

 Multi-dimensional arrays with broadcasting and lazy computing.

Introduction

xtensor is a C++ library meant for numerical analysis with multi-dimensional
array expressions.

xtensor provides

	an extensible expression system enabling lazy broadcasting.

	an API following the idioms of the C++ standard library.

	tools to manipulate array expressions and build upon xtensor.

INSTALLATION

	Installation

	Changelog

API REFERENCE

	Containers and views
	layout

	xcontainer

	xstrided_container

	Readers and writers
	layout

	node1

	xstrided_container

Installation

Although xtensor is a header-only library, we provide standardized means to
install it, with package managers or with cmake.

Besides the xtensor headers, all these methods place the cmake project
configuration file in the right location so that third-party projects can use
cmake’s find_package to locate xtensor headers.

[image: _images/conda.svg]
Using the conda package

A package for xtensor is available on the conda package manager.

conda install -c conda-forge xtensor

[image: _images/debian.svg]

Using the Debian package

A package for xtensor is available on Debian.

sudo apt-get install xtensor-dev

[image: _images/spack.svg]

Using the Spack package

A package for xtensor is available on the Spack package manager.

spack install xtensor
spack load --dependencies xtensor

[image: _images/cmake.svg]

From source with cmake

You can also install xtensor from source with cmake. This requires that you
have the xtl [https://github.com/QuantStack/xtl] library installed on your system. On Unix platforms, from the
source directory:

mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=path_to_prefix ..
make install

On Windows platforms, from the source directory:

mkdir build
cd build
cmake -G "NMake Makefiles" -DCMAKE_INSTALL_PREFIX=path_to_prefix ..
nmake
nmake install

path_to_prefix is the absolute path to the folder where cmake searches for
dependencies and installs libraries. xtensor installation from cmake assumes
this folder contains include and lib subfolders.

See the Build and configuration section for more details about cmake options.

Including xtensor in your project

The different packages of xtensor are built with cmake, so whatever the
installation mode you choose, you can add xtensor to your project using cmake:

find_package(xtensor REQUIRED)
target_include_directories(your_target PUBLIC ${xtensor_INCLUDE_DIRS})
target_link_libraries(your_target PUBLIC xtensor)

Changelog

0.20.4

	Buffer adaptor default constructor
#1524 [https://github.com/QuantStack/xtensor/pull/1524]

0.20.3

	Fix xbuffer adaptor
#1523 [https://github.com/QuantStack/xtensor/pull/1523]

0.20.2

	Fixed broadcast linear assign
#1493 [https://github.com/QuantStack/xtensor/pull/1493]

	Fixed do_stirdes_match
#1497 [https://github.com/QuantStack/xtensor/pull/1497]

	Removed unused capture
#1499 [https://github.com/QuantStack/xtensor/pull/1499]

	Upgraded to xtl 0.6.2
#1502 [https://github.com/QuantStack/xtensor/pull/1502]

	Added missing methods in xshared_expression
#1503 [https://github.com/QuantStack/xtensor/pull/1503]

	Fixed iterator types of xcontainer
#1504 [https://github.com/QuantStack/xtensor/pull/1504]

	Typo correction in external-structure.rst
#1505 [https://github.com/QuantStack/xtensor/pull/1505]

	Added extension base to adaptors
#1507 [https://github.com/QuantStack/xtensor/pull/1507]

	Fixed shared expression iterator methods
#1509 [https://github.com/QuantStack/xtensor/pull/1509]

	Strided view fixes
#1512 [https://github.com/QuantStack/xtensor/pull/1512]

	Improved range documentation
#1515 [https://github.com/QuantStack/xtensor/pull/1515]

	Fixed ravel and flatten implementation
#1511 [https://github.com/QuantStack/xtensor/pull/1511]

	Fixed xfixed_adaptor temporary assign
#1516 [https://github.com/QuantStack/xtensor/pull/1516]

	Changed struct -> class in xiterator_adaptor
#1513 [https://github.com/QuantStack/xtensor/pull/1513]

	Fxed argmax for expressions with strides 0
#1519 [https://github.com/QuantStack/xtensor/pull/1519]

	Add has_linear_assign to sdynamic_view
#1520 [https://github.com/QuantStack/xtensor/pull/1520]

0.20.1

	Add a test for mimetype rendering and fix forward declaration
#1490 [https://github.com/QuantStack/xtensor/pull/1490]

	Fix special case of view iteration
#1491 [https://github.com/QuantStack/xtensor/pull/1491]

0.20.0

Breaking changes

	Removed xmasked_value and promote_type_t
#1389 [https://github.com/QuantStack/xtensor/pull/1389]

	Removed deprecated type slice_vector
#1459 [https://github.com/QuantStack/xtensor/pull/1459]

	Upgraded to xtl 0.6.1
#1468 [https://github.com/QuantStack/xtensor/pull/1465]

	Added keep_dims option to reducers
#1474 [https://github.com/QuantStack/xtensor/pull/1474]

	do_strides_match now accept an addition base stride value
#1479 [https://github.com/QuantStack/xtensor/pull/1479]

Other changes

	Add partition, argpartition and median
#991 [https://github.com/QuantStack/xtensor/pull/991]

	Fix tets on avx512
#1410 [https://github.com/QuantStack/xtensor/pull/1410]

	Implemented xcommon_tensor_t with tests
#1412 [https://github.com/QuantStack/xtensor/pull/1412]

	Code reorganization
#1416 [https://github.com/QuantStack/xtensor/pull/1416]

	reshape now accepts initializer_list parameter
#1417 [https://github.com/QuantStack/xtensor/pull/1417]

	Improved documentation
#1419 [https://github.com/QuantStack/xtensor/pull/1419]

	Fixed noexcept specifier
#1418 [https://github.com/QuantStack/xtensor/pull/1418]

	view now accepts lvalue slices
#1420 [https://github.com/QuantStack/xtensor/pull/1420]

	Removed warnings
#1422 [https://github.com/QuantStack/xtensor/pull/1422]

	Added reshape member to xgenerator to make arange more flexible
#1421 [https://github.com/QuantStack/xtensor/pull/1421]

	Add std::decay_t to shape_type in strided view
#1425 [https://github.com/QuantStack/xtensor/pull/1425]

	Generic reshape for xgenerator
#1426 [https://github.com/QuantStack/xtensor/pull/1426]

	Fix out of bounds accessing in xview::compute_strides
#1437 [https://github.com/QuantStack/xtensor/pull/1437]

	Added quick reference section to documentation
#1438 [https://github.com/QuantStack/xtensor/pull/1438]

	Improved getting started CMakeLists.txt
#1440 [https://github.com/QuantStack/xtensor/pull/1440]

	Added periodic indices
#1430 [https://github.com/QuantStack/xtensor/pull/1430]

	Added build section to narrative documentation
#1442 [https://github.com/QuantStack/xtensor/pull/1442]

	Fixed linspace corner case
#1443 [https://github.com/QuantStack/xtensor/pull/1443]

	Fixed type-o in documentation
#1446 [https://github.com/QuantStack/xtensor/pull/1446]

	Added xt::xpad
#1441 [https://github.com/QuantStack/xtensor/pull/1441]

	Added warning in resize documentation
#1447 [https://github.com/QuantStack/xtensor/pull/1447]

	Added in_bounds method
#1444 [https://github.com/QuantStack/xtensor/pull/1444]

	xstrided_view_base is now a CRTP base class
#1453 [https://github.com/QuantStack/xtensor/pull/1453]

	Turned xfunctor_applier_base into a CRTP base class
#1455 [https://github.com/QuantStack/xtensor/pull/1455]

	Removed out of bound access in data_offset
#1456 [https://github.com/QuantStack/xtensor/pull/1456]

	Added xaccessible base class
#1451 [https://github.com/QuantStack/xtensor/pull/1451]

	Refactored operator[]
#1460 [https://github.com/QuantStack/xtensor/pull/1460]

	Splitted xaccessible
#1461 [https://github.com/QuantStack/xtensor/pull/1461]

	Refactored size
#1462 [https://github.com/QuantStack/xtensor/pull/1462]

	Implemented nanvar and nanstd with tests
#1424 [https://github.com/QuantStack/xtensor/pull/1424]

	Removed warnings
#1463 [https://github.com/QuantStack/xtensor/pull/1463]

	Added periodic and in_bounds method to xoptional_assembly_base
#1464 [https://github.com/QuantStack/xtensor/pull/1464]

	Updated documentation according to last changes
#1465 [https://github.com/QuantStack/xtensor/pull/1465]

	Fixed flatten_sort_result_type
#1470 [https://github.com/QuantStack/xtensor/pull/1470]

	Fixed unique with expressions not defining temporary_type
#1472 [https://github.com/QuantStack/xtensor/pull/1472]

	Fixed xstrided_view_base constructor
#1473 [https://github.com/QuantStack/xtensor/pull/1473]

	Avoid signed integer overflow in integer printer
#1475 [https://github.com/QuantStack/xtensor/pull/1475]

	Fixed xview::inner_backstrides_type
#1480 [https://github.com/QuantStack/xtensor/pull/1480]

	Fixed compiler warnings
#1481 [https://github.com/QuantStack/xtensor/pull/1481]

	slice_implementation_getter now forwards its lice argument
#1486 [https://github.com/QuantStack/xtensor/pull/1486]

	linspace can now be reshaped
#1488 [https://github.com/QuantStack/xtensor/pull/1488]

0.19.4

	Add missing include
#1391 [https://github.com/QuantStack/xtensor/pull/1391]

	Fixes in xfunctor_view
#1393 [https://github.com/QuantStack/xtensor/pull/1393]

	Add tests for xfunctor_view
#1395 [https://github.com/QuantStack/xtensor/pull/1395]

	Add empty method to fixed_shape
#1396 [https://github.com/QuantStack/xtensor/pull/1396]

	Add accessors to slice members
#1401 [https://github.com/QuantStack/xtensor/pull/1401]

	Allow adaptors on shared pointers
#1218 [https://github.com/QuantStack/xtensor/pull/1218]

	Fix eye with negative index
#1406 [https://github.com/QuantStack/xtensor/pull/1406]

	Add documentation for shared pointer adaptor
#1407 [https://github.com/QuantStack/xtensor/pull/1407]

	Add nanmean function
#1408 [https://github.com/QuantStack/xtensor/pull/1408]

0.19.3

	Fix arange
#1361 [https://github.com/QuantStack/xtensor/pull/1361].

	Adaptors for C stack-allocated arrays
#1363 [https://github.com/QuantStack/xtensor/pull/1363].

	Add support for optionals in conditional_ternary
#1365 [https://github.com/QuantStack/xtensor/pull/1365].

	Add tests for ternary operator on xoptionals
#1368 [https://github.com/QuantStack/xtensor/pull/1368].

	Enable ternary operation for a mix of xoptional<value> and value
#1370 [https://github.com/QuantStack/xtensor/pull/1370].

	reduce now accepts a single reduction function
#1371 [https://github.com/QuantStack/xtensor/pull/1371].

	Implemented share method
#1372 [https://github.com/QuantStack/xtensor/pull/1372].

	Documentation of shared improved
#1373 [https://github.com/QuantStack/xtensor/pull/1373].

	make_lambda_xfunction more generic
#1374 [https://github.com/QuantStack/xtensor/pull/1374].

	minimum/maximum for xoptional
#1378 [https://github.com/QuantStack/xtensor/pull/1378].

	Added missing methods in uvector and svector
#1379 [https://github.com/QuantStack/xtensor/pull/1379].

	Clip xoptional_assembly
#1380 [https://github.com/QuantStack/xtensor/pull/1380].

	Improve gtest cmake
#1382 [https://github.com/QuantStack/xtensor/pull/1382].

	Implement ternary operator for scalars
#1385 [https://github.com/QuantStack/xtensor/pull/1385].

	Added missing at method in uvector and svector
#1386 [https://github.com/QuantStack/xtensor/pull/1386].

	Fixup binder environment
#1387 [https://github.com/QuantStack/xtensor/pull/1387].

	Fixed resize and swap of svector
#1388 [https://github.com/QuantStack/xtensor/pull/1388].

0.19.2

	Enable CI for C++17
#1324 [https://github.com/QuantStack/xtensor/pull/1324].

	Fix assignment of masked views
#1328 [https://github.com/QuantStack/xtensor/pull/1328].

	Set CMAKE_CXX_STANDARD instead of CMAKE_CXX_FLAGS
#1330 [https://github.com/QuantStack/xtensor/pull/1330].

	Allow specifying traversal order to argmin and argmax
#1331 [https://github.com/QuantStack/xtensor/pull/1331].

	Update section on differences with NumPy
#1336 [https://github.com/QuantStack/xtensor/pull/1336].

	Fix accumulators for shapes containing 1
#1337 [https://github.com/QuantStack/xtensor/pull/1337].

	Decouple XTENSOR_DEFAULT_LAYOUT and XTENSOR_DEFAULT_TRAVERSAL
#1339 [https://github.com/QuantStack/xtensor/pull/1339].

	Prevent embiguity with xsimd::reduce
#1343 [https://github.com/QuantStack/xtensor/pull/1343].

	Require xtl 0.5.3
#1346 [https://github.com/QuantStack/xtensor/pull/1346].

	Use concepts instead of SFINAE
#1347 [https://github.com/QuantStack/xtensor/pull/1347].

	Document good practice for xtensor-based API design
#1348 [https://github.com/QuantStack/xtensor/pull/1348].

	Fix rich display of tensor expressions
#1353 [https://github.com/QuantStack/xtensor/pull/1353].

	Fix xview on fixed tensor
#1354 [https://github.com/QuantStack/xtensor/pull/1354].

	Fix issue with keep_slice in case of dynamic_view on view
#1355 [https://github.com/QuantStack/xtensor/pull/1355].

	Prevent installation of gtest artifacts
#1357 [https://github.com/QuantStack/xtensor/pull/1357].

0.19.1

	Add string specialization to lexical_cast
#1281 [https://github.com/QuantStack/xtensor/pull/1281].

	Added HDF5 reference for xtensor-io
#1284 [https://github.com/QuantStack/xtensor/pull/1284].

	Fixed view index remap issue
#1288 [https://github.com/QuantStack/xtensor/pull/1288].

	Fixed gcc 8.2 deleted functions
#1289 [https://github.com/QuantStack/xtensor/pull/1289].

	Fixed reducer for 0d input
#1292 [https://github.com/QuantStack/xtensor/pull/1292].

	Fixed check_element_index
#1295 [https://github.com/QuantStack/xtensor/pull/1295].

	Added comparison functions
#1297 [https://github.com/QuantStack/xtensor/pull/1297].

	Add some tests to ensure chrono works with xexpressions
#1272 [https://github.com/QuantStack/xtensor/pull/1272].

	Refactor functor_view
#1276 [https://github.com/QuantStack/xtensor/pull/1276].

	Documentation improved
#1302 [https://github.com/QuantStack/xtensor/pull/1302].

	Implementation of shift operators
#1304 [https://github.com/QuantStack/xtensor/pull/1304].

	Make functor adaptor stepper work for proxy specializations
#1305 [https://github.com/QuantStack/xtensor/pull/1305].

	Replaced auto& with auto&& in assign_to
#1306 [https://github.com/QuantStack/xtensor/pull/1306].

	Fix namespace in xview_utils.hpp
#1308 [https://github.com/QuantStack/xtensor/pull/1308].

	Introducing flatten_indices and unravel_indices
#1300 [https://github.com/QuantStack/xtensor/pull/1300].

	Default layout parameter for ravel
#1311 [https://github.com/QuantStack/xtensor/pull/1311].

	Fixed xvie_stepper
#1317 [https://github.com/QuantStack/xtensor/pull/1317].

	Fixed assignment of view on view
#1314 [https://github.com/QuantStack/xtensor/pull/1314].

	Documented indices
#1318 [https://github.com/QuantStack/xtensor/pull/1318].

	Fixed shift operators return type
#1319 [https://github.com/QuantStack/xtensor/pull/1319].

0.19.0

Breaking changes

	Upgraded to xtl 0.5
#1275 [https://github.com/QuantStack/xtensor/pull/1275].

Other changes

	Removed type-o in docs, minor code style consistency update
#1255 [https://github.com/QuantStack/xtensor/pull/1255].

	Removed most of the warnings
#1261 [https://github.com/QuantStack/xtensor/pull/1261].

	Optional bitwise fixed
#1263 [https://github.com/QuantStack/xtensor/pull/1263].

	Prevent macro expansion in std::max
#1265 [https://github.com/QuantStack/xtensor/pull/1265].

	Update numpy.rst
#1267 [https://github.com/QuantStack/xtensor/pull/1267].

	Update getting_started.rst
#1268 [https://github.com/QuantStack/xtensor/pull/1268].

	keep and drop step_size fixed
#1270 [https://github.com/QuantStack/xtensor/pull/1270].

	Fixed typo in xadapt
#1277 [https://github.com/QuantStack/xtensor/pull/1277].

	Fixed typo
#1278 [https://github.com/QuantStack/xtensor/pull/1278].

0.18.3

	Exporting optional dependencies
#1253 [https://github.com/QuantStack/xtensor/pull/1253].

	0-D HTML rendering
#1252 [https://github.com/QuantStack/xtensor/pull/1252].

	Include nlohmann_json in xio for mime bundle repr
#1251 [https://github.com/QuantStack/xtensor/pull/1251].

	Fixup xview scalar assignment
#1250 [https://github.com/QuantStack/xtensor/pull/1250].

	Implemented from_indices
#1240 [https://github.com/QuantStack/xtensor/pull/1240].

	xtensor_forward.hpp cleanup
#1243 [https://github.com/QuantStack/xtensor/pull/1243].

	default layout-type for unravel_from_strides and unravel_index
#1239 [https://github.com/QuantStack/xtensor/pull/1239].

	xfunction iterator fix
#1241 [https://github.com/QuantStack/xtensor/pull/1241].

	xstepper fixes
#1237 [https://github.com/QuantStack/xtensor/pull/1237].

	print_options io manipulators
#1231 [https://github.com/QuantStack/xtensor/pull/1231].

	Add syntactic sugar for reducer on single axis
#1228 [https://github.com/QuantStack/xtensor/pull/1228].

	Added view vs. adapt benchmark
#1229 [https://github.com/QuantStack/xtensor/pull/1229].

	added precisions to the installation instructions
#1226 [https://github.com/QuantStack/xtensor/pull/1226].

	removed data interface from dynamic view
#1225 [https://github.com/QuantStack/xtensor/pull/1225].

	add xio docs
#1223 [https://github.com/QuantStack/xtensor/pull/1223].

	Fixup xview assignment
#1216 [https://github.com/QuantStack/xtensor/pull/1216].

	documentation updated to be consistent with last changes
#1214 [https://github.com/QuantStack/xtensor/pull/1214].

	prevents macro expansion of std::max
#1213 [https://github.com/QuantStack/xtensor/pull/1213].

	Fix minor typos
#1212 [https://github.com/QuantStack/xtensor/pull/1212].

	Added missing assign operator in xstrided_view
#1210 [https://github.com/QuantStack/xtensor/pull/1210].

	argmax on axis with single element fixed
#1209 [https://github.com/QuantStack/xtensor/pull/1209].

0.18.2

	expression tag system fixed
#1207 [https://github.com/QuantStack/xtensor/pull/1207].

	optional extension for generator
#1206 [https://github.com/QuantStack/xtensor/pull/1206].

	optional extension for xview
#1205 [https://github.com/QuantStack/xtensor/pull/1205].

	optional extension for xstrided_view
#1204 [https://github.com/QuantStack/xtensor/pull/1204].

	optional extension for reducer
#1203 [https://github.com/QuantStack/xtensor/pull/1203].

	optional extension for xindex_view
#1202 [https://github.com/QuantStack/xtensor/pull/1202].

	optional extension for xfunctor_view
#1201 [https://github.com/QuantStack/xtensor/pull/1201].

	optional extension for broadcast
#1198 [https://github.com/QuantStack/xtensor/pull/1198].

	extension API and code cleanup
#1197 [https://github.com/QuantStack/xtensor/pull/1197].

	xscalar optional refactoring
#1196 [https://github.com/QuantStack/xtensor/pull/1196].

	Extension mechanism
#1192 [https://github.com/QuantStack/xtensor/pull/1192].

	Many small fixes
#1191 [https://github.com/QuantStack/xtensor/pull/1191].

	Slight refactoring in step_size logic
#1188 [https://github.com/QuantStack/xtensor/pull/1188].

	Fixup call of const overload in assembly storage
#1187 [https://github.com/QuantStack/xtensor/pull/1187].

0.18.1

	Fixup xio forward declaration
#1185 [https://github.com/QuantStack/xtensor/pull/1185].

0.18.0

Breaking changes

	Assign and trivial_broadcast refactoring
#1150 [https://github.com/QuantStack/xtensor/pull/1150].

	Moved array manipulation functions (transpose, ravel, flatten, trim_zeros, squeeze, expand_dims, split, atleast_Nd, atleast_1d, atleast_2d, atleast_3d, flip) from xstrided_view.hpp to xmanipulation.hpp
#1153 [https://github.com/QuantStack/xtensor/pull/1153].

	iterator API improved
#1155 [https://github.com/QuantStack/xtensor/pull/1155].

	Fixed where and nonzero function behavior to mimic the behavior from NumPy
#1157 [https://github.com/QuantStack/xtensor/pull/1157].

	xsimd and functor refactoring
#1173 [https://github.com/QuantStack/xtensor/pull/1173].

New features

	Implement rot90
#1153 [https://github.com/QuantStack/xtensor/pull/1153].

	Implement argwhere and flatnonzero
#1157 [https://github.com/QuantStack/xtensor/pull/1157].

	Implemented xexpression_holder
#1164 [https://github.com/QuantStack/xtensor/pull/1164].

Other changes

	Warnings removed
#1159 [https://github.com/QuantStack/xtensor/pull/1159].

	Added missing include
#1162 [https://github.com/QuantStack/xtensor/pull/1162].

	Removed unused type alias in xmath/average
#1163 [https://github.com/QuantStack/xtensor/pull/1163].

	Slices improved
#1168 [https://github.com/QuantStack/xtensor/pull/1168].

	Fixed xdrop_slice
#1181 [https://github.com/QuantStack/xtensor/pull/1181].

0.17.4

	perfect forwarding in xoptional_function constructor
#1101 [https://github.com/QuantStack/xtensor/pull/1101].

	fix issue with base_simd
#1103 [https://github.com/QuantStack/xtensor/pull/1103].

	XTENSOR_ASSERT fixed on Windows
#1104 [https://github.com/QuantStack/xtensor/pull/1104].

	Implement xmasked_value
#1032 [https://github.com/QuantStack/xtensor/pull/1032].

	Added setdiff1d using stl interface
#1109 [https://github.com/QuantStack/xtensor/pull/1109].

	Added test case for setdiff1d
#1110 [https://github.com/QuantStack/xtensor/pull/1110].

	Added missing reference to diff in From numpy to xtensor section
#1116 [https://github.com/QuantStack/xtensor/pull/1116].

	Add amax and amin to the documentation
#1121 [https://github.com/QuantStack/xtensor/pull/1121].

	histogram and histogram_bin_edges implementation
#1108 [https://github.com/QuantStack/xtensor/pull/1108].

	Added numpy comparison for interp
#1111 [https://github.com/QuantStack/xtensor/pull/1111].

	Allow multiple return type reducer functions
#1113 [https://github.com/QuantStack/xtensor/pull/1113].

	Fixes average bug + adds Numpy based tests
#1118 [https://github.com/QuantStack/xtensor/pull/1118].

	Static xfunction cache for fixed sizes
#1105 [https://github.com/QuantStack/xtensor/pull/1105].

	Add negative reshaping axis
#1120 [https://github.com/QuantStack/xtensor/pull/1120].

	Updated xmasked_view using xmasked_value
#1074 [https://github.com/QuantStack/xtensor/pull/1074].

	Clean documentation for views
#1131 [https://github.com/QuantStack/xtensor/pull/1131].

	Build with xsimd on Windows fixed
#1127 [https://github.com/QuantStack/xtensor/pull/1127].

	Implement mime_bundle_repr for xmasked_view
#1132 [https://github.com/QuantStack/xtensor/pull/1132].

	Modify shuffle to use identical algorithms for any number of dimensions
#1135 [https://github.com/QuantStack/xtensor/pull/1135].

	Warnings removal on windows
#1139 [https://github.com/QuantStack/xtensor/pull/1135].

	Add permutation function to random
#1141 [https://github.com/QuantStack/xtensor/pull/1141].

	xfunction_iterator permutation
#933 [https://github.com/QuantStack/xtensor/pull/933].

	Add bincount to xhistogram
#1140 [https://github.com/QuantStack/xtensor/pull/1140].

	Add contiguous iterable base class and remove layout param from storage iterator
#1057 [https://github.com/QuantStack/xtensor/pull/1057].

	Add storage_iterator to view and strided view
#1045 [https://github.com/QuantStack/xtensor/pull/1045].

	Removes data_element from xoptional
#1137 [https://github.com/QuantStack/xtensor/pull/1137].

	xtensor default constructor and scalar assign fixed
#1148 [https://github.com/QuantStack/xtensor/pull/1148].

	Add resize / reshape to xfixed_container
#1147 [https://github.com/QuantStack/xtensor/pull/1147].

	Iterable refactoring
#1149 [https://github.com/QuantStack/xtensor/pull/1149].

	inner_strides_type imported in xstrided_view
#1151 [https://github.com/QuantStack/xtensor/pull/1151].

0.17.3

	xslice fix
#1099 [https://github.com/QuantStack/xtensor/pull/1099].

	added missing static_layout in xmasked_view
#1100 [https://github.com/QuantStack/xtensor/pull/1100].

0.17.2

	Add experimental TBB support for parallelized multicore assign
#948 [https://github.com/QuantStack/xtensor/pull/948].

	Add inline statement to all functions in xnpy
#1097 [https://github.com/QuantStack/xtensor/pull/1097].

	Fix strided assign for certain assignments
#1095 [https://github.com/QuantStack/xtensor/pull/1095].

	CMake, remove gtest warnings
#1085 [https://github.com/QuantStack/xtensor/pull/1085].

	Add conversion operators to slices
#1093 [https://github.com/QuantStack/xtensor/pull/1093].

	Add optimization to unchecked accessors when contiguous layout is known
#1060 [https://github.com/QuantStack/xtensor/pull/1060].

	Speedup assign by computing any layout on vectors
#1063 [https://github.com/QuantStack/xtensor/pull/1063].

	Skip resizing for fixed shapes
#1072 [https://github.com/QuantStack/xtensor/pull/1072].

	Add xsimd apply to xcomplex functors (conj, norm, arg)
#1086 [https://github.com/QuantStack/xtensor/pull/1086].

	Propagate contiguous layout through views
#1039 [https://github.com/QuantStack/xtensor/pull/1039].

	Fix C++17 ambiguity for GCC 7
#1081 [https://github.com/QuantStack/xtensor/pull/1081].

	Correct shape type in argmin, fix svector growth
#1079 [https://github.com/QuantStack/xtensor/pull/1079].

	Add interp function to xmath
#1071 [https://github.com/QuantStack/xtensor/pull/1071].

	Fix valgrind warnings + memory leak in xadapt
#1078 [https://github.com/QuantStack/xtensor/pull/1078].

	Remove more clang warnings & errors on OS X
#1077 [https://github.com/QuantStack/xtensor/pull/1077].

	Add move constructor from xtensor <-> xarray
#1051 [https://github.com/QuantStack/xtensor/pull/1051].

	Add global support for negative axes in reducers/accumulators
allow multiple axes in average
#1010 [https://github.com/QuantStack/xtensor/pull/1010].

	Fix reference usage in xio
#1076 [https://github.com/QuantStack/xtensor/pull/1076].

	Remove occurences of std::size_t and double
#1073 [https://github.com/QuantStack/xtensor/pull/1073].

	Add missing parantheses around min/max for MSVC
#1061 [https://github.com/QuantStack/xtensor/pull/1061].

0.17.1

	Add std namespace to size_t everywhere, remove std::copysign for MSVC
#1053 [https://github.com/QuantStack/xtensor/pull/1053].

	Fix (wrong) bracket warnings for older clang versions (e.g. clang 5 on OS X)
#1050 [https://github.com/QuantStack/xtensor/pull/1050].

	Fix strided view on view by using std::addressof
#1049 [https://github.com/QuantStack/xtensor/pull/1049].

	Add more adapt functions and shorthands
#1043 [https://github.com/QuantStack/xtensor/pull/1043].

	Improve CRTP base class detection
#1041 [https://github.com/QuantStack/xtensor/pull/1041].

	Fix rebind container ambiguous template for C++17 / GCC 8 regression
#1038 [https://github.com/QuantStack/xtensor/pull/1038].

	Fix functor return value
#1035 [https://github.com/QuantStack/xtensor/pull/1035].

0.17.0

Breaking changes

	Changed strides to std::ptrdiff_t
#925 [https://github.com/QuantStack/xtensor/pull/925].

	Renamed count_nonzeros in count_nonzero
#974 [https://github.com/QuantStack/xtensor/pull/974].

	homogenize xfixed constructors
#970 [https://github.com/QuantStack/xtensor/pull/970].

	Improve random::choice
#1011 [https://github.com/QuantStack/xtensor/pull/1011].

New features

	add signed char to npy deserialization format
#1017 [https://github.com/QuantStack/xtensor/pull/1017].

	simd assignment now requires convertible types instead of same type
#1000 [https://github.com/QuantStack/xtensor/pull/1000].

	shared expression and automatic xclosure detection
#992 [https://github.com/QuantStack/xtensor/pull/992].

	average function
#987 [https://github.com/QuantStack/xtensor/pull/987].

	added simd support for complex
#985 [https://github.com/QuantStack/xtensor/pull/985].

	argsort function
#977 [https://github.com/QuantStack/xtensor/pull/977].

	propagate fixed shape
#922 [https://github.com/QuantStack/xtensor/pull/922].

	added xdrop_slice
#972 [https://github.com/QuantStack/xtensor/pull/972].

	added doc for xmasked_view
#971 [https://github.com/QuantStack/xtensor/pull/971].

	added xmasked_view
#969 [https://github.com/QuantStack/xtensor/pull/969].

	added dynamic_view
#966 [https://github.com/QuantStack/xtensor/pull/966].

	added ability to use negative indices in keep slice
#964 [https://github.com/QuantStack/xtensor/pull/964].

	added an easy way to create lambda expressions, square and cube
#961 [https://github.com/QuantStack/xtensor/pull/961].

	noalias on rvalue
#965 [https://github.com/QuantStack/xtensor/pull/965].

Other changes

	xshared_expression fixed
#1025 [https://github.com/QuantStack/xtensor/pull/1025].

	fix make_xshared
#1024 [https://github.com/QuantStack/xtensor/pull/1024].

	add tests to evaluate shared expressions
#1019 [https://github.com/QuantStack/xtensor/pull/1019].

	fix where on xview
#1012 [https://github.com/QuantStack/xtensor/pull/1012].

	basic usage replaced with getting started
#1004 [https://github.com/QuantStack/xtensor/pull/1004].

	avoided installation failure in absence of nlohmann_json
#1001 [https://github.com/QuantStack/xtensor/pull/1001].

	code and documentation clean up
#998 [https://github.com/QuantStack/xtensor/pull/998].

	removed g++ “pedantic” compiler warnings
#997 [https://github.com/QuantStack/xtensor/pull/997].

	added missing header in basic_usage.rst
#996 [https://github.com/QuantStack/xtensor/pull/996].

	warning pass
#990 [https://github.com/QuantStack/xtensor/pull/990].

	added missing include in xview
#989 [https://github.com/QuantStack/xtensor/pull/989].

	added missing <map> include
#983 [https://github.com/QuantStack/xtensor/pull/983].

	xislice refactoring
#962 [https://github.com/QuantStack/xtensor/pull/962].

	added missing operators to noalias
#932 [https://github.com/QuantStack/xtensor/pull/932].

	cmake fix for Intel compiler on Windows
#951 [https://github.com/QuantStack/xtensor/pull/951].

	fixed xsimd abs deduction
#946 [https://github.com/QuantStack/xtensor/pull/946].

	added islice example to view doc
#940 [https://github.com/QuantStack/xtensor/pull/940].

0.16.4

	removed usage of std::transfomr in assign
#868 [https://github.com/QuantStack/xtensor/pull/868].

	add strided assignment
#901 [https://github.com/QuantStack/xtensor/pull/901].

	simd activated for conditional ternary functor
#903 [https://github.com/QuantStack/xtensor/pull/903].

	xstrided_view split
#905 [https://github.com/QuantStack/xtensor/pull/905].

	assigning an expression to a view throws if it has more dimensions
#910 [https://github.com/QuantStack/xtensor/pull/910].

	faster random
#913 [https://github.com/QuantStack/xtensor/pull/913].

	xoptional_assembly_base storage type
#915 [https://github.com/QuantStack/xtensor/pull/915].

	new tests and warning pass
#916 [https://github.com/QuantStack/xtensor/pull/916].

	norm immediate reducer
#924 [https://github.com/QuantStack/xtensor/pull/924].

	add reshape_view
#927 [https://github.com/QuantStack/xtensor/pull/927].

	fix immediate reducers with 0 strides
#935 [https://github.com/QuantStack/xtensor/pull/935].

0.16.3

	simd on mathematical functions fixed
#886 [https://github.com/QuantStack/xtensor/pull/886].

	fill method added to containers
#887 [https://github.com/QuantStack/xtensor/pull/887].

	access with more arguments than dimensions
#889 [https://github.com/QuantStack/xtensor/pull/889].

	unchecked method implemented
#890 [https://github.com/QuantStack/xtensor/pull/890].

	fill method implemented in view
#893 [https://github.com/QuantStack/xtensor/pull/893].

	documentation fixed and warnings removed
#894 [https://github.com/QuantStack/xtensor/pull/894].

	negative slices and new range syntax
#895 [https://github.com/QuantStack/xtensor/pull/895].

	xview_stepper with implicit xt::all bug fix
#899 [https://github.com/QuantStack/xtensor/pull/899].

0.16.2

	Add include of xview.hpp in example
#884 [https://github.com/QuantStack/xtensor/pull/884].

	Remove FS identifier
#885 [https://github.com/QuantStack/xtensor/pull/885].

0.16.1

	Workaround for Visual Studio Bug
#858 [https://github.com/QuantStack/xtensor/pull/858].

	Fixup example notebook
#861 [https://github.com/QuantStack/xtensor/pull/861].

	Prevent expansion of min and max macros on Windows
#863 [https://github.com/QuantStack/xtensor/pull/863].

	Renamed m_data to m_storage
#864 [https://github.com/QuantStack/xtensor/pull/864].

	Fix regression with respect to random access stepping with views
#865 [https://github.com/QuantStack/xtensor/pull/865].

	Remove use of CS, DS and ES qualifiers for Solaris builds
#866 [https://github.com/QuantStack/xtensor/pull/866].

	Removal of precision type
#870 [https://github.com/QuantStack/xtensor/pull/870].

	Make json tests optional, bump xtl/xsimd versions
#871 [https://github.com/QuantStack/xtensor/pull/871].

	Add more benchmarks
#876 [https://github.com/QuantStack/xtensor/pull/876].

	Forbid simd fixed
#877 [https://github.com/QuantStack/xtensor/pull/877].

	Add more asserts
#879 [https://github.com/QuantStack/xtensor/pull/879].

	Add missing batch_bool typedef
#881 [https://github.com/QuantStack/xtensor/pull/881].

	simd_return_type hack removed
#882 [https://github.com/QuantStack/xtensor/pull/882].

	Removed test guard and fixed dimension check in xscalar
#883 [https://github.com/QuantStack/xtensor/pull/883].

0.16.0

Breaking changes

	data renamed in storage, raw_data renamed in data
#792 [https://github.com/QuantStack/xtensor/pull/792].

	Added layout template parameter to xstrided_view
#796 [https://github.com/QuantStack/xtensor/pull/796].

	Remove equality operator from stepper
#824 [https://github.com/QuantStack/xtensor/pull/824].

	dynamic_view renamed in strided_view
#832 [https://github.com/QuantStack/xtensor/pull/832].

	xtensorf renamed in xtensor_fixed
#846 [https://github.com/QuantStack/xtensor/pull/846].

New features

	Added strided view selector
#765 [https://github.com/QuantStack/xtensor/pull/765].

	Added count_nonzeros
#781 [https://github.com/QuantStack/xtensor/pull/781].

	Added implicit conversion to scalar in xview
#788 [https://github.com/QuantStack/xtensor/pull/788].

	Added tracking allocators to xutils.hpp
#789 [https://github.com/QuantStack/xtensor/pull/789].

	xindexslice and shuffle function
#804 [https://github.com/QuantStack/xtensor/pull/804].

	Allow xadapt with dynamic layout
#816 [https://github.com/QuantStack/xtensor/pull/816].

	Added xtensorf initialization from C array
#819 [https://github.com/QuantStack/xtensor/pull/819].

	Added policy to allocation tracking for throw option
#820 [https://github.com/QuantStack/xtensor/pull/820].

	Free function empty for construction from shape
#827 [https://github.com/QuantStack/xtensor/pull/827].

	Support for JSON serialization and deserialization of xtensor expressions
#830 [https://github.com/QuantStack/xtensor/pull/830].

	Add trapz function
#837 [https://github.com/QuantStack/xtensor/pull/837].

	Add diff and trapz(y, x) functions
#841 [https://github.com/QuantStack/xtensor/pull/841].

Other changes

	Added fast path for specific assigns
#767 [https://github.com/QuantStack/xtensor/pull/767].

	Renamed internal macros to prevent collisions
#772 [https://github.com/QuantStack/xtensor/pull/772].

	dynamic_view unwrapping
#775 [https://github.com/QuantStack/xtensor/pull/775].

	xreducer_stepper copy semantic fixed
#785 [https://github.com/QuantStack/xtensor/pull/785].

	xfunction copy constructor fixed
#787 [https://github.com/QuantStack/xtensor/pull/787].

	warnings removed
#791 [https://github.com/QuantStack/xtensor/pull/791].

	xscalar_stepper fixed
#802 [https://github.com/QuantStack/xtensor/pull/802].

	Fixup xadapt on const pointers
#809 [https://github.com/QuantStack/xtensor/pull/809].

	Fix in owning buffer adaptors
#810 [https://github.com/QuantStack/xtensor/pull/810].

	Macros fixup
#812 [https://github.com/QuantStack/xtensor/pull/812].

	More fixes in xadapt
#813 [https://github.com/QuantStack/xtensor/pull/813].

	Mute unused variable warning
#815 [https://github.com/QuantStack/xtensor/pull/815].

	Remove comparison of steppers in assign loop
#823 [https://github.com/QuantStack/xtensor/pull/823].

	Fix reverse iterators
#825 [https://github.com/QuantStack/xtensor/pull/825].

	gcc-8 fix for template method calls
#833 [https://github.com/QuantStack/xtensor/pull/833].

	refactor benchmarks for upcoming release
#842 [https://github.com/QuantStack/xtensor/pull/842].

	flip now returns a view
#843 [https://github.com/QuantStack/xtensor/pull/843].

	initial warning pass
#850 [https://github.com/QuantStack/xtensor/pull/850].

	Fix warning on diff function
#851 [https://github.com/QuantStack/xtensor/pull/851].

	xsimd assignment fixed
#852 [https://github.com/QuantStack/xtensor/pull/852].

0.15.9

	missing layout method in xfixed
#777 [https://github.com/QuantStack/xtensor/pull/777].

	fixed uninitialized backstrides
#774 [https://github.com/QuantStack/xtensor/pull/774].

	update xtensor-blas in binder
#773 [https://github.com/QuantStack/xtensor/pull/773].

0.15.8

	comparison operators for slices
#770 [https://github.com/QuantStack/xtensor/pull/770].

	use default-assignable layout for strided views.
#769 [https://github.com/QuantStack/xtensor/pull/769].

0.15.7

	nan related functions
#718 [https://github.com/QuantStack/xtensor/pull/718].

	return types fixed in dynamic view helper
#722 [https://github.com/QuantStack/xtensor/pull/722].

	xview on constant expressions
#723 [https://github.com/QuantStack/xtensor/pull/723].

	added decays to make const value_type compile
#727 [https://github.com/QuantStack/xtensor/pull/727].

	iterator for constant strided_view fixed
#729 [https://github.com/QuantStack/xtensor/pull/729].

	strided_view on xfunction fixed
#732 [https://github.com/QuantStack/xtensor/pull/732].

	Fixes in xstrided_view
#736 [https://github.com/QuantStack/xtensor/pull/736].

	View semantic (broadcast on assign) fixed
#742 [https://github.com/QuantStack/xtensor/pull/742].

	Compilation prevented when using ellipsis with xview
#743 [https://github.com/QuantStack/xtensor/pull/743].

	Index of xiterator set to shape when reaching the end
#744 [https://github.com/QuantStack/xtensor/pull/744].

	xscalar fixed
#748 [https://github.com/QuantStack/xtensor/pull/748].

	Updated README and related projects
#749 [https://github.com/QuantStack/xtensor/pull/749].

	Perfect forwarding in xfunction and views
#750 [https://github.com/QuantStack/xtensor/pull/750].

	Missing include in xassign.hpp
#752 [https://github.com/QuantStack/xtensor/pull/752].

	More related projects in the README
#754 [https://github.com/QuantStack/xtensor/pull/754].

	Fixed stride computation for xtensorf
#755 [https://github.com/QuantStack/xtensor/pull/755].

	Added tests for backstrides
#758 [https://github.com/QuantStack/xtensor/pull/758].

	Clean up has_raw_data ins strided view
#759 [https://github.com/QuantStack/xtensor/pull/759].

	Switch to ptrdiff_t for slices
#760 [https://github.com/QuantStack/xtensor/pull/760].

	Fixed xview strides computation
#762 [https://github.com/QuantStack/xtensor/pull/762].

	Additional methods in slices, required for xframe
#764 [https://github.com/QuantStack/xtensor/pull/764].

0.15.6

	zeros, ones, full and empty_like functions
#686 [https://github.com/QuantStack/xtensor/pull/686].

	squeeze view
#687 [https://github.com/QuantStack/xtensor/pull/687].

	bitwise shift left and shift right
#688 [https://github.com/QuantStack/xtensor/pull/688].

	ellipsis, unique and trim functions
#689 [https://github.com/QuantStack/xtensor/pull/689].

	xview iterator benchmark
#696 [https://github.com/QuantStack/xtensor/pull/696].

	optimize stepper increment
#697 [https://github.com/QuantStack/xtensor/pull/697].

	minmax reducers
#698 [https://github.com/QuantStack/xtensor/pull/698].

	where fix with SIMD
#704 [https://github.com/QuantStack/xtensor/pull/704].

	additional doc for scalars and views
#705 [https://github.com/QuantStack/xtensor/pull/705].

	mixed arithmetic with SIMD
#713 [https://github.com/QuantStack/xtensor/pull/713].

	broadcast fixed
#717 [https://github.com/QuantStack/xtensor/pull/717].

0.15.5

	assign functions optimized
#650 [https://github.com/QuantStack/xtensor/pull/650].

	transposed view fixed
#652 [https://github.com/QuantStack/xtensor/pull/652].

	exceptions refactoring
#654 [https://github.com/QuantStack/xtensor/pull/654].

	performances improved
#655 [https://github.com/QuantStack/xtensor/pull/655].

	view data accessor fixed
#660 [https://github.com/QuantStack/xtensor/pull/660].

	new dynamic view using variant
#656 [https://github.com/QuantStack/xtensor/pull/656].

	alignment added to fixed xtensor
#659 [https://github.com/QuantStack/xtensor/pull/659].

	code cleanup
#664 [https://github.com/QuantStack/xtensor/pull/664].

	xtensorf and new dynamic view documentation
#667 [https://github.com/QuantStack/xtensor/pull/667].

	qualify namespace for compute_size
#665 [https://github.com/QuantStack/xtensor/pull/665].

	make xio use dynamic_view instead of view
#662 [https://github.com/QuantStack/xtensor/pull/662].

	transposed view on any expression
#671 [https://github.com/QuantStack/xtensor/pull/671].

	docs typos and grammar plus formatting
#676 [https://github.com/QuantStack/xtensor/pull/676].

	index view test assertion fixed
#680 [https://github.com/QuantStack/xtensor/pull/680].

	flatten view
#678 [https://github.com/QuantStack/xtensor/pull/678].

	handle the case of pointers to const element in xadapt
#679 [https://github.com/QuantStack/xtensor/pull/679].

	use quotes in #include statements for xtl
#681 [https://github.com/QuantStack/xtensor/pull/681].

	additional constructors for svector
#682 [https://github.com/QuantStack/xtensor/pull/682].

	removed test_xsemantics.hpp from test CMakeLists
#684 [https://github.com/QuantStack/xtensor/pull/684].

0.15.4

	fix gcc-7 error w.r.t. the use of assert
#648 [https://github.com/QuantStack/xtensor/pull/648].

0.15.3

	add missing headers to cmake installation and tests
#647 [https://github.com/QuantStack/xtensor/pull/647].

0.15.2

	xshape implementation
#572 [https://github.com/QuantStack/xtensor/pull/572].

	xfixed container
#586 [https://github.com/QuantStack/xtensor/pull/586].

	protected xcontainer::derived_cast
#627 [https://github.com/QuantStack/xtensor/pull/627].

	const reference fix
#632 [https://github.com/QuantStack/xtensor/pull/632].

	xgenerator access operators fixed
#643 [https://github.com/QuantStack/xtensor/pull/643].

	contiguous layout optiimzation
#645 [https://github.com/QuantStack/xtensor/pull/645].

0.15.1

	xarray_adaptor fixed
#618 [https://github.com/QuantStack/xtensor/pull/618].

	xtensor_adaptor fixed
#620 [https://github.com/QuantStack/xtensor/pull/620].

	fix in xreducer steppers
#622 [https://github.com/QuantStack/xtensor/pull/622].

	documentation improved
#621 [https://github.com/QuantStack/xtensor/pull/621].
#623 [https://github.com/QuantStack/xtensor/pull/623].
#625 [https://github.com/QuantStack/xtensor/pull/625].

	warnings removed
#624 [https://github.com/QuantStack/xtensor/pull/624].

0.15.0

Breaking changes

	change reshape to resize, and add throwing reshape
#598 [https://github.com/QuantStack/xtensor/pull/598].

	moved to modern cmake
#611 [https://github.com/QuantStack/xtensor/pull/611].

New features

	unravel function
#589 [https://github.com/QuantStack/xtensor/pull/589].

	random access iterators
#596 [https://github.com/QuantStack/xtensor/pull/596].

Other changes

	upgraded to google/benchmark version 1.3.0
#583 [https://github.com/QuantStack/xtensor/pull/583].

	XTENSOR_ASSERT renamed into XTENSOR_TRY, new XTENSOR_ASSERT
#603 [https://github.com/QuantStack/xtensor/pull/603].

	adapt fixed
#604 [https://github.com/QuantStack/xtensor/pull/604].

	VC14 warnings removed
#608 [https://github.com/QuantStack/xtensor/pull/608].

	xfunctor_iterator is now a random access iterator
#609 [https://github.com/QuantStack/xtensor/pull/609].

	removed old-style-cast warnings
#610 [https://github.com/QuantStack/xtensor/pull/610].

0.14.1

New features

	sort, argmin and argmax
#549 [https://github.com/QuantStack/xtensor/pull/549].

	xscalar_expression_tag
#582 [https://github.com/QuantStack/xtensor/pull/582].

Other changes

	accumulator improvements
#570 [https://github.com/QuantStack/xtensor/pull/570].

	benchmark cmake fixed
#571 [https://github.com/QuantStack/xtensor/pull/571].

	allocator_type added to container interface
#573 [https://github.com/QuantStack/xtensor/pull/573].

	allow conda-forge as fallback channel
#575 [https://github.com/QuantStack/xtensor/pull/575].

	arithmetic mixing optional assemblies and scalars fixed
#578 [https://github.com/QuantStack/xtensor/pull/578].

	arithmetic mixing optional assemblies and optionals fixed
#579 [https://github.com/QuantStack/xtensor/pull/579].

	operator== restricted to xtensor and xoptional expressions
#580 [https://github.com/QuantStack/xtensor/pull/580].

0.14.0

Breaking changes

	xadapt renamed into adapt
#563 [https://github.com/QuantStack/xtensor/pull/563].

	Naming consistency
#565 [https://github.com/QuantStack/xtensor/pull/565].

New features

	add random::choice
#547 [https://github.com/QuantStack/xtensor/pull/547].

	evaluation strategy and accumulators.
#550 [https://github.com/QuantStack/xtensor/pull/550].

	modulus operator
#556 [https://github.com/QuantStack/xtensor/pull/556].

	adapt: default overload for 1D arrays
#560 [https://github.com/QuantStack/xtensor/pull/560].

	Move semantic on adapt
#564 [https://github.com/QuantStack/xtensor/pull/564].

Other changes

	optional fixes to avoid ambiguous calls
#541 [https://github.com/QuantStack/xtensor/pull/541].

	narrative documentation about xt::adapt
#544 [https://github.com/QuantStack/xtensor/pull/544].

	xfunction refactoring
#545 [https://github.com/QuantStack/xtensor/pull/545].

	SIMD acceleration for AVX fixed
#557 [https://github.com/QuantStack/xtensor/pull/557].

	allocator fixes
#558 [https://github.com/QuantStack/xtensor/pull/558].
#559 [https://github.com/QuantStack/xtensor/pull/559].

	return type of view::strides() fixed
#568 [https://github.com/QuantStack/xtensor/pull/568].

0.13.2

	Support for complex version of isclose
#512 [https://github.com/QuantStack/xtensor/pull/512].

	Fixup static layout in xstrided_view
#536 [https://github.com/QuantStack/xtensor/pull/536].

	xexpression::operator[] now take support any type of sequence
#537 [https://github.com/QuantStack/xtensor/pull/537].

	Fixing xinfo issues for Visual Studio.
#529 [https://github.com/QuantStack/xtensor/pull/529].

	Fix const-correctness in xstrided_view.
#526 [https://github.com/QuantStack/xtensor/pull/526].

0.13.1

	More general floating point type
#518 [https://github.com/QuantStack/xtensor/pull/518].

	Do not require functor to be passed via rvalue reference
#519 [https://github.com/QuantStack/xtensor/pull/519].

	Documentation improved
#520 [https://github.com/QuantStack/xtensor/pull/520].

	Fix in xreducer
#521 [https://github.com/QuantStack/xtensor/pull/521].

0.13.0

Breaking changes

	The API for xbuffer_adaptor has changed. The template parameter is the type of the buffer, not just the value type
#482 [https://github.com/QuantStack/xtensor/pull/482].

	Change edge_items print option to edgeitems for better numpy consistency
#489 [https://github.com/QuantStack/xtensor/pull/489].

	xtensor now depends on xtl version ~0.3.3
#508 [https://github.com/QuantStack/xtensor/pull/508].

New features

	Support for parsing the npy file format
#465 [https://github.com/QuantStack/xtensor/pull/465].

	Creation of optional expressions from value and boolean expressions (optional assembly)
#496 [https://github.com/QuantStack/xtensor/pull/496].

	Support for the explicit cast of expressions with different value types
#491 [https://github.com/QuantStack/xtensor/pull/491].

Other changes

	Addition of broadcasting bitwise operators
#459 [https://github.com/QuantStack/xtensor/pull/459].

	More efficient optional expression system
#467 [https://github.com/QuantStack/xtensor/pull/467].

	Migration of benchmarks to the Google benchmark framework
#473 [https://github.com/QuantStack/xtensor/pull/473].

	Container semantic and adaptor semantic merged
#475 [https://github.com/QuantStack/xtensor/pull/475].

	Various fixes and improvements of the strided views
#480 [https://github.com/QuantStack/xtensor/pull/480].
#481 [https://github.com/QuantStack/xtensor/pull/481].

	Assignment now performs basic type conversion
#486 [https://github.com/QuantStack/xtensor/pull/486].

	Workaround for a compiler bug in Visual Studio 2017
#490 [https://github.com/QuantStack/xtensor/pull/490].

	MSVC 2017 workaround
#492 [https://github.com/QuantStack/xtensor/pull/492].

	The size() method for containers now returns the total number of elements instead of the buffer size, which may differ when the smallest stride is greater than 1
#502 [https://github.com/QuantStack/xtensor/pull/502].

	The behavior of linspace with integral types has been made consistent with numpy
#510 [https://github.com/QuantStack/xtensor/pull/510].

0.12.1

	Fix issue with slicing when using heterogeneous integral types
#451 [https://github.com/QuantStack/xtensor/pull/451].

0.12.0

Breaking changes

	xtensor now depends on xtl version 0.2.x
#421 [https://github.com/QuantStack/xtensor/pull/421].

New features

	xtensor has an optional dependency on xsimd for enabling simd acceleration
#426 [https://github.com/QuantStack/xtensor/pull/426].

	All expressions have an additional safe access function (at)
#420 [https://github.com/QuantStack/xtensor/pull/420].

	norm functions
#440 [https://github.com/QuantStack/xtensor/pull/440].

	closure_pointer used in iterators returning temporaries so their operator-> can be
correctly defined
#446 [https://github.com/QuantStack/xtensor/pull/446].

	expressions tags added so xtensor expression system can be extended
#447 [https://github.com/QuantStack/xtensor/pull/447].

Other changes

	Preconditions and exceptions
#409 [https://github.com/QuantStack/xtensor/pull/409].

	isclose is now symmetric
#411 [https://github.com/QuantStack/xtensor/pull/411].

	concepts added
#414 [https://github.com/QuantStack/xtensor/pull/414].

	narrowing cast for mixed arithmetic
#432 [https://github.com/QuantStack/xtensor/pull/432].

	is_xexpression concept fixed
#439 [https://github.com/QuantStack/xtensor/pull/439].

	void_t implementation fixed for compilers affected by C++14 defect CWG 1558
#448 [https://github.com/QuantStack/xtensor/pull/448].

0.11.3

	Fixed bug in length-1 statically dimensioned tensor construction
#431 [https://github.com/QuantStack/xtensor/pull/431].

0.11.2

	Fixup compilation issue with latest clang compiler. (missing constexpr keyword)
#407 [https://github.com/QuantStack/xtensor/pull/407].

0.11.1

	Fixes some warnings in julia and python bindings

0.11.0

Breaking changes

	xbegin / xend, xcbegin / xcend, xrbegin / xrend and xcrbegin / xcrend methods replaced
with classical begin / end, cbegin / cend, rbegin / rend and crbegin / crend methods.
Old begin / end methods and their variants have been removed.
#370 [https://github.com/QuantStack/xtensor/pull/370].

	xview now uses a const stepper when its underlying expression is const.
#385 [https://github.com/QuantStack/xtensor/pull/385].

Other changes

	xview copy semantic and move semantic fixed.
#377 [https://github.com/QuantStack/xtensor/pull/377].

	xoptional can be implicitly constructed from a scalar.
#382 [https://github.com/QuantStack/xtensor/pull/382].

	build with Emscripten fixed.
#388 [https://github.com/QuantStack/xtensor/pull/388].

	STL version detection improved.
#396 [https://github.com/QuantStack/xtensor/pull/396].

	Implicit conversion between signed and unsigned integers fixed.
#397 [https://github.com/QuantStack/xtensor/pull/397].

Containers and views

Containers are in-memory expressions that share a common implementation of most of the methods of the xexpression API.
The final container classes (xarray, xtensor) mainly implement constructors and value semantic, most of the
xexpression API is actually implemented in xstrided_container and xcontainer.

	layout

	xcontainer

	xstrided_container

layout

Defined in xtensor/xlayout.hpp

Warning

doxygenenum: Cannot find enum “xt::layout_type” in doxygen xml output for project “xtensor” from directory: ../xml

Warning

doxygenfunction: Cannot find function “xt::compute_layout” in doxygen xml output for project “xtensor” from directory: ../xml

xcontainer

Defined in xtensor/xcontainer.hpp

Warning

doxygenclass: Cannot find class “xt::xcontainer” in doxygen xml output for project “xtensor” from directory: ../xml

xstrided_container

Defined in xtensor/xcontainer.hpp

Warning

doxygenclass: Cannot find class “xt::xstrided_container” in doxygen xml output for project “xtensor” from directory: ../xml

Readers and writers

Read && writers are in-memory expressions that share a common implementation of most of the methods of the xexpression API.
The final container classes (xarray, xtensor) mainly implement constructors and value semantic, most of the
xexpression API is actually implemented in xstrided_container and xcontainer.

	layout

	node1

	xstrided_container

layout

Defined in xtensor/xcontainer.hpp

Warning

doxygenenum: Cannot find enum “xt::layout_type” in doxygen xml output for project “xtensor” from directory: ../xml

Warning

doxygenfunction: Cannot find function “xt::compute_layout” in doxygen xml output for project “xtensor” from directory: ../xml

node1

Defined in cyber/node/node.h

Warning

doxygenclass: Cannot find class “apollo::cyber::Node” in doxygen xml output for project “xtensor” from directory: ../xml

xstrided_container

Defined in xtensor/xcontainer.hpp

Warning

doxygenclass: Cannot find class “xt::xstrided_container” in doxygen xml output for project “xtensor” from directory: ../xml

Index

Adapting 1-D containers

xtensor can adapt one-dimensional containers in place, and provide them a tensor interface.
Only random access containers can be adapted.

Adapting std::vector

The following example shows how to bring an std::vector into the expression system of
xtensor:

#include <cstddef>
#include <vector>
#include "xtensor/xarray.hpp"
#include "xtensor/xadapt.hpp"

std::vector<double> v = {1., 2., 3., 4., 5., 6. };
std::vector<std::size_t> shape = { 2, 3 };
auto a1 = xt::adapt(v, shape);

xt::xarray<double> a2 = {{ 1., 2., 3.},
 { 4., 5., 6.}};

xt::xarray<double> res = a1 + a2;
// res = {{ 2., 4., 6. }, { 8., 10., 12. }};

v is not copied into a1, so if you change a value in a1, you’re actually changing
the corresponding value in v:

a1(0, 0) = 20.;
// now v is { 20., 2., 3., 4., 5., 6. }

Adapting C-style arrays

xtensor provides two ways for adapting C-style array; the first one does not take the
ownership of the array:

#include <cstddef>
#include "xtensor/xadapt.hpp"

void compute(double* data, std::size_t size)
{
 std::vector<std::size_t> shape = { size };
 auto a = xt::adapt(data, size, xt::no_ownership(), shape);
 a = a + a; // does not modify the size
}

int main()
{
 std::size_t size = 2;
 double* data = new double[size];
 for (int i = 0; i < size; i++)
 data[i] = i;
 std::cout << data << std::endl;
 // prints e.g. 0x557a363b7c20
 compute(data, size);
 std::cout << data << std::endl;
 // prints e.g. 0x557a363b7c20 (same pointer)
 for (int i = 0; i < size; i++)
 std::cout << data[i] << " ";
 std::cout << std::endl;
 // prints 0 2 (data is still available here)
}

However if you replace xt::no_ownership with xt::acquire_ownership, the adaptor will take
the ownership of the array, meaning it will be deleted when the adaptor is destroyed:

#include <cstddef>
#include "xtensor/xarray.hpp"
#include "xtensor/xadapt.hpp"

void compute(double*& data, std::size_t size)
{
 // data pointer can be changed, hence double*&
 std::vector<std::size_t> shape = { size };
 auto a = xt::adapt(data, size, xt::acquire_ownership(), shape);
 xt::xarray<double> b {1., 2.};
 b.reshape({2, 1});
 a = a * b; // size has changed, shape is now { 2, 2 }
}

int main()
{
 std::size_t size = 2;
 double* data = new double[size];
 for (int i = 0; i < size; i++)
 data[i] = i;
 std::cout << data << std::endl;
 // prints e.g. 0x557a363b7c20
 compute(data, size);
 std::cout << data << std::endl;
 // prints e.g. 0x557a363b8220 (pointer has changed)
 for (int i = 0; i < size * size; i++)
 std::cout << data[i] << " ";
 std::cout << std::endl;
 // prints e.g. 4.65504e-310 1 0 2 (data has been deleted and is now corrupted)
}

To safely get the computed data out of the function, you could pass an additional output parameter
to compute in which you copy the result before exiting the function. Or you can create the
adaptor before calling compute and pass it to the function:

#include <cstddef>
#include "xtensor/xarray.hpp"
#include "xtensor/xadapt.hpp"

template <class A>
void compute(A& a)
{
 xt::xarray<double> b {1., 2.};
 b.reshape({2, 1});
 a = a * b; // size has changed, shape is now { 2, 2 }
}

int main()
{
 std::size_t size = 2;
 double* data = new double[size];
 for (int i = 0; i < size; i++)
 data[i] = i;
 std::vector<std::size_t> shape = { size };
 auto a = xt::adapt(data, size, xt::acquire_ownership(), shape);
 compute(a);
 for (int i = 0; i < size * size; i++)
 std::cout << data[i] << " ";
 std::cout << std::endl;
 // prints 0 1 0 2
}

Adapting stack-allocated arrays

Adapting C arrays allocated on the stack is as simple as adapting std::vector:

#include <cstddef>
#include <vector>
#include "xtensor/xarray.hpp"
#include "xtensor/xadapt.hpp"

double v[6] = {1., 2., 3., 4., 5., 6. };
std::vector<std::size_t> shape = { 2, 3 };
auto a1 = xt::adapt(v, shape);

xt::xarray<double> a2 = {{ 1., 2., 3.},
 { 4., 5., 6.}};

xt::xarray<double> res = a1 + a2;
// res = {{ 2., 4., 6. }, { 8., 10., 12. }};

v is not copied into a1, so if you change a value in a1, you’re actually changing
the corresponding value in v:

a1(0, 0) = 20.;
// now v is { 20., 2., 3., 4., 5., 6. }

Adapting C++ smart pointers

If you want to manage your data with shared or unique pointers, you can use the
adapt_smart_ptr function of xtensor. It will automatically increment the
reference count of shared pointers upon creation, and decrement upon deletion.

#include <memory>
#include <xtensor/xadapt.hpp>
#include <xtensor/xio.hpp>

std::shared_ptr<double> sptr(new double[8], std::default_delete<double[]>());
sptr.get()[2] = 321.;
auto xptr = xt::adapt_smart_ptr(sptr, {4, 2});
xptr(1, 3) = 123.;
std::cout << xptr;

Or if you operate on shared pointers that do not directly point to the underlying
buffer, you can pass the data pointer and the smart pointer (to manage the underlying
memory) as follows:

#include <memory>
#include <xtensor/xadapt.hpp>
#include <xtensor/xio.hpp>

struct Buffer {
 Buffer(std::vector<double>& buf) : m_buf(buf) {}
 ~Buffer() { std::cout << "deleted" << std::endl; }
 std::vector<double> m_buf;
};

auto data = std::vector<double>{1,2,3,4,5,6,7,8};
auto shared_buf = std::make_shared<Buffer>(data);
auto unique_buf = std::make_unique<Buffer>(data);

std::cout << shared_buf.use_count() << std::endl;
{
 auto obj = xt::adapt_smart_ptr(shared_buf.get()->m_buf.data(),
 {2, 4}, shared_buf);
 // Use count increased to 2
 std::cout << shared_buf.use_count() << std::endl;
 std::cout << obj << std::endl;
}
// Use count reset to 1
std::cout << shared_buf.use_count() << std::endl;

{
 auto obj = xt::adapt_smart_ptr(unique_buf.get()->m_buf.data(),
 {2, 4}, std::move(unique_buf));
 std::cout << obj << std::endl;
}

Designing language bindings with xtensor

xtensor and its Related projects make it easy to implement a feature once in C++ and expose it
to the main languages of data science, such as Python, Julia and R with little extra work. Although,
if that sounds simple in principle, difficulties may appear when it comes to define the API of the
C++ library.
The following illustrates the different options we have with the case of a single function compute
that must be callable from all the languages.

Generic API

Since the xtensor bindings provide different container types for holding tensors (pytensor, rtensor
and jltensor), if we want our function to be callable from all the languages, it must accept a generic
argument:

template <class E>
void compute(E&& e);

However, this is a bit too generic and we may want to enforce that this function only accepts xtensor
arguments. Since all xtensor containers inherit from the “xexpression” CRTP base class, we can easily
express that constraint with the following signature:

template <class E>
void compute(const xexpression<E>& e)
{
 // Now the implementation must use e() instead of e
}

Notice that with this change, we lose the ability to call the function with non-constant references or
rvalue references. If we want them back, we need to add the following overloads:

template <class E>
void compute(xexpression<E>& e);

template <class E>
void compute(xexpression<E>&& e);

In the following we assume that the constant reference overload is enough. We can now expose the compute
function to the other languages, let’s illustrate this with Python bindings:

PYBIND11_MODULE(pymod, m)
{
 xt::import_numpy();

 m.def("compute", &compute<pytensor<double, 2>>);
}

Full qualified API

Accepting any kind of expression can still be too permissive; assume we want to restrict this function to
2-dimensional tensor containers only. In that case, a solution is to provide an API function that forwards
the call to a common generic implementation:

namespace detail
{
 template <class E>
 void compute_impl(E&&);
}

template <class T>
void compute(const xtensor<T, 2>& t)
{
 detail::compute_impl(t);
}

Exposing it to the Python is just as simple:

template <class T>
void compute(const pytensor<T, 2>& t)
{
 detail::compute_impl(t);
}

PYBIND11_MODULE(pymod, m)
{
 xt::import_numpy();

 m.def("compute", &compute<double>);
}

Although this solution is really simple, it requires writing four additional functions for the API. Besides,
if later, you decide to support array containers, you need to add four more functions. Therefore this solution
should be considered for libraries with a small number of functions to expose, and whose APIs are unlikely to
change in the future.

Container selection

A way to keep the restriction on the parameter type while limiting the required amount of typing in the bindings
is to rely on additional structures that will “select” the right type for us.

The idea is to define a structure for selecting the type of containers (tensor, array) and a structure to select
the library implementation of that container (xtensor, pytensor in the case of a tensor container):

// library container selector
struct xtensor_c
{
};

// container selector, must be specialized for each
// library container selector
template <class C, class T, std::size_t N>
struct tensor_container;

// Specialization for xtensor library (or C++)
template <class T, std::size_t N>
struct tensor_container<xtensor_c, T, N>
{
 using type = xt::xtensor<T, N>;
};

template <class C, class T, std::size_t N>
using tensor_container_t = typename tensor_container<C, T, N>::type;

The function signature then becomes

template <class T, class C = xtensor_c>
void compute(const tensor_container_t<C, T, 2>& t);

The Python bindings only require that we specialize the tensor_container structure

struct pytensor_c
{
};

template <class T, std::size_t N>
struct tensor_container<pytensor_c, T, N>
{
 using type = pytensor<T, N>;
};

PYBIND11_MODULE(pymod, m)
{
 xt::import_numpy();

 m.def("compute", &compute<double, pytensor_c>);
}

Even if we need to specialize the “tensor_container” structure for each language, the specialization can be
reused for other functions and thus reduce the amount of typing required. This comes at a cost though: we’ve
lost type inference on the C++ side.

xt::xtensor<double, 2> t {{1., 2., 3.}, {4., 5., 6.}};

compute<double>(t); // works
compute(t); // error (couldn't infer template argument 'T')

Besides, if later we want to support arrays, we need to add an “array_container” structure and its specializations,
and an overload of the compute function:

template <class C, class T>
struct array_container;

template <class C, class T>
struct array_container<xtensor_c, T>
{
 using type = xt::xarray<T>;
};

template <class C, class T>
using array_container_t = typename array_container<C, T>::type;

template <class T, class C = xtensor_c>
void compute(const array_container_t<C, T>& t);

Type restriction with SFINAE

The major drawback of the previous option is the loss of type inference in C++. The only means to get it back
is to reintroduce a generic parameter type. However, we can make the compiler generate an invalid type so the
function is removed from the overload resolution set when the actual type of the argument does not satisfy
some constraint. This principle is known as SFINAE (Substitution Failure Is Not An Error). Modern C++ provide
metafunctions to help us make use of SFINAE:

template <class C>
struct is_tensor : std::false_type
{
};

template <class T, std::size_t N, layout_type L, class Tag>
struct is_tensor<xtensor<T, N, L, Tag>> : std::true_type
{
};

template <class T, template <class> class C = is_tensor,
 std::enable_if_t<C<T>::value, bool> = true>
void compute(const T& t);

Here when C<T>::value is true, the enable_if_t invocation generates the bool type. Otherwise, it does
not generate anything, leading to an invalid function declaration. The compiler removes this declaration from
the overload resolution set and no error happens if another “compute” overload is a good match for the call.
Otherwise, the compiler emits an error.

The default value is here to avoid the need to pass a boolean value when invoking the compute function; this
value is of no use, we only rely on the SFINAE trick.

This declaration has a slight problem: adding enable_if_t to the signature of each function we want to expose
is cumbersome. Let’s make this part more expressive:

template <template<class> class C, class T>
using check_constraints = std::enable_if_t<C<T>::value, bool>;
template <class T, template <class> class C = is_tensor,
 check_constraints<C, T> = true>
void compute(const T& t);

All good, we have type inference and an expressive syntax for declaring our function. Besides, if we want to relax
the constraint so the function can accept both tensors and arrays, all we have to do is to replace the default value
for C:

// Equivalent to is_tensor<T>::value || is_array<T>::value
template <class T>
sturct is_container : xtl::disjunction<is_tensor<T>, is_array<T>>
{
};

template <class T, template <class> class C = is_container,
 check_constraints<C, T> = true>
void compute(const T& t);

This is far more flexible than the previous option. This flexibility comes at a minor cost: exposing the function to
the Python is slightly more verbose:

template <class T, std::size_t N, layout_type L>
struct is_tensor<pytensor<T, N, L>> : std::true_type
{
};

PYBIND11_MODULE(pymod, m)
{
 xt::import_numpy();

 m.def("compute", &compute<pytensor<double, 2>>);
}

Conclusion

Each solution has its pros and cons and choosing one of them should be done according to the flexibility you want to
impose on your API and the constraints you are imposed by the implementation. For instance, a method that requires a
lot of typing in the bindings might not suit for libraries with a huge amount of functions to expose, while a full
generic API might be problematic if the implementation expects containers only. Below is a summary of the advantages
and drawbacks of the different options:

	Generic API: full genericity, no additional typing required in the bindings, but maybe too permissive.

	Full qualified API: simple, accepts only the specified parameter type, but requires a lot of typing for the bindings.

	Container selection: quite simple, requires less typing than the previous method, but loses type inference on the C++ side and lacks some flexibility.

	Type restriction with SFINAE: more flexible than the previous option, gets type inference back, but slightly more complex to implement.

Build and configuration

Configuration

xtensor can be configured via macros which must be defined before including
any of its header. This can be achieved the following ways:

	either define them in the CMakeLists of your project, with target_compile_definitions
cmake command.

	or create a header where you define all the macros you want and then include the headers you
need. Then include thi sheader whenever you need xtensor in your project.

The following macros are already defined in xtensor but can be overwritten:

	XTENSOR_DEFAULT_DATA_CONTAINER(T, A): defines the type used as the default data container for tensors and arrays. T
is the value_type of the container and A its allocator_type.

	XTENSOR_DEFAULT_SHAPE_CONTAINER(T, EA, SA): defines the type used as the default shape container for tensors and arrays.
T is the value_type of the data container, EA its allocator_type, and SA is the allocator_type
of the shape container.

	XTENSOR_DEFAULT_LAYOUT: defines the default layout (row_major, column_major, dynamic) for tensors and arrays. We strongly
discourage using this macro, which is provided for testing purpose. Prefer defining alias types on tensor and array
containers instead.

	XTENSOR_DEFAULT_TRAVERSAL: defines the default traversal order (row_major, column_major) for algorithms and iterators on tensors
and arrays. We strongly discourage using this macro, which is provided for testing purpose.

The following macros are helpers for debugging, they are not defined by default:

	XTENSOR_ENABLE_ASSERT: enables assertions in xtensor, such as bound check.

	XTENSOR_ENABLE_CHECK_DIMENSION: enables the dimensions check in xtensor. Note that this option should not be turned
on if you expect operator() to perform broadcasting.

The last gorup of macros is for using external libraries to achieve maximum performance (see next section for additional
requirements):

	XTENSOR_USE_XSIMD: enables SIMD acceleration in xtensor. This requires that you have xsimd [https://github.com/QuantStack/xsimd] installed
on your system.

	XTENOR_USE_TBB: enables parallel assignment loop. This requires that you have you have tbb [https://www.threadingbuildingblocks.org] installed
on your system.

Build and optimization

Windows

Windows users must activate the /bigobj flag, otherwise it’s almost certain that the compilation fails. More generally,
the following options are recommended:

target_compile_options(target_name PRIVATE /EHsc /MP /bigobj)
set(CMAKE_EXE_LINKER_FLAGS /MANIFEST:NO)

If you defined XTENSOR_USE_XSIMD, you must also specify which instruction set you target:

target_compile_options(target_name PRIVATE /arch:AVX2)
OR
target_compile_options(target_name PRIVATE /arch:AVX)
OR
target_compile_options(target_name PRIVATE /arch:ARMv7VE)

If you build on an old system that do not support ny of these instruction set, you don’t have to specify
anything, the system will do its best to enable the most recent supported instruction set.

Linux/OSX

Whether you enabled XTENSOR_USE_XSIMD or not, it is highly recommended to build with -march=native option:

target_compile_options(target_name PRIVATE -march=native)

Notice that this option prevents building on a machine and distributing the resulting binary on another machine with
a different architecture (i.e. not supporting the same instruction set).

Expression builders

xtensor provides functions to ease the build of common N-dimensional expressions. The expressions
returned by these functions implement the laziness of xtensor, that is, they don’t hold any value.
Values are computed upon request.

Ones and zeros

	zeros(shape): generates an expression containing zeros of the specified shape.

	ones(shape): generates an expression containing ones of the specified shape.

	eye(shape, k=0): generates an expression of the specified shape, with ones on the k-th diagonal.

	eye(n, k = 0): generates an expression with ones on the k-th diagonal.

Numerical ranges

	arange(start=0, stop, step=1): generates numbers evenly spaced within given half-open interval.

	linspace(start, stop, num_samples): generates num_samples evenly spaced numbers over given interval.

	logspace(start, stop, num_samples): generates num_samples evenly spaced on a log scale over given interval

Joining expressions

	concatenate(tuple, axis=0): concatenates a list of expressions along the given axis.

	stack(tuple, axis=0): stacks a list of expressions along the given axis.

Random distributions

	rand(shape, lower, upper): generates an expression of the specified shape, containing uniformly
distributed random numbers in the half-open interval [lower, upper).

	randint(shape, lower, upper): generates an expression of the specified shape, containing uniformly
distributed random integers in the half-open interval [lower, upper).

	randn(shape, mean, std_dev): generates an expression of the specified shape, containing numbers
sampled from the Normal random number distribution.

Meshes

	meshgrid(x1, x2,...)`: generates N-D coordinate expressions given one-dimensional coordinate arrays x1, x2…
If specified vectors have lengths Ni = len(xi), meshgrid returns (N1, N2, N3,..., Nn)-shaped arrays, with the elements
of xi repeated to fill the matrix along the first dimension for x1, the second for x2 and so on.

Closure semantics

The xtensor library is a tensor expression library implementing numpy-style broadcasting and universal functions but in a lazy fashion.

If x and y are two tensor expressions with compatible shapes, the result of x + y is not a tensor but an expression that does
not hold any value. Values of x + y are computed upon access or when the result is assigned to a container such as xt::xtensor or
xt::xarray. The same holds for most functions in xtensor, views, broadcasting views, etc.

In order to be able to perform the differed computation of x + y, the returned expression must hold references, const references or
copies of the members x and y, depending on how arguments were passed to operator+. The actual types held by the expressions
are the closure types.

The concept of closure type is key in the implementation of xtensor and appears in all the expressions defined in xtensor, and the utility functions and metafunctions complement the tools of the standard library for the move semantics.

Basic rules for determining closure types

The two main requirements are the following:

	when an argument passed to the function returning an expression (here, operator+) is an rvalue, the closure type is always a value and the rvalue is moved.

	when an argument passed to the function returning an expression is an lvalue reference, the closure type is a reference of the same type.

It is important for the closure type not to be a reference when the passed argument is an rvalue, which can result in dangling references.

Following the conventions of the C++ standard library for naming type traits, we provide two type traits classes providing an implementation of these rules
in the xutils.hpp header, closure_type, and const_closure_type. The latter adds the const qualifier to the reference even when the provided argument is not const.

template <class S>
struct closure_type
{
 using underlying_type = std::conditional_t<
 std::is_const<std::remove_reference_t<S>>::value,
 const std::decay_t<S>,
 std::decay_t<S>>;
 using type = typename std::conditional<
 std::is_lvalue_reference<S>::value,
 underlying_type&,
 underlying_type>::type;
};

template <class S>
using closure_type_t = typename closure_type<S>::type;

The implementation for const_closure_type is slightly shorter.

template <class S>
struct const_closure_type
{
 using underlying_type = std::decay_t<S>;
 using type = typename std::conditional<
 std::is_lvalue_reference<S>::value,
 std::add_const_t<underlying_type>&,
 underlying_type>::type;
};

template <class S>
using const_closure_type_t = typename const_closure_type<S>::type;

Using this mechanism, we were able to

	avoid dangling references in nested expressions,

	hold references whenever possible,

	take advantage of the move semantics when holding references is not possible.

Closure types and scalar wrappers

A requirement for xtensor is the ability to mix scalars and tensors in tensor expressions. In order to do so,
scalar values are wrapped into the xscalar wrapper, which is a cheap 0-D tensor expression holding a single
scalar value.

For the xscalar to be a proper proxy on the scalar value, if actually holds a closure type on the scalar value.

The logic for this is encoded into xtensor’s xclosure type trait.

template <class E, class EN = void>
struct xclosure
{
 using type = closure_t<E>;
};

template <class E>
struct xclosure<E, disable_xexpression<std::decay_t<E>>>
{
 using type = xscalar<closure_t<E>>;
};

template <class E>
using xclosure_t = typename xclosure<E>::type;

In doing so, we ensure const-correctness, we avoid dangling reference, and ensure that lvalues remain lvalues.
The const_xclosure follows the same scheme:

template <class E, class EN = void>
struct const_xclosure
{
 using type = const_closure_type_t<E>;
};

template <class E>
struct const_xclosure<E, disable_xexpression<std::decay_t<E>>>
{
 using type = xscalar<std::decay_t<E>>;
};

template <class E>
using const_xclosure_t = typename const_xclosure<E>::type;

Writing functions that return expressions

xtensor closure semantics are not meant to prevent users from doing mistakes, since it would also prevent them from doing something clever.

This section covers cases where understanding C++ move semantics and xtensor closure semantics helps writing better code with xtensor.

Returning evaluated or unevaluated expressions

A key feature of xtensor is that a function returning e.g. x + y / z where x, y and z are xtensor expressions does not actually perform any
computation. It is only evaluated upon access or assignment. The returned expression holds values or references for x, y and z depending on the
lvalue-ness of the variables passed to the expression, using the closure semantics described earlier. This may result in dangling references when using
local variables of a function in an unevaluated expression unless one properly forwards / move the variables.

Note

The following rule of thumbs prevents dangling references in the xtensor closure semantics:

	If the laziness is not important for your use case, returning xt::eval(x + y / z) will return an evaluated container and avoid these complications.

	Otherwise, the key is to move lvalues that become invalid when leaving the current scope.

	If you would need to move more than once, take a look at the Reusing expressions / sharing expressions.

Example: moving local variables and forwarding universal references

Let us first consider the following implementation of the mean function in xtensor:

template <class E>
inline auto mean(E&& e) noexcept
{
 using value_type = typename std::decay_t<E>::value_type;
 auto size = e.size();
 auto s = sum(std::forward<E>(e));
 return std::move(s) / value_type(size);
}

The first thing to take into account is that the result of the final division is an expression, which performs the actual computation
upon access or assignment.

	In order to perform the division, the expression must hold the values or references on the numerator and denominator.

	Since s is a local variable, it will be destroyed upon leaving the scope of the function, and more importantly, it is an lvalue.

	A consequence of s being an lvalue and a local variable, is that the s / value_type(size) would end up holding a dangling const reference on s.

	Hence we must call return std::move(s) / value_type(size).

The other place in this example where the C++ move semantics is used is the line s = sum(std::forward<E>(e)). The goal is to have the unevaluated s expression
hold a const reference or a value for e depending on the lvalue-ness of the parameter passed to the function.

Reusing expressions / sharing expressions

Sometimes it is necessary to use a xexpression in two seperate places in another xexpression. For example, when computing
something like sin(A) + cos(A) we can see A being referenced twice. This works fine if we can guarantee that A has a
long enough lifetime. However, when writing generic interfaces that accept rvalues we cannot always guarantee that A will
live long enough.
Another scenario is the creation of a temporary, which needs to be used at more than one place in the resulting expression.
We can only std::move(…) the temporary once into the expression to hand lifetime management to the expression.

In order to solve this problem, xtensor offers two solutions: the first involves ad-hoc lambda construction and the second utilizes
shared pointers wrapped in a xshared_expression.

We can rewrite the sin(A) + cos(A) function as a lambda that we use to create a vectorized xfunction, and xtensor has a simple
utility to achieve this:

template <class E>
inline auto sin_plus_cos(E&& e) noexcept
{
 auto func = [](auto x) -> decltype(sin(x) + cos(x)) {
 return sin(x) + cos(x);
 };
 return detail::make_lambda_function(std::move(func), std::forward<E>(e));
}

Note: writing a lambda is just sugar for writing a functor.
Also, using auto x as the function argument enables automatic xsimd acceleration.

As the data flow through the lambda is entirely transparent to the compiler, using this construct
is generally faster than using xshared_expressions. The usage of xshared_expression also
requires the creation of a shared_ptr which dynamically allocates some memory and is therefore slow(ish).
But under certain circumstances it might be required, e.g. to implement a fully lazy average:

template <class E, class W>
inline auto average(E&& e, W&& weights, std::ptrdiff_t axis) noexcept
{
 auto shared_weights = xt::make_xshared(std::move(weights));
 auto expr = xt::sum(e * shared_weights , {axis}) / xt::sum(shared_weights);
 // the following line prints how often shared_weights is used
 std::cout << shared_weights.use_count() << std::endl; // ==> 4
 return expr;
}

We can see that, before returning from the function, four copies of shared_weights
exist: two in the two xt::sum functions, and one is the temporary. The last one lies
in weights itself, it is a technical requirement for the share syyntax. After
returning from the function, only two copies of the xshared_expression will exist.
As discussed before, xt::make_xshared has the same overhead as creating a std::shared_ptr
which is used internally by the shared expression.

Another syntax can be used if you don’t want to have a temporary variable for the shared
expression:

template <class E, class W>
inline auto average(E&& e, W&& weights, std::ptrdiff_t axis) noexcept
{
 auto expr = xt::sum(e * xt::share(weights) , {axis}) / xt::sum(xt::share(weights));
 // the following line prints how often shared_weights is used
 std::cout << shared_weights.use_count() << std::endl; // ==> 3
 return expr;
}

In that case only three copies of the shared weights exist. Notice that contrary to
make_xshare, share also accepts lvalues; this is to avoid the required std::move,
however share will turn its argument into an rvalue and will move it into the shared
expression. Thus share invalidates its argument, and the only thing that can be done
with an expression upon which share has been called is another call to share. Therefore
share should be called on rvalue references or temporary expressions only.

Compiler workarounds

This page tracks the workarounds for the various compiler issues that we
encountered in the development. This is mostly of interest for developers
interested in contributing to xtensor.

Visual Studio 2015 and std::enable_if

With Visual Studio, std::enable_if evaluates its second argument, even if
the condition is false. This is the reason for the presence of the indirection
in the implementation of the xfunction_type_t meta-function.

Visual Studio 2017 and alias templates with non-class template parameters and multiple aliasing levels

Alias template with non-class parameters only, and multiple levels of aliasing
are not properly considered as types by Visual Studio 2017. The base
xcontainer template class underlying xtensor container types has such alias
templates defined. We avoid the multiple levels of aliasing in the case of Visual
Studio.

Visual Studio and min and max macros

Visual Studio defines min and max macros causing calls to e.g.
std::min and std::max to be interpreted as syntax errors. The
NOMINMAX definition may be used to disable these macros.

In xtensor, to prevent macro replacements of min and max functions, we
wrap them with parentheses, so that client code does not need the NOMINMAX
definition.

Visual Studio 2017 (15.7.1) seeing declarations as extra overloads

In xvectorize.hpp, Visual Studio 15.7.1 sees the forward declaration of vectorize(E&&) as a separate ovarload.

GCC-4.9 and Clang < 3.8 and constexpr std::min and std::max

std::min and std::max are not constexpr in these compilers. In
xio.hpp, we locally define a XTENSOR_MIN macro used instead of
std::min. The macro is undefined right after it is used.

Clang < 3.8 not matching initializer_list with static arrays

Old versions of Clang don’t handle overload resolution with braced initializer
lists correctly: braced initializer lists are not properly matched to static
arrays. This prevent compile-time detection of the length of a braced
initializer list.

A consequence is that we need to use stack-allocated shape types in these cases.
Workarounds for this compiler bug arise in various files of the code base.
Everywhere, the handling of Clang < 3.8 is wrapped with checks for the
X_OLD_CLANG macro.

GCC < 5.1 and std::is_trivially_default_constructible

The versions of the STL shipped with versions of GCC older than 5.1 are missing
a number of type traits, such as std::is_trivially_default_constructible.
However, for some of them, equivalent type traits with different names are
provided, such as std::has_trivial_default_constructor.

In this case, we polyfill the proper standard names using the deprecated
std::has_trivial_default_constructor. This must also be done when the
compiler is clang when it makes use of the GCC implementation of the STL,
which is the default behavior on linux. Properly detecting the version of the
GCC STL used by clang cannot be done with the __GNUC__ macro, which are
overridden by clang. Instead, we check for the definition of the macro
_GLIBCXX_USE_CXX11_ABI which is only defined with GCC versions greater than
5.

GCC-6 and the signature of std::isnan and std::isinf

We are not directly using std::isnan or std::isinf for the
implementation of xt::isnan and xt::isinf, as a workaround to the
following bug in GCC-6 for the following reason.

	C++11 requires that the <cmath> header declares bool std::isnan(double) and bool std::isinf(double).

	C99 requires that the <math.h> header declares int ::isnan(double) and int ::isinf(double).

These two definitions would clash when importing both headers and using namespace std.

As of version 6, GCC detects whether the obsolete functions are present in the
C header <math.h> and uses them if they are, avoiding the clash. However,
this means that the function might return int instead of bool as C++11
requires, which is a bug.

GCC-8 and deleted functions

GCC-8 (8.2 specifically) doesn’t seem to SFINAE deleted functions correctly. A
strided view on a dynamic_view errors with a message: use of deleted function.
It should pick the other implementation by SFINAE on the function
signature, because our has_strides<dynamic_view> meta-function should return
false. Instantiating the has_strides<dynamic_view> in the inner_types fixes the issue.
Original issue here: https://github.com/QuantStack/xtensor/issues/1273

Apple LLVM version >= 8.0.0

tuple_cat is bugged and propagates the constness of its tuple arguments to the types
inside the tuple. When checking if the resulting tuple contains a given type, the const
qualified type also needs to be checked.

Arrays and tensors

Internal memory layout

A multi-dimensional array of xtensor consists of a contiguous one-dimensional buffer combined with an indexing scheme that maps
unsigned integers to the location of an element in the buffer. The range in which the indices can vary is specified by the
shape of the array.

The scheme used to map indices into a location in the buffer is a strided indexing scheme. In such a scheme, the index (i0, ..., in) corresponds to the offset sum(ik * sk) from the beginning of the one-dimensional buffer, where (s0, ..., sn) are the strides of the array. Some particular cases of strided schemes implement well known memory layouts:

	the row-major layout (or C layout) is a strided index scheme where the strides grow from right to left

	the column-major layout (or Fortran layout) is a strided index scheme where the strides grow from left to right

xtensor provides a layout_type enum that helps to specify the layout used by multi-dimensional arrays. This enum can be used in two ways:

	at compile time, as a template argument. The value layout_type::dynamic allows specifying any strided index scheme at runtime (including row-major and column-major schemes), while layout_type::row_major and layout_type::column_major fixes the strided index scheme and disable resize and constructor overloads taking a set of strides or a layout value as parameter. The default value of the template parameter is XTENSOR_DEFAULT_LAYOUT.

	at runtime if the previous template parameter was set to layout_type::dynamic. In that case, resize and constructor overloads allow specifying a set of strides or a layout value to avoid strides computation. If neither strides nor layout is specified when instantiating or resizing a multi-dimensional array, strides corresponding to XTENSOR_DEFAULT_LAYOUT are used.

The following example shows how to initialize a multi-dimensional array of dynamic layout with specified strides:

#include <vector>
#include "xtensor/xarray.hpp"

std::vector<size_t> shape = { 3, 2, 4 };
std::vector<size_t> strides = { 8, 4, 1 };
xt::xarray<double, xt::layout_type::dynamic> a(shape, strides);

However, this requires to carefully compute the strides to avoid buffer overflow when accessing elements of the array. We can use the following shortcut to specify the strides instead of computing them:

#include <vector>
#include "xtensor/xarray.hpp"

std::vector<size_t> shape = { 3, 2, 4 };
xt::xarray<double, xt::layout_type::dynamic> a(shape, xt::layout::row_major);

If the layout of the array can be fixed at compile time, we can make it even simpler:

#include <vector>
#include "xtensor/xarray.hpp"

std::vector<size_t> shape = { 3, 2, 4 };
xt::xarray<double, xt::layout_type::row_major> a(shape);
// this shortcut is equivalent:
// xt::xarray<double> a(shape);

However, in the latter case, the layout of the array is forced to row_major at compile time, and therefore cannot be changed at runtime.

Runtime vs Compile-time dimensionality

Three container classes implementing multi-dimensional arrays are provided: xarray and xtensor and xtensor_fixed.

	xarray can be reshaped dynamically to any number of dimensions. It is the container that is the most similar to numpy arrays.

	xtensor has a dimension set at compilation time, which enables many optimizations. For example, shapes and strides
of xtensor instances are allocated on the stack instead of the heap.

	xtensor_fixed has a shape fixed at compile time. This allows even more optimizations, such as allocating the storage for the container
on the stack, as well as computing strides and backstrides at compile time, making the allocation of this container extremely cheap.

Let’s use xtensor instead of xarray in the previous example:

#include <array>
#include "xtensor/xtensor.hpp"

std::array<size_t, 3> shape = { 3, 2, 4 };
xt::xtensor<double, 3> a(shape);
// whis is equivalent to
// xt::xtensor<double, 3, xt::layout_type::row_major> a(shape);

Or when using xtensor_fixed:

#include "xtensor/xfixed.hpp"

xt::xtensor_fixed<double, xt::xshape<3, 2, 4>> a();
// or xt::xtensor_fixed<double, xt::xshape<3, 2, 4>, xt::layout_type::row_major>()

xarray, xtensor and xtensor_fixed containers are all xexpression s and can be involved and mixed in mathematical expressions, assigned to each
other etc… They provide an augmented interface compared to other xexpression types:

	Each method exposed in xexpression interface has its non-const counterpart exposed by xarray, xtensor and xtensor_fixed.

	reshape() reshapes the container in place, and the global size of the container has to stay the same.

	resize() resizes the container in place, that is, if the global size of the container doesn’t change, no memory allocation occurs.

	strides() returns the strides of the container, used to compute the position of an element in the underlying buffer.

Reshape

The reshape method accepts any kind of 1D-container, you don’t have to pass an instance of shape_type. It only requires the new shape to be
compatible with the old one, that is, the number of elements in the container must remain the same:

#include "xtensor/xarray.hpp"

xt::xarray<int> a = { 1, 2, 3, 4, 5, 6, 7, 8};
// The following two lines ...
std::array<std::size_t, 2> sh1 = {2, 4};
a.reshape(sh1);
// ... are equivalent to the following two lines ...
xt::xarray<int>::shape_type sh2({2, 4});
a.reshape(sh2);
// ... which are equivalent to the following
a.reshape({2, 4});

One of the values in the shape argument can be -1. In this case, the value is inferred from the number of elements in the container and the remaining
values in the shape:

#include "xtensor/xarray.hpp"
xt::xarray<int> a = { 1, 2, 3, 4, 5, 6, 7, 8};
a.reshape({2, -1});
// a.shape() return {2, 4}

Performance

The dynamic dimensionality of xarray comes at a cost. Since the dimension is unknown at build time, the sequences holding shape and strides of xarray instances are heap-allocated, which makes it significantly more expansive than xtensor. Shape and strides of xtensor are stack-allocated which makes them more efficient.

More generally, the library implements a promote_shape mechanism at build time to determine the optimal sequence type to hold the shape of an expression. The shape type of a broadcasting expression whose members have a dimensionality determined at compile time will have a stack-allocated shape. If a single member of a broadcasting expression has a dynamic dimension (for example an xarray), it bubbles up to the entire broadcasting expression which will have a heap-allocated shape. The same hold for views, broadcast expressions, etc…

Aliasing and temporaries

In some cases, an expression should not be directly assigned to a container. Instead, it has to be assigned to a temporary variable before being copied
into the destination container. This occurs when the destination container is involved in the expression and has to be resized. This phenomenon is
known as aliasing.

To prevent this, xtensor assigns the expression to a temporary variable before copying it. In the case of xarray, this results in an extra dynamic memory
allocation and copy.

However, if the left-hand side is not involved in the expression being assigned, no temporary variable should be required. xtensor cannot detect such cases
automatically and applies the “temporary variable rule” by default. A mechanism is provided to forcibly prevent usage of a temporary variable:

#include "xtensor/xarray.hpp"
#include "xtensor/xnoalias.hpp"

// a, b, and c are xt::xarrays previously initialized
xt::noalias(b) = a + c;
// Even if b has to be resized, a+c will be assigned directly to it
// No temporary variable will be involved

Example of aliasing

The aliasing phenomenon is illustrated in the following example:

#include <vector>
#include "xtensor/xarray.hpp"

std::vector<size_t> a_shape = {3, 2, 4};
xt::xarray<double> a(a_shape);

std::vector<size_t> b_shape = {2, 4};
xt::xarray<double> b(b_shape);

b = a + b;
// b appears on both left-hand and right-hand sides of the statement

In the above example, the shape of a + b is { 3, 2, 4 }. Therefore, b must first be resized, which impacts how the right-hand side is computed.

If the values of b were copied into the new buffer directly without an intermediary variable, then we would have
new_b(0, i, j) == old_b(i, j) for (i,j) in [0,1] x [0, 3]. After the resize of bb, a(0, i, j) + b(0, i, j) is assigned to b(0, i, j), then,
due to broadcasting rules, a(1, i, j) + b(0, i, j) is assigned to b(1, i, j). The issue is b(0, i, j) has been changed by the previous assignment.

Build and configuration

Build

xtensor build supports the following options:

	BUILD_TESTS: enables the xtest and xbenchmark targets (see below).

	DOWNLOAD_GTEST: downloads gtest and builds it locally instead of using a binary installation.

	GTEST_SRC_DIR: indicates where to find the gtest sources instead of downloading them.

	XTENSOR_ENABLE_ASSERT: activates the assertions in xtensor.

	XTENSOR_CHECK_DIMENSION: turns on XTENSOR_ENABLE_ASSERT and activates dimension checks in xtensor.
Note that the dimensions check should not be activated if you expect operator() to perform broadcasting.

	XTENSOR_USE_XSIMD: enables simd acceleration in xtensor. This requires that you have xsimd [https://github.com/QuantStack/xsimd] installed
on your system.

	XTENOR_USE_TBB: enables parallel assignment loop. This requires that you have you have tbb [https://www.threadingbuildingblocks.org] installed
on your system.

All these options are disabled by default. Enabling DOWNLOAD_GTEST or
setting GTEST_SRC_DIR enables BUILD_TESTS.

If the BUILD_TESTS option is enabled, the following targets are available:

	xtest: builds an run the test suite.

	xbenchmark: builds and runs the benchmarks.

For instance, building the test suite of xtensor with assertions enabled:

mkdir build
cd build
cmake -DBUILD_TESTS=ON -DXTENSOR_ENABLE_ASSERT=ON ../
make xtest

Building the test suite of xtensor where the sources of gtest are
located in e.g. /usr/share/gtest:

mkdir build
cd build
cmake -DGTEST_SRC_DIR=/usr/share/gtest ../
make xtest

Configuration

xtensor can be configured via macros, which must be defined before
including any of its header. Here is a list of available macros:

	XTENSOR_ENABLE_ASSERT: enables assertions in xtensor, such as bound check.

	XTENSOR_ENABLE_CHECK_DIMENSION: enables the dimensions check in xtensor. Note that this option should not be turned
on if you expect operator() to perform broadcasting.

	XTENSOR_USE_XSIMD: enables SIMD acceleration in xtensor. This requires that you have xsimd [https://github.com/QuantStack/xsimd] installed
on your system.

	XTENOR_USE_TBB: enables parallel assignment loop. This requires that you have you have tbb [https://www.threadingbuildingblocks.org] installed
on your system.

	XTENSOR_DEFAULT_DATA_CONTAINER(T, A): defines the type used as the default data container for tensors and arrays. T
is the value_type of the container and A its allocator_type.

	XTENSOR_DEFAULT_SHAPE_CONTAINER(T, EA, SA): defines the type used as the default shape container for tensors and arrays.
T is the value_type of the data container, EA its allocator_type, and SA is the allocator_type
of the shape container.

	XTENSOR_DEFAULT_LAYOUT: defines the default layout (row_major, column_major, dynamic) for tensors and arrays. We strongly
discourage using this macro, which is provided for testing purpose. Prefer defining alias types on tensor and array
containers instead.

	XTENSOR_DEFAULT_TRAVERSAL: defines the default traversal order (row_major, column_major) for algorithms and iterators on tensors
and arrays. We strongly discourage using this macro, which is provided for testing purpose.

Expressions and lazy evaluation

xtensor is more than an N-dimensional array library: it is an expression engine that allows numerical computation on any object implementing the expression interface.
These objects can be in-memory containers such as xarray<T> and xtensor<T>, but can also be backed by a database or a representation on the file system. This
also enables creating adaptors as expressions for other data structures.

Expressions

Assume x, y and z are arrays of compatible shapes (we’ll come back to that later), the return type of an expression such as x + y * sin(z) is not an array.
The result is an xexpression which offers the same interface as an N-dimensional array but does not hold any value. Such expressions can be plugged into others to build
more complex expressions:

auto f = x + y * sin(z);
auto f2 = w + 2 * cos(f);

The expression engine avoids the evaluation of intermediate results and their storage in temporary arrays, so you can achieve the same performance as if you had written
a simple loop. Assuming x, y and z are one-dimensional arrays of length n,

xt::xarray<double> res = x + y * sin(z)

will produce quite the same assembly as the following loop:

xt::xarray<double> res(n);
for(size_t i = 0; i < n; ++i)
{
 res(i) = x(i) + y(i) * sin(z(i));
}

Lazy evaluation

An expression such as x + y * sin(z) does not hold the result. Values are only computed upon access or when the expression is assigned to a container. This
allows to operate symbolically on very large arrays and only compute the result for the indices of interest:

// Assume x and y are xarrays each containing 1 000 000 objects
auto f = cos(x) + sin(y);

double first_res = f(1200);
double second_res = f(2500);
// Only two values have been computed

That means if you use the same expression in two assign statements, the computation of the expression will be done twice. Depending on the complexity of the computation
and the size of the data, it might be convenient to store the result of the expression in a temporary variable:

// Assume x and y are small arrays
xt::xarray<double> tmp = cos(x) + sin(y);
xt::xarray<double> res1 = tmp + 2 * x;
xt::xarray<double> res2 = tmp - 2 * x;

Forcing evaluation

If you have to force the evaluation of an xexpression for some reason (for example, you want to have all results in memory to perform a sort or use external BLAS functions) then you can use xt::eval on an xexpression.
Evaluating will either return a rvalue to a newly allocated container in the case of an xexpression, or a reference to a container in case you are evaluating a xarray or xtensor. Note that, in order to avoid copies, you should use a universal reference on the lefthand side (auto&&). For example:

xt::xarray<double> a = {1, 2, 3};
xt::xarray<double> b = {3, 2, 1};
auto calc = a + b; // unevaluated xexpression!
auto&& e = xt::eval(calc); // a rvalue container xarray!
// this just returns a reference to the existing container
auto&& a_ref = xt::eval(a);

Broadcasting

The number of dimensions of an xexpression and the sizes of these dimensions are provided by the shape() method, which returns a sequence of unsigned integers
specifying the size of each dimension. We can operate on expressions of different shapes of dimensions in an elementwise fashion. Broadcasting rules of xtensor are
similar to those of Numpy [http://www.numpy.org] and libdynd [http://libdynd.org].

In an operation involving two arrays of different dimensions, the array with the lesser dimensions is broadcast across the leading dimensions of the other.
For example, if A has shape (2, 3), and B has shape (4, 2, 3), the result of a broadcast operation with A and B has shape (4, 2, 3).

 (2, 3) # A
(4, 2, 3) # B

(4, 2, 3) # Result

The same rule holds for scalars, which are handled as 0-D expressions. If A is a scalar, the equation becomes:

 () # A
(4, 2, 3) # B

(4, 2, 3) # Result

If matched up dimensions of two input arrays are different, and one of them has size 1, it is broadcast to match the size of the other. Let’s say B has the shape (4, 2, 1)
in the previous example, so the broadcasting happens as follows:

 (2, 3) # A
(4, 2, 1) # B

(4, 2, 3) # Result

Expression interface

All xexpression s in xtensor provide at least the following interface:

Shape

	dimension() returns the number of dimensions of the expression.

	shape() returns the shape of the expression.

#include <vector>
#include "xtensor/xarray.hpp"

using array_type = xt::xarray<double>;
using shape_type = array_type::shape_type;
shape_type shape = {3, 2, 4};
array_type a(shape);
size_t d = a.dimension();
const shape_type& s = a.shape();
bool res = (d == shape.size()) && (s == shape);
// => res = true

Element access

	operator() is an access operator that can take multiple integral arguments or none.

	at() is similar to operator() but checks that its number of arguments does not exceed the number of dimensions, and performs bounds checking. This should not be used where you expect operator() to perform broadcasting.

	operator[] has two overloads: one that takes a single integral argument and is equivalent to the call of operator() with one argument, and one with a single multi-index argument, which can be of a size determined at runtime. This operator also supports braced initializer arguments.

	element() is an access operator which takes a pair of iterators on a container of indices.

	periodic() is the equivalent of operator() that can deal with periodic indices (for example -1 for the last item along an axis).

	in_bounds() returns a bool that is true only if indices are valid for the array.

#include <vector>
#inclde "xtensor/xarray.hpp"

// xt::xarray<double> a = ...
std::vector<size_t> index = {1, 1, 1};
double v1 = a(1, 1, 1);
double v2 = a[index],
double v3 = a.element(index.begin(), index.end());
// => v1 = v2 = v3

Iterators

	begin() and end() return instances of xiterator which can be used to iterate over all the elements of the expression. The layout of the iteration can be specified
through the layout_type template parameter, accepted values are layout_type::row_major and layout_type::column_major. If not specified, XTENSOR_DEFAULT_TRAVERSAL is used.
This iterator pair permits to use algorithms of the STL with xexpression as if they were simple containers.

	begin(shape) and end(shape) are similar but take a broadcasting shape as an argument. Elements are iterated upon in XTENSOR_DEFAULT_TRAVERSAL if no layout_type template parameter is specified. Certain dimensions are repeated to match the provided shape as per the rules described above.

	rbegin() and rend() return instances of xiterator which can be used to iterate over all the elements of the reversed expression. As begin() and end(), the layout of the iteration can be specified through the layout_type parameter.

	rbegin(shape) and rend(shape) are the reversed counterpart of begin(shape) and end(shape).

Extending xtensor

xtensor provides means to plug external data structures into its expression engine without
copying any data.

Adapting one-dimensional containers

You may want to use your own one-dimensional container as a backend for tensor data containers
and even for the shape or the strides. This is the simplest structure to plug into xtensor.
In the following example, we define new container and adaptor types for user-specified storage and shape types.

// Assuming container_type and shape_type are third-party library containers
using my_array_type = xt::xarray_container<container_type, shape_type>;
using my_adaptor_type = xt::xarray_adaptor<container_type, shape_type>;

// Or, working with a fixed number of dimensions
using my_tensor_type = xt::xtensor_container<container_type, 3>;
using my_adaptor_type = xt::xtensor_adaptor<container_type, 3>;

These new types will have all the features of the core xt::xtensor and xt::xarray types.
xt::xarray_container and xt::xtensor_container embed the data container, while
xt::xarray_adaptor and xt::xtensor_adaptor hold a reference on an already initialized
container.

A requirement for the user-specified containers is to provide a minimal std::vector-like interface, that is:

	usual typedefs for STL sequences

	random access methods (operator[], front, back and data)

	iterator methods (begin, end, cbegin, cend)

	size and reshape, resize methods

xtensor does not require that the container has a contiguous memory layout, only that it
provides the aforementioned interface. In fact, the container could even be backed by a
file on the disk, a database or a binary message.

Structures that embed shape and strides

Some structures may gather data container, shape and strides, making them impossible to plug
into xtensor with the method above. This section illustrates how to adapt such structures
with the following simple example:

template <class T>
struct raw_tensor
{
 using container_type = std::vector<T>;
 using shape_type = std::vector<std::size_t>;
 container_type m_data;
 shape_type m_shape;
 shape_type m_strides;
 shape_type m_backstrides;
 static constexpr layout_type layout = layout_type::dynamic;
};

// This is the adaptor we need to define to plug raw_tensor in xtensor
template <class T>
class raw_tensor_adaptor;

Define inner types

The following tells xtensor which types must be used for getting shape, strides, and data:

template <class T>
struct xcontainer_inner_types<raw_tensor_adaptor<T>>
{
 using container_type = typename raw_tensor<T>::container_type;
 using inner_shape_type = typename raw_tensor<T>::shape_type;
 using inner_strides_type = inner_shape_type;
 using inner_backstrides_type = inner_shape_type;
 using shape_type = inner_shape_type;
 using strides_type = inner_shape_type;
 using backstrides_type = inner_shape_type;
 static constexpr layout_type layout = raw_tensor<T>::layout;
};

The inner_XXX_type are the types used to store and read the shape, strides and backstrides, while the
other ones are used for reshaping. Most of the time, they will be the same; differences come when inner
types cannot be instantiated out of the box (because they are linked to python buffer for instance).

Next, bring all the iterable features with this simple definition:

template <class T>
struct xiterable_inner_types<raw_tensor_adaptor<T>>
 : xcontainer_iterable_types<raw_tensor_adaptor<T>>
{
};

Inherit

Next step is to inherit from the xcontainer and the xcontainer_semantic classes:

template <class T>
class raw_tensor_adaptor : public xcontainer<raw_tensor_adaptor<T>>,
 public xcontainer_semantic<raw_tensor_adaptor<T>>
{
 ...
};

Thanks to definition of the previous structures, inheriting from xcontainer brings almost all the container
API available in the other entities of xtensor, while inheriting from xtensor_semantic brings the support
for mathematical operations.

Define semantic

xtensor classes have full value semantic, so you may define the constructors specific to your structures,
and use the default copy and move constructors and assign operators. Note these last ones must be declared as
they are declared as protected in the base class.

template <class T>
class raw_tensor_adaptor : public xcontainer<raw_tensor_adaptor<T>>,
 public xcontainer_semantic<raw_tensor_adaptor<T>>
{

public:

 using self_type = raw_tensor_adaptor<T>;
 using base_type = xcontainer<self_type>;
 using semantic_base = xcontainer_semantic<self_type>;

 // ... specific constructors here

 raw_tensor_adaptor(const raw_tensor_adaptor&) = default;
 raw_tensor_adaptor& operator=(const raw_tensor_adaptor&) = default;

 raw_tensor_adaptor(raw_tensor_adaptor&&) = default;
 raw_tensor_adaptor& operator=(raw_tensor_adaptor&&) = default;

 template <class E>
 raw_tensor_type(const xexpression<E>& e)
 : base_type()
 {
 semantic_base::assign(e);
 }

 template <class E>
 self_type& operator=(const xexpression<E>& e)
 {
 return semantic_base::operator=(e);
 }
};

The last two methods are extended copy constructor and assign operator. They allow writing things like

using tensor_type = raw_tensor_adaptor<double>;
tensor_type a, b, c;
// init a, b and c
tensor_type d = a + b - c;

Implement the resize methods

The next methods to define are the overloads of resize. xtensor provides utility functions to compute
strides based on the shape and the layout, so the implementation of the resize overloads is straightforward:

#include "xtensor/xstrides.hpp" // for utility functions

template <class T>
void resize(const shape_type& shape)
{
 if(m_shape != shape)
 resize(shape, layout::row_major);
}

template <class T>
void resize(const shape_type& shape, layout l)
{
 m_raw.m_shape = shape;
 m_raw.m_strides.resize(shape.size());
 m_raw.m_backstrides.resize(shape.size());
 size_type data_size = compute_strides(m_shape, l, m_strides, m_backstrides);
 m_raw.m_data.resize(data_size);
}

template <class T>
void resize(const shape_type& shape, const strides_type& strides)
{
 m_raw.m_shape = shape;
 m_raw.m_strides = strides;
 m_raw.m_backstrides.resize(shape.size());
 adapt_strides(m_raw.m_shape, m_raw.m_strides, m_raw.m_backstrides);
 m_raw.m_data.resize(compute_size(m_shape));
}

Implement private accessors

xcontainer assume the following methods are implemented in its inheriting class:

inner_shape_type& shape_impl();
const inner_shape_type& shape_impl() const;

inner_strides_type& strides_impl();
const inner_strides_type& strides_impl() const;

inner_backstrides_type& backstrides_impl();
const inner_backstrides_type& backstrides_impl() const;

However, since xcontainer provides a public API for getting the shape and the strides,
these methods should be declared protected or private and xcontainer should
be declared as a friend class so that it can access them.

Embedding a full tensor structure

You may need to plug structures that already provide n-dimensional access methods, instead of a one-dimensional
container with a strided index scheme. This section illustrates how to adapt such structures with the following (minimal) API:

template <class T>
class table
{

public:

 using shape_type = std::vector<std::size_t>;

 const shape_type& shape() const;

 template <class... Args>
 T& operator()(Args... args);

 template <class... Args>
 const T& operator()(Args... args) const;

 template <class It>
 T& element(It first, It last);

 template <class It>
 const T& element(It first, It last) const;
};

// This is the adaptor we need to define to plug table in xtensor
template <class T>
class table_adaptor;

Define inner types

The following definitions are required:

template <class T>
struct xcontainer_inner_type<table_adaptor<T>>
{
 using temporary_type = xarray<T>;
};

template <class T>
struct xiterable_inner_types<table_adaptor<T>>
{
 using inner_shape_type = typename table<T>::shape_type;
 using stepper = xindexed_stepper<table<T>, false>;
 using const_stepper = xindexed_stepper<table<T>, true>;
};

Inheritance

Next step is to inherit from the xiterable and xcontainer_semantic classes,
and to define a bunch of typedefs.

template<class T>
class table_adaptor : public xiterable<table_adaptor<T>>,
 public xcontainer_semantic<table_adaptor<T>>
{

public:

 using self_type = table<T>;

 using value_type = T;
 using reference = T&;
 using const_reference = const T&;
 using pointer = T*;
 using const_pointer = const T*;
 using size_type = std::size_t;
 using difference_type = std::ptrdiff_t;

 using inner_shape_type = typename table<T>::shape_type;
 using inner_stride_stype = inner_shape_type;
 using shape_type = inner_shape_type;
 using strides_type = inner_strides_type;

 using iterable_base = xexpression_iterable<self_type>;
 using stepper = typename iterable_base::stepper;
 using const_stepper = typename iterable_base::const_stepper;
};

The iterator and stepper used here may not be the most optimal for table, however they
are guaranteed to work as long as table provides an access operator based on indices.

NOTE: we inherit from xcontainer_semantic because we assume the table_adaptor class
embeds an instance of table. If it took a reference on it, we would inherit from
xadaptor_semantic instead.

Define semantic

As for one-dimensional containers adaptors, you must define constructors and at least declare
default copy and move constructors and assignment operators. You also must define the extended copy
constructor and assign operator.

template <class T>
class table_adaptor : public xiterable<table_adaptor<T>>,
 public xcontainer_semantic<table_adaptor<T>>
{

public:

 // typedefs
 // specific constructors

 table_adaptor(const table_adaptor&) = default;
 table_adaptor& operator=(const table_adaptor&) = default;

 table_adaptor(table_adaptor&&) = default;
 table_adaptor& operator=(table_adaptor&&) = default;

 template <class E>
 table_adaptor(const xexpression<E>& e)
 : base_type()
 {
 semantic_base::assign(e);
 }

 template <class E>
 self_type& operator=(const xexpression<E>& e)
 {
 return semantic_base::operator=(e);
 }
};

Implement access operators

xtensor requires that the following access operators are defined

template <class... Args>
reference operator()(Args... args)
{
 // Should forward to table<T>:operator()(args...)
}

template <class... Args>
const_reference operator()(Args... args) const
{
 // Should forward to table<T>::operator()(args...)
}

reference operator[](const xindex& index)
{
 return element(index.cbegin(), index.cend());
}

const_reference operator[](const xindex& index) const
{
 return element(index.cbegin(), index.cend());
}

reference operator[](size_type i)
{
 return operator()(i);
}

const_reference operator[](size_type i) const
{
 return operator()(i);
}

template <class It>
reference element(It first, It last)
{
 // Should forward to table<T>::element(first, last)
}

template <class It>
const_reference element(It first, It last)
{
 // Should forward to table<T>::element(first, last)
}

Implement broadcast mechanic

This part is relatively straightforward:

size_type dimension() const
{
 return shape().size();
}

const shape_type& shape() const
{
 // Should forward to table<T>::shape()
}

template <class S>
bool broadcast_shape(const S& s) const
{
 // Available in "xtensor/xtrides.hpp"
 return xt::broadcast_shape(shape(), s);
}

template <class S>
bool is_trivial_broadcast(const S& str) const noexcept
{
 return false;
}

Implement resize overloads

This is very similar to what must be done for one-dimensional containers,
except you may ignore the layout and the strides in the implementation.
However, these overloads are still required.

Provide a stepper API

The last required step is to provide a stepper API, on which are built
iterators.

template <class ST>
stepper stepper_begin(const ST& s)
{
 size_type offset = s.size() - dimension();
 return stepper(this, offset);
}

template <class ST>
stepper stepper_end(const ST& s)
{
 size_type offset = s.size() - dimension();
 return stepper(this, offset, true);
}

template <class ST>
const_stepper stepper_begin(const ST& s) const
{
 size_type offset = s.size() - dimension();
 return const_stepper(this, offset);
}

template <class ST>
const_stepper stepper_end(const ST& s) const
{
 size_type offset = s.size() - dimension();
 return const_stepper(this, offset, true);
}

File input and output

xtensor has some built-in mechanisms to make loading and saving data easy.
The base xtensor package allows to save and load data in the .csv, .json and .npy
format.
Please note that many more input and output formats are available in the xtensor-io [https://github.com/QuantStack/xtensor-io] package.
xtensor-io offers functions to load and store from image files (jpg, gif, png…),
sound files (wav, ogg…), HDF5 files (h5, hdf5, …), and compressed numpy format (npz).

Loading CSV data into xtensor

The following example code demonstrates how to use load_csv and dump_csv to load and
save data in the Comma-separated value format. The reference documentation is api/xcsv.

#include <istream>
#include <fstream>
#include <iostream>

#include "xtensor/xarray.hpp"
#include "xtensor/xcsv.hpp"

int main()
{
 ifstream in_file;
 in_file.open("in.csv");
 auto data = xt::load_csv<double>(in_file);

 ofstream out_file;
 out_file("out.csv");

 xt::xarray<double> a = {{1,2,3,4}, {5,6,7,8}};
 xt::dump_csv(out_file, a);

 return 0;
}

Loading NPY data into xtensor

The following example demonstrates how to load and store xtensor data in the npy “NumPy” format,
using the load_npy and dump_npy functions.
Reference documentation for the functions used is found here api/xnpy.

#include <istream>
#include <iostream>
#include <fstream>

#include "xtensor/xarray.hpp"
#include "xtensor/xnpy.hpp"

int main()
{
 // Note: you need to supply the data type you are loading
 // in this case "double".
 auto data = xt::load_npy<double>("in.npy");

 xt::xarray<double> a = {{1,2,3,4}, {5,6,7,8}};
 xt::dump_npy("out.npy", a);

 return 0;
}

Loading JSON data into xtensor

It’s possible to load and dump data to json, using the json library written by
nlohmann (https://nlohmann.github.io/json/) which offers a convenient way
to handle json data in C++. Note that the library needs to be separately installed.
The reference documentation is found api/xjson.

#include "xtensor/xjson.hpp"
#include "xtensor/xarray.hpp"

int main()
{

 xt::xarray<double> t = {{{1, 2},
 {3, 4}},
 {{1, 2},
 {3, 4}}};

 nlohmann::json jl = t;
 // To obtain the json serialized string
 std::string s = jl.dump();

 xt::xarray<double> res;
 auto j = "[[10.0,10.0],[10.0,10.0]]"_json;
 from_json(j, res);
}

Getting started

This short guide explains how to get started with xtensor once you have installed it with one of
the methods described in the installation section.

First example

#include <iostream>
#include "xtensor/xarray.hpp"
#include "xtensor/xio.hpp"
#include "xtensor/xview.hpp"

int main(int argc, char* argv[])
{
 xt::xarray<double> arr1
 {{1.0, 2.0, 3.0},
 {2.0, 5.0, 7.0},
 {2.0, 5.0, 7.0}};

 xt::xarray<double> arr2
 {5.0, 6.0, 7.0};

 xt::xarray<double> res = xt::view(arr1, 1) + arr2;

 std::cout << res;

 return 0;
}

This example simply adds the second row of a 2-dimensional array with a 1-dimensional
array.

Compiling the first example

xtensor is a header-only library, so there is no library to link with. The only constraint
is that the compiler must be able to find the headers of xtensor, this is usually done
by having the directory containing the headers in the include path. With GCC, use the -I option
to achieve this. Assuming the first example code is located in example.cpp, the compilation command
is:

gcc -I /path/to/xtensor/ example.cpp -o example

When you run the program, it produces the following output:

{7, 11, 14}

Building with cmake

A better alternative for building programs using xtensor is to use cmake, especially if you are
developing for several platforms. Assuming the following folder structure:

first_example
 |- src
 | |- example.cpp
 |- CMakeLists.txt

The following minimal CMakeLists.txt is enough to build the first example:

cmake_minimum_required(VERSION 3.1)
project(first_example)

find_package(xtl REQUIRED)
find_package(xtensor REQUIRED)

add_executable(first_example src/example.cpp)

if(MSVC)
 target_compile_options(first_example PRIVATE /EHsc /MP /bigobj)
 set(CMAKE_EXE_LINKER_FLAGS /MANIFEST:NO)
endif()

if (CMAKE_CXX_COMPILER_ID MATCHES "Clang" OR
 CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR
 (CMAKE_CXX_COMPILER_ID MATCHES "Intel" AND NOT WIN32))
 target_compile_options(first_example PRIVATE -march=native -std=c++14)
endif()

target_link_libraries(first_example xtensor)

cmake has to know where to find the headers, this is done through the CMAKE_INSTALL_PREFIX
variable. Note that CMAKE_INSTALL_PREFIX is usually the path to a folder containing the following
subfolders: include, lib and bin, so you don’t have to pass any additional option for linking.
Examples of valid values for CMAKE_INSTALL_PREFIX on Unix platforms are /usr/local, /opt.

The following commands create a directory for building (avoid building in the source folder), builds
the first example with cmake and then runs the program:

mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=your_prefix ..
make
./first_program

See Build and configuration for more details about the build options.

Second example: reshape

This second example initializes a 1-dimensional array and reshapes it in-place:

#include <iostream>
#include "xtensor/xarray.hpp"
#include "xtensor/xio.hpp"

int main(int argc, char* argv[])
{
 xt::xarray<int> arr
 {1, 2, 3, 4, 5, 6, 7, 8, 9};

 arr.reshape({3, 3});

 std::cout << arr;
 return 0;
}

When compiled and run, this produces the following output:

{{1, 2, 3},
 {4, 5, 6},
 {7, 8, 9}}

Third example: index access

#include <iostream>
#include "xtensor/xarray.hpp"
#include "xtensor/xio.hpp"

int main(int argc, char* argv[])
{
 xt::xarray<double> arr1
 {{1.0, 2.0, 3.0},
 {2.0, 5.0, 7.0},
 {2.0, 5.0, 7.0}};

 std::cout << arr1(0, 0) << std::endl;

 xt::xarray<int> arr2
 {1, 2, 3, 4, 5, 6, 7, 8, 9};

 std::cout << arr2(0);
 return 0;
}

Outputs:

1.0
1

Fourth example: broadcasting

This last example shows how to broadcast the xt::pow universal function:

#include <iostream>
#include "xtensor/xarray.hpp"
#include "xtensor/xmath.hpp"
#include "xtensor/xio.hpp"

int main(int argc, char* argv[])
{
 xt::xarray<double> arr1
 {1.0, 2.0, 3.0};

 xt::xarray<unsigned int> arr2
 {4, 5, 6, 7};

 arr2.reshape({4, 1});

 xt::xarray<double> res = xt::pow(arr1, arr2);

 std::cout << res;
 return 0;
}

Outputs:

{{1, 16, 81},
 {1, 32, 243},
 {1, 64, 729},
 {1, 128, 2187}}

Histogram

Basic usage

Note

xt::histogram(a, bins[, weights][, density])
xt::histogram_bin_edges(a[, weights][, left, right][, bins][, mode])

Any of the options [...] can be omitted (though the order must be preserved). The defaults are:

	weights = xt::ones(data.shape())

	density = false

	left = xt::amin(data)(0)

	right = xt::amax(data)(0)

	bins = 10

	mode = xt::histogram::automatic

The behavior, in-, and output of histogram is similar to that of numpy.histogram [https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html] with that difference that the bin-edges are obtained by a separate function call:

#include <xtensor/xtensor.hpp>
#include <xtensor/xhistogram.hpp>
#include <xtensor/xio.hpp>

int main()
{
 xt::xtensor<double,1> data = {1., 1., 2., 2., 3.};

 xt::xtensor<double,1> count = xt::histogram(data, std::size_t(2));

 xt::xtensor<double,1> bin_edges = xt::histogram_bin_edges(data, std::size_t(2));

 return 0;
}

Bin-edges algorithm

To customize the algorithm to be used to construct the histogram, one needs to make use of the latter histogram_bin_edges. For example:

#include <xtensor/xtensor.hpp>
#include <xtensor/xhistogram.hpp>
#include <xtensor/xio.hpp>

int main()
{
 xt::xtensor<double,1> data = {1., 1., 2., 2., 3.};

 xt::xtensor<double,1> bin_edges = xt::histogram_bin_edges(data, std::size_t(2), xt::histogram_algorithm::uniform);

 xt::xtensor<double,1> prob = xt::histogram(data, bin_edges, true);

 std::cout << bin_edges << std::endl;
 std::cout << prob << std::endl;

 return 0;
}

The following algorithms are available:

	automatic: equivalent to linspace.

	linspace: linearly spaced bin-edges.

	logspace: bins that logarithmically increase in size.

	uniform: bin-edges such that the number of data-points is the same in all bins (as much as possible).

Indices

Definition

There are two types of indices: array indices and flat indices. Consider this example (stored in row-major):

#include <xtensor/xtensor.hpp>
#include <xtensor/xarray.hpp>
#include <xtensor/xio.hpp>

int main()
{
 xt::xarray<size_t> a = xt::arange<size_t>(3 * 4);

 a.reshape({3,4});

 std::cout << a << std::endl;
}

Which prints

{{ 0, 1, 2, 3},
 { 4, 5, 6, 7},
 { 8, 9, 10, 11}}

The array index {1, 2} corresponds to the flat index 6.

Array indices

Functions like xt::argwhere(a < 5) return a std::vector of array indices. Using the same matrix as above, we can do

int main()
{
 xt::xarray<size_t> a = xt::arange<size_t>(3 * 4);

 a.reshape({3,4});

 auto idx = xt::from_indices(xt::argwhere(a >= 6));

 std::cout << idx << std::endl;
}

which prints

{{1, 2},
 {1, 3},
 {2, 0},
 {2, 1},
 {2, 2},
 {2, 3}}

Here we observe that to work print we need to convert the std::vector to a xt::xtensor<size_t, 2> array, which is done using xt::from_indices.

From array indices to flat indices

To convert the array indices to a xt::xtensor<size_t, 1> of flat indices, xt::ravel_indices can be used. For to same example:

#include <xtensor/xtensor.hpp>
#include <xtensor/xarray.hpp>
#include <xtensor/xio.hpp>

int main()
{
 xt::xarray<size_t> a = xt::arange<size_t>(3 * 4);

 a.reshape({3,4});

 auto idx = xt::ravel_indices(xt::argwhere(a >= 6), a.shape());

 std::cout << idx << std::endl;
}

which prints

{ 6, 7, 8, 9, 10, 11}

Note

To convert to a std::vector use

auto idx = xt::ravel_indices<xt::ravel_vector_tag>(xt::argwhere(a >= 6), a.shape());

1-D arrays: array indices == flat indices

For 1-D arrays the array indices and flat indices coincide. One can use the generic functions xt::flatten_indices to get a xt::xtensor<size_t, 1> of (array/flat) indices. For example:

#include <xtensor/xtensor.hpp>
#include <xtensor/xview.hpp>
#include <xtensor/xio.hpp>

int main()
{
 xt::xtensor<size_t, 1> a = xt::arange<size_t>(16);

 auto idx = xt::flatten_indices(xt::argwhere(a >= 6));

 std::cout << idx << std::endl;

 std::cout << xt::view(a, xt::keep(idx)) << std::endl;
}

which print the indices and the selection (which are in this case identical):

{ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
{ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

From flat indices to array indices

To convert flat indices to array_indices the function xt::ravel_indices can be used. For example

#include <xtensor/xarray.hpp>
#include <xtensor/xtensor.hpp>
#include <xtensor/xstrides.hpp>
#include <xtensor/xio.hpp>

int main()
{
 xt::xarray<size_t> a = xt::arange<size_t>(3 * 4);

 a.reshape({3,4});

 auto flat_indices = xt::ravel_indices(xt::argwhere(a >= 6), a.shape());

 auto array_indices = xt::from_indices(xt::unravel_indices(flat_indices, a.shape()));

 std::cout << "flat_indices = " << std::endl << flat_indices << std::endl;
 std::cout << "array_indices = " << std::endl << array_indices << std::endl;
}

which prints

flat_indices =
{ 6, 7, 8, 9, 10, 11}
array_indices =
{{1, 2},
 {1, 3},
 {2, 0},
 {2, 1},
 {2, 2},
 {2, 3}}

Notice that once again the function xt::from_indices has been used to convert a std::vector of indices to a xt::xtensor array for printing.

Missing values

xtensor handles missing values and comprises specialized container types for an optimized support of missing values.

Optional expressions

Support of missing values in xtensor is primarily provided through the xoptional value type and the xtensor_optional and
xarray_optional containers. In the following example, we instantiate a 2-D tensor with a missing value:

xtensor_optional<double, 2> m
 {{ 1.0 , 2.0 },
 { 3.0 , missing<double>() }};

This code is semantically equivalent to

xtensor<xoptional<double>, 2> m
 {{ 1.0 , 2.0 },
 { 3.0 , missing<double>() }};

The xtensor_optional container is optimized to handle missing values. Internally, instead of holding a single container
of optional values, it holds an array of double and a boolean container where each value occupies a single bit instead of sizeof(bool)
bytes.

The xtensor_optional::reference typedef, which is the return type of operator() is a reference proxy which can be used as an
lvalue for assigning new values in the array. It happens to be an instance of xoptional<T, B> where T and B are actually the reference types of the underlying storage for values and boolean flags.

This technique enables performance improvements in mathematical operations over boolean arrays including SIMD optimizations, and
reduces the memory footprint of optional arrays. It should be transparent to the user.

Operating on missing values

Arithmetic operators and mathematical universal functions are overloaded for optional values so that they can be operated upon in the
same way as regular scalars.

xtensor_optional<double, 2> a
 {{ 1.0 , 2.0 },
 { 3.0 , missing<double>() }};

xtensor<double, 1> b
 { 1.0, 2.0 };

// `b` is broadcasted to match the shape of `a`
std::cout << a + b << std::endl;

outputs:

{{ 2, 4},
 { 4, N/A}}

Optional assemblies

The classes xoptional_assembly and xoptional_assembly_adaptor provide containers and adaptors holding missing values that are optimized
for element-wise operations.
Contrary to xtensor_optional and xarray_optional, the optional assemblies hold two expressions, one holding the values, the other holding
the mask for the missing values. The difference between xoptional_assembly and xoptional_assembly_adaptor is that the first one is the owner
of the two expressions while the last one holds a reference on at least one of the two expressions.

xarray<double> v
 {{ 1.0, 2.0 },
 { 3.0, 4.0 }};

xarray<bool> hv
 {{ true, true },
 { true, false }};

xoptional_assembly<xarray<double>, xarray<bool>>
assembly(v, hv);
std::cout << assembly << std::endl;

outputs:

{{ 1, 2 },
 { 3, N/A}}

Handling expressions with missing values

Functions has_value(E&& e) and value(E&& e) return expressions corresponding to the underlying value and flag of optional elements. When e is an lvalue, value(E&& e) and has_value(E&& e) are lvalues too.

xtensor_optional<double, 2> a
 {{ 1.0 , 2.0 },
 { 3.0 , missing<double>() }};

xtensor<bool, 2> b = has_value(a);

std::cout << b << std::endl;

outputs:

{{ true, true},
 { true, false}}

Notable differences with numpy

[image: _images/numpy.svg]

xtensor and numpy are very different libraries in their internal semantics. While xtensor
is a lazy expression system, numpy manipulates in-memory containers, however, similarities in
APIs are obvious. See e.g. the numpy to xtensor cheat sheet.

And this page tracks the subtle differences of behavior between numpy and xtensor.

Zero-dimensional arrays

With numpy, 0-D arrays are nearly indistinguishable from scalars. This led to some issues w.r.t.
universal functions returning scalars with 0-D array inputs instead of actual arrays…

In xtensor, 0-D expressions are not implicitly convertible to scalar values. Values held by 0-D
expressions can be accessed in the same way as values of higher dimensional arrays, that is with
operator[], operator() and element.

Accumulators (cumsum, cumprod) throw an exception if an axis argument is passed and the
array argument is a 0-D argument:

#include <xtensor/xarray.hpp>
#include <xtensor/xio.hpp>

xt::xarray<double> x = 1;
std::cout << xt::cumsum(x, 0) << std::endl;
// Outputs:
// Standard Exception: Axis larger than expression dimension in accumulator.

std::cout << xt::cumsum(x) << std::endl;
//Outputs:
// 1

Meshgrid

Numpy’s version of meshgrid supports two modes: the ‘xy’ indexing and the ‘ij’ indexing.

The following code

import numpy as np

x1, x2, x3, x4 = [1], [10, 20], [100, 200, 300], [1000, 2000, 3000, 4000]

ij = np.meshgrid(x1, x2, x3, x4, indexing='ij')
xy = np.meshgrid(x1, x2, x3, x4, indexing='xy')

print 'ij:', [m.shape for m in ij]
print 'xy:', [m.shape for m in xy]

would return

ij: [(1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4)]
xy: [(2, 1, 3, 4), (2, 1, 3, 4), (2, 1, 3, 4), (2, 1, 3, 4)]

In other words, the ‘xy’ indexing, which is the default only reverses the first two dimensions
compared to the ‘ij’ indexing.

xtensor’s version of meshgrid corresponds to the ‘ij’ indexing.

The random module

Like most functions of xtensor, functions of the random module return expressions that don’t hold any value.

Every time an element is accessed, a new random value is generated. To fix the values of a generator, it should
be assigned to a container such as xarray or xtensor.

Missing values

Support of missing values in numpy can be emulated with the masked array module,
which provides a means to handle arrays that have missing or invalid data.

Support of missing values in xtensor is done through a notion of optional values, implemented in xoptional<T, B>, which serves both as a value type for container and as a reference proxy for optimized storage types. See the section of the documentation on Missing values.

Strides

Strided containers of xtensor and numpy having the same exact memory layout may have different strides when accessing them through the strides attribute.
The reason is an optimization in xtensor, which is to set the strides to 0 in dimensions of length 1, which simplifies the implementation of broadcasting of universal functions.

Array indices

Array indices are in xtensor stored as a std::vector of array indices, whereby each entry corresponds to the array indices of one item. This results in a slightly different usage of xt::ravel_indices than of np.ravel_multi_index.

From numpy to xtensor

[image: _images/numpy.svg]

Containers

Two container types are provided. xarray (dynamic number of dimensions) and xtensor
(static number of dimensions).

	Python 3 - numpy

	C++ 14 - xtensor

	np.array([[3, 4], [5, 6]])

	
xt::xarray<double>({{3, 4}, {5, 6}})

xt::xtensor<double, 2>({{3, 4}, {5, 6}})

	arr.reshape([3, 4])

	arr.reshape({3, 4})

	arr.astype(np.float64)

	xt::cast<double>(arr)

Initializers

Lazy helper functions return tensor expressions. Return types don’t hold any value and are
evaluated upon access or assignment. They can be assigned to a container or directly used in
expressions.

	Python 3 - numpy

	C++ 14 - xtensor

	np.linspace(1.0, 10.0, 100)

	xt::linspace<double>(1.0, 10.0, 100)

	np.logspace(2.0, 3.0, 4)

	xt::logspace<double>(2.0, 3.0, 4)

	np.arange(3, 7)

	xt::arange(3, 7)

	np.eye(4)

	xt::eye(4)

	np.zeros([3, 4])

	xt::zeros<double>({3, 4})

	np.ones([3, 4])

	xt::ones<double>({3, 4})

	np.empty([3, 4])

	xt::empty<double>({3, 4})

	np.meshgrid(x0, x1, x2, indexing='ij')

	xt::meshgrid(x0, x1, x2)

xtensor’s meshgrid implementation corresponds to numpy’s 'ij' indexing order.

Broadcasting

xtensor offers lazy numpy-style broadcasting, and universal functions. Unlike numpy, no copy
or temporary variables are created.

	Python 3 - numpy

	C++ 14 - xtensor

	
a[:, np.newaxis]

a[:5, 1:]

a[5:1:-1, :]

a[..., 3]

	
xt::view(a, xt::all(), xt::newaxis())

xt::view(a, xt::range(_, 5), xt::range(1, _))

xt::view(a, xt::range(5, 1, -1), xt::all())

xt::strided_view(a, {xt::ellipsis, 3})

	np.broadcast(a, [4, 5, 7])

	xt::broadcast(a, {4, 5, 7})

	np.vectorize(f)

	xt::vectorize(f)

	a[a > 5]

	xt::filter(a, a > 5)

	a[[0, 1], [0, 0]]

	xt::index_view(a, {{0, 0}, {1, 0}})

Random

The random module provides simple ways to create random tensor expressions, lazily.

	Python 3 - numpy

	C++ 14 - xtensor

	np.random.seed(0)

	xt::random::seed(0)

	np.random.randn(10, 10)

	xt::random::randn<double>({10, 10})

	np.random.randint(10, 10)

	xt::random::randint<int>({10, 10})

	np.random.rand(3, 4)

	xt::random::rand<double>({3, 4})

	np.random.choice(arr, 5)

	xt::random::choice(arr, 5)

	np.random.shuffle(arr)

	xt::random::shuffle(arr)

	np.random.permutation(30)

	xt::random::permutation(30)

Concatenation, splitting, squeezing

Concatenating expressions does not allocate memory, it returns a tensor or view expression holding
closures on the specified arguments.

	Python 3 - numpy

	C++ 14 - xtensor

	np.stack([a, b, c], axis=1)

	xt::stack(xtuple(a, b, c), 1)

	np.concatenate([a, b, c], axis=1)

	xt::concatenate(xtuple(a, b, c), 1)

	np.squeeze(a)

	xt::squeeze(a)

	np.expand_dims(a, 1)

	xt::expand_dims(a ,1)

	np.atleast_3d(a)

	xt::atleast_3d(a)

	np.split(a, 4, axis=0)

	xt::split(a, 4, 0)

Rearrange elements

In the same spirit as concatenation, the following operations do not allocate any memory and do
not modify the underlying xexpression.

	Python 3 - numpy

	C++ 14 - xtensor

	np.diag(a)

	xt::diag(a)

	np.diagonal(a)

	xt::diagonal(a)

	np.triu(a)

	xt::triu(a)

	np.tril(a, k=1)

	xt::tril(a, 1)

	np.flip(a, axis=3)

	xt::flip(a, 3)

	np.flipud(a)

	xt::flip(a, 0)

	np.fliplr(a)

	xt::flip(a, 1)

	np.transpose(a, (1, 0, 2))

	xt::transpose(a, {1, 0, 2})

	np.rot90(a)

	xt::rot90(a)

	np.rot90(a, 2, (1, 2))

	xt::rot90<2>(a, {1, 2})

Iteration

xtensor follows the idioms of the C++ STL providing iterator pairs to iterate on arrays in
different fashions.

	Python 3 - numpy

	C++ 14 - xtensor

	
for x in np.nditer(a):

	
for(auto it=a.begin(); it!=a.end(); ++it)

	Iterating over a with a prescribed broadcasting shape

	
a.begin({3, 4})

a.end({3, 4})

	Iterating over a in a row-major fashion

	
a.begin<xt::layout_type::row_major>()

a.begin<xt::layout_type::row_major>()

	Iterating over a in a column-major fashion

	
a.begin<xt::layout_type::column_major>()

a.end<xt::layout_type::column_major>()

Logical

Logical universal functions are truly lazy. xt::where(condition, a, b) does not evaluate a
where condition is falsy, and it does not evaluate b where condition is truthy.

	Python 3 - numpy

	C++ 14 - xtensor

	np.where(a > 5, a, b)

	xt::where(a > 5, a, b)

	np.where(a > 5)

	xt::where(a > 5)

	np.argwhere(a > 5)

	xt::argwhere(a > 5)

	np.any(a)

	xt::any(a)

	np.all(a)

	xt::all(a)

	np.logical_and(a, b)

	a && b

	np.logical_or(a, b)

	a || b

	np.isclose(a, b)

	xt::isclose(a, b)

	np.allclose(a, b)

	xt::allclose(a, b)

Indices

	Python 3 - numpy

	C++ 14 - xtensor

	np.ravel_multi_index(indices, a.shape)

	xt::ravel_indices(indices, a.shape())

Comparisons

	Python 3 - numpy

	C++ 14 - xtensor

	np.equal(a, b)

	xt::equal(a, b)

	np.not_equal(a, b)

	xt::not_equal(a, b)

	np.less(a, b)

	
xt::less(a, b)

a < b

	np.less_equal(a, b)

	
xt::less_equal(a, b)

a <= b

	np.greater(a, b)

	
xt::greater(a, b)

a > b

	np.greater_equal(a, b)

	
xt::greater_equal(a, b)

a >= b

	np.nonzero(a)

	xt::nonzero(a)

	np.flatnonzero(a)

	xt::flatnonzero(a)

Minimum, Maximum, Sorting

	Python 3 - numpy

	C++ 14 - xtensor

	np.amin(a)

	xt::amin(a)

	np.amax(a)

	xt::amax(a)

	np.argmin(a)

	xt::argmin(a)

	np.argmax(a, axis=1)

	xt::argmax(a, 1)

	np.sort(a, axis=1)

	xt::sort(a, 1)

	np.argsort(a, axis=1)

	xt::argsort(a, 1)

	np.unique(a)

	xt::unique(a)

	np.setdiff1d(ar1, ar2)

	xt::setdiff1d(ar1, ar2)

	np.diff(a[, n, axis])

	xt::diff(a[, n, axis])

	np.partition(a, kth)

	xt::partition(a, kth)

	np.argpartition(a, kth)

	xt::argpartition(a, kth)

	np.median(a, axis)

	xt::median(a, axis)

Complex numbers

Functions xt::real and xt::imag respectively return views on the real and imaginary part
of a complex expression. The returned value is an expression holding a closure on the passed
argument.

	Python 3 - numpy

	C++ 14 - xtensor

	np.real(a)

	xt::real(a)

	np.imag(a)

	xt::imag(a)

	np.conj(a)

	xt::conj(a)

	The constness and value category (rvalue / lvalue) of real(a) is the same as that of a.
Hence, if a is a non-const lvalue, real(a) is an non-const lvalue reference, to which
one can assign a real expression.

	If a has complex values, the same holds for imag(a). The constness and value category of
imag(a) is the same as that of a.

	If a has real values, imag(a) returns zeros(a.shape()).

Reducers

Reducers accumulate values of tensor expressions along specified axes. When no axis is specified,
values are accumulated along all axes. Reducers are lazy, meaning that returned expressions don’t
hold any values and are computed upon access or assignment.

	Python 3 - numpy

	C++ 14 - xtensor

	np.sum(a, axis=[0, 1])

	xt::sum(a, {0, 1})

	np.sum(a, axis=1)

	xt::sum(a, 1)

	np.sum(a)

	xt::sum(a)

	np.prod(a, axis=[0, 1])

	xt::prod(a, {0, 1})

	np.prod(a, axis=1)

	xt::prod(a, 1)

	np.prod(a)

	xt::prod(a)

	np.mean(a, axis=[0, 1])

	xt::mean(a, {0, 1})

	np.mean(a, axis=1)

	xt::mean(a, 1)

	np.mean(a)

	xt::mean(a)

	np.std(a, [axis])

	xt::stddev(a, [axis])

	np.var(a, [axis])

	xt::variance(a, [axis])

	np.trapz(a, dx=2.0, axis=-1)
np.trapz(a, x=b, axis=-1)

	xt::trapz(a, 2.0, -1)
xt::trapz(a, b, -1)

	np.count_nonzero(a, axis=[0, 1])

	xt::count_nonzero(a, {0, 1})

	np.count_nonzero(a, axis=1)

	xt::count_nonzero(a, 1)

	np.count_nonzero(a)

	xt::count_nonzero(a)

More generally, one can use the xt::reduce(function, input, axes) which allows the specification
of an arbitrary binary function for the reduction. The binary function must be commutative and
associative up to rounding errors.

I/O

Print options

These options determine the way floating point numbers, tensors and other xtensor expressions are displayed.

	Python 3 - numpy

	C++ 14 - xtensor

	np.set_printoptions(precision=4)

	xt::print_options::set_precision(4)

	np.set_printoptions(threshold=5)

	xt::print_options::set_threshold(5)

	np.set_printoptions(edgeitems=3)

	xt::print_options::set_edgeitems(3)

	np.set_printoptions(linewidth=100)

	xt::print_options::set_line_width(100)

Reading npy, csv file formats

Functions load_csv and dump_csv respectively take input and output streams as arguments.

	Python 3 - numpy

	C++ 14 - xtensor

	np.load(filename)

	xt::load_npy<double>(filename)

	np.save(filename, arr)

	xt::dump_npy(filename, arr)

	np.load_txt(filename, delimiter=',')

	xt::load_csv<double>(stream)

Mathematical functions

xtensor universal functions are provided for a large set number of mathematical functions.

Basic functions:

	Python 3 - numpy

	C++ 14 - xtensor

	np.absolute(a)

	xt::abs(a)

	np.sign(a)

	xt::sign(a)

	np.remainder(a, b)

	xt::remainder(a, b)

	np.minimum(a, b)

	xt::minimum(a, b)

	np.maximum(a, b)

	xt::maximum(a, b)

	np.clip(a, min, max)

	xt::clip(a, min, max)

	
	xt::fma(a, b, c)

	np.interp(x, xp, fp, [,left, right])

	xt::interp(x, xp, fp, [,left, right])

Exponential functions:

	Python 3 - numpy

	C++ 14 - xtensor

	np.exp(a)

	xt::exp(a)

	np.expm1(a)

	xt::expm1(a)

	np.log(a)

	xt::log(a)

	np.log1p(a)

	xt::log1p(a)

Power functions:

	Python 3 - numpy

	C++ 14 - xtensor

	np.power(a, p)

	xt::pow(a, b)

	np.sqrt(a)

	xt::sqrt(a)

	np.square(a)

	xt::square(a)
xt::cube(a)

	np.cbrt(a)

	xt::cbrt(a)

Trigonometric functions:

	Python 3 - numpy

	C++ 14 - xtensor

	np.sin(a)

	xt::sin(a)

	np.cos(a)

	xt::cos(a)

	np.tan(a)

	xt::tan(a)

Hyperbolic functions:

	Python 3 - numpy

	C++ 14 - xtensor

	np.sinh(a)

	xt::sinh(a)

	np.cosh(a)

	xt::cosh(a)

	np.tanh(a)

	xt::tanh(a)

Error and gamma functions:

	Python 3 - numpy

	C++ 14 - xtensor

	scipy.special.erf(a)

	xt::erf(a)

	scipy.special.gamma(a)

	xt::tgamma(a)

	scipy.special.gammaln(a)

	xt::lgamma(a)

Classification functions:

	Python 3 - numpy

	C++ 14 - xtensor

	np.isnan(a)

	xt::isnan(a)

	np.isinf(a)

	xt::isinf(a)

	np.isfinite(a)

	xt::isfinite(a)

Histogram:

	Python 3 - numpy

	C++ 14 - xtensor

	np.histogram(a, bins[, weights][, density])

	xt::histogram(a, bins[, weights][, density])

	np.histogram_bin_edges(a, bins[, weights][, left, right][, bins][, mode])

	xt::histogram_bin_edges(a, bins[, weights][, left, right][, bins][, mode])

	np.bincount(arr)

	xt::bincount(arr)

Linear algebra

Many functions found in the numpy.linalg module are implemented in xtensor-blas [https://github.com/QuantStack/xtensor-blas], a separate package offering BLAS and LAPACK bindings, as well as a convenient interface replicating the linalg module.

Please note, however, that while we’re trying to be as close to NumPy as possible, some features are not
implemented yet. Most prominently that is broadcasting for all functions except for dot.

Matrix, vector and tensor products

	Python 3 - numpy

	C++ 14 - xtensor

	np.dot(a, b)

	xt::linalg::dot(a, b)

	np.vdot(a, b)

	xt::linalg::vdot(a, b)

	np.outer(a, b)

	xt::linalg::outer(a, b)

	np.matrix_power(a, 123)

	xt::linalg::matrix_power(a, 123)

	np.kron(a, b)

	xt::linalg::kron(a, b)

	np.tensordot(a, b, axes=3)

	xt::linalg::tensordot(a, b, 3)

	np.tensordot(a, b, axes=((0,2),(1,3))

	xt::linalg::tensordot(a, b, {0, 2}, {1, 3})

Decompositions

	Python 3 - numpy

	C++ 14 - xtensor

	np.linalg.cholesky(a)

	xt::linalg::cholesky(a)

	np.linalg.qr(a)

	xt::linalg::qr(a)

	np.linalg.svd(a)

	xt::linalg::svd(a)

Matrix eigenvalues

	Python 3 - numpy

	C++ 14 - xtensor

	np.linalg.eig(a)

	xt::linalg::eig(a)

	np.linalg.eigvals(a)

	xt::linalg::eigvals(a)

	np.linalg.eigh(a)

	xt::linalg::eigh(a)

	np.linalg.eigvalsh(a)

	xt::linalg::eigvalsh(a)

Norms and other numbers

	Python 3 - numpy

	C++ 14 - xtensor

	np.linalg.norm(a, order=2)

	xt::linalg::norm(a, 2)

	np.linalg.cond(a)

	xt::linalg::cond(a)

	np.linalg.det(a)

	xt::linalg::det(a)

	np.linalg.matrix_rank(a)

	xt::linalg::matrix_rank(a)

	np.linalg.slogdet(a)

	xt::linalg::slogdet(a)

	np.trace(a)

	xt::linalg::trace(a)

Solving equations and inverting matrices

	Python 3 - numpy

	C++ 14 - xtensor

	np.linalg.inv(a)

	xt::linalg::inv(a)

	np.linalg.pinv(a)

	xt::linalg::pinv(a)

	np.linalg.solve(A, b)

	xt::linalg::solve(A, b)

	np.linalg.lstsq(A, b)

	xt::linalg::lstsq(A, b)

Operators and functions

Arithmetic operators

xtensor provides overloads of traditional arithmetic operators for
xexpression objects:

	unary operator+

	unary operator-

	operator+

	operator-

	operator*

	operator/

	operator%

All these operators are element-wise operators and apply the lazy broadcasting
rules explained in a previous section.

#incude "xtensor/xarray.hpp"

xt::xarray<int> a = {{1, 2}, {3, 4}};
xt::xarray<int> b = {1, 2};

xt::xarray<int> res = 2 * (a + b);
// => res = {{4, 8}, {8, 12}}

Logical operators

xtensor also provides overloads of the logical operators:

	operator!

	operator||

	operator&&

Like arithmetic operators, these logical operators are element-wise operators
and apply the lazy broadcasting rules. In addition to these element-wise
logical operators, xtensor provides two reducing boolean functions:

	any(E&& e) returns true if any of e elements is truthy, false otherwise.

	all(E&& e) returns true if all elements of e are truthy, false otherwise.

and an element-wise ternary function (similar to the : ? ternary operator):

	where(E&& b, E1&& e&, E2&& e2) returns an xexpression whose elements
are those of e1 when corresponding elements of b are thruthy, and
those of e2 otherwise.

#include "xtensor/xarray.hpp"

xt::xarray<bool> b = { false, true, true, false };
xt::xarray<int> a1 = { 1, 2, 3, 4 };
xt::xarray<int> a2 = { 11, 12, 13, 14 };

xt::xarray<int> res = xt::where(b, a1, a2);
// => res = { 11, 2, 3, 14 }

Unlike in numpy.where, xt::where takes full advantage of the lazyness
of xtensor.

Comparison operators

xtensor provides overloads of the inequality operators:

	operator<

	operator<=

	operator>

	operator>=

These overloads of inequality operators are quite different from the standard
C++ inequality operators: they are element-wise operators returning boolean
xexpression:

#include "xtensor/xarray.hpp"

xt::xarray<int> a1 = { 1, 12, 3, 14 };
xt::xarray<int> a2 = { 11, 2, 13, 4 };
xt::xarray<bool> comp = a1 < a2;
// => comp = { true, false, true, false }

However, equality operators are similar to the traditional ones in C++:

	operator==(const E1& e1, const E2& e2) returns true if e1 and e2 hold the same elements.

	operator!=(const E1& e1, const E2& e2) returns true if e1 and e2 don’t hold the same elements.

Element-wise equality comparison can be achieved through the xt::equal
function.

#include "xtensor/xarray.hpp"

xt::xarray<int> a1 = { 1, 2, 3, 4};
xt::xarray<int> a2 = { 11, 12, 3, 4};

bool res = (a1 == a2);
// => res = false

xt::xarray<bool> re = xt::equal(a1, a2);
// => re = { false, false, true, true }

Bitwise operators

xtensor also contains the following bitwise operators:

	Bitwise and: operator&

	Bitwise or: operator|

	Bitwise xor: operator^

	Bitwise not: operator~

	Bitwise left/right shift: left_shift, right_shift

Mathematical functions

xtensor provides overloads for many of the standard mathematical functions:

	basic functions: abs, remainder, fma, …

	exponential functions: exp, expm1, log, log1p, …

	power functions: pow, sqrt, cbrt, …

	trigonometric functions: sin, cos, tan, …

	hyperbolic functions: sinh, cosh, tanh, …

	Error and gamma functions: erf, erfc, tgamma, lgamma, ….

	Nearest integer floating point operations: ceil, floor, trunc, …

See the API reference for a comprehensive list of available functions. Like
operators, the mathematical functions are element-wise functions and apply the
lazy broadcasting rules.

Casting

xtensor will implicitly promote and/or cast tensor expression elements as
needed, which suffices for most use-cases. But explicit casting can be
performed via cast, which performs an element-wise static_cast.

#include "xtensor/xarray.hpp"

xt::xarray<int> a = { 3, 5, 7 };

auto res = a / 2;
// => res = { 1, 2, 3 }

auto res2 = xt::cast<double>(a) / 2;
// => res2 = { 1.5, 2.5, 3.5 }

Reducers

xtensor provides reducers, that is, means for accumulating values of tensor
expressions over prescribed axes. The return value of a reducer is an
xexpression with the same shape as the input expression, with the specified
axes removed.

#include "xtensor/xarray.hpp"
#include "xtensor/xmath.hpp"

xt::xarray<double> a = xt::ones<double>({3, 2, 4, 6, 5});
xt::xarray<double> res = xt::sum(a, {1, 3});
// => res.shape() = { 3, 4, 5 };
// => res(0, 0, 0) = 12

You can also call the reduce generator with your own reducing function:

#include "xtensor/xarray.hpp"
#include "xtensor/xreducer.hpp"

xt::xarray<double> arr = some_init_function({3, 2, 4, 6, 5});
xt::xarray<double> res = xt::reduce([](double a, double b) { return a*a + b*b; },
 arr,
 {1, 3});

The reduce generator also accepts a xreducer_functors object, a tuple of three functions
(one for reducing, one for initialization and one for merging). A generator is provided to
build the xreducer_functors object, the last function can be omitted:

#include "xtensor/xarray.hpp"
#include "xtensor/xreducer.hpp"

xt::xarray<double> arr = some_init_function({3, 2, 4, 6, 5});
xt::xarray<double> res = xt::reduce(xt::make_xreducer_functor([](double a, double b) { return a*a + b*b; },
 [](double a) { return a * 2; })
 arr,
 {1, 3});

Accumulators

Similar to reducers, xtensor provides accumulators which are used to
implement cumulative functions such as cumsum or cumprod. Accumulators
can currently only work on a single axis. Additionally, the accumulators are
not lazy and do not return an xexpression, but rather an evaluated xarray
or xtensor.

#include "xtensor/xarray.hpp"
#include "xtensor/xmath.hpp"

xt::xarray<double> a = xt::ones<double>({5, 8, 3});
xt::xarray<double> res = xt::cumsum(a, 1);
// => res.shape() = {5, 8, 3};
// => res(0, 0, 0) = 1
// => res(0, 7, 0) = 8

You can also call the accumumulate generator with your own accumulating
function. For example, the implementation of cumsum is as follows:

#include "xtensor/xarray.hpp"
#include "xtensor/xaccumulator.hpp"

xt::xarray<double> arr = some_init_function({5, 5, 5});
xt::xarray<double> res = xt::accumulate([](double a, double b) { return a + b; },
 arr,
 1);

Evaluation strategy

Generally, xtensor implements a lazy execution model,
but under certain circumstances, a greedy execution model with immediate
execution can be favorable. For example, reusing (and recomputing) the same
values of a reducer over and over again if you use them in a loop can cost a
lot of CPU cycles. Additionally, greedy execution can benefit from SIMD
acceleration over reduction axes and is faster when the entire result needs to
be computed.

Therefore, xtensor allows to select an evaluation_strategy. Currently, two
evaluation strategies are implemented: evaluation_strategy::immediate and
evaluation_strategy::lazy. When immediate evaluation is selected, the
return value is not an xexpression, but an in-memory datastructure such as a
xarray or xtensor (depending on the input values).

Choosing an evaluation_strategy is straightforward. For reducers:

#include "xtensor/xarray.hpp"
#include "xtensor/xreducer.hpp"

xt::xarray<double> a = xt::ones<double>({3, 2, 4, 6, 5});
auto res = xt::sum(a, {1, 3}, xt::evaluation_strategy::immediate());
// or select the default:
// auto res = xt::sum(a, {1, 3}, xt::evaluation_strategy::lazy());

Note: for accumulators, only the immediate evaluation strategy is currently
implemented.

Universal functions and vectorization

xtensor provides utilities to vectorize any scalar function (taking
multiple scalar arguments) into a function that will perform on
xexpression s, applying the lazy broadcasting rules which we described in a
previous section. These functions are called xfunction s. They are
xtensor’s counterpart to numpy’s universal functions.

Actually, all arithmetic and logical operators, inequality operator and
mathematical functions we described before are xfunction s.

The following snippet shows how to vectorize a scalar function taking two
arguments:

#include "xtensor/xarray.hpp"
#include "xtensor/xvectorize.hpp"

int f(int a, int b)
{
 return a + 2 * b;
}

auto vecf = xt::vectorize(f);
xt::xarray<int> a = { 11, 12, 13 };
xt::xarray<int> b = { 1, 2, 3 };
xt::xarray<int> res = vecf(a, b);
// => res = { 13, 16, 19 }

Related projects

xtensor-python

[image: xtensor-python]The xtensor-python [https://github.com/QuantStack/xtensor-python] project provides the implementation of container types
compatible with xtensor’s expression system, pyarray and pytensor
which effectively wrap numpy arrays, allowing operating on numpy arrays
in-place.

Example 1: Use an algorithm of the C++ library on a numpy array in-place

C++ code

#include <numeric> // Standard library import for std::accumulate
#include "pybind11/pybind11.h" // Pybind11 import to define Python bindings
#include "xtensor/xmath.hpp" // xtensor import for the C++ universal functions
#define FORCE_IMPORT_ARRAY // numpy C api loading
#include "xtensor-python/pyarray.hpp" // Numpy bindings

double sum_of_sines(xt::pyarray<double> &m)
{
 auto sines = xt::sin(m);
 // sines does not actually hold any value
 return std::accumulate(sines.cbegin(), sines.cend(), 0.0);
}

PYBIND11_PLUGIN(xtensor_python_test)
{
 xt::import_numpy();
 pybind11::module m("xtensor_python_test", "Test module for xtensor python bindings");

 m.def("sum_of_sines", sum_of_sines,
 "Sum the sines of the input values");

 return m.ptr();
}

Python code

Python Code

import numpy as np
import xtensor_python_test as xt

a = np.arange(15).reshape(3, 5)
s = xt.sum_of_sines(v)
s

Outputs

1.2853996391883833

Example 2: Create a universal function from a C++ scalar function

C++ code

#include "pybind11/pybind11.h"
#define FORCE_IMPORT_ARRAY
#include "xtensor-python/pyvectorize.hpp"
#include <numeric>
#include <cmath>

namespace py = pybind11;

double scalar_func(double i, double j)
{
 return std::sin(i) - std::cos(j);
}

PYBIND11_PLUGIN(xtensor_python_test)
{
 xt::import_numpy();
 py::module m("xtensor_python_test", "Test module for xtensor python bindings");

 m.def("vectorized_func", xt::pyvectorize(scalar_func), "");

 return m.ptr();
}

Python code

import numpy as np
import xtensor_python_test as xt

x = np.arange(15).reshape(3, 5)
y = [1, 2, 3, 4, 5]
z = xt.vectorized_func(x, y)
z

Outputs

[[-0.540302, 1.257618, 1.89929 , 0.794764, -1.040465],
 [-1.499227, 0.136731, 1.646979, 1.643002, 0.128456],
 [-1.084323, -0.583843, 0.45342 , 1.073811, 0.706945]]

xtensor-python-cookiecutter

[image: xtensor-python-cookiecutter]The xtensor-python-cookiecutter [https://github.com/QuantStack/xtensor-python-cookiecutter] project helps extension authors create Python
extension modules making use of xtensor.

It takes care of the initial work of generating a project skeleton with

	A complete setup.py compiling the extension module

A few examples included in the resulting project including

	A universal function defined from C++

	A function making use of an algorithm from the STL on a numpy array

	Unit tests

	The generation of the HTML documentation with sphinx

xtensor-julia

[image: xtensor-julia]The xtensor-julia [https://github.com/QuantStack/xtensor-julia] project provides the implementation of container types
compatible with xtensor’s expression system, jlarray and jltensor
which effectively wrap Julia arrays, allowing operating on Julia arrays
in-place.

Example 1: Use an algorithm of the C++ library with a Julia array

C++ code

#include <numeric> // Standard library import for std::accumulate
#include <cxx_wrap.hpp> // CxxWrap import to define Julia bindings
#include "xtensor-julia/jltensor.hpp" // Import the jltensor container definition
#include "xtensor/xmath.hpp" // xtensor import for the C++ universal functions

double sum_of_sines(xt::jltensor<double, 2> m)
{
 auto sines = xt::sin(m); // sines does not actually hold values.
 return std::accumulate(sines.cbegin(), sines.cend(), 0.0);
}

JULIA_CPP_MODULE_BEGIN(registry)
 cxx_wrap::Module mod = registry.create_module("xtensor_julia_test");
 mod.method("sum_of_sines", sum_of_sines);
JULIA_CPP_MODULE_END

Julia code

using xtensor_julia_test

arr = [[1.0 2.0]
 [3.0 4.0]]

s = sum_of_sines(arr)
s

Outputs

1.2853996391883833

Example 2: Create a numpy-style universal function from a C++ scalar function

C++ code

#include <cxx_wrap.hpp>
#include "xtensor-julia/jlvectorize.hpp"

double scalar_func(double i, double j)
{
 return std::sin(i) - std::cos(j);
}

JULIA_CPP_MODULE_BEGIN(registry)
 cxx_wrap::Module mod = registry.create_module("xtensor_julia_test");
 mod.method("vectorized_func", xt::jlvectorize(scalar_func));
JULIA_CPP_MODULE_END

Julia code

using xtensor_julia_test

x = [[0.0 1.0 2.0 3.0 4.0]
 [5.0 6.0 7.0 8.0 9.0]
 [10.0 11.0 12.0 13.0 14.0]]
y = [1.0, 2.0, 3.0, 4.0, 5.0]
z = xt.vectorized_func(x, y)
z

Outputs

[[-0.540302 1.257618 1.89929 0.794764 -1.040465],
 [-1.499227 0.136731 1.646979 1.643002 0.128456],
 [-1.084323 -0.583843 0.45342 1.073811 0.706945]]

xtensor-julia-cookiecutter

[image: xtensor-julia-cookiecutter]The xtensor-julia-cookiecutter [https://github.com/QuantStack/xtensor-julia-cookiecutter] project helps extension authors create Julia
extension modules making use of xtensor.

It takes care of the initial work of generating a project skeleton with

	A complete read-to-use Julia package

A few examples included in the resulting project including

	A numpy-style universal function defined from C++

	A function making use of an algorithm from the STL on a numpy array

	Unit tests

	The generation of the HTML documentation with sphinx

xtensor-r

[image: xtensor-r]The xtensor-r [https://github.com/QuantStack/xtensor-r] project provides the implementation of container types
compatible with xtensor’s expression system, rarray and rtensor
which effectively wrap R arrays, allowing operating on R arrays in-place.

Example 1: Use an algorithm of the C++ library on a R array in-place

C++ code

#include <numeric> // Standard library import for std::accumulate
#include "xtensor/xmath.hpp" // xtensor import for the C++ universal functions
#include "xtensor-r/rarray.hpp" // R bindings
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::plugins(cpp14)]]

// [[Rcpp::export]]
double sum_of_sines(xt::rarray<double>& m)
{
 auto sines = xt::sin(m); // sines does not actually hold values.
 return std::accumulate(sines.cbegin(), sines.cend(), 0.0);
}

R code

v <- matrix(0:14, nrow=3, ncol=5)
s <- sum_of_sines(v)
s

Outputs

1.2853996391883833

xtensor-blas

[image: xtensor-blas]The xtensor-blas [https://github.com/QuantStack/xtensor-blas] project is an extension to the xtensor library, offering
bindings to BLAS and LAPACK libraries through cxxblas and cxxlapack from the
FLENS project. xtensor-blas powers the xt::linalg functionalities,
which are the counterpart to numpy’s linalg module.

xtensor-fftw

[image: xtensor-fftw]The xtensor-fftw [https://github.com/egpbos/xtensor-fftw] project is an extension to the xtensor library, offering
bindings to the fftw library. xtensor-fftw powers the xt::fftw
functionalities, which are the counterpart to numpy’s fft module.

Example 1: Calculate a derivative in Fourier space

Calculate the derivative of a (discretized) field in Fourier space, e.g. a sine shaped field sin:

C++ code

#include <xtensor-fftw/basic.hpp> // rfft, irfft
#include <xtensor-fftw/helper.hpp> // rfftscale
#include <xtensor/xarray.hpp>
#include <xtensor/xbuilder.hpp> // xt::arange
#include <xtensor/xmath.hpp> // xt::sin, cos
#include <complex>
#include <xtensor/xio.hpp>

// generate a sinusoid field
double dx = M_PI / 100;
xt::xarray<double> x = xt::arange(0., 2 * M_PI, dx);
xt::xarray<double> sin = xt::sin(x);

// transform to Fourier space
auto sin_fs = xt::fftw::rfft(sin);

// multiply by i*k
std::complex<double> i {0, 1};
auto k = xt::fftw::rfftscale<double>(sin.shape()[0], dx);
xt::xarray<std::complex<double>> sin_derivative_fs = xt::eval(i * k * sin_fs);

// transform back to normal space
auto sin_derivative = xt::fftw::irfft(sin_derivative_fs);

std::cout << "x: " << x << std::endl;
std::cout << "sin: " << sin << std::endl;
std::cout << "cos: " << xt::cos(x) << std::endl;
std::cout << "sin_derivative: " << sin_derivative << std::endl;

Outputs

x: { 0. , 0.031416, 0.062832, 0.094248, ..., 6.251769}
sin: { 0.000000e+00, 3.141076e-02, 6.279052e-02, 9.410831e-02, ..., -3.141076e-02}
cos: { 1.000000e+00, 9.995066e-01, 9.980267e-01, 9.955620e-01, ..., 9.995066e-01}
sin_derivative: { 1.000000e+00, 9.995066e-01, 9.980267e-01, 9.955620e-01, ..., 9.995066e-01}

xtensor-io

[image: xtensor-io]The xtensor-io [https://github.com/QuantStack/xtensor-io] project is an extension to the xtensor library for reading and
writing image, sound and npz file formats to and from xtensor data structures.

xtensor-ros

[image: xtensor-ros]The xtensor-ros [https://github.com/wolfv/xtensor_ros] project is an extension to the xtensor library providing
helper functions to easily send and receive xtensor and xarray datastructures
as ROS messages.

xsimd

[image: xsimd]The xsimd [https://github.com/QuantStack/xsimd] project provides a unified API for making use of the SIMD features
of modern preprocessors for C++ library authors. It also provides accelerated
implementation of common mathematical functions operating on batches.

xsimd [https://github.com/QuantStack/xsimd] is an optional dependency to xtensor which enable SIMD vectorization
of xtensor operations. This feature is enabled with the XTENSOR_USE_XSIMD
compilation flag, which is set to false by default.

xtl

[image: xtl]The xtl [https://github.com/QuantStack/xtl] project, the only dependency of xtensor is a C++ template library
holding the implementation of basic tools used across the libraries in the
QuantStack ecosystem.

Releasing xtensor

Releasing a new version

From the master branch of xtensor

	Make sure that you are in sync with the master branch of the upstream remote.

	Update the changelog [https://github.com/QuantStack/xtensor/blob/master/docs/source/changelog.rst].

	In file xtensor_config.hpp, set the macros for XTENSOR_VERSION_MAJOR, XTENSOR_VERSION_MINOR and XTENSOR_VERSION_PATCH to the desired values.

	In file CMakeLists.txt, update the version of the dependencies and the corresponding variables, e.g. xtl_REQUIRED_VERSION.

	In file environment.yml, update the version of the dependencies including xtensor.

	In file README.md, update the dependencies table.

	Stage the changes (git add), commit the changes (git commit) and add a tag of the form Major.minor.patch. It is important to not add any other content to the tag name.

	Push the new commit and tag to the main repository. (git push, and git push --tags)

Updating the conda-forge recipe

xtensor has been packaged for the conda package manager. Once the new tag has been pushed on GitHub, edit the conda-forge recipe for xtensor in the following fashion:

	Update the version number to the new Major.minor.patch.

	Set the build number to 0.

	Update the hash of the source tarball.

	Check for the versions of the dependencies.

	Optionally, rerender the conda-forge feedstock.

Updating the stable branch

Once the conda-forge package has been updated, update the stable branch to
the newly added tag.

Scalars and 0-D expressions

Assignment

In xtensor, scalars are handled as if they were 0-dimensional expressions. This means that when assigning
a scalar value to an xarray, this last one is not filled with that value, but resized to become a 0-D
array containing the scalar value:

#include "xtensor/xarray.hpp"

xt::xarray<double> a = {{0., 1., 2.}, {3., 4., 5.}};
double s = 1.2;
a = s;
std::cout << a << std::endl;
// prints 1.2

While this may look weird and counter-intuitive, this actually ensures full consistency of the expression system.
The easiest way to illustrate this is to assume that we have the intuitive scalar assignment (i.e. a broadcasting
assignment) and see how it breaks consistency.

Copy semantic consistency

Assuming that the scalar assignment does not resize the array, we have the following behavior:

#include "xtensor/xarray.hpp"

xt::xarray<double> a = {{0., 1., 2.}, {3., 4., 5.}};
double s = 1.2;
a = 1.2;
std::cout << a << std::endl;
// prints {{1.2, 1.2, 1.2}, {1.2, 1.2, 1.2}}

This is not consistent with the behavior of the copy constructor from a scalar:

#include "xtensor/xarray.hpp"

xt::xarray<double> a(1.2);
std::cout << a << std::endl;
// prints 1.2 (a is a 0-D array)

A way to fix this is to disable copy construction from scalar, and provide a constructor taking a shape and
a scalar:

#include "xtensor/xarray.hpp"

xt::xarray<double> a = {{0., 1., 2.}, {3., 4., 5.}};
a = 1.2;
xt::xarray<double> b({2, 3}, 1.2);

Although this looks like an acceptable solution, it actually breaks consistency between scalars and 0-dimensional
expressions. This may lead to vicious bugs as explained in the next section.

Scalar and 0-D expressions

Assume that you need a function that computes the mean of the elements of an expression and stores it in another expression.
A possible implementation is:

template <class E1, class E2>
void eval_mean(const E1& e1, E2& e2)
{
 e2 = sum(e1) / e1.size();
}

Then, somewhere in your program:

// somewhere in the code
xarray<double> a = {{1., 2., 3.}, {4., 5., 6.}},
xarray<double> b = a;
// ...
// later
eval_mean(a, b);
// Now b is a 0-D container holding 21.

After that, b is a 0-dimensional array containing the mean of the elements of a. Indeed, sum(a) / e1.size() is a
0-D expression, thus when assigned to b, this latter is resized. Later, you realize that you also need the sum of the elements
of a. Since the eval_mean function already computes it, you decide to return it from that function:

template <class E1, class E2>
double eval_mean(const E1& e1, E2& e2)
{
 double s = sum(e1)();
 e2 = s / e1.size();
 return s;
}

And then you change the client code:

// somewhere in the code
xarray<double> a = {{1., 2., 3.}, {4., 5., 6.}},
xarray<double> b = a;
// ...
// later
double s = eval_mean(a, b);
// Now b is a 2-D container!

After that, b has become a 2-dimensional array! Indeed, since assigning a scalar to an expression does not resize it, the change in
eval_mean implementation now assigns the mean of a to each elements of b.

This simple example shows that without consistency between scalars and 0-D expressions, refactoring the code to cache the result
of some 0-D computation actually silently changes the shape of the expressions that this result is assigned to.

The only way to avoid that behavior and the bugs it leads to is to handle scalars as if they were 0-dimensional expressions.

Views

Views are used to adapt the shape of an xexpression without changing it, nor copying it. Views are
convenient tools for assigning parts of an expression: since they do not copy the underlying expression,
assigning to the view actually assigns to the underlying expression. xtensor provides many kinds of views.

Sliced views

Sliced views consist of the combination of the xexpression to adapt, and a list of slice that specify how
the shape must be adapted. Sliced views are implemented by the xview class. Objects of this type should not be
instantiated directly, but though the view helper function.

Slices can be specified in the following ways:

	selection in a dimension by specifying an index (unsigned integer)

	range(min, max), a slice representing the interval [min, max)

	range(min, max, step), a slice representing the stepped interval [min, max)

	all(), a slice representing all the elements of a dimension

	newaxis(), a slice representing an additional dimension of length one

	keep(i0, i1, i2, ...) a slice selecting non-contiguous indices to keep on the underlying expression

	drop(i0, i1, i2, ...) a slice selecting non-contiguous indices to drop on the underlying expression

#include <vector>
#include "xtensor/xarray.hpp"
#include "xtensor/xview.hpp"

std::vector<size_t> shape = {3, 2, 4};
xt::xarray<int> a(shape);

// View with same number of dimensions
auto v1 = xt::view(a, xt::range(1, 3), xt::all(), xt::range(1, 3));
// => v1.shape() = { 2, 2, 2 }
// => v1(0, 0, 0) = a(1, 0, 1)
// => v1(1, 1, 1) = a(2, 1, 2)

// View reducing the number of dimensions
auto v2 = xt::view(a, 1, xt::all(), xt::range(0, 4, 2));
// => v2.shape() = { 2, 2 }
// => v2(0, 0) = a(1, 0, 0)
// => v2(1, 1) = a(1, 1, 2)

// View increasing the number of dimensions
auto v3 = xt::view(a, xt::all(), xt::all(), xt::newaxis(), xt::all());
// => v3.shape() = { 3, 2, 1, 4 }
// => v3(0, 0, 0, 0) = a(0, 0, 0)

// View with non contiguous slices
auto v4 = xt::view(a, xt::drop(0), xt::all(), xt::keep(0, 3));
// => v4.shape() = { 2, 2, 2 }
// => v4(0, 0, 0) = a(1, 0, 0)
// => v4(1, 1, 1) = a(2, 1, 3)

The range function supports the placeholder _ syntax:

#include "xtensor/xarray.hpp"
#include "xtensor/xview.hpp"

using namespace xt::placeholders; // required for `_` to work

auto a = xt::xarray<int>::from_shape({3, 2, 4});
auto v1 = xt::view(a, xt::range(_, 2), xt::all(), xt::range(1, _));
// The previous line is equivalent to
auto v2 = xt::view(a, xt::range(0, 2), xt::all(), xt::range(1, 4));

xview does not perform a copy of the underlying expression. This means if you modify an element of the xview,
you are actually also altering the underlying expression.

#include <vector>
#include "xtensor/xarray.hpp"
#include "xtensor/xview.hpp"

std::vector<size_t> shape = {3, 2, 4};
xt::xarray<int> a(shape, 0);

auto v1 = xt::view(a, 1, xt::all(), xt::range(1, 3));
v1(0, 0) = 1;
// => a(1, 0, 1) = 1

Strided views

While the xt::view is a compile-time static expression, xtensor also contains a dynamic strided view in xstrided_view.hpp.
The strided view and the slice vector allow to dynamically push_back slices, so when the dimension is unknown at compile time, the slice
vector can be built dynamically at runtime. Note that the slice vector is actually a type-alias for a std::vector of a variant for
all the slice types. The strided view does not support the slices returned by the keep and drop functions.

#include "xtensor/xarray.hpp"
#include "xtensor/xstrided_view.hpp"

auto a = xt::xarray<int>::from_shape({3, 2, 3, 4, 5});

xt::xstrided_slice_vector sv({xt::range(0, 1), xt::newaxis()});
sv.push_back(1);
sv.push_back(xt::all());

auto v1 = xt::strided_view(a, sv);
// v1 has the same behavior as the static view

// Equivalent but shorter
auto v2 = xt::strided_view(a, { xt::range(0, 1), xt::newaxis(), 1, xt::all() });
// v2 == v1

// ILLEGAL:
auto v2 = xt::strided_view(a, { xt::all(), xt::all(), xt::all(), xt::keep(0, 3), xt::drop(1, 4) });
// xt::drop and xt::keep are not supported with strided views

Since xtensor 0.16.3, a new range syntax can be used with strided views:

#include "xtensor/xarray.hpp"
#include "xtensor/xstrided_view.hpp"

using namespace xt::placeholders;

auto a = xt::xarray<int>::from_shape({3, 2, 3, 4, 5});
auto v1 = xt::strided_view(a, {_r|0|1, 1, _r|_|2, _r|_|_|-1});
// The previous line is equivalent to
auto v2 = xt::strided_view(a, {xt::range(0, 1), 1, xt::range(_, 2), xt::range(_, _, -1)});

The xstrided_view is very efficient on contigous memory (e.g. xtensor or xarray) but less efficient on xexpressions.

Transposed views

xtensor provides a lazy transposed view on any expression, whose layout is either row major order or column major order. Trying to build
a transposed view on a expression with a dynamic layout throws an exception.

#include "xtensor/xarray.hpp"
#include "xtensor/xstrided_view.hpp"

xt::xarray<int> a = { {0, 1, 2}, {3, 4, 5} };
auto tr = xt::transpose(a);
// tr == { {0, 3}, {1, 4}, {2, 5} }

xt::xarray<int, layout_type::dynamic> b = { {0, 1, 2}, {3, 4, 5} };
auto tr2 = xt::transpose(b);
// => throw transpose_error

Like the strided view, the transposed view is built upon the xstrided_view.

Flatten views

It is sometimes useful to have a one-dimensional view of all the elements of an expression. xtensor provides two functions
for that, ravel and flatten. The former one let you specify the order used to read the elements while the latter one
uses the layout of the expression.

#include "xtensor/xarray.hpp"
#include "xtensor/xstrided_view.hpp"

xt::xarray<int> a = { {0, 1, 2}, {3, 4, 5} };
auto flc = xt::ravel<layout_type::column_major>(a);
std::cout << flc << std::endl;
// => prints { 0, 3, 1, 4, 2, 5 }

auto fl = xt::flatten(a);
std::cout << fl << std::endl;
// => prints { 0, 1, 2, 3, 4, 5 }

Like the strided view and the transposed view, the flatten view is built upon the xstrided_view.

Reshape views

The reshape view allows to handle an expression as if it was given a new shape, however no additional memory allocation occurs,
the original expression keeps its shape. Like any view, the underlying expression is not copied, thus assigning a value through
the view modifies the underlying expression.

#include "xtensor/xarray.hpp"
#include "xtensor/xstrided_view.hpp"

auto a = xt::xarray<int>::from_shape({3, 2, 4});
auto v = xt::reshape_view(a, { 4, 2, 3 });
// a(0, 0, 3) == v(0, 1, 0)
// a(0, 1, 0) == v(0, 1, 1)

v(0, 2, 0) = 4;
// a(0, 1, 2) == 4

Like the strided view and the transposed view, the reshape view is built upon the xstrided_view.

Dynamic views

The dynamic view is like the strided view, but with support of the slices returned by the keep and drop functions.
However, this support has a cost and the dynamic view is slower than the strided view, even when no keeping or dropping
slice is involved.

#include "xtensor/xarray.hpp"
#include "xtensor/xdynamic_view.hpp

auto a = xt::xarray<int>::from_shape({3, 2, 3, 4, 5});
xt::xdynamic_slice_vector sv({xt::range(0, 1), xt::newaxis()});
sv.push_back(1);
sv.push_back(xt::all());
sv.push_back(xt::keep(0, 2, 3));
sv.push_back(xt::drop(1, 2, 4));

auto v1 = xt::dynamic_view(a, sv});

// Equivalent but shorter
auto v2 = xt::dynamic_view(a, { xt::range(0, 1), xt::newaxis(), 1, xt::all(), xt::keep(0, 2, 3), xt::drop(1, 2, 4) });
// v2 == v1

Index views

Index views are one-dimensional views of an xexpression, containing the elements whose positions are specified by a list
of indices. Like for sliced views, the elements of the underlying xexpression are not copied. Index views should be built
with the index_view helper function.

#include "xtensor/xarray.hpp"
#include "xtensor/xindex_view.hpp"

xt::xarray<double> a = {{1, 5, 3}, {4, 5, 6}};
auto b = xt::index_view(a, {{0,0}, {1, 0}, {0, 1}});
// => b = { 1, 4, 5 }
b += 100;
// => a = {{101, 5, 3}, {104, 105, 6}}

Filter views

Filters are one-dimensional views holding elements of an xexpression that verify a given condition. Like for other views,
the elements of the underlying xexpression are not copied. Filters should be built with the filter helper function.

#include "xtensor/xarray.hpp"
#include "xtensor/xindex_view.hpp"

xt::xarray<double> a = {{1, 5, 3}, {4, 5, 6}};
auto v = xt::filter(a, a >= 5);
// => v = { 5, 5, 6 }
v += 100;
// => a = {{1, 105, 3}, {4, 105, 106}}

Filtration

Sometimes, the only thing you want to do with a filter is to assign it a scalar. Though this can be done as shown
in the previous section, this is not the optimal way to do it. xtensor provides a specially optimized mechanism
for that, called filtration. A filtration IS NOT an xexpression, the only methods it provides are scalar and
computed scalar assignments.

#include "xtensor/xarray.hpp"
#include "xtensor/xindex_view.hpp"

xt::xarray<double> a = {{1, 5, 3}, {4, 5, 6}};
filtration(a, a >= 5) += 100;
// => a = {{1, 105, 3}, {4, 105, 106}}

Masked view

Masked views are multidimensional views that apply a mask on an xexpression.

#include "xtensor/xarray.hpp"
#include "xtensor/xmasked_view.hpp"

xt::xarray<double> a = {{1, 5, 3}, {4, 5, 6}};
xt::xarray<bool> mask = {{true, false, false}, {false, true, false}};

auto m = xt::masked_view(a, mask);
// => m = {{1, masked, masked}, {masked, 5, masked}}

m += 100;
// => a = {{101, 5, 3}, {4, 105, 6}}

Broadcasting views

Another type of view provided by xtensor is broadcasting view. Such a view broadcast an expression to the specified
shape. As long as the view is not assigned to an array, no memory allocation or copy occurs. Broadcasting views should be
built with the broadcast helper function.

#include <vector>
#include "xtensor/xarray.hpp"
#include "xtensor/xbroadcast.hpp"

std::vector<size_t> s1 = { 2, 3 };
std::vector<size_t> s2 = { 3, 2, 3 };

xt::xarray<int> a1(s1);
auto bv = xt::broadcast(a1, s2);
// => bv(0, 0, 0) = bv(1, 0, 0) = bv(2, 0, 0) = a(0, 0)

Complex views

In the case of tensor containing complex numbers, xtensor provides views returning xexpression corresponding to the real
and imaginary parts of the complex numbers. Like for other views, the elements of the underlying xexpression are not copied.

Functions xt::real and xt::imag respectively return views on the real and imaginary part of a complex expression.
The returned value is an expression holding a closure on the passed argument.

	The constness and value category (rvalue / lvalue) of real(a) is the same as that of a. Hence, if a is a non-const lvalue,
real(a) is an non-const lvalue reference, to which one can assign a real expression.

	If a has complex values, the same holds for imag(a). The constness and value category of imag(a) is the same as that of a.

	If a has real values, imag(a) returns zeros(a.shape()).

#include <complex>
#include "xtensor/xarray.hpp"
#include "xtensor/xcomplex.hpp"

using namespace std::complex_literals;

xarray<std::complex<double>> e =
 {{1.0 , 1.0 + 1.0i},
 {1.0 - 1.0i, 1.0 }};

real(e) = zeros<double>({2, 2});
// => e = {{0.0, 0.0 + 1.0i}, {0.0 - 1.0i, 0.0}};

Assigning to a view

When assigning an expression rhs to a container such as xarray, this last one is resized so its shape is the same as the one
of RHS. However, since views cannot be resized, when assigning an expression to a view, broadcasting rules are applied:

#include "xtensor/xarray.hpp"
#include "xtensor/xview.hpp"

xarray<double> a = {{0., 1., 2.}, {3., 4., 5.}};
double b = 1.2;
auto tr = view(a, 0, all());
tr = b;
// => a = {{1.2, 1.2, 1.2}, {3., 4., 5.}}

 nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Installation

 		
 Using the conda package

 		
 Using the Debian package

 		
 Using the Spack package

 		
 From source with cmake

 		
 Including xtensor in your project

 		
 Changelog

 		
 0.20.4

 		
 0.20.3

 		
 0.20.2

 		
 0.20.1

 		
 0.20.0

 		
 Breaking changes

 		
 Other changes

 		
 0.19.4

 		
 0.19.3

 		
 0.19.2

 		
 0.19.1

 		
 0.19.0

 		
 Breaking changes

 		
 Other changes

 		
 0.18.3

 		
 0.18.2

 		
 0.18.1

 		
 0.18.0

 		
 Breaking changes

 		
 New features

 		
 Other changes

 		
 0.17.4

 		
 0.17.3

 		
 0.17.2

 		
 0.17.1

 		
 0.17.0

 		
 Breaking changes

 		
 New features

 		
 Other changes

 		
 0.16.4

 		
 0.16.3

 		
 0.16.2

 		
 0.16.1

 		
 0.16.0

 		
 Breaking changes

 		
 New features

 		
 Other changes

 		
 0.15.9

 		
 0.15.8

 		
 0.15.7

 		
 0.15.6

 		
 0.15.5

 		
 0.15.4

 		
 0.15.3

 		
 0.15.2

 		
 0.15.1

 		
 0.15.0

 		
 Breaking changes

 		
 New features

 		
 Other changes

 		
 0.14.1

 		
 New features

 		
 Other changes

 		
 0.14.0

 		
 Breaking changes

 		
 New features

 		
 Other changes

 		
 0.13.2

 		
 0.13.1

 		
 0.13.0

 		
 Breaking changes

 		
 New features

 		
 Other changes

 		
 0.12.1

 		
 0.12.0

 		
 Breaking changes

 		
 New features

 		
 Other changes

 		
 0.11.3

 		
 0.11.2

 		
 0.11.1

 		
 0.11.0

 		
 Breaking changes

 		
 Other changes

 		
 Containers and views

 		
 layout

 		
 xcontainer

 		
 xstrided_container

 		
 Readers and writers

 		
 layout

 		
 node1

 		
 xstrided_container

_static/plus.png

_static/file.png

_static/minus.png

