

Welcome to XStatic’s documentation!

What is XStatic

	The Idea

	Pros

	Cons

	License

	Authors
	Main Authors

	Contributors

Using XStatic

	Using XStatic
	Example code to setup local file serving

	Packaging for XStatic

	Misc. Hints
	Names

	Version Numbers

	Which files to put into your package?

	CDN locations

	Licensing

	Notes for Linux (or other OS) Package Maintainers

Indices and tables

	Index

	Module Index

	Search Page

The Idea

XStatic is a packaging standard to package external (often 3rd party) static
files as a python package, so they are easily usable on all operating systems,
with any package management system or even without one.

Many python projects need to use some specific data files, like javascript,
css, java applets, images, etc.

Sometimes these files belong to YOUR project (then you may want to package
them separately, but you could also just put them into your main package).

But in many other cases, those files are maintained by someone else (like
jQuery javascript library or even much bigger js libraries or applications)
and you definitely do not really want to merge them into your project.

So, you want to have static file packages, but you don’t want to get lots of
stuff you do not want. Thus, stuff required by XStatic file packages (especially
the main, toplevel XStatic package) tries to obey to be a MINIMAL, no-fat thing.

We won’t “sell” you any web framework or other stuff you don’t want.
Maybe there will be optional XStatic extensions for all sorts of stuff, but
they won’t be required if you just want the files.

By having static files in packages, it is also easier to build virtual envs,
support linux/bsd/… distribution package maintainers and even windows installs
using the same mechanism.

Pros

	can be put on PyPI (Python Package Index) and can get discovered there

	can be fetched and installed from PyPI automatically by just requiring it
in your main project’s setup

	you do not need to add 3rd party files to your repository or your distribution
archives

	supports development / virtualenv / windows installs (where no other package
management tools are available)

	less work for linux distribution package maintainers, you already have split
your stuff into separate packages, so they don’t need to

	outsource some work to other people. there are lots of people needing these
static packages, so you don’t need to maintain them all yourself.

	additionally to the files, you’ll get some metadata (like version info, name,
CDN URLs (if any).

	we can use version number of the package to reflect the version of the packaged
static stuff and use the packaging system to require some specific version,
or some specific minimum/maximum version.

	security updates are easier, the static file packages can be updated separately
from your main package.

Cons

	it creates a little management overhead for the developer, especially if the
xstatic file package you need does not exist yet - but packaging is very easy.

License

The MIT License (MIT)

Copyright (c) 2011-2018 Thomas Waldmann <tw AT waldmann-edv DOT de> and
other contributors, see AUTHORS.txt.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Authors

Main Authors

Thomas Waldmann, tw AT waldmann-edv DOT de

(please add yourself above this line if you did major contributions to
the project)

Contributors

(please add yourself above this line if you contributed to the project)

Using XStatic

The XStatic package does only offer the most fundamental functions for
dealing with static files (and this is very much the point of XStatic:
being low-fat).

The only bit of code is in XStatic.main, class XStatic.

When you instantiate an object of this class, it’ll read the uppercase
attributes from the xstatic module you give to it and make them available
as lowercase instance attributes.

E.g. (we use the xstatic-jquery package as example, see also the code
example below):

	xstatic.pkg.jquery.NAME -> xs.name

	xstatic.pkg.jquery.BASE_DIR -> xs.base_dir

Thus, you have all the metadata that came with the xstatic-jquery package
easily available.

Example code to setup local file serving

from xstatic.main import XStatic
names below must be package names
mod_names = [
 'jquery', 'bootstrap', 'font_awesome',
]
pkg = __import__('xstatic.pkg', fromlist=mod_names)
serve_files = {}
for mod_name in mod_names:
 mod = getattr(pkg, mod_name)
 xs = XStatic(mod, root_url='/static', provider='local', protocol='http')
 serve_files[xs.name] = xs.base_dir

now, serve_files has the mapping name -> base_dir for all the xstatic
packages you want to use. you can use it in your python code to set
up the static file serving.

In this example, we wanted to use the local static files we got within the
xstatic-* packages.

For some packages there is also a CDN available, you can use it by giving the
appropriate provider (not ‘local’) and protocol (see the xstatic-* package metadata about which cdnnames and protocols are available for the package):

xs = XStatic(mod, provider='cdnname', protocol='https')
print xs.base_url

Note: base_url is often a str (as you maybe have expected). But it also can
be a dict (which maps relative pathes to full urls) - we needed that for some
CDNs where one can not just compute the full url from base url + relative path.

The Xstatic class also has a simple url_for(relative_path) method which
computes the full url - for local URLs as well as for CDN URLs.

Packaging for XStatic

It’s easy, no rocket-scientist needed.

We suggest you just take XStatic-jQuery package as a template and do these
steps:

	Copy XStatic-jQuery to XStatic-FooBar (replace “FooBar” by the official name
[display_name] of the project you are packaging).

	Rename xstatic/pkg/jquery package directory to xstatic/pkg/foobar (use
simple all-lowercase name, only a..z - this must be a valid python package
name [name]).

	Remove xstatic/pkg/foobar/data/* and place FooBar project’s static files
there.

	Edit xstatic/pkg/foobar/__init__.py and update all information there
appropriately (see the comments there and also the hints below).
Most stuff from there will get reused by setup.py.

	Edit setup.py:

	You need to change the “from xstatic.pkg import … as xs” appropriately
to import your package.

	Review the rest of it, but most stuff should be fine as it just reuses
stuff from XStatic metadata.

	Edit MANIFEST.in and change the recursive-include statement there to refer
to your files (xstatic/pkg/foobar), so that your static files will be
included in the package created later.

	Edit README.txt and replace references to jQuery with FooBar.
This file’s content will also be shown as long description on PyPi.
Please note that this file is written in reST markup, so that PyPi can
generate your project’s page from it.

	If you use git (Mercurial), update .gitignore (.hgignore) so it ignores:
XStatic_FooBar.egg-info

	Review all the stuff you did, make sure you did not forget anything, make
sure there is no jquery reference left.

	Run python setup.py sdist.

	Look into build/… - there should be your XStatic-FooBar package now.

	Test it locally:

	E.g. use pip install XStatic-FooBar-1.0.0.tar.gz to install it.

	Use it from your project, does it work?

	If you are happy with it and you think the package is also useful for many
other Pythonistas, register and upload it to PyPi:
python setup.py sdist register upload

Misc. Hints

Names

There are 2 names involved and you should follow these rules:

	package name (== metadata NAME): simple, all lowercase name. E.g. foobar or
jquery. If you would have to use “-”: please replace it by “_”. Minus is not
valid in Python package names, so use underscore so that you can use same
name for your package directory / package name.

	DISPLAY_NAME (metadata): the name as the upstream project itself spells it,
e.g. jQuery or FooBar. No spaces.

Note: if you are not packaging original files, but modified files, then you
must use a name that makes this fact obvious.

Version Numbers

VERSION - as you are just repackaging another project, you should use the
upstream version number (or at least something closely related to it).

Some projects do not have good version numbers, make the best of it:

E.g. upstream version: 2010-12-31, XStatic-FooBar version: 2010.12.31

BUILD - as you maybe do not get packaging right on the first try, you’ll
want to enumerate your builds: 0, 1, 2, …

PACKAGE_VERSION - is automatically computed from VERSION . BUILD.

Which files to put into your package?

It is suggested that you only package files that are useful for Python
projects, because XStatic packages will be only used by them. No need for PHP,
ASP, Java, etc. related files.

If you package files that are somehow “compiled/compressed” versions, we
suggest you only package the files needed for production usage, not the source
code.

If the original download archive has the files needed for production in some
subdirectory, we suggest you strip the directory hierarchy and just put the
production files/directories into xstatic/pkg/foobar/data/.

CDN locations

If your files are available via a public CDN (Content Distribution Network),
you can give the URLs via the locations metadata.

If you do not have a CDN for the files, just use locations = {}.

Licensing

You should put your XStatic-FooBar package under same license as the upstream
FooBar package. This avoids licensing complications and is also appropriate
because you only added a little metadata anyway.

Notes for Linux (or other OS) Package Maintainers

If you are maintaining packages for some other packaging system, like .deb
or .rpm, this section is for you.

When designing XStatic stuff, we had YOU in mind! :)

But not only you, we also had in mind that there is no packaging system on
Windows and that developers or virtualenv users rather like setuptools,
distribute and pip.

Because of this, we did not want to rely on any mechanism that might be not
available in some scenario - thus, after files are installed, we only use
Python features (like importing from a installed python package, using
__file__ to find out the path/filename, etc.).

You, as a package maintainer are interested in avoiding duplication, so that
if you need to do a security update, you only need to fix in one place.

XStatic-* packages support this. If you do not want to heavily patch some
Python software that uses XStatic ressource packages, you can alternatively
just package the XStatic resource packages for your package system.

In case that would add duplication (because you already have a package that
provides the same static files), you can simply remove the static files below
data/ from the XStatic ressource package and adjust the path/filename so it
points to the files provided by that other package.

E.g. for the XStatic-jQuery package, change:

BASE_DIR = join(dirname(__file__), 'data')

To:

BASE_DIR = '/usr/share/javascript/jquery'

Of course you need to make sure that the files at the location you point to
are the same as the ones the XStatic ressource package provides below the
data/ directory.

In your package dependencies for your repackaged XStatic ressource package
you would then just require (depend on) the package providing these files.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to XStatic’s documentation!

 		
 The Idea

 		
 Pros

 		
 Cons

 		
 License

 		
 Authors

 		
 Main Authors

 		
 Contributors

 		
 Using XStatic

 		
 Example code to setup local file serving

 		
 Packaging for XStatic

 		
 Misc. Hints

 		
 Names

 		
 Version Numbers

 		
 Which files to put into your package?

 		
 CDN locations

 		
 Licensing

 		
 Notes for Linux (or other OS) Package Maintainers

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

