
scrapy Documentation
Release 1.5

terryxi

Dec 11, 2018

1 3

2 5
2.1 Scrapy . 5
2.2 . 7
2.3 Scrapy . 11
2.4 Examples . 22

3 Basic concepts 23
3.1 Command line tool . 23
3.2 Spiders . 32
3.3 Selectors . 42
3.4 Items . 54
3.5 Item Loaders . 58
3.6 Scrapy shell . 68
3.7 Item Pipeline . 73
3.8 Feed exports . 76
3.9 Requests and Responses . 81
3.10 Link Extractors . 91
3.11 Settings . 93
3.12 Exceptions . 111

4 Built-in services 115
4.1 Logging . 115
4.2 Stats Collection . 118
4.3 Sending e-mail . 120
4.4 Telnet Console . 122
4.5 Web Service . 124

5 Solving specific problems 127
5.1 Frequently Asked Questions . 127
5.2 Debugging Spiders . 132
5.3 Spiders Contracts . 134
5.4 Common Practices . 136
5.5 Broad Crawls . 140
5.6 Using your browser’s Developer Tools for scraping . 142
5.7 Debugging memory leaks . 147
5.8 Downloading and processing files and images . 152

i

5.9 Deploying Spiders . 159
5.10 AutoThrottle extension . 159
5.11 Benchmarking . 162
5.12 Jobs: pausing and resuming crawls . 163

6 Extending Scrapy 167
6.1 Architecture overview . 167
6.2 Downloader Middleware . 170
6.3 Spider Middleware . 183
6.4 Extensions . 188
6.5 Core API . 194
6.6 Signals . 197
6.7 Item Exporters . 201

Python Module Index 209

ii

scrapy Documentation, Release 1.5

Scrapy

1

scrapy Documentation, Release 1.5

2

CHAPTER 1

• Try the FAQ – it’s got answers to some common questions.

• Looking for specific information? Try the genindex or modindex.

• Ask or search questions in StackOverflow using the scrapy tag.

• Ask or search questions in the Scrapy subreddit.

• Search for questions on the archives of the scrapy-users mailing list.

• Ask a question in the #scrapy IRC channel,

• Report bugs with Scrapy in our issue tracker.

3

https://stackoverflow.com/tags/scrapy
https://www.reddit.com/r/scrapy/
https://groups.google.com/forum/#!forum/scrapy-users
irc://irc.freenode.net/scrapy
https://github.com/scrapy/scrapy/issues

scrapy Documentation, Release 1.5

4 Chapter 1.

CHAPTER 2

2.1 Scrapy

Scrapyweb

Even though Scrapy was originally designed for web scraping, it can also be used to extract data using APIs (such as
Amazon Associates Web Services) or as a general purpose web crawler.

2.1.1 Walk-through of an example spider

In order to show you what Scrapy brings to the table, we’ll walk you through an example of a Scrapy Spider using the
simplest way to run a spider.

Here’s the code for a spider that scrapes famous quotes from website http://quotes.toscrape.com, following the pagi-
nation:

import scrapy

class QuotesSpider(scrapy.Spider):
name = "quotes"
start_urls = [

'http://quotes.toscrape.com/tag/humor/',
]

def parse(self, response):
for quote in response.css('div.quote'):

yield {
'text': quote.css('span.text::text').extract_first(),
'author': quote.xpath('span/small/text()').extract_first(),

}

next_page = response.css('li.next a::attr("href")').extract_first()
if next_page is not None:

yield response.follow(next_page, self.parse)

5

https://en.wikipedia.org/wiki/Web_scraping
https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html
http://quotes.toscrape.com

scrapy Documentation, Release 1.5

Put this in a text file, name it to something like quotes_spider.py and run the spider using the runspider
command:

scrapy runspider quotes_spider.py -o quotes.json

When this finishes you will have in the quotes.json file a list of the quotes in JSON format, containing text and
author, looking like this (reformatted here for better readability):

[{
"author": "Jane Austen",
"text": "\u201cThe person, be it gentleman or lady, who has not pleasure in a

→˓good novel, must be intolerably stupid.\u201d"
},
{

"author": "Groucho Marx",
"text": "\u201cOutside of a dog, a book is man's best friend. Inside of a dog it

→˓'s too dark to read.\u201d"
},
{

"author": "Steve Martin",
"text": "\u201cA day without sunshine is like, you know, night.\u201d"

},
...]

What just happened?

When you ran the command scrapy runspider quotes_spider.py, Scrapy looked for a Spider definition
inside it and ran it through its crawler engine.

The crawl started by making requests to the URLs defined in the start_urls attribute (in this case, only the
URL for quotes in humor category) and called the default callback method parse, passing the response object as
an argument. In the parse callback, we loop through the quote elements using a CSS Selector, yield a Python dict
with the extracted quote text and author, look for a link to the next page and schedule another request using the same
parse method as callback.

Here you notice one of the main advantages about Scrapy: requests are scheduled and processed asynchronously. This
means that Scrapy doesn’t need to wait for a request to be finished and processed, it can send another request or do
other things in the meantime. This also means that other requests can keep going even if some request fails or an error
happens while handling it.

While this enables you to do very fast crawls (sending multiple concurrent requests at the same time, in a fault-tolerant
way) Scrapy also gives you control over the politeness of the crawl through a few settings. You can do things like
setting a download delay between each request, limiting amount of concurrent requests per domain or per IP, and even
using an auto-throttling extension that tries to figure out these automatically.

Note: This is using feed exports to generate the JSON file, you can easily change the export format (XML or CSV,
for example) or the storage backend (FTP or Amazon S3, for example). You can also write an item pipeline to store
the items in a database.

2.1.2 What else?

You’ve seen how to extract and store items from a website using Scrapy, but this is just the surface. Scrapy provides a
lot of powerful features for making scraping easy and efficient, such as:

6 Chapter 2.

https://aws.amazon.com/s3/

scrapy Documentation, Release 1.5

• Built-in support for selecting and extracting data from HTML/XML sources using extended CSS selectors and
XPath expressions, with helper methods to extract using regular expressions.

• An interactive shell console (IPython aware) for trying out the CSS and XPath expressions to scrape data, very
useful when writing or debugging your spiders.

• Built-in support for generating feed exports in multiple formats (JSON, CSV, XML) and storing them in multiple
backends (FTP, S3, local filesystem)

• Robust encoding support and auto-detection, for dealing with foreign, non-standard and broken encoding dec-
larations.

• Strong extensibility support, allowing you to plug in your own functionality using signals and a well-defined
API (middlewares, extensions, and pipelines).

• Wide range of built-in extensions and middlewares for handling:

– cookies and session handling

– HTTP features like compression, authentication, caching

– user-agent spoofing

– robots.txt

– crawl depth restriction

– and more

• A Telnet console for hooking into a Python console running inside your Scrapy process, to introspect and debug
your crawler

• Plus other goodies like reusable spiders to crawl sites from Sitemaps and XML/CSV feeds, a media pipeline
for automatically downloading images (or any other media) associated with the scraped items, a caching DNS
resolver, and much more!

2.1.3 What’s next?

The next steps for you are to install Scrapy, follow through the tutorial to learn how to create a full-blown Scrapy
project and join the community. Thanks for your interest!

2.2

2.2.1 Scrapy

Scrapy Python 2.7 Python 3.4 under CPython (default Python implementation) and PyPy (starting with PyPy 5.9).

If you’re using Anaconda or Miniconda, you can install the package from the conda-forge channel, which has up-to-
date packages for Linux, Windows and OS X.

To install Scrapy using conda, run:

conda install -c conda-forge scrapy

Alternatively, if you’re already familiar with installation of Python packages, you can install Scrapy and its dependen-
cies from PyPI with:

pip install Scrapy

2.2. 7

https://www.sitemaps.org/index.html
https://scrapy.org/community/
https://docs.anaconda.com/anaconda/
https://conda.io/docs/user-guide/install/index.html
https://conda-forge.org/

scrapy Documentation, Release 1.5

Note that sometimes this may require solving compilation issues for some Scrapy dependencies depending on your
operating system, so be sure to check the Platform specific installation notes.

We strongly recommend that you install Scrapy in a dedicated virtualenv, to avoid conflicting with your system
packages.

For more detailed and platform specifics instructions, read on.

Things that are good to know

Scrapy is written in pure Python and depends on a few key Python packages (among others):

• lxml, an efficient XML and HTML parser

• parsel, an HTML/XML data extraction library written on top of lxml,

• w3lib, a multi-purpose helper for dealing with URLs and web page encodings

• twisted, an asynchronous networking framework

• cryptography and pyOpenSSL, to deal with various network-level security needs

The minimal versions which Scrapy is tested against are:

• Twisted 14.0

• lxml 3.4

• pyOpenSSL 0.14

Scrapy may work with older versions of these packages but it is not guaranteed it will continue working because it’s
not being tested against them.

Some of these packages themselves depends on non-Python packages that might require additional installation steps
depending on your platform. Please check platform-specific guides below.

In case of any trouble related to these dependencies, please refer to their respective installation instructions:

• lxml installation

• cryptography installation

Using a virtual environment (recommended)

TL;DR: We recommend installing Scrapy inside a virtual environment on all platforms.

Python packages can be installed either globally (a.k.a system wide), or in user-space. We do not recommend installing
scrapy system wide.

Instead, we recommend that you install scrapy within a so-called “virtual environment” (virtualenv). Virtualenvs allow
you to not conflict with already-installed Python system packages (which could break some of your system tools and
scripts), and still install packages normally with pip (without sudo and the likes).

To get started with virtual environments, see virtualenv installation instructions. To install it globally (having it globally
installed actually helps here), it should be a matter of running:

$ [sudo] pip install virtualenv

Check this user guide on how to create your virtualenv.

Note: If you use Linux or OS X, virtualenvwrapper is a handy tool to create virtualenvs.

8 Chapter 2.

http://lxml.de/
https://pypi.python.org/pypi/parsel
https://pypi.python.org/pypi/w3lib
https://twistedmatrix.com/
https://cryptography.io/
https://pypi.python.org/pypi/pyOpenSSL
http://lxml.de/installation.html
https://cryptography.io/en/latest/installation/
https://virtualenv.pypa.io
https://virtualenv.pypa.io/en/stable/installation/
https://virtualenv.pypa.io/en/stable/userguide/
https://virtualenvwrapper.readthedocs.io/en/latest/install.html

scrapy Documentation, Release 1.5

Once you have created a virtualenv, you can install scrapy inside it with pip, just like any other Python package. (See
platform-specific guides below for non-Python dependencies that you may need to install beforehand).

Python virtualenvs can be created to use Python 2 by default, or Python 3 by default.

• If you want to install scrapy with Python 3, install scrapy within a Python 3 virtualenv.

• And if you want to install scrapy with Python 2, install scrapy within a Python 2 virtualenv.

2.2.2 Platform specific installation notes

Windows

Though it’s possible to install Scrapy on Windows using pip, we recommend you to install Anaconda or Miniconda
and use the package from the conda-forge channel, which will avoid most installation issues.

Once you’ve installed Anaconda or Miniconda, install Scrapy with:

conda install -c conda-forge scrapy

Ubuntu 14.04 or above

Scrapy is currently tested with recent-enough versions of lxml, twisted and pyOpenSSL, and is compatible with recent
Ubuntu distributions. But it should support older versions of Ubuntu too, like Ubuntu 14.04, albeit with potential
issues with TLS connections.

Don’t use the python-scrapy package provided by Ubuntu, they are typically too old and slow to catch up with
latest Scrapy.

To install scrapy on Ubuntu (or Ubuntu-based) systems, you need to install these dependencies:

sudo apt-get install python-dev python-pip libxml2-dev libxslt1-dev zlib1g-dev libffi-
→˓dev libssl-dev

• python-dev, zlib1g-dev, libxml2-dev and libxslt1-dev are required for lxml

• libssl-dev and libffi-dev are required for cryptography

If you want to install scrapy on Python 3, you’ll also need Python 3 development headers:

sudo apt-get install python3 python3-dev

Inside a virtualenv, you can install Scrapy with pip after that:

pip install scrapy

Note: The same non-Python dependencies can be used to install Scrapy in Debian Jessie (8.0) and above.

Mac OS X

Building Scrapy’s dependencies requires the presence of a C compiler and development headers. On OS X this is
typically provided by Apple’s Xcode development tools. To install the Xcode command line tools open a terminal
window and run:

2.2. 9

https://docs.anaconda.com/anaconda/
https://conda.io/docs/user-guide/install/index.html
https://conda-forge.org/
https://docs.anaconda.com/anaconda/
https://conda.io/docs/user-guide/install/index.html

scrapy Documentation, Release 1.5

xcode-select --install

There’s a known issue that prevents pip from updating system packages. This has to be addressed to successfully
install Scrapy and its dependencies. Here are some proposed solutions:

• (Recommended) Don’t use system python, install a new, updated version that doesn’t conflict with the rest of
your system. Here’s how to do it using the homebrew package manager:

– Install homebrew following the instructions in https://brew.sh/

– Update your PATH variable to state that homebrew packages should be used before system packages
(Change .bashrc to .zshrc accordantly if you’re using zsh as default shell):

echo "export PATH=/usr/local/bin:/usr/local/sbin:$PATH" >> ~/.bashrc

– Reload .bashrc to ensure the changes have taken place:

source ~/.bashrc

– Install python:

brew install python

– Latest versions of python have pip bundled with them so you won’t need to install it separately. If this is
not the case, upgrade python:

brew update; brew upgrade python

• (Optional) Install Scrapy inside an isolated python environment.

This method is a workaround for the above OS X issue, but it’s an overall good practice for managing depen-
dencies and can complement the first method.

virtualenv is a tool you can use to create virtual environments in python. We recommended reading a tutorial
like http://docs.python-guide.org/en/latest/dev/virtualenvs/ to get started.

After any of these workarounds you should be able to install Scrapy:

pip install Scrapy

PyPy

We recommend using the latest PyPy version. The version tested is 5.9.0. For PyPy3, only Linux installation was
tested.

Most scrapy dependencides now have binary wheels for CPython, but not for PyPy. This means that these dependecies
will be built during installation. On OS X, you are likely to face an issue with building Cryptography dependency,
solution to this problem is described here, that is to brew install openssl and then export the flags that this
command recommends (only needed when installing scrapy). Installing on Linux has no special issues besides in-
stalling build dependencies. Installing scrapy with PyPy on Windows is not tested.

You can check that scrapy is installed correctly by running scrapy bench. If this command gives errors such as
TypeError: ... got 2 unexpected keyword arguments, this means that setuptools was unable to
pick up one PyPy-specific dependency. To fix this issue, run pip install 'PyPyDispatcher>=2.1.0'.

10 Chapter 2.

https://github.com/pypa/pip/issues/2468
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://www.zsh.org/
https://virtualenv.pypa.io
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://github.com/pyca/cryptography/issues/2692#issuecomment-272773481

scrapy Documentation, Release 1.5

2.3 Scrapy

In this tutorial, we’ll assume that Scrapy is already installed on your system. If that’s not the case, see .

Scrapy .

We are going to scrape quotes.toscrape.com, a website that lists quotes from famous authors.

This tutorial will walk you through these tasks:

1. Creating a new Scrapy project

2. Writing a spider to crawl a site and extract data

3. Exporting the scraped data using the command line

4. Changing spider to recursively follow links

5. Using spider arguments

Scrapy is written in Python. If you’re new to the language you might want to start by getting an idea of what the
language is like, to get the most out of Scrapy.

If you’re already familiar with other languages, and want to learn Python quickly, we recommend reading through
Dive Into Python 3. Alternatively, you can follow the Python Tutorial.

If you’re new to programming and want to start with Python, the following books may be useful to you:

• Automate the Boring Stuff With Python

• How To Think Like a Computer Scientist

• Learn Python 3 The Hard Way

You can also take a look at this list of Python resources for non-programmers, as well as the suggested resources in
the learnpython-subreddit.

2.3.1 Creating a project

Before you start scraping, you will have to set up a new Scrapy project. Enter a directory where you’d like to store
your code and run:

scrapy startproject tutorial

This will create a tutorial directory with the following contents:

tutorial/
scrapy.cfg # deploy configuration file

tutorial/ # project's Python module, you'll import your code from here
__init__.py

items.py # project items definition file

middlewares.py # project middlewares file

pipelines.py # project pipelines file

settings.py # project settings file

(continues on next page)

2.3. Scrapy 11

http://quotes.toscrape.com/
https://www.python.org/
http://www.diveintopython3.net
https://docs.python.org/3/tutorial
https://automatetheboringstuff.com/
http://openbookproject.net/thinkcs/python/english3e/
https://learnpythonthehardway.org/python3/
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://www.reddit.com/r/learnpython/wiki/index#wiki_new_to_python.3F
https://www.reddit.com/r/learnpython/wiki/index#wiki_new_to_python.3F

scrapy Documentation, Release 1.5

(continued from previous page)

spiders/ # a directory where you'll later put your spiders
__init__.py

2.3.2 Our first Spider

Spiders are classes that you define and that Scrapy uses to scrape information from a website (or a group of websites).
They must subclass scrapy.Spider and define the initial requests to make, optionally how to follow links in the
pages, and how to parse the downloaded page content to extract data.

This is the code for our first Spider. Save it in a file named quotes_spider.py under the tutorial/spiders
directory in your project:

import scrapy

class QuotesSpider(scrapy.Spider):
name = "quotes"

def start_requests(self):
urls = [

'http://quotes.toscrape.com/page/1/',
'http://quotes.toscrape.com/page/2/',

]
for url in urls:

yield scrapy.Request(url=url, callback=self.parse)

def parse(self, response):
page = response.url.split("/")[-2]
filename = 'quotes-%s.html' % page
with open(filename, 'wb') as f:

f.write(response.body)
self.log('Saved file %s' % filename)

As you can see, our Spider subclasses scrapy.Spider and defines some attributes and methods:

• name: identifies the Spider. It must be unique within a project, that is, you can’t set the same name for different
Spiders.

• start_requests(): must return an iterable of Requests (you can return a list of requests or write a generator
function) which the Spider will begin to crawl from. Subsequent requests will be generated successively from
these initial requests.

• parse(): a method that will be called to handle the response downloaded for each of the requests made.
The response parameter is an instance of TextResponse that holds the page content and has further helpful
methods to handle it.

The parse() method usually parses the response, extracting the scraped data as dicts and also finding new
URLs to follow and creating new requests (Request) from them.

How to run our spider

To put our spider to work, go to the project’s top level directory and run:

scrapy crawl quotes

12 Chapter 2.

scrapy Documentation, Release 1.5

This command runs the spider with name quotes that we’ve just added, that will send some requests for the
quotes.toscrape.com domain. You will get an output similar to this:

... (omitted for brevity)
2016-12-16 21:24:05 [scrapy.core.engine] INFO: Spider opened
2016-12-16 21:24:05 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/
→˓min), scraped 0 items (at 0 items/min)
2016-12-16 21:24:05 [scrapy.extensions.telnet] DEBUG: Telnet console listening on 127.
→˓0.0.1:6023
2016-12-16 21:24:05 [scrapy.core.engine] DEBUG: Crawled (404) <GET http://quotes.
→˓toscrape.com/robots.txt> (referer: None)
2016-12-16 21:24:05 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://quotes.
→˓toscrape.com/page/1/> (referer: None)
2016-12-16 21:24:05 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://quotes.
→˓toscrape.com/page/2/> (referer: None)
2016-12-16 21:24:05 [quotes] DEBUG: Saved file quotes-1.html
2016-12-16 21:24:05 [quotes] DEBUG: Saved file quotes-2.html
2016-12-16 21:24:05 [scrapy.core.engine] INFO: Closing spider (finished)
...

Now, check the files in the current directory. You should notice that two new files have been created: quotes-1.html
and quotes-2.html, with the content for the respective URLs, as our parse method instructs.

Note: If you are wondering why we haven’t parsed the HTML yet, hold on, we will cover that soon.

What just happened under the hood?

Scrapy schedules the scrapy.Request objects returned by the start_requests method of the Spider. Upon
receiving a response for each one, it instantiates Response objects and calls the callback method associated with the
request (in this case, the parse method) passing the response as argument.

A shortcut to the start_requests method

Instead of implementing a start_requests() method that generates scrapy.Request objects from URLs,
you can just define a start_urls class attribute with a list of URLs. This list will then be used by the default
implementation of start_requests() to create the initial requests for your spider:

import scrapy

class QuotesSpider(scrapy.Spider):
name = "quotes"
start_urls = [

'http://quotes.toscrape.com/page/1/',
'http://quotes.toscrape.com/page/2/',

]

def parse(self, response):
page = response.url.split("/")[-2]
filename = 'quotes-%s.html' % page
with open(filename, 'wb') as f:

f.write(response.body)

2.3. Scrapy 13

scrapy Documentation, Release 1.5

The parse() method will be called to handle each of the requests for those URLs, even though we haven’t explicitly
told Scrapy to do so. This happens because parse() is Scrapy’s default callback method, which is called for requests
without an explicitly assigned callback.

Extracting data

The best way to learn how to extract data with Scrapy is trying selectors using the shell Scrapy shell. Run:

scrapy shell 'http://quotes.toscrape.com/page/1/'

Note: Remember to always enclose urls in quotes when running Scrapy shell from command-line, otherwise urls
containing arguments (ie. & character) will not work.

On Windows, use double quotes instead:

scrapy shell "http://quotes.toscrape.com/page/1/"

You will see something like:

[... Scrapy log here ...]
2016-09-19 12:09:27 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://quotes.
→˓toscrape.com/page/1/> (referer: None)
[s] Available Scrapy objects:
[s] scrapy scrapy module (contains scrapy.Request, scrapy.Selector, etc)
[s] crawler <scrapy.crawler.Crawler object at 0x7fa91d888c90>
[s] item {}
[s] request <GET http://quotes.toscrape.com/page/1/>
[s] response <200 http://quotes.toscrape.com/page/1/>
[s] settings <scrapy.settings.Settings object at 0x7fa91d888c10>
[s] spider <DefaultSpider 'default' at 0x7fa91c8af990>
[s] Useful shortcuts:
[s] shelp() Shell help (print this help)
[s] fetch(req_or_url) Fetch request (or URL) and update local objects
[s] view(response) View response in a browser
>>>

Using the shell, you can try selecting elements using CSS with the response object:

>>> response.css('title')
[<Selector xpath='descendant-or-self::title' data='<title>Quotes to Scrape</title>'>]

The result of running response.css('title') is a list-like object called SelectorList, which represents a
list of Selector objects that wrap around XML/HTML elements and allow you to run further queries to fine-grain
the selection or extract the data.

To extract the text from the title above, you can do:

>>> response.css('title::text').extract()
['Quotes to Scrape']

There are two things to note here: one is that we’ve added ::text to the CSS query, to mean we want to select
only the text elements directly inside <title> element. If we don’t specify ::text, we’d get the full title element,
including its tags:

14 Chapter 2.

https://www.w3.org/TR/selectors

scrapy Documentation, Release 1.5

>>> response.css('title').extract()
['<title>Quotes to Scrape</title>']

The other thing is that the result of calling .extract() is a list, because we’re dealing with an instance of
SelectorList. When you know you just want the first result, as in this case, you can do:

>>> response.css('title::text').extract_first()
'Quotes to Scrape'

As an alternative, you could’ve written:

>>> response.css('title::text')[0].extract()
'Quotes to Scrape'

However, using .extract_first() avoids an IndexError and returns None when it doesn’t find any element
matching the selection.

There’s a lesson here: for most scraping code, you want it to be resilient to errors due to things not being found on a
page, so that even if some parts fail to be scraped, you can at least get some data.

Besides the extract() and extract_first() methods, you can also use the re() method to extract using
regular expressions:

>>> response.css('title::text').re(r'Quotes.*')
['Quotes to Scrape']
>>> response.css('title::text').re(r'Q\w+')
['Quotes']
>>> response.css('title::text').re(r'(\w+) to (\w+)')
['Quotes', 'Scrape']

In order to find the proper CSS selectors to use, you might find useful opening the response page from the shell in your
web browser using view(response). You can use your browser developer tools (see section about Using your
browser’s Developer Tools for scraping).

Selector Gadget is also a nice tool to quickly find CSS selector for visually selected elements, which works in many
browsers.

XPath: a brief intro

Besides CSS, Scrapy selectors also support using XPath expressions:

>>> response.xpath('//title')
[<Selector xpath='//title' data='<title>Quotes to Scrape</title>'>]
>>> response.xpath('//title/text()').extract_first()
'Quotes to Scrape'

XPath expressions are very powerful, and are the foundation of Scrapy Selectors. In fact, CSS selectors are converted
to XPath under-the-hood. You can see that if you read closely the text representation of the selector objects in the
shell.

While perhaps not as popular as CSS selectors, XPath expressions offer more power because besides navigating the
structure, it can also look at the content. Using XPath, you’re able to select things like: select the link that contains the
text “Next Page”. This makes XPath very fitting to the task of scraping, and we encourage you to learn XPath even if
you already know how to construct CSS selectors, it will make scraping much easier.

2.3. Scrapy 15

http://selectorgadget.com/
https://www.w3.org/TR/selectors
https://www.w3.org/TR/xpath

scrapy Documentation, Release 1.5

We won’t cover much of XPath here, but you can read more about using XPath with Scrapy Selectors here. To learn
more about XPath, we recommend this tutorial to learn XPath through examples, and this tutorial to learn “how to
think in XPath”.

Extracting quotes and authors

Now that you know a bit about selection and extraction, let’s complete our spider by writing the code to extract the
quotes from the web page.

Each quote in http://quotes.toscrape.com is represented by HTML elements that look like this:

<div class="quote">
“The world as we have created it is a process of our
thinking. It cannot be changed without changing our thinking.”

by <small class="author">Albert Einstein</small>
(about)

<div class="tags">

Tags:
change
deep-thoughts
thinking
world

</div>
</div>

Let’s open up scrapy shell and play a bit to find out how to extract the data we want:

$ scrapy shell 'http://quotes.toscrape.com'

We get a list of selectors for the quote HTML elements with:

>>> response.css("div.quote")

Each of the selectors returned by the query above allows us to run further queries over their sub-elements. Let’s assign
the first selector to a variable, so that we can run our CSS selectors directly on a particular quote:

>>> quote = response.css("div.quote")[0]

Now, let’s extract title, author and the tags from that quote using the quote object we just created:

>>> title = quote.css("span.text::text").extract_first()
>>> title
'“The world as we have created it is a process of our thinking. It cannot be changed
→˓without changing our thinking.”'
>>> author = quote.css("small.author::text").extract_first()
>>> author
'Albert Einstein'

Given that the tags are a list of strings, we can use the .extract() method to get all of them:

>>> tags = quote.css("div.tags a.tag::text").extract()
>>> tags
['change', 'deep-thoughts', 'thinking', 'world']

16 Chapter 2.

http://zvon.org/comp/r/tut-XPath_1.html
http://plasmasturm.org/log/xpath101/
http://plasmasturm.org/log/xpath101/
http://quotes.toscrape.com

scrapy Documentation, Release 1.5

Having figured out how to extract each bit, we can now iterate over all the quotes elements and put them together into
a Python dictionary:

>>> for quote in response.css("div.quote"):
... text = quote.css("span.text::text").extract_first()
... author = quote.css("small.author::text").extract_first()
... tags = quote.css("div.tags a.tag::text").extract()
... print(dict(text=text, author=author, tags=tags))
{'tags': ['change', 'deep-thoughts', 'thinking', 'world'], 'author': 'Albert Einstein
→˓', 'text': '“The world as we have created it is a process of our thinking. It
→˓cannot be changed without changing our thinking.”'}
{'tags': ['abilities', 'choices'], 'author': 'J.K. Rowling', 'text': '“It is our
→˓choices, Harry, that show what we truly are, far more than our abilities.”'}

... a few more of these, omitted for brevity
>>>

Extracting data in our spider

Let’s get back to our spider. Until now, it doesn’t extract any data in particular, just saves the whole HTML page to a
local file. Let’s integrate the extraction logic above into our spider.

A Scrapy spider typically generates many dictionaries containing the data extracted from the page. To do that, we use
the yield Python keyword in the callback, as you can see below:

import scrapy

class QuotesSpider(scrapy.Spider):
name = "quotes"
start_urls = [

'http://quotes.toscrape.com/page/1/',
'http://quotes.toscrape.com/page/2/',

]

def parse(self, response):
for quote in response.css('div.quote'):

yield {
'text': quote.css('span.text::text').extract_first(),
'author': quote.css('small.author::text').extract_first(),
'tags': quote.css('div.tags a.tag::text').extract(),

}

If you run this spider, it will output the extracted data with the log:

2016-09-19 18:57:19 [scrapy.core.scraper] DEBUG: Scraped from <200 http://quotes.
→˓toscrape.com/page/1/>
{'tags': ['life', 'love'], 'author': 'André Gide', 'text': '“It is better to be hated
→˓for what you are than to be loved for what you are not.”'}
2016-09-19 18:57:19 [scrapy.core.scraper] DEBUG: Scraped from <200 http://quotes.
→˓toscrape.com/page/1/>
{'tags': ['edison', 'failure', 'inspirational', 'paraphrased'], 'author': 'Thomas A.
→˓Edison', 'text': "“I have not failed. I've just found 10,000 ways that won't work.”
→˓"}

2.3. Scrapy 17

scrapy Documentation, Release 1.5

2.3.3 Storing the scraped data

The simplest way to store the scraped data is by using Feed exports, with the following command:

scrapy crawl quotes -o quotes.json

That will generate an quotes.json file containing all scraped items, serialized in JSON.

For historic reasons, Scrapy appends to a given file instead of overwriting its contents. If you run this command twice
without removing the file before the second time, you’ll end up with a broken JSON file.

You can also use other formats, like JSON Lines:

scrapy crawl quotes -o quotes.jl

The JSON Lines format is useful because it’s stream-like, you can easily append new records to it. It doesn’t have the
same problem of JSON when you run twice. Also, as each record is a separate line, you can process big files without
having to fit everything in memory, there are tools like JQ to help doing that at the command-line.

In small projects (like the one in this tutorial), that should be enough. However, if you want to perform more complex
things with the scraped items, you can write an Item Pipeline. A placeholder file for Item Pipelines has been set up
for you when the project is created, in tutorial/pipelines.py. Though you don’t need to implement any item
pipelines if you just want to store the scraped items.

2.3.4 Following links

Let’s say, instead of just scraping the stuff from the first two pages from http://quotes.toscrape.com, you want quotes
from all the pages in the website.

Now that you know how to extract data from pages, let’s see how to follow links from them.

First thing is to extract the link to the page we want to follow. Examining our page, we can see there is a link to the
next page with the following markup:

<ul class="pager">
<li class="next">

Next →

We can try extracting it in the shell:

>>> response.css('li.next a').extract_first()
'Next →'

This gets the anchor element, but we want the attribute href. For that, Scrapy supports a CSS extension that let’s you
select the attribute contents, like this:

>>> response.css('li.next a::attr(href)').extract_first()
'/page/2/'

Let’s see now our spider modified to recursively follow the link to the next page, extracting data from it:

import scrapy

class QuotesSpider(scrapy.Spider):
(continues on next page)

18 Chapter 2.

https://en.wikipedia.org/wiki/JSON
http://jsonlines.org
http://jsonlines.org
https://stedolan.github.io/jq
http://quotes.toscrape.com

scrapy Documentation, Release 1.5

(continued from previous page)

name = "quotes"
start_urls = [

'http://quotes.toscrape.com/page/1/',
]

def parse(self, response):
for quote in response.css('div.quote'):

yield {
'text': quote.css('span.text::text').extract_first(),
'author': quote.css('small.author::text').extract_first(),
'tags': quote.css('div.tags a.tag::text').extract(),

}

next_page = response.css('li.next a::attr(href)').extract_first()
if next_page is not None:

next_page = response.urljoin(next_page)
yield scrapy.Request(next_page, callback=self.parse)

Now, after extracting the data, the parse() method looks for the link to the next page, builds a full absolute URL
using the urljoin() method (since the links can be relative) and yields a new request to the next page, registering
itself as callback to handle the data extraction for the next page and to keep the crawling going through all the pages.

What you see here is Scrapy’s mechanism of following links: when you yield a Request in a callback method, Scrapy
will schedule that request to be sent and register a callback method to be executed when that request finishes.

Using this, you can build complex crawlers that follow links according to rules you define, and extract different kinds
of data depending on the page it’s visiting.

In our example, it creates a sort of loop, following all the links to the next page until it doesn’t find one – handy for
crawling blogs, forums and other sites with pagination.

A shortcut for creating Requests

As a shortcut for creating Request objects you can use response.follow:

import scrapy

class QuotesSpider(scrapy.Spider):
name = "quotes"
start_urls = [

'http://quotes.toscrape.com/page/1/',
]

def parse(self, response):
for quote in response.css('div.quote'):

yield {
'text': quote.css('span.text::text').extract_first(),
'author': quote.css('span small::text').extract_first(),
'tags': quote.css('div.tags a.tag::text').extract(),

}

next_page = response.css('li.next a::attr(href)').extract_first()
if next_page is not None:

yield response.follow(next_page, callback=self.parse)

2.3. Scrapy 19

scrapy Documentation, Release 1.5

Unlike scrapy.Request, response.follow supports relative URLs directly - no need to call urljoin. Note that
response.follow just returns a Request instance; you still have to yield this Request.

You can also pass a selector to response.follow instead of a string; this selector should extract necessary at-
tributes:

for href in response.css('li.next a::attr(href)'):
yield response.follow(href, callback=self.parse)

For <a> elements there is a shortcut: response.follow uses their href attribute automatically. So the code can
be shortened further:

for a in response.css('li.next a'):
yield response.follow(a, callback=self.parse)

Note: response.follow(response.css('li.next a')) is not valid because response.css returns
a list-like object with selectors for all results, not a single selector. A for loop like in the example above, or
response.follow(response.css('li.next a')[0]) is fine.

More examples and patterns

Here is another spider that illustrates callbacks and following links, this time for scraping author information:

import scrapy

class AuthorSpider(scrapy.Spider):
name = 'author'

start_urls = ['http://quotes.toscrape.com/']

def parse(self, response):
follow links to author pages
for href in response.css('.author + a::attr(href)'):

yield response.follow(href, self.parse_author)

follow pagination links
for href in response.css('li.next a::attr(href)'):

yield response.follow(href, self.parse)

def parse_author(self, response):
def extract_with_css(query):

return response.css(query).extract_first().strip()

yield {
'name': extract_with_css('h3.author-title::text'),
'birthdate': extract_with_css('.author-born-date::text'),
'bio': extract_with_css('.author-description::text'),

}

This spider will start from the main page, it will follow all the links to the authors pages calling the parse_author
callback for each of them, and also the pagination links with the parse callback as we saw before.

Here we’re passing callbacks to response.follow as positional arguments to make the code shorter; it also works
for scrapy.Request.

20 Chapter 2.

scrapy Documentation, Release 1.5

The parse_author callback defines a helper function to extract and cleanup the data from a CSS query and yields
the Python dict with the author data.

Another interesting thing this spider demonstrates is that, even if there are many quotes from the same author, we don’t
need to worry about visiting the same author page multiple times. By default, Scrapy filters out duplicated requests to
URLs already visited, avoiding the problem of hitting servers too much because of a programming mistake. This can
be configured by the setting :setting:‘DUPEFILTER_CLASS‘.

Hopefully by now you have a good understanding of how to use the mechanism of following links and callbacks with
Scrapy.

As yet another example spider that leverages the mechanism of following links, check out the CrawlSpider class
for a generic spider that implements a small rules engine that you can use to write your crawlers on top of it.

Also, a common pattern is to build an item with data from more than one page, using a trick to pass additional data to
the callbacks.

2.3.5 Using spider arguments

You can provide command line arguments to your spiders by using the -a option when running them:

scrapy crawl quotes -o quotes-humor.json -a tag=humor

These arguments are passed to the Spider’s __init__ method and become spider attributes by default.

In this example, the value provided for the tag argument will be available via self.tag. You can use this to make
your spider fetch only quotes with a specific tag, building the URL based on the argument:

import scrapy

class QuotesSpider(scrapy.Spider):
name = "quotes"

def start_requests(self):
url = 'http://quotes.toscrape.com/'
tag = getattr(self, 'tag', None)
if tag is not None:

url = url + 'tag/' + tag
yield scrapy.Request(url, self.parse)

def parse(self, response):
for quote in response.css('div.quote'):

yield {
'text': quote.css('span.text::text').extract_first(),
'author': quote.css('small.author::text').extract_first(),

}

next_page = response.css('li.next a::attr(href)').extract_first()
if next_page is not None:

yield response.follow(next_page, self.parse)

If you pass the tag=humor argument to this spider, you’ll notice that it will only visit URLs from the humor tag,
such as http://quotes.toscrape.com/tag/humor.

You can learn more about handling spider arguments here.

2.3. Scrapy 21

scrapy Documentation, Release 1.5

2.3.6 Next steps

This tutorial covered only the basics of Scrapy, but there’s a lot of other features not mentioned here. Check the What
else? section in Scrapy chapter for a quick overview of the most important ones.

You can continue from the section Basic concepts to know more about the command-line tool, spiders, selectors and
other things the tutorial hasn’t covered like modeling the scraped data. If you prefer to play with an example project,
check the Examples section.

2.4 Examples

The best way to learn is with examples, and Scrapy is no exception. For this reason, there is an example Scrapy
project named quotesbot, that you can use to play and learn more about Scrapy. It contains two spiders for http:
//quotes.toscrape.com, one using CSS selectors and another one using XPath expressions.

The quotesbot project is available at: https://github.com/scrapy/quotesbot. You can find more information about it in
the project’s README.

If you’re familiar with git, you can checkout the code. Otherwise you can download the project as a zip file by clicking
here.

Scrapy Understand what Scrapy is and how it can help you.

Get Scrapy installed on your computer.

Scrapy Write your first Scrapy project.

Examples Learn more by playing with a pre-made Scrapy project.

22 Chapter 2.

https://github.com/scrapy/quotesbot
http://quotes.toscrape.com
http://quotes.toscrape.com
https://github.com/scrapy/quotesbot
https://github.com/scrapy/quotesbot
https://github.com/scrapy/quotesbot/archive/master.zip

CHAPTER 3

Basic concepts

3.1 Command line tool

New in version 0.10.

Scrapy is controlled through the scrapy command-line tool, to be referred here as the “Scrapy tool” to differentiate
it from the sub-commands, which we just call “commands” or “Scrapy commands”.

The Scrapy tool provides several commands, for multiple purposes, and each one accepts a different set of arguments
and options.

(The scrapy deploy command has been removed in 1.0 in favor of the standalone scrapyd-deploy. See
Deploying your project.)

3.1.1 Configuration settings

Scrapy will look for configuration parameters in ini-style scrapy.cfg files in standard locations:

1. /etc/scrapy.cfg or c:\scrapy\scrapy.cfg (system-wide),

2. ~/.config/scrapy.cfg ($XDG_CONFIG_HOME) and ~/.scrapy.cfg ($HOME) for global (user-
wide) settings, and

3. scrapy.cfg inside a scrapy project’s root (see next section).

Settings from these files are merged in the listed order of preference: user-defined values have higher priority than
system-wide defaults and project-wide settings will override all others, when defined.

Scrapy also understands, and can be configured through, a number of environment variables. Currently these are:

• SCRAPY_SETTINGS_MODULE (see Designating the settings)

• SCRAPY_PROJECT

• SCRAPY_PYTHON_SHELL (see Scrapy shell)

23

https://scrapyd.readthedocs.io/en/latest/deploy.html

scrapy Documentation, Release 1.5

3.1.2 Default structure of Scrapy projects

Before delving into the command-line tool and its sub-commands, let’s first understand the directory structure of a
Scrapy project.

Though it can be modified, all Scrapy projects have the same file structure by default, similar to this:

scrapy.cfg
myproject/

__init__.py
items.py
middlewares.py
pipelines.py
settings.py
spiders/

__init__.py
spider1.py
spider2.py
...

The directory where the scrapy.cfg file resides is known as the project root directory. That file contains the name
of the python module that defines the project settings. Here is an example:

[settings]
default = myproject.settings

3.1.3 Using the scrapy tool

You can start by running the Scrapy tool with no arguments and it will print some usage help and the available
commands:

Scrapy X.Y - no active project

Usage:
scrapy <command> [options] [args]

Available commands:
crawl Run a spider
fetch Fetch a URL using the Scrapy downloader

[...]

The first line will print the currently active project if you’re inside a Scrapy project. In this example it was run from
outside a project. If run from inside a project it would have printed something like this:

Scrapy X.Y - project: myproject

Usage:
scrapy <command> [options] [args]

[...]

Creating projects

The first thing you typically do with the scrapy tool is create your Scrapy project:

24 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

scrapy startproject myproject [project_dir]

That will create a Scrapy project under the project_dir directory. If project_dir wasn’t specified,
project_dir will be the same as myproject.

Next, you go inside the new project directory:

cd project_dir

And you’re ready to use the scrapy command to manage and control your project from there.

Controlling projects

You use the scrapy tool from inside your projects to control and manage them.

For example, to create a new spider:

scrapy genspider mydomain mydomain.com

Some Scrapy commands (like crawl) must be run from inside a Scrapy project. See the commands reference below
for more information on which commands must be run from inside projects, and which not.

Also keep in mind that some commands may have slightly different behaviours when running them from inside
projects. For example, the fetch command will use spider-overridden behaviours (such as the user_agent attribute
to override the user-agent) if the url being fetched is associated with some specific spider. This is intentional, as the
fetch command is meant to be used to check how spiders are downloading pages.

3.1.4 Available tool commands

This section contains a list of the available built-in commands with a description and some usage examples. Remember,
you can always get more info about each command by running:

scrapy <command> -h

And you can see all available commands with:

scrapy -h

There are two kinds of commands, those that only work from inside a Scrapy project (Project-specific commands) and
those that also work without an active Scrapy project (Global commands), though they may behave slightly different
when running from inside a project (as they would use the project overridden settings).

Global commands:

• startproject

• genspider

• settings

• runspider

• shell

• fetch

• view

• version

3.1. Command line tool 25

scrapy Documentation, Release 1.5

Project-only commands:

• crawl

• check

• list

• edit

• parse

• bench

startproject

• Syntax: scrapy startproject <project_name> [project_dir]

• Requires project: no

Creates a new Scrapy project named project_name, under the project_dir directory. If project_dir
wasn’t specified, project_dir will be the same as project_name.

Usage example:

$ scrapy startproject myproject

genspider

• Syntax: scrapy genspider [-t template] <name> <domain>

• Requires project: no

Create a new spider in the current folder or in the current project’s spiders folder, if called from inside a project.
The <name> parameter is set as the spider’s name, while <domain> is used to generate the allowed_domains
and start_urls spider’s attributes.

Usage example:

$ scrapy genspider -l
Available templates:

basic
crawl
csvfeed
xmlfeed

$ scrapy genspider example example.com
Created spider 'example' using template 'basic'

$ scrapy genspider -t crawl scrapyorg scrapy.org
Created spider 'scrapyorg' using template 'crawl'

This is just a convenience shortcut command for creating spiders based on pre-defined templates, but certainly not the
only way to create spiders. You can just create the spider source code files yourself, instead of using this command.

crawl

• Syntax: scrapy crawl <spider>

26 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

• Requires project: yes

Start crawling using a spider.

Usage examples:

$ scrapy crawl myspider
[... myspider starts crawling ...]

check

• Syntax: scrapy check [-l] <spider>

• Requires project: yes

Run contract checks.

Usage examples:

$ scrapy check -l
first_spider

* parse

* parse_item
second_spider

* parse

* parse_item

$ scrapy check
[FAILED] first_spider:parse_item
>>> 'RetailPricex' field is missing

[FAILED] first_spider:parse
>>> Returned 92 requests, expected 0..4

list

• Syntax: scrapy list

• Requires project: yes

List all available spiders in the current project. The output is one spider per line.

Usage example:

$ scrapy list
spider1
spider2

edit

• Syntax: scrapy edit <spider>

• Requires project: yes

Edit the given spider using the editor defined in the EDITOR environment variable or (if unset) the :setting:‘EDITOR‘
setting.

3.1. Command line tool 27

scrapy Documentation, Release 1.5

This command is provided only as a convenience shortcut for the most common case, the developer is of course free
to choose any tool or IDE to write and debug spiders.

Usage example:

$ scrapy edit spider1

fetch

• Syntax: scrapy fetch <url>

• Requires project: no

Downloads the given URL using the Scrapy downloader and writes the contents to standard output.

The interesting thing about this command is that it fetches the page how the spider would download it. For example,
if the spider has a USER_AGENT attribute which overrides the User Agent, it will use that one.

So this command can be used to “see” how your spider would fetch a certain page.

If used outside a project, no particular per-spider behaviour would be applied and it will just use the default Scrapy
downloader settings.

Supported options:

• --spider=SPIDER: bypass spider autodetection and force use of specific spider

• --headers: print the response’s HTTP headers instead of the response’s body

• --no-redirect: do not follow HTTP 3xx redirects (default is to follow them)

Usage examples:

$ scrapy fetch --nolog http://www.example.com/some/page.html
[... html content here ...]

$ scrapy fetch --nolog --headers http://www.example.com/
{'Accept-Ranges': ['bytes'],
'Age': ['1263 '],
'Connection': ['close '],
'Content-Length': ['596'],
'Content-Type': ['text/html; charset=UTF-8'],
'Date': ['Wed, 18 Aug 2010 23:59:46 GMT'],
'Etag': ['"573c1-254-48c9c87349680"'],
'Last-Modified': ['Fri, 30 Jul 2010 15:30:18 GMT'],
'Server': ['Apache/2.2.3 (CentOS)']}

view

• Syntax: scrapy view <url>

• Requires project: no

Opens the given URL in a browser, as your Scrapy spider would “see” it. Sometimes spiders see pages differently
from regular users, so this can be used to check what the spider “sees” and confirm it’s what you expect.

Supported options:

• --spider=SPIDER: bypass spider autodetection and force use of specific spider

• --no-redirect: do not follow HTTP 3xx redirects (default is to follow them)

28 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

Usage example:

$ scrapy view http://www.example.com/some/page.html
[... browser starts ...]

shell

• Syntax: scrapy shell [url]

• Requires project: no

Starts the Scrapy shell for the given URL (if given) or empty if no URL is given. Also supports UNIX-style local file
paths, either relative with ./ or ../ prefixes or absolute file paths. See Scrapy shell for more info.

Supported options:

• --spider=SPIDER: bypass spider autodetection and force use of specific spider

• -c code: evaluate the code in the shell, print the result and exit

• --no-redirect: do not follow HTTP 3xx redirects (default is to follow them); this only affects the URL
you may pass as argument on the command line; once you are inside the shell, fetch(url) will still follow
HTTP redirects by default.

Usage example:

$ scrapy shell http://www.example.com/some/page.html
[... scrapy shell starts ...]

$ scrapy shell --nolog http://www.example.com/ -c '(response.status, response.url)'
(200, 'http://www.example.com/')

shell follows HTTP redirects by default
$ scrapy shell --nolog http://httpbin.org/redirect-to?url=http%3A%2F%2Fexample.com%2F
→˓-c '(response.status, response.url)'
(200, 'http://example.com/')

you can disable this with --no-redirect
(only for the URL passed as command line argument)
$ scrapy shell --no-redirect --nolog http://httpbin.org/redirect-to?url=http%3A%2F
→˓%2Fexample.com%2F -c '(response.status, response.url)'
(302, 'http://httpbin.org/redirect-to?url=http%3A%2F%2Fexample.com%2F')

parse

• Syntax: scrapy parse <url> [options]

• Requires project: yes

Fetches the given URL and parses it with the spider that handles it, using the method passed with the --callback
option, or parse if not given.

Supported options:

• --spider=SPIDER: bypass spider autodetection and force use of specific spider

• --a NAME=VALUE: set spider argument (may be repeated)

• --callback or -c: spider method to use as callback for parsing the response

3.1. Command line tool 29

scrapy Documentation, Release 1.5

• --meta or -m: additional request meta that will be passed to the callback request. This must be a valid json
string. Example: –meta=’{“foo” : “bar”}’

• --pipelines: process items through pipelines

• --rules or -r: use CrawlSpider rules to discover the callback (i.e. spider method) to use for parsing the
response

• --noitems: don’t show scraped items

• --nolinks: don’t show extracted links

• --nocolour: avoid using pygments to colorize the output

• --depth or -d: depth level for which the requests should be followed recursively (default: 1)

• --verbose or -v: display information for each depth level

Usage example:

$ scrapy parse http://www.example.com/ -c parse_item
[... scrapy log lines crawling example.com spider ...]

>>> STATUS DEPTH LEVEL 1 <<<
Scraped Items --
[{'name': u'Example item',
'category': u'Furniture',
'length': u'12 cm'}]

Requests ---
[]

settings

• Syntax: scrapy settings [options]

• Requires project: no

Get the value of a Scrapy setting.

If used inside a project it’ll show the project setting value, otherwise it’ll show the default Scrapy value for that setting.

Example usage:

$ scrapy settings --get BOT_NAME
scrapybot
$ scrapy settings --get DOWNLOAD_DELAY
0

runspider

• Syntax: scrapy runspider <spider_file.py>

• Requires project: no

Run a spider self-contained in a Python file, without having to create a project.

Example usage:

$ scrapy runspider myspider.py
[... spider starts crawling ...]

30 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

version

• Syntax: scrapy version [-v]

• Requires project: no

Prints the Scrapy version. If used with -v it also prints Python, Twisted and Platform info, which is useful for bug
reports.

bench

New in version 0.17.

• Syntax: scrapy bench

• Requires project: no

Run a quick benchmark test. Benchmarking.

3.1.5 Custom project commands

You can also add your custom project commands by using the :setting:‘COMMANDS_MODULE‘ setting. See the
Scrapy commands in scrapy/commands for examples on how to implement your commands.

COMMANDS_MODULE

Default: '' (empty string)

A module to use for looking up custom Scrapy commands. This is used to add custom commands for your Scrapy
project.

Example:

COMMANDS_MODULE = 'mybot.commands'

Register commands via setup.py entry points

Note: This is an experimental feature, use with caution.

You can also add Scrapy commands from an external library by adding a scrapy.commands section in the entry
points of the library setup.py file.

The following example adds my_command command:

from setuptools import setup, find_packages

setup(name='scrapy-mymodule',
entry_points={
'scrapy.commands': [

'my_command=my_scrapy_module.commands:MyCommand',
],

},
)

3.1. Command line tool 31

https://github.com/scrapy/scrapy/tree/master/scrapy/commands

scrapy Documentation, Release 1.5

3.2 Spiders

Spiders are classes which define how a certain site (or a group of sites) will be scraped, including how to perform
the crawl (i.e. follow links) and how to extract structured data from their pages (i.e. scraping items). In other words,
Spiders are the place where you define the custom behaviour for crawling and parsing pages for a particular site (or,
in some cases, a group of sites).

For spiders, the scraping cycle goes through something like this:

1. You start by generating the initial Requests to crawl the first URLs, and specify a callback function to be called
with the response downloaded from those requests.

The first requests to perform are obtained by calling the start_requests() method which (by default)
generates Request for the URLs specified in the start_urls and the parse method as callback function
for the Requests.

2. In the callback function, you parse the response (web page) and return either dicts with extracted data, Item
objects, Request objects, or an iterable of these objects. Those Requests will also contain a callback (maybe
the same) and will then be downloaded by Scrapy and then their response handled by the specified callback.

3. In callback functions, you parse the page contents, typically using Selectors (but you can also use BeautifulSoup,
lxml or whatever mechanism you prefer) and generate items with the parsed data.

4. Finally, the items returned from the spider will be typically persisted to a database (in some Item Pipeline) or
written to a file using Feed exports.

Even though this cycle applies (more or less) to any kind of spider, there are different kinds of default spiders bundled
into Scrapy for different purposes. We will talk about those types here.

3.2.1 scrapy.Spider

class scrapy.spiders.Spider
This is the simplest spider, and the one from which every other spider must inherit (including spiders that come
bundled with Scrapy, as well as spiders that you write yourself). It doesn’t provide any special functionality. It
just provides a default start_requests() implementation which sends requests from the start_urls
spider attribute and calls the spider’s method parse for each of the resulting responses.

name
A string which defines the name for this spider. The spider name is how the spider is located (and instan-
tiated) by Scrapy, so it must be unique. However, nothing prevents you from instantiating more than one
instance of the same spider. This is the most important spider attribute and it’s required.

If the spider scrapes a single domain, a common practice is to name the spider after the domain, with
or without the TLD. So, for example, a spider that crawls mywebsite.com would often be called
mywebsite.

Note: In Python 2 this must be ASCII only.

allowed_domains
An optional list of strings containing domains that this spider is allowed to crawl. Requests for URLs
not belonging to the domain names specified in this list (or their subdomains) won’t be followed if
OffsiteMiddleware is enabled.

Let’s say your target url is https://www.example.com/1.html, then add 'example.com' to
the list.

32 Chapter 3. Basic concepts

https://en.wikipedia.org/wiki/Top-level_domain

scrapy Documentation, Release 1.5

start_urls
A list of URLs where the spider will begin to crawl from, when no particular URLs are specified. So, the
first pages downloaded will be those listed here. The subsequent Request will be generated successively
from data contained in the start URLs.

custom_settings
A dictionary of settings that will be overridden from the project wide configuration when running this
spider. It must be defined as a class attribute since the settings are updated before instantiation.

For a list of available built-in settings see: Built-in settings reference.

crawler
This attribute is set by the from_crawler() class method after initializating the class, and links to the
Crawler object to which this spider instance is bound.

Crawlers encapsulate a lot of components in the project for their single entry access (such as extensions,
middlewares, signals managers, etc). See Crawler API to know more about them.

settings
Configuration for running this spider. This is a Settings instance, see the Settings topic for a detailed
introduction on this subject.

logger
Python logger created with the Spider’s name. You can use it to send log messages through it as described
on Logging from Spiders.

from_crawler(crawler, *args, **kwargs)
This is the class method used by Scrapy to create your spiders.

You probably won’t need to override this directly because the default implementation acts as a proxy to
the __init__() method, calling it with the given arguments args and named arguments kwargs.

Nonetheless, this method sets the crawler and settings attributes in the new instance so they can be
accessed later inside the spider’s code.

Parameters

• crawler (Crawler instance) – crawler to which the spider will be bound

• args (list) – arguments passed to the __init__() method

• kwargs (dict) – keyword arguments passed to the __init__() method

start_requests()
This method must return an iterable with the first Requests to crawl for this spider. It is called by
Scrapy when the spider is opened for scraping. Scrapy calls it only once, so it is safe to implement
start_requests() as a generator.

The default implementation generates Request(url, dont_filter=True) for each url in
start_urls.

If you want to change the Requests used to start scraping a domain, this is the method to override. For
example, if you need to start by logging in using a POST request, you could do:

class MySpider(scrapy.Spider):
name = 'myspider'

def start_requests(self):
return [scrapy.FormRequest("http://www.example.com/login",

formdata={'user': 'john', 'pass': 'secret'}
→˓,

callback=self.logged_in)]

(continues on next page)

3.2. Spiders 33

scrapy Documentation, Release 1.5

(continued from previous page)

def logged_in(self, response):
here you would extract links to follow and return Requests for
each of them, with another callback
pass

parse(response)
This is the default callback used by Scrapy to process downloaded responses, when their requests don’t
specify a callback.

The parse method is in charge of processing the response and returning scraped data and/or more URLs
to follow. Other Requests callbacks have the same requirements as the Spider class.

This method, as well as any other Request callback, must return an iterable of Request and/or dicts or
Item objects.

Parameters response (Response) – the response to parse

log(message[, level, component])
Wrapper that sends a log message through the Spider’s logger, kept for backwards compatibility. For
more information see Logging from Spiders.

closed(reason)
Called when the spider closes. This method provides a shortcut to signals.connect() for the :sig-
nal:‘spider_closed‘ signal.

Let’s see an example:

import scrapy

class MySpider(scrapy.Spider):
name = 'example.com'
allowed_domains = ['example.com']
start_urls = [

'http://www.example.com/1.html',
'http://www.example.com/2.html',
'http://www.example.com/3.html',

]

def parse(self, response):
self.logger.info('A response from %s just arrived!', response.url)

Return multiple Requests and items from a single callback:

import scrapy

class MySpider(scrapy.Spider):
name = 'example.com'
allowed_domains = ['example.com']
start_urls = [

'http://www.example.com/1.html',
'http://www.example.com/2.html',
'http://www.example.com/3.html',

]

def parse(self, response):
for h3 in response.xpath('//h3').extract():

(continues on next page)

34 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

(continued from previous page)

yield {"title": h3}

for url in response.xpath('//a/@href').extract():
yield scrapy.Request(url, callback=self.parse)

Instead of start_urls you can use start_requests() directly; to give data more structure you can use Items:

import scrapy
from myproject.items import MyItem

class MySpider(scrapy.Spider):
name = 'example.com'
allowed_domains = ['example.com']

def start_requests(self):
yield scrapy.Request('http://www.example.com/1.html', self.parse)
yield scrapy.Request('http://www.example.com/2.html', self.parse)
yield scrapy.Request('http://www.example.com/3.html', self.parse)

def parse(self, response):
for h3 in response.xpath('//h3').extract():

yield MyItem(title=h3)

for url in response.xpath('//a/@href').extract():
yield scrapy.Request(url, callback=self.parse)

3.2.2 Spider arguments

Spiders can receive arguments that modify their behaviour. Some common uses for spider arguments are to define the
start URLs or to restrict the crawl to certain sections of the site, but they can be used to configure any functionality of
the spider.

Spider arguments are passed through the crawl command using the -a option. For example:

scrapy crawl myspider -a category=electronics

Spiders can access arguments in their __init__ methods:

import scrapy

class MySpider(scrapy.Spider):
name = 'myspider'

def __init__(self, category=None, *args, **kwargs):
super(MySpider, self).__init__(*args, **kwargs)
self.start_urls = ['http://www.example.com/categories/%s' % category]
...

The default __init__ method will take any spider arguments and copy them to the spider as attributes. The above
example can also be written as follows:

import scrapy

class MySpider(scrapy.Spider):
name = 'myspider'

(continues on next page)

3.2. Spiders 35

scrapy Documentation, Release 1.5

(continued from previous page)

def start_requests(self):
yield scrapy.Request('http://www.example.com/categories/%s' % self.category)

Keep in mind that spider arguments are only strings. The spider will not do any parsing on its own. If you were to
set the start_urls attribute from the command line, you would have to parse it on your own into a list using something
like ast.literal_eval or json.loads and then set it as an attribute. Otherwise, you would cause iteration over a start_urls
string (a very common python pitfall) resulting in each character being seen as a separate url.

A valid use case is to set the http auth credentials used by HttpAuthMiddleware or the user agent used by
UserAgentMiddleware:

scrapy crawl myspider -a http_user=myuser -a http_pass=mypassword -a user_agent=mybot

Spider arguments can also be passed through the Scrapyd schedule.json API. See Scrapyd documentation.

3.2.3 Generic Spiders

Scrapy comes with some useful generic spiders that you can use to subclass your spiders from. Their aim is to provide
convenient functionality for a few common scraping cases, like following all links on a site based on certain rules,
crawling from Sitemaps, or parsing an XML/CSV feed.

For the examples used in the following spiders, we’ll assume you have a project with a TestItem declared in a
myproject.items module:

import scrapy

class TestItem(scrapy.Item):
id = scrapy.Field()
name = scrapy.Field()
description = scrapy.Field()

CrawlSpider

class scrapy.spiders.CrawlSpider
This is the most commonly used spider for crawling regular websites, as it provides a convenient mechanism for
following links by defining a set of rules. It may not be the best suited for your particular web sites or project,
but it’s generic enough for several cases, so you can start from it and override it as needed for more custom
functionality, or just implement your own spider.

Apart from the attributes inherited from Spider (that you must specify), this class supports a new attribute:

rules
Which is a list of one (or more) Rule objects. Each Rule defines a certain behaviour for crawling the
site. Rules objects are described below. If multiple rules match the same link, the first one will be used,
according to the order they’re defined in this attribute.

This spider also exposes an overrideable method:

parse_start_url(response)
This method is called for the start_urls responses. It allows to parse the initial responses and must return
either an Item object, a Request object, or an iterable containing any of them.

36 Chapter 3. Basic concepts

https://docs.python.org/library/ast.html#ast.literal_eval
https://docs.python.org/library/json.html#json.loads
https://scrapyd.readthedocs.io/en/latest/
https://www.sitemaps.org/index.html

scrapy Documentation, Release 1.5

Crawling rules

class scrapy.spiders.Rule(link_extractor, callback=None, cb_kwargs=None, follow=None, pro-
cess_links=None, process_request=None)

link_extractor is a Link Extractor object which defines how links will be extracted from each crawled
page.

callback is a callable or a string (in which case a method from the spider object with that name will be used)
to be called for each link extracted with the specified link_extractor. This callback receives a response as its first
argument and must return a list containing Item and/or Request objects (or any subclass of them).

Warning: When writing crawl spider rules, avoid using parse as callback, since the CrawlSpider uses
the parse method itself to implement its logic. So if you override the parse method, the crawl spider will
no longer work.

cb_kwargs is a dict containing the keyword arguments to be passed to the callback function.

follow is a boolean which specifies if links should be followed from each response extracted with this rule. If
callback is None follow defaults to True, otherwise it defaults to False.

process_links is a callable, or a string (in which case a method from the spider object with that name
will be used) which will be called for each list of links extracted from each response using the specified
link_extractor. This is mainly used for filtering purposes.

process_request is a callable, or a string (in which case a method from the spider object with that name
will be used) which will be called with every request extracted by this rule, and must return a request or None
(to filter out the request).

CrawlSpider example

Let’s now take a look at an example CrawlSpider with rules:

import scrapy
from scrapy.spiders import CrawlSpider, Rule
from scrapy.linkextractors import LinkExtractor

class MySpider(CrawlSpider):
name = 'example.com'
allowed_domains = ['example.com']
start_urls = ['http://www.example.com']

rules = (
Extract links matching 'category.php' (but not matching 'subsection.php')
and follow links from them (since no callback means follow=True by default).
Rule(LinkExtractor(allow=('category\.php',), deny=('subsection\.php',))),

Extract links matching 'item.php' and parse them with the spider's method
→˓parse_item

Rule(LinkExtractor(allow=('item\.php',)), callback='parse_item'),
)

def parse_item(self, response):
self.logger.info('Hi, this is an item page! %s', response.url)
item = scrapy.Item()
item['id'] = response.xpath('//td[@id="item_id"]/text()').re(r'ID: (\d+)')

(continues on next page)

3.2. Spiders 37

scrapy Documentation, Release 1.5

(continued from previous page)

item['name'] = response.xpath('//td[@id="item_name"]/text()').extract()
item['description'] = response.xpath('//td[@id="item_description"]/text()').

→˓extract()
return item

This spider would start crawling example.com’s home page, collecting category links, and item links, parsing the latter
with the parse_item method. For each item response, some data will be extracted from the HTML using XPath,
and an Item will be filled with it.

XMLFeedSpider

class scrapy.spiders.XMLFeedSpider
XMLFeedSpider is designed for parsing XML feeds by iterating through them by a certain node name. The
iterator can be chosen from: iternodes, xml, and html. It’s recommended to use the iternodes iterator
for performance reasons, since the xml and html iterators generate the whole DOM at once in order to parse
it. However, using html as the iterator may be useful when parsing XML with bad markup.

To set the iterator and the tag name, you must define the following class attributes:

iterator
A string which defines the iterator to use. It can be either:

• 'iternodes' - a fast iterator based on regular expressions

• 'html' - an iterator which uses Selector. Keep in mind this uses DOM parsing and must load
all DOM in memory which could be a problem for big feeds

• 'xml' - an iterator which uses Selector. Keep in mind this uses DOM parsing and must load all
DOM in memory which could be a problem for big feeds

It defaults to: 'iternodes'.

itertag
A string with the name of the node (or element) to iterate in. Example:

itertag = 'product'

namespaces
A list of (prefix, uri) tuples which define the namespaces available in that document that will be
processed with this spider. The prefix and uri will be used to automatically register namespaces using
the register_namespace() method.

You can then specify nodes with namespaces in the itertag attribute.

Example:

class YourSpider(XMLFeedSpider):

namespaces = [('n', 'http://www.sitemaps.org/schemas/sitemap/0.9')]
itertag = 'n:url'
...

Apart from these new attributes, this spider has the following overrideable methods too:

adapt_response(response)
A method that receives the response as soon as it arrives from the spider middleware, before the spider
starts parsing it. It can be used to modify the response body before parsing it. This method receives a
response and also returns a response (it could be the same or another one).

38 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

parse_node(response, selector)
This method is called for the nodes matching the provided tag name (itertag). Receives the response
and an Selector for each node. Overriding this method is mandatory. Otherwise, you spider won’t
work. This method must return either a Item object, a Request object, or an iterable containing any of
them.

process_results(response, results)
This method is called for each result (item or request) returned by the spider, and it’s intended to perform
any last time processing required before returning the results to the framework core, for example setting
the item IDs. It receives a list of results and the response which originated those results. It must return a
list of results (Items or Requests).

XMLFeedSpider example

These spiders are pretty easy to use, let’s have a look at one example:

from scrapy.spiders import XMLFeedSpider
from myproject.items import TestItem

class MySpider(XMLFeedSpider):
name = 'example.com'
allowed_domains = ['example.com']
start_urls = ['http://www.example.com/feed.xml']
iterator = 'iternodes' # This is actually unnecessary, since it's the default

→˓value
itertag = 'item'

def parse_node(self, response, node):
self.logger.info('Hi, this is a <%s> node!: %s', self.itertag, ''.join(node.

→˓extract()))

item = TestItem()
item['id'] = node.xpath('@id').extract()
item['name'] = node.xpath('name').extract()
item['description'] = node.xpath('description').extract()
return item

Basically what we did up there was to create a spider that downloads a feed from the given start_urls, and then
iterates through each of its item tags, prints them out, and stores some random data in an Item.

CSVFeedSpider

class scrapy.spiders.CSVFeedSpider
This spider is very similar to the XMLFeedSpider, except that it iterates over rows, instead of nodes. The method
that gets called in each iteration is parse_row().

delimiter
A string with the separator character for each field in the CSV file Defaults to ',' (comma).

quotechar
A string with the enclosure character for each field in the CSV file Defaults to '"' (quotation mark).

headers
A list of the column names in the CSV file.

parse_row(response, row)
Receives a response and a dict (representing each row) with a key for each provided (or detected)

3.2. Spiders 39

scrapy Documentation, Release 1.5

header of the CSV file. This spider also gives the opportunity to override adapt_response and
process_results methods for pre- and post-processing purposes.

CSVFeedSpider example

Let’s see an example similar to the previous one, but using a CSVFeedSpider:

from scrapy.spiders import CSVFeedSpider
from myproject.items import TestItem

class MySpider(CSVFeedSpider):
name = 'example.com'
allowed_domains = ['example.com']
start_urls = ['http://www.example.com/feed.csv']
delimiter = ';'
quotechar = "'"
headers = ['id', 'name', 'description']

def parse_row(self, response, row):
self.logger.info('Hi, this is a row!: %r', row)

item = TestItem()
item['id'] = row['id']
item['name'] = row['name']
item['description'] = row['description']
return item

SitemapSpider

class scrapy.spiders.SitemapSpider
SitemapSpider allows you to crawl a site by discovering the URLs using Sitemaps.

It supports nested sitemaps and discovering sitemap urls from robots.txt.

sitemap_urls
A list of urls pointing to the sitemaps whose urls you want to crawl.

You can also point to a robots.txt and it will be parsed to extract sitemap urls from it.

sitemap_rules
A list of tuples (regex, callback) where:

• regex is a regular expression to match urls extracted from sitemaps. regex can be either a str or a
compiled regex object.

• callback is the callback to use for processing the urls that match the regular expression. callback
can be a string (indicating the name of a spider method) or a callable.

For example:

sitemap_rules = [('/product/', 'parse_product')]

Rules are applied in order, and only the first one that matches will be used.

If you omit this attribute, all urls found in sitemaps will be processed with the parse callback.

40 Chapter 3. Basic concepts

https://www.sitemaps.org/index.html
http://www.robotstxt.org/
http://www.robotstxt.org/

scrapy Documentation, Release 1.5

sitemap_follow
A list of regexes of sitemap that should be followed. This is is only for sites that use Sitemap index files
that point to other sitemap files.

By default, all sitemaps are followed.

sitemap_alternate_links
Specifies if alternate links for one url should be followed. These are links for the same website in another
language passed within the same url block.

For example:

<url>
<loc>http://example.com/</loc>
<xhtml:link rel="alternate" hreflang="de" href="http://example.com/de"/>

</url>

With sitemap_alternate_links set, this would retrieve both URLs. With
sitemap_alternate_links disabled, only http://example.com/ would be retrieved.

Default is sitemap_alternate_links disabled.

SitemapSpider examples

Simplest example: process all urls discovered through sitemaps using the parse callback:

from scrapy.spiders import SitemapSpider

class MySpider(SitemapSpider):
sitemap_urls = ['http://www.example.com/sitemap.xml']

def parse(self, response):
pass # ... scrape item here ...

Process some urls with certain callback and other urls with a different callback:

from scrapy.spiders import SitemapSpider

class MySpider(SitemapSpider):
sitemap_urls = ['http://www.example.com/sitemap.xml']
sitemap_rules = [

('/product/', 'parse_product'),
('/category/', 'parse_category'),

]

def parse_product(self, response):
pass # ... scrape product ...

def parse_category(self, response):
pass # ... scrape category ...

Follow sitemaps defined in the robots.txt file and only follow sitemaps whose url contains /sitemap_shop:

from scrapy.spiders import SitemapSpider

class MySpider(SitemapSpider):
sitemap_urls = ['http://www.example.com/robots.txt']

(continues on next page)

3.2. Spiders 41

https://www.sitemaps.org/protocol.html#index
http://www.robotstxt.org/

scrapy Documentation, Release 1.5

(continued from previous page)

sitemap_rules = [
('/shop/', 'parse_shop'),

]
sitemap_follow = ['/sitemap_shops']

def parse_shop(self, response):
pass # ... scrape shop here ...

Combine SitemapSpider with other sources of urls:

from scrapy.spiders import SitemapSpider

class MySpider(SitemapSpider):
sitemap_urls = ['http://www.example.com/robots.txt']
sitemap_rules = [

('/shop/', 'parse_shop'),
]

other_urls = ['http://www.example.com/about']

def start_requests(self):
requests = list(super(MySpider, self).start_requests())
requests += [scrapy.Request(x, self.parse_other) for x in self.other_urls]
return requests

def parse_shop(self, response):
pass # ... scrape shop here ...

def parse_other(self, response):
pass # ... scrape other here ...

3.3 Selectors

When you’re scraping web pages, the most common task you need to perform is to extract data from the HTML source.
There are several libraries available to achieve this:

• BeautifulSoup is a very popular web scraping library among Python programmers which constructs a Python
object based on the structure of the HTML code and also deals with bad markup reasonably well, but it has one
drawback: it’s slow.

• lxml is an XML parsing library (which also parses HTML) with a pythonic API based on ElementTree. (lxml is
not part of the Python standard library.)

Scrapy comes with its own mechanism for extracting data. They’re called selectors because they “select” certain parts
of the HTML document specified either by XPath or CSS expressions.

XPath is a language for selecting nodes in XML documents, which can also be used with HTML. CSS is a language
for applying styles to HTML documents. It defines selectors to associate those styles with specific HTML elements.

Scrapy selectors are built over the lxml library, which means they’re very similar in speed and parsing accuracy.

This page explains how selectors work and describes their API which is very small and simple, unlike the lxml API
which is much bigger because the lxml library can be used for many other tasks, besides selecting markup documents.

For a complete reference of the selectors API see Selector reference

42 Chapter 3. Basic concepts

https://www.crummy.com/software/BeautifulSoup/
http://lxml.de/
https://docs.python.org/2/library/xml.etree.elementtree.html
https://www.w3.org/TR/xpath
https://www.w3.org/TR/selectors
https://www.w3.org/TR/xpath
https://www.w3.org/TR/selectors
http://lxml.de/
http://lxml.de/
http://lxml.de/

scrapy Documentation, Release 1.5

3.3.1 Using selectors

Constructing selectors

Scrapy selectors are instances of Selector class constructed by passing text or TextResponse object. It auto-
matically chooses the best parsing rules (XML vs HTML) based on input type:

>>> from scrapy.selector import Selector
>>> from scrapy.http import HtmlResponse

Constructing from text:

>>> body = '<html><body>good</body></html>'
>>> Selector(text=body).xpath('//span/text()').extract()
[u'good']

Constructing from response:

>>> response = HtmlResponse(url='http://example.com', body=body)
>>> Selector(response=response).xpath('//span/text()').extract()
[u'good']

For convenience, response objects expose a selector on .selector attribute, it’s totally OK to use this shortcut when
possible:

>>> response.selector.xpath('//span/text()').extract()
[u'good']

Using selectors

To explain how to use the selectors we’ll use the Scrapy shell (which provides interactive testing) and an example page
located in the Scrapy documentation server:

https://doc.scrapy.org/en/latest/_static/selectors-sample1.html

Here’s its HTML code:

First, let’s open the shell:

scrapy shell https://doc.scrapy.org/en/latest/_static/selectors-sample1.html

Then, after the shell loads, you’ll have the response available as response shell variable, and its attached selector in
response.selector attribute.

Since we’re dealing with HTML, the selector will automatically use an HTML parser.

So, by looking at the HTML code of that page, let’s construct an XPath for selecting the text inside the title tag:

>>> response.selector.xpath('//title/text()')
[<Selector (text) xpath=//title/text()>]

Querying responses using XPath and CSS is so common that responses include two convenience shortcuts:
response.xpath() and response.css():

>>> response.xpath('//title/text()')
[<Selector (text) xpath=//title/text()>]
>>> response.css('title::text')
[<Selector (text) xpath=//title/text()>]

3.3. Selectors 43

https://doc.scrapy.org/en/latest/_static/selectors-sample1.html

scrapy Documentation, Release 1.5

As you can see, .xpath() and .css()methods return a SelectorList instance, which is a list of new selectors.
This API can be used for quickly selecting nested data:

>>> response.css('img').xpath('@src').extract()
[u'image1_thumb.jpg',
u'image2_thumb.jpg',
u'image3_thumb.jpg',
u'image4_thumb.jpg',
u'image5_thumb.jpg']

To actually extract the textual data, you must call the selector .extract() method, as follows:

>>> response.xpath('//title/text()').extract()
[u'Example website']

If you want to extract only first matched element, you can call the selector .extract_first()

>>> response.xpath('//div[@id="images"]/a/text()').extract_first()
u'Name: My image 1 '

It returns None if no element was found:

>>> response.xpath('//div[@id="not-exists"]/text()').extract_first() is None
True

A default return value can be provided as an argument, to be used instead of None:

>>> response.xpath('//div[@id="not-exists"]/text()').extract_first(default='not-found
→˓')
'not-found'

Notice that CSS selectors can select text or attribute nodes using CSS3 pseudo-elements:

>>> response.css('title::text').extract()
[u'Example website']

Now we’re going to get the base URL and some image links:

>>> response.xpath('//base/@href').extract()
[u'http://example.com/']

>>> response.css('base::attr(href)').extract()
[u'http://example.com/']

>>> response.xpath('//a[contains(@href, "image")]/@href').extract()
[u'image1.html',
u'image2.html',
u'image3.html',
u'image4.html',
u'image5.html']

>>> response.css('a[href*=image]::attr(href)').extract()
[u'image1.html',
u'image2.html',
u'image3.html',
u'image4.html',
u'image5.html']

(continues on next page)

44 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

(continued from previous page)

>>> response.xpath('//a[contains(@href, "image")]/img/@src').extract()
[u'image1_thumb.jpg',
u'image2_thumb.jpg',
u'image3_thumb.jpg',
u'image4_thumb.jpg',
u'image5_thumb.jpg']

>>> response.css('a[href*=image] img::attr(src)').extract()
[u'image1_thumb.jpg',
u'image2_thumb.jpg',
u'image3_thumb.jpg',
u'image4_thumb.jpg',
u'image5_thumb.jpg']

Nesting selectors

The selection methods (.xpath() or .css()) return a list of selectors of the same type, so you can call the selection
methods for those selectors too. Here’s an example:

>>> links = response.xpath('//a[contains(@href, "image")]')
>>> links.extract()
[u'Name: My image 1
',
u'Name: My image 2
',
u'Name: My image 3
',
u'Name: My image 4
',
u'Name: My image 5
']

>>> for index, link in enumerate(links):
... args = (index, link.xpath('@href').extract(), link.xpath('img/@src').
→˓extract())
... print 'Link number %d points to url %s and image %s' % args

Link number 0 points to url [u'image1.html'] and image [u'image1_thumb.jpg']
Link number 1 points to url [u'image2.html'] and image [u'image2_thumb.jpg']
Link number 2 points to url [u'image3.html'] and image [u'image3_thumb.jpg']
Link number 3 points to url [u'image4.html'] and image [u'image4_thumb.jpg']
Link number 4 points to url [u'image5.html'] and image [u'image5_thumb.jpg']

Using selectors with regular expressions

Selector also has a .re() method for extracting data using regular expressions. However, unlike using .
xpath() or .css() methods, .re() returns a list of unicode strings. So you can’t construct nested .re()
calls.

Here’s an example used to extract image names from the HTML code above:

>>> response.xpath('//a[contains(@href, "image")]/text()').re(r'Name:\s*(.*)')
[u'My image 1',
u'My image 2',
u'My image 3',
u'My image 4',
u'My image 5']

3.3. Selectors 45

scrapy Documentation, Release 1.5

There’s an additional helper reciprocating .extract_first() for .re(), named .re_first(). Use it to
extract just the first matching string:

>>> response.xpath('//a[contains(@href, "image")]/text()').re_first(r'Name:\s*(.*)')
u'My image 1'

Working with relative XPaths

Keep in mind that if you are nesting selectors and use an XPath that starts with /, that XPath will be absolute to the
document and not relative to the Selector you’re calling it from.

For example, suppose you want to extract all <p> elements inside <div> elements. First, you would get all <div>
elements:

>>> divs = response.xpath('//div')

At first, you may be tempted to use the following approach, which is wrong, as it actually extracts all <p> elements
from the document, not only those inside <div> elements:

>>> for p in divs.xpath('//p'): # this is wrong - gets all <p> from the whole
→˓document
... print p.extract()

This is the proper way to do it (note the dot prefixing the .//p XPath):

>>> for p in divs.xpath('.//p'): # extracts all <p> inside
... print p.extract()

Another common case would be to extract all direct <p> children:

>>> for p in divs.xpath('p'):
... print p.extract()

For more details about relative XPaths see the Location Paths section in the XPath specification.

Variables in XPath expressions

XPath allows you to reference variables in your XPath expressions, using the $somevariable syntax. This is some-
what similar to parameterized queries or prepared statements in the SQL world where you replace some arguments in
your queries with placeholders like ?, which are then substituted with values passed with the query.

Here’s an example to match an element based on its “id” attribute value, without hard-coding it (that was shown
previously):

>>> # `$val` used in the expression, a `val` argument needs to be passed
>>> response.xpath('//div[@id=$val]/a/text()', val='images').extract_first()
u'Name: My image 1 '

Here’s another example, to find the “id” attribute of a <div> tag containing five <a> children (here we pass the value
5 as an integer):

>>> response.xpath('//div[count(a)=$cnt]/@id', cnt=5).extract_first()
u'images'

46 Chapter 3. Basic concepts

https://www.w3.org/TR/xpath#location-paths

scrapy Documentation, Release 1.5

All variable references must have a binding value when calling .xpath() (otherwise you’ll get a ValueError:
XPath error: exception). This is done by passing as many named arguments as necessary.

parsel, the library powering Scrapy selectors, has more details and examples on XPath variables.

Using EXSLT extensions

Being built atop lxml, Scrapy selectors also support some EXSLT extensions and come with these pre-registered
namespaces to use in XPath expressions:

prefix namespace usage
re http://exslt.org/regular-expressions regular expressions
set http://exslt.org/sets set manipulation

Regular expressions

The test() function, for example, can prove quite useful when XPath’s starts-with() or contains() are
not sufficient.

Example selecting links in list item with a “class” attribute ending with a digit:

>>> from scrapy import Selector
>>> doc = """
... <div>
...
... <li class="item-0">first item
... <li class="item-1">second item
... <li class="item-inactive">third item
... <li class="item-1">fourth item
... <li class="item-0">fifth item
...
... </div>
... """
>>> sel = Selector(text=doc, type="html")
>>> sel.xpath('//li//@href').extract()
[u'link1.html', u'link2.html', u'link3.html', u'link4.html', u'link5.html']
>>> sel.xpath('//li[re:test(@class, "item-\d$")]//@href').extract()
[u'link1.html', u'link2.html', u'link4.html', u'link5.html']
>>>

Warning: C library libxslt doesn’t natively support EXSLT regular expressions so lxml’s implementation
uses hooks to Python’s re module. Thus, using regexp functions in your XPath expressions may add a small
performance penalty.

Set operations

These can be handy for excluding parts of a document tree before extracting text elements for example.

Example extracting microdata (sample content taken from http://schema.org/Product) with groups of itemscopes and
corresponding itemprops:

3.3. Selectors 47

https://parsel.readthedocs.io/
https://parsel.readthedocs.io/en/latest/usage.html#variables-in-xpath-expressions
http://lxml.de/
http://exslt.org/
http://exslt.org/regexp/index.html
http://exslt.org/set/index.html
http://lxml.de/
http://schema.org/Product

scrapy Documentation, Release 1.5

>>> doc = """
... <div itemscope itemtype="http://schema.org/Product">
... Kenmore White 17" Microwave
...
... <div itemprop="aggregateRating"
... itemscope itemtype="http://schema.org/AggregateRating">
... Rated 3.5/5
... based on 11 customer reviews
... </div>
...
... <div itemprop="offers" itemscope itemtype="http://schema.org/Offer">
... $55.00
... <link itemprop="availability" href="http://schema.org/InStock" />In stock
... </div>
...
... Product description:
... 0.7 cubic feet countertop microwave.
... Has six preset cooking categories and convenience features like
... Add-A-Minute and Child Lock.
...
... Customer reviews:
...
... <div itemprop="review" itemscope itemtype="http://schema.org/Review">
... Not a happy camper -
... by Ellie,
... <meta itemprop="datePublished" content="2011-04-01">April 1, 2011
... <div itemprop="reviewRating" itemscope itemtype="http://schema.org/Rating">
... <meta itemprop="worstRating" content = "1">
... 1/
... 5stars
... </div>
... The lamp burned out and now I have to replace
... it.
... </div>
...
... <div itemprop="review" itemscope itemtype="http://schema.org/Review">
... Value purchase -
... by Lucas,
... <meta itemprop="datePublished" content="2011-03-25">March 25, 2011
... <div itemprop="reviewRating" itemscope itemtype="http://schema.org/Rating">
... <meta itemprop="worstRating" content = "1"/>
... 4/
... 5stars
... </div>
... Great microwave for the price. It is small and
... fits in my apartment.
... </div>
... ...
... </div>
... """
>>> sel = Selector(text=doc, type="html")
>>> for scope in sel.xpath('//div[@itemscope]'):
... print "current scope:", scope.xpath('@itemtype').extract()
... props = scope.xpath('''
... set:difference(./descendant::*/@itemprop,
... .//*[@itemscope]/*/@itemprop)''')
... print " properties:", props.extract()

(continues on next page)

48 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

(continued from previous page)

... print

current scope: [u'http://schema.org/Product']
properties: [u'name', u'aggregateRating', u'offers', u'description', u'review', u

→˓'review']

current scope: [u'http://schema.org/AggregateRating']
properties: [u'ratingValue', u'reviewCount']

current scope: [u'http://schema.org/Offer']
properties: [u'price', u'availability']

current scope: [u'http://schema.org/Review']
properties: [u'name', u'author', u'datePublished', u'reviewRating', u'description

→˓']

current scope: [u'http://schema.org/Rating']
properties: [u'worstRating', u'ratingValue', u'bestRating']

current scope: [u'http://schema.org/Review']
properties: [u'name', u'author', u'datePublished', u'reviewRating', u'description

→˓']

current scope: [u'http://schema.org/Rating']
properties: [u'worstRating', u'ratingValue', u'bestRating']

>>>

Here we first iterate over itemscope elements, and for each one, we look for all itemprops elements and exclude
those that are themselves inside another itemscope.

Some XPath tips

Here are some tips that you may find useful when using XPath with Scrapy selectors, based on this post from Scrap-
ingHub’s blog. If you are not much familiar with XPath yet, you may want to take a look first at this XPath tutorial.

Using text nodes in a condition

When you need to use the text content as argument to an XPath string function, avoid using .//text() and use just
. instead.

This is because the expression .//text() yields a collection of text elements – a node-set. And when a node-
set is converted to a string, which happens when it is passed as argument to a string function like contains() or
starts-with(), it results in the text for the first element only.

Example:

>>> from scrapy import Selector
>>> sel = Selector(text='Click here to go to the Next Page</
→˓strong>')

Converting a node-set to string:

3.3. Selectors 49

https://blog.scrapinghub.com/2014/07/17/xpath-tips-from-the-web-scraping-trenches/
https://blog.scrapinghub.com/2014/07/17/xpath-tips-from-the-web-scraping-trenches/
http://www.zvon.org/comp/r/tut-XPath_1.html
https://www.w3.org/TR/xpath/#section-String-Functions

scrapy Documentation, Release 1.5

>>> sel.xpath('//a//text()').extract() # take a peek at the node-set
[u'Click here to go to the ', u'Next Page']
>>> sel.xpath("string(//a[1]//text())").extract() # convert it to string
[u'Click here to go to the ']

A node converted to a string, however, puts together the text of itself plus of all its descendants:

>>> sel.xpath("//a[1]").extract() # select the first node
[u'Click here to go to the Next Page']
>>> sel.xpath("string(//a[1])").extract() # convert it to string
[u'Click here to go to the Next Page']

So, using the .//text() node-set won’t select anything in this case:

>>> sel.xpath("//a[contains(.//text(), 'Next Page')]").extract()
[]

But using the . to mean the node, works:

>>> sel.xpath("//a[contains(., 'Next Page')]").extract()
[u'Click here to go to the Next Page']

Beware of the difference between //node[1] and (//node)[1]

//node[1] selects all the nodes occurring first under their respective parents.

(//node)[1] selects all the nodes in the document, and then gets only the first of them.

Example:

>>> from scrapy import Selector
>>> sel = Selector(text="""
....: <ul class="list">
....: 1
....: 2
....: 3
....:
....: <ul class="list">
....: 4
....: 5
....: 6
....: """)
>>> xp = lambda x: sel.xpath(x).extract()

This gets all first elements under whatever it is its parent:

>>> xp("//li[1]")
[u'1', u'4']

And this gets the first element in the whole document:

>>> xp("(//li)[1]")
[u'1']

This gets all first elements under an parent:

50 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

>>> xp("//ul/li[1]")
[u'1', u'4']

And this gets the first element under an parent in the whole document:

>>> xp("(//ul/li)[1]")
[u'1']

When querying by class, consider using CSS

Because an element can contain multiple CSS classes, the XPath way to select elements by class is the rather verbose:

*[contains(concat(' ', normalize-space(@class), ' '), ' someclass ')]

If you use @class='someclass' you may end up missing elements that have other classes, and if you just use
contains(@class, 'someclass') to make up for that you may end up with more elements that you want, if
they have a different class name that shares the string someclass.

As it turns out, Scrapy selectors allow you to chain selectors, so most of the time you can just select by class using
CSS and then switch to XPath when needed:

>>> from scrapy import Selector
>>> sel = Selector(text='<div class="hero shout"><time datetime="2014-07-23 19:00">
→˓Special date</time></div>')
>>> sel.css('.shout').xpath('./time/@datetime').extract()
[u'2014-07-23 19:00']

This is cleaner than using the verbose XPath trick shown above. Just remember to use the . in the XPath expressions
that will follow.

3.3.2 Built-in Selectors reference

Selector objects

class scrapy.selector.Selector(response=None, text=None, type=None)
An instance of Selector is a wrapper over response to select certain parts of its content.

response is an HtmlResponse or an XmlResponse object that will be used for selecting and extracting
data.

text is a unicode string or utf-8 encoded text for cases when a response isn’t available. Using text and
response together is undefined behavior.

type defines the selector type, it can be "html", "xml" or None (default).

If type is None, the selector automatically chooses the best type based on response
type (see below), or defaults to "html" in case it is used together with text.

If type is None and a response is passed, the selector type is inferred from the response
type as follows:

• "html" for HtmlResponse type

• "xml" for XmlResponse type

• "html" for anything else

3.3. Selectors 51

scrapy Documentation, Release 1.5

Otherwise, if type is set, the selector type will be forced and no detection will occur.

xpath(query)
Find nodes matching the xpath query and return the result as a SelectorList instance with all ele-
ments flattened. List elements implement Selector interface too.

query is a string containing the XPATH query to apply.

Note: For convenience, this method can be called as response.xpath()

css(query)
Apply the given CSS selector and return a SelectorList instance.

query is a string containing the CSS selector to apply.

In the background, CSS queries are translated into XPath queries using cssselect library and run .
xpath() method.

Note: For convenience this method can be called as response.css()

extract()
Serialize and return the matched nodes as a list of unicode strings. Percent encoded content is unquoted.

re(regex)

Apply the given regex and return a list of unicode strings with the matches.

regex can be either a compiled regular expression or a string which will be compiled to a regular
expression using re.compile(regex)

Note: Note that re() and re_first() both decode HTML entities (except < and &).

register_namespace(prefix, uri)
Register the given namespace to be used in this Selector. Without registering namespaces you can’t
select or extract data from non-standard namespaces. See examples below.

remove_namespaces()
Remove all namespaces, allowing to traverse the document using namespace-less xpaths. See example
below.

__nonzero__()
Returns True if there is any real content selected or False otherwise. In other words, the boolean value
of a Selector is given by the contents it selects.

SelectorList objects

class scrapy.selector.SelectorList
The SelectorList class is a subclass of the builtin list class, which provides a few additional methods.

xpath(query)
Call the .xpath() method for each element in this list and return their results flattened as another
SelectorList.

query is the same argument as the one in Selector.xpath()

52 Chapter 3. Basic concepts

https://pypi.python.org/pypi/cssselect/

scrapy Documentation, Release 1.5

css(query)
Call the .css() method for each element in this list and return their results flattened as another
SelectorList.

query is the same argument as the one in Selector.css()

extract()
Call the .extract() method for each element in this list and return their results flattened, as a list of
unicode strings.

re()
Call the .re() method for each element in this list and return their results flattened, as a list of unicode
strings.

Selector examples on HTML response

Here’s a couple of Selector examples to illustrate several concepts. In all cases, we assume there is already a
Selector instantiated with a HtmlResponse object like this:

sel = Selector(html_response)

1. Select all <h1> elements from an HTML response body, returning a list of Selector objects (ie. a
SelectorList object):

sel.xpath("//h1")

2. Extract the text of all <h1> elements from an HTML response body, returning a list of unicode strings:

sel.xpath("//h1").extract() # this includes the h1 tag
sel.xpath("//h1/text()").extract() # this excludes the h1 tag

3. Iterate over all <p> tags and print their class attribute:

for node in sel.xpath("//p"):
print node.xpath("@class").extract()

Selector examples on XML response

Here’s a couple of examples to illustrate several concepts. In both cases we assume there is already a Selector
instantiated with an XmlResponse object like this:

sel = Selector(xml_response)

1. Select all <product> elements from an XML response body, returning a list of Selector objects (ie. a
SelectorList object):

sel.xpath("//product")

2. Extract all prices from a Google Base XML feed which requires registering a namespace:

sel.register_namespace("g", "http://base.google.com/ns/1.0")
sel.xpath("//g:price").extract()

3.3. Selectors 53

https://support.google.com/merchants/answer/160589?hl=en&ref_topic=2473799

scrapy Documentation, Release 1.5

Removing namespaces

When dealing with scraping projects, it is often quite convenient to get rid of namespaces altogether and just work with
element names, to write more simple/convenient XPaths. You can use the Selector.remove_namespaces()
method for that.

Let’s show an example that illustrates this with GitHub blog atom feed.

First, we open the shell with the url we want to scrape:

$ scrapy shell https://github.com/blog.atom

Once in the shell we can try selecting all <link> objects and see that it doesn’t work (because the Atom XML
namespace is obfuscating those nodes):

>>> response.xpath("//link")
[]

But once we call the Selector.remove_namespaces() method, all nodes can be accessed directly by their
names:

>>> response.selector.remove_namespaces()
>>> response.xpath("//link")
[<Selector xpath='//link' data=u'<link xmlns="http://www.w3.org/2005/Atom'>,
<Selector xpath='//link' data=u'<link xmlns="http://www.w3.org/2005/Atom'>,
...

If you wonder why the namespace removal procedure isn’t always called by default instead of having to call it manu-
ally, this is because of two reasons, which, in order of relevance, are:

1. Removing namespaces requires to iterate and modify all nodes in the document, which is a reasonably expensive
operation to perform for all documents crawled by Scrapy

2. There could be some cases where using namespaces is actually required, in case some element names clash
between namespaces. These cases are very rare though.

3.4 Items

The main goal in scraping is to extract structured data from unstructured sources, typically, web pages. Scrapy spiders
can return the extracted data as Python dicts. While convenient and familiar, Python dicts lack structure: it is easy to
make a typo in a field name or return inconsistent data, especially in a larger project with many spiders.

To define common output data format Scrapy provides the Item class. Item objects are simple containers used to
collect the scraped data. They provide a dictionary-like API with a convenient syntax for declaring their available
fields.

Various Scrapy components use extra information provided by Items: exporters look at declared fields to figure out
columns to export, serialization can be customized using Item fields metadata, trackref tracks Item instances to
help find memory leaks (see Debugging memory leaks with trackref), etc.

3.4.1 Declaring Items

Items are declared using a simple class definition syntax and Field objects. Here is an example:

54 Chapter 3. Basic concepts

https://docs.python.org/2/library/stdtypes.html#dict

scrapy Documentation, Release 1.5

import scrapy

class Product(scrapy.Item):
name = scrapy.Field()
price = scrapy.Field()
stock = scrapy.Field()
last_updated = scrapy.Field(serializer=str)

Note: Those familiar with Django will notice that Scrapy Items are declared similar to Django Models, except that
Scrapy Items are much simpler as there is no concept of different field types.

3.4.2 Item Fields

Field objects are used to specify metadata for each field. For example, the serializer function for the
last_updated field illustrated in the example above.

You can specify any kind of metadata for each field. There is no restriction on the values accepted by Field objects.
For this same reason, there is no reference list of all available metadata keys. Each key defined in Field objects
could be used by a different component, and only those components know about it. You can also define and use any
other Field key in your project too, for your own needs. The main goal of Field objects is to provide a way to
define all field metadata in one place. Typically, those components whose behaviour depends on each field use certain
field keys to configure that behaviour. You must refer to their documentation to see which metadata keys are used by
each component.

It’s important to note that the Field objects used to declare the item do not stay assigned as class attributes. Instead,
they can be accessed through the Item.fields attribute.

3.4.3 Working with Items

Here are some examples of common tasks performed with items, using the Product item declared above. You will
notice the API is very similar to the dict API.

Creating items

>>> product = Product(name='Desktop PC', price=1000)
>>> print product
Product(name='Desktop PC', price=1000)

Getting field values

>>> product['name']
Desktop PC
>>> product.get('name')
Desktop PC

>>> product['price']
1000

>>> product['last_updated']

(continues on next page)

3.4. Items 55

https://www.djangoproject.com/
https://docs.djangoproject.com/en/dev/topics/db/models/
https://docs.python.org/2/library/stdtypes.html#dict

scrapy Documentation, Release 1.5

(continued from previous page)

Traceback (most recent call last):
...

KeyError: 'last_updated'

>>> product.get('last_updated', 'not set')
not set

>>> product['lala'] # getting unknown field
Traceback (most recent call last):

...
KeyError: 'lala'

>>> product.get('lala', 'unknown field')
'unknown field'

>>> 'name' in product # is name field populated?
True

>>> 'last_updated' in product # is last_updated populated?
False

>>> 'last_updated' in product.fields # is last_updated a declared field?
True

>>> 'lala' in product.fields # is lala a declared field?
False

Setting field values

>>> product['last_updated'] = 'today'
>>> product['last_updated']
today

>>> product['lala'] = 'test' # setting unknown field
Traceback (most recent call last):

...
KeyError: 'Product does not support field: lala'

Accessing all populated values

To access all populated values, just use the typical dict API:

>>> product.keys()
['price', 'name']

>>> product.items()
[('price', 1000), ('name', 'Desktop PC')]

Other common tasks

Copying items:

56 Chapter 3. Basic concepts

https://docs.python.org/2/library/stdtypes.html#dict

scrapy Documentation, Release 1.5

>>> product2 = Product(product)
>>> print product2
Product(name='Desktop PC', price=1000)

>>> product3 = product2.copy()
>>> print product3
Product(name='Desktop PC', price=1000)

Creating dicts from items:

>>> dict(product) # create a dict from all populated values
{'price': 1000, 'name': 'Desktop PC'}

Creating items from dicts:

>>> Product({'name': 'Laptop PC', 'price': 1500})
Product(price=1500, name='Laptop PC')

>>> Product({'name': 'Laptop PC', 'lala': 1500}) # warning: unknown field in dict
Traceback (most recent call last):

...
KeyError: 'Product does not support field: lala'

3.4.4 Extending Items

You can extend Items (to add more fields or to change some metadata for some fields) by declaring a subclass of your
original Item.

For example:

class DiscountedProduct(Product):
discount_percent = scrapy.Field(serializer=str)
discount_expiration_date = scrapy.Field()

You can also extend field metadata by using the previous field metadata and appending more values, or changing
existing values, like this:

class SpecificProduct(Product):
name = scrapy.Field(Product.fields['name'], serializer=my_serializer)

That adds (or replaces) the serializer metadata key for the name field, keeping all the previously existing meta-
data values.

3.4.5 Item objects

class scrapy.item.Item([arg])
Return a new Item optionally initialized from the given argument.

Items replicate the standard dict API, including its constructor. The only additional attribute provided by Items
is:

fields
A dictionary containing all declared fields for this Item, not only those populated. The keys are the field
names and the values are the Field objects used in the Item declaration.

3.4. Items 57

https://docs.python.org/2/library/stdtypes.html#dict

scrapy Documentation, Release 1.5

3.4.6 Field objects

class scrapy.item.Field([arg])
The Field class is just an alias to the built-in dict class and doesn’t provide any extra functionality or at-
tributes. In other words, Field objects are plain-old Python dicts. A separate class is used to support the item
declaration syntax based on class attributes.

3.5 Item Loaders

Item Loaders provide a convenient mechanism for populating scraped Items. Even though Items can be populated
using their own dictionary-like API, Item Loaders provide a much more convenient API for populating them from a
scraping process, by automating some common tasks like parsing the raw extracted data before assigning it.

In other words, Items provide the container of scraped data, while Item Loaders provide the mechanism for populating
that container.

Item Loaders are designed to provide a flexible, efficient and easy mechanism for extending and overriding different
field parsing rules, either by spider, or by source format (HTML, XML, etc) without becoming a nightmare to maintain.

3.5.1 Using Item Loaders to populate items

To use an Item Loader, you must first instantiate it. You can either instantiate it with a dict-like object (e.g. Item or
dict) or without one, in which case an Item is automatically instantiated in the Item Loader constructor using the Item
class specified in the ItemLoader.default_item_class attribute.

Then, you start collecting values into the Item Loader, typically using Selectors. You can add more than one value to
the same item field; the Item Loader will know how to “join” those values later using a proper processing function.

Here is a typical Item Loader usage in a Spider, using the Product item declared in the Items chapter:

from scrapy.loader import ItemLoader
from myproject.items import Product

def parse(self, response):
l = ItemLoader(item=Product(), response=response)
l.add_xpath('name', '//div[@class="product_name"]')
l.add_xpath('name', '//div[@class="product_title"]')
l.add_xpath('price', '//p[@id="price"]')
l.add_css('stock', 'p#stock]')
l.add_value('last_updated', 'today') # you can also use literal values
return l.load_item()

By quickly looking at that code, we can see the name field is being extracted from two different XPath locations in
the page:

1. //div[@class="product_name"]

2. //div[@class="product_title"]

In other words, data is being collected by extracting it from two XPath locations, using the add_xpath() method.
This is the data that will be assigned to the name field later.

Afterwards, similar calls are used for price and stock fields (the latter using a CSS selector with the add_css()
method), and finally the last_update field is populated directly with a literal value (today) using a different
method: add_value().

58 Chapter 3. Basic concepts

https://docs.python.org/2/library/stdtypes.html#dict

scrapy Documentation, Release 1.5

Finally, when all data is collected, the ItemLoader.load_item() method is called which actually returns
the item populated with the data previously extracted and collected with the add_xpath(), add_css(), and
add_value() calls.

3.5.2 Input and Output processors

An Item Loader contains one input processor and one output processor for each (item) field. The input processor
processes the extracted data as soon as it’s received (through the add_xpath(), add_css() or add_value()
methods) and the result of the input processor is collected and kept inside the ItemLoader. After collecting all data,
the ItemLoader.load_item() method is called to populate and get the populated Item object. That’s when the
output processor is called with the data previously collected (and processed using the input processor). The result of
the output processor is the final value that gets assigned to the item.

Let’s see an example to illustrate how the input and output processors are called for a particular field (the same applies
for any other field):

l = ItemLoader(Product(), some_selector)
l.add_xpath('name', xpath1) # (1)
l.add_xpath('name', xpath2) # (2)
l.add_css('name', css) # (3)
l.add_value('name', 'test') # (4)
return l.load_item() # (5)

So what happens is:

1. Data from xpath1 is extracted, and passed through the input processor of the name field. The result of the
input processor is collected and kept in the Item Loader (but not yet assigned to the item).

2. Data from xpath2 is extracted, and passed through the same input processor used in (1). The result of the
input processor is appended to the data collected in (1) (if any).

3. This case is similar to the previous ones, except that the data is extracted from the css CSS selector, and passed
through the same input processor used in (1) and (2). The result of the input processor is appended to the data
collected in (1) and (2) (if any).

4. This case is also similar to the previous ones, except that the value to be collected is assigned directly, instead of
being extracted from a XPath expression or a CSS selector. However, the value is still passed through the input
processors. In this case, since the value is not iterable it is converted to an iterable of a single element before
passing it to the input processor, because input processor always receive iterables.

5. The data collected in steps (1), (2), (3) and (4) is passed through the output processor of the name field. The
result of the output processor is the value assigned to the name field in the item.

It’s worth noticing that processors are just callable objects, which are called with the data to be parsed, and return a
parsed value. So you can use any function as input or output processor. The only requirement is that they must accept
one (and only one) positional argument, which will be an iterator.

Note: Both input and output processors must receive an iterator as their first argument. The output of those functions
can be anything. The result of input processors will be appended to an internal list (in the Loader) containing the
collected values (for that field). The result of the output processors is the value that will be finally assigned to the item.

If you want to use a plain function as a processor, make sure it receives self as the first argument:

def lowercase_processor(self, values):
for v in values:

yield v.lower()

(continues on next page)

3.5. Item Loaders 59

scrapy Documentation, Release 1.5

(continued from previous page)

class MyItemLoader(ItemLoader):
name_in = lowercase_processor

This is because whenever a function is assigned as a class variable, it becomes a method and would be passed the
instance as the the first argument when being called. See this answer on stackoverflow for more details.

The other thing you need to keep in mind is that the values returned by input processors are collected internally (in
lists) and then passed to output processors to populate the fields.

Last, but not least, Scrapy comes with some commonly used processors built-in for convenience.

3.5.3 Declaring Item Loaders

Item Loaders are declared like Items, by using a class definition syntax. Here is an example:

from scrapy.loader import ItemLoader
from scrapy.loader.processors import TakeFirst, MapCompose, Join

class ProductLoader(ItemLoader):

default_output_processor = TakeFirst()

name_in = MapCompose(unicode.title)
name_out = Join()

price_in = MapCompose(unicode.strip)

...

As you can see, input processors are declared using the _in suffix while output processors are declared us-
ing the _out suffix. And you can also declare a default input/output processors using the ItemLoader.
default_input_processor and ItemLoader.default_output_processor attributes.

3.5.4 Declaring Input and Output Processors

As seen in the previous section, input and output processors can be declared in the Item Loader definition, and it’s
very common to declare input processors this way. However, there is one more place where you can specify the input
and output processors to use: in the Item Field metadata. Here is an example:

import scrapy
from scrapy.loader.processors import Join, MapCompose, TakeFirst
from w3lib.html import remove_tags

def filter_price(value):
if value.isdigit():

return value

class Product(scrapy.Item):
name = scrapy.Field(

input_processor=MapCompose(remove_tags),
output_processor=Join(),

)
price = scrapy.Field(

(continues on next page)

60 Chapter 3. Basic concepts

https://stackoverflow.com/a/35322635

scrapy Documentation, Release 1.5

(continued from previous page)

input_processor=MapCompose(remove_tags, filter_price),
output_processor=TakeFirst(),

)

>>> from scrapy.loader import ItemLoader
>>> il = ItemLoader(item=Product())
>>> il.add_value('name', [u'Welcome to my', u'website'])
>>> il.add_value('price', [u'€', u'1000'])
>>> il.load_item()
{'name': u'Welcome to my website', 'price': u'1000'}

The precedence order, for both input and output processors, is as follows:

1. Item Loader field-specific attributes: field_in and field_out (most precedence)

2. Field metadata (input_processor and output_processor key)

3. Item Loader defaults: ItemLoader.default_input_processor() and ItemLoader.
default_output_processor() (least precedence)

See also: Reusing and extending Item Loaders.

3.5.5 Item Loader Context

The Item Loader Context is a dict of arbitrary key/values which is shared among all input and output processors in
the Item Loader. It can be passed when declaring, instantiating or using Item Loader. They are used to modify the
behaviour of the input/output processors.

For example, suppose you have a function parse_length which receives a text value and extracts a length from it:

def parse_length(text, loader_context):
unit = loader_context.get('unit', 'm')
... length parsing code goes here ...
return parsed_length

By accepting a loader_context argument the function is explicitly telling the Item Loader that it’s able to receive
an Item Loader context, so the Item Loader passes the currently active context when calling it, and the processor
function (parse_length in this case) can thus use them.

There are several ways to modify Item Loader context values:

1. By modifying the currently active Item Loader context (context attribute):

loader = ItemLoader(product)
loader.context['unit'] = 'cm'

2. On Item Loader instantiation (the keyword arguments of Item Loader constructor are stored in the Item Loader
context):

loader = ItemLoader(product, unit='cm')

3. On Item Loader declaration, for those input/output processors that support instantiating them with an Item
Loader context. MapCompose is one of them:

class ProductLoader(ItemLoader):
length_out = MapCompose(parse_length, unit='cm')

3.5. Item Loaders 61

scrapy Documentation, Release 1.5

3.5.6 ItemLoader objects

class scrapy.loader.ItemLoader([item, selector, response], **kwargs)
Return a new Item Loader for populating the given Item. If no item is given, one is instantiated automatically
using the class in default_item_class.

When instantiated with a selector or a response parameters the ItemLoader class provides convenient mech-
anisms for extracting data from web pages using selectors.

Parameters

• item (Item object) – The item instance to populate using subsequent calls to
add_xpath(), add_css(), or add_value().

• selector (Selector object) – The selector to extract data from, when using the
add_xpath() (resp. add_css()) or replace_xpath() (resp. replace_css())
method.

• response (Response object) – The response used to construct the selector using the
default_selector_class, unless the selector argument is given, in which case this
argument is ignored.

The item, selector, response and the remaining keyword arguments are assigned to the Loader context (accessible
through the context attribute).

ItemLoader instances have the following methods:

get_value(value, *processors, **kwargs)
Process the given value by the given processors and keyword arguments.

Available keyword arguments:

Parameters re (str or compiled regex) – a regular expression to use for extracting
data from the given value using extract_regex() method, applied before processors

Examples:

>>> from scrapy.loader.processors import TakeFirst
>>> loader.get_value(u'name: foo', TakeFirst(), unicode.upper, re='name: (.+)
→˓')
'FOO`

add_value(field_name, value, *processors, **kwargs)
Process and then add the given value for the given field.

The value is first passed through get_value() by giving the processors and kwargs, and then
passed through the field input processor and its result appended to the data collected for that field. If the
field already contains collected data, the new data is added.

The given field_name can be None, in which case values for multiple fields may be added. And the
processed value should be a dict with field_name mapped to values.

Examples:

loader.add_value('name', u'Color TV')
loader.add_value('colours', [u'white', u'blue'])
loader.add_value('length', u'100')
loader.add_value('name', u'name: foo', TakeFirst(), re='name: (.+)')
loader.add_value(None, {'name': u'foo', 'sex': u'male'})

replace_value(field_name, value, *processors, **kwargs)
Similar to add_value() but replaces the collected data with the new value instead of adding it.

62 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

get_xpath(xpath, *processors, **kwargs)
Similar to ItemLoader.get_value() but receives an XPath instead of a value, which is used to
extract a list of unicode strings from the selector associated with this ItemLoader.

Parameters

• xpath (str) – the XPath to extract data from

• re (str or compiled regex) – a regular expression to use for extracting data from
the selected XPath region

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.get_xpath('//p[@class="product-name"]')
HTML snippet: <p id="price">the price is $1200</p>
loader.get_xpath('//p[@id="price"]', TakeFirst(), re='the price is (.*)')

add_xpath(field_name, xpath, *processors, **kwargs)
Similar to ItemLoader.add_value() but receives an XPath instead of a value, which is used to
extract a list of unicode strings from the selector associated with this ItemLoader.

See get_xpath() for kwargs.

Parameters xpath (str) – the XPath to extract data from

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.add_xpath('name', '//p[@class="product-name"]')
HTML snippet: <p id="price">the price is $1200</p>
loader.add_xpath('price', '//p[@id="price"]', re='the price is (.*)')

replace_xpath(field_name, xpath, *processors, **kwargs)
Similar to add_xpath() but replaces collected data instead of adding it.

get_css(css, *processors, **kwargs)
Similar to ItemLoader.get_value() but receives a CSS selector instead of a value, which is used
to extract a list of unicode strings from the selector associated with this ItemLoader.

Parameters

• css (str) – the CSS selector to extract data from

• re (str or compiled regex) – a regular expression to use for extracting data from
the selected CSS region

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.get_css('p.product-name')
HTML snippet: <p id="price">the price is $1200</p>
loader.get_css('p#price', TakeFirst(), re='the price is (.*)')

add_css(field_name, css, *processors, **kwargs)
Similar to ItemLoader.add_value() but receives a CSS selector instead of a value, which is used
to extract a list of unicode strings from the selector associated with this ItemLoader.

See get_css() for kwargs.

Parameters css (str) – the CSS selector to extract data from

Examples:

3.5. Item Loaders 63

scrapy Documentation, Release 1.5

HTML snippet: <p class="product-name">Color TV</p>
loader.add_css('name', 'p.product-name')
HTML snippet: <p id="price">the price is $1200</p>
loader.add_css('price', 'p#price', re='the price is (.*)')

replace_css(field_name, css, *processors, **kwargs)
Similar to add_css() but replaces collected data instead of adding it.

load_item()
Populate the item with the data collected so far, and return it. The data collected is first passed through the
output processors to get the final value to assign to each item field.

nested_xpath(xpath)
Create a nested loader with an xpath selector. The supplied selector is applied relative to selector associated
with this ItemLoader. The nested loader shares the Item with the parent ItemLoader so calls to
add_xpath(), add_value(), replace_value(), etc. will behave as expected.

nested_css(css)
Create a nested loader with a css selector. The supplied selector is applied relative to selector associated
with this ItemLoader. The nested loader shares the Item with the parent ItemLoader so calls to
add_xpath(), add_value(), replace_value(), etc. will behave as expected.

get_collected_values(field_name)
Return the collected values for the given field.

get_output_value(field_name)
Return the collected values parsed using the output processor, for the given field. This method doesn’t
populate or modify the item at all.

get_input_processor(field_name)
Return the input processor for the given field.

get_output_processor(field_name)
Return the output processor for the given field.

ItemLoader instances have the following attributes:

item
The Item object being parsed by this Item Loader.

context
The currently active Context of this Item Loader.

default_item_class
An Item class (or factory), used to instantiate items when not given in the constructor.

default_input_processor
The default input processor to use for those fields which don’t specify one.

default_output_processor
The default output processor to use for those fields which don’t specify one.

default_selector_class
The class used to construct the selector of this ItemLoader, if only a response is given in the
constructor. If a selector is given in the constructor this attribute is ignored. This attribute is sometimes
overridden in subclasses.

selector
The Selector object to extract data from. It’s either the selector given in the constructor or one created
from the response given in the constructor using the default_selector_class. This attribute is
meant to be read-only.

64 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

3.5.7 Nested Loaders

When parsing related values from a subsection of a document, it can be useful to create nested loaders. Imagine you’re
extracting details from a footer of a page that looks something like:

Example:

<footer>
Like Us
Follow Us
Email Us

</footer>

Without nested loaders, you need to specify the full xpath (or css) for each value that you wish to extract.

Example:

loader = ItemLoader(item=Item())
load stuff not in the footer
loader.add_xpath('social', '//footer/a[@class = "social"]/@href')
loader.add_xpath('email', '//footer/a[@class = "email"]/@href')
loader.load_item()

Instead, you can create a nested loader with the footer selector and add values relative to the footer. The functionality
is the same but you avoid repeating the footer selector.

Example:

loader = ItemLoader(item=Item())
load stuff not in the footer
footer_loader = loader.nested_xpath('//footer')
footer_loader.add_xpath('social', 'a[@class = "social"]/@href')
footer_loader.add_xpath('email', 'a[@class = "email"]/@href')
no need to call footer_loader.load_item()
loader.load_item()

You can nest loaders arbitrarily and they work with either xpath or css selectors. As a general guideline, use nested
loaders when they make your code simpler but do not go overboard with nesting or your parser can become difficult
to read.

3.5.8 Reusing and extending Item Loaders

As your project grows bigger and acquires more and more spiders, maintenance becomes a fundamental problem,
especially when you have to deal with many different parsing rules for each spider, having a lot of exceptions, but also
wanting to reuse the common processors.

Item Loaders are designed to ease the maintenance burden of parsing rules, without losing flexibility and, at the same
time, providing a convenient mechanism for extending and overriding them. For this reason Item Loaders support
traditional Python class inheritance for dealing with differences of specific spiders (or groups of spiders).

Suppose, for example, that some particular site encloses their product names in three dashes (e.g. ---Plasma
TV---) and you don’t want to end up scraping those dashes in the final product names.

Here’s how you can remove those dashes by reusing and extending the default Product Item Loader
(ProductLoader):

3.5. Item Loaders 65

scrapy Documentation, Release 1.5

from scrapy.loader.processors import MapCompose
from myproject.ItemLoaders import ProductLoader

def strip_dashes(x):
return x.strip('-')

class SiteSpecificLoader(ProductLoader):
name_in = MapCompose(strip_dashes, ProductLoader.name_in)

Another case where extending Item Loaders can be very helpful is when you have multiple source formats, for example
XML and HTML. In the XML version you may want to remove CDATA occurrences. Here’s an example of how to do
it:

from scrapy.loader.processors import MapCompose
from myproject.ItemLoaders import ProductLoader
from myproject.utils.xml import remove_cdata

class XmlProductLoader(ProductLoader):
name_in = MapCompose(remove_cdata, ProductLoader.name_in)

And that’s how you typically extend input processors.

As for output processors, it is more common to declare them in the field metadata, as they usually depend only on
the field and not on each specific site parsing rule (as input processors do). See also: Declaring Input and Output
Processors.

There are many other possible ways to extend, inherit and override your Item Loaders, and different Item Loaders
hierarchies may fit better for different projects. Scrapy only provides the mechanism; it doesn’t impose any specific
organization of your Loaders collection - that’s up to you and your project’s needs.

3.5.9 Available built-in processors

Even though you can use any callable function as input and output processors, Scrapy provides some commonly
used processors, which are described below. Some of them, like the MapCompose (which is typically used as input
processor) compose the output of several functions executed in order, to produce the final parsed value.

Here is a list of all built-in processors:

class scrapy.loader.processors.Identity
The simplest processor, which doesn’t do anything. It returns the original values unchanged. It doesn’t receive
any constructor arguments, nor does it accept Loader contexts.

Example:

>>> from scrapy.loader.processors import Identity
>>> proc = Identity()
>>> proc(['one', 'two', 'three'])
['one', 'two', 'three']

class scrapy.loader.processors.TakeFirst
Returns the first non-null/non-empty value from the values received, so it’s typically used as an output processor
to single-valued fields. It doesn’t receive any constructor arguments, nor does it accept Loader contexts.

Example:

>>> from scrapy.loader.processors import TakeFirst
>>> proc = TakeFirst()

(continues on next page)

66 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

(continued from previous page)

>>> proc(['', 'one', 'two', 'three'])
'one'

class scrapy.loader.processors.Join(separator=u’ ’)
Returns the values joined with the separator given in the constructor, which defaults to u' '. It doesn’t accept
Loader contexts.

When using the default separator, this processor is equivalent to the function: u' '.join

Examples:

>>> from scrapy.loader.processors import Join
>>> proc = Join()
>>> proc(['one', 'two', 'three'])
u'one two three'
>>> proc = Join('
')
>>> proc(['one', 'two', 'three'])
u'one
two
three'

class scrapy.loader.processors.Compose(*functions, **default_loader_context)
A processor which is constructed from the composition of the given functions. This means that each input value
of this processor is passed to the first function, and the result of that function is passed to the second function,
and so on, until the last function returns the output value of this processor.

By default, stop process on None value. This behaviour can be changed by passing keyword argument
stop_on_none=False.

Example:

>>> from scrapy.loader.processors import Compose
>>> proc = Compose(lambda v: v[0], str.upper)
>>> proc(['hello', 'world'])
'HELLO'

Each function can optionally receive a loader_context parameter. For those which do, this processor will
pass the currently active Loader context through that parameter.

The keyword arguments passed in the constructor are used as the default Loader context values passed to each
function call. However, the final Loader context values passed to functions are overridden with the currently
active Loader context accessible through the ItemLoader.context() attribute.

class scrapy.loader.processors.MapCompose(*functions, **default_loader_context)
A processor which is constructed from the composition of the given functions, similar to the Compose pro-
cessor. The difference with this processor is the way internal results are passed among functions, which is as
follows:

The input value of this processor is iterated and the first function is applied to each element. The results of these
function calls (one for each element) are concatenated to construct a new iterable, which is then used to apply
the second function, and so on, until the last function is applied to each value of the list of values collected so
far. The output values of the last function are concatenated together to produce the output of this processor.

Each particular function can return a value or a list of values, which is flattened with the list of values returned
by the same function applied to the other input values. The functions can also return None in which case the
output of that function is ignored for further processing over the chain.

This processor provides a convenient way to compose functions that only work with single values (instead of
iterables). For this reason the MapCompose processor is typically used as input processor, since data is often
extracted using the extract() method of selectors, which returns a list of unicode strings.

3.5. Item Loaders 67

scrapy Documentation, Release 1.5

The example below should clarify how it works:

>>> def filter_world(x):
... return None if x == 'world' else x
...
>>> from scrapy.loader.processors import MapCompose
>>> proc = MapCompose(filter_world, unicode.upper)
>>> proc([u'hello', u'world', u'this', u'is', u'scrapy'])
[u'HELLO, u'THIS', u'IS', u'SCRAPY']

As with the Compose processor, functions can receive Loader contexts, and constructor keyword arguments are
used as default context values. See Compose processor for more info.

class scrapy.loader.processors.SelectJmes(json_path)
Queries the value using the json path provided to the constructor and returns the output. Requires jmespath
(https://github.com/jmespath/jmespath.py) to run. This processor takes only one input at a time.

Example:

>>> from scrapy.loader.processors import SelectJmes, Compose, MapCompose
>>> proc = SelectJmes("foo") #for direct use on lists and dictionaries
>>> proc({'foo': 'bar'})
'bar'
>>> proc({'foo': {'bar': 'baz'}})
{'bar': 'baz'}

Working with Json:

>>> import json
>>> proc_single_json_str = Compose(json.loads, SelectJmes("foo"))
>>> proc_single_json_str('{"foo": "bar"}')
u'bar'
>>> proc_json_list = Compose(json.loads, MapCompose(SelectJmes('foo')))
>>> proc_json_list('[{"foo":"bar"}, {"baz":"tar"}]')
[u'bar']

3.6 Scrapy shell

The Scrapy shell is an interactive shell where you can try and debug your scraping code very quickly, without having
to run the spider. It’s meant to be used for testing data extraction code, but you can actually use it for testing any kind
of code as it is also a regular Python shell.

The shell is used for testing XPath or CSS expressions and see how they work and what data they extract from the web
pages you’re trying to scrape. It allows you to interactively test your expressions while you’re writing your spider,
without having to run the spider to test every change.

Once you get familiarized with the Scrapy shell, you’ll see that it’s an invaluable tool for developing and debugging
your spiders.

3.6.1 Configuring the shell

If you have IPython installed, the Scrapy shell will use it (instead of the standard Python console). The IPython console
is much more powerful and provides smart auto-completion and colorized output, among other things.

We highly recommend you install IPython, specially if you’re working on Unix systems (where IPython excels). See
the IPython installation guide for more info.

68 Chapter 3. Basic concepts

https://github.com/jmespath/jmespath.py
https://ipython.org/
https://ipython.org/
https://ipython.org/
https://ipython.org/
https://ipython.org/install.html

scrapy Documentation, Release 1.5

Scrapy also has support for bpython, and will try to use it where IPython is unavailable.

Through scrapy’s settings you can configure it to use any one of ipython, bpython or the standard python shell,
regardless of which are installed. This is done by setting the SCRAPY_PYTHON_SHELL environment variable; or by
defining it in your scrapy.cfg:

[settings]
shell = bpython

3.6.2 Launch the shell

To launch the Scrapy shell you can use the shell command like this:

scrapy shell <url>

Where the <url> is the URL you want to scrape.

shell also works for local files. This can be handy if you want to play around with a local copy of a web page.
shell understands the following syntaxes for local files:

UNIX-style
scrapy shell ./path/to/file.html
scrapy shell ../other/path/to/file.html
scrapy shell /absolute/path/to/file.html

File URI
scrapy shell file:///absolute/path/to/file.html

Note: When using relative file paths, be explicit and prepend them with ./ (or ../ when relevant). scrapy
shell index.html will not work as one might expect (and this is by design, not a bug).

Because shell favors HTTP URLs over File URIs, and index.html being syntactically similar to example.
com, shell will treat index.html as a domain name and trigger a DNS lookup error:

$ scrapy shell index.html
[... scrapy shell starts ...]
[... traceback ...]
twisted.internet.error.DNSLookupError: DNS lookup failed:
address 'index.html' not found: [Errno -5] No address associated with hostname.

shell will not test beforehand if a file called index.html exists in the current directory. Again, be explicit.

3.6.3 Using the shell

The Scrapy shell is just a regular Python console (or IPython console if you have it available) which provides some
additional shortcut functions for convenience.

Available Shortcuts

• shelp() - print a help with the list of available objects and shortcuts

3.6. Scrapy shell 69

https://www.bpython-interpreter.org/
https://ipython.org/
https://ipython.org/

scrapy Documentation, Release 1.5

• fetch(url[, redirect=True]) - fetch a new response from the given URL and update all related
objects accordingly. You can optionaly ask for HTTP 3xx redirections to not be followed by passing
redirect=False

• fetch(request) - fetch a new response from the given request and update all related objects accordingly.

• view(response) - open the given response in your local web browser, for inspection. This will add a <base>
tag to the response body in order for external links (such as images and style sheets) to display properly. Note,
however, that this will create a temporary file in your computer, which won’t be removed automatically.

Available Scrapy objects

The Scrapy shell automatically creates some convenient objects from the downloaded page, like the Response object
and the Selector objects (for both HTML and XML content).

Those objects are:

• crawler - the current Crawler object.

• spider - the Spider which is known to handle the URL, or a Spider object if there is no spider found for the
current URL

• request - a Request object of the last fetched page. You can modify this request using replace() or
fetch a new request (without leaving the shell) using the fetch shortcut.

• response - a Response object containing the last fetched page

• settings - the current Scrapy settings

3.6.4 Example of shell session

Here’s an example of a typical shell session where we start by scraping the https://scrapy.org page, and then proceed
to scrape the https://reddit.com page. Finally, we modify the (Reddit) request method to POST and re-fetch it getting
an error. We end the session by typing Ctrl-D (in Unix systems) or Ctrl-Z in Windows.

Keep in mind that the data extracted here may not be the same when you try it, as those pages are not static and could
have changed by the time you test this. The only purpose of this example is to get you familiarized with how the
Scrapy shell works.

First, we launch the shell:

scrapy shell 'https://scrapy.org' --nolog

Then, the shell fetches the URL (using the Scrapy downloader) and prints the list of available objects and useful
shortcuts (you’ll notice that these lines all start with the [s] prefix):

[s] Available Scrapy objects:
[s] scrapy scrapy module (contains scrapy.Request, scrapy.Selector, etc)
[s] crawler <scrapy.crawler.Crawler object at 0x7f07395dd690>
[s] item {}
[s] request <GET https://scrapy.org>
[s] response <200 https://scrapy.org/>
[s] settings <scrapy.settings.Settings object at 0x7f07395dd710>
[s] spider <DefaultSpider 'default' at 0x7f0735891690>
[s] Useful shortcuts:
[s] fetch(url[, redirect=True]) Fetch URL and update local objects (by default,
→˓redirects are followed)
[s] fetch(req) Fetch a scrapy.Request and update local objects

(continues on next page)

70 Chapter 3. Basic concepts

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/base
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/base
https://scrapy.org
https://reddit.com

scrapy Documentation, Release 1.5

(continued from previous page)

[s] shelp() Shell help (print this help)
[s] view(response) View response in a browser

>>>

After that, we can start playing with the objects:

>>> response.xpath('//title/text()').extract_first()
'Scrapy | A Fast and Powerful Scraping and Web Crawling Framework'

>>> fetch("https://reddit.com")

>>> response.xpath('//title/text()').extract()
['reddit: the front page of the internet']

>>> request = request.replace(method="POST")

>>> fetch(request)

>>> response.status
404

>>> from pprint import pprint

>>> pprint(response.headers)
{'Accept-Ranges': ['bytes'],
'Cache-Control': ['max-age=0, must-revalidate'],
'Content-Type': ['text/html; charset=UTF-8'],
'Date': ['Thu, 08 Dec 2016 16:21:19 GMT'],
'Server': ['snooserv'],
'Set-Cookie': ['loid=KqNLou0V9SKMX4qb4n; Domain=reddit.com; Max-Age=63071999; Path=/;
→˓ expires=Sat, 08-Dec-2018 16:21:19 GMT; secure',

'loidcreated=2016-12-08T16%3A21%3A19.445Z; Domain=reddit.com; Max-
→˓Age=63071999; Path=/; expires=Sat, 08-Dec-2018 16:21:19 GMT; secure',

'loid=vi0ZVe4NkxNWdlH7r7; Domain=reddit.com; Max-Age=63071999; Path=/;
→˓ expires=Sat, 08-Dec-2018 16:21:19 GMT; secure',

'loidcreated=2016-12-08T16%3A21%3A19.459Z; Domain=reddit.com; Max-
→˓Age=63071999; Path=/; expires=Sat, 08-Dec-2018 16:21:19 GMT; secure'],
'Vary': ['accept-encoding'],
'Via': ['1.1 varnish'],
'X-Cache': ['MISS'],
'X-Cache-Hits': ['0'],
'X-Content-Type-Options': ['nosniff'],
'X-Frame-Options': ['SAMEORIGIN'],
'X-Moose': ['majestic'],
'X-Served-By': ['cache-cdg8730-CDG'],
'X-Timer': ['S1481214079.394283,VS0,VE159'],
'X-Ua-Compatible': ['IE=edge'],
'X-Xss-Protection': ['1; mode=block']}

>>>

3.6.5 Invoking the shell from spiders to inspect responses

Sometimes you want to inspect the responses that are being processed in a certain point of your spider, if only to check
that response you expect is getting there.

3.6. Scrapy shell 71

scrapy Documentation, Release 1.5

This can be achieved by using the scrapy.shell.inspect_response function.

Here’s an example of how you would call it from your spider:

import scrapy

class MySpider(scrapy.Spider):
name = "myspider"
start_urls = [

"http://example.com",
"http://example.org",
"http://example.net",

]

def parse(self, response):
We want to inspect one specific response.
if ".org" in response.url:

from scrapy.shell import inspect_response
inspect_response(response, self)

Rest of parsing code.

When you run the spider, you will get something similar to this:

2014-01-23 17:48:31-0400 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://
→˓example.com> (referer: None)
2014-01-23 17:48:31-0400 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://
→˓example.org> (referer: None)
[s] Available Scrapy objects:
[s] crawler <scrapy.crawler.Crawler object at 0x1e16b50>
...

>>> response.url
'http://example.org'

Then, you can check if the extraction code is working:

>>> response.xpath('//h1[@class="fn"]')
[]

Nope, it doesn’t. So you can open the response in your web browser and see if it’s the response you were expecting:

>>> view(response)
True

Finally you hit Ctrl-D (or Ctrl-Z in Windows) to exit the shell and resume the crawling:

>>> ^D
2014-01-23 17:50:03-0400 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://
→˓example.net> (referer: None)
...

Note that you can’t use the fetch shortcut here since the Scrapy engine is blocked by the shell. However, after you
leave the shell, the spider will continue crawling where it stopped, as shown above.

72 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

3.7 Item Pipeline

After an item has been scraped by a spider, it is sent to the Item Pipeline which processes it through several components
that are executed sequentially.

Each item pipeline component (sometimes referred as just “Item Pipeline”) is a Python class that implements a simple
method. They receive an item and perform an action over it, also deciding if the item should continue through the
pipeline or be dropped and no longer processed.

Typical uses of item pipelines are:

• cleansing HTML data

• validating scraped data (checking that the items contain certain fields)

• checking for duplicates (and dropping them)

• storing the scraped item in a database

3.7.1 Writing your own item pipeline

Each item pipeline component is a Python class that must implement the following method:

process_item(self, item, spider)
This method is called for every item pipeline component. process_item() must either: return a dict with
data, return an Item (or any descendant class) object, return a Twisted Deferred or raise DropItem exception.
Dropped items are no longer processed by further pipeline components.

Parameters

• item (Item object or a dict) – the item scraped

• spider (Spider object) – the spider which scraped the item

Additionally, they may also implement the following methods:

open_spider(self, spider)
This method is called when the spider is opened.

Parameters spider (Spider object) – the spider which was opened

close_spider(self, spider)
This method is called when the spider is closed.

Parameters spider (Spider object) – the spider which was closed

from_crawler(cls, crawler)
If present, this classmethod is called to create a pipeline instance from a Crawler. It must return a new instance
of the pipeline. Crawler object provides access to all Scrapy core components like settings and signals; it is a
way for pipeline to access them and hook its functionality into Scrapy.

Parameters crawler (Crawler object) – crawler that uses this pipeline

3.7.2 Item pipeline example

Price validation and dropping items with no prices

Let’s take a look at the following hypothetical pipeline that adjusts the price attribute for those items that do not
include VAT (price_excludes_vat attribute), and drops those items which don’t contain a price:

3.7. Item Pipeline 73

https://twistedmatrix.com/documents/current/core/howto/defer.html

scrapy Documentation, Release 1.5

from scrapy.exceptions import DropItem

class PricePipeline(object):

vat_factor = 1.15

def process_item(self, item, spider):
if item['price']:

if item['price_excludes_vat']:
item['price'] = item['price'] * self.vat_factor

return item
else:

raise DropItem("Missing price in %s" % item)

Write items to a JSON file

The following pipeline stores all scraped items (from all spiders) into a single items.jl file, containing one item
per line serialized in JSON format:

import json

class JsonWriterPipeline(object):

def open_spider(self, spider):
self.file = open('items.jl', 'w')

def close_spider(self, spider):
self.file.close()

def process_item(self, item, spider):
line = json.dumps(dict(item)) + "\n"
self.file.write(line)
return item

Note: The purpose of JsonWriterPipeline is just to introduce how to write item pipelines. If you really want to store
all scraped items into a JSON file you should use the Feed exports.

Write items to MongoDB

In this example we’ll write items to MongoDB using pymongo. MongoDB address and database name are specified
in Scrapy settings; MongoDB collection is named after item class.

The main point of this example is to show how to use from_crawler() method and how to clean up the resources
properly.:

import pymongo

class MongoPipeline(object):

collection_name = 'scrapy_items'

def __init__(self, mongo_uri, mongo_db):

(continues on next page)

74 Chapter 3. Basic concepts

https://www.mongodb.org/
https://api.mongodb.org/python/current/

scrapy Documentation, Release 1.5

(continued from previous page)

self.mongo_uri = mongo_uri
self.mongo_db = mongo_db

@classmethod
def from_crawler(cls, crawler):

return cls(
mongo_uri=crawler.settings.get('MONGO_URI'),
mongo_db=crawler.settings.get('MONGO_DATABASE', 'items')

)

def open_spider(self, spider):
self.client = pymongo.MongoClient(self.mongo_uri)
self.db = self.client[self.mongo_db]

def close_spider(self, spider):
self.client.close()

def process_item(self, item, spider):
self.db[self.collection_name].insert_one(dict(item))
return item

Take screenshot of item

This example demonstrates how to return Deferred from process_item() method. It uses Splash to render screen-
shot of item url. Pipeline makes request to locally running instance of Splash. After request is downloaded and
Deferred callback fires, it saves item to a file and adds filename to an item.

import scrapy
import hashlib
from urllib.parse import quote

class ScreenshotPipeline(object):
"""Pipeline that uses Splash to render screenshot of
every Scrapy item."""

SPLASH_URL = "http://localhost:8050/render.png?url={}"

def process_item(self, item, spider):
encoded_item_url = quote(item["url"])
screenshot_url = self.SPLASH_URL.format(encoded_item_url)
request = scrapy.Request(screenshot_url)
dfd = spider.crawler.engine.download(request, spider)
dfd.addBoth(self.return_item, item)
return dfd

def return_item(self, response, item):
if response.status != 200:

Error happened, return item.
return item

Save screenshot to file, filename will be hash of url.
url = item["url"]
url_hash = hashlib.md5(url.encode("utf8")).hexdigest()
filename = "{}.png".format(url_hash)

(continues on next page)

3.7. Item Pipeline 75

https://twistedmatrix.com/documents/current/core/howto/defer.html
https://splash.readthedocs.io/en/stable/
https://splash.readthedocs.io/en/stable/

scrapy Documentation, Release 1.5

(continued from previous page)

with open(filename, "wb") as f:
f.write(response.body)

Store filename in item.
item["screenshot_filename"] = filename
return item

Duplicates filter

A filter that looks for duplicate items, and drops those items that were already processed. Let’s say that our items have
a unique id, but our spider returns multiples items with the same id:

from scrapy.exceptions import DropItem

class DuplicatesPipeline(object):

def __init__(self):
self.ids_seen = set()

def process_item(self, item, spider):
if item['id'] in self.ids_seen:

raise DropItem("Duplicate item found: %s" % item)
else:

self.ids_seen.add(item['id'])
return item

3.7.3 Activating an Item Pipeline component

To activate an Item Pipeline component you must add its class to the :setting:‘ITEM_PIPELINES‘ setting, like in
the following example:

ITEM_PIPELINES = {
'myproject.pipelines.PricePipeline': 300,
'myproject.pipelines.JsonWriterPipeline': 800,

}

The integer values you assign to classes in this setting determine the order in which they run: items go through from
lower valued to higher valued classes. It’s customary to define these numbers in the 0-1000 range.

3.8 Feed exports

New in version 0.10.

One of the most frequently required features when implementing scrapers is being able to store the scraped data
properly and, quite often, that means generating an “export file” with the scraped data (commonly called “export
feed”) to be consumed by other systems.

Scrapy provides this functionality out of the box with the Feed Exports, which allows you to generate a feed with the
scraped items, using multiple serialization formats and storage backends.

76 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

3.8.1 Serialization formats

For serializing the scraped data, the feed exports use the Item exporters. These formats are supported out of the box:

• JSON

• JSON lines

• CSV

• XML

But you can also extend the supported format through the :setting:‘FEED_EXPORTERS‘ setting.

JSON

• :setting:‘FEED_FORMAT‘: json

• Exporter used: JsonItemExporter

• See this warning if you’re using JSON with large feeds.

JSON lines

• :setting:‘FEED_FORMAT‘: jsonlines

• Exporter used: JsonLinesItemExporter

CSV

• :setting:‘FEED_FORMAT‘: csv

• Exporter used: CsvItemExporter

• To specify columns to export and their order use :setting:‘FEED_EXPORT_FIELDS‘. Other feed exporters
can also use this option, but it is important for CSV because unlike many other export formats CSV uses a fixed
header.

XML

• :setting:‘FEED_FORMAT‘: xml

• Exporter used: XmlItemExporter

Pickle

• :setting:‘FEED_FORMAT‘: pickle

• Exporter used: PickleItemExporter

Marshal

• :setting:‘FEED_FORMAT‘: marshal

• Exporter used: MarshalItemExporter

3.8. Feed exports 77

scrapy Documentation, Release 1.5

3.8.2 Storages

When using the feed exports you define where to store the feed using a URI (through the :setting:‘FEED_URI‘
setting). The feed exports supports multiple storage backend types which are defined by the URI scheme.

The storages backends supported out of the box are:

• Local filesystem

• FTP

• S3 (requires botocore or boto)

• Standard output

Some storage backends may be unavailable if the required external libraries are not available. For example, the S3
backend is only available if the botocore or boto library is installed (Scrapy supports boto only on Python 2).

3.8.3 Storage URI parameters

The storage URI can also contain parameters that get replaced when the feed is being created. These parameters are:

• %(time)s - gets replaced by a timestamp when the feed is being created

• %(name)s - gets replaced by the spider name

Any other named parameter gets replaced by the spider attribute of the same name. For example, %(site_id)s
would get replaced by the spider.site_id attribute the moment the feed is being created.

Here are some examples to illustrate:

• Store in FTP using one directory per spider:

– ftp://user:password@ftp.example.com/scraping/feeds/%(name)s/%(time)s.
json

• Store in S3 using one directory per spider:

– s3://mybucket/scraping/feeds/%(name)s/%(time)s.json

3.8.4 Storage backends

Local filesystem

The feeds are stored in the local filesystem.

• URI scheme: file

• Example URI: file:///tmp/export.csv

• Required external libraries: none

Note that for the local filesystem storage (only) you can omit the scheme if you specify an absolute path like /tmp/
export.csv. This only works on Unix systems though.

FTP

The feeds are stored in a FTP server.

• URI scheme: ftp

78 Chapter 3. Basic concepts

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://github.com/boto/botocore
https://github.com/boto/boto
https://github.com/boto/botocore
https://github.com/boto/boto
https://github.com/boto/boto

scrapy Documentation, Release 1.5

• Example URI: ftp://user:pass@ftp.example.com/path/to/export.csv

• Required external libraries: none

S3

The feeds are stored on Amazon S3.

• URI scheme: s3

• Example URIs:

– s3://mybucket/path/to/export.csv

– s3://aws_key:aws_secret@mybucket/path/to/export.csv

• Required external libraries: botocore (Python 2 and Python 3) or boto (Python 2 only)

The AWS credentials can be passed as user/password in the URI, or they can be passed through the following settings:

• :setting:‘AWS_ACCESS_KEY_ID‘

• :setting:‘AWS_SECRET_ACCESS_KEY‘

Standard output

The feeds are written to the standard output of the Scrapy process.

• URI scheme: stdout

• Example URI: stdout:

• Required external libraries: none

3.8.5 Settings

These are the settings used for configuring the feed exports:

• :setting:‘FEED_URI‘ (mandatory)

• :setting:‘FEED_FORMAT‘

• :setting:‘FEED_STORAGES‘

• :setting:‘FEED_EXPORTERS‘

• :setting:‘FEED_STORE_EMPTY‘

• :setting:‘FEED_EXPORT_ENCODING‘

• :setting:‘FEED_EXPORT_FIELDS‘

• :setting:‘FEED_EXPORT_INDENT‘

FEED_URI

Default: None

The URI of the export feed. See Storage backends for supported URI schemes.

This setting is required for enabling the feed exports.

3.8. Feed exports 79

https://aws.amazon.com/s3/
https://github.com/boto/botocore
https://github.com/boto/boto

scrapy Documentation, Release 1.5

FEED_FORMAT

The serialization format to be used for the feed. See Serialization formats for possible values.

FEED_EXPORT_ENCODING

Default: None

The encoding to be used for the feed.

If unset or set to None (default) it uses UTF-8 for everything except JSON output, which uses safe numeric encoding
(\uXXXX sequences) for historic reasons.

Use utf-8 if you want UTF-8 for JSON too.

FEED_EXPORT_FIELDS

Default: None

A list of fields to export, optional. Example: FEED_EXPORT_FIELDS = ["foo", "bar", "baz"].

Use FEED_EXPORT_FIELDS option to define fields to export and their order.

When FEED_EXPORT_FIELDS is empty or None (default), Scrapy uses fields defined in dicts or Item subclasses a
spider is yielding.

If an exporter requires a fixed set of fields (this is the case for CSV export format) and FEED_EXPORT_FIELDS is
empty or None, then Scrapy tries to infer field names from the exported data - currently it uses field names from the
first item.

FEED_EXPORT_INDENT

Default: 0

Amount of spaces used to indent the output on each level. If FEED_EXPORT_INDENT is a non-negative integer, then
array elements and object members will be pretty-printed with that indent level. An indent level of 0 (the default), or
negative, will put each item on a new line. None selects the most compact representation.

Currently implemented only by JsonItemExporter and XmlItemExporter, i.e. when you are exporting to
.json or .xml.

FEED_STORE_EMPTY

Default: False

Whether to export empty feeds (ie. feeds with no items).

FEED_STORAGES

Default: {}

A dict containing additional feed storage backends supported by your project. The keys are URI schemes and the
values are paths to storage classes.

80 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

FEED_STORAGES_BASE

Default:

{
'': 'scrapy.extensions.feedexport.FileFeedStorage',
'file': 'scrapy.extensions.feedexport.FileFeedStorage',
'stdout': 'scrapy.extensions.feedexport.StdoutFeedStorage',
's3': 'scrapy.extensions.feedexport.S3FeedStorage',
'ftp': 'scrapy.extensions.feedexport.FTPFeedStorage',

}

A dict containing the built-in feed storage backends supported by Scrapy. You can disable any of these backends
by assigning None to their URI scheme in :setting:‘FEED_STORAGES‘. E.g., to disable the built-in FTP storage
backend (without replacement), place this in your settings.py:

FEED_STORAGES = {
'ftp': None,

}

FEED_EXPORTERS

Default: {}

A dict containing additional exporters supported by your project. The keys are serialization formats and the values are
paths to Item exporter classes.

FEED_EXPORTERS_BASE

Default:

{
'json': 'scrapy.exporters.JsonItemExporter',
'jsonlines': 'scrapy.exporters.JsonLinesItemExporter',
'jl': 'scrapy.exporters.JsonLinesItemExporter',
'csv': 'scrapy.exporters.CsvItemExporter',
'xml': 'scrapy.exporters.XmlItemExporter',
'marshal': 'scrapy.exporters.MarshalItemExporter',
'pickle': 'scrapy.exporters.PickleItemExporter',

}

A dict containing the built-in feed exporters supported by Scrapy. You can disable any of these exporters by assigning
None to their serialization format in :setting:‘FEED_EXPORTERS‘. E.g., to disable the built-in CSV exporter
(without replacement), place this in your settings.py:

FEED_EXPORTERS = {
'csv': None,

}

3.9 Requests and Responses

Scrapy uses Request and Response objects for crawling web sites.

3.9. Requests and Responses 81

scrapy Documentation, Release 1.5

Typically, Request objects are generated in the spiders and pass across the system until they reach the Downloader,
which executes the request and returns a Response object which travels back to the spider that issued the request.

Both Request and Response classes have subclasses which add functionality not required in the base classes.
These are described below in Request subclasses and Response subclasses.

3.9.1 Request objects

class scrapy.http.Request(url[, callback, method=’GET’, headers, body, cookies, meta,
encoding=’utf-8’, priority=0, dont_filter=False, errback, flags])

A Request object represents an HTTP request, which is usually generated in the Spider and executed by the
Downloader, and thus generating a Response.

Parameters

• url (string) – the URL of this request

• callback (callable) – the function that will be called with the response of this re-
quest (once its downloaded) as its first parameter. For more information see Passing addi-
tional data to callback functions below. If a Request doesn’t specify a callback, the spider’s
parse()method will be used. Note that if exceptions are raised during processing, errback
is called instead.

• method (string) – the HTTP method of this request. Defaults to 'GET'.

• meta (dict) – the initial values for the Request.meta attribute. If given, the dict passed
in this parameter will be shallow copied.

• body (str or unicode) – the request body. If a unicode is passed, then it’s encoded
to str using the encoding passed (which defaults to utf-8). If body is not given, an
empty string is stored. Regardless of the type of this argument, the final value stored will be
a str (never unicode or None).

• headers (dict) – the headers of this request. The dict values can be strings (for single
valued headers) or lists (for multi-valued headers). If None is passed as value, the HTTP
header will not be sent at all.

• cookies (dict or list) – the request cookies. These can be sent in two forms.

1. Using a dict:

request_with_cookies = Request(url="http://www.example.com",
cookies={'currency': 'USD',

→˓'country': 'UY'})

2. Using a list of dicts:

request_with_cookies = Request(url="http://www.example.com",
cookies=[{'name': 'currency',

'value': 'USD',
'domain': 'example.com',
'path': '/currency'}])

The latter form allows for customizing the domain and path attributes of the cookie. This
is only useful if the cookies are saved for later requests.

When some site returns cookies (in a response) those are stored in the cookies for that
domain and will be sent again in future requests. That’s the typical behaviour of any regular
web browser. However, if, for some reason, you want to avoid merging with existing cookies

82 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

you can instruct Scrapy to do so by setting the dont_merge_cookies key to True in the
Request.meta.

Example of request without merging cookies:

request_with_cookies = Request(url="http://www.example.com",
cookies={'currency': 'USD', 'country

→˓': 'UY'},
meta={'dont_merge_cookies': True})

For more info see CookiesMiddleware.

• encoding (string) – the encoding of this request (defaults to 'utf-8'). This encod-
ing will be used to percent-encode the URL and to convert the body to str (if given as
unicode).

• priority (int) – the priority of this request (defaults to 0). The priority is used by the
scheduler to define the order used to process requests. Requests with a higher priority value
will execute earlier. Negative values are allowed in order to indicate relatively low-priority.

• dont_filter (boolean) – indicates that this request should not be filtered by the sched-
uler. This is used when you want to perform an identical request multiple times, to ignore
the duplicates filter. Use it with care, or you will get into crawling loops. Default to False.

• errback (callable) – a function that will be called if any exception was raised while
processing the request. This includes pages that failed with 404 HTTP errors and such.
It receives a Twisted Failure instance as first parameter. For more information, see Using
errbacks to catch exceptions in request processing below.

• flags (list) – Flags sent to the request, can be used for logging or similar purposes.

url
A string containing the URL of this request. Keep in mind that this attribute contains the escaped URL, so
it can differ from the URL passed in the constructor.

This attribute is read-only. To change the URL of a Request use replace().

method
A string representing the HTTP method in the request. This is guaranteed to be uppercase. Example:
"GET", "POST", "PUT", etc

headers
A dictionary-like object which contains the request headers.

body
A str that contains the request body.

This attribute is read-only. To change the body of a Request use replace().

meta
A dict that contains arbitrary metadata for this request. This dict is empty for new Requests, and is usually
populated by different Scrapy components (extensions, middlewares, etc). So the data contained in this
dict depends on the extensions you have enabled.

See Request.meta special keys for a list of special meta keys recognized by Scrapy.

This dict is shallow copied when the request is cloned using the copy() or replace() methods, and
can also be accessed, in your spider, from the response.meta attribute.

copy()
Return a new Request which is a copy of this Request. See also: Passing additional data to callback
functions.

3.9. Requests and Responses 83

https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html
https://docs.python.org/2/library/copy.html

scrapy Documentation, Release 1.5

replace([url, method, headers, body, cookies, meta, encoding, dont_filter, callback, errback])
Return a Request object with the same members, except for those members given new values by whichever
keyword arguments are specified. The attribute Request.meta is copied by default (unless a new value
is given in the meta argument). See also Passing additional data to callback functions.

Passing additional data to callback functions

The callback of a request is a function that will be called when the response of that request is downloaded. The
callback function will be called with the downloaded Response object as its first argument.

Example:

def parse_page1(self, response):
return scrapy.Request("http://www.example.com/some_page.html",

callback=self.parse_page2)

def parse_page2(self, response):
this would log http://www.example.com/some_page.html
self.logger.info("Visited %s", response.url)

In some cases you may be interested in passing arguments to those callback functions so you can receive the arguments
later, in the second callback. You can use the Request.meta attribute for that.

Here’s an example of how to pass an item using this mechanism, to populate different fields from different pages:

def parse_page1(self, response):
item = MyItem()
item['main_url'] = response.url
request = scrapy.Request("http://www.example.com/some_page.html",

callback=self.parse_page2)
request.meta['item'] = item
yield request

def parse_page2(self, response):
item = response.meta['item']
item['other_url'] = response.url
yield item

Using errbacks to catch exceptions in request processing

The errback of a request is a function that will be called when an exception is raise while processing it.

It receives a Twisted Failure instance as first parameter and can be used to track connection establishment timeouts,
DNS errors etc.

Here’s an example spider logging all errors and catching some specific errors if needed:

import scrapy

from scrapy.spidermiddlewares.httperror import HttpError
from twisted.internet.error import DNSLookupError
from twisted.internet.error import TimeoutError, TCPTimedOutError

class ErrbackSpider(scrapy.Spider):
name = "errback_example"
start_urls = [

(continues on next page)

84 Chapter 3. Basic concepts

https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html

scrapy Documentation, Release 1.5

(continued from previous page)

"http://www.httpbin.org/", # HTTP 200 expected
"http://www.httpbin.org/status/404", # Not found error
"http://www.httpbin.org/status/500", # server issue
"http://www.httpbin.org:12345/", # non-responding host, timeout

→˓expected
"http://www.httphttpbinbin.org/", # DNS error expected

]

def start_requests(self):
for u in self.start_urls:

yield scrapy.Request(u, callback=self.parse_httpbin,
errback=self.errback_httpbin,
dont_filter=True)

def parse_httpbin(self, response):
self.logger.info('Got successful response from {}'.format(response.url))
do something useful here...

def errback_httpbin(self, failure):
log all failures
self.logger.error(repr(failure))

in case you want to do something special for some errors,
you may need the failure's type:

if failure.check(HttpError):
these exceptions come from HttpError spider middleware
you can get the non-200 response
response = failure.value.response
self.logger.error('HttpError on %s', response.url)

elif failure.check(DNSLookupError):
this is the original request
request = failure.request
self.logger.error('DNSLookupError on %s', request.url)

elif failure.check(TimeoutError, TCPTimedOutError):
request = failure.request
self.logger.error('TimeoutError on %s', request.url)

3.9.2 Request.meta special keys

The Request.meta attribute can contain any arbitrary data, but there are some special keys recognized by Scrapy
and its built-in extensions.

Those are:

• :reqmeta:‘dont_redirect‘

• :reqmeta:‘dont_retry‘

• :reqmeta:‘handle_httpstatus_list‘

• :reqmeta:‘handle_httpstatus_all‘

• :reqmeta:‘dont_merge_cookies‘

• :reqmeta:‘cookiejar‘

3.9. Requests and Responses 85

scrapy Documentation, Release 1.5

• :reqmeta:‘dont_cache‘

• :reqmeta:‘redirect_urls‘

• :reqmeta:‘bindaddress‘

• :reqmeta:‘dont_obey_robotstxt‘

• :reqmeta:‘download_timeout‘

• :reqmeta:‘download_maxsize‘

• :reqmeta:‘download_latency‘

• :reqmeta:‘download_fail_on_dataloss‘

• :reqmeta:‘proxy‘

• ftp_user (See :setting:‘FTP_USER‘ for more info)

• ftp_password (See :setting:‘FTP_PASSWORD‘ for more info)

• :reqmeta:‘referrer_policy‘

• :reqmeta:‘max_retry_times‘

bindaddress

The IP of the outgoing IP address to use for the performing the request.

download_timeout

The amount of time (in secs) that the downloader will wait before timing out. See also: :set-
ting:‘DOWNLOAD_TIMEOUT‘.

download_latency

The amount of time spent to fetch the response, since the request has been started, i.e. HTTP message sent over the
network. This meta key only becomes available when the response has been downloaded. While most other meta keys
are used to control Scrapy behavior, this one is supposed to be read-only.

download_fail_on_dataloss

Whether or not to fail on broken responses. See: :setting:‘DOWNLOAD_FAIL_ON_DATALOSS‘.

max_retry_times

The meta key is used set retry times per request. When initialized, the :reqmeta:‘max_retry_times‘ meta key takes
higher precedence over the :setting:‘RETRY_TIMES‘ setting.

3.9.3 Request subclasses

Here is the list of built-in Request subclasses. You can also subclass it to implement your own custom functionality.

86 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

FormRequest objects

The FormRequest class extends the base Requestwith functionality for dealing with HTML forms. It uses lxml.html
forms to pre-populate form fields with form data from Response objects.

class scrapy.http.FormRequest(url[, formdata, ...])
The FormRequest class adds a new argument to the constructor. The remaining arguments are the same as
for the Request class and are not documented here.

Parameters formdata (dict or iterable of tuples) – is a dictionary (or iterable of
(key, value) tuples) containing HTML Form data which will be url-encoded and assigned to the
body of the request.

The FormRequest objects support the following class method in addition to the standard Request methods:

classmethod from_response(response[, formname=None, formid=None, formnumber=0, for-
mdata=None, formxpath=None, formcss=None, clickdata=None,
dont_click=False, ...])

Returns a new FormRequest object with its form field values pre-populated with those found in
the HTML <form> element contained in the given response. For an example see Using FormRe-
quest.from_response() to simulate a user login.

The policy is to automatically simulate a click, by default, on any form control that looks clickable, like
a <input type="submit">. Even though this is quite convenient, and often the desired behaviour,
sometimes it can cause problems which could be hard to debug. For example, when working with forms
that are filled and/or submitted using javascript, the default from_response() behaviour may not be
the most appropriate. To disable this behaviour you can set the dont_click argument to True. Also, if
you want to change the control clicked (instead of disabling it) you can also use the clickdata argument.

Caution: Using this method with select elements which have leading or trailing whitespace in the
option values will not work due to a bug in lxml, which should be fixed in lxml 3.8 and above.

Parameters

• response (Response object) – the response containing a HTML form which will be
used to pre-populate the form fields

• formname (string) – if given, the form with name attribute set to this value will be
used.

• formid (string) – if given, the form with id attribute set to this value will be used.

• formxpath (string) – if given, the first form that matches the xpath will be used.

• formcss (string) – if given, the first form that matches the css selector will be used.

• formnumber (integer) – the number of form to use, when the response contains
multiple forms. The first one (and also the default) is 0.

• formdata (dict) – fields to override in the form data. If a field was already present in
the response <form> element, its value is overridden by the one passed in this parameter.
If a value passed in this parameter is None, the field will not be included in the request,
even if it was present in the response <form> element.

• clickdata (dict) – attributes to lookup the control clicked. If it’s not given, the form
data will be submitted simulating a click on the first clickable element. In addition to html
attributes, the control can be identified by its zero-based index relative to other submittable
inputs inside the form, via the nr attribute.

3.9. Requests and Responses 87

http://lxml.de/lxmlhtml.html#forms
http://lxml.de/lxmlhtml.html#forms
https://bugs.launchpad.net/lxml/+bug/1665241

scrapy Documentation, Release 1.5

• dont_click (boolean) – If True, the form data will be submitted without clicking in
any element.

The other parameters of this class method are passed directly to the FormRequest constructor.

New in version 0.10.3: The formname parameter.

New in version 0.17: The formxpath parameter.

New in version 1.1.0: The formcss parameter.

New in version 1.1.0: The formid parameter.

Request usage examples

Using FormRequest to send data via HTTP POST

If you want to simulate a HTML Form POST in your spider and send a couple of key-value fields, you can return a
FormRequest object (from your spider) like this:

return [FormRequest(url="http://www.example.com/post/action",
formdata={'name': 'John Doe', 'age': '27'},
callback=self.after_post)]

Using FormRequest.from_response() to simulate a user login

It is usual for web sites to provide pre-populated form fields through <input type="hidden"> elements, such
as session related data or authentication tokens (for login pages). When scraping, you’ll want these fields to be
automatically pre-populated and only override a couple of them, such as the user name and password. You can use the
FormRequest.from_response() method for this job. Here’s an example spider which uses it:

import scrapy

class LoginSpider(scrapy.Spider):
name = 'example.com'
start_urls = ['http://www.example.com/users/login.php']

def parse(self, response):
return scrapy.FormRequest.from_response(

response,
formdata={'username': 'john', 'password': 'secret'},
callback=self.after_login

)

def after_login(self, response):
check login succeed before going on
if "authentication failed" in response.body:

self.logger.error("Login failed")
return

continue scraping with authenticated session...

88 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

3.9.4 Response objects

class scrapy.http.Response(url[, status=200, headers=None, body=b”, flags=None, re-
quest=None])

A Response object represents an HTTP response, which is usually downloaded (by the Downloader) and fed
to the Spiders for processing.

Parameters

• url (string) – the URL of this response

• status (integer) – the HTTP status of the response. Defaults to 200.

• headers (dict) – the headers of this response. The dict values can be strings (for single
valued headers) or lists (for multi-valued headers).

• body (bytes) – the response body. To access the decoded text as str (unicode in Python
2) you can use response.text from an encoding-aware Response subclass, such as
TextResponse.

• flags (list) – is a list containing the initial values for the Response.flags attribute.
If given, the list will be shallow copied.

• request (Request object) – the initial value of the Response.request attribute.
This represents the Request that generated this response.

url
A string containing the URL of the response.

This attribute is read-only. To change the URL of a Response use replace().

status
An integer representing the HTTP status of the response. Example: 200, 404.

headers
A dictionary-like object which contains the response headers. Values can be accessed using get() to
return the first header value with the specified name or getlist() to return all header values with the
specified name. For example, this call will give you all cookies in the headers:

response.headers.getlist('Set-Cookie')

body
The body of this Response. Keep in mind that Response.body is always a bytes object. If you want the
unicode version use TextResponse.text (only available in TextResponse and subclasses).

This attribute is read-only. To change the body of a Response use replace().

request
The Request object that generated this response. This attribute is assigned in the Scrapy engine, after
the response and the request have passed through all Downloader Middlewares. In particular, this means
that:

• HTTP redirections will cause the original request (to the URL before redirection) to be assigned to
the redirected response (with the final URL after redirection).

• Response.request.url doesn’t always equal Response.url

• This attribute is only available in the spider code, and in the Spider Middlewares, but not in Down-
loader Middlewares (although you have the Request available there by other means) and handlers of
the :signal:‘response_downloaded‘ signal.

3.9. Requests and Responses 89

scrapy Documentation, Release 1.5

meta
A shortcut to the Request.meta attribute of the Response.request object (ie. self.request.
meta).

Unlike the Response.request attribute, the Response.meta attribute is propagated along redirects
and retries, so you will get the original Request.meta sent from your spider.

See also:

Request.meta attribute

flags
A list that contains flags for this response. Flags are labels used for tagging Responses. For example:
‘cached’, ‘redirected’, etc. And they’re shown on the string representation of the Response (__str__
method) which is used by the engine for logging.

copy()
Returns a new Response which is a copy of this Response.

replace([url, status, headers, body, request, flags, cls])
Returns a Response object with the same members, except for those members given new values by
whichever keyword arguments are specified. The attribute Response.meta is copied by default.

urljoin(url)
Constructs an absolute url by combining the Response’s url with a possible relative url.

This is a wrapper over urlparse.urljoin, it’s merely an alias for making this call:

urlparse.urljoin(response.url, url)

3.9.5 Response subclasses

Here is the list of available built-in Response subclasses. You can also subclass the Response class to implement your
own functionality.

TextResponse objects

class scrapy.http.TextResponse(url[, encoding[, ...]])
TextResponse objects adds encoding capabilities to the base Response class, which is meant to be used
only for binary data, such as images, sounds or any media file.

TextResponse objects support a new constructor argument, in addition to the base Response objects. The
remaining functionality is the same as for the Response class and is not documented here.

Parameters encoding (string) – is a string which contains the encoding to use for this re-
sponse. If you create a TextResponse object with a unicode body, it will be encoded using
this encoding (remember the body attribute is always a string). If encoding is None (default
value), the encoding will be looked up in the response headers and body instead.

TextResponse objects support the following attributes in addition to the standard Response ones:

text
Response body, as unicode.

The same as response.body.decode(response.encoding), but the result is cached after the
first call, so you can access response.text multiple times without extra overhead.

90 Chapter 3. Basic concepts

https://docs.python.org/2/library/urlparse.html#urlparse.urljoin

scrapy Documentation, Release 1.5

Note: unicode(response.body) is not a correct way to convert response body to unicode: you
would be using the system default encoding (typically ascii) instead of the response encoding.

encoding
A string with the encoding of this response. The encoding is resolved by trying the following mechanisms,
in order:

1. the encoding passed in the constructor encoding argument

2. the encoding declared in the Content-Type HTTP header. If this encoding is not valid (ie. unknown),
it is ignored and the next resolution mechanism is tried.

3. the encoding declared in the response body. The TextResponse class doesn’t provide any special
functionality for this. However, the HtmlResponse and XmlResponse classes do.

4. the encoding inferred by looking at the response body. This is the more fragile method but also the
last one tried.

selector
A Selector instance using the response as target. The selector is lazily instantiated on first access.

TextResponse objects support the following methods in addition to the standard Response ones:

xpath(query)
A shortcut to TextResponse.selector.xpath(query):

response.xpath('//p')

css(query)
A shortcut to TextResponse.selector.css(query):

response.css('p')

body_as_unicode()
The same as text, but available as a method. This method is kept for backwards compatibility; please
prefer response.text.

HtmlResponse objects

class scrapy.http.HtmlResponse(url[, ...])
The HtmlResponse class is a subclass of TextResponse which adds encoding auto-discovering support
by looking into the HTML meta http-equiv attribute. See TextResponse.encoding.

XmlResponse objects

class scrapy.http.XmlResponse(url[, ...])
The XmlResponse class is a subclass of TextResponse which adds encoding auto-discovering support by
looking into the XML declaration line. See TextResponse.encoding.

3.10 Link Extractors

Link extractors are objects whose only purpose is to extract links from web pages (scrapy.http.Response
objects) which will be eventually followed.

3.10. Link Extractors 91

https://www.w3schools.com/TAGS/att_meta_http_equiv.asp

scrapy Documentation, Release 1.5

There is scrapy.linkextractors.LinkExtractor available in Scrapy, but you can create your own custom
Link Extractors to suit your needs by implementing a simple interface.

The only public method that every link extractor has is extract_links, which receives a Response object
and returns a list of scrapy.link.Link objects. Link extractors are meant to be instantiated once and their
extract_links method called several times with different responses to extract links to follow.

Link extractors are used in the CrawlSpider class (available in Scrapy), through a set of rules, but you can also use
it in your spiders, even if you don’t subclass from CrawlSpider, as its purpose is very simple: to extract links.

3.10.1 Built-in link extractors reference

Link extractors classes bundled with Scrapy are provided in the scrapy.linkextractors module.

The default link extractor is LinkExtractor, which is the same as LxmlLinkExtractor:

from scrapy.linkextractors import LinkExtractor

There used to be other link extractor classes in previous Scrapy versions, but they are deprecated now.

LxmlLinkExtractor

class scrapy.linkextractors.lxmlhtml.LxmlLinkExtractor(allow=(), deny=(),
allow_domains=(),
deny_domains=(),
deny_extensions=None,
restrict_xpaths=(), re-
strict_css=(), tags=(’a’,
’area’), attrs=(’href’,
), canonicalize=False,
unique=True, pro-
cess_value=None,
strip=True)

LxmlLinkExtractor is the recommended link extractor with handy filtering options. It is implemented using
lxml’s robust HTMLParser.

Parameters

• allow (a regular expression (or list of)) – a single regular expression (or
list of regular expressions) that the (absolute) urls must match in order to be extracted. If
not given (or empty), it will match all links.

• deny (a regular expression (or list of)) – a single regular expression (or
list of regular expressions) that the (absolute) urls must match in order to be excluded (ie.
not extracted). It has precedence over the allow parameter. If not given (or empty) it won’t
exclude any links.

• allow_domains (str or list) – a single value or a list of string containing domains
which will be considered for extracting the links

• deny_domains (str or list) – a single value or a list of strings containing domains
which won’t be considered for extracting the links

• deny_extensions (list) – a single value or list of strings containing extensions
that should be ignored when extracting links. If not given, it will default to the
IGNORED_EXTENSIONS list defined in the scrapy.linkextractors package.

92 Chapter 3. Basic concepts

https://github.com/scrapy/scrapy/blob/master/scrapy/linkextractors/__init__.py

scrapy Documentation, Release 1.5

• restrict_xpaths (str or list) – is an XPath (or list of XPath’s) which defines
regions inside the response where links should be extracted from. If given, only the text
selected by those XPath will be scanned for links. See examples below.

• restrict_css (str or list) – a CSS selector (or list of selectors) which defines
regions inside the response where links should be extracted from. Has the same behaviour
as restrict_xpaths.

• tags (str or list) – a tag or a list of tags to consider when extracting links. Defaults
to ('a', 'area').

• attrs (list) – an attribute or list of attributes which should be considered when look-
ing for links to extract (only for those tags specified in the tags parameter). Defaults to
('href',)

• canonicalize (boolean) – canonicalize each extracted url (using
w3lib.url.canonicalize_url). Defaults to False. Note that canonicalize_url is meant
for duplicate checking; it can change the URL visible at server side, so the response can be
different for requests with canonicalized and raw URLs. If you’re using LinkExtractor to
follow links it is more robust to keep the default canonicalize=False.

• unique (boolean) – whether duplicate filtering should be applied to extracted links.

• process_value (callable) – a function which receives each value extracted from the
tag and attributes scanned and can modify the value and return a new one, or return None
to ignore the link altogether. If not given, process_value defaults to lambda x: x.

For example, to extract links from this code:

→˓Link text

You can use the following function in process_value:

def process_value(value):
m = re.search("javascript:goToPage\('(.*?)'", value)
if m:

return m.group(1)

• strip (boolean) – whether to strip whitespaces from extracted attributes. According to
HTML5 standard, leading and trailing whitespaces must be stripped from href attributes
of <a>, <area> and many other elements, src attribute of , <iframe> elements,
etc., so LinkExtractor strips space chars by default. Set strip=False to turn it off (e.g. if
you’re extracting urls from elements or attributes which allow leading/trailing whitespaces).

3.11 Settings

The Scrapy settings allows you to customize the behaviour of all Scrapy components, including the core, extensions,
pipelines and spiders themselves.

The infrastructure of the settings provides a global namespace of key-value mappings that the code can use to pull
configuration values from. The settings can be populated through different mechanisms, which are described below.

The settings are also the mechanism for selecting the currently active Scrapy project (in case you have many).

For a list of available built-in settings see: Built-in settings reference.

3.11. Settings 93

scrapy Documentation, Release 1.5

3.11.1 Designating the settings

When you use Scrapy, you have to tell it which settings you’re using. You can do this by using an environment variable,
SCRAPY_SETTINGS_MODULE.

The value of SCRAPY_SETTINGS_MODULE should be in Python path syntax, e.g. myproject.settings. Note
that the settings module should be on the Python import search path.

3.11.2 Populating the settings

Settings can be populated using different mechanisms, each of which having a different precedence. Here is the list of
them in decreasing order of precedence:

1. Command line options (most precedence)

2. Settings per-spider

3. Project settings module

4. Default settings per-command

5. Default global settings (less precedence)

The population of these settings sources is taken care of internally, but a manual handling is possible using API calls.
See the Settings API topic for reference.

These mechanisms are described in more detail below.

1. Command line options

Arguments provided by the command line are the ones that take most precedence, overriding any other options. You
can explicitly override one (or more) settings using the -s (or --set) command line option.

Example:

scrapy crawl myspider -s LOG_FILE=scrapy.log

2. Settings per-spider

Spiders (See the Spiders chapter for reference) can define their own settings that will take precedence and override the
project ones. They can do so by setting their custom_settings attribute:

class MySpider(scrapy.Spider):
name = 'myspider'

custom_settings = {
'SOME_SETTING': 'some value',

}

3. Project settings module

The project settings module is the standard configuration file for your Scrapy project, it’s where most of your custom
settings will be populated. For a standard Scrapy project, this means you’ll be adding or changing the settings in the
settings.py file created for your project.

94 Chapter 3. Basic concepts

https://docs.python.org/2/tutorial/modules.html#the-module-search-path

scrapy Documentation, Release 1.5

4. Default settings per-command

Each Scrapy tool command can have its own default settings, which override the global default settings. Those custom
command settings are specified in the default_settings attribute of the command class.

5. Default global settings

The global defaults are located in the scrapy.settings.default_settings module and documented in the
Built-in settings reference section.

3.11.3 How to access settings

In a spider, the settings are available through self.settings:

class MySpider(scrapy.Spider):
name = 'myspider'
start_urls = ['http://example.com']

def parse(self, response):
print("Existing settings: %s" % self.settings.attributes.keys())

Note: The settings attribute is set in the base Spider class after the spider is initialized. If you want to
use the settings before the initialization (e.g., in your spider’s __init__() method), you’ll need to override the
from_crawler() method.

Settings can be accessed through the scrapy.crawler.Crawler.settings attribute of the Crawler that is
passed to from_crawler method in extensions, middlewares and item pipelines:

class MyExtension(object):
def __init__(self, log_is_enabled=False):

if log_is_enabled:
print("log is enabled!")

@classmethod
def from_crawler(cls, crawler):

settings = crawler.settings
return cls(settings.getbool('LOG_ENABLED'))

The settings object can be used like a dict (e.g., settings['LOG_ENABLED']), but it’s usually preferred to extract
the setting in the format you need it to avoid type errors, using one of the methods provided by the Settings API.

3.11.4 Rationale for setting names

Setting names are usually prefixed with the component that they configure. For example, proper setting names for
a fictional robots.txt extension would be ROBOTSTXT_ENABLED, ROBOTSTXT_OBEY, ROBOTSTXT_CACHEDIR,
etc.

3.11.5 Built-in settings reference

Here’s a list of all available Scrapy settings, in alphabetical order, along with their default values and the scope where
they apply.

3.11. Settings 95

scrapy Documentation, Release 1.5

The scope, where available, shows where the setting is being used, if it’s tied to any particular component. In that case
the module of that component will be shown, typically an extension, middleware or pipeline. It also means that the
component must be enabled in order for the setting to have any effect.

AWS_ACCESS_KEY_ID

Default: None

The AWS access key used by code that requires access to Amazon Web services, such as the S3 feed storage backend.

AWS_SECRET_ACCESS_KEY

Default: None

The AWS secret key used by code that requires access to Amazon Web services, such as the S3 feed storage backend.

AWS_ENDPOINT_URL

Default: None

Endpoint URL used for S3-like self-hosted storage. Storage like Minio or s3.scality.

AWS_USE_SSL

Default: None

Use this option if you want to disable SSL connection for communication with S3 or S3-like storage. By default SSL
will be used.

AWS_VERIFY

Default: None

Verify SSL connection between Scrapy and S3 or S3-like storage. By default SSL verification will occur.

BOT_NAME

Default: 'scrapybot'

The name of the bot implemented by this Scrapy project (also known as the project name). This will be used to
construct the User-Agent by default, and also for logging.

It’s automatically populated with your project name when you create your project with the startproject com-
mand.

CONCURRENT_ITEMS

Default: 100

Maximum number of concurrent items (per response) to process in parallel in the Item Processor (also known as the
Item Pipeline).

96 Chapter 3. Basic concepts

https://aws.amazon.com/
https://aws.amazon.com/

scrapy Documentation, Release 1.5

CONCURRENT_REQUESTS

Default: 16

The maximum number of concurrent (ie. simultaneous) requests that will be performed by the Scrapy downloader.

CONCURRENT_REQUESTS_PER_DOMAIN

Default: 8

The maximum number of concurrent (ie. simultaneous) requests that will be performed to any single domain.

See also: AutoThrottle extension and its :setting:‘AUTOTHROTTLE_TARGET_CONCURRENCY‘ option.

CONCURRENT_REQUESTS_PER_IP

Default: 0

The maximum number of concurrent (ie. simultaneous) requests that will be performed to any single IP. If non-zero,
the :setting:‘CONCURRENT_REQUESTS_PER_DOMAIN‘ setting is ignored, and this one is used instead. In
other words, concurrency limits will be applied per IP, not per domain.

This setting also affects :setting:‘DOWNLOAD_DELAY‘ and AutoThrottle extension: if :set-
ting:‘CONCURRENT_REQUESTS_PER_IP‘ is non-zero, download delay is enforced per IP, not per domain.

DEFAULT_ITEM_CLASS

Default: 'scrapy.item.Item'

The default class that will be used for instantiating items in the the Scrapy shell.

DEFAULT_REQUEST_HEADERS

Default:

{
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en',

}

The default headers used for Scrapy HTTP Requests. They’re populated in the DefaultHeadersMiddleware.

DEPTH_LIMIT

Default: 0

Scope: scrapy.spidermiddlewares.depth.DepthMiddleware

The maximum depth that will be allowed to crawl for any site. If zero, no limit will be imposed.

3.11. Settings 97

scrapy Documentation, Release 1.5

DEPTH_PRIORITY

Default: 0

Scope: scrapy.spidermiddlewares.depth.DepthMiddleware

An integer that is used to adjust the request priority based on its depth:

• if zero (default), no priority adjustment is made from depth

• a positive value will decrease the priority, i.e. higher depth requests will be processed later ; this is com-
monly used when doing breadth-first crawls (BFO)

• a negative value will increase priority, i.e., higher depth requests will be processed sooner (DFO)

See also: Does Scrapy crawl in breadth-first or depth-first order? about tuning Scrapy for BFO or DFO.

Note: This setting adjusts priority in the opposite way compared to other priority settings :set-
ting:‘REDIRECT_PRIORITY_ADJUST‘ and :setting:‘RETRY_PRIORITY_ADJUST‘.

DEPTH_STATS_VERBOSE

Default: False

Scope: scrapy.spidermiddlewares.depth.DepthMiddleware

Whether to collect verbose depth stats. If this is enabled, the number of requests for each depth is collected in the stats.

DNSCACHE_ENABLED

Default: True

Whether to enable DNS in-memory cache.

DNSCACHE_SIZE

Default: 10000

DNS in-memory cache size.

DNS_TIMEOUT

Default: 60

Timeout for processing of DNS queries in seconds. Float is supported.

DOWNLOADER

Default: 'scrapy.core.downloader.Downloader'

The downloader to use for crawling.

98 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

DOWNLOADER_HTTPCLIENTFACTORY

Default: 'scrapy.core.downloader.webclient.ScrapyHTTPClientFactory'

Defines a Twisted protocol.ClientFactory class to use for HTTP/1.0 connections (for
HTTP10DownloadHandler).

Note: HTTP/1.0 is rarely used nowadays so you can safely ignore this setting, unless you use Twisted<11.1, or if
you really want to use HTTP/1.0 and override :setting:‘DOWNLOAD_HANDLERS_BASE‘ for http(s) scheme
accordingly, i.e. to 'scrapy.core.downloader.handlers.http.HTTP10DownloadHandler'.

DOWNLOADER_CLIENTCONTEXTFACTORY

Default: 'scrapy.core.downloader.contextfactory.ScrapyClientContextFactory'

Represents the classpath to the ContextFactory to use.

Here, “ContextFactory” is a Twisted term for SSL/TLS contexts, defining the TLS/SSL protocol version to use,
whether to do certificate verification, or even enable client-side authentication (and various other things).

Note: Scrapy default context factory does NOT perform remote server certificate verification. This is usually fine
for web scraping.

If you do need remote server certificate verification enabled, Scrapy also has another context factory class that you can
set, 'scrapy.core.downloader.contextfactory.BrowserLikeContextFactory', which uses the
platform’s certificates to validate remote endpoints. This is only available if you use Twisted>=14.0.

If you do use a custom ContextFactory, make sure it accepts a method parameter at init (this is the OpenSSL.SSL
method mapping :setting:‘DOWNLOADER_CLIENT_TLS_METHOD‘).

DOWNLOADER_CLIENT_TLS_METHOD

Default: 'TLS'

Use this setting to customize the TLS/SSL method used by the default HTTP/1.1 downloader.

This setting must be one of these string values:

• 'TLS': maps to OpenSSL’s TLS_method() (a.k.a SSLv23_method()), which allows protocol negotia-
tion, starting from the highest supported by the platform; default, recommended

• 'TLSv1.0': this value forces HTTPS connections to use TLS version 1.0 ; set this if you want the behavior
of Scrapy<1.1

• 'TLSv1.1': forces TLS version 1.1

• 'TLSv1.2': forces TLS version 1.2

• 'SSLv3': forces SSL version 3 (not recommended)

Note: We recommend that you use PyOpenSSL>=0.13 and Twisted>=0.13 or above (Twisted>=14.0 if you can).

3.11. Settings 99

scrapy Documentation, Release 1.5

DOWNLOADER_MIDDLEWARES

Default:: {}

A dict containing the downloader middlewares enabled in your project, and their orders. For more info see Activating
a downloader middleware.

DOWNLOADER_MIDDLEWARES_BASE

Default:

{
'scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware': 100,
'scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware': 300,
'scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware': 350,
'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware': 400,
'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': 500,
'scrapy.downloadermiddlewares.retry.RetryMiddleware': 550,
'scrapy.downloadermiddlewares.ajaxcrawl.AjaxCrawlMiddleware': 560,
'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware': 580,
'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware': 590,
'scrapy.downloadermiddlewares.redirect.RedirectMiddleware': 600,
'scrapy.downloadermiddlewares.cookies.CookiesMiddleware': 700,
'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 750,
'scrapy.downloadermiddlewares.stats.DownloaderStats': 850,
'scrapy.downloadermiddlewares.httpcache.HttpCacheMiddleware': 900,

}

A dict containing the downloader middlewares enabled by default in Scrapy. Low orders are closer to the en-
gine, high orders are closer to the downloader. You should never modify this setting in your project, modify :set-
ting:‘DOWNLOADER_MIDDLEWARES‘ instead. For more info see Activating a downloader middleware.

DOWNLOADER_STATS

Default: True

Whether to enable downloader stats collection.

DOWNLOAD_DELAY

Default: 0

The amount of time (in secs) that the downloader should wait before downloading consecutive pages from the same
website. This can be used to throttle the crawling speed to avoid hitting servers too hard. Decimal numbers are
supported. Example:

DOWNLOAD_DELAY = 0.25 # 250 ms of delay

This setting is also affected by the :setting:‘RANDOMIZE_DOWNLOAD_DELAY‘ setting (which is enabled by
default). By default, Scrapy doesn’t wait a fixed amount of time between requests, but uses a random interval between
0.5 * :setting:‘DOWNLOAD_DELAY‘ and 1.5 * :setting:‘DOWNLOAD_DELAY‘.

When :setting:‘CONCURRENT_REQUESTS_PER_IP‘ is non-zero, delays are enforced per ip address instead of
per domain.

You can also change this setting per spider by setting download_delay spider attribute.

100 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

DOWNLOAD_HANDLERS

Default: {}

A dict containing the request downloader handlers enabled in your project. See :set-
ting:‘DOWNLOAD_HANDLERS_BASE‘ for example format.

DOWNLOAD_HANDLERS_BASE

Default:

{
'file': 'scrapy.core.downloader.handlers.file.FileDownloadHandler',
'http': 'scrapy.core.downloader.handlers.http.HTTPDownloadHandler',
'https': 'scrapy.core.downloader.handlers.http.HTTPDownloadHandler',
's3': 'scrapy.core.downloader.handlers.s3.S3DownloadHandler',
'ftp': 'scrapy.core.downloader.handlers.ftp.FTPDownloadHandler',

}

A dict containing the request download handlers enabled by default in Scrapy. You should never modify this setting in
your project, modify :setting:‘DOWNLOAD_HANDLERS‘ instead.

You can disable any of these download handlers by assigning None to their URI scheme in :set-
ting:‘DOWNLOAD_HANDLERS‘. E.g., to disable the built-in FTP handler (without replacement), place this in
your settings.py:

DOWNLOAD_HANDLERS = {
'ftp': None,

}

DOWNLOAD_TIMEOUT

Default: 180

The amount of time (in secs) that the downloader will wait before timing out.

Note: This timeout can be set per spider using download_timeout spider attribute and per-request using :re-
qmeta:‘download_timeout‘ Request.meta key.

DOWNLOAD_MAXSIZE

Default: 1073741824 (1024MB)

The maximum response size (in bytes) that downloader will download.

If you want to disable it set to 0.

Note: This size can be set per spider using download_maxsize spider attribute and per-request using :re-
qmeta:‘download_maxsize‘ Request.meta key.

This feature needs Twisted >= 11.1.

3.11. Settings 101

scrapy Documentation, Release 1.5

DOWNLOAD_WARNSIZE

Default: 33554432 (32MB)

The response size (in bytes) that downloader will start to warn.

If you want to disable it set to 0.

Note: This size can be set per spider using download_warnsize spider attribute and per-request using :re-
qmeta:‘download_warnsize‘ Request.meta key.

This feature needs Twisted >= 11.1.

DOWNLOAD_FAIL_ON_DATALOSS

Default: True

Whether or not to fail on broken responses, that is, declared Content-Length does not match con-
tent sent by the server or chunked response was not properly finish. If True, these responses raise a
ResponseFailed([_DataLoss]) error. If False, these responses are passed through and the flag dataloss
is added to the response, i.e.: 'dataloss' in response.flags is True.

Optionally, this can be set per-request basis by using the :reqmeta:‘download_fail_on_dataloss‘ Request.meta key
to False.

Note: A broken response, or data loss error, may happen under several circumstances, from server misconfiguration to
network errors to data corruption. It is up to the user to decide if it makes sense to process broken responses considering
they may contain partial or incomplete content. If :setting:‘RETRY_ENABLED‘ is True and this setting is set to
True, the ResponseFailed([_DataLoss]) failure will be retried as usual.

DUPEFILTER_CLASS

Default: 'scrapy.dupefilters.RFPDupeFilter'

The class used to detect and filter duplicate requests.

The default (RFPDupeFilter) filters based on request fingerprint using the scrapy.utils.request.
request_fingerprint function. In order to change the way duplicates are checked you could subclass
RFPDupeFilter and override its request_fingerprint method. This method should accept scrapy
Request object and return its fingerprint (a string).

You can disable filtering of duplicate requests by setting :setting:‘DUPEFILTER_CLASS‘ to 'scrapy.
dupefilters.BaseDupeFilter'. Be very careful about this however, because you can get into crawling loops.
It’s usually a better idea to set the dont_filter parameter to True on the specific Request that should not be
filtered.

DUPEFILTER_DEBUG

Default: False

By default, RFPDupeFilter only logs the first duplicate request. Setting :setting:‘DUPEFILTER_DEBUG‘ to
True will make it log all duplicate requests.

102 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

EDITOR

Default: vi (on Unix systems) or the IDLE editor (on Windows)

The editor to use for editing spiders with the edit command. Additionally, if the EDITOR environment variable is
set, the edit command will prefer it over the default setting.

EXTENSIONS

Default:: {}

A dict containing the extensions enabled in your project, and their orders.

EXTENSIONS_BASE

Default:

{
'scrapy.extensions.corestats.CoreStats': 0,
'scrapy.extensions.telnet.TelnetConsole': 0,
'scrapy.extensions.memusage.MemoryUsage': 0,
'scrapy.extensions.memdebug.MemoryDebugger': 0,
'scrapy.extensions.closespider.CloseSpider': 0,
'scrapy.extensions.feedexport.FeedExporter': 0,
'scrapy.extensions.logstats.LogStats': 0,
'scrapy.extensions.spiderstate.SpiderState': 0,
'scrapy.extensions.throttle.AutoThrottle': 0,

}

A dict containing the extensions available by default in Scrapy, and their orders. This setting contains all stable built-in
extensions. Keep in mind that some of them need to be enabled through a setting.

For more information See the extensions user guide and the list of available extensions.

FEED_TEMPDIR

The Feed Temp dir allows you to set a custom folder to save crawler temporary files before uploading with FTP feed
storage and Amazon S3.

FTP_PASSIVE_MODE

Default: True

Whether or not to use passive mode when initiating FTP transfers.

FTP_PASSWORD

Default: "guest"

The password to use for FTP connections when there is no "ftp_password" in Request meta.

3.11. Settings 103

scrapy Documentation, Release 1.5

Note: Paraphrasing RFC 1635, although it is common to use either the password “guest” or one’s e-mail address
for anonymous FTP, some FTP servers explicitly ask for the user’s e-mail address and will not allow login with the
“guest” password.

FTP_USER

Default: "anonymous"

The username to use for FTP connections when there is no "ftp_user" in Request meta.

ITEM_PIPELINES

Default: {}

A dict containing the item pipelines to use, and their orders. Order values are arbitrary, but it is customary to define
them in the 0-1000 range. Lower orders process before higher orders.

Example:

ITEM_PIPELINES = {
'mybot.pipelines.validate.ValidateMyItem': 300,
'mybot.pipelines.validate.StoreMyItem': 800,

}

ITEM_PIPELINES_BASE

Default: {}

A dict containing the pipelines enabled by default in Scrapy. You should never modify this setting in your project,
modify :setting:‘ITEM_PIPELINES‘ instead.

LOG_ENABLED

Default: True

Whether to enable logging.

LOG_ENCODING

Default: 'utf-8'

The encoding to use for logging.

LOG_FILE

Default: None

File name to use for logging output. If None, standard error will be used.

104 Chapter 3. Basic concepts

https://tools.ietf.org/html/rfc1635

scrapy Documentation, Release 1.5

LOG_FORMAT

Default: '%(asctime)s [%(name)s] %(levelname)s: %(message)s'

String for formatting log messsages. Refer to the Python logging documentation for the whole list of available place-
holders.

LOG_DATEFORMAT

Default: '%Y-%m-%d %H:%M:%S'

String for formatting date/time, expansion of the %(asctime)s placeholder in :setting:‘LOG_FORMAT‘. Refer
to the Python datetime documentation for the whole list of available directives.

LOG_LEVEL

Default: 'DEBUG'

Minimum level to log. Available levels are: CRITICAL, ERROR, WARNING, INFO, DEBUG. For more info see
Logging.

LOG_STDOUT

Default: False

If True, all standard output (and error) of your process will be redirected to the log. For example if you print
'hello' it will appear in the Scrapy log.

LOG_SHORT_NAMES

Default: False

If True, the logs will just contain the root path. If it is set to False then it displays the component responsible for
the log output

MEMDEBUG_ENABLED

Default: False

Whether to enable memory debugging.

MEMDEBUG_NOTIFY

Default: []

When memory debugging is enabled a memory report will be sent to the specified addresses if this setting is not empty,
otherwise the report will be written to the log.

Example:

MEMDEBUG_NOTIFY = ['user@example.com']

3.11. Settings 105

https://docs.python.org/2/library/logging.html#logrecord-attributes
https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior

scrapy Documentation, Release 1.5

MEMUSAGE_ENABLED

Default: True

Scope: scrapy.extensions.memusage

Whether to enable the memory usage extension. This extension keeps track of a peak memory used by
the process (it writes it to stats). It can also optionally shutdown the Scrapy process when it exceeds a
memory limit (see :setting:‘MEMUSAGE_LIMIT_MB‘), and notify by email when that happened (see :set-
ting:‘MEMUSAGE_NOTIFY_MAIL‘).

See Memory usage extension.

MEMUSAGE_LIMIT_MB

Default: 0

Scope: scrapy.extensions.memusage

The maximum amount of memory to allow (in megabytes) before shutting down Scrapy (if MEMUSAGE_ENABLED
is True). If zero, no check will be performed.

See Memory usage extension.

MEMUSAGE_CHECK_INTERVAL_SECONDS

New in version 1.1.

Default: 60.0

Scope: scrapy.extensions.memusage

The Memory usage extension checks the current memory usage, versus the limits set by :set-
ting:‘MEMUSAGE_LIMIT_MB‘ and :setting:‘MEMUSAGE_WARNING_MB‘, at fixed time intervals.

This sets the length of these intervals, in seconds.

See Memory usage extension.

MEMUSAGE_NOTIFY_MAIL

Default: False

Scope: scrapy.extensions.memusage

A list of emails to notify if the memory limit has been reached.

Example:

MEMUSAGE_NOTIFY_MAIL = ['user@example.com']

See Memory usage extension.

MEMUSAGE_WARNING_MB

Default: 0

Scope: scrapy.extensions.memusage

106 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

The maximum amount of memory to allow (in megabytes) before sending a warning email notifying about it. If zero,
no warning will be produced.

NEWSPIDER_MODULE

Default: ''

Module where to create new spiders using the genspider command.

Example:

NEWSPIDER_MODULE = 'mybot.spiders_dev'

RANDOMIZE_DOWNLOAD_DELAY

Default: True

If enabled, Scrapy will wait a random amount of time (between 0.5 * :setting:‘DOWNLOAD_DELAY‘ and 1.5 *
:setting:‘DOWNLOAD_DELAY‘) while fetching requests from the same website.

This randomization decreases the chance of the crawler being detected (and subsequently blocked) by sites which
analyze requests looking for statistically significant similarities in the time between their requests.

The randomization policy is the same used by wget --random-wait option.

If :setting:‘DOWNLOAD_DELAY‘ is zero (default) this option has no effect.

REACTOR_THREADPOOL_MAXSIZE

Default: 10

The maximum limit for Twisted Reactor thread pool size. This is common multi-purpose thread pool used by various
Scrapy components. Threaded DNS Resolver, BlockingFeedStorage, S3FilesStore just to name a few. Increase this
value if you’re experiencing problems with insufficient blocking IO.

REDIRECT_MAX_TIMES

Default: 20

Defines the maximum times a request can be redirected. After this maximum the request’s response is returned as is.
We used Firefox default value for the same task.

REDIRECT_PRIORITY_ADJUST

Default: +2

Scope: scrapy.downloadermiddlewares.redirect.RedirectMiddleware

Adjust redirect request priority relative to original request:

• a positive priority adjust (default) means higher priority.

• a negative priority adjust means lower priority.

3.11. Settings 107

https://www.gnu.org/software/wget/manual/wget.html

scrapy Documentation, Release 1.5

RETRY_PRIORITY_ADJUST

Default: -1

Scope: scrapy.downloadermiddlewares.retry.RetryMiddleware

Adjust retry request priority relative to original request:

• a positive priority adjust means higher priority.

• a negative priority adjust (default) means lower priority.

ROBOTSTXT_OBEY

Default: False

Scope: scrapy.downloadermiddlewares.robotstxt

If enabled, Scrapy will respect robots.txt policies. For more information see RobotsTxtMiddleware.

Note: While the default value is False for historical reasons, this option is enabled by default in settings.py file
generated by scrapy startproject command.

SCHEDULER

Default: 'scrapy.core.scheduler.Scheduler'

The scheduler to use for crawling.

SCHEDULER_DEBUG

Default: False

Setting to True will log debug information about the requests scheduler. This currently logs (only once) if the
requests cannot be serialized to disk. Stats counter (scheduler/unserializable) tracks the number of times
this happens.

Example entry in logs:

1956-01-31 00:00:00+0800 [scrapy.core.scheduler] ERROR: Unable to serialize request:
<GET http://example.com> - reason: cannot serialize <Request at 0x9a7c7ec>
(type Request)> - no more unserializable requests will be logged
(see 'scheduler/unserializable' stats counter)

SCHEDULER_DISK_QUEUE

Default: 'scrapy.squeues.PickleLifoDiskQueue'

Type of disk queue that will be used by scheduler. Other available types are scrapy.squeues.
PickleFifoDiskQueue, scrapy.squeues.MarshalFifoDiskQueue, scrapy.squeues.
MarshalLifoDiskQueue.

108 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

SCHEDULER_MEMORY_QUEUE

Default: 'scrapy.squeues.LifoMemoryQueue'

Type of in-memory queue used by scheduler. Other available type is: scrapy.squeues.FifoMemoryQueue.

SCHEDULER_PRIORITY_QUEUE

Default: 'queuelib.PriorityQueue'

Type of priority queue used by scheduler.

SPIDER_CONTRACTS

Default:: {}

A dict containing the spider contracts enabled in your project, used for testing spiders. For more info see Spiders
Contracts.

SPIDER_CONTRACTS_BASE

Default:

{
'scrapy.contracts.default.UrlContract' : 1,
'scrapy.contracts.default.ReturnsContract': 2,
'scrapy.contracts.default.ScrapesContract': 3,

}

A dict containing the scrapy contracts enabled by default in Scrapy. You should never modify this setting in your
project, modify :setting:‘SPIDER_CONTRACTS‘ instead. For more info see Spiders Contracts.

You can disable any of these contracts by assigning None to their class path in :setting:‘SPIDER_CONTRACTS‘.
E.g., to disable the built-in ScrapesContract, place this in your settings.py:

SPIDER_CONTRACTS = {
'scrapy.contracts.default.ScrapesContract': None,

}

SPIDER_LOADER_CLASS

Default: 'scrapy.spiderloader.SpiderLoader'

The class that will be used for loading spiders, which must implement the SpiderLoader API.

SPIDER_LOADER_WARN_ONLY

New in version 1.3.3.

Default: False

By default, when scrapy tries to import spider classes from :setting:‘SPIDER_MODULES‘, it will fail loudly if there
is any ImportError exception. But you can choose to silence this exception and turn it into a simple warning by
setting SPIDER_LOADER_WARN_ONLY = True.

3.11. Settings 109

scrapy Documentation, Release 1.5

Note: Some scrapy commands run with this setting to True already (i.e. they will only issue a warning and will
not fail) since they do not actually need to load spider classes to work: scrapy runspider <runspider>,
scrapy settings <settings>, scrapy startproject <startproject>, scrapy version
<version>.

SPIDER_MIDDLEWARES

Default:: {}

A dict containing the spider middlewares enabled in your project, and their orders. For more info see Activating a
spider middleware.

SPIDER_MIDDLEWARES_BASE

Default:

{
'scrapy.spidermiddlewares.httperror.HttpErrorMiddleware': 50,
'scrapy.spidermiddlewares.offsite.OffsiteMiddleware': 500,
'scrapy.spidermiddlewares.referer.RefererMiddleware': 700,
'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware': 800,
'scrapy.spidermiddlewares.depth.DepthMiddleware': 900,

}

A dict containing the spider middlewares enabled by default in Scrapy, and their orders. Low orders are closer to the
engine, high orders are closer to the spider. For more info see Activating a spider middleware.

SPIDER_MODULES

Default: []

A list of modules where Scrapy will look for spiders.

Example:

SPIDER_MODULES = ['mybot.spiders_prod', 'mybot.spiders_dev']

STATS_CLASS

Default: 'scrapy.statscollectors.MemoryStatsCollector'

The class to use for collecting stats, who must implement the Stats Collector API.

STATS_DUMP

Default: True

Dump the Scrapy stats (to the Scrapy log) once the spider finishes.

For more info see: Stats Collection.

110 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

STATSMAILER_RCPTS

Default: [] (empty list)

Send Scrapy stats after spiders finish scraping. See StatsMailer for more info.

TELNETCONSOLE_ENABLED

Default: True

A boolean which specifies if the telnet console will be enabled (provided its extension is also enabled).

TELNETCONSOLE_PORT

Default: [6023, 6073]

The port range to use for the telnet console. If set to None or 0, a dynamically assigned port is used. For more info
see Telnet Console.

TEMPLATES_DIR

Default: templates dir inside scrapy module

The directory where to look for templates when creating new projects with startproject command and new
spiders with genspider command.

The project name must not conflict with the name of custom files or directories in the project subdirectory.

URLLENGTH_LIMIT

Default: 2083

Scope: spidermiddlewares.urllength

The maximum URL length to allow for crawled URLs. For more information about the default value for this setting
see: https://boutell.com/newfaq/misc/urllength.html

USER_AGENT

Default: "Scrapy/VERSION (+https://scrapy.org)"

The default User-Agent to use when crawling, unless overridden.

Settings documented elsewhere:

The following settings are documented elsewhere, please check each specific case to see how to enable and use them.

3.12 Exceptions

3.12.1 Built-in Exceptions reference

Here’s a list of all exceptions included in Scrapy and their usage.

3.12. Exceptions 111

https://boutell.com/newfaq/misc/urllength.html

scrapy Documentation, Release 1.5

DropItem

exception scrapy.exceptions.DropItem

The exception that must be raised by item pipeline stages to stop processing an Item. For more information see Item
Pipeline.

CloseSpider

exception scrapy.exceptions.CloseSpider(reason=’cancelled’)
This exception can be raised from a spider callback to request the spider to be closed/stopped. Supported
arguments:

Parameters reason (str) – the reason for closing

For example:

def parse_page(self, response):
if 'Bandwidth exceeded' in response.body:

raise CloseSpider('bandwidth_exceeded')

DontCloseSpider

exception scrapy.exceptions.DontCloseSpider

This exception can be raised in a :signal:‘spider_idle‘ signal handler to prevent the spider from being closed.

IgnoreRequest

exception scrapy.exceptions.IgnoreRequest

This exception can be raised by the Scheduler or any downloader middleware to indicate that the request should be
ignored.

NotConfigured

exception scrapy.exceptions.NotConfigured

This exception can be raised by some components to indicate that they will remain disabled. Those components
include:

• Extensions

• Item pipelines

• Downloader middlewares

• Spider middlewares

The exception must be raised in the component’s __init__ method.

112 Chapter 3. Basic concepts

scrapy Documentation, Release 1.5

NotSupported

exception scrapy.exceptions.NotSupported

This exception is raised to indicate an unsupported feature.

Command line tool Learn about the command-line tool used to manage your Scrapy project.

Spiders Write the rules to crawl your websites.

Selectors Extract the data from web pages using XPath.

Scrapy shell Test your extraction code in an interactive environment.

Items Define the data you want to scrape.

Item Loaders Populate your items with the extracted data.

Item Pipeline Post-process and store your scraped data.

Feed exports Output your scraped data using different formats and storages.

Requests and Responses Understand the classes used to represent HTTP requests and responses.

Link Extractors Convenient classes to extract links to follow from pages.

Settings Learn how to configure Scrapy and see all available settings.

Exceptions See all available exceptions and their meaning.

3.12. Exceptions 113

scrapy Documentation, Release 1.5

114 Chapter 3. Basic concepts

CHAPTER 4

Built-in services

4.1 Logging

Note: scrapy.log has been deprecated alongside its functions in favor of explicit calls to the Python standard
logging. Keep reading to learn more about the new logging system.

Scrapy uses Python’s builtin logging system for event logging. We’ll provide some simple examples to get you started,
but for more advanced use-cases it’s strongly suggested to read thoroughly its documentation.

Logging works out of the box, and can be configured to some extent with the Scrapy settings listed in Logging settings.

Scrapy calls scrapy.utils.log.configure_logging() to set some reasonable defaults and handle those
settings in Logging settings when running commands, so it’s recommended to manually call it if you’re running Scrapy
from scripts as described in Run Scrapy from a script.

4.1.1 Log levels

Python’s builtin logging defines 5 different levels to indicate the severity of a given log message. Here are the standard
ones, listed in decreasing order:

1. logging.CRITICAL - for critical errors (highest severity)

2. logging.ERROR - for regular errors

3. logging.WARNING - for warning messages

4. logging.INFO - for informational messages

5. logging.DEBUG - for debugging messages (lowest severity)

4.1.2 How to log messages

Here’s a quick example of how to log a message using the logging.WARNING level:

115

https://docs.python.org/3/library/logging.html

scrapy Documentation, Release 1.5

import logging
logging.warning("This is a warning")

There are shortcuts for issuing log messages on any of the standard 5 levels, and there’s also a general logging.log
method which takes a given level as argument. If needed, the last example could be rewritten as:

import logging
logging.log(logging.WARNING, "This is a warning")

On top of that, you can create different “loggers” to encapsulate messages. (For example, a common practice is to
create different loggers for every module). These loggers can be configured independently, and they allow hierarchical
constructions.

The previous examples use the root logger behind the scenes, which is a top level logger where all messages are
propagated to (unless otherwise specified). Using logging helpers is merely a shortcut for getting the root logger
explicitly, so this is also an equivalent of the last snippets:

import logging
logger = logging.getLogger()
logger.warning("This is a warning")

You can use a different logger just by getting its name with the logging.getLogger function:

import logging
logger = logging.getLogger('mycustomlogger')
logger.warning("This is a warning")

Finally, you can ensure having a custom logger for any module you’re working on by using the __name__ variable,
which is populated with current module’s path:

import logging
logger = logging.getLogger(__name__)
logger.warning("This is a warning")

See also:

Module logging, HowTo Basic Logging Tutorial

Module logging, Loggers Further documentation on loggers

4.1.3 Logging from Spiders

Scrapy provides a logger within each Spider instance, which can be accessed and used like this:

import scrapy

class MySpider(scrapy.Spider):

name = 'myspider'
start_urls = ['https://scrapinghub.com']

def parse(self, response):
self.logger.info('Parse function called on %s', response.url)

That logger is created using the Spider’s name, but you can use any custom Python logger you want. For example:

116 Chapter 4. Built-in services

https://docs.python.org/2/howto/logging.html
https://docs.python.org/2/library/logging.html#logger-objects

scrapy Documentation, Release 1.5

import logging
import scrapy

logger = logging.getLogger('mycustomlogger')

class MySpider(scrapy.Spider):

name = 'myspider'
start_urls = ['https://scrapinghub.com']

def parse(self, response):
logger.info('Parse function called on %s', response.url)

4.1.4 Logging configuration

Loggers on their own don’t manage how messages sent through them are displayed. For this task, different “handlers”
can be attached to any logger instance and they will redirect those messages to appropriate destinations, such as the
standard output, files, emails, etc.

By default, Scrapy sets and configures a handler for the root logger, based on the settings below.

Logging settings

These settings can be used to configure the logging:

• :setting:‘LOG_FILE‘

• :setting:‘LOG_ENABLED‘

• :setting:‘LOG_ENCODING‘

• :setting:‘LOG_LEVEL‘

• :setting:‘LOG_FORMAT‘

• :setting:‘LOG_DATEFORMAT‘

• :setting:‘LOG_STDOUT‘

• :setting:‘LOG_SHORT_NAMES‘

The first couple of settings define a destination for log messages. If :setting:‘LOG_FILE‘ is set, messages
sent through the root logger will be redirected to a file named :setting:‘LOG_FILE‘ with encoding :set-
ting:‘LOG_ENCODING‘. If unset and :setting:‘LOG_ENABLED‘ is True, log messages will be displayed on
the standard error. Lastly, if :setting:‘LOG_ENABLED‘ is False, there won’t be any visible log output.

:setting:‘LOG_LEVEL‘ determines the minimum level of severity to display, those messages with lower severity
will be filtered out. It ranges through the possible levels listed in Log levels.

:setting:‘LOG_FORMAT‘ and :setting:‘LOG_DATEFORMAT‘ specify formatting strings used as layouts for all
messages. Those strings can contain any placeholders listed in logging’s logrecord attributes docs and datetime’s
strftime and strptime directives respectively.

If :setting:‘LOG_SHORT_NAMES‘ is set, then the logs will not display the scrapy component that prints the log. It
is unset by default, hence logs contain the scrapy component responsible for that log output.

4.1. Logging 117

https://docs.python.org/2/library/logging.html#logrecord-attributes
https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior

scrapy Documentation, Release 1.5

Command-line options

There are command-line arguments, available for all commands, that you can use to override some of the Scrapy
settings regarding logging.

• --logfile FILE Overrides :setting:‘LOG_FILE‘

• --loglevel/-L LEVEL Overrides :setting:‘LOG_LEVEL‘

• --nolog Sets :setting:‘LOG_ENABLED‘ to False

See also:

Module logging.handlers Further documentation on available handlers

Advanced customization

Because Scrapy uses stdlib logging module, you can customize logging using all features of stdlib logging.

For example, let’s say you’re scraping a website which returns many HTTP 404 and 500 responses, and you want to
hide all messages like this:

2016-12-16 22:00:06 [scrapy.spidermiddlewares.httperror] INFO: Ignoring
response <500 http://quotes.toscrape.com/page/1-34/>: HTTP status code
is not handled or not allowed

The first thing to note is a logger name - it is in brackets: [scrapy.spidermiddlewares.httperror]. If
you get just [scrapy] then :setting:‘LOG_SHORT_NAMES‘ is likely set to True; set it to False and re-run the
crawl.

Next, we can see that the message has INFO level. To hide it we should set logging level for scrapy.
spidermiddlewares.httperror higher than INFO; next level after INFO is WARNING. It could be done
e.g. in the spider’s __init__ method:

import logging
import scrapy

class MySpider(scrapy.Spider):
...
def __init__(self, *args, **kwargs):

logger = logging.getLogger('scrapy.spidermiddlewares.httperror')
logger.setLevel(logging.WARNING)
super().__init__(*args, **kwargs)

If you run this spider again then INFO messages from scrapy.spidermiddlewares.httperror logger will
be gone.

4.1.5 scrapy.utils.log module

4.2 Stats Collection

Scrapy provides a convenient facility for collecting stats in the form of key/values, where values are often counters.
The facility is called the Stats Collector, and can be accessed through the stats attribute of the Crawler API, as
illustrated by the examples in the Common Stats Collector uses section below.

118 Chapter 4. Built-in services

https://docs.python.org/2/library/logging.handlers.html

scrapy Documentation, Release 1.5

However, the Stats Collector is always available, so you can always import it in your module and use its API (to
increment or set new stat keys), regardless of whether the stats collection is enabled or not. If it’s disabled, the API
will still work but it won’t collect anything. This is aimed at simplifying the stats collector usage: you should spend
no more than one line of code for collecting stats in your spider, Scrapy extension, or whatever code you’re using the
Stats Collector from.

Another feature of the Stats Collector is that it’s very efficient (when enabled) and extremely efficient (almost unno-
ticeable) when disabled.

The Stats Collector keeps a stats table per open spider which is automatically opened when the spider is opened, and
closed when the spider is closed.

4.2.1 Common Stats Collector uses

Access the stats collector through the stats attribute. Here is an example of an extension that access stats:

class ExtensionThatAccessStats(object):

def __init__(self, stats):
self.stats = stats

@classmethod
def from_crawler(cls, crawler):

return cls(crawler.stats)

Set stat value:

stats.set_value('hostname', socket.gethostname())

Increment stat value:

stats.inc_value('custom_count')

Set stat value only if greater than previous:

stats.max_value('max_items_scraped', value)

Set stat value only if lower than previous:

stats.min_value('min_free_memory_percent', value)

Get stat value:

>>> stats.get_value('custom_count')
1

Get all stats:

>>> stats.get_stats()
{'custom_count': 1, 'start_time': datetime.datetime(2009, 7, 14, 21, 47, 28, 977139)}

4.2.2 Available Stats Collectors

Besides the basic StatsCollector there are other Stats Collectors available in Scrapy which extend the basic Stats
Collector. You can select which Stats Collector to use through the :setting:‘STATS_CLASS‘ setting. The default Stats
Collector used is the MemoryStatsCollector.

4.2. Stats Collection 119

scrapy Documentation, Release 1.5

MemoryStatsCollector

class scrapy.statscollectors.MemoryStatsCollector
A simple stats collector that keeps the stats of the last scraping run (for each spider) in memory, after they’re
closed. The stats can be accessed through the spider_stats attribute, which is a dict keyed by spider domain
name.

This is the default Stats Collector used in Scrapy.

spider_stats
A dict of dicts (keyed by spider name) containing the stats of the last scraping run for each spider.

DummyStatsCollector

class scrapy.statscollectors.DummyStatsCollector
A Stats collector which does nothing but is very efficient (because it does nothing). This stats collector can be
set via the :setting:‘STATS_CLASS‘ setting, to disable stats collect in order to improve performance. However,
the performance penalty of stats collection is usually marginal compared to other Scrapy workload like parsing
pages.

4.3 Sending e-mail

Although Python makes sending e-mails relatively easy via the smtplib library, Scrapy provides its own facility for
sending e-mails which is very easy to use and it’s implemented using Twisted non-blocking IO, to avoid interfering
with the non-blocking IO of the crawler. It also provides a simple API for sending attachments and it’s very easy to
configure, with a few settings.

4.3.1 Quick example

There are two ways to instantiate the mail sender. You can instantiate it using the standard constructor:

from scrapy.mail import MailSender
mailer = MailSender()

Or you can instantiate it passing a Scrapy settings object, which will respect the settings:

mailer = MailSender.from_settings(settings)

And here is how to use it to send an e-mail (without attachments):

mailer.send(to=["someone@example.com"], subject="Some subject", body="Some body", cc=[
→˓"another@example.com"])

4.3.2 MailSender class reference

MailSender is the preferred class to use for sending emails from Scrapy, as it uses Twisted non-blocking IO, like the
rest of the framework.

class scrapy.mail.MailSender(smtphost=None, mailfrom=None, smtpuser=None, smtp-
pass=None, smtpport=None)

Parameters

120 Chapter 4. Built-in services

https://docs.python.org/2/library/smtplib.html
https://twistedmatrix.com/documents/current/core/howto/defer-intro.html
https://twistedmatrix.com/documents/current/core/howto/defer-intro.html

scrapy Documentation, Release 1.5

• smtphost (str or bytes) – the SMTP host to use for sending the emails. If omitted,
the :setting:‘MAIL_HOST‘ setting will be used.

• mailfrom (str) – the address used to send emails (in the From: header). If omitted, the
:setting:‘MAIL_FROM‘ setting will be used.

• smtpuser – the SMTP user. If omitted, the :setting:‘MAIL_USER‘ setting will be used.
If not given, no SMTP authentication will be performed.

• smtppass (str or bytes) – the SMTP pass for authentication.

• smtpport (int) – the SMTP port to connect to

• smtptls (boolean) – enforce using SMTP STARTTLS

• smtpssl (boolean) – enforce using a secure SSL connection

classmethod from_settings(settings)
Instantiate using a Scrapy settings object, which will respect these Scrapy settings.

Parameters settings (scrapy.settings.Settings object) – the e-mail recipients

send(to, subject, body, cc=None, attachs=(), mimetype=’text/plain’, charset=None)
Send email to the given recipients.

Parameters

• to (str or list of str) – the e-mail recipients

• subject (str) – the subject of the e-mail

• cc (str or list of str) – the e-mails to CC

• body (str) – the e-mail body

• attachs (iterable) – an iterable of tuples (attach_name, mimetype,
file_object) where attach_name is a string with the name that will appear on the
e-mail’s attachment, mimetype is the mimetype of the attachment and file_object
is a readable file object with the contents of the attachment

• mimetype (str) – the MIME type of the e-mail

• charset (str) – the character encoding to use for the e-mail contents

4.3.3 Mail settings

These settings define the default constructor values of the MailSender class, and can be used to configure e-mail
notifications in your project without writing any code (for those extensions and code that uses MailSender).

MAIL_FROM

Default: 'scrapy@localhost'

Sender email to use (From: header) for sending emails.

MAIL_HOST

Default: 'localhost'

SMTP host to use for sending emails.

4.3. Sending e-mail 121

scrapy Documentation, Release 1.5

MAIL_PORT

Default: 25

SMTP port to use for sending emails.

MAIL_USER

Default: None

User to use for SMTP authentication. If disabled no SMTP authentication will be performed.

MAIL_PASS

Default: None

Password to use for SMTP authentication, along with :setting:‘MAIL_USER‘.

MAIL_TLS

Default: False

Enforce using STARTTLS. STARTTLS is a way to take an existing insecure connection, and upgrade it to a secure
connection using SSL/TLS.

MAIL_SSL

Default: False

Enforce connecting using an SSL encrypted connection

4.4 Telnet Console

Scrapy comes with a built-in telnet console for inspecting and controlling a Scrapy running process. The telnet console
is just a regular python shell running inside the Scrapy process, so you can do literally anything from it.

The telnet console is a built-in Scrapy extension which comes enabled by default, but you can also disable it if you
want. For more information about the extension itself see Telnet console extension.

4.4.1 How to access the telnet console

The telnet console listens in the TCP port defined in the :setting:‘TELNETCONSOLE_PORT‘ setting, which de-
faults to 6023. To access the console you need to type:

telnet localhost 6023
>>>

You need the telnet program which comes installed by default in Windows, and most Linux distros.

122 Chapter 4. Built-in services

scrapy Documentation, Release 1.5

4.4.2 Available variables in the telnet console

The telnet console is like a regular Python shell running inside the Scrapy process, so you can do anything from it
including importing new modules, etc.

However, the telnet console comes with some default variables defined for convenience:

Shortcut Description
crawler the Scrapy Crawler (scrapy.crawler.Crawler object)
engine Crawler.engine attribute
spider the active spider
slot the engine slot
extensions the Extension Manager (Crawler.extensions attribute)
stats the Stats Collector (Crawler.stats attribute)
settings the Scrapy settings object (Crawler.settings attribute)
est print a report of the engine status
prefs for memory debugging (see Debugging memory leaks)
p a shortcut to the pprint.pprint function
hpy for memory debugging (see Debugging memory leaks)

4.4.3 Telnet console usage examples

Here are some example tasks you can do with the telnet console:

View engine status

You can use the est() method of the Scrapy engine to quickly show its state using the telnet console:

telnet localhost 6023
>>> est()
Execution engine status

time()-engine.start_time : 8.62972998619
engine.has_capacity() : False
len(engine.downloader.active) : 16
engine.scraper.is_idle() : False
engine.spider.name : followall
engine.spider_is_idle(engine.spider) : False
engine.slot.closing : False
len(engine.slot.inprogress) : 16
len(engine.slot.scheduler.dqs or []) : 0
len(engine.slot.scheduler.mqs) : 92
len(engine.scraper.slot.queue) : 0
len(engine.scraper.slot.active) : 0
engine.scraper.slot.active_size : 0
engine.scraper.slot.itemproc_size : 0
engine.scraper.slot.needs_backout() : False

Pause, resume and stop the Scrapy engine

To pause:

4.4. Telnet Console 123

https://docs.python.org/library/pprint.html#pprint.pprint

scrapy Documentation, Release 1.5

telnet localhost 6023
>>> engine.pause()
>>>

To resume:

telnet localhost 6023
>>> engine.unpause()
>>>

To stop:

telnet localhost 6023
>>> engine.stop()
Connection closed by foreign host.

4.4.4 Telnet Console signals

scrapy.extensions.telnet.update_telnet_vars(telnet_vars)
Sent just before the telnet console is opened. You can hook up to this signal to add, remove or update the
variables that will be available in the telnet local namespace. In order to do that, you need to update the
telnet_vars dict in your handler.

Parameters telnet_vars (dict) – the dict of telnet variables

4.4.5 Telnet settings

These are the settings that control the telnet console’s behaviour:

TELNETCONSOLE_PORT

Default: [6023, 6073]

The port range to use for the telnet console. If set to None or 0, a dynamically assigned port is used.

TELNETCONSOLE_HOST

Default: '127.0.0.1'

The interface the telnet console should listen on

4.5 Web Service

webservice has been moved into a separate project.

It is hosted at:

https://github.com/scrapy-plugins/scrapy-jsonrpc

Logging Learn how to use Python’s builtin logging on Scrapy.

Stats Collection Collect statistics about your scraping crawler.

124 Chapter 4. Built-in services

https://github.com/scrapy-plugins/scrapy-jsonrpc

scrapy Documentation, Release 1.5

Sending e-mail Send email notifications when certain events occur.

Telnet Console Inspect a running crawler using a built-in Python console.

Web Service Monitor and control a crawler using a web service.

4.5. Web Service 125

scrapy Documentation, Release 1.5

126 Chapter 4. Built-in services

CHAPTER 5

Solving specific problems

5.1 Frequently Asked Questions

5.1.1 How does Scrapy compare to BeautifulSoup or lxml?

BeautifulSoup and lxml are libraries for parsing HTML and XML. Scrapy is an application framework for writing
web spiders that crawl web sites and extract data from them.

Scrapy provides a built-in mechanism for extracting data (called selectors) but you can easily use BeautifulSoup (or
lxml) instead, if you feel more comfortable working with them. After all, they’re just parsing libraries which can be
imported and used from any Python code.

In other words, comparing BeautifulSoup (or lxml) to Scrapy is like comparing jinja2 to Django.

5.1.2 Can I use Scrapy with BeautifulSoup?

Yes, you can. As mentioned above, BeautifulSoup can be used for parsing HTML responses in Scrapy callbacks. You
just have to feed the response’s body into a BeautifulSoup object and extract whatever data you need from it.

Here’s an example spider using BeautifulSoup API, with lxml as the HTML parser:

from bs4 import BeautifulSoup
import scrapy

class ExampleSpider(scrapy.Spider):
name = "example"
allowed_domains = ["example.com"]
start_urls = (

'http://www.example.com/',
)

def parse(self, response):

(continues on next page)

127

https://www.crummy.com/software/BeautifulSoup/
http://lxml.de/
https://www.crummy.com/software/BeautifulSoup/
http://lxml.de/
https://www.crummy.com/software/BeautifulSoup/
http://lxml.de/
http://jinja.pocoo.org/
https://www.djangoproject.com/
https://www.crummy.com/software/BeautifulSoup/

scrapy Documentation, Release 1.5

(continued from previous page)

use lxml to get decent HTML parsing speed
soup = BeautifulSoup(response.text, 'lxml')
yield {

"url": response.url,
"title": soup.h1.string

}

Note: BeautifulSoup supports several HTML/XML parsers. See BeautifulSoup’s official documentation on
which ones are available.

5.1.3 What Python versions does Scrapy support?

Scrapy is supported under Python 2.7 and Python 3.4+ under CPython (default Python implementation) and PyPy
(starting with PyPy 5.9). Python 2.6 support was dropped starting at Scrapy 0.20. Python 3 support was added in
Scrapy 1.1. PyPy support was added in Scrapy 1.4, PyPy3 support was added in Scrapy 1.5.

Note: For Python 3 support on Windows, it is recommended to use Anaconda/Miniconda as outlined in the installa-
tion guide.

5.1.4 Did Scrapy “steal” X from Django?

Probably, but we don’t like that word. We think Django is a great open source project and an example to follow, so
we’ve used it as an inspiration for Scrapy.

We believe that, if something is already done well, there’s no need to reinvent it. This concept, besides being one of
the foundations for open source and free software, not only applies to software but also to documentation, procedures,
policies, etc. So, instead of going through each problem ourselves, we choose to copy ideas from those projects that
have already solved them properly, and focus on the real problems we need to solve.

We’d be proud if Scrapy serves as an inspiration for other projects. Feel free to steal from us!

5.1.5 Does Scrapy work with HTTP proxies?

Yes. Support for HTTP proxies is provided (since Scrapy 0.8) through the HTTP Proxy downloader middleware. See
HttpProxyMiddleware.

5.1.6 How can I scrape an item with attributes in different pages?

See Passing additional data to callback functions.

5.1.7 Scrapy crashes with: ImportError: No module named win32api

You need to install pywin32 because of this Twisted bug.

128 Chapter 5. Solving specific problems

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#specifying-the-parser-to-use
https://www.djangoproject.com/
https://sourceforge.net/projects/pywin32/
https://twistedmatrix.com/trac/ticket/3707

scrapy Documentation, Release 1.5

5.1.8 How can I simulate a user login in my spider?

See Using FormRequest.from_response() to simulate a user login.

5.1.9 Does Scrapy crawl in breadth-first or depth-first order?

By default, Scrapy uses a LIFO queue for storing pending requests, which basically means that it crawls in DFO order.
This order is more convenient in most cases. If you do want to crawl in true BFO order, you can do it by setting the
following settings:

DEPTH_PRIORITY = 1
SCHEDULER_DISK_QUEUE = 'scrapy.squeues.PickleFifoDiskQueue'
SCHEDULER_MEMORY_QUEUE = 'scrapy.squeues.FifoMemoryQueue'

5.1.10 My Scrapy crawler has memory leaks. What can I do?

See Debugging memory leaks.

Also, Python has a builtin memory leak issue which is described in Leaks without leaks.

5.1.11 How can I make Scrapy consume less memory?

See previous question.

5.1.12 Can I use Basic HTTP Authentication in my spiders?

Yes, see HttpAuthMiddleware.

5.1.13 Why does Scrapy download pages in English instead of my native lan-
guage?

Try changing the default Accept-Language request header by overriding the :set-
ting:‘DEFAULT_REQUEST_HEADERS‘ setting.

5.1.14 Where can I find some example Scrapy projects?

See Examples.

5.1.15 Can I run a spider without creating a project?

Yes. You can use the runspider command. For example, if you have a spider written in a my_spider.py file
you can run it with:

scrapy runspider my_spider.py

See runspider command for more info.

5.1. Frequently Asked Questions 129

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4

scrapy Documentation, Release 1.5

5.1.16 I get “Filtered offsite request” messages. How can I fix them?

Those messages (logged with DEBUG level) don’t necessarily mean there is a problem, so you may not need to fix
them.

Those messages are thrown by the Offsite Spider Middleware, which is a spider middleware (enabled by default)
whose purpose is to filter out requests to domains outside the ones covered by the spider.

For more info see: OffsiteMiddleware.

5.1.17 What is the recommended way to deploy a Scrapy crawler in production?

See Deploying Spiders.

5.1.18 Can I use JSON for large exports?

It’ll depend on how large your output is. See this warning in JsonItemExporter documentation.

5.1.19 Can I return (Twisted) deferreds from signal handlers?

Some signals support returning deferreds from their handlers, others don’t. See the Built-in signals reference to know
which ones.

5.1.20 What does the response status code 999 means?

999 is a custom response status code used by Yahoo sites to throttle requests. Try slowing down the crawling speed
by using a download delay of 2 (or higher) in your spider:

class MySpider(CrawlSpider):

name = 'myspider'

download_delay = 2

[... rest of the spider code ...]

Or by setting a global download delay in your project with the :setting:‘DOWNLOAD_DELAY‘ setting.

5.1.21 Can I call pdb.set_trace() from my spiders to debug them?

Yes, but you can also use the Scrapy shell which allows you to quickly analyze (and even modify) the response being
processed by your spider, which is, quite often, more useful than plain old pdb.set_trace().

For more info see Invoking the shell from spiders to inspect responses.

5.1.22 Simplest way to dump all my scraped items into a JSON/CSV/XML file?

To dump into a JSON file:

scrapy crawl myspider -o items.json

130 Chapter 5. Solving specific problems

scrapy Documentation, Release 1.5

To dump into a CSV file:

scrapy crawl myspider -o items.csv

To dump into a XML file:

scrapy crawl myspider -o items.xml

For more information see Feed exports

5.1.23 What’s this huge cryptic __VIEWSTATE parameter used in some forms?

The __VIEWSTATE parameter is used in sites built with ASP.NET/VB.NET. For more info on how it works see this
page. Also, here’s an example spider which scrapes one of these sites.

5.1.24 What’s the best way to parse big XML/CSV data feeds?

Parsing big feeds with XPath selectors can be problematic since they need to build the DOM of the entire feed in
memory, and this can be quite slow and consume a lot of memory.

In order to avoid parsing all the entire feed at once in memory, you can use the functions xmliter and csviter
from scrapy.utils.iterators module. In fact, this is what the feed spiders (see Spiders) use under the cover.

5.1.25 Does Scrapy manage cookies automatically?

Yes, Scrapy receives and keeps track of cookies sent by servers, and sends them back on subsequent requests, like any
regular web browser does.

For more info see Requests and Responses and CookiesMiddleware.

5.1.26 How can I see the cookies being sent and received from Scrapy?

Enable the :setting:‘COOKIES_DEBUG‘ setting.

5.1.27 How can I instruct a spider to stop itself?

Raise the CloseSpider exception from a callback. For more info see: CloseSpider.

5.1.28 How can I prevent my Scrapy bot from getting banned?

See Avoiding getting banned.

5.1.29 Should I use spider arguments or settings to configure my spider?

Both spider arguments and settings can be used to configure your spider. There is no strict rule that mandates to use
one or the other, but settings are more suited for parameters that, once set, don’t change much, while spider arguments
are meant to change more often, even on each spider run and sometimes are required for the spider to run at all (for
example, to set the start url of a spider).

5.1. Frequently Asked Questions 131

http://search.cpan.org/~ecarroll/HTML-TreeBuilderX-ASP_NET-0.09/lib/HTML/TreeBuilderX/ASP_NET.pm
http://search.cpan.org/~ecarroll/HTML-TreeBuilderX-ASP_NET-0.09/lib/HTML/TreeBuilderX/ASP_NET.pm
https://github.com/AmbientLighter/rpn-fas/blob/master/fas/spiders/rnp.py

scrapy Documentation, Release 1.5

To illustrate with an example, assuming you have a spider that needs to log into a site to scrape data, and you only
want to scrape data from a certain section of the site (which varies each time). In that case, the credentials to log in
would be settings, while the url of the section to scrape would be a spider argument.

5.1.30 I’m scraping a XML document and my XPath selector doesn’t return any
items

You may need to remove namespaces. See Removing namespaces.

5.2 Debugging Spiders

This document explains the most common techniques for debugging spiders. Consider the following scrapy spider
below:

import scrapy
from myproject.items import MyItem

class MySpider(scrapy.Spider):
name = 'myspider'
start_urls = (

'http://example.com/page1',
'http://example.com/page2',
)

def parse(self, response):
collect `item_urls`
for item_url in item_urls:

yield scrapy.Request(item_url, self.parse_item)

def parse_item(self, response):
item = MyItem()
populate `item` fields
and extract item_details_url
yield scrapy.Request(item_details_url, self.parse_details, meta={'item': item}

→˓)

def parse_details(self, response):
item = response.meta['item']
populate more `item` fields
return item

Basically this is a simple spider which parses two pages of items (the start_urls). Items also have a details page with
additional information, so we use the meta functionality of Request to pass a partially populated item.

5.2.1 Parse Command

The most basic way of checking the output of your spider is to use the parse command. It allows to check the
behaviour of different parts of the spider at the method level. It has the advantage of being flexible and simple to use,
but does not allow debugging code inside a method.

In order to see the item scraped from a specific url:

132 Chapter 5. Solving specific problems

scrapy Documentation, Release 1.5

$ scrapy parse --spider=myspider -c parse_item -d 2 <item_url>
[... scrapy log lines crawling example.com spider ...]

>>> STATUS DEPTH LEVEL 2 <<<
Scraped Items --
[{'url': <item_url>}]

Requests ---
[]

Using the --verbose or -v option we can see the status at each depth level:

$ scrapy parse --spider=myspider -c parse_item -d 2 -v <item_url>
[... scrapy log lines crawling example.com spider ...]

>>> DEPTH LEVEL: 1 <<<
Scraped Items --
[]

Requests ---
[<GET item_details_url>]

>>> DEPTH LEVEL: 2 <<<
Scraped Items --
[{'url': <item_url>}]

Requests ---
[]

Checking items scraped from a single start_url, can also be easily achieved using:

$ scrapy parse --spider=myspider -d 3 'http://example.com/page1'

5.2.2 Scrapy Shell

While the parse command is very useful for checking behaviour of a spider, it is of little help to check what hap-
pens inside a callback, besides showing the response received and the output. How to debug the situation when
parse_details sometimes receives no item?

Fortunately, the shell is your bread and butter in this case (see Invoking the shell from spiders to inspect responses):

from scrapy.shell import inspect_response

def parse_details(self, response):
item = response.meta.get('item', None)
if item:

populate more `item` fields
return item

else:
inspect_response(response, self)

See also: Invoking the shell from spiders to inspect responses.

5.2. Debugging Spiders 133

scrapy Documentation, Release 1.5

5.2.3 Open in browser

Sometimes you just want to see how a certain response looks in a browser, you can use the open_in_browser
function for that. Here is an example of how you would use it:

from scrapy.utils.response import open_in_browser

def parse_details(self, response):
if "item name" not in response.body:

open_in_browser(response)

open_in_browser will open a browser with the response received by Scrapy at that point, adjusting the base tag
so that images and styles are displayed properly.

5.2.4 Logging

Logging is another useful option for getting information about your spider run. Although not as convenient, it comes
with the advantage that the logs will be available in all future runs should they be necessary again:

def parse_details(self, response):
item = response.meta.get('item', None)
if item:

populate more `item` fields
return item

else:
self.logger.warning('No item received for %s', response.url)

For more information, check the Logging section.

5.3 Spiders Contracts

New in version 0.15.

Note: This is a new feature (introduced in Scrapy 0.15) and may be subject to minor functionality/API updates.
Check the release notes to be notified of updates.

Testing spiders can get particularly annoying and while nothing prevents you from writing unit tests the task gets
cumbersome quickly. Scrapy offers an integrated way of testing your spiders by the means of contracts.

This allows you to test each callback of your spider by hardcoding a sample url and check various constraints for
how the callback processes the response. Each contract is prefixed with an @ and included in the docstring. See the
following example:

def parse(self, response):
""" This function parses a sample response. Some contracts are mingled
with this docstring.

@url http://www.amazon.com/s?field-keywords=selfish+gene
@returns items 1 16
@returns requests 0 0
@scrapes Title Author Year Price
"""

134 Chapter 5. Solving specific problems

https://www.w3schools.com/tags/tag_base.asp

scrapy Documentation, Release 1.5

This callback is tested using three built-in contracts:

class scrapy.contracts.default.UrlContract
This contract (@url) sets the sample url used when checking other contract conditions for this spider. This
contract is mandatory. All callbacks lacking this contract are ignored when running the checks:

@url url

class scrapy.contracts.default.ReturnsContract
This contract (@returns) sets lower and upper bounds for the items and requests returned by the spider. The
upper bound is optional:

@returns item(s)|request(s) [min [max]]

class scrapy.contracts.default.ScrapesContract
This contract (@scrapes) checks that all the items returned by the callback have the specified fields:

@scrapes field_1 field_2 ...

Use the check command to run the contract checks.

5.3.1 Custom Contracts

If you find you need more power than the built-in scrapy contracts you can create and load your own contracts in the
project by using the :setting:‘SPIDER_CONTRACTS‘ setting:

SPIDER_CONTRACTS = {
'myproject.contracts.ResponseCheck': 10,
'myproject.contracts.ItemValidate': 10,

}

Each contract must inherit from scrapy.contracts.Contract and can override three methods:

class scrapy.contracts.Contract(method, *args)

Parameters

• method (function) – callback function to which the contract is associated

• args (list) – list of arguments passed into the docstring (whitespace separated)

adjust_request_args(args)
This receives a dict as an argument containing default arguments for request object. Request is used
by default, but this can be changed with the request_cls attribute. If multiple contracts in chain have
this attribute defined, the last one is used.

Must return the same or a modified version of it.

pre_process(response)
This allows hooking in various checks on the response received from the sample request, before it’s being
passed to the callback.

post_process(output)
This allows processing the output of the callback. Iterators are converted listified before being passed to
this hook.

Here is a demo contract which checks the presence of a custom header in the response received. Raise scrapy.
exceptions.ContractFail in order to get the failures pretty printed:

5.3. Spiders Contracts 135

scrapy Documentation, Release 1.5

from scrapy.contracts import Contract
from scrapy.exceptions import ContractFail

class HasHeaderContract(Contract):
""" Demo contract which checks the presence of a custom header

@has_header X-CustomHeader
"""

name = 'has_header'

def pre_process(self, response):
for header in self.args:

if header not in response.headers:
raise ContractFail('X-CustomHeader not present')

5.4 Common Practices

This section documents common practices when using Scrapy. These are things that cover many topics and don’t often
fall into any other specific section.

5.4.1 Run Scrapy from a script

You can use the API to run Scrapy from a script, instead of the typical way of running Scrapy via scrapy crawl.

Remember that Scrapy is built on top of the Twisted asynchronous networking library, so you need to run it inside the
Twisted reactor.

The first utility you can use to run your spiders is scrapy.crawler.CrawlerProcess. This class will start
a Twisted reactor for you, configuring the logging and setting shutdown handlers. This class is the one used by all
Scrapy commands.

Here’s an example showing how to run a single spider with it.

import scrapy
from scrapy.crawler import CrawlerProcess

class MySpider(scrapy.Spider):
Your spider definition
...

process = CrawlerProcess({
'USER_AGENT': 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)'

})

process.crawl(MySpider)
process.start() # the script will block here until the crawling is finished

Make sure to check CrawlerProcess documentation to get acquainted with its usage details.

If you are inside a Scrapy project there are some additional helpers you can use to import those components
within the project. You can automatically import your spiders passing their name to CrawlerProcess, and use
get_project_settings to get a Settings instance with your project settings.

What follows is a working example of how to do that, using the testspiders project as example.

136 Chapter 5. Solving specific problems

https://github.com/scrapinghub/testspiders

scrapy Documentation, Release 1.5

from scrapy.crawler import CrawlerProcess
from scrapy.utils.project import get_project_settings

process = CrawlerProcess(get_project_settings())

'followall' is the name of one of the spiders of the project.
process.crawl('followall', domain='scrapinghub.com')
process.start() # the script will block here until the crawling is finished

There’s another Scrapy utility that provides more control over the crawling process: scrapy.crawler.
CrawlerRunner. This class is a thin wrapper that encapsulates some simple helpers to run multiple crawlers,
but it won’t start or interfere with existing reactors in any way.

Using this class the reactor should be explicitly run after scheduling your spiders. It’s recommended you use
CrawlerRunner instead of CrawlerProcess if your application is already using Twisted and you want to run
Scrapy in the same reactor.

Note that you will also have to shutdown the Twisted reactor yourself after the spider is finished. This can be achieved
by adding callbacks to the deferred returned by the CrawlerRunner.crawl method.

Here’s an example of its usage, along with a callback to manually stop the reactor after MySpider has finished running.

from twisted.internet import reactor
import scrapy
from scrapy.crawler import CrawlerRunner
from scrapy.utils.log import configure_logging

class MySpider(scrapy.Spider):
Your spider definition
...

configure_logging({'LOG_FORMAT': '%(levelname)s: %(message)s'})
runner = CrawlerRunner()

d = runner.crawl(MySpider)
d.addBoth(lambda _: reactor.stop())
reactor.run() # the script will block here until the crawling is finished

See also:

Twisted Reactor Overview.

5.4.2 Running multiple spiders in the same process

By default, Scrapy runs a single spider per process when you run scrapy crawl. However, Scrapy supports running
multiple spiders per process using the internal API.

Here is an example that runs multiple spiders simultaneously:

import scrapy
from scrapy.crawler import CrawlerProcess

class MySpider1(scrapy.Spider):
Your first spider definition
...

class MySpider2(scrapy.Spider):
(continues on next page)

5.4. Common Practices 137

https://twistedmatrix.com/documents/current/core/howto/reactor-basics.html

scrapy Documentation, Release 1.5

(continued from previous page)

Your second spider definition
...

process = CrawlerProcess()
process.crawl(MySpider1)
process.crawl(MySpider2)
process.start() # the script will block here until all crawling jobs are finished

Same example using CrawlerRunner:

import scrapy
from twisted.internet import reactor
from scrapy.crawler import CrawlerRunner
from scrapy.utils.log import configure_logging

class MySpider1(scrapy.Spider):
Your first spider definition
...

class MySpider2(scrapy.Spider):
Your second spider definition
...

configure_logging()
runner = CrawlerRunner()
runner.crawl(MySpider1)
runner.crawl(MySpider2)
d = runner.join()
d.addBoth(lambda _: reactor.stop())

reactor.run() # the script will block here until all crawling jobs are finished

Same example but running the spiders sequentially by chaining the deferreds:

from twisted.internet import reactor, defer
from scrapy.crawler import CrawlerRunner
from scrapy.utils.log import configure_logging

class MySpider1(scrapy.Spider):
Your first spider definition
...

class MySpider2(scrapy.Spider):
Your second spider definition
...

configure_logging()
runner = CrawlerRunner()

@defer.inlineCallbacks
def crawl():

yield runner.crawl(MySpider1)
yield runner.crawl(MySpider2)
reactor.stop()

crawl()
reactor.run() # the script will block here until the last crawl call is finished

138 Chapter 5. Solving specific problems

scrapy Documentation, Release 1.5

See also:

Run Scrapy from a script.

5.4.3 Distributed crawls

Scrapy doesn’t provide any built-in facility for running crawls in a distribute (multi-server) manner. However, there
are some ways to distribute crawls, which vary depending on how you plan to distribute them.

If you have many spiders, the obvious way to distribute the load is to setup many Scrapyd instances and distribute
spider runs among those.

If you instead want to run a single (big) spider through many machines, what you usually do is partition the urls to
crawl and send them to each separate spider. Here is a concrete example:

First, you prepare the list of urls to crawl and put them into separate files/urls:

http://somedomain.com/urls-to-crawl/spider1/part1.list
http://somedomain.com/urls-to-crawl/spider1/part2.list
http://somedomain.com/urls-to-crawl/spider1/part3.list

Then you fire a spider run on 3 different Scrapyd servers. The spider would receive a (spider) argument part with
the number of the partition to crawl:

curl http://scrapy1.mycompany.com:6800/schedule.json -d project=myproject -d
→˓spider=spider1 -d part=1
curl http://scrapy2.mycompany.com:6800/schedule.json -d project=myproject -d
→˓spider=spider1 -d part=2
curl http://scrapy3.mycompany.com:6800/schedule.json -d project=myproject -d
→˓spider=spider1 -d part=3

5.4.4 Avoiding getting banned

Some websites implement certain measures to prevent bots from crawling them, with varying degrees of sophistication.
Getting around those measures can be difficult and tricky, and may sometimes require special infrastructure. Please
consider contacting commercial support if in doubt.

Here are some tips to keep in mind when dealing with these kinds of sites:

• rotate your user agent from a pool of well-known ones from browsers (google around to get a list of them)

• disable cookies (see :setting:‘COOKIES_ENABLED‘) as some sites may use cookies to spot bot behaviour

• use download delays (2 or higher). See :setting:‘DOWNLOAD_DELAY‘ setting.

• if possible, use Google cache to fetch pages, instead of hitting the sites directly

• use a pool of rotating IPs. For example, the free Tor project or paid services like ProxyMesh. An open source
alternative is scrapoxy, a super proxy that you can attach your own proxies to.

• use a highly distributed downloader that circumvents bans internally, so you can just focus on parsing clean
pages. One example of such downloaders is Crawlera

If you are still unable to prevent your bot getting banned, consider contacting commercial support.

5.4. Common Practices 139

https://scrapy.org/support/
http://www.googleguide.com/cached_pages.html
https://www.torproject.org/
https://proxymesh.com/
https://scrapoxy.io/
https://scrapinghub.com/crawlera
https://scrapy.org/support/

scrapy Documentation, Release 1.5

5.5 Broad Crawls

Scrapy defaults are optimized for crawling specific sites. These sites are often handled by a single Scrapy spider,
although this is not necessary or required (for example, there are generic spiders that handle any given site thrown at
them).

In addition to this “focused crawl”, there is another common type of crawling which covers a large (potentially un-
limited) number of domains, and is only limited by time or other arbitrary constraint, rather than stopping when the
domain was crawled to completion or when there are no more requests to perform. These are called “broad crawls”
and is the typical crawlers employed by search engines.

These are some common properties often found in broad crawls:

• they crawl many domains (often, unbounded) instead of a specific set of sites

• they don’t necessarily crawl domains to completion, because it would be impractical (or impossible) to do so,
and instead limit the crawl by time or number of pages crawled

• they are simpler in logic (as opposed to very complex spiders with many extraction rules) because data is often
post-processed in a separate stage

• they crawl many domains concurrently, which allows them to achieve faster crawl speeds by not being limited
by any particular site constraint (each site is crawled slowly to respect politeness, but many sites are crawled in
parallel)

As said above, Scrapy default settings are optimized for focused crawls, not broad crawls. However, due to its asyn-
chronous architecture, Scrapy is very well suited for performing fast broad crawls. This page summarizes some things
you need to keep in mind when using Scrapy for doing broad crawls, along with concrete suggestions of Scrapy
settings to tune in order to achieve an efficient broad crawl.

5.5.1 Increase concurrency

Concurrency is the number of requests that are processed in parallel. There is a global limit and a per-domain limit.

The default global concurrency limit in Scrapy is not suitable for crawling many different domains in parallel, so you
will want to increase it. How much to increase it will depend on how much CPU you crawler will have available. A
good starting point is 100, but the best way to find out is by doing some trials and identifying at what concurrency
your Scrapy process gets CPU bounded. For optimum performance, you should pick a concurrency where CPU usage
is at 80-90%.

To increase the global concurrency use:

CONCURRENT_REQUESTS = 100

5.5.2 Increase Twisted IO thread pool maximum size

Currently Scrapy does DNS resolution in a blocking way with usage of thread pool. With higher concurrency levels
the crawling could be slow or even fail hitting DNS resolver timeouts. Possible solution to increase the number of
threads handling DNS queries. The DNS queue will be processed faster speeding up establishing of connection and
crawling overall.

To increase maximum thread pool size use:

REACTOR_THREADPOOL_MAXSIZE = 20

140 Chapter 5. Solving specific problems

scrapy Documentation, Release 1.5

5.5.3 Setup your own DNS

If you have multiple crawling processes and single central DNS, it can act like DoS attack on the DNS server resulting
to slow down of entire network or even blocking your machines. To avoid this setup your own DNS server with local
cache and upstream to some large DNS like OpenDNS or Verizon.

5.5.4 Reduce log level

When doing broad crawls you are often only interested in the crawl rates you get and any errors found. These stats are
reported by Scrapy when using the INFO log level. In order to save CPU (and log storage requirements) you should
not use DEBUG log level when preforming large broad crawls in production. Using DEBUG level when developing
your (broad) crawler may be fine though.

To set the log level use:

LOG_LEVEL = 'INFO'

5.5.5 Disable cookies

Disable cookies unless you really need. Cookies are often not needed when doing broad crawls (search engine crawlers
ignore them), and they improve performance by saving some CPU cycles and reducing the memory footprint of your
Scrapy crawler.

To disable cookies use:

COOKIES_ENABLED = False

5.5.6 Disable retries

Retrying failed HTTP requests can slow down the crawls substantially, specially when sites causes are very slow (or
fail) to respond, thus causing a timeout error which gets retried many times, unnecessarily, preventing crawler capacity
to be reused for other domains.

To disable retries use:

RETRY_ENABLED = False

5.5.7 Reduce download timeout

Unless you are crawling from a very slow connection (which shouldn’t be the case for broad crawls) reduce the
download timeout so that stuck requests are discarded quickly and free up capacity to process the next ones.

To reduce the download timeout use:

DOWNLOAD_TIMEOUT = 15

5.5.8 Disable redirects

Consider disabling redirects, unless you are interested in following them. When doing broad crawls it’s common to
save redirects and resolve them when revisiting the site at a later crawl. This also help to keep the number of request

5.5. Broad Crawls 141

scrapy Documentation, Release 1.5

constant per crawl batch, otherwise redirect loops may cause the crawler to dedicate too many resources on any specific
domain.

To disable redirects use:

REDIRECT_ENABLED = False

5.5.9 Enable crawling of “Ajax Crawlable Pages”

Some pages (up to 1%, based on empirical data from year 2013) declare themselves as ajax crawlable. This means
they provide plain HTML version of content that is usually available only via AJAX. Pages can indicate it in two ways:

1. by using #! in URL - this is the default way;

2. by using a special meta tag - this way is used on “main”, “index” website pages.

Scrapy handles (1) automatically; to handle (2) enable AjaxCrawlMiddleware:

AJAXCRAWL_ENABLED = True

When doing broad crawls it’s common to crawl a lot of “index” web pages; AjaxCrawlMiddleware helps to crawl
them correctly. It is turned OFF by default because it has some performance overhead, and enabling it for focused
crawls doesn’t make much sense.

5.6 Using your browser’s Developer Tools for scraping

Here is a general guide on how to use your browser’s Developer Tools to ease the scraping process. Today almost
all browsers come with built in Developer Tools and although we will use Firefox in this guide, the concepts are
applicable to any other browser.

In this guide we’ll introduce the basic tools to use from a browser’s Developer Tools by scraping quotes.toscrape.com.

5.6.1 Caveats with inspecting the live browser DOM

Since Developer Tools operate on a live browser DOM, what you’ll actually see when inspecting the page source
is not the original HTML, but a modified one after applying some browser clean up and executing Javascript code.
Firefox, in particular, is known for adding <tbody> elements to tables. Scrapy, on the other hand, does not modify
the original page HTML, so you won’t be able to extract any data if you use <tbody> in your XPath expressions.

Therefore, you should keep in mind the following things:

• Disable Javascript while inspecting the DOM looking for XPaths to be used in Scrapy (in the Developer Tools
settings click Disable JavaScript)

• Never use full XPath paths, use relative and clever ones based on attributes (such as id, class, width, etc)
or any identifying features like contains(@href, 'image').

• Never include <tbody> elements in your XPath expressions unless you really know what you’re doing

5.6.2 Inspecting a website

By far the most handy feature of the Developer Tools is the Inspector feature, which allows you to inspect the under-
lying HTML code of any webpage. To demonstrate the Inspector, let’s look at the quotes.toscrape.com-site.

142 Chapter 5. Solving specific problems

https://developers.google.com/webmasters/ajax-crawling/docs/getting-started
https://en.wikipedia.org/wiki/Web_development_tools
http://quotes.toscrape.com
http://quotes.toscrape.com

scrapy Documentation, Release 1.5

On the site we have a total of ten quotes from various authors with specific tags, as well as the Top Ten Tags. Let’s say
we want to extract all the quotes on this page, without any meta-information about authors, tags, etc.

Instead of viewing the whole source code for the page, we can simply right click on a quote and select Inspect
Element (Q), which opens up the Inspector. In it you should see something like this:

The interesting part for us is this:

<div class="quote" itemscope="" itemtype="http://schema.org/CreativeWork">
(...)
(...)
<div class="tags">(...)</div>

</div>

If you hover over the first div directly above the span tag highlighted in the screenshot, you’ll see that the corre-
sponding section of the webpage gets highlighted as well. So now we have a section, but we can’t find our quote text
anywhere.

The advantage of the Inspector is that it automatically expands and collapses sections and tags of a webpage, which
greatly improves readability. You can expand and collapse a tag by clicking on the arrow in front of it or by double
clicking directly on the tag. If we expand the span tag with the class= "text" we will see the quote-text we
clicked on. The Inspector lets you copy XPaths to selected elements. Let’s try it out: Right-click on the span tag,
select Copy > XPath and paste it in the scrapy shell like so:

$ scrapy shell "http://quotes.toscrape.com/"

(continues on next page)

5.6. Using your browser’s Developer Tools for scraping 143

scrapy Documentation, Release 1.5

(continued from previous page)

(...)
>>> response.xpath('/html/body/div/div[2]/div[1]/div[1]/span[1]/text()').getall()
['"The world as we have created it is a process of our thinking. It cannot be changed
→˓without changing our thinking.”]

Adding text() at the end we are able to extract the first quote with this basic selector. But this XPath is not really
that clever. All it does is go down a desired path in the source code starting from html. So let’s see if we can refine
our XPath a bit:

If we check the Inspector again we’ll see that directly beneath our expanded div tag we have nine identical div tags,
each with the same attributes as our first. If we expand any of them, we’ll see the same structure as with our first quote:
Two span tags and one div tag. We can expand each span tag with the class="text" inside our div tags and
see each quote:

<div class="quote" itemscope="" itemtype="http://schema.org/CreativeWork">

“The world as we have created it is a process of our thinking. It cannot be

→˓changed without changing our thinking.”

(...)
<div class="tags">(...)</div>

</div>

With this knowledge we can refine our XPath: Instead of a path to follow, we’ll simply select all span tags with the
class="text" by using the has-class-extension:

>>> response.xpath('//span[has-class("text")]/text()').getall()
['"The world as we have created it is a process of our thinking. It cannot be changed
→˓without changing our thinking.”,
'“It is our choices, Harry, that show what we truly are, far more than our abilities.
→˓”',
'“There are only two ways to live your life. One is as though nothing is a miracle.
→˓The other is as though everything is a miracle.”',
(...)]

And with one simple, cleverer XPath we are able to extract all quotes from the page. We could have constructed a
loop over our first XPath to increase the number of the last div, but this would have been unnecessarily complex and
by simply constructing an XPath with has-class("text") we were able to extract all quotes in one line.

The Inspector has a lot of other helpful features, such as searching in the source code or directly scrolling to an element
you selected. Let’s demonstrate a use case:

Say you want to find the Next button on the page. Type Next into the search bar on the top right of the Inspector.
You should get two results. The first is a li tag with the class="text", the second the text of an a tag. Right click
on the a tag and select Scroll into View. If you hover over the tag, you’ll see the button highlighted. From
here we could easily create a Link Extractor to follow the pagination. On a simple site such as this, there may not be
the need to find an element visually but the Scroll into View function can be quite useful on complex sites.

Note that the search bar can also be used to search for and test CSS selectors. For example, you could search for
span.text to find all quote texts. Instead of a full text search, this searches for exactly the span tag with the
class="text" in the page.

5.6.3 The Network-tool

While scraping you may come across dynamic webpages where some parts of the page are loaded dynamically through
multiple requests. While this can be quite tricky, the Network-tool in the Developer Tools greatly facilitates this task.

144 Chapter 5. Solving specific problems

https://parsel.readthedocs.io/en/latest/usage.html#other-xpath-extensions

scrapy Documentation, Release 1.5

To demonstrate the Network-tool, let’s take a look at the page quotes.toscrape.com/scroll.

The page is quite similar to the basic quotes.toscrape.com-page, but instead of the above-mentioned Next button, the
page automatically loads new quotes when you scroll to the bottom. We could go ahead and try out different XPaths
directly, but instead we’ll check another quite useful command from the scrapy shell:

$ scrapy shell "quotes.toscrape.com/scroll"
(...)
>>> view(response)

A browser window should open with the webpage but with one crucial difference: Instead of the quotes we just see a
greenish bar with the word Loading....

The view(response) command let’s us view the response our shell or later our spider receives from the server.
Here we see that some basic template is loaded which includes the title, the login-button and the footer, but the
quotes are missing. This tells us that the quotes are being loaded from a different request than quotes.toscrape/
scroll.

If you click on the Network tab, you will probably only see two entries. The first thing we do is enable persistent logs
by clicking on Persist Logs. If this option is disabled, the log is automatically cleared each time you navigate to
a different page. Enabling this option is a good default, since it gives us control on when to clear the logs.

If we reload the page now, you’ll see the log get populated with six new requests.

5.6. Using your browser’s Developer Tools for scraping 145

http://quotes.toscrape.com

scrapy Documentation, Release 1.5

Here we see every request that has been made when reloading the page and can inspect each request and its response.
So let’s find out where our quotes are coming from:

First click on the request with the name scroll. On the right you can now inspect the request. In Headers you’ll
find details about the request headers, such as the URL, the method, the IP-address, and so on. We’ll ignore the other
tabs and click directly on Reponse.

What you should see in the Preview pane is the rendered HTML-code, that is exactly what we saw when we called
view(response) in the shell. Accordingly the type of the request in the log is html. The other requests have
types like css or js, but what interests us is the one request called quotes?page=1 with the type json.

If we click on this request, we see that the request URL is http://quotes.toscrape.com/api/quotes?
page=1 and the response is a JSON-object that contains our quotes. We can also right-click on the request and open
Open in new tab to get a better overview.

With this response we can now easily parse the JSON-object and also request each page to get every quote on the site:

146 Chapter 5. Solving specific problems

scrapy Documentation, Release 1.5

import scrapy
import json

class QuoteSpider(scrapy.Spider):
name = 'quote'
allowed_domains = ['quotes.toscrape.com']
page = 1
start_urls = ['http://quotes.toscrape.com/api/quotes?page=1]

def parse(self, response):
data = json.loads(response.text)
for quote in data["quotes"]:

yield {"quote": quote["text"]}
if data["has_next"]:

self.page += 1
url = "http://quotes.toscrape.com/api/quotes?page={}".format(self.page)
yield scrapy.Request(url=url, callback=self.parse)

This spider starts at the first page of the quotes-API. With each response, we parse the response.text and
assign it to data. This lets us operate on the JSON-object like on a Python dictionary. We iterate through
the quotes and print out the quote["text"]. If the handy has_next element is true (try loading
quotes.toscrape.com/api/quotes?page=10 in your browser or a page-number greater than 10), we increment the page
attribute and yield a new request, inserting the incremented page-number into our url.

You can see that with a few inspections in the Network-tool we were able to easily replicate the dynamic requests of
the scrolling functionality of the page. Crawling dynamic pages can be quite daunting and pages can be very complex,
but it (mostly) boils down to identifying the correct request and replicating it in your spider.

5.7 Debugging memory leaks

In Scrapy, objects such as Requests, Responses and Items have a finite lifetime: they are created, used for a while, and
finally destroyed.

From all those objects, the Request is probably the one with the longest lifetime, as it stays waiting in the Scheduler
queue until it’s time to process it. For more info see Architecture overview.

As these Scrapy objects have a (rather long) lifetime, there is always the risk of accumulating them in memory without
releasing them properly and thus causing what is known as a “memory leak”.

To help debugging memory leaks, Scrapy provides a built-in mechanism for tracking objects references called trackref ,
and you can also use a third-party library called Guppy for more advanced memory debugging (see below for more
info). Both mechanisms must be used from the Telnet Console.

5.7.1 Common causes of memory leaks

It happens quite often (sometimes by accident, sometimes on purpose) that the Scrapy developer passes objects refer-
enced in Requests (for example, using the meta attribute or the request callback function) and that effectively bounds
the lifetime of those referenced objects to the lifetime of the Request. This is, by far, the most common cause of
memory leaks in Scrapy projects, and a quite difficult one to debug for newcomers.

In big projects, the spiders are typically written by different people and some of those spiders could be “leaking” and
thus affecting the rest of the other (well-written) spiders when they get to run concurrently, which, in turn, affects the
whole crawling process.

5.7. Debugging memory leaks 147

http://quotes.toscrape.com/api/quotes?page=10

scrapy Documentation, Release 1.5

The leak could also come from a custom middleware, pipeline or extension that you have written, if you are not
releasing the (previously allocated) resources properly. For example, allocating resources on :signal:‘spider_opened‘
but not releasing them on :signal:‘spider_closed‘ may cause problems if you’re running multiple spiders per process.

Too Many Requests?

By default Scrapy keeps the request queue in memory; it includes Request objects and all objects referenced in
Request attributes (e.g. in meta). While not necessarily a leak, this can take a lot of memory. Enabling persistent job
queue could help keeping memory usage in control.

5.7.2 Debugging memory leaks with trackref

trackref is a module provided by Scrapy to debug the most common cases of memory leaks. It basically tracks the
references to all live Requests, Responses, Item and Selector objects.

You can enter the telnet console and inspect how many objects (of the classes mentioned above) are currently alive
using the prefs() function which is an alias to the print_live_refs() function:

telnet localhost 6023

>>> prefs()
Live References

ExampleSpider 1 oldest: 15s ago
HtmlResponse 10 oldest: 1s ago
Selector 2 oldest: 0s ago
FormRequest 878 oldest: 7s ago

As you can see, that report also shows the “age” of the oldest object in each class. If you’re running multiple spiders
per process chances are you can figure out which spider is leaking by looking at the oldest request or response. You
can get the oldest object of each class using the get_oldest() function (from the telnet console).

Which objects are tracked?

The objects tracked by trackrefs are all from these classes (and all its subclasses):

• scrapy.http.Request

• scrapy.http.Response

• scrapy.item.Item

• scrapy.selector.Selector

• scrapy.spiders.Spider

A real example

Let’s see a concrete example of a hypothetical case of memory leaks. Suppose we have some spider with a line similar
to this one:

return Request("http://www.somenastyspider.com/product.php?pid=%d" % product_id,
callback=self.parse, meta={referer: response})

148 Chapter 5. Solving specific problems

scrapy Documentation, Release 1.5

That line is passing a response reference inside a request which effectively ties the response lifetime to the requests’
one, and that would definitely cause memory leaks.

Let’s see how we can discover the cause (without knowing it a-priori, of course) by using the trackref tool.

After the crawler is running for a few minutes and we notice its memory usage has grown a lot, we can enter its telnet
console and check the live references:

>>> prefs()
Live References

SomenastySpider 1 oldest: 15s ago
HtmlResponse 3890 oldest: 265s ago
Selector 2 oldest: 0s ago
Request 3878 oldest: 250s ago

The fact that there are so many live responses (and that they’re so old) is definitely suspicious, as responses should
have a relatively short lifetime compared to Requests. The number of responses is similar to the number of requests,
so it looks like they are tied in a some way. We can now go and check the code of the spider to discover the nasty line
that is generating the leaks (passing response references inside requests).

Sometimes extra information about live objects can be helpful. Let’s check the oldest response:

>>> from scrapy.utils.trackref import get_oldest
>>> r = get_oldest('HtmlResponse')
>>> r.url
'http://www.somenastyspider.com/product.php?pid=123'

If you want to iterate over all objects, instead of getting the oldest one, you can use the scrapy.utils.
trackref.iter_all() function:

>>> from scrapy.utils.trackref import iter_all
>>> [r.url for r in iter_all('HtmlResponse')]
['http://www.somenastyspider.com/product.php?pid=123',
'http://www.somenastyspider.com/product.php?pid=584',

...

Too many spiders?

If your project has too many spiders executed in parallel, the output of prefs() can be difficult to read. For this
reason, that function has a ignore argument which can be used to ignore a particular class (and all its subclases).
For example, this won’t show any live references to spiders:

>>> from scrapy.spiders import Spider
>>> prefs(ignore=Spider)

scrapy.utils.trackref module

Here are the functions available in the trackref module.

class scrapy.utils.trackref.object_ref
Inherit from this class (instead of object) if you want to track live instances with the trackref module.

scrapy.utils.trackref.print_live_refs(class_name, ignore=NoneType)
Print a report of live references, grouped by class name.

5.7. Debugging memory leaks 149

scrapy Documentation, Release 1.5

Parameters ignore (class or classes tuple) – if given, all objects from the specified
class (or tuple of classes) will be ignored.

scrapy.utils.trackref.get_oldest(class_name)
Return the oldest object alive with the given class name, or None if none is found. Use print_live_refs()
first to get a list of all tracked live objects per class name.

scrapy.utils.trackref.iter_all(class_name)
Return an iterator over all objects alive with the given class name, or None if none is found. Use
print_live_refs() first to get a list of all tracked live objects per class name.

5.7.3 Debugging memory leaks with Guppy

trackref provides a very convenient mechanism for tracking down memory leaks, but it only keeps track of the
objects that are more likely to cause memory leaks (Requests, Responses, Items, and Selectors). However, there are
other cases where the memory leaks could come from other (more or less obscure) objects. If this is your case, and you
can’t find your leaks using trackref, you still have another resource: the Guppy library. If you’re using Python3,
see Debugging memory leaks with muppy.

If you use pip, you can install Guppy with the following command:

pip install guppy

The telnet console also comes with a built-in shortcut (hpy) for accessing Guppy heap objects. Here’s an example to
view all Python objects available in the heap using Guppy:

>>> x = hpy.heap()
>>> x.bytype
Partition of a set of 297033 objects. Total size = 52587824 bytes.
Index Count % Size % Cumulative % Type

0 22307 8 16423880 31 16423880 31 dict
1 122285 41 12441544 24 28865424 55 str
2 68346 23 5966696 11 34832120 66 tuple
3 227 0 5836528 11 40668648 77 unicode
4 2461 1 2222272 4 42890920 82 type
5 16870 6 2024400 4 44915320 85 function
6 13949 5 1673880 3 46589200 89 types.CodeType
7 13422 5 1653104 3 48242304 92 list
8 3735 1 1173680 2 49415984 94 _sre.SRE_Pattern
9 1209 0 456936 1 49872920 95 scrapy.http.headers.Headers

<1676 more rows. Type e.g. '_.more' to view.>

You can see that most space is used by dicts. Then, if you want to see from which attribute those dicts are referenced,
you could do:

>>> x.bytype[0].byvia
Partition of a set of 22307 objects. Total size = 16423880 bytes.
Index Count % Size % Cumulative % Referred Via:

0 10982 49 9416336 57 9416336 57 '.__dict__'
1 1820 8 2681504 16 12097840 74 '.__dict__', '.func_globals'
2 3097 14 1122904 7 13220744 80
3 990 4 277200 2 13497944 82 "['cookies']"
4 987 4 276360 2 13774304 84 "['cache']"
5 985 4 275800 2 14050104 86 "['meta']"
6 897 4 251160 2 14301264 87 '[2]'
7 1 0 196888 1 14498152 88 "['moduleDict']", "['modules']"
8 672 3 188160 1 14686312 89 "['cb_kwargs']"

(continues on next page)

150 Chapter 5. Solving specific problems

https://pypi.python.org/pypi/guppy

scrapy Documentation, Release 1.5

(continued from previous page)

9 27 0 155016 1 14841328 90 '[1]'
<333 more rows. Type e.g. '_.more' to view.>

As you can see, the Guppy module is very powerful but also requires some deep knowledge about Python internals.
For more info about Guppy, refer to the Guppy documentation.

5.7.4 Debugging memory leaks with muppy

If you’re using Python 3, you can use muppy from Pympler.

If you use pip, you can install muppy with the following command:

pip install Pympler

Here’s an example to view all Python objects available in the heap using muppy:

>>> from pympler import muppy
>>> all_objects = muppy.get_objects()
>>> len(all_objects)
28667
>>> from pympler import summary
>>> suml = summary.summarize(all_objects)
>>> summary.print_(suml)

types | # objects | total size
==================================== | =========== | ============

<class 'str | 9822 | 1.10 MB
<class 'dict | 1658 | 856.62 KB
<class 'type | 436 | 443.60 KB
<class 'code | 2974 | 419.56 KB

<class '_io.BufferedWriter | 2 | 256.34 KB
<class 'set | 420 | 159.88 KB

<class '_io.BufferedReader | 1 | 128.17 KB
<class 'wrapper_descriptor | 1130 | 88.28 KB

<class 'tuple | 1304 | 86.57 KB
<class 'weakref | 1013 | 79.14 KB

<class 'builtin_function_or_method | 958 | 67.36 KB
<class 'method_descriptor | 865 | 60.82 KB

<class 'abc.ABCMeta | 62 | 59.96 KB
<class 'list | 446 | 58.52 KB
<class 'int | 1425 | 43.20 KB

For more info about muppy, refer to the muppy documentation.

5.7.5 Leaks without leaks

Sometimes, you may notice that the memory usage of your Scrapy process will only increase, but never decrease.
Unfortunately, this could happen even though neither Scrapy nor your project are leaking memory. This is due to a
(not so well) known problem of Python, which may not return released memory to the operating system in some cases.
For more information on this issue see:

• Python Memory Management

• Python Memory Management Part 2

• Python Memory Management Part 3

5.7. Debugging memory leaks 151

http://guppy-pe.sourceforge.net/
https://pypi.org/project/Pympler/
https://pythonhosted.org/Pympler/muppy.html
http://www.evanjones.ca/python-memory.html
http://www.evanjones.ca/python-memory-part2.html
http://www.evanjones.ca/python-memory-part3.html

scrapy Documentation, Release 1.5

The improvements proposed by Evan Jones, which are detailed in this paper, got merged in Python 2.5, but this only
reduces the problem, it doesn’t fix it completely. To quote the paper:

Unfortunately, this patch can only free an arena if there are no more objects allocated in it anymore. This
means that fragmentation is a large issue. An application could have many megabytes of free memory,
scattered throughout all the arenas, but it will be unable to free any of it. This is a problem experienced
by all memory allocators. The only way to solve it is to move to a compacting garbage collector, which is
able to move objects in memory. This would require significant changes to the Python interpreter.

To keep memory consumption reasonable you can split the job into several smaller jobs or enable persistent job queue
and stop/start spider from time to time.

5.8 Downloading and processing files and images

Scrapy provides reusable item pipelines for downloading files attached to a particular item (for example, when you
scrape products and also want to download their images locally). These pipelines share a bit of functionality and
structure (we refer to them as media pipelines), but typically you’ll either use the Files Pipeline or the Images Pipeline.

Both pipelines implement these features:

• Avoid re-downloading media that was downloaded recently

• Specifying where to store the media (filesystem directory, Amazon S3 bucket, Google Cloud Storage bucket)

The Images Pipeline has a few extra functions for processing images:

• Convert all downloaded images to a common format (JPG) and mode (RGB)

• Thumbnail generation

• Check images width/height to make sure they meet a minimum constraint

The pipelines also keep an internal queue of those media URLs which are currently being scheduled for download,
and connect those responses that arrive containing the same media to that queue. This avoids downloading the same
media more than once when it’s shared by several items.

5.8.1 Using the Files Pipeline

The typical workflow, when using the FilesPipeline goes like this:

1. In a Spider, you scrape an item and put the URLs of the desired into a file_urls field.

2. The item is returned from the spider and goes to the item pipeline.

3. When the item reaches the FilesPipeline, the URLs in the file_urls field are scheduled for download
using the standard Scrapy scheduler and downloader (which means the scheduler and downloader middlewares
are reused), but with a higher priority, processing them before other pages are scraped. The item remains
“locked” at that particular pipeline stage until the files have finish downloading (or fail for some reason).

4. When the files are downloaded, another field (files) will be populated with the results. This field will contain
a list of dicts with information about the downloaded files, such as the downloaded path, the original scraped url
(taken from the file_urls field) , and the file checksum. The files in the list of the files field will retain
the same order of the original file_urls field. If some file failed downloading, an error will be logged and
the file won’t be present in the files field.

152 Chapter 5. Solving specific problems

http://www.evanjones.ca/memoryallocator/

scrapy Documentation, Release 1.5

5.8.2 Using the Images Pipeline

Using the ImagesPipeline is a lot like using the FilesPipeline, except the default field names used are dif-
ferent: you use image_urls for the image URLs of an item and it will populate an images field for the information
about the downloaded images.

The advantage of using the ImagesPipeline for image files is that you can configure some extra functions like
generating thumbnails and filtering the images based on their size.

The Images Pipeline uses Pillow for thumbnailing and normalizing images to JPEG/RGB format, so you need to install
this library in order to use it. Python Imaging Library (PIL) should also work in most cases, but it is known to cause
troubles in some setups, so we recommend to use Pillow instead of PIL.

5.8.3 Enabling your Media Pipeline

To enable your media pipeline you must first add it to your project :setting:‘ITEM_PIPELINES‘ setting.

For Images Pipeline, use:

ITEM_PIPELINES = {'scrapy.pipelines.images.ImagesPipeline': 1}

For Files Pipeline, use:

ITEM_PIPELINES = {'scrapy.pipelines.files.FilesPipeline': 1}

Note: You can also use both the Files and Images Pipeline at the same time.

Then, configure the target storage setting to a valid value that will be used for storing the downloaded images. Other-
wise the pipeline will remain disabled, even if you include it in the :setting:‘ITEM_PIPELINES‘ setting.

For the Files Pipeline, set the :setting:‘FILES_STORE‘ setting:

FILES_STORE = '/path/to/valid/dir'

For the Images Pipeline, set the :setting:‘IMAGES_STORE‘ setting:

IMAGES_STORE = '/path/to/valid/dir'

5.8.4 Supported Storage

File system is currently the only officially supported storage, but there are also support for storing files in Amazon S3
and Google Cloud Storage.

File system storage

The files are stored using a SHA1 hash of their URLs for the file names.

For example, the following image URL:

http://www.example.com/image.jpg

Whose SHA1 hash is:

5.8. Downloading and processing files and images 153

https://github.com/python-pillow/Pillow
http://www.pythonware.com/products/pil/
https://github.com/python-pillow/Pillow
https://aws.amazon.com/s3/
https://cloud.google.com/storage/
https://en.wikipedia.org/wiki/SHA_hash_functions

scrapy Documentation, Release 1.5

3afec3b4765f8f0a07b78f98c07b83f013567a0a

Will be downloaded and stored in the following file:

<IMAGES_STORE>/full/3afec3b4765f8f0a07b78f98c07b83f013567a0a.jpg

Where:

• <IMAGES_STORE> is the directory defined in :setting:‘IMAGES_STORE‘ setting for the Images Pipeline.

• full is a sub-directory to separate full images from thumbnails (if used). For more info see Thumbnail gener-
ation for images.

Amazon S3 storage

:setting:‘FILES_STORE‘ and :setting:‘IMAGES_STORE‘ can represent an Amazon S3 bucket. Scrapy will auto-
matically upload the files to the bucket.

For example, this is a valid :setting:‘IMAGES_STORE‘ value:

IMAGES_STORE = 's3://bucket/images'

You can modify the Access Control List (ACL) policy used for the stored files, which is defined by the :set-
ting:‘FILES_STORE_S3_ACL‘ and :setting:‘IMAGES_STORE_S3_ACL‘ settings. By default, the ACL is set
to private. To make the files publicly available use the public-read policy:

IMAGES_STORE_S3_ACL = 'public-read'

For more information, see canned ACLs in the Amazon S3 Developer Guide.

Because Scrapy uses boto / botocore internally you can also use other S3-like storages. Storages like self-hosted
Minio or s3.scality. All you need to do is set endpoint option in you Scrapy settings:

AWS_ENDPOINT_URL = 'http://minio.example.com:9000'

For self-hosting you also might feel the need not to use SSL and not to verify SSL connection:

AWS_USE_SSL = False # or True (None by default)
AWS_VERIFY = False # or True (None by default)

Google Cloud Storage

:setting:‘FILES_STORE‘ and :setting:‘IMAGES_STORE‘ can represent a Google Cloud Storage bucket. Scrapy
will automatically upload the files to the bucket. (requires google-cloud-storage)

For example, these are valid :setting:‘IMAGES_STORE‘ and :setting:‘GCS_PROJECT_ID‘ settings:

IMAGES_STORE = 'gs://bucket/images/'
GCS_PROJECT_ID = 'project_id'

For information about authentication, see this documentation.

You can modify the Access Control List (ACL) policy used for the stored files, which is defined by the :set-
ting:‘FILES_STORE_GCS_ACL‘ and :setting:‘IMAGES_STORE_GCS_ACL‘ settings. By default, the ACL is
set to '' (empty string) which means that Cloud Storage applies the bucket’s default object ACL to the object. To
make the files publicly available use the publicRead policy:

154 Chapter 5. Solving specific problems

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
https://github.com/minio/minio
https://s3.scality.com/
https://cloud.google.com/storage/docs/reference/libraries#client-libraries-install-python
https://cloud.google.com/docs/authentication/production

scrapy Documentation, Release 1.5

IMAGES_STORE_GCS_ACL = 'publicRead'

For more information, see Predefined ACLs in the Google Cloud Platform Developer Guide.

5.8.5 Usage example

In order to use a media pipeline first, enable it.

Then, if a spider returns a dict with the URLs key (file_urls or image_urls, for the Files or Images Pipeline
respectively), the pipeline will put the results under respective key (files or images).

If you prefer to use Item, then define a custom item with the necessary fields, like in this example for Images Pipeline:

import scrapy

class MyItem(scrapy.Item):

... other item fields ...
image_urls = scrapy.Field()
images = scrapy.Field()

If you want to use another field name for the URLs key or for the results key, it is also possible to override it.

For the Files Pipeline, set :setting:‘FILES_URLS_FIELD‘ and/or :setting:‘FILES_RESULT_FIELD‘ settings:

FILES_URLS_FIELD = 'field_name_for_your_files_urls'
FILES_RESULT_FIELD = 'field_name_for_your_processed_files'

For the Images Pipeline, set :setting:‘IMAGES_URLS_FIELD‘ and/or :setting:‘IMAGES_RESULT_FIELD‘ set-
tings:

IMAGES_URLS_FIELD = 'field_name_for_your_images_urls'
IMAGES_RESULT_FIELD = 'field_name_for_your_processed_images'

If you need something more complex and want to override the custom pipeline behaviour, see Extending the Media
Pipelines.

If you have multiple image pipelines inheriting from ImagePipeline and you want to have different settings in
different pipelines you can set setting keys preceded with uppercase name of your pipeline class. E.g. if your
pipeline is called MyPipeline and you want to have custom IMAGES_URLS_FIELD you define setting MYP-
IPELINE_IMAGES_URLS_FIELD and your custom settings will be used.

5.8.6 Additional features

File expiration

The Image Pipeline avoids downloading files that were downloaded recently. To adjust this retention delay use the
:setting:‘FILES_EXPIRES‘ setting (or :setting:‘IMAGES_EXPIRES‘, in case of Images Pipeline), which specifies
the delay in number of days:

120 days of delay for files expiration
FILES_EXPIRES = 120

30 days of delay for images expiration
IMAGES_EXPIRES = 30

5.8. Downloading and processing files and images 155

https://cloud.google.com/storage/docs/access-control/lists#predefined-acl

scrapy Documentation, Release 1.5

The default value for both settings is 90 days.

If you have pipeline that subclasses FilesPipeline and you’d like to have different setting for it you can set setting keys
preceded by uppercase class name. E.g. given pipeline class called MyPipeline you can set setting key:

MYPIPELINE_FILES_EXPIRES = 180

and pipeline class MyPipeline will have expiration time set to 180.

Thumbnail generation for images

The Images Pipeline can automatically create thumbnails of the downloaded images.

In order use this feature, you must set :setting:‘IMAGES_THUMBS‘ to a dictionary where the keys are the thumbnail
names and the values are their dimensions.

For example:

IMAGES_THUMBS = {
'small': (50, 50),
'big': (270, 270),

}

When you use this feature, the Images Pipeline will create thumbnails of the each specified size with this format:

<IMAGES_STORE>/thumbs/<size_name>/<image_id>.jpg

Where:

• <size_name> is the one specified in the :setting:‘IMAGES_THUMBS‘ dictionary keys (small, big, etc)

• <image_id> is the SHA1 hash of the image url

Example of image files stored using small and big thumbnail names:

<IMAGES_STORE>/full/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg
<IMAGES_STORE>/thumbs/small/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg
<IMAGES_STORE>/thumbs/big/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg

The first one is the full image, as downloaded from the site.

Filtering out small images

When using the Images Pipeline, you can drop images which are too small, by specifying the minimum allowed size
in the :setting:‘IMAGES_MIN_HEIGHT‘ and :setting:‘IMAGES_MIN_WIDTH‘ settings.

For example:

IMAGES_MIN_HEIGHT = 110
IMAGES_MIN_WIDTH = 110

Note: The size constraints don’t affect thumbnail generation at all.

It is possible to set just one size constraint or both. When setting both of them, only images that satisfy both minimum
sizes will be saved. For the above example, images of sizes (105 x 105) or (105 x 200) or (200 x 105) will all be
dropped because at least one dimension is shorter than the constraint.

By default, there are no size constraints, so all images are processed.

156 Chapter 5. Solving specific problems

https://en.wikipedia.org/wiki/SHA_hash_functions

scrapy Documentation, Release 1.5

Allowing redirections

By default media pipelines ignore redirects, i.e. an HTTP redirection to a media file URL request will mean the media
download is considered failed.

To handle media redirections, set this setting to True:

MEDIA_ALLOW_REDIRECTS = True

5.8.7 Extending the Media Pipelines

See here the methods that you can override in your custom Files Pipeline:

class scrapy.pipelines.files.FilesPipeline

get_media_requests(item, info)
As seen on the workflow, the pipeline will get the URLs of the images to download from the item. In order
to do this, you can override the get_media_requests() method and return a Request for each file
URL:

def get_media_requests(self, item, info):
for file_url in item['file_urls']:

yield scrapy.Request(file_url)

Those requests will be processed by the pipeline and, when they have finished downloading, the results
will be sent to the item_completed() method, as a list of 2-element tuples. Each tuple will contain
(success, file_info_or_error) where:

• success is a boolean which is True if the image was downloaded successfully or False if it failed
for some reason

• file_info_or_error is a dict containing the following keys (if success is True) or a Twisted
Failure if there was a problem.

– url - the url where the file was downloaded from. This is the url of the request returned from the
get_media_requests() method.

– path - the path (relative to :setting:‘FILES_STORE‘) where the file was stored

– checksum - a MD5 hash of the image contents

The list of tuples received by item_completed() is guaranteed to retain the same order of the requests
returned from the get_media_requests() method.

Here’s a typical value of the results argument:

[(True,
{'checksum': '2b00042f7481c7b056c4b410d28f33cf',
'path': 'full/0a79c461a4062ac383dc4fade7bc09f1384a3910.jpg',
'url': 'http://www.example.com/files/product1.pdf'}),

(False,
Failure(...))]

By default the get_media_requests()method returns Nonewhich means there are no files to down-
load for the item.

item_completed(results, item, info)
The FilesPipeline.item_completed() method called when all file requests for a single item
have completed (either finished downloading, or failed for some reason).

5.8. Downloading and processing files and images 157

https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html
https://en.wikipedia.org/wiki/MD5

scrapy Documentation, Release 1.5

The item_completed() method must return the output that will be sent to subsequent item pipeline
stages, so you must return (or drop) the item, as you would in any pipeline.

Here is an example of the item_completed() method where we store the downloaded file paths
(passed in results) in the file_paths item field, and we drop the item if it doesn’t contain any files:

from scrapy.exceptions import DropItem

def item_completed(self, results, item, info):
file_paths = [x['path'] for ok, x in results if ok]
if not file_paths:

raise DropItem("Item contains no files")
item['file_paths'] = file_paths
return item

By default, the item_completed() method returns the item.

See here the methods that you can override in your custom Images Pipeline:

class scrapy.pipelines.images.ImagesPipeline

The ImagesPipeline is an extension of the FilesPipeline, customizing the field names and
adding custom behavior for images.

get_media_requests(item, info)
Works the same way as FilesPipeline.get_media_requests() method, but using a different
field name for image urls.

Must return a Request for each image URL.

item_completed(results, item, info)
The ImagesPipeline.item_completed() method is called when all image requests for a single
item have completed (either finished downloading, or failed for some reason).

Works the same way as FilesPipeline.item_completed() method, but using a different field
names for storing image downloading results.

By default, the item_completed() method returns the item.

5.8.8 Custom Images pipeline example

Here is a full example of the Images Pipeline whose methods are examplified above:

import scrapy
from scrapy.pipelines.images import ImagesPipeline
from scrapy.exceptions import DropItem

class MyImagesPipeline(ImagesPipeline):

def get_media_requests(self, item, info):
for image_url in item['image_urls']:

yield scrapy.Request(image_url)

def item_completed(self, results, item, info):
image_paths = [x['path'] for ok, x in results if ok]
if not image_paths:

raise DropItem("Item contains no images")
item['image_paths'] = image_paths
return item

158 Chapter 5. Solving specific problems

scrapy Documentation, Release 1.5

5.9 Deploying Spiders

This section describes the different options you have for deploying your Scrapy spiders to run them on a regular basis.
Running Scrapy spiders in your local machine is very convenient for the (early) development stage, but not so much
when you need to execute long-running spiders or move spiders to run in production continuously. This is where the
solutions for deploying Scrapy spiders come in.

Popular choices for deploying Scrapy spiders are:

• Scrapyd (open source)

• Scrapy Cloud (cloud-based)

5.9.1 Deploying to a Scrapyd Server

Scrapyd is an open source application to run Scrapy spiders. It provides a server with HTTP API, capable of running
and monitoring Scrapy spiders.

To deploy spiders to Scrapyd, you can use the scrapyd-deploy tool provided by the scrapyd-client package. Please
refer to the scrapyd-deploy documentation for more information.

Scrapyd is maintained by some of the Scrapy developers.

5.9.2 Deploying to Scrapy Cloud

Scrapy Cloud is a hosted, cloud-based service by Scrapinghub, the company behind Scrapy.

Scrapy Cloud removes the need to setup and monitor servers and provides a nice UI to manage spiders and review
scraped items, logs and stats.

To deploy spiders to Scrapy Cloud you can use the shub command line tool. Please refer to the Scrapy Cloud docu-
mentation for more information.

Scrapy Cloud is compatible with Scrapyd and one can switch between them as needed - the configuration is read from
the scrapy.cfg file just like scrapyd-deploy.

5.10 AutoThrottle extension

This is an extension for automatically throttling crawling speed based on load of both the Scrapy server and the website
you are crawling.

5.10.1 Design goals

1. be nicer to sites instead of using default download delay of zero

2. automatically adjust scrapy to the optimum crawling speed, so the user doesn’t have to tune the download delays
to find the optimum one. The user only needs to specify the maximum concurrent requests it allows, and the
extension does the rest.

5.9. Deploying Spiders 159

https://github.com/scrapy/scrapyd
https://github.com/scrapy/scrapyd-client
https://scrapyd.readthedocs.io/en/latest/deploy.html
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/
https://doc.scrapinghub.com/shub.html
https://doc.scrapinghub.com/scrapy-cloud.html
https://doc.scrapinghub.com/scrapy-cloud.html

scrapy Documentation, Release 1.5

5.10.2 How it works

AutoThrottle extension adjusts download delays dynamically to make spider send :set-
ting:‘AUTOTHROTTLE_TARGET_CONCURRENCY‘ concurrent requests on average to each remote website.

It uses download latency to compute the delays. The main idea is the following: if a server needs latency seconds
to respond, a client should send a request each latency/N seconds to have N requests processed in parallel.

Instead of adjusting the delays one can just set a small fixed download delay and impose hard
limits on concurrency using :setting:‘CONCURRENT_REQUESTS_PER_DOMAIN‘ or :set-
ting:‘CONCURRENT_REQUESTS_PER_IP‘ options. It will provide a similar effect, but there are some
important differences:

• because the download delay is small there will be occasional bursts of requests;

• often non-200 (error) responses can be returned faster than regular responses, so with a small download delay
and a hard concurrency limit crawler will be sending requests to server faster when server starts to return errors.
But this is an opposite of what crawler should do - in case of errors it makes more sense to slow down: these
errors may be caused by the high request rate.

AutoThrottle doesn’t have these issues.

5.10.3 Throttling algorithm

AutoThrottle algorithm adjusts download delays based on the following rules:

1. spiders always start with a download delay of :setting:‘AUTOTHROTTLE_START_DELAY‘;

2. when a response is received, the target download delay is calculated as latency / N where latency is a
latency of the response, and N is :setting:‘AUTOTHROTTLE_TARGET_CONCURRENCY‘.

3. download delay for next requests is set to the average of previous download delay and the target download delay;

4. latencies of non-200 responses are not allowed to decrease the delay;

5. download delay can’t become less than :setting:‘DOWNLOAD_DELAY‘ or greater than :set-
ting:‘AUTOTHROTTLE_MAX_DELAY‘

Note: The AutoThrottle extension honours the standard Scrapy settings for concurrency and de-
lay. This means that it will respect :setting:‘CONCURRENT_REQUESTS_PER_DOMAIN‘ and :set-
ting:‘CONCURRENT_REQUESTS_PER_IP‘ options and never set a download delay lower than :set-
ting:‘DOWNLOAD_DELAY‘.

In Scrapy, the download latency is measured as the time elapsed between establishing the TCP connection and receiv-
ing the HTTP headers.

Note that these latencies are very hard to measure accurately in a cooperative multitasking environment because Scrapy
may be busy processing a spider callback, for example, and unable to attend downloads. However, these latencies
should still give a reasonable estimate of how busy Scrapy (and ultimately, the server) is, and this extension builds on
that premise.

5.10.4 Settings

The settings used to control the AutoThrottle extension are:

• :setting:‘AUTOTHROTTLE_ENABLED‘

• :setting:‘AUTOTHROTTLE_START_DELAY‘

160 Chapter 5. Solving specific problems

scrapy Documentation, Release 1.5

• :setting:‘AUTOTHROTTLE_MAX_DELAY‘

• :setting:‘AUTOTHROTTLE_TARGET_CONCURRENCY‘

• :setting:‘AUTOTHROTTLE_DEBUG‘

• :setting:‘CONCURRENT_REQUESTS_PER_DOMAIN‘

• :setting:‘CONCURRENT_REQUESTS_PER_IP‘

• :setting:‘DOWNLOAD_DELAY‘

For more information see How it works.

AUTOTHROTTLE_ENABLED

Default: False

Enables the AutoThrottle extension.

AUTOTHROTTLE_START_DELAY

Default: 5.0

The initial download delay (in seconds).

AUTOTHROTTLE_MAX_DELAY

Default: 60.0

The maximum download delay (in seconds) to be set in case of high latencies.

AUTOTHROTTLE_TARGET_CONCURRENCY

New in version 1.1.

Default: 1.0

Average number of requests Scrapy should be sending in parallel to remote websites.

By default, AutoThrottle adjusts the delay to send a single concurrent request to each of the remote websites. Set
this option to a higher value (e.g. 2.0) to increase the throughput and the load on remote servers. A lower
AUTOTHROTTLE_TARGET_CONCURRENCY value (e.g. 0.5) makes the crawler more conservative and polite.

Note that :setting:‘CONCURRENT_REQUESTS_PER_DOMAIN‘ and :set-
ting:‘CONCURRENT_REQUESTS_PER_IP‘ options are still respected when AutoThrottle extension is
enabled. This means that if AUTOTHROTTLE_TARGET_CONCURRENCY is set to a value higher than :set-
ting:‘CONCURRENT_REQUESTS_PER_DOMAIN‘ or :setting:‘CONCURRENT_REQUESTS_PER_IP‘,
the crawler won’t reach this number of concurrent requests.

At every given time point Scrapy can be sending more or less concurrent requests than
AUTOTHROTTLE_TARGET_CONCURRENCY; it is a suggested value the crawler tries to approach, not a hard
limit.

5.10. AutoThrottle extension 161

scrapy Documentation, Release 1.5

AUTOTHROTTLE_DEBUG

Default: False

Enable AutoThrottle debug mode which will display stats on every response received, so you can see how the throttling
parameters are being adjusted in real time.

5.11 Benchmarking

New in version 0.17.

Scrapy comes with a simple benchmarking suite that spawns a local HTTP server and crawls it at the maximum
possible speed. The goal of this benchmarking is to get an idea of how Scrapy performs in your hardware, in order to
have a common baseline for comparisons. It uses a simple spider that does nothing and just follows links.

To run it use:

scrapy bench

You should see an output like this:

2016-12-16 21:18:48 [scrapy.utils.log] INFO: Scrapy 1.2.2 started (bot: quotesbot)
2016-12-16 21:18:48 [scrapy.utils.log] INFO: Overridden settings: {'CLOSESPIDER_
→˓TIMEOUT': 10, 'ROBOTSTXT_OBEY': True, 'SPIDER_MODULES': ['quotesbot.spiders'],
→˓'LOGSTATS_INTERVAL': 1, 'BOT_NAME': 'quotesbot', 'LOG_LEVEL': 'INFO', 'NEWSPIDER_
→˓MODULE': 'quotesbot.spiders'}
2016-12-16 21:18:49 [scrapy.middleware] INFO: Enabled extensions:
['scrapy.extensions.closespider.CloseSpider',
'scrapy.extensions.logstats.LogStats',
'scrapy.extensions.telnet.TelnetConsole',
'scrapy.extensions.corestats.CoreStats']

2016-12-16 21:18:49 [scrapy.middleware] INFO: Enabled downloader middlewares:
['scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware',
'scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware',
'scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware',
'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware',
'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware',
'scrapy.downloadermiddlewares.retry.RetryMiddleware',
'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware',
'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware',
'scrapy.downloadermiddlewares.redirect.RedirectMiddleware',
'scrapy.downloadermiddlewares.cookies.CookiesMiddleware',
'scrapy.downloadermiddlewares.stats.DownloaderStats']

2016-12-16 21:18:49 [scrapy.middleware] INFO: Enabled spider middlewares:
['scrapy.spidermiddlewares.httperror.HttpErrorMiddleware',
'scrapy.spidermiddlewares.offsite.OffsiteMiddleware',
'scrapy.spidermiddlewares.referer.RefererMiddleware',
'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware',
'scrapy.spidermiddlewares.depth.DepthMiddleware']

2016-12-16 21:18:49 [scrapy.middleware] INFO: Enabled item pipelines:
[]
2016-12-16 21:18:49 [scrapy.core.engine] INFO: Spider opened
2016-12-16 21:18:49 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/
→˓min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:50 [scrapy.extensions.logstats] INFO: Crawled 70 pages (at 4200
→˓pages/min), scraped 0 items (at 0 items/min)

(continues on next page)

162 Chapter 5. Solving specific problems

scrapy Documentation, Release 1.5

(continued from previous page)

2016-12-16 21:18:51 [scrapy.extensions.logstats] INFO: Crawled 134 pages (at 3840
→˓pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:52 [scrapy.extensions.logstats] INFO: Crawled 198 pages (at 3840
→˓pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:53 [scrapy.extensions.logstats] INFO: Crawled 254 pages (at 3360
→˓pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:54 [scrapy.extensions.logstats] INFO: Crawled 302 pages (at 2880
→˓pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:55 [scrapy.extensions.logstats] INFO: Crawled 358 pages (at 3360
→˓pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:56 [scrapy.extensions.logstats] INFO: Crawled 406 pages (at 2880
→˓pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:57 [scrapy.extensions.logstats] INFO: Crawled 438 pages (at 1920
→˓pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:58 [scrapy.extensions.logstats] INFO: Crawled 470 pages (at 1920
→˓pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:59 [scrapy.core.engine] INFO: Closing spider (closespider_timeout)
2016-12-16 21:18:59 [scrapy.extensions.logstats] INFO: Crawled 518 pages (at 2880
→˓pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:19:00 [scrapy.statscollectors] INFO: Dumping Scrapy stats:
{'downloader/request_bytes': 229995,
'downloader/request_count': 534,
'downloader/request_method_count/GET': 534,
'downloader/response_bytes': 1565504,
'downloader/response_count': 534,
'downloader/response_status_count/200': 534,
'finish_reason': 'closespider_timeout',
'finish_time': datetime.datetime(2016, 12, 16, 16, 19, 0, 647725),
'log_count/INFO': 17,
'request_depth_max': 19,
'response_received_count': 534,
'scheduler/dequeued': 533,
'scheduler/dequeued/memory': 533,
'scheduler/enqueued': 10661,
'scheduler/enqueued/memory': 10661,
'start_time': datetime.datetime(2016, 12, 16, 16, 18, 49, 799869)}

2016-12-16 21:19:00 [scrapy.core.engine] INFO: Spider closed (closespider_timeout)

That tells you that Scrapy is able to crawl about 3000 pages per minute in the hardware where you run it. Note that
this is a very simple spider intended to follow links, any custom spider you write will probably do more stuff which
results in slower crawl rates. How slower depends on how much your spider does and how well it’s written.

In the future, more cases will be added to the benchmarking suite to cover other common scenarios.

5.12 Jobs: pausing and resuming crawls

Sometimes, for big sites, it’s desirable to pause crawls and be able to resume them later.

Scrapy supports this functionality out of the box by providing the following facilities:

• a scheduler that persists scheduled requests on disk

• a duplicates filter that persists visited requests on disk

• an extension that keeps some spider state (key/value pairs) persistent between batches

5.12. Jobs: pausing and resuming crawls 163

scrapy Documentation, Release 1.5

5.12.1 Job directory

To enable persistence support you just need to define a job directory through the JOBDIR setting. This directory
will be for storing all required data to keep the state of a single job (ie. a spider run). It’s important to note that this
directory must not be shared by different spiders, or even different jobs/runs of the same spider, as it’s meant to be
used for storing the state of a single job.

5.12.2 How to use it

To start a spider with persistence supported enabled, run it like this:

scrapy crawl somespider -s JOBDIR=crawls/somespider-1

Then, you can stop the spider safely at any time (by pressing Ctrl-C or sending a signal), and resume it later by issuing
the same command:

scrapy crawl somespider -s JOBDIR=crawls/somespider-1

5.12.3 Keeping persistent state between batches

Sometimes you’ll want to keep some persistent spider state between pause/resume batches. You can use the spider.
state attribute for that, which should be a dict. There’s a built-in extension that takes care of serializing, storing and
loading that attribute from the job directory, when the spider starts and stops.

Here’s an example of a callback that uses the spider state (other spider code is omitted for brevity):

def parse_item(self, response):
parse item here
self.state['items_count'] = self.state.get('items_count', 0) + 1

5.12.4 Persistence gotchas

There are a few things to keep in mind if you want to be able to use the Scrapy persistence support:

Cookies expiration

Cookies may expire. So, if you don’t resume your spider quickly the requests scheduled may no longer work. This
won’t be an issue if you spider doesn’t rely on cookies.

Request serialization

Requests must be serializable by the pickle module, in order for persistence to work, so you should make sure that
your requests are serializable.

The most common issue here is to use lambda functions on request callbacks that can’t be persisted.

So, for example, this won’t work:

164 Chapter 5. Solving specific problems

scrapy Documentation, Release 1.5

def some_callback(self, response):
somearg = 'test'
return scrapy.Request('http://www.example.com', callback=lambda r: self.other_

→˓callback(r, somearg))

def other_callback(self, response, somearg):
print "the argument passed is:", somearg

But this will:

def some_callback(self, response):
somearg = 'test'
return scrapy.Request('http://www.example.com', callback=self.other_callback,

→˓meta={'somearg': somearg})

def other_callback(self, response):
somearg = response.meta['somearg']
print "the argument passed is:", somearg

If you wish to log the requests that couldn’t be serialized, you can set the :setting:‘SCHEDULER_DEBUG‘ setting
to True in the project’s settings page. It is False by default.

Frequently Asked Questions Get answers to most frequently asked questions.

Debugging Spiders Learn how to debug common problems of your scrapy spider.

Spiders Contracts Learn how to use contracts for testing your spiders.

Common Practices Get familiar with some Scrapy common practices.

Broad Crawls Tune Scrapy for crawling a lot domains in parallel.

Using your browser’s Developer Tools for scraping Learn how to scrape with your browser’s developer tools.

Debugging memory leaks Learn how to find and get rid of memory leaks in your crawler.

Downloading and processing files and images Download files and/or images associated with your scraped items.

Deploying Spiders Deploying your Scrapy spiders and run them in a remote server.

AutoThrottle extension Adjust crawl rate dynamically based on load.

Benchmarking Check how Scrapy performs on your hardware.

Jobs: pausing and resuming crawls Learn how to pause and resume crawls for large spiders.

5.12. Jobs: pausing and resuming crawls 165

scrapy Documentation, Release 1.5

166 Chapter 5. Solving specific problems

CHAPTER 6

Extending Scrapy

6.1 Architecture overview

This document describes the architecture of Scrapy and how its components interact.

6.1.1 Overview

The following diagram shows an overview of the Scrapy architecture with its components and an outline of the data
flow that takes place inside the system (shown by the red arrows). A brief description of the components is included
below with links for more detailed information about them. The data flow is also described below.

167

scrapy Documentation, Release 1.5

6.1.2 Data flow

The data flow in Scrapy is controlled by the execution engine, and goes like this:

1. The Engine gets the initial Requests to crawl from the Spider.

2. The Engine schedules the Requests in the Scheduler and asks for the next Requests to crawl.

3. The Scheduler returns the next Requests to the Engine.

4. The Engine sends the Requests to the Downloader, passing through the Downloader Middlewares (see
process_request()).

5. Once the page finishes downloading the Downloader generates a Response (with that page) and sends it to the
Engine, passing through the Downloader Middlewares (see process_response()).

6. The Engine receives the Response from the Downloader and sends it to the Spider for processing, passing
through the Spider Middleware (see process_spider_input()).

7. The Spider processes the Response and returns scraped items and new Requests (to follow) to the Engine,
passing through the Spider Middleware (see process_spider_output()).

8. The Engine sends processed items to Item Pipelines, then send processed Requests to the Scheduler and asks
for possible next Requests to crawl.

9. The process repeats (from step 1) until there are no more requests from the Scheduler.

168 Chapter 6. Extending Scrapy

scrapy Documentation, Release 1.5

6.1.3 Components

Scrapy Engine

The engine is responsible for controlling the data flow between all components of the system, and triggering events
when certain actions occur. See the Data Flow section above for more details.

Scheduler

The Scheduler receives requests from the engine and enqueues them for feeding them later (also to the engine) when
the engine requests them.

Downloader

The Downloader is responsible for fetching web pages and feeding them to the engine which, in turn, feeds them to
the spiders.

Spiders

Spiders are custom classes written by Scrapy users to parse responses and extract items (aka scraped items) from them
or additional requests to follow. For more information see Spiders.

Item Pipeline

The Item Pipeline is responsible for processing the items once they have been extracted (or scraped) by the spiders.
Typical tasks include cleansing, validation and persistence (like storing the item in a database). For more information
see Item Pipeline.

Downloader middlewares

Downloader middlewares are specific hooks that sit between the Engine and the Downloader and process requests
when they pass from the Engine to the Downloader, and responses that pass from Downloader to the Engine.

Use a Downloader middleware if you need to do one of the following:

• process a request just before it is sent to the Downloader (i.e. right before Scrapy sends the request to the
website);

• change received response before passing it to a spider;

• send a new Request instead of passing received response to a spider;

• pass response to a spider without fetching a web page;

• silently drop some requests.

For more information see Downloader Middleware.

6.1. Architecture overview 169

scrapy Documentation, Release 1.5

Spider middlewares

Spider middlewares are specific hooks that sit between the Engine and the Spiders and are able to process spider input
(responses) and output (items and requests).

Use a Spider middleware if you need to

• post-process output of spider callbacks - change/add/remove requests or items;

• post-process start_requests;

• handle spider exceptions;

• call errback instead of callback for some of the requests based on response content.

For more information see Spider Middleware.

6.1.4 Event-driven networking

Scrapy is written with Twisted, a popular event-driven networking framework for Python. Thus, it’s implemented
using a non-blocking (aka asynchronous) code for concurrency.

For more information about asynchronous programming and Twisted see these links:

• Introduction to Deferreds in Twisted

• Twisted - hello, asynchronous programming

• Twisted Introduction - Krondo

6.2 Downloader Middleware

The downloader middleware is a framework of hooks into Scrapy’s request/response processing. It’s a light, low-level
system for globally altering Scrapy’s requests and responses.

6.2.1 Activating a downloader middleware

To activate a downloader middleware component, add it to the :setting:‘DOWNLOADER_MIDDLEWARES‘ set-
ting, which is a dict whose keys are the middleware class paths and their values are the middleware orders.

Here’s an example:

DOWNLOADER_MIDDLEWARES = {
'myproject.middlewares.CustomDownloaderMiddleware': 543,

}

The :setting:‘DOWNLOADER_MIDDLEWARES‘ setting is merged with the :set-
ting:‘DOWNLOADER_MIDDLEWARES_BASE‘ setting defined in Scrapy (and not meant to be overridden) and
then sorted by order to get the final sorted list of enabled middlewares: the first middleware is the one closer to the
engine and the last is the one closer to the downloader. In other words, the process_request() method of each
middleware will be invoked in increasing middleware order (100, 200, 300, . . .) and the process_response()
method of each middleware will be invoked in decreasing order.

To decide which order to assign to your middleware see the :setting:‘DOWNLOADER_MIDDLEWARES_BASE‘
setting and pick a value according to where you want to insert the middleware. The order does matter because each
middleware performs a different action and your middleware could depend on some previous (or subsequent) middle-
ware being applied.

170 Chapter 6. Extending Scrapy

https://twistedmatrix.com/trac/
https://twistedmatrix.com/documents/current/core/howto/defer-intro.html
http://jessenoller.com/2009/02/11/twisted-hello-asynchronous-programming/
http://krondo.com/an-introduction-to-asynchronous-programming-and-twisted/

scrapy Documentation, Release 1.5

If you want to disable a built-in middleware (the ones defined in :set-
ting:‘DOWNLOADER_MIDDLEWARES_BASE‘ and enabled by default) you must define it in your project’s
:setting:‘DOWNLOADER_MIDDLEWARES‘ setting and assign None as its value. For example, if you want to
disable the user-agent middleware:

DOWNLOADER_MIDDLEWARES = {
'myproject.middlewares.CustomDownloaderMiddleware': 543,
'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None,

}

Finally, keep in mind that some middlewares may need to be enabled through a particular setting. See each middleware
documentation for more info.

6.2.2 Writing your own downloader middleware

Each middleware component is a Python class that defines one or more of the following methods:

class scrapy.downloadermiddlewares.DownloaderMiddleware

Note: Any of the downloader middleware methods may also return a deferred.

process_request(request, spider)
This method is called for each request that goes through the download middleware.

process_request() should either: return None, return a Response object, return a Request
object, or raise IgnoreRequest.

If it returns None, Scrapy will continue processing this request, executing all other middlewares until,
finally, the appropriate downloader handler is called the request performed (and its response downloaded).

If it returns a Response object, Scrapy won’t bother calling any other process_request() or
process_exception() methods, or the appropriate download function; it’ll return that response.
The process_response() methods of installed middleware is always called on every response.

If it returns a Request object, Scrapy will stop calling process_request methods and reschedule the
returned request. Once the newly returned request is performed, the appropriate middleware chain will be
called on the downloaded response.

If it raises an IgnoreRequest exception, the process_exception() methods of installed down-
loader middleware will be called. If none of them handle the exception, the errback function of the request
(Request.errback) is called. If no code handles the raised exception, it is ignored and not logged
(unlike other exceptions).

Parameters

• request (Request object) – the request being processed

• spider (Spider object) – the spider for which this request is intended

process_response(request, response, spider)
process_response() should either: return a Response object, return a Request object or raise a
IgnoreRequest exception.

If it returns a Response (it could be the same given response, or a brand-new one), that response will
continue to be processed with the process_response() of the next middleware in the chain.

6.2. Downloader Middleware 171

scrapy Documentation, Release 1.5

If it returns a Request object, the middleware chain is halted and the returned request is resched-
uled to be downloaded in the future. This is the same behavior as if a request is returned from
process_request().

If it raises an IgnoreRequest exception, the errback function of the request (Request.errback) is
called. If no code handles the raised exception, it is ignored and not logged (unlike other exceptions).

Parameters

• request (is a Request object) – the request that originated the response

• response (Response object) – the response being processed

• spider (Spider object) – the spider for which this response is intended

process_exception(request, exception, spider)
Scrapy calls process_exception() when a download handler or a process_request() (from a
downloader middleware) raises an exception (including an IgnoreRequest exception)

process_exception() should return: either None, a Response object, or a Request object.

If it returns None, Scrapy will continue processing this exception, executing any other
process_exception() methods of installed middleware, until no middleware is left and the default
exception handling kicks in.

If it returns a Response object, the process_response() method chain of installed middleware is
started, and Scrapy won’t bother calling any other process_exception() methods of middleware.

If it returns a Request object, the returned request is rescheduled to be downloaded in the future. This
stops the execution of process_exception() methods of the middleware the same as returning a
response would.

Parameters

• request (is a Request object) – the request that generated the exception

• exception (an Exception object) – the raised exception

• spider (Spider object) – the spider for which this request is intended

from_crawler(cls, crawler)
If present, this classmethod is called to create a middleware instance from a Crawler. It must return
a new instance of the middleware. Crawler object provides access to all Scrapy core components like
settings and signals; it is a way for middleware to access them and hook its functionality into Scrapy.

Parameters crawler (Crawler object) – crawler that uses this middleware

6.2.3 Built-in downloader middleware reference

This page describes all downloader middleware components that come with Scrapy. For information on how to use
them and how to write your own downloader middleware, see the downloader middleware usage guide.

For a list of the components enabled by default (and their orders) see the :set-
ting:‘DOWNLOADER_MIDDLEWARES_BASE‘ setting.

CookiesMiddleware

class scrapy.downloadermiddlewares.cookies.CookiesMiddleware
This middleware enables working with sites that require cookies, such as those that use sessions. It keeps track
of cookies sent by web servers, and send them back on subsequent requests (from that spider), just like web
browsers do.

172 Chapter 6. Extending Scrapy

scrapy Documentation, Release 1.5

The following settings can be used to configure the cookie middleware:

• :setting:‘COOKIES_ENABLED‘

• :setting:‘COOKIES_DEBUG‘

Multiple cookie sessions per spider

New in version 0.15.

There is support for keeping multiple cookie sessions per spider by using the :reqmeta:‘cookiejar‘ Request meta key.
By default it uses a single cookie jar (session), but you can pass an identifier to use different ones.

For example:

for i, url in enumerate(urls):
yield scrapy.Request(url, meta={'cookiejar': i},

callback=self.parse_page)

Keep in mind that the :reqmeta:‘cookiejar‘ meta key is not “sticky”. You need to keep passing it along on subsequent
requests. For example:

def parse_page(self, response):
do some processing
return scrapy.Request("http://www.example.com/otherpage",

meta={'cookiejar': response.meta['cookiejar']},
callback=self.parse_other_page)

COOKIES_ENABLED

Default: True

Whether to enable the cookies middleware. If disabled, no cookies will be sent to web servers.

Notice that despite the value of :setting:‘COOKIES_ENABLED‘ setting if Request.
:reqmeta:‘meta[’dont_merge_cookies’] <dont_merge_cookies>‘ evaluates to True the request cookies will
not be sent to the web server and received cookies in Response will not be merged with the existing cookies.

For more detailed information see the cookies parameter in Request.

COOKIES_DEBUG

Default: False

If enabled, Scrapy will log all cookies sent in requests (ie. Cookie header) and all cookies received in responses (ie.
Set-Cookie header).

Here’s an example of a log with :setting:‘COOKIES_DEBUG‘ enabled:

2011-04-06 14:35:10-0300 [scrapy.core.engine] INFO: Spider opened
2011-04-06 14:35:10-0300 [scrapy.downloadermiddlewares.cookies] DEBUG: Sending
→˓cookies to: <GET http://www.diningcity.com/netherlands/index.html>

Cookie: clientlanguage_nl=en_EN
2011-04-06 14:35:14-0300 [scrapy.downloadermiddlewares.cookies] DEBUG: Received
→˓cookies from: <200 http://www.diningcity.com/netherlands/index.html>

Set-Cookie: JSESSIONID=B~FA4DC0C496C8762AE4F1A620EAB34F38; Path=/

(continues on next page)

6.2. Downloader Middleware 173

scrapy Documentation, Release 1.5

(continued from previous page)

Set-Cookie: ip_isocode=US
Set-Cookie: clientlanguage_nl=en_EN; Expires=Thu, 07-Apr-2011 21:21:34 GMT;

→˓Path=/
2011-04-06 14:49:50-0300 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://www.
→˓diningcity.com/netherlands/index.html> (referer: None)
[...]

DefaultHeadersMiddleware

class scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware
This middleware sets all default requests headers specified in the :set-
ting:‘DEFAULT_REQUEST_HEADERS‘ setting.

DownloadTimeoutMiddleware

class scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware
This middleware sets the download timeout for requests specified in the :setting:‘DOWNLOAD_TIMEOUT‘
setting or download_timeout spider attribute.

Note: You can also set download timeout per-request using :reqmeta:‘download_timeout‘ Request.meta key; this
is supported even when DownloadTimeoutMiddleware is disabled.

HttpAuthMiddleware

class scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware
This middleware authenticates all requests generated from certain spiders using Basic access authentication
(aka. HTTP auth).

To enable HTTP authentication from certain spiders, set the http_user and http_pass attributes of those
spiders.

Example:

from scrapy.spiders import CrawlSpider

class SomeIntranetSiteSpider(CrawlSpider):

http_user = 'someuser'
http_pass = 'somepass'
name = 'intranet.example.com'

.. rest of the spider code omitted ...

HttpCacheMiddleware

class scrapy.downloadermiddlewares.httpcache.HttpCacheMiddleware
This middleware provides low-level cache to all HTTP requests and responses. It has to be combined with a
cache storage backend as well as a cache policy.

Scrapy ships with three HTTP cache storage backends:

174 Chapter 6. Extending Scrapy

https://en.wikipedia.org/wiki/Basic_access_authentication

scrapy Documentation, Release 1.5

• Filesystem storage backend (default)

• DBM storage backend

• LevelDB storage backend

You can change the HTTP cache storage backend with the :setting:‘HTTPCACHE_STORAGE‘ setting. Or
you can also implement your own storage backend.

Scrapy ships with two HTTP cache policies:

• RFC2616 policy

• Dummy policy (default)

You can change the HTTP cache policy with the :setting:‘HTTPCACHE_POLICY‘ setting. Or you can also
implement your own policy.

You can also avoid caching a response on every policy using :reqmeta:‘dont_cache‘ meta key equals True.

Dummy policy (default)

This policy has no awareness of any HTTP Cache-Control directives. Every request and its corresponding response are
cached. When the same request is seen again, the response is returned without transferring anything from the Internet.

The Dummy policy is useful for testing spiders faster (without having to wait for downloads every time) and for trying
your spider offline, when an Internet connection is not available. The goal is to be able to “replay” a spider run exactly
as it ran before.

In order to use this policy, set:

• :setting:‘HTTPCACHE_POLICY‘ to scrapy.extensions.httpcache.DummyPolicy

RFC2616 policy

This policy provides a RFC2616 compliant HTTP cache, i.e. with HTTP Cache-Control awareness, aimed at produc-
tion and used in continuous runs to avoid downloading unmodified data (to save bandwidth and speed up crawls).

what is implemented:

• Do not attempt to store responses/requests with no-store cache-control directive set

• Do not serve responses from cache if no-cache cache-control directive is set even for fresh responses

• Compute freshness lifetime from max-age cache-control directive

• Compute freshness lifetime from Expires response header

• Compute freshness lifetime from Last-Modified response header (heuristic used by Firefox)

• Compute current age from Age response header

• Compute current age from Date header

• Revalidate stale responses based on Last-Modified response header

• Revalidate stale responses based on ETag response header

• Set Date header for any received response missing it

• Support max-stale cache-control directive in requests

This allows spiders to be configured with the full RFC2616 cache policy, but avoid revalidation on a request-by-
request basis, while remaining conformant with the HTTP spec.

6.2. Downloader Middleware 175

scrapy Documentation, Release 1.5

Example:

Add Cache-Control: max-stale=600 to Request headers to accept responses that have exceeded their expiration
time by no more than 600 seconds.

See also: RFC2616, 14.9.3

what is missing:

• Pragma: no-cache support https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9.1

• Vary header support https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.6

• Invalidation after updates or deletes https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.10

• . . . probably others ..

In order to use this policy, set:

• :setting:‘HTTPCACHE_POLICY‘ to scrapy.extensions.httpcache.RFC2616Policy

Filesystem storage backend (default)

File system storage backend is available for the HTTP cache middleware.

In order to use this storage backend, set:

• :setting:‘HTTPCACHE_STORAGE‘ to scrapy.extensions.httpcache.
FilesystemCacheStorage

Each request/response pair is stored in a different directory containing the following files:

• request_body - the plain request body

• request_headers - the request headers (in raw HTTP format)

• response_body - the plain response body

• response_headers - the request headers (in raw HTTP format)

• meta - some metadata of this cache resource in Python repr() format (grep-friendly format)

• pickled_meta - the same metadata in meta but pickled for more efficient deserialization

The directory name is made from the request fingerprint (see scrapy.utils.request.fingerprint), and
one level of subdirectories is used to avoid creating too many files into the same directory (which is inefficient in many
file systems). An example directory could be:

/path/to/cache/dir/example.com/72/72811f648e718090f041317756c03adb0ada46c7

DBM storage backend

New in version 0.13.

A DBM storage backend is also available for the HTTP cache middleware.

By default, it uses the anydbm module, but you can change it with the :setting:‘HTTPCACHE_DBM_MODULE‘
setting.

In order to use this storage backend, set:

• :setting:‘HTTPCACHE_STORAGE‘ to scrapy.extensions.httpcache.DbmCacheStorage

176 Chapter 6. Extending Scrapy

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.6
https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.10
https://en.wikipedia.org/wiki/Dbm
https://docs.python.org/2/library/anydbm.html

scrapy Documentation, Release 1.5

LevelDB storage backend

New in version 0.23.

A LevelDB storage backend is also available for the HTTP cache middleware.

This backend is not recommended for development because only one process can access LevelDB databases at the
same time, so you can’t run a crawl and open the scrapy shell in parallel for the same spider.

In order to use this storage backend:

• set :setting:‘HTTPCACHE_STORAGE‘ to scrapy.extensions.httpcache.
LeveldbCacheStorage

• install LevelDB python bindings like pip install leveldb

HTTPCache middleware settings

The HttpCacheMiddleware can be configured through the following settings:

HTTPCACHE_ENABLED

New in version 0.11.

Default: False

Whether the HTTP cache will be enabled.

Changed in version 0.11: Before 0.11, :setting:‘HTTPCACHE_DIR‘ was used to enable cache.

HTTPCACHE_EXPIRATION_SECS

Default: 0

Expiration time for cached requests, in seconds.

Cached requests older than this time will be re-downloaded. If zero, cached requests will never expire.

Changed in version 0.11: Before 0.11, zero meant cached requests always expire.

HTTPCACHE_DIR

Default: 'httpcache'

The directory to use for storing the (low-level) HTTP cache. If empty, the HTTP cache will be disabled. If a relative
path is given, is taken relative to the project data dir. For more info see: Default structure of Scrapy projects.

HTTPCACHE_IGNORE_HTTP_CODES

New in version 0.10.

Default: []

Don’t cache response with these HTTP codes.

6.2. Downloader Middleware 177

https://github.com/google/leveldb
https://pypi.python.org/pypi/leveldb

scrapy Documentation, Release 1.5

HTTPCACHE_IGNORE_MISSING

Default: False

If enabled, requests not found in the cache will be ignored instead of downloaded.

HTTPCACHE_IGNORE_SCHEMES

New in version 0.10.

Default: ['file']

Don’t cache responses with these URI schemes.

HTTPCACHE_STORAGE

Default: 'scrapy.extensions.httpcache.FilesystemCacheStorage'

The class which implements the cache storage backend.

HTTPCACHE_DBM_MODULE

New in version 0.13.

Default: 'anydbm'

The database module to use in the DBM storage backend. This setting is specific to the DBM backend.

HTTPCACHE_POLICY

New in version 0.18.

Default: 'scrapy.extensions.httpcache.DummyPolicy'

The class which implements the cache policy.

HTTPCACHE_GZIP

New in version 1.0.

Default: False

If enabled, will compress all cached data with gzip. This setting is specific to the Filesystem backend.

HTTPCACHE_ALWAYS_STORE

New in version 1.1.

Default: False

If enabled, will cache pages unconditionally.

178 Chapter 6. Extending Scrapy

scrapy Documentation, Release 1.5

A spider may wish to have all responses available in the cache, for future use with Cache-Control: max-stale, for
instance. The DummyPolicy caches all responses but never revalidates them, and sometimes a more nuanced policy is
desirable.

This setting still respects Cache-Control: no-store directives in responses. If you don’t want that, filter no-store out of
the Cache-Control headers in responses you feedto the cache middleware.

HTTPCACHE_IGNORE_RESPONSE_CACHE_CONTROLS

New in version 1.1.

Default: []

List of Cache-Control directives in responses to be ignored.

Sites often set “no-store”, “no-cache”, “must-revalidate”, etc., but get upset at the traffic a spider can generate if it
respects those directives. This allows to selectively ignore Cache-Control directives that are known to be unimportant
for the sites being crawled.

We assume that the spider will not issue Cache-Control directives in requests unless it actually needs them, so directives
in requests are not filtered.

HttpCompressionMiddleware

class scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware
This middleware allows compressed (gzip, deflate) traffic to be sent/received from web sites.

This middleware also supports decoding brotli-compressed responses, provided brotlipy is installed.

HttpCompressionMiddleware Settings

COMPRESSION_ENABLED

Default: True

Whether the Compression middleware will be enabled.

HttpProxyMiddleware

New in version 0.8.

class scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware
This middleware sets the HTTP proxy to use for requests, by setting the proxy meta value for Request
objects.

Like the Python standard library modules urllib and urllib2, it obeys the following environment variables:

• http_proxy

• https_proxy

• no_proxy

You can also set the meta key proxy per-request, to a value like http://some_proxy_server:port
or http://username:password@some_proxy_server:port. Keep in mind this value will take
precedence over http_proxy/https_proxy environment variables, and it will also ignore no_proxy
environment variable.

6.2. Downloader Middleware 179

https://www.ietf.org/rfc/rfc7932.txt
https://pypi.python.org/pypi/brotlipy
https://docs.python.org/2/library/urllib.html
https://docs.python.org/2/library/urllib2.html

scrapy Documentation, Release 1.5

RedirectMiddleware

class scrapy.downloadermiddlewares.redirect.RedirectMiddleware
This middleware handles redirection of requests based on response status.

The urls which the request goes through (while being redirected) can be found in the redirect_urls Request.
meta key.

The RedirectMiddleware can be configured through the following settings (see the settings documentation for
more info):

• :setting:‘REDIRECT_ENABLED‘

• :setting:‘REDIRECT_MAX_TIMES‘

If Request.meta has dont_redirect key set to True, the request will be ignored by this middleware.

If you want to handle some redirect status codes in your spider, you can specify these in the
handle_httpstatus_list spider attribute.

For example, if you want the redirect middleware to ignore 301 and 302 responses (and pass them through to your
spider) you can do this:

class MySpider(CrawlSpider):
handle_httpstatus_list = [301, 302]

The handle_httpstatus_list key of Request.meta can also be used to specify which response codes to
allow on a per-request basis. You can also set the meta key handle_httpstatus_all to True if you want to
allow any response code for a request.

RedirectMiddleware settings

REDIRECT_ENABLED

New in version 0.13.

Default: True

Whether the Redirect middleware will be enabled.

REDIRECT_MAX_TIMES

Default: 20

The maximum number of redirections that will be followed for a single request.

MetaRefreshMiddleware

class scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware
This middleware handles redirection of requests based on meta-refresh html tag.

The MetaRefreshMiddleware can be configured through the following settings (see the settings documentation
for more info):

• :setting:‘METAREFRESH_ENABLED‘

• :setting:‘METAREFRESH_MAXDELAY‘

180 Chapter 6. Extending Scrapy

scrapy Documentation, Release 1.5

This middleware obey :setting:‘REDIRECT_MAX_TIMES‘ setting, :reqmeta:‘dont_redirect‘ and :re-
qmeta:‘redirect_urls‘ request meta keys as described for RedirectMiddleware

MetaRefreshMiddleware settings

METAREFRESH_ENABLED

New in version 0.17.

Default: True

Whether the Meta Refresh middleware will be enabled.

METAREFRESH_MAXDELAY

Default: 100

The maximum meta-refresh delay (in seconds) to follow the redirection. Some sites use meta-refresh for redirecting
to a session expired page, so we restrict automatic redirection to the maximum delay.

RetryMiddleware

class scrapy.downloadermiddlewares.retry.RetryMiddleware
A middleware to retry failed requests that are potentially caused by temporary problems such as a connection
timeout or HTTP 500 error.

Failed pages are collected on the scraping process and rescheduled at the end, once the spider has finished crawl-
ing all regular (non failed) pages. Once there are no more failed pages to retry, this middleware sends a signal
(retry_complete), so other extensions could connect to that signal.

The RetryMiddleware can be configured through the following settings (see the settings documentation for more
info):

• :setting:‘RETRY_ENABLED‘

• :setting:‘RETRY_TIMES‘

• :setting:‘RETRY_HTTP_CODES‘

If Request.meta has dont_retry key set to True, the request will be ignored by this middleware.

RetryMiddleware Settings

RETRY_ENABLED

New in version 0.13.

Default: True

Whether the Retry middleware will be enabled.

6.2. Downloader Middleware 181

scrapy Documentation, Release 1.5

RETRY_TIMES

Default: 2

Maximum number of times to retry, in addition to the first download.

Maximum number of retries can also be specified per-request using :reqmeta:‘max_retry_times‘ attribute of
Request.meta. When initialized, the :reqmeta:‘max_retry_times‘ meta key takes higher precedence over the
:setting:‘RETRY_TIMES‘ setting.

RETRY_HTTP_CODES

Default: [500, 502, 503, 504, 522, 524, 408]

Which HTTP response codes to retry. Other errors (DNS lookup issues, connections lost, etc) are always retried.

In some cases you may want to add 400 to :setting:‘RETRY_HTTP_CODES‘ because it is a common code used to
indicate server overload. It is not included by default because HTTP specs say so.

RobotsTxtMiddleware

class scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware
This middleware filters out requests forbidden by the robots.txt exclusion standard.

To make sure Scrapy respects robots.txt make sure the middleware is enabled and the :set-
ting:‘ROBOTSTXT_OBEY‘ setting is enabled.

If Request.meta has dont_obey_robotstxt key set to True the request will be ignored by this middleware
even if :setting:‘ROBOTSTXT_OBEY‘ is enabled.

DownloaderStats

class scrapy.downloadermiddlewares.stats.DownloaderStats
Middleware that stores stats of all requests, responses and exceptions that pass through it.

To use this middleware you must enable the :setting:‘DOWNLOADER_STATS‘ setting.

UserAgentMiddleware

class scrapy.downloadermiddlewares.useragent.UserAgentMiddleware
Middleware that allows spiders to override the default user agent.

In order for a spider to override the default user agent, its user_agent attribute must be set.

AjaxCrawlMiddleware

class scrapy.downloadermiddlewares.ajaxcrawl.AjaxCrawlMiddleware
Middleware that finds ‘AJAX crawlable’ page variants based on meta-fragment html tag. See https://developers.
google.com/webmasters/ajax-crawling/docs/getting-started for more info.

Note: Scrapy finds ‘AJAX crawlable’ pages for URLs like 'http://example.com/!#foo=bar' even
without this middleware. AjaxCrawlMiddleware is necessary when URL doesn’t contain '!#'. This is often a
case for ‘index’ or ‘main’ website pages.

182 Chapter 6. Extending Scrapy

https://developers.google.com/webmasters/ajax-crawling/docs/getting-started
https://developers.google.com/webmasters/ajax-crawling/docs/getting-started

scrapy Documentation, Release 1.5

AjaxCrawlMiddleware Settings

AJAXCRAWL_ENABLED

New in version 0.21.

Default: False

Whether the AjaxCrawlMiddleware will be enabled. You may want to enable it for broad crawls.

HttpProxyMiddleware settings

HTTPPROXY_ENABLED

Default: True

Whether or not to enable the HttpProxyMiddleware.

HTTPPROXY_AUTH_ENCODING

Default: "latin-1"

The default encoding for proxy authentication on HttpProxyMiddleware.

6.3 Spider Middleware

The spider middleware is a framework of hooks into Scrapy’s spider processing mechanism where you can plug custom
functionality to process the responses that are sent to Spiders for processing and to process the requests and items that
are generated from spiders.

6.3.1 Activating a spider middleware

To activate a spider middleware component, add it to the :setting:‘SPIDER_MIDDLEWARES‘ setting, which is a
dict whose keys are the middleware class path and their values are the middleware orders.

Here’s an example:

SPIDER_MIDDLEWARES = {
'myproject.middlewares.CustomSpiderMiddleware': 543,

}

The :setting:‘SPIDER_MIDDLEWARES‘ setting is merged with the :set-
ting:‘SPIDER_MIDDLEWARES_BASE‘ setting defined in Scrapy (and not meant to be overridden) and then sorted
by order to get the final sorted list of enabled middlewares: the first middleware is the one closer to the engine and the
last is the one closer to the spider. In other words, the process_spider_input() method of each middleware
will be invoked in increasing middleware order (100, 200, 300, . . .), and the process_spider_output()
method of each middleware will be invoked in decreasing order.

To decide which order to assign to your middleware see the :setting:‘SPIDER_MIDDLEWARES_BASE‘ setting and
pick a value according to where you want to insert the middleware. The order does matter because each middleware
performs a different action and your middleware could depend on some previous (or subsequent) middleware being
applied.

6.3. Spider Middleware 183

scrapy Documentation, Release 1.5

If you want to disable a builtin middleware (the ones defined in :setting:‘SPIDER_MIDDLEWARES_BASE‘, and
enabled by default) you must define it in your project :setting:‘SPIDER_MIDDLEWARES‘ setting and assign None
as its value. For example, if you want to disable the off-site middleware:

SPIDER_MIDDLEWARES = {
'myproject.middlewares.CustomSpiderMiddleware': 543,
'scrapy.spidermiddlewares.offsite.OffsiteMiddleware': None,

}

Finally, keep in mind that some middlewares may need to be enabled through a particular setting. See each middleware
documentation for more info.

6.3.2 Writing your own spider middleware

Each middleware component is a Python class that defines one or more of the following methods:

class scrapy.spidermiddlewares.SpiderMiddleware

process_spider_input(response, spider)
This method is called for each response that goes through the spider middleware and into the spider, for
processing.

process_spider_input() should return None or raise an exception.

If it returns None, Scrapy will continue processing this response, executing all other middlewares until,
finally, the response is handed to the spider for processing.

If it raises an exception, Scrapy won’t bother calling any other spider middleware
process_spider_input() and will call the request errback. The output of the errback
is chained back in the other direction for process_spider_output() to process it, or
process_spider_exception() if it raised an exception.

Parameters

• response (Response object) – the response being processed

• spider (Spider object) – the spider for which this response is intended

process_spider_output(response, result, spider)
This method is called with the results returned from the Spider, after it has processed the response.

process_spider_output() must return an iterable of Request, dict or Item objects.

Parameters

• response (Response object) – the response which generated this output from the spi-
der

• result (an iterable of Request, dict or Item objects) – the result returned by the
spider

• spider (Spider object) – the spider whose result is being processed

process_spider_exception(response, exception, spider)
This method is called when a spider or process_spider_input() method (from other spider mid-
dleware) raises an exception.

process_spider_exception() should return either None or an iterable of Request, dict or
Item objects.

184 Chapter 6. Extending Scrapy

scrapy Documentation, Release 1.5

If it returns None, Scrapy will continue processing this exception, executing any other
process_spider_exception() in the following middleware components, until no middleware
components are left and the exception reaches the engine (where it’s logged and discarded).

If it returns an iterable the process_spider_output() pipeline kicks in, and no other
process_spider_exception() will be called.

Parameters

• response (Response object) – the response being processed when the exception was
raised

• exception (Exception object) – the exception raised

• spider (Spider object) – the spider which raised the exception

process_start_requests(start_requests, spider)
New in version 0.15.

This method is called with the start requests of the spider, and works similarly to the
process_spider_output() method, except that it doesn’t have a response associated and must
return only requests (not items).

It receives an iterable (in the start_requests parameter) and must return another iterable of
Request objects.

Note: When implementing this method in your spider middleware, you should always return an iterable
(that follows the input one) and not consume all start_requests iterator because it can be very large
(or even unbounded) and cause a memory overflow. The Scrapy engine is designed to pull start requests
while it has capacity to process them, so the start requests iterator can be effectively endless where there
is some other condition for stopping the spider (like a time limit or item/page count).

Parameters

• start_requests (an iterable of Request) – the start requests

• spider (Spider object) – the spider to whom the start requests belong

from_crawler(cls, crawler)
If present, this classmethod is called to create a middleware instance from a Crawler. It must return
a new instance of the middleware. Crawler object provides access to all Scrapy core components like
settings and signals; it is a way for middleware to access them and hook its functionality into Scrapy.

Parameters crawler (Crawler object) – crawler that uses this middleware

6.3.3 Built-in spider middleware reference

This page describes all spider middleware components that come with Scrapy. For information on how to use them
and how to write your own spider middleware, see the spider middleware usage guide.

For a list of the components enabled by default (and their orders) see the :set-
ting:‘SPIDER_MIDDLEWARES_BASE‘ setting.

DepthMiddleware

class scrapy.spidermiddlewares.depth.DepthMiddleware
DepthMiddleware is used for tracking the depth of each Request inside the site being scraped. It works by

6.3. Spider Middleware 185

https://docs.python.org/2/library/exceptions.html#exceptions.Exception

scrapy Documentation, Release 1.5

setting request.meta[‘depth’] = 0 whenever there is no value previously set (usually just the first Request) and
incrementing it by 1 otherwise.

It can be used to limit the maximum depth to scrape, control Request priority based on their depth, and things
like that.

The DepthMiddleware can be configured through the following settings (see the settings documentation for
more info):

• :setting:‘DEPTH_LIMIT‘ - The maximum depth that will be allowed to crawl for any site. If zero, no
limit will be imposed.

• :setting:‘DEPTH_STATS_VERBOSE‘ - Whether to collect the number of requests for each depth.

• :setting:‘DEPTH_PRIORITY‘ - Whether to prioritize the requests based on their depth.

HttpErrorMiddleware

class scrapy.spidermiddlewares.httperror.HttpErrorMiddleware
Filter out unsuccessful (erroneous) HTTP responses so that spiders don’t have to deal with them, which (most
of the time) imposes an overhead, consumes more resources, and makes the spider logic more complex.

According to the HTTP standard, successful responses are those whose status codes are in the 200-300 range.

If you still want to process response codes outside that range, you can specify which response
codes the spider is able to handle using the handle_httpstatus_list spider attribute or :set-
ting:‘HTTPERROR_ALLOWED_CODES‘ setting.

For example, if you want your spider to handle 404 responses you can do this:

class MySpider(CrawlSpider):
handle_httpstatus_list = [404]

The handle_httpstatus_list key of Request.meta can also be used to specify which response codes to
allow on a per-request basis. You can also set the meta key handle_httpstatus_all to True if you want to
allow any response code for a request.

Keep in mind, however, that it’s usually a bad idea to handle non-200 responses, unless you really know what you’re
doing.

For more information see: HTTP Status Code Definitions.

HttpErrorMiddleware settings

HTTPERROR_ALLOWED_CODES

Default: []

Pass all responses with non-200 status codes contained in this list.

HTTPERROR_ALLOW_ALL

Default: False

Pass all responses, regardless of its status code.

186 Chapter 6. Extending Scrapy

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

scrapy Documentation, Release 1.5

OffsiteMiddleware

class scrapy.spidermiddlewares.offsite.OffsiteMiddleware
Filters out Requests for URLs outside the domains covered by the spider.

This middleware filters out every request whose host names aren’t in the spider’s allowed_domains at-
tribute. All subdomains of any domain in the list are also allowed. E.g. the rule www.example.org will also
allow bob.www.example.org but not www2.example.com nor example.com.

When your spider returns a request for a domain not belonging to those covered by the spider, this middleware
will log a debug message similar to this one:

DEBUG: Filtered offsite request to 'www.othersite.com': <GET http://www.othersite.
→˓com/some/page.html>

To avoid filling the log with too much noise, it will only print one of these messages for each new domain
filtered. So, for example, if another request for www.othersite.com is filtered, no log message will be
printed. But if a request for someothersite.com is filtered, a message will be printed (but only for the first
request filtered).

If the spider doesn’t define an allowed_domains attribute, or the attribute is empty, the offsite middleware
will allow all requests.

If the request has the dont_filter attribute set, the offsite middleware will allow the request even if its
domain is not listed in allowed domains.

RefererMiddleware

class scrapy.spidermiddlewares.referer.RefererMiddleware
Populates Request Referer header, based on the URL of the Response which generated it.

RefererMiddleware settings

REFERER_ENABLED

New in version 0.15.

Default: True

Whether to enable referer middleware.

REFERRER_POLICY

New in version 1.4.

Default: 'scrapy.spidermiddlewares.referer.DefaultReferrerPolicy'

Referrer Policy to apply when populating Request “Referer” header.

Note: You can also set the Referrer Policy per request, using the special "referrer_policy" Request.meta key,
with the same acceptable values as for the REFERRER_POLICY setting.

6.3. Spider Middleware 187

https://www.w3.org/TR/referrer-policy

scrapy Documentation, Release 1.5

Acceptable values for REFERRER_POLICY

• either a path to a scrapy.spidermiddlewares.referer.ReferrerPolicy subclass — a custom
policy or one of the built-in ones (see classes below),

• or one of the standard W3C-defined string values,

• or the special "scrapy-default".

String value Class name (as a string)
"scrapy-default"
(default)

scrapy.spidermiddlewares.referer.DefaultReferrerPolicy

“no-referrer” scrapy.spidermiddlewares.referer.NoReferrerPolicy
“no-referrer-when-
downgrade”

scrapy.spidermiddlewares.referer.NoReferrerWhenDowngradePolicy

“same-origin” scrapy.spidermiddlewares.referer.SameOriginPolicy
“origin” scrapy.spidermiddlewares.referer.OriginPolicy
“strict-origin” scrapy.spidermiddlewares.referer.StrictOriginPolicy
“origin-when-cross-origin” scrapy.spidermiddlewares.referer.OriginWhenCrossOriginPolicy
“strict-origin-when-cross-
origin”

scrapy.spidermiddlewares.referer.StrictOriginWhenCrossOriginPolicy

“unsafe-url” scrapy.spidermiddlewares.referer.UnsafeUrlPolicy

Warning: Scrapy’s default referrer policy — just like “no-referrer-when-downgrade”, the W3C-recommended
value for browsers — will send a non-empty “Referer” header from any http(s):// to any https:// URL,
even if the domain is different.

“same-origin” may be a better choice if you want to remove referrer information for cross-domain requests.

Note: “no-referrer-when-downgrade” policy is the W3C-recommended default, and is used by major web browsers.

However, it is NOT Scrapy’s default referrer policy (see DefaultReferrerPolicy).

Warning: “unsafe-url” policy is NOT recommended.

UrlLengthMiddleware

class scrapy.spidermiddlewares.urllength.UrlLengthMiddleware
Filters out requests with URLs longer than URLLENGTH_LIMIT

The UrlLengthMiddleware can be configured through the following settings (see the settings documenta-
tion for more info):

• :setting:‘URLLENGTH_LIMIT‘ - The maximum URL length to allow for crawled URLs.

6.4 Extensions

The extensions framework provides a mechanism for inserting your own custom functionality into Scrapy.

188 Chapter 6. Extending Scrapy

https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer
https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer-when-downgrade
https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer-when-downgrade
https://www.w3.org/TR/referrer-policy/#referrer-policy-same-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-strict-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-origin-when-cross-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-strict-origin-when-cross-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-strict-origin-when-cross-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-unsafe-url
https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer-when-downgrade
https://www.w3.org/TR/referrer-policy/#referrer-policy-same-origin

scrapy Documentation, Release 1.5

Extensions are just regular classes that are instantiated at Scrapy startup, when extensions are initialized.

6.4.1 Extension settings

Extensions use the Scrapy settings to manage their settings, just like any other Scrapy code.

It is customary for extensions to prefix their settings with their own name, to avoid collision with existing (and fu-
ture) extensions. For example, a hypothetic extension to handle Google Sitemaps would use settings like GOOGLE-
SITEMAP_ENABLED, GOOGLESITEMAP_DEPTH, and so on.

6.4.2 Loading & activating extensions

Extensions are loaded and activated at startup by instantiating a single instance of the extension class. Therefore, all
the extension initialization code must be performed in the class constructor (__init__ method).

To make an extension available, add it to the :setting:‘EXTENSIONS‘ setting in your Scrapy settings. In :set-
ting:‘EXTENSIONS‘, each extension is represented by a string: the full Python path to the extension’s class name.
For example:

EXTENSIONS = {
'scrapy.extensions.corestats.CoreStats': 500,
'scrapy.extensions.telnet.TelnetConsole': 500,

}

As you can see, the :setting:‘EXTENSIONS‘ setting is a dict where the keys are the extension paths, and their values
are the orders, which define the extension loading order. The :setting:‘EXTENSIONS‘ setting is merged with the
:setting:‘EXTENSIONS_BASE‘ setting defined in Scrapy (and not meant to be overridden) and then sorted by order
to get the final sorted list of enabled extensions.

As extensions typically do not depend on each other, their loading order is irrelevant in most cases. This is why the
:setting:‘EXTENSIONS_BASE‘ setting defines all extensions with the same order (0). However, this feature can be
exploited if you need to add an extension which depends on other extensions already loaded.

6.4.3 Available, enabled and disabled extensions

Not all available extensions will be enabled. Some of them usually depend on a particular setting. For example, the
HTTP Cache extension is available by default but disabled unless the :setting:‘HTTPCACHE_ENABLED‘ setting
is set.

6.4.4 Disabling an extension

In order to disable an extension that comes enabled by default (ie. those included in the :set-
ting:‘EXTENSIONS_BASE‘ setting) you must set its order to None. For example:

EXTENSIONS = {
'scrapy.extensions.corestats.CoreStats': None,

}

6.4. Extensions 189

https://en.wikipedia.org/wiki/Sitemaps

scrapy Documentation, Release 1.5

6.4.5 Writing your own extension

Each extension is a Python class. The main entry point for a Scrapy extension (this also includes middlewares and
pipelines) is the from_crawler class method which receives a Crawler instance. Through the Crawler object
you can access settings, signals, stats, and also control the crawling behaviour.

Typically, extensions connect to signals and perform tasks triggered by them.

Finally, if the from_crawler method raises the NotConfigured exception, the extension will be disabled. Oth-
erwise, the extension will be enabled.

Sample extension

Here we will implement a simple extension to illustrate the concepts described in the previous section. This extension
will log a message every time:

• a spider is opened

• a spider is closed

• a specific number of items are scraped

The extension will be enabled through the MYEXT_ENABLED setting and the number of items will be specified through
the MYEXT_ITEMCOUNT setting.

Here is the code of such extension:

import logging
from scrapy import signals
from scrapy.exceptions import NotConfigured

logger = logging.getLogger(__name__)

class SpiderOpenCloseLogging(object):

def __init__(self, item_count):
self.item_count = item_count
self.items_scraped = 0

@classmethod
def from_crawler(cls, crawler):

first check if the extension should be enabled and raise
NotConfigured otherwise
if not crawler.settings.getbool('MYEXT_ENABLED'):

raise NotConfigured

get the number of items from settings
item_count = crawler.settings.getint('MYEXT_ITEMCOUNT', 1000)

instantiate the extension object
ext = cls(item_count)

connect the extension object to signals
crawler.signals.connect(ext.spider_opened, signal=signals.spider_opened)
crawler.signals.connect(ext.spider_closed, signal=signals.spider_closed)
crawler.signals.connect(ext.item_scraped, signal=signals.item_scraped)

return the extension object
return ext

(continues on next page)

190 Chapter 6. Extending Scrapy

scrapy Documentation, Release 1.5

(continued from previous page)

def spider_opened(self, spider):
logger.info("opened spider %s", spider.name)

def spider_closed(self, spider):
logger.info("closed spider %s", spider.name)

def item_scraped(self, item, spider):
self.items_scraped += 1
if self.items_scraped % self.item_count == 0:

logger.info("scraped %d items", self.items_scraped)

6.4.6 Built-in extensions reference

General purpose extensions

Log Stats extension

class scrapy.extensions.logstats.LogStats

Log basic stats like crawled pages and scraped items.

Core Stats extension

class scrapy.extensions.corestats.CoreStats

Enable the collection of core statistics, provided the stats collection is enabled (see Stats Collection).

Telnet console extension

class scrapy.extensions.telnet.TelnetConsole

Provides a telnet console for getting into a Python interpreter inside the currently running Scrapy process, which can
be very useful for debugging.

The telnet console must be enabled by the :setting:‘TELNETCONSOLE_ENABLED‘ setting, and the server will
listen in the port specified in :setting:‘TELNETCONSOLE_PORT‘.

Memory usage extension

class scrapy.extensions.memusage.MemoryUsage

Note: This extension does not work in Windows.

Monitors the memory used by the Scrapy process that runs the spider and:

1. sends a notification e-mail when it exceeds a certain value

2. closes the spider when it exceeds a certain value

6.4. Extensions 191

scrapy Documentation, Release 1.5

The notification e-mails can be triggered when a certain warning value is reached (:set-
ting:‘MEMUSAGE_WARNING_MB‘) and when the maximum value is reached (:set-
ting:‘MEMUSAGE_LIMIT_MB‘) which will also cause the spider to be closed and the Scrapy process to be
terminated.

This extension is enabled by the :setting:‘MEMUSAGE_ENABLED‘ setting and can be configured with the follow-
ing settings:

• :setting:‘MEMUSAGE_LIMIT_MB‘

• :setting:‘MEMUSAGE_WARNING_MB‘

• :setting:‘MEMUSAGE_NOTIFY_MAIL‘

• :setting:‘MEMUSAGE_CHECK_INTERVAL_SECONDS‘

Memory debugger extension

class scrapy.extensions.memdebug.MemoryDebugger

An extension for debugging memory usage. It collects information about:

• objects uncollected by the Python garbage collector

• objects left alive that shouldn’t. For more info, see Debugging memory leaks with trackref

To enable this extension, turn on the :setting:‘MEMDEBUG_ENABLED‘ setting. The info will be stored in the
stats.

Close spider extension

class scrapy.extensions.closespider.CloseSpider

Closes a spider automatically when some conditions are met, using a specific closing reason for each condition.

The conditions for closing a spider can be configured through the following settings:

• :setting:‘CLOSESPIDER_TIMEOUT‘

• :setting:‘CLOSESPIDER_ITEMCOUNT‘

• :setting:‘CLOSESPIDER_PAGECOUNT‘

• :setting:‘CLOSESPIDER_ERRORCOUNT‘

CLOSESPIDER_TIMEOUT

Default: 0

An integer which specifies a number of seconds. If the spider remains open for more than that number of second, it
will be automatically closed with the reason closespider_timeout. If zero (or non set), spiders won’t be closed
by timeout.

CLOSESPIDER_ITEMCOUNT

Default: 0

An integer which specifies a number of items. If the spider scrapes more than that amount and those items are passed
by the item pipeline, the spider will be closed with the reason closespider_itemcount. Requests which are

192 Chapter 6. Extending Scrapy

scrapy Documentation, Release 1.5

currently in the downloader queue (up to :setting:‘CONCURRENT_REQUESTS‘ requests) are still processed. If
zero (or non set), spiders won’t be closed by number of passed items.

CLOSESPIDER_PAGECOUNT

New in version 0.11.

Default: 0

An integer which specifies the maximum number of responses to crawl. If the spider crawls more than that, the spider
will be closed with the reason closespider_pagecount. If zero (or non set), spiders won’t be closed by number
of crawled responses.

CLOSESPIDER_ERRORCOUNT

New in version 0.11.

Default: 0

An integer which specifies the maximum number of errors to receive before closing the spider. If the spider generates
more than that number of errors, it will be closed with the reason closespider_errorcount. If zero (or non
set), spiders won’t be closed by number of errors.

StatsMailer extension

class scrapy.extensions.statsmailer.StatsMailer

This simple extension can be used to send a notification e-mail every time a domain has finished scraping, including
the Scrapy stats collected. The email will be sent to all recipients specified in the :setting:‘STATSMAILER_RCPTS‘
setting.

Debugging extensions

Stack trace dump extension

class scrapy.extensions.debug.StackTraceDump

Dumps information about the running process when a SIGQUIT or SIGUSR2 signal is received. The information
dumped is the following:

1. engine status (using scrapy.utils.engine.get_engine_status())

2. live references (see Debugging memory leaks with trackref)

3. stack trace of all threads

After the stack trace and engine status is dumped, the Scrapy process continues running normally.

This extension only works on POSIX-compliant platforms (ie. not Windows), because the SIGQUIT and SIGUSR2
signals are not available on Windows.

There are at least two ways to send Scrapy the SIGQUIT signal:

1. By pressing Ctrl-while a Scrapy process is running (Linux only?)

2. By running this command (assuming <pid> is the process id of the Scrapy process):

6.4. Extensions 193

https://en.wikipedia.org/wiki/SIGQUIT
https://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2
https://en.wikipedia.org/wiki/SIGQUIT
https://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2
https://en.wikipedia.org/wiki/SIGQUIT

scrapy Documentation, Release 1.5

kill -QUIT <pid>

Debugger extension

class scrapy.extensions.debug.Debugger

Invokes a Python debugger inside a running Scrapy process when a SIGUSR2 signal is received. After the debugger
is exited, the Scrapy process continues running normally.

For more info see Debugging in Python.

This extension only works on POSIX-compliant platforms (ie. not Windows).

6.5 Core API

New in version 0.15.

This section documents the Scrapy core API, and it’s intended for developers of extensions and middlewares.

6.5.1 Crawler API

The main entry point to Scrapy API is the Crawler object, passed to extensions through the from_crawler class
method. This object provides access to all Scrapy core components, and it’s the only way for extensions to access
them and hook their functionality into Scrapy.

The Extension Manager is responsible for loading and keeping track of installed extensions and it’s configured through
the :setting:‘EXTENSIONS‘ setting which contains a dictionary of all available extensions and their order similar to
how you configure the downloader middlewares.

class scrapy.crawler.Crawler(spidercls, settings)
The Crawler object must be instantiated with a scrapy.spiders.Spider subclass and a scrapy.
settings.Settings object.

settings
The settings manager of this crawler.

This is used by extensions & middlewares to access the Scrapy settings of this crawler.

For an introduction on Scrapy settings see Settings.

For the API see Settings class.

signals
The signals manager of this crawler.

This is used by extensions & middlewares to hook themselves into Scrapy functionality.

For an introduction on signals see Signals.

For the API see SignalManager class.

stats
The stats collector of this crawler.

This is used from extensions & middlewares to record stats of their behaviour, or access stats collected by
other extensions.

For an introduction on stats collection see Stats Collection.

194 Chapter 6. Extending Scrapy

https://docs.python.org/2/library/pdb.html
https://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2

scrapy Documentation, Release 1.5

For the API see StatsCollector class.

extensions
The extension manager that keeps track of enabled extensions.

Most extensions won’t need to access this attribute.

For an introduction on extensions and a list of available extensions on Scrapy see Extensions.

engine
The execution engine, which coordinates the core crawling logic between the scheduler, downloader and
spiders.

Some extension may want to access the Scrapy engine, to inspect or modify the downloader and scheduler
behaviour, although this is an advanced use and this API is not yet stable.

spider
Spider currently being crawled. This is an instance of the spider class provided while constructing the
crawler, and it is created after the arguments given in the crawl() method.

crawl(*args, **kwargs)
Starts the crawler by instantiating its spider class with the given args and kwargs arguments, while setting
the execution engine in motion.

Returns a deferred that is fired when the crawl is finished.

6.5.2 Settings API

scrapy.settings.SETTINGS_PRIORITIES
Dictionary that sets the key name and priority level of the default settings priorities used in Scrapy.

Each item defines a settings entry point, giving it a code name for identification and an integer priority. Greater
priorities take more precedence over lesser ones when setting and retrieving values in the Settings class.

SETTINGS_PRIORITIES = {
'default': 0,
'command': 10,
'project': 20,
'spider': 30,
'cmdline': 40,

}

For a detailed explanation on each settings sources, see: Settings.

6.5.3 SpiderLoader API

class scrapy.loader.SpiderLoader
This class is in charge of retrieving and handling the spider classes defined across the project.

Custom spider loaders can be employed by specifying their path in the :setting:‘SPIDER_LOADER_CLASS‘
project setting. They must fully implement the scrapy.interfaces.ISpiderLoader interface to guar-
antee an errorless execution.

from_settings(settings)
This class method is used by Scrapy to create an instance of the class. It’s called with the current project
settings, and it loads the spiders found recursively in the modules of the :setting:‘SPIDER_MODULES‘
setting.

Parameters settings (Settings instance) – project settings

6.5. Core API 195

scrapy Documentation, Release 1.5

load(spider_name)
Get the Spider class with the given name. It’ll look into the previously loaded spiders for a spider class
with name spider_name and will raise a KeyError if not found.

Parameters spider_name (str) – spider class name

list()
Get the names of the available spiders in the project.

find_by_request(request)
List the spiders’ names that can handle the given request. Will try to match the request’s url against the
domains of the spiders.

Parameters request (Request instance) – queried request

6.5.4 Signals API

6.5.5 Stats Collector API

There are several Stats Collectors available under the scrapy.statscollectors module and they all implement
the Stats Collector API defined by the StatsCollector class (which they all inherit from).

class scrapy.statscollectors.StatsCollector

get_value(key, default=None)
Return the value for the given stats key or default if it doesn’t exist.

get_stats()
Get all stats from the currently running spider as a dict.

set_value(key, value)
Set the given value for the given stats key.

set_stats(stats)
Override the current stats with the dict passed in stats argument.

inc_value(key, count=1, start=0)
Increment the value of the given stats key, by the given count, assuming the start value given (when it’s not
set).

max_value(key, value)
Set the given value for the given key only if current value for the same key is lower than value. If there is
no current value for the given key, the value is always set.

min_value(key, value)
Set the given value for the given key only if current value for the same key is greater than value. If there is
no current value for the given key, the value is always set.

clear_stats()
Clear all stats.

The following methods are not part of the stats collection api but instead used when implementing custom stats
collectors:

open_spider(spider)
Open the given spider for stats collection.

close_spider(spider)
Close the given spider. After this is called, no more specific stats can be accessed or collected.

196 Chapter 6. Extending Scrapy

scrapy Documentation, Release 1.5

6.6 Signals

Scrapy uses signals extensively to notify when certain events occur. You can catch some of those signals in your
Scrapy project (using an extension, for example) to perform additional tasks or extend Scrapy to add functionality not
provided out of the box.

Even though signals provide several arguments, the handlers that catch them don’t need to accept all of them - the
signal dispatching mechanism will only deliver the arguments that the handler receives.

You can connect to signals (or send your own) through the Signals API.

Here is a simple example showing how you can catch signals and perform some action:

from scrapy import signals
from scrapy import Spider

class DmozSpider(Spider):
name = "dmoz"
allowed_domains = ["dmoz.org"]
start_urls = [

"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/",

]

@classmethod
def from_crawler(cls, crawler, *args, **kwargs):

spider = super(DmozSpider, cls).from_crawler(crawler, *args, **kwargs)
crawler.signals.connect(spider.spider_closed, signal=signals.spider_closed)
return spider

def spider_closed(self, spider):
spider.logger.info('Spider closed: %s', spider.name)

def parse(self, response):
pass

6.6.1 Deferred signal handlers

Some signals support returning Twisted deferreds from their handlers, see the Built-in signals reference below to know
which ones.

6.6.2 Built-in signals reference

Here’s the list of Scrapy built-in signals and their meaning.

engine_started

scrapy.signals.engine_started()
Sent when the Scrapy engine has started crawling.

This signal supports returning deferreds from their handlers.

6.6. Signals 197

https://twistedmatrix.com/documents/current/core/howto/defer.html

scrapy Documentation, Release 1.5

Note: This signal may be fired after the :signal:‘spider_opened‘ signal, depending on how the spider was started.
So don’t rely on this signal getting fired before :signal:‘spider_opened‘.

engine_stopped

scrapy.signals.engine_stopped()
Sent when the Scrapy engine is stopped (for example, when a crawling process has finished).

This signal supports returning deferreds from their handlers.

item_scraped

scrapy.signals.item_scraped(item, response, spider)
Sent when an item has been scraped, after it has passed all the Item Pipeline stages (without being dropped).

This signal supports returning deferreds from their handlers.

Parameters

• item (dict or Item object) – the item scraped

• spider (Spider object) – the spider which scraped the item

• response (Response object) – the response from where the item was scraped

item_dropped

scrapy.signals.item_dropped(item, response, exception, spider)
Sent after an item has been dropped from the Item Pipeline when some stage raised a DropItem exception.

This signal supports returning deferreds from their handlers.

Parameters

• item (dict or Item object) – the item dropped from the Item Pipeline

• spider (Spider object) – the spider which scraped the item

• response (Response object) – the response from where the item was dropped

• exception (DropItem exception) – the exception (which must be a DropItem sub-
class) which caused the item to be dropped

item_error

scrapy.signals.item_error(item, response, spider, failure)
Sent when a Item Pipeline generates an error (ie. raises an exception), except DropItem exception.

This signal supports returning deferreds from their handlers.

Parameters

• item (dict or Item object) – the item dropped from the Item Pipeline

• response (Response object) – the response being processed when the exception was
raised

• spider (Spider object) – the spider which raised the exception

198 Chapter 6. Extending Scrapy

scrapy Documentation, Release 1.5

• failure (Failure object) – the exception raised as a Twisted Failure object

spider_closed

scrapy.signals.spider_closed(spider, reason)
Sent after a spider has been closed. This can be used to release per-spider resources reserved on :sig-
nal:‘spider_opened‘.

This signal supports returning deferreds from their handlers.

Parameters

• spider (Spider object) – the spider which has been closed

• reason (str) – a string which describes the reason why the spider was closed. If it was
closed because the spider has completed scraping, the reason is 'finished'. Otherwise,
if the spider was manually closed by calling the close_spider engine method, then
the reason is the one passed in the reason argument of that method (which defaults to
'cancelled'). If the engine was shutdown (for example, by hitting Ctrl-C to stop it) the
reason will be 'shutdown'.

spider_opened

scrapy.signals.spider_opened(spider)
Sent after a spider has been opened for crawling. This is typically used to reserve per-spider resources, but can
be used for any task that needs to be performed when a spider is opened.

This signal supports returning deferreds from their handlers.

Parameters spider (Spider object) – the spider which has been opened

spider_idle

scrapy.signals.spider_idle(spider)
Sent when a spider has gone idle, which means the spider has no further:

• requests waiting to be downloaded

• requests scheduled

• items being processed in the item pipeline

If the idle state persists after all handlers of this signal have finished, the engine starts closing the spider. After
the spider has finished closing, the :signal:‘spider_closed‘ signal is sent.

You may raise a DontCloseSpider exception to prevent the spider from being closed.

This signal does not support returning deferreds from their handlers.

Parameters spider (Spider object) – the spider which has gone idle

Note: Scheduling some requests in your :signal:‘spider_idle‘ handler does not guarantee that it can prevent the
spider from being closed, although it sometimes can. That’s because the spider may still remain idle if all the scheduled
requests are rejected by the scheduler (e.g. filtered due to duplication).

6.6. Signals 199

https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html

scrapy Documentation, Release 1.5

spider_error

scrapy.signals.spider_error(failure, response, spider)
Sent when a spider callback generates an error (ie. raises an exception).

This signal does not support returning deferreds from their handlers.

Parameters

• failure (Failure object) – the exception raised as a Twisted Failure object

• response (Response object) – the response being processed when the exception was
raised

• spider (Spider object) – the spider which raised the exception

request_scheduled

scrapy.signals.request_scheduled(request, spider)
Sent when the engine schedules a Request, to be downloaded later.

The signal does not support returning deferreds from their handlers.

Parameters

• request (Request object) – the request that reached the scheduler

• spider (Spider object) – the spider that yielded the request

request_dropped

scrapy.signals.request_dropped(request, spider)
Sent when a Request, scheduled by the engine to be downloaded later, is rejected by the scheduler.

The signal does not support returning deferreds from their handlers.

Parameters

• request (Request object) – the request that reached the scheduler

• spider (Spider object) – the spider that yielded the request

request_reached_downloader

scrapy.signals.request_reached_downloader(request, spider)
Sent when a Request reached downloader.

The signal does not support returning deferreds from their handlers.

Parameters

• request (Request object) – the request that reached downloader

• spider (Spider object) – the spider that yielded the request

200 Chapter 6. Extending Scrapy

https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html

scrapy Documentation, Release 1.5

response_received

scrapy.signals.response_received(response, request, spider)
Sent when the engine receives a new Response from the downloader.

This signal does not support returning deferreds from their handlers.

Parameters

• response (Response object) – the response received

• request (Request object) – the request that generated the response

• spider (Spider object) – the spider for which the response is intended

response_downloaded

scrapy.signals.response_downloaded(response, request, spider)
Sent by the downloader right after a HTTPResponse is downloaded.

This signal does not support returning deferreds from their handlers.

Parameters

• response (Response object) – the response downloaded

• request (Request object) – the request that generated the response

• spider (Spider object) – the spider for which the response is intended

6.7 Item Exporters

Once you have scraped your items, you often want to persist or export those items, to use the data in some other
application. That is, after all, the whole purpose of the scraping process.

For this purpose Scrapy provides a collection of Item Exporters for different output formats, such as XML, CSV or
JSON.

6.7.1 Using Item Exporters

If you are in a hurry, and just want to use an Item Exporter to output scraped data see the Feed exports. Otherwise, if
you want to know how Item Exporters work or need more custom functionality (not covered by the default exports),
continue reading below.

In order to use an Item Exporter, you must instantiate it with its required args. Each Item Exporter requires different
arguments, so check each exporter documentation to be sure, in Built-in Item Exporters reference. After you have
instantiated your exporter, you have to:

1. call the method start_exporting() in order to signal the beginning of the exporting process

2. call the export_item() method for each item you want to export

3. and finally call the finish_exporting() to signal the end of the exporting process

Here you can see an Item Pipeline which uses multiple Item Exporters to group scraped items to different files accord-
ing to the value of one of their fields:

6.7. Item Exporters 201

scrapy Documentation, Release 1.5

from scrapy.exporters import XmlItemExporter

class PerYearXmlExportPipeline(object):
"""Distribute items across multiple XML files according to their 'year' field"""

def open_spider(self, spider):
self.year_to_exporter = {}

def close_spider(self, spider):
for exporter in self.year_to_exporter.values():

exporter.finish_exporting()
exporter.file.close()

def _exporter_for_item(self, item):
year = item['year']
if year not in self.year_to_exporter:

f = open('{}.xml'.format(year), 'wb')
exporter = XmlItemExporter(f)
exporter.start_exporting()
self.year_to_exporter[year] = exporter

return self.year_to_exporter[year]

def process_item(self, item, spider):
exporter = self._exporter_for_item(item)
exporter.export_item(item)
return item

6.7.2 Serialization of item fields

By default, the field values are passed unmodified to the underlying serialization library, and the decision of how to
serialize them is delegated to each particular serialization library.

However, you can customize how each field value is serialized before it is passed to the serialization library.

There are two ways to customize how a field will be serialized, which are described next.

1. Declaring a serializer in the field

If you use Item you can declare a serializer in the field metadata. The serializer must be a callable which receives a
value and returns its serialized form.

Example:

import scrapy

def serialize_price(value):
return '$ %s' % str(value)

class Product(scrapy.Item):
name = scrapy.Field()
price = scrapy.Field(serializer=serialize_price)

2. Overriding the serialize_field() method

You can also override the serialize_field() method to customize how your field value will be exported.

202 Chapter 6. Extending Scrapy

scrapy Documentation, Release 1.5

Make sure you call the base class serialize_field() method after your custom code.

Example:

from scrapy.exporter import XmlItemExporter

class ProductXmlExporter(XmlItemExporter):

def serialize_field(self, field, name, value):
if field == 'price':

return '$ %s' % str(value)
return super(Product, self).serialize_field(field, name, value)

6.7.3 Built-in Item Exporters reference

Here is a list of the Item Exporters bundled with Scrapy. Some of them contain output examples, which assume you’re
exporting these two items:

Item(name='Color TV', price='1200')
Item(name='DVD player', price='200')

BaseItemExporter

class scrapy.exporters.BaseItemExporter(fields_to_export=None, ex-
port_empty_fields=False, encoding=’utf-8’,
indent=0)

This is the (abstract) base class for all Item Exporters. It provides support for common features used by all
(concrete) Item Exporters, such as defining what fields to export, whether to export empty fields, or which
encoding to use.

These features can be configured through the constructor arguments which populate their respective instance
attributes: fields_to_export, export_empty_fields, encoding, indent.

export_item(item)
Exports the given item. This method must be implemented in subclasses.

serialize_field(field, name, value)
Return the serialized value for the given field. You can override this method (in your custom Item Ex-
porters) if you want to control how a particular field or value will be serialized/exported.

By default, this method looks for a serializer declared in the item field and returns the result of applying
that serializer to the value. If no serializer is found, it returns the value unchanged except for unicode
values which are encoded to str using the encoding declared in the encoding attribute.

Parameters

• field (Field object or an empty dict) – the field being serialized. If a raw dict is being
exported (not Item) field value is an empty dict.

• name (str) – the name of the field being serialized

• value – the value being serialized

start_exporting()
Signal the beginning of the exporting process. Some exporters may use this to generate some required
header (for example, the XmlItemExporter). You must call this method before exporting any items.

6.7. Item Exporters 203

scrapy Documentation, Release 1.5

finish_exporting()
Signal the end of the exporting process. Some exporters may use this to generate some required footer (for
example, the XmlItemExporter). You must always call this method after you have no more items to
export.

fields_to_export
A list with the name of the fields that will be exported, or None if you want to export all fields. Defaults to
None.

Some exporters (like CsvItemExporter) respect the order of the fields defined in this attribute.

Some exporters may require fields_to_export list in order to export the data properly when spiders return
dicts (not Item instances).

export_empty_fields
Whether to include empty/unpopulated item fields in the exported data. Defaults to False. Some ex-
porters (like CsvItemExporter) ignore this attribute and always export all empty fields.

This option is ignored for dict items.

encoding
The encoding that will be used to encode unicode values. This only affects unicode values (which are
always serialized to str using this encoding). Other value types are passed unchanged to the specific
serialization library.

indent
Amount of spaces used to indent the output on each level. Defaults to 0.

• indent=None selects the most compact representation, all items in the same line with no indenta-
tion

• indent<=0 each item on its own line, no indentation

• indent>0 each item on its own line, indented with the provided numeric value

XmlItemExporter

class scrapy.exporters.XmlItemExporter(file, item_element=’item’, root_element=’items’,
**kwargs)

Exports Items in XML format to the specified file object.

Parameters

• file – the file-like object to use for exporting the data. Its write method should accept
bytes (a disk file opened in binary mode, a io.BytesIO object, etc)

• root_element (str) – The name of root element in the exported XML.

• item_element (str) – The name of each item element in the exported XML.

The additional keyword arguments of this constructor are passed to the BaseItemExporter constructor.

A typical output of this exporter would be:

<?xml version="1.0" encoding="utf-8"?>
<items>
<item>

<name>Color TV</name>
<price>1200</price>

</item>
<item>

(continues on next page)

204 Chapter 6. Extending Scrapy

scrapy Documentation, Release 1.5

(continued from previous page)

<name>DVD player</name>
<price>200</price>

</item>
</items>

Unless overridden in the serialize_field() method, multi-valued fields are exported by serializing each
value inside a <value> element. This is for convenience, as multi-valued fields are very common.

For example, the item:

Item(name=['John', 'Doe'], age='23')

Would be serialized as:

<?xml version="1.0" encoding="utf-8"?>
<items>
<item>

<name>
<value>John</value>
<value>Doe</value>

</name>
<age>23</age>

</item>
</items>

CsvItemExporter

class scrapy.exporters.CsvItemExporter(file, include_headers_line=True,
join_multivalued=’, ’, **kwargs)

Exports Items in CSV format to the given file-like object. If the fields_to_export attribute is set, it will
be used to define the CSV columns and their order. The export_empty_fields attribute has no effect on
this exporter.

Parameters

• file – the file-like object to use for exporting the data. Its write method should accept
bytes (a disk file opened in binary mode, a io.BytesIO object, etc)

• include_headers_line (str) – If enabled, makes the exporter output a header line
with the field names taken from BaseItemExporter.fields_to_export or the
first exported item fields.

• join_multivalued – The char (or chars) that will be used for joining multi-valued
fields, if found.

The additional keyword arguments of this constructor are passed to the BaseItemExporter constructor,
and the leftover arguments to the csv.writer constructor, so you can use any csv.writer constructor argument to
customize this exporter.

A typical output of this exporter would be:

product,price
Color TV,1200
DVD player,200

6.7. Item Exporters 205

https://docs.python.org/2/library/csv.html#csv.writer

scrapy Documentation, Release 1.5

PickleItemExporter

class scrapy.exporters.PickleItemExporter(file, protocol=0, **kwargs)
Exports Items in pickle format to the given file-like object.

Parameters

• file – the file-like object to use for exporting the data. Its write method should accept
bytes (a disk file opened in binary mode, a io.BytesIO object, etc)

• protocol (int) – The pickle protocol to use.

For more information, refer to the pickle module documentation.

The additional keyword arguments of this constructor are passed to the BaseItemExporter constructor.

Pickle isn’t a human readable format, so no output examples are provided.

PprintItemExporter

class scrapy.exporters.PprintItemExporter(file, **kwargs)
Exports Items in pretty print format to the specified file object.

Parameters file – the file-like object to use for exporting the data. Its write method should
accept bytes (a disk file opened in binary mode, a io.BytesIO object, etc)

The additional keyword arguments of this constructor are passed to the BaseItemExporter constructor.

A typical output of this exporter would be:

{'name': 'Color TV', 'price': '1200'}
{'name': 'DVD player', 'price': '200'}

Longer lines (when present) are pretty-formatted.

JsonItemExporter

class scrapy.exporters.JsonItemExporter(file, **kwargs)
Exports Items in JSON format to the specified file-like object, writing all objects as a list of objects. The addi-
tional constructor arguments are passed to the BaseItemExporter constructor, and the leftover arguments
to the JSONEncoder constructor, so you can use any JSONEncoder constructor argument to customize this
exporter.

Parameters file – the file-like object to use for exporting the data. Its write method should
accept bytes (a disk file opened in binary mode, a io.BytesIO object, etc)

A typical output of this exporter would be:

[{"name": "Color TV", "price": "1200"},
{"name": "DVD player", "price": "200"}]

Warning: JSON is very simple and flexible serialization format, but it doesn’t scale well for large amounts
of data since incremental (aka. stream-mode) parsing is not well supported (if at all) among JSON parsers (on
any language), and most of them just parse the entire object in memory. If you want the power and simplicity
of JSON with a more stream-friendly format, consider using JsonLinesItemExporter instead, or
splitting the output in multiple chunks.

206 Chapter 6. Extending Scrapy

https://docs.python.org/2/library/pickle.html
https://docs.python.org/2/library/json.html#json.JSONEncoder
https://docs.python.org/2/library/json.html#json.JSONEncoder

scrapy Documentation, Release 1.5

JsonLinesItemExporter

class scrapy.exporters.JsonLinesItemExporter(file, **kwargs)
Exports Items in JSON format to the specified file-like object, writing one JSON-encoded item per line. The
additional constructor arguments are passed to the BaseItemExporter constructor, and the leftover argu-
ments to the JSONEncoder constructor, so you can use any JSONEncoder constructor argument to customize
this exporter.

Parameters file – the file-like object to use for exporting the data. Its write method should
accept bytes (a disk file opened in binary mode, a io.BytesIO object, etc)

A typical output of this exporter would be:

{"name": "Color TV", "price": "1200"}
{"name": "DVD player", "price": "200"}

Unlike the one produced by JsonItemExporter, the format produced by this exporter is well suited for
serializing large amounts of data.

Architecture overview Understand the Scrapy architecture.

Downloader Middleware Customize how pages get requested and downloaded.

Spider Middleware Customize the input and output of your spiders.

Extensions Extend Scrapy with your custom functionality

Core API Use it on extensions and middlewares to extend Scrapy functionality

Signals See all available signals and how to work with them.

Item Exporters Quickly export your scraped items to a file (XML, CSV, etc).

6.7. Item Exporters 207

https://docs.python.org/2/library/json.html#json.JSONEncoder
https://docs.python.org/2/library/json.html#json.JSONEncoder

scrapy Documentation, Release 1.5

208 Chapter 6. Extending Scrapy

Python Module Index

s
scrapy.contracts, 135
scrapy.contracts.default, 135
scrapy.crawler, 194
scrapy.downloadermiddlewares, 171
scrapy.downloadermiddlewares.ajaxcrawl,

182
scrapy.downloadermiddlewares.cookies,

172
scrapy.downloadermiddlewares.defaultheaders,

174
scrapy.downloadermiddlewares.downloadtimeout,

174
scrapy.downloadermiddlewares.httpauth,

174
scrapy.downloadermiddlewares.httpcache,

174
scrapy.downloadermiddlewares.httpcompression,

179
scrapy.downloadermiddlewares.httpproxy,

179
scrapy.downloadermiddlewares.redirect,

180
scrapy.downloadermiddlewares.retry, 181
scrapy.downloadermiddlewares.robotstxt,

182
scrapy.downloadermiddlewares.stats, 182
scrapy.downloadermiddlewares.useragent,

182
scrapy.exceptions, 111
scrapy.exporters, 201
scrapy.extensions.closespider, 192
scrapy.extensions.corestats, 191
scrapy.extensions.debug, 193
scrapy.extensions.logstats, 191
scrapy.extensions.memdebug, 192
scrapy.extensions.memusage, 191
scrapy.extensions.statsmailer, 193
scrapy.extensions.telnet, 122

scrapy.http, 81
scrapy.item, 54
scrapy.linkextractors, 92
scrapy.linkextractors.lxmlhtml, 92
scrapy.loader, 58
scrapy.loader.processors, 66
scrapy.mail, 120
scrapy.pipelines.files, 157
scrapy.pipelines.images, 158
scrapy.selector, 51
scrapy.settings, 195
scrapy.signals, 197
scrapy.spidermiddlewares, 184
scrapy.spidermiddlewares.depth, 185
scrapy.spidermiddlewares.httperror, 186
scrapy.spidermiddlewares.offsite, 187
scrapy.spidermiddlewares.referer, 187
scrapy.spidermiddlewares.urllength, 188
scrapy.spiders, 32
scrapy.statscollectors, 119
scrapy.utils.log, 118
scrapy.utils.trackref, 149

209

scrapy Documentation, Release 1.5

210 Python Module Index

Index

Symbols
__nonzero__() (scrapy.selector.Selector method), 52

A
adapt_response() (scrapy.spiders.XMLFeedSpider

method), 38
add_css() (scrapy.loader.ItemLoader method), 63
add_value() (scrapy.loader.ItemLoader method), 62
add_xpath() (scrapy.loader.ItemLoader method), 63
adjust_request_args() (scrapy.contracts.Contract method),

135
AjaxCrawlMiddleware (class in

scrapy.downloadermiddlewares.ajaxcrawl),
182

allowed_domains (scrapy.spiders.Spider attribute), 32

B
BaseItemExporter (class in scrapy.exporters), 203
body (scrapy.http.Request attribute), 83
body (scrapy.http.Response attribute), 89
body_as_unicode() (scrapy.http.TextResponse method),

91

C
clear_stats() (scrapy.statscollectors.StatsCollector

method), 196
close_spider(), 73
close_spider() (scrapy.statscollectors.StatsCollector

method), 196
closed() (scrapy.spiders.Spider method), 34
CloseSpider, 112
Compose (class in scrapy.loader.processors), 67
context (scrapy.loader.ItemLoader attribute), 64
Contract (class in scrapy.contracts), 135
CookiesMiddleware (class in

scrapy.downloadermiddlewares.cookies),
172

copy() (scrapy.http.Request method), 83
copy() (scrapy.http.Response method), 90

CoreStats (class in scrapy.extensions.corestats), 191
crawl() (scrapy.crawler.Crawler method), 195
Crawler (class in scrapy.crawler), 194
crawler (scrapy.spiders.Spider attribute), 33
CrawlSpider (class in scrapy.spiders), 36
css() (scrapy.http.TextResponse method), 91
css() (scrapy.selector.Selector method), 52
css() (scrapy.selector.SelectorList method), 52
CSVFeedSpider (class in scrapy.spiders), 39
CsvItemExporter (class in scrapy.exporters), 205
custom_settings (scrapy.spiders.Spider attribute), 33

D
default_input_processor (scrapy.loader.ItemLoader at-

tribute), 64
default_item_class (scrapy.loader.ItemLoader attribute),

64
default_output_processor (scrapy.loader.ItemLoader at-

tribute), 64
default_selector_class (scrapy.loader.ItemLoader at-

tribute), 64
DefaultHeadersMiddleware (class in

scrapy.downloadermiddlewares.defaultheaders),
174

delimiter (scrapy.spiders.CSVFeedSpider attribute), 39
DepthMiddleware (class in

scrapy.spidermiddlewares.depth), 185
DontCloseSpider, 112
DownloaderMiddleware (class in

scrapy.downloadermiddlewares), 171
DownloaderStats (class in

scrapy.downloadermiddlewares.stats), 182
DownloadTimeoutMiddleware (class in

scrapy.downloadermiddlewares.downloadtimeout),
174

DropItem, 112
DummyStatsCollector (class in scrapy.statscollectors),

120

211

scrapy Documentation, Release 1.5

E
encoding (scrapy.exporters.BaseItemExporter attribute),

204
encoding (scrapy.http.TextResponse attribute), 91
engine (scrapy.crawler.Crawler attribute), 195
engine_started() (in module scrapy.signals), 197
engine_stopped() (in module scrapy.signals), 198
export_empty_fields (scrapy.exporters.BaseItemExporter

attribute), 204
export_item() (scrapy.exporters.BaseItemExporter

method), 203
extensions (scrapy.crawler.Crawler attribute), 195
extract() (scrapy.selector.Selector method), 52
extract() (scrapy.selector.SelectorList method), 53

F
Field (class in scrapy.item), 58
fields (scrapy.item.Item attribute), 57
fields_to_export (scrapy.exporters.BaseItemExporter at-

tribute), 204
FilesPipeline (class in scrapy.pipelines.files), 157
find_by_request() (scrapy.loader.SpiderLoader method),

196
finish_exporting() (scrapy.exporters.BaseItemExporter

method), 203
flags (scrapy.http.Response attribute), 90
FormRequest (class in scrapy.http), 87
from_crawler(), 73
from_crawler() (scrapy.downloadermiddlewares.DownloaderMiddleware

method), 172
from_crawler() (scrapy.spidermiddlewares.SpiderMiddleware

method), 185
from_crawler() (scrapy.spiders.Spider method), 33
from_response() (scrapy.http.FormRequest class

method), 87
from_settings() (scrapy.loader.SpiderLoader method),

195
from_settings() (scrapy.mail.MailSender class method),

121

G
get_collected_values() (scrapy.loader.ItemLoader

method), 64
get_css() (scrapy.loader.ItemLoader method), 63
get_input_processor() (scrapy.loader.ItemLoader

method), 64
get_media_requests() (scrapy.pipelines.files.FilesPipeline

method), 157
get_media_requests() (scrapy.pipelines.images.ImagesPipeline

method), 158
get_oldest() (in module scrapy.utils.trackref), 150
get_output_processor() (scrapy.loader.ItemLoader

method), 64

get_output_value() (scrapy.loader.ItemLoader method),
64

get_stats() (scrapy.statscollectors.StatsCollector method),
196

get_value() (scrapy.loader.ItemLoader method), 62
get_value() (scrapy.statscollectors.StatsCollector

method), 196
get_xpath() (scrapy.loader.ItemLoader method), 62

H
headers (scrapy.http.Request attribute), 83
headers (scrapy.http.Response attribute), 89
headers (scrapy.spiders.CSVFeedSpider attribute), 39
HtmlResponse (class in scrapy.http), 91
HttpAuthMiddleware (class in

scrapy.downloadermiddlewares.httpauth),
174

HttpCacheMiddleware (class in
scrapy.downloadermiddlewares.httpcache),
174

HttpCompressionMiddleware (class in
scrapy.downloadermiddlewares.httpcompression),
179

HttpErrorMiddleware (class in
scrapy.spidermiddlewares.httperror), 186

HttpProxyMiddleware (class in
scrapy.downloadermiddlewares.httpproxy),
179

I
Identity (class in scrapy.loader.processors), 66
IgnoreRequest, 112
ImagesPipeline (class in scrapy.pipelines.images), 158
inc_value() (scrapy.statscollectors.StatsCollector

method), 196
indent (scrapy.exporters.BaseItemExporter attribute), 204
Item (class in scrapy.item), 57
item (scrapy.loader.ItemLoader attribute), 64
item_completed() (scrapy.pipelines.files.FilesPipeline

method), 157
item_completed() (scrapy.pipelines.images.ImagesPipeline

method), 158
item_dropped() (in module scrapy.signals), 198
item_error() (in module scrapy.signals), 198
item_scraped() (in module scrapy.signals), 198
ItemLoader (class in scrapy.loader), 62
iter_all() (in module scrapy.utils.trackref), 150
iterator (scrapy.spiders.XMLFeedSpider attribute), 38
itertag (scrapy.spiders.XMLFeedSpider attribute), 38

J
Join (class in scrapy.loader.processors), 67
JsonItemExporter (class in scrapy.exporters), 206
JsonLinesItemExporter (class in scrapy.exporters), 207

212 Index

scrapy Documentation, Release 1.5

L
list() (scrapy.loader.SpiderLoader method), 196
load() (scrapy.loader.SpiderLoader method), 195
load_item() (scrapy.loader.ItemLoader method), 64
log() (scrapy.spiders.Spider method), 34
logger (scrapy.spiders.Spider attribute), 33
LogStats (class in scrapy.extensions.logstats), 191
LxmlLinkExtractor (class in

scrapy.linkextractors.lxmlhtml), 92

M
MailSender (class in scrapy.mail), 120
MapCompose (class in scrapy.loader.processors), 67
max_value() (scrapy.statscollectors.StatsCollector

method), 196
MemoryStatsCollector (class in scrapy.statscollectors),

120
meta (scrapy.http.Request attribute), 83
meta (scrapy.http.Response attribute), 89
MetaRefreshMiddleware (class in

scrapy.downloadermiddlewares.redirect),
180

method (scrapy.http.Request attribute), 83
min_value() (scrapy.statscollectors.StatsCollector

method), 196

N
name (scrapy.spiders.Spider attribute), 32
namespaces (scrapy.spiders.XMLFeedSpider attribute),

38
nested_css() (scrapy.loader.ItemLoader method), 64
nested_xpath() (scrapy.loader.ItemLoader method), 64
NotConfigured, 112
NotSupported, 113

O
object_ref (class in scrapy.utils.trackref), 149
OffsiteMiddleware (class in

scrapy.spidermiddlewares.offsite), 187
open_spider(), 73
open_spider() (scrapy.statscollectors.StatsCollector

method), 196

P
parse() (scrapy.spiders.Spider method), 34
parse_node() (scrapy.spiders.XMLFeedSpider method),

38
parse_row() (scrapy.spiders.CSVFeedSpider method), 39
parse_start_url() (scrapy.spiders.CrawlSpider method),

36
PickleItemExporter (class in scrapy.exporters), 206
post_process() (scrapy.contracts.Contract method), 135
PprintItemExporter (class in scrapy.exporters), 206

pre_process() (scrapy.contracts.Contract method), 135
print_live_refs() (in module scrapy.utils.trackref), 149
process_exception() (scrapy.downloadermiddlewares.DownloaderMiddleware

method), 172
process_item(), 73
process_request() (scrapy.downloadermiddlewares.DownloaderMiddleware

method), 171
process_response() (scrapy.downloadermiddlewares.DownloaderMiddleware

method), 171
process_results() (scrapy.spiders.XMLFeedSpider

method), 39
process_spider_exception()

(scrapy.spidermiddlewares.SpiderMiddleware
method), 184

process_spider_input() (scrapy.spidermiddlewares.SpiderMiddleware
method), 184

process_spider_output() (scrapy.spidermiddlewares.SpiderMiddleware
method), 184

process_start_requests() (scrapy.spidermiddlewares.SpiderMiddleware
method), 185

Q
quotechar (scrapy.spiders.CSVFeedSpider attribute), 39

R
re() (scrapy.selector.Selector method), 52
re() (scrapy.selector.SelectorList method), 53
RedirectMiddleware (class in

scrapy.downloadermiddlewares.redirect),
180

RefererMiddleware (class in
scrapy.spidermiddlewares.referer), 187

register_namespace() (scrapy.selector.Selector method),
52

remove_namespaces() (scrapy.selector.Selector method),
52

replace() (scrapy.http.Request method), 83
replace() (scrapy.http.Response method), 90
replace_css() (scrapy.loader.ItemLoader method), 64
replace_value() (scrapy.loader.ItemLoader method), 62
replace_xpath() (scrapy.loader.ItemLoader method), 63
Request (class in scrapy.http), 82
request (scrapy.http.Response attribute), 89
request_dropped() (in module scrapy.signals), 200
request_reached_downloader() (in module

scrapy.signals), 200
request_scheduled() (in module scrapy.signals), 200
Response (class in scrapy.http), 89
response_downloaded() (in module scrapy.signals), 201
response_received() (in module scrapy.signals), 201
RetryMiddleware (class in

scrapy.downloadermiddlewares.retry), 181
ReturnsContract (class in scrapy.contracts.default), 135

Index 213

scrapy Documentation, Release 1.5

RobotsTxtMiddleware (class in
scrapy.downloadermiddlewares.robotstxt),
182

Rule (class in scrapy.spiders), 37
rules (scrapy.spiders.CrawlSpider attribute), 36

S
ScrapesContract (class in scrapy.contracts.default), 135
scrapy.contracts (module), 135
scrapy.contracts.default (module), 135
scrapy.crawler (module), 194
scrapy.downloadermiddlewares (module), 171
scrapy.downloadermiddlewares.ajaxcrawl (module), 182
scrapy.downloadermiddlewares.cookies (module), 172
scrapy.downloadermiddlewares.defaultheaders (module),

174
scrapy.downloadermiddlewares.downloadtimeout (mod-

ule), 174
scrapy.downloadermiddlewares.httpauth (module), 174
scrapy.downloadermiddlewares.httpcache (module), 174
scrapy.downloadermiddlewares.httpcompression (mod-

ule), 179
scrapy.downloadermiddlewares.httpproxy (module), 179
scrapy.downloadermiddlewares.redirect (module), 180
scrapy.downloadermiddlewares.retry (module), 181
scrapy.downloadermiddlewares.robotstxt (module), 182
scrapy.downloadermiddlewares.stats (module), 182
scrapy.downloadermiddlewares.useragent (module), 182
scrapy.exceptions (module), 111
scrapy.exporters (module), 201
scrapy.extensions.closespider (module), 192
scrapy.extensions.closespider.CloseSpider (class in

scrapy.extensions.closespider), 192
scrapy.extensions.corestats (module), 191
scrapy.extensions.debug (module), 193
scrapy.extensions.debug.Debugger (class in

scrapy.extensions.debug), 194
scrapy.extensions.debug.StackTraceDump (class in

scrapy.extensions.debug), 193
scrapy.extensions.logstats (module), 191
scrapy.extensions.memdebug (module), 192
scrapy.extensions.memdebug.MemoryDebugger (class in

scrapy.extensions.memdebug), 192
scrapy.extensions.memusage (module), 191
scrapy.extensions.memusage.MemoryUsage (class in

scrapy.extensions.memusage), 191
scrapy.extensions.statsmailer (module), 193
scrapy.extensions.statsmailer.StatsMailer (class in

scrapy.extensions.statsmailer), 193
scrapy.extensions.telnet (module), 122, 191
scrapy.extensions.telnet.TelnetConsole (class in

scrapy.extensions.telnet), 191
scrapy.http (module), 81
scrapy.item (module), 54

scrapy.linkextractors (module), 92
scrapy.linkextractors.lxmlhtml (module), 92
scrapy.loader (module), 58, 195
scrapy.loader.processors (module), 66
scrapy.mail (module), 120
scrapy.pipelines.files (module), 157
scrapy.pipelines.images (module), 158
scrapy.selector (module), 51
scrapy.settings (module), 195
scrapy.signals (module), 197
scrapy.spidermiddlewares (module), 184
scrapy.spidermiddlewares.depth (module), 185
scrapy.spidermiddlewares.httperror (module), 186
scrapy.spidermiddlewares.offsite (module), 187
scrapy.spidermiddlewares.referer (module), 187
scrapy.spidermiddlewares.urllength (module), 188
scrapy.spiders (module), 32
scrapy.statscollectors (module), 119, 196
scrapy.utils.log (module), 118
scrapy.utils.trackref (module), 149
SelectJmes (class in scrapy.loader.processors), 68
Selector (class in scrapy.selector), 51
selector (scrapy.http.TextResponse attribute), 91
selector (scrapy.loader.ItemLoader attribute), 64
SelectorList (class in scrapy.selector), 52
send() (scrapy.mail.MailSender method), 121
serialize_field() (scrapy.exporters.BaseItemExporter

method), 203
set_stats() (scrapy.statscollectors.StatsCollector method),

196
set_value() (scrapy.statscollectors.StatsCollector

method), 196
settings (scrapy.crawler.Crawler attribute), 194
settings (scrapy.spiders.Spider attribute), 33
SETTINGS_PRIORITIES (in module scrapy.settings),

195
signals (scrapy.crawler.Crawler attribute), 194
sitemap_alternate_links (scrapy.spiders.SitemapSpider

attribute), 41
sitemap_follow (scrapy.spiders.SitemapSpider attribute),

40
sitemap_rules (scrapy.spiders.SitemapSpider attribute),

40
sitemap_urls (scrapy.spiders.SitemapSpider attribute), 40
SitemapSpider (class in scrapy.spiders), 40
Spider (class in scrapy.spiders), 32
spider (scrapy.crawler.Crawler attribute), 195
spider_closed() (in module scrapy.signals), 199
spider_error() (in module scrapy.signals), 200
spider_idle() (in module scrapy.signals), 199
spider_opened() (in module scrapy.signals), 199
spider_stats (scrapy.statscollectors.MemoryStatsCollector

attribute), 120
SpiderLoader (class in scrapy.loader), 195

214 Index

scrapy Documentation, Release 1.5

SpiderMiddleware (class in scrapy.spidermiddlewares),
184

start_exporting() (scrapy.exporters.BaseItemExporter
method), 203

start_requests() (scrapy.spiders.Spider method), 33
start_urls (scrapy.spiders.Spider attribute), 32
stats (scrapy.crawler.Crawler attribute), 194
StatsCollector (class in scrapy.statscollectors), 196
status (scrapy.http.Response attribute), 89

T
TakeFirst (class in scrapy.loader.processors), 66
text (scrapy.http.TextResponse attribute), 90
TextResponse (class in scrapy.http), 90

U
update_telnet_vars() (in module scrapy.extensions.telnet),

124
url (scrapy.http.Request attribute), 83
url (scrapy.http.Response attribute), 89
UrlContract (class in scrapy.contracts.default), 135
urljoin() (scrapy.http.Response method), 90
UrlLengthMiddleware (class in

scrapy.spidermiddlewares.urllength), 188
UserAgentMiddleware (class in

scrapy.downloadermiddlewares.useragent),
182

X
XMLFeedSpider (class in scrapy.spiders), 38
XmlItemExporter (class in scrapy.exporters), 204
XmlResponse (class in scrapy.http), 91
xpath() (scrapy.http.TextResponse method), 91
xpath() (scrapy.selector.Selector method), 52
xpath() (scrapy.selector.SelectorList method), 52

Index 215

	获取帮助
	开始
	Scrapy 概览
	安装指南
	Scrapy 教程
	Examples

	Basic concepts
	Command line tool
	Spiders
	Selectors
	Items
	Item Loaders
	Scrapy shell
	Item Pipeline
	Feed exports
	Requests and Responses
	Link Extractors
	Settings
	Exceptions

	Built-in services
	Logging
	Stats Collection
	Sending e-mail
	Telnet Console
	Web Service

	Solving specific problems
	Frequently Asked Questions
	Debugging Spiders
	Spiders Contracts
	Common Practices
	Broad Crawls
	Using your browser’s Developer Tools for scraping
	Debugging memory leaks
	Downloading and processing files and images
	Deploying Spiders
	AutoThrottle extension
	Benchmarking
	Jobs: pausing and resuming crawls

	Extending Scrapy
	Architecture overview
	Downloader Middleware
	Spider Middleware
	Extensions
	Core API
	Signals
	Item Exporters

	Python Module Index

