz

...
maps

p013r030_HF_change_first_1985-2016.gtif
p013r030_HF_change_first_1985-2016.gtif.aux.xml
p013r030_HF_change_last_1985-2016.gtif
p013r030_HF_change_last_1985-2016.gtif.aux.xml

...
p013r030_maps.qgs

p013r030_images.tar.bz2
p013r030_maps.tar.gz
p013r030_results.tar.gz

2.2.2 Setup

To use any of the built-in programs that facilitate running time series analysis, we need to describe the time series data
using a CSV file and we need to provide our analysis parameters using a configuration file (specified in the YAML
format).

To begin, copy the example configuration file located within this repository as examples/p013r030/p013r030.
yaml, or by downloading it from Github (p013r030.yaml).

Next, we will use the helper script located at scripts/gen_date_file.sh to generate a CSV file with the
columns date and filename and rows for each image we want to include in our analysis. For example,

date,filename
1984162,images/LT50130301984162XXX08/LT50130301984162XXX08_stack
1984274,images/LT50130301984274PAC08/LT50130301984274PAC08_stack
1984290,images/LT50130301984290PAC16/LT50130301984290PAC16_stack

6 Chapter 2. User Guide

https://github.com/ceholden/landsat_stack
https://raw.githubusercontent.com/ceholden/yatsm/master/examples/p013r030/p013r030.yaml

YATSM, Release 0.7.0

You can use the Bash helper script, located in the repository as scripts/gen_date_file.sh, to create this CSV
file. If this script doesn’t work for your data, or you can’t run Bash scripts, generate this information using some other
means.

$ scripts/gen_date_file.sh -v images images.csv
Searching in images
Searching for pattern: L*stack
YYYYDOY starts at 9
Output file is images.csv
Found 423 images

Next, open the configuration file with a text editor and make some changes under the dataset: section to point to
this newly generated images.csv file (adjust this name if you named the CSV file something different). Change the
value of the input_file parameter. You will also want to change the values for output and cache_line_dir,
which control the location of output result files and “cached data” files, respectively.

dataset:
Text file containing dates and images
input_file: "images.csv"
Input date format
date_format: "%Y%j"
Output location
output: "images/YATSM"
Output file prefix (e.g., [prefix]_[line].npz)
output_prefix: "yatsm_r"
Total number of bands
n_bands: 8
Mask band (e.g., Fmask)
mask_band: 8
List of integer values to mask within the mask band
mask_values: [2, 3, 4, 255]
Valid range of band data
specify 1 range for all bands, or specify ranges for each band
min_values: 0
max_values: 10000
Use BIP image reader? If not, use GDAL to read in
use_bip_reader: False
Directory location for caching dataset lines
cache_line_dir: "cache"

2.2.3 Pixel Plotter

A good first test to make sure your dataset configuration was successful, as well as a good place to start for experi-
menting with different runtime parameters, is using the yatsm pixel command

yatsm pixel

2.2.4 Batch Change Detection Processing

The next step in the process is to run the change detection on all pixels in your dataset.

yatsm line

2.2. Example Workflow 7

YATSM, Release 0.7.0

2.2.5 Change Detection Visualization

yatsm changemap

2.2.6 Classification Training

Find training data, remembering to record the range of time for which the training data is accurate or relevant for so
we will know which time series segment attributes (X) to match with the training data labels (y).

yatsm train

2.2.7 Classification Prediction

Using the trained classifier, classify the time series segments identified in the change detection step.

yatsm classify

2.2.8 Land Cover Mapping

yatsm map

2.3 Dataset Preparation

This part of the guide is a work in progress. For now you can get an idea of how the datasets should be organized and
prepared by viewing two example datasets located here.

The issue tracker on Github is being used to track additions to this documentation section. Please see issue 34.

2.4 Model Parameter Exploration

The issue tracker on Github is being used to track additions to this documentation section. Please see issue 35.

2.5 Timeseries Model Specification

This section will describe the timeseries models used in YATSM and how to configure them within the configuration
file.

The issue tracker on Github is being used to track additions to this documentation section. Please see issue 36.

2.6 Science Models

The time series model run using the YATSM package command line interface (i.e., yatsm line and yatsm pixel) is
specified in the configuration file using the YATSM['algorithm'] key:

8 Chapter 2. User Guide

https://github.com/ceholden/landsat_stack
https://github.com/ceholden/yatsm/issues/34
https://github.com/ceholden/yatsm/issues/35
https://github.com/ceholden/yatsm/issues/36

YATSM, Release 0.7.0

YATSM:
algorithm: "AN_ALGORITHM"
...

AN_ALGORITHM:
init: ...
fit: ...

The value specified for the algorithm key within the YATSM section must be the name of another section of the
configuration file that can be used to identify, initialize, and run a time series algorithm included in the yatsm.
algorithms module.

2.6.1 Models

CCDCesque

The YATSM implementation of Continuous Classification and Change Detection (CCDC) [1]

class yatsm.algorithms.ccdc.CCDCesque(test_indices=None, estimator={’object’: <Mag-
icMock name=’mock.linear_model.Lasso()’
id=’139776388836368’>, ’fit’: {}}, consecutive=5,
threshold=2.56, min_obs=None, min_rmse=None,
retrain_time=365.25, screening=’RLM’,
screening_crit=400.0, remove_noise=True,
green_band=1, swir1_band=4, dynamic_rmse=False,
slope_test=False, idx_slope=1, **kwargs)

Initialize a CCDC-like model for data X (spectra) and Y (dates)

An unofficial and unvalidated port of the Continuous Change Detection and Classification (CCDC) algorithm
by Zhu and Woodcock, 2014.

Parameters

• test_indices (numpy.ndarray) – Test for changes with these indices of Y. If not
provided, all series in Y will be used as test indices

• estimator (dict) – dictionary containing estimation model from scikit-learn
used to fit and predict timeseries and, optionally, a dict of options for the estimation model
fit method (default: {'object': Lasso(alpha=20), 'fit': {}})

• consecutive (int) – Consecutive observations to trigger change

• threshold (float) – Test statistic threshold for change

• min_obs (int) – Minimum observations in model

• min_rmse (float) – Minimum RMSE for models during testing

• retrain_time (float) – Number of days between model fit updates during monitoring
period

• screening (str) – Style of prescreening of the timeseries for noise. Options are ‘RLM’
or ‘LOWESS’ (default: RLM)

• screening_crit (float) – critical value for multitemporal noise screening (default:
400.0)

• remove_noise (bool) – Remove observation if change is not detected but first observa-
tion is above threshold (if it looks like noise) (default: True)

2.6. Science Models 9

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/dev/library/stdtypes.html#dict
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool

YATSM, Release 0.7.0

• green_band (int) – Index of green band in Y for multitemporal masking (default: 1)

• swir1_band (int) – Index of first SWIR band in Y for multitemporal masking (default:
4)

• dynamic_rmse (bool) – Vary RMSE as a function of day of year (default: False)

• slope_test (float or bool) – Use an additional slope test to assess the suitability
of the training period. A value of True enables the test and uses the threshold parameter as
the test criterion. False turns off the test or a float value enables the test but overrides the
test criterion threshold. (default: False)

• idx_slope (int) – if slope_test is enabled, provide index of X containing slope term
(default: 1)

_get_dynamic_rmse()
Return the dynamic RMSE for each model

Dynamic RMSE refers to the Root Mean Squared Error calculated using self.min_obs number of obser-
vations closest in day of year to the observation self.consecutive steps into the future. Goal is to reduce
false-positives during seasonal transitions (high variance in the signal) while decreasing omission during
stable times of year.

Returns dynamic RMSE of each tested model

Return type numpy.ndarray

_get_model_rmse()
Return the normal RMSE of each fitted model

Returns RMSE of each tested model

Return type numpy.ndarray

10 Chapter 2. User Guide

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

YATSM, Release 0.7.0

2.6. Science Models 11

YATSM, Release 0.7.0

Algorithm Logic

Algorithm Flowchart:
CCDCesque

Historic Period
Monitoring Period

preprocess fit while
(has observations)

Segment
initialized?

Multitemp mask

No

Check next
observations

Yes

Iterate
forward

Test
Stability

Stable:
init segment

Yes

Unstable:
move forward

No Delete noise

Noise
detected

Change:
new segment

Above
threshold

No change

Within
threshold

12 Chapter 2. User Guide

YATSM, Release 0.7.0

2.7 Model Configuration

The issue tracker on Github is being used to track additions to this documentation section. Please see issue 37.

2.7.1 Configuration File

The batch running script uses an YAML file to parameterize the run. The YAML file uses several sections:

1. dataset: Describes dataset attributes common to all analysis

2. YATSM: Contains model parameters common to all analysis and declares what change detection algorithm
should be run. The algorithm specified should be a section within the configuration file.

3. ${ALGORITHM}: The section referenced as algorithm in YATSM describing how the time series analysis
should be run (e.g., a section CCDCesque when algorithm: "CCDCesque")

4. phenology: Describes phenology fitting parameters

5. classification: Describes classification training data inputs

The following tables describes the meanings of the parameter and values used in the configuration file used in YATSM.
Any parameters left blank will be interpreted as None (e.g., cache_line_dir =).

2.7.2 Dataset Parameters

Note: This section is out of date for v0.5.0 and requires re-writing

Note: you can use scripts/gen_date_file.sh to generate the CSV file for input_file.

2.7.3 YATSM Analysis Parameters

Note: This section is out of date for v0.5.0 and requires re-writing

2.7.4 YATSM Algorithm Parameters

This section will differ depending on what algorithm is used and specified in the algorithm key in the YATSM
section. For more information, visit the science models guide section for information the available algorithms.

2.7.5 Phenology

The option for long term mean phenology calculation is an optional addition to YATSM. As such, visit the phenology
guide page for configuration options.

2.7. Model Configuration 13

https://github.com/ceholden/yatsm/issues/37
https://en.wikipedia.org/wiki/YAML

YATSM, Release 0.7.0

2.7.6 Classification

The scripts included in YATSM which perform classification utilize a configuration INI file that specify which algo-
rithm will be used and the parameters for said algorithm. The configuration details specified along with the dataset
and YATSM algorithm options deal with the training data, not the algorithm details. These training data configuration
options include:

Parameter Data
Type

Explanation

training_data str Training data raster image containing labeled pixels
mask_values list Values within the training data image to mask or ignore
training_start str Earliest date that training data are applicable. Training data labels will be paired

with models that begin at least before this date
training_end str Latest date that training data are applicable. Training data labels will be paired

with models that end at least after this date
training_date_formatstr Format specification that maps training_start and training_end to a

Python datetime object (e.g., %Y-%m-%d)
cache_xy str Filename used for caching paired X features and y training labels

2.7.7 Example

An example template of the parameter file is located within examples/p013r030/p013r030.yaml:

Example configuration file for YATSM line runner
#
This configuration includes details about the dataset and how YATSM should
run

Version of config
version: "0.7.0"

dataset:
Text file containing dates and images
input_file: "examples/p013r030/images.csv"
Input date format
date_format: "%Y%j"
Output location
output: "landsat_stack/p013r030/subset/YATSM"
Output file prefix (e.g., [prefix]_[line].npz)
output_prefix: "yatsm_r"
Total number of bands
n_bands: 8
Mask band (e.g., Fmask)
mask_band: 8
List of integer values to mask within the mask band
mask_values: [2, 3, 4, 255]
Valid range of band data
specify 1 range for all bands, or specify ranges for each band
min_values: 0
max_values: 10000
Use BIP image reader? If not, use GDAL to read in
use_bip_reader: False
Directory location for caching dataset lines
cache_line_dir: "landsat_stack/p013r030/subset/cache"

14 Chapter 2. User Guide

YATSM, Release 0.7.0

Parameters common to all timeseries analysis models within YATSM package
YATSM:

algorithm: "CCDCesque"
prediction: "sklearn_Lasso20"
design_matrix: "1 + x + harm(x, 1) + harm(x, 2) + harm(x, 3)"
reverse: False
commission_alpha:
Re-fit each segment, adding new coefficients & RMSE info to record
refit:

prefix: [rlm_]
prediction: [rlm_maxiter10]
stay_regularized: [True]

Parameters for CCDCesque algorithm -- referenced by "algorithm" key in YATSM
CCDCesque:

init: # hyperparameters
consecutive: 5
threshold: 3.5
min_obs: 24
min_rmse: 150
test_indices: [2, 3, 4, 5]
retrain_time: 365.25
screening: RLM
screening_crit: 400.0
slope_test: False
remove_noise: True
dynamic_rmse: False
Indices for multi-temporal cloud masking (indexed on 1)
green_band: 2
swir1_band: 5

Section for phenology fitting
phenology:

enable: True
init:

Specification for dataset indices required for EVI based phenology
→˓monitoring

red_index: 2
nir_index: 3
blue_index: 0
Scale factor for reflectance bands
scale: 0.0001
You can also specify index of EVI if contained in dataset to override

→˓calculation
evi_index:
evi_scale:
Number of years to group together when normalizing EVI to upper and lower

→˓percentiles
year_interval: 3
Upper and lower percentiles of EVI used for max/min scaling
q_min: 10
q_max: 90

Section for training and classification
classification:

Training data file
training_image: "training_data.gtif"
Training data masked values

2.7. Model Configuration 15

YATSM, Release 0.7.0

roi_mask_values: [0, 255]
Date range
training_start: "1999-01-01"
training_end: "2001-01-01"
training_date_format: "%Y-%m-%d"
Cache X feature input and y labels for training data image into file?
cache_training:

2.8 Batch Interface

The default method for running image stacks is to run each line, or row, separately from other lines. In a multipro-
cessing situation, the total number of lines can be broken up among the n available CPUs. Before using the batch
interface, make sure you already have a parameter file generated as described by Model Configuration.

The batch interface which runs each line separately is yatsm line. It’s usage is:

$ yatsm line --help
Usage: yatsm line [OPTIONS] <config> <job_number> <total_jobs>

Options:
--check_cache Check that cache file contains matching data
--resume Do not overwrite preexisting results
--do-not-run Do not run YATSM (useful for just caching data)
--help Show this message and exit.

Let’s say our image stack contains 1,000 rows. If we use 50 total CPUs to process the image stack, then each CPU will
be responsible for only 20 lines. To evenly distribute the number of pixels that contain timeseries (e.g., to ignore any
NODATA buffers around the images), the lines are divided up in sequence. Thus, job 5 of 50 total jobs would work
on the lines:

$ job=5
$ n=50
$ seq -s , $job $n 1000
5,55,105,155,205,255,305,355,405,455,505,555,605,655,705,755,805,855,905,955

2.8.1 Sun Grid Engine

In the example of the compute cluster at Boston University which utilizes the Sun Grid Engine scheduler, one could
run an image stack as follows:

$ njob=200
$ for job in $(seq 1 $njob); do

qsub -j y -V -l h_rt=24:00:00 -N yatsm_$job -b y \
yatsm -v line --resume config.ini $job $njob

done

By setting the environment variable, PYTHONUNBUFFERED, to a nonzero and non-empty value, Python will keep
stdout and stderr unbuffered. This is handy to use when trying to diagnose a problem or when trying to guage the
progress of YATSM when logging to a file (e.g., in a qsub job) because unbuffered output is flushed or written
immediately to the log file. Be aware that the constant writing to the log file may incur a penalty cost. You can run
YATSM jobs with unbuffered output as follows in the example for yatsm line:

16 Chapter 2. User Guide

YATSM, Release 0.7.0

$ qsub -j y -V -l h_rt=24:00:00 -N yatsm -b y \
PYTHONUNBUFFERED=1 yatsm -v line --resume config.ini 1 1

One useful tip is to optimize the use of the CPU nodes by first transforming the dataset from an image based format
to a timeseries format by saving all observations for each row in a separate file. The transformed dataset will be much
easier to read as a timeseries because each processor only needs to read in one file instead of finding, opening, seeking
through, and reading from many individual image files.

To accomplish this approach, the --do-not-run flag can be combined with a specific request for computer nodes
with fast ethernet speeds, -l eth_speed 10:

$ njob=16
$ for job in $(seq 1 $njob); do

qsub -j y -V -l h_rt=24:00:00 -l eth_speed=10 -N yatsm_$job -b y \
yatsm -v line --resume --do-not-run config.ini $job $njob

done

2.9 Mapping Derived Information

Maps can be created based on the attributes of a timeseries segment for any date desired. These attributes include the
statistical model coefficients for each band, the Root Mean Squared Error (RMSE) of the model fits for each band,
and the classification value predicted. The predicted reflectance for any band may also be generated using the model
coefficients. These maps may be created using the yatsm map script.

2.9.1 Missing Values

By default, yatsm map will only look for models which intersect the date given by the user. A model intersects a date
if the model’s starting date is equal to or less than the date and if the model’s ending date is equal to or greater than
the date. For example, a model beginning on 2000-01-01 and ending on 2002-01-01 intersects 2001-01-01, but this
model does not intersect 2002-02-02.

Sometimes it is desirable to produce a classification value or reflectance value even if no models intersect the date
provided. For example, we wanted to produce a classification value for 2000-01-01 but the model ended in 1999 and
was not re-initialized until 2000-06-01, we might be happy to know what the classification value of the next segment
is (i.e., what the pixel turns into).

In other circumstances, we might be okay producing a map using the segment immediately prior to the date of the
map provided that there was not a change detected. This is a common case when generating classifications, coefficient
maps, or reflectance predictions toward the end of the timeseries.

For these two circumstances, the yatsm map script provides the --before and --after flags. These flags are not
mutually exclusive and will not override the default behavior of providing the timeseries segment information which
intersects the date provided. Instead, these three choices operate in order of desirability. From most to least desirable:

1. Segment which intersects the date

2. Segment immediately after the date, if --after is specified

3. Segment before the date, if the segment does not contain a break and --before is specified

The mapped output will always contain the information from the most desirable segment. Behind the scenes, it
accomplishes this by providing mapped values for the least desirable option first and then overwriting with more
desirable options.

2.9. Mapping Derived Information 17

YATSM, Release 0.7.0

2.9.2 Examples

For example, consider these mapping situations:

1. Create a map showing the image predicted for January 1st, 2000 for all bands

$ yatsm map predict 2000-01-01 predict_2000-01-01.gtif

2. Create a map showing the image predicted for January 1st, 2000 for all bands, filling in missing values with the
information from the timeseries segment immediately after January 1st, 2000, if possible

$ yatsm map --after predict 2000-01-01 predict_2000-01-01.gtif

3. Create a map showing all the coefficients for the red band (band 3) for January 1st, 2000

$ yatsm map --band 3 coef 2000-01-01 coef_red_2000-01-01.gtif

4. Create a map of only the time trend, or slope, coefficients for all bands for January 1st, 2000

$ yatsm map --coef slope coef 2000-01-01 coef_slope_2000-01-01.gtif

5. Create a map of the current land cover, or the land cover that a pixel will turn into, for January 1st, 2000

$ yatsm map --after class 2000-01-01 classmap_2000-01-01.gtif

2.9.3 Docs TODO

• Example maps

• Images helping explain --after and --before

• More information on CLI flags / switches

• Explanation of --root, --result, and --image parameters

2.10 Mapping Changes

To visualize change information it is often useful to create maps of the date when a pixel changes or to map the total
number of changes detected within a desired range of dates. These maps can be created using the yatsm changemap.

2.10.1 Examples

For example, consider these mapping situations:

1. For each year from 2000 to 2010, create a map of the first change detected within the year:

for y1 in $(seq 2000 2010); do
y2=$(expr $y1 + 1)
yatsm changemap first $y1-01-01 $y2-01-01 change_$y1-$y2.gtif

done

2. Create a map of the total number of changes, per pixel, for the 2000 to 2010 decade:

yatsm changemap num 2000-01-01 2010-01-01 changenumber_2000-2010.gtif

18 Chapter 2. User Guide

YATSM, Release 0.7.0

2.10.2 Docs TODO

• Example images

• Explanation of --root, --result, and --image parameters

2.11 Classification

The issue tracker on Github is being used to track additions to this documentation section. Please see issue 38.

2.12 Long Term Mean Phenology

This part of the guide is a work in progress and more information will be added.

The purpose of this module within YATSM is to provide long term mean phenological characteristics of landscapes
using an algorithm developed by Melaas et al (2013) for each stable land cover segment identified by the CCDC
portion of YATSM.

See:

Melaas, EK, MA Friedl, and Z Zhu. 2013. Detecting interannual variation in deciduous broadleaf forest
phenology using Landsat TM/ETM+ data. Remote Sensing of Environment 132: 176-185. http://dx.doi.
org/10.1016/j.rse.2013.01.011

2.12.1 Configuration

Example:

phenology:
enable: False
init:

Specification for dataset indices required for EVI based phenology
→˓monitoring

red_index: 2
nir_index: 3
blue_index: 0
Scale factor for reflectance bands
scale: 0.0001
You can also specify index of EVI if contained in dataset to override

→˓calculation
evi_index:
evi_scale:
Number of years to group together when normalizing EVI to upper and lower

→˓percentiles
year_interval: 3
Upper and lower percentiles of EVI used for max/min scaling
q_min: 10
q_max: 90

2.11. Classification 19

https://github.com/ceholden/yatsm/issues/38
http://dx.doi.org/10.1016/j.rse.2013.01.011
http://dx.doi.org/10.1016/j.rse.2013.01.011

YATSM, Release 0.7.0

2.13 Integration of user-provided time series algorithms

The YATSM package provides some time series algorithms as part of the project, but developers can also build and
integrate their own algorithms into the suite of time series algorithms that can be utilized by programs like yatsm line
or yatsm pixel.

YATSM uses the setuptools module concept of “entry points” to enumerate time series algorithms. YATSM algorithms
are registered into a group based on the type of algorithm – there are entry point groups for algorithms that find change
as separate from algorithsm which postprocess existing change results. Both categories link an entry point name to a
class or function usable within the YATSM package. For example, from the setup.py installation setup script:

[yatsm.algorithms.change]
CCDCesque=yatsm.algorithms.ccdc:CCDCesque

This entry point definition links the name of the algorithm, “CCDCesque”, to the module (yatsm.algorithms.
ccdc) containing the relevant time series algorithm class, yatsm.algorithms.ccdc.CCDCesque. Users select
the “CCDCesque” algorithm by defining it their configuration files.

Using entry points, you can create your own algorithms, distribute them in separate Python packages, and YATSM
will be able to find them and enable them to work within the YATSM package.

2.13.1 Behind the scenes

YATSM uses the function iter_entry_points from the setuptools module to find and load all entry points asso-
ciated with the YATSM package.

Todo: Create example yatsm_algorithms repository to act as a template for including additional algorithms via
setuptools.

2.13.2 References:

• https://pythonhosted.org/setuptools/setuptools.html

• http://stackoverflow.com/questions/774824/explain-python-entry-points

• http://stackoverflow.com/questions/13545289/how-do-i-add-a-setuptools-entry-point-as-an-example-in-my-main-project

• https://docs.python.org/3/library/pkgutil.html

20 Chapter 2. User Guide

https://pythonhosted.org/setuptools/setuptools.html
https://pythonhosted.org/setuptools/setuptools.html
https://pythonhosted.org/setuptools/setuptools.html
https://pythonhosted.org/setuptools/setuptools.html
http://stackoverflow.com/questions/774824/explain-python-entry-points
http://stackoverflow.com/questions/13545289/how-do-i-add-a-setuptools-entry-point-as-an-example-in-my-main-project
https://docs.python.org/3/library/pkgutil.html

CHAPTER 3

Command Line Interface Utilities

The Command Line Interface (CLI) for YATSM is built using click and is accessed using the yatsm command.
Documentation about the CLI is available below:

3.1 Command Line Utilities

The following are command line utilities included in YATSM. When yatsm is installed on your system, these scripts
are installed in a location in your $PATH and should be available at the command line.

3.1.1 yatsm

YATSM Command Line Interface and Subcommands:

$ yatsm --help
Usage: yatsm [OPTIONS] COMMAND [ARGS]...

YATSM command line interface

Options:
--version Show the version and exit.
--num_threads <threads> Number of threads for OPENBLAS/MKL/OMP used in

NumPy [default: 1]
-v, --verbose Be verbose
--verbose-yatsm Show verbose debugging messages in YATSM algorithm
-q, --quiet Be quiet
-h, --help Show this message and exit.

Commands:
cache Create or update cached timeseries data for YATSM
changemap Map change found by YATSM algorithm over time period
classify Classify entire images using trained algorithm
line Run YATSM on an entire image line by line

21

http://click.pocoo.org/

YATSM, Release 0.7.0

map Make map of YATSM output for a given date
pixel Run YATSM algorithm on individual pixels
segment † Warning: could not load plugin. See `build_cli_docs.py segment

--help`.
train Train classifier on YATSM output

3.1.2 yatsm pixel

Run YATSM for individual pixels with specified parameters:

$ yatsm pixel --help
Usage: yatsm pixel [OPTIONS] <config> <px> <py>

Options:
--band <n> Band to plot [default: 1]
--plot [TS|DOY|VAL] Plot type [default: TS]
--ylim <min> <max> Y-axis limits
--style <style> Plot style [default: ggplot]
--cmap <cmap> DOY/VAL plot colormap [default: viridis]
--embed Drop to (I)Python interpreter at various points
--seed TEXT Set NumPy RNG seed value
--algo_kw TEXT Algorithm parameter overrides
--help Show this message and exit.

3.1.3 yatsm line

Run YATSM in batch mode for entire lines:

$ yatsm line --help
Usage: yatsm line [OPTIONS] <config> <job_number> <total_jobs>

Options:
--check_cache Check that cache file contains matching data
--resume Do not overwrite preexisting results
--do-not-run Do not run YATSM (useful for just caching data)
--help Show this message and exit.

3.1.4 yatsm cache

Create or modify dataset cache files used by YATSM. This command can create cache files from scratch or update
existing cache files to reflect additions or removals from the time series dataset originally cached to disk.

Usage:

$ yatsm cache --help
Usage: yatsm cache [OPTIONS] <config> <job_number> <total_jobs>

Options:
--update <pattern> Create new cache files by updating old cache files

matching provided pattern
--interlace Assign rows interlaced by job instead of sequentially
--help Show this message and exit.

22 Chapter 3. Command Line Interface Utilities

YATSM, Release 0.7.0

3.1.5 yatsm train

Train classifier predicting land cover for each time segment within YATSM output:

$ yatsm train --help
Usage: yatsm train [OPTIONS] <config> <classifier_config> <model>

Train a classifier from ``scikit-learn`` on YATSM output and save result
to file <model>. Dataset configuration is specified by <yatsm_config> and
classifier and classifier parameters are specified by <classifier_config>.

Options:
--kfold INTEGER Number of folds in cross validation (default: 3)
--seed INTEGER Random number generator seed
--plot Show diagnostic plots
--diagnostics Run K-Fold diagnostics
--overwrite Overwrite output model file
--help Show this message and exit.

3.1.6 yatsm classify

Classify all lines within an image using a trained classifier:

$ yatsm classify --help
Usage: yatsm classify [OPTIONS] <config> <trained algorithm> <job_number>

<total_jobs>

Options:
--resume Resume classification (don't overwrite)
--help Show this message and exit.

3.1.7 yatsm changemap

Create maps of change information from YATSM output:

$ yatsm changemap --help
Usage: yatsm changemap [OPTIONS] <map_type> <start_date> <end_date> <output>

Examples: TODO

Options:
--root <directory> Root timeseries directory [default: ./]
-r, --result <directory> Directory of results [default: YATSM]
-i, --image <image> Example timeseries image [default: example_img]
--date <format> Input date format [default: %Y-%m-%d]
--ndv <NoDataValue> Output NoDataValue [default: -9999]
-f, --format <driver> Output format driver [default: GTiff]
--out_date <format> Output date format [default: %Y%j]
--warn-on-empty Warn user when reading in empty results files
--magnitude Add magnitude of change as extra image (pattern is

[name]_mag[ext])
--help Show this message and exit.

3.1. Command Line Utilities 23

YATSM, Release 0.7.0

3.1.8 yatsm map

Create maps of coefficients, predicted images, or land cover for any given date from YATSM output:

$ yatsm map --help
Usage: yatsm map [OPTIONS] <map_type> <date> <output>

Map types: coef, predict, class, pheno

Map QA flags:
- 0 => no values
- 1 => before
- 2 => after
- 3 => intersect

Examples:
> yatsm map --coef intercept --coef slope
... --band 3 --band 4 --band 5 --ndv -9999
... coef 2000-01-01 coef_map.gtif

> yatsm map -c intercept -c slope -b 3 -b 4 -b 5 --ndv -9999
... coef 2000-01-01 coef_map.gtif

> yatsm map --date "%Y-%j" predict 2000-001 prediction.gtif

> yatsm map --result "YATSM_new" --after class 2000-01-01 LCmap.gtif

Notes:
- Image predictions will not use categorical information in timeseries

models.

Options:
--root <directory> Root timeseries directory [default: ./]
-r, --result <directory> Directory of results [default: YATSM]
-i, --image <image> Example timeseries image [default: example_img]
--date <format> Input date format [default: %Y-%m-%d]
--ndv <NoDataValue> Output NoDataValue [default: -9999]
-f, --format <driver> Output format driver [default: GTiff]
--warn-on-empty Warn user when reading in empty results files
-b, --band <band> Bands to export for coefficient/prediction maps
-c, --coef <coef> Coefficients to export for coefficient maps
--after Use time segment after <date> if needed for map
--before Use time segment before <date> if needed for map
--qa Add QA band identifying segment type
--refit_prefix TEXT Use coef/rmse with refit prefix for

coefficient/prediction maps [default:]
--amplitude Export amplitude of sin/cosine pairs instead of

individual coefficient estimates
--predict-proba Include prediction probability band (scaled by

10,000)
--help Show this message and exit.

3.1.9 gen_date_file.sh

Generate Date and Filename Lists:

24 Chapter 3. Command Line Interface Utilities

YATSM, Release 0.7.0

$ gen_date_file.sh -h

usage: ./../scripts/gen_date_file.sh [options] <root_directory> <output_file>

This script will output a CSV list of the date and full filepath for
all images within <root_directory> to <output_file>. Currently the date
must be in YYYYDOY format.

Options:
-p Filename pattern [default: L*stack]
-d Starting index of date within filename [default: 9]
-s Starting index of sensor within filename [default: 0]
-r Use relative paths
-o Overwrite <output_file> if exists
-v Be verbose
-h Show help

3.1. Command Line Utilities 25

YATSM, Release 0.7.0

26 Chapter 3. Command Line Interface Utilities

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

27

YATSM, Release 0.7.0

28 Chapter 4. Indices and tables

CHAPTER 5

References

29

YATSM, Release 0.7.0

30 Chapter 5. References

Bibliography

[1] Zhe Zhu and Curtis E. Woodcock. Continuous change detection and classification of land cover using all avail-
able landsat data. Remote Sensing of Environment, 144(0):152 – 171, 2014. URL: http://www.sciencedirect.com/
science/article/pii/S0034425714000248, doi:http://dx.doi.org/10.1016/j.rse.2014.01.011.

[1] Zhe Zhu and Curtis E. Woodcock. Continuous change detection and classification of land cover using all avail-
able landsat data. Remote Sensing of Environment, 144(0):152 – 171, 2014. URL: http://www.sciencedirect.com/
science/article/pii/S0034425714000248, doi:http://dx.doi.org/10.1016/j.rse.2014.01.011.

31

http://www.sciencedirect.com/science/article/pii/S0034425714000248
http://www.sciencedirect.com/science/article/pii/S0034425714000248
https://doi.org/http://dx.doi.org/10.1016/j.rse.2014.01.011
http://www.sciencedirect.com/science/article/pii/S0034425714000248
http://www.sciencedirect.com/science/article/pii/S0034425714000248
https://doi.org/http://dx.doi.org/10.1016/j.rse.2014.01.011

YATSM, Release 0.7.0

32 Bibliography

Index

Symbols
_get_dynamic_rmse() (yatsm.algorithms.ccdc.CCDCesque

method), 10
_get_model_rmse() (yatsm.algorithms.ccdc.CCDCesque

method), 10

C
CCDCesque (class in yatsm.algorithms.ccdc), 9

33

	About
	User Guide
	Command Line Interface Utilities
	Indices and tables
	References
	Bibliography

