

verge-python - Easy-to-use VERGE API client.

verge-python is a set of Python libraries that allows easy access to the
verge [https://vergecurrency.com/] peer-to-peer cryptocurrency client API.

Contents:

	Getting Started
	Introduction

	Usage

	Examples

	API reference
	vergerpc — Convenience functions

	vergerpc.connection — Connect to VERGE server via JSON-RPC

	vergerpc.exceptions — Exception definitions

	vergerpc.data — VERGE RPC service, data objects

	vergerpc.config — Utilities for reading verge configuration files

	Testing
	Configuration from environment variables

Indexes and tables

	Index

	Module Index

	Search Page

Getting Started

	Introduction

	Usage
	Setting up verge for remote control

	Connecting to the wallet from Python

	How to use the API

	The account API

	Examples

Introduction

The goal of this library is to make it easier for:

	Payment gateways to support verge

	Merchant sites to integrate verge payments directly

	Other services that require (micro-)payments to use verge

In this initial release it implements a thin wrapper around the
VERGE JSON-RPC API. Using this API from Python directly is conceptually very simple,
here is the example from the API
documentation page:

from jsonrpc import ServiceProxy

access = ServiceProxy("http://user:password@127.0.0.1:20102")
access.getinfo()
access.listreceivedbyaddress(6)
access.sendtoaddress("11yEmxiMso2RsFVfBcCa616npBvGgxiBX", 1000)

However, this approach has some disadvantages, one thing is that error handling is complex, as it
requires manually checking the contents of JSONException objects.

verge-python attempts to create an even more friendly interface by wrapping the JSON-RPC API. The major advantages
compared to a raw jsonrpc based approach are:

	Better exception handling. Exceptions are converted to subclasses of VERGEException.

	Automatic verge configuration loading. In case the verge -server or verged program runs on the same
machine as the client script, and as the same user, the configuration file can automatically be parsed. This
makes it unneccesary to explicitly specify a username and password. Of course, this is still possible.

	Documentation in Pythonish format. You are reading this right now.

	The functions
getinfo(), listreceivedbyaccount(),
listreceivedbyaddress(),
listtransactions() and more return actual Python objects, instead of simply
dictionaries. This makes for cleaner code, as the fields can simply be addressed with x.foo instead of
x['foo'].

The plan for future releases is to add a more high-level interface on top of this.

Usage

See also the `main verge documentation`_ for details and background on setting up and
using verged remotely.

Setting up verge for remote control

If you run VERGE with the -server argument, or if you run verged, it can be controlled
either by sending it HTTP-JSON-RPC commands.

However, beginning with VERGE 0.3.3 you must create a VERGE.conf file in the VERGE data directory
(default $HOME/.vergeconf) and set an RPC password:

rpcuser=anything
rpcpassword=anything

Once that is done, the easiest way to check whether VERGE accepts remote commands is by running
VERGE again, with the command (and any parameters) as arguments. For example:

$ verged getinfo

Connecting to the wallet from Python

There are two functions for this:

	Connecting to local verge instance

	Use the function connect_to_local(). This automagically
sorts out the connection to a verge process running on the current machine,
for the current user.

conn = vergerpc.connect_to_local()

	Connecting to a remote verge instance

	Use the function connect_to_remote(). For this function
it is neccesary to explicitly specify a hostname and port to connect to, and
to provide user credentials for logging in.

conn = vergerpc.connect_to_remote('foo', 'bar', host='payments.yoyodyne.com', port=20102)

How to use the API

For basic sending and receiving of payments, the four most important methods are

	Getting the current balance

	Use the method getbalance() to get the current server balance.

print "Your balance is %f" % (conn.getbalance(),)

	Check a customer address for validity and get information about it

	This can be done with the method validateaddress().

rv = conn.validateaddress(foo)
if rv.isvalid:
 print "The address that you provided is valid"
else:
 print "The address that you provided is invalid, please correct"

	Sending payments

	The method sendtoaddress() sends a specified
amount of coins to a specified address.

conn.sendtoaddress("msTGAm1ApjEJfsWfAaRVaZHRm26mv5GL73", 10000.0)

	Get a new address for accepting payments

	To accept payments, use the method getnewaddress()
to generate a new address. Give this address to the customer and store it in a safe place, to be able to check
when the payment to this address has been made.

pay_to = conn.getnewaddress()
print "We will ship the pirate sandwidth after payment of 200 coins to ", pay_to

	Check how much has been received at a certain address

	The method getreceivedbyaddress()
returns how many verges have been received at a certain address. Together with the
previous function, this can be used to check whether a payment has been made
by the customer.

amount = conn.getreceivedbyaddress(pay_to)
if amount > 20000.0:
 print "Thanks, your order will be prepared and shipped."

The account API

More advanced usage of verge allows multiple accounts within one wallet. This
can be useful if you are writing software for a bank, or
simply want to have a clear separation between customers payments.

For this, see the Account API [https://en.bitcoin.it/wiki/Accounts_explained] documentation.

Examples

A basic program that uses python-verge looks like this:

First, import the library and exceptions.

import vergerpc
from vergerpc.exceptions import InsufficientFunds

Then, we connect to the currently running verge instance of the current user on the local machine
with one call to
connect_to_local(). This returns a VERGEConnection objects:

conn = vergerpc.connect_to_local()

Try to move one verge from account testaccount to account testaccount2 using
move(). Catch the InsufficientFunds
exception in the case the originating account is broke:

try:
 conn.move("testaccount", "testaccount2", 100.0)
except InsufficientFunds,e:
 print "Account does not have enough funds available!"

Retrieve general server information with getinfo() and print some statistics:

info = conn.getinfo()
print "Blocks: %i" % info.blocks
print "Connections: %i" % info.connections
print "Difficulty: %f" % info.difficulty

API reference

	vergerpc — Convenience functions

	vergerpc.connection — Connect to VERGE server via JSON-RPC

	vergerpc.exceptions — Exception definitions

	vergerpc.data — VERGE RPC service, data objects

	vergerpc.config — Utilities for reading verge configuration files

vergerpc — Convenience functions

verge-python - Easy-to-use VERGE API client

	
vergerpc.connect_to_local(filename=None)

	Connect to default verge instance owned by this user, on this machine.

Returns a VERGEConnection object.

Arguments:

	filename: Path to a configuration file in a non-standard location (optional)

	
vergerpc.connect_to_remote(user, password, host='localhost', port=20102, use_https=False)

	Connect to remote or alternative local verge client instance.

Returns a VERGEConnection object.

vergerpc.connection — Connect to VERGE server via JSON-RPC

vergerpc.exceptions — Exception definitions

Exception definitions.

	
exception vergerpc.exceptions.ClientException(error)

	Bases: vergerpc.exceptions.VERGEException

P2P network error.
This exception is never raised but functions as a superclass
for other P2P client exceptions.

	
exception vergerpc.exceptions.DownloadingBlocks(error)

	Bases: vergerpc.exceptions.ClientException

Client is still downloading blocks.

	
exception vergerpc.exceptions.InsufficientFunds(error)

	Bases: vergerpc.exceptions.WalletError

Insufficient funds to complete transaction in wallet or account

	
exception vergerpc.exceptions.InvalidAccountName(error)

	Bases: vergerpc.exceptions.WalletError

Invalid account name

	
exception vergerpc.exceptions.InvalidAddressOrKey(error)

	Bases: vergerpc.exceptions.VERGEException

Invalid address or key.

	
vergerpc.exceptions.InvalidAmount

	alias of vergerpc.exceptions.JSONTypeError

	
exception vergerpc.exceptions.InvalidParameter(error)

	Bases: vergerpc.exceptions.VERGEException

Invalid parameter provided to RPC call.

	
vergerpc.exceptions.InvalidTransactionID

	alias of vergerpc.exceptions.InvalidAddressOrKey

	
exception vergerpc.exceptions.JSONTypeError(error)

	Bases: vergerpc.exceptions.VERGEException

Unexpected type was passed as parameter

	
exception vergerpc.exceptions.KeypoolRanOut(error)

	Bases: vergerpc.exceptions.WalletError

Keypool ran out, call keypoolrefill first

	
exception vergerpc.exceptions.NotConnected(error)

	Bases: vergerpc.exceptions.ClientException

Not connected to any peers.

	
exception vergerpc.exceptions.OutOfMemory(error)

	Bases: vergerpc.exceptions.VERGEException

Out of memory during operation.

	
exception vergerpc.exceptions.SafeMode(error)

	Bases: vergerpc.exceptions.VERGEException

Operation denied in safe mode (run verged with -disablesafemode).

	
vergerpc.exceptions.SendError

	alias of vergerpc.exceptions.WalletError

	
exception vergerpc.exceptions.TransportException(msg, code=None, protocol=None, raw_detail=None)

	Bases: exceptions.Exception

Class to define transport-level failures.

	
exception vergerpc.exceptions.VERGEException(error)

	Bases: exceptions.Exception

Base class for exceptions received from VERGE server.

	code – Error code from verged.

	
exception vergerpc.exceptions.WalletAlreadyUnlocked(error)

	Bases: vergerpc.exceptions.WalletError

Wallet is already unlocked

	
exception vergerpc.exceptions.WalletEncryptionFailed(error)

	Bases: vergerpc.exceptions.WalletError

Failed to encrypt the wallet

	
exception vergerpc.exceptions.WalletError(error)

	Bases: vergerpc.exceptions.VERGEException

Unspecified problem with wallet (key not found etc.)

	
exception vergerpc.exceptions.WalletPassphraseIncorrect(error)

	Bases: vergerpc.exceptions.WalletError

The wallet passphrase entered was incorrect

	
exception vergerpc.exceptions.WalletUnlockNeeded(error)

	Bases: vergerpc.exceptions.WalletError

Enter the wallet passphrase with walletpassphrase first

	
exception vergerpc.exceptions.WalletWrongEncState(error)

	Bases: vergerpc.exceptions.WalletError

Command given in wrong wallet encryption state (encrypting an encrypted wallet etc.)

	
vergerpc.exceptions.wrap_exception(error)

	Convert a JSON error object to a more specific VERGE exception.

vergerpc.data — VERGE RPC service, data objects

VERGE RPC service, data objects.

	
class vergerpc.data.AccountInfo(*args_t, **args_d)

	Bases: vergerpc.util.DStruct

Information object returned by listreceivedbyaccount().

	account – The account of the receiving address.

	amount – Total amount received by the address.

	confirmations – Number of confirmations of the most recent transaction included.

	
class vergerpc.data.AddressInfo(*args_t, **args_d)

	Bases: vergerpc.util.DStruct

Information object returned by listreceivedbyaddress().

	address – Receiving address.

	account – The account of the receiving address.

	amount – Total amount received by the address.

	confirmations – Number of confirmations of the most recent transaction included.

	
class vergerpc.data.AddressValidation(*args_t, **args_d)

	Bases: vergerpc.util.DStruct

Information object returned by validateaddress().

	isvalid – Validatity of address (True or False).

	ismine – True if the address is in the server’s wallet.

	address – VERGE address.

	
class vergerpc.data.MiningInfo(*args_t, **args_d)

	Bases: vergerpc.util.DStruct

Information object returned by getmininginfo().

	blocks – Number of blocks.

	currentblocksize – Size of current block.

	currentblocktx – Number of transactions in current block.

	difficulty – Current generating difficulty.

	errors – Number of errors.

	generate – True if generation enabled, False if not.

	genproclimit – Processor limit for generation.

	hashespersec – Number of hashes per second (if generation enabled).

	pooledtx – Number of pooled transactions.

	testnet – True if connected to testnet, False if on real network.

	
class vergerpc.data.ServerInfo(*args_t, **args_d)

	Bases: vergerpc.util.DStruct

Information object returned by getinfo().

	errors – Number of errors.

	blocks – Number of blocks.

	paytxfee – Amount of transaction fee to pay.

	keypoololdest – Oldest key in keypool.

	genproclimit – Processor limit for generation.

	connections – Number of connections to other clients.

	difficulty – Current generating difficulty.

	testnet – True if connected to testnet, False if on real network.

	version – VERGE client version.

	proxy – Proxy configured in client.

	hashespersec – Number of hashes per second (if generation enabled).

	balance – Total current server balance.

	generate – True if generation enabled, False if not.

	
	unlocked_until – Timestamp (seconds since epoch) after which the wallet

	will be/was locked (if wallet encryption is enabled).

	
class vergerpc.data.TransactionInfo(*args_t, **args_d)

	Bases: vergerpc.util.DStruct

Information object returned by listtransactions().

	account – account name.

	address – the address verges were sent to, or received from.

	category – will be generate, send, receive, or move.

	amount – amount of transaction.

	fee – Fee (if any) paid (only for send transactions).

	confirmations – number of confirmations (only for generate/send/receive).

	txid – transaction ID (only for generate/send/receive).

	otheraccount – account funds were moved to or from (only for move).

	message – message associated with transaction (only for send).

	to – message-to associated with transaction (only for send).

	
class vergerpc.data.WorkItem(*args_t, **args_d)

	Bases: vergerpc.util.DStruct

Information object returned by getwork().

	midstate – Precomputed hash state after hashing the first half of the data.

	data – Block data.

	hash1 – Formatted hash buffer for second hash.

	target – Little endian hash target.

vergerpc.config — Utilities for reading verge configuration files

Utilities for reading verge configuration files.

	
vergerpc.config.read_config_file(filename)

	Read a simple '='-delimited config file.
Raises IOError if unable to open file, or ValueError
if an parse error occurs.

	
vergerpc.config.read_default_config(filename=None)

	Read verge default configuration from the current user’s home directory.

Arguments:

	filename: Path to a configuration file in a non-standard location (optional)

Testing

The easiest way to run the tests is to use:

$ python tests/test.py

This will read the ~/.VERGE/VERGE.conf configuration file and connect to
the local VERGEd instance.

The –config option can be used to read a different local configuration file,
you probably want to use the –nolocal option as well. This is useful if you
want to use a separate verge data directory for development purposes.

Configuration from environment variables

This works independently from the previous methods. The recommended way to use
this is to install the
bitcoin testnet box [https://github.com/freewil/bitcoin-testnet-box].
After a make start inside the box you should be able to run the tests with:

HOST=localhost USER1=admin1 PORT1=20102 USER2=admin2 PORT2=21102 PASS=123 python tests/test.py --envconfig

This was primarily added to make continuous integration with
travis-ci [http://about.travis-ci.org/] possible. The environment variables
in the .travis.yml file are encrypted as described in
http://about.travis-ci.org/docs/user/build-configuration/#Secure-environment-variables
and use a testnetbox outside of travis to avoid installing the testnet box all
the time.

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 vergerpc	

 	
 	
 vergerpc.config	

 	
 	
 vergerpc.data	

 	
 	
 vergerpc.exceptions	

 	
 	
 vergerpc.util	

Index

 A
 | C
 | D
 | I
 | J
 | K
 | M
 | N
 | O
 | R
 | S
 | T
 | V
 | W

A

 	
 	AccountInfo (class in vergerpc.data)

 	
 	AddressInfo (class in vergerpc.data)

 	AddressValidation (class in vergerpc.data)

C

 	
 	ClientException

 	
 	connect_to_local() (in module vergerpc)

 	connect_to_remote() (in module vergerpc)

D

 	
 	DownloadingBlocks

 	
 	DStruct (class in vergerpc.util)

I

 	
 	InsufficientFunds

 	InvalidAccountName

 	InvalidAddressOrKey

 	
 	InvalidAmount (in module vergerpc.exceptions)

 	InvalidParameter

 	InvalidTransactionID (in module vergerpc.exceptions)

J

 	
 	JSONTypeError

K

 	
 	KeypoolRanOut

M

 	
 	MiningInfo (class in vergerpc.data)

N

 	
 	NotConnected

O

 	
 	OutOfMemory

R

 	
 	read_config_file() (in module vergerpc.config)

 	
 	read_default_config() (in module vergerpc.config)

S

 	
 	SafeMode

 	
 	SendError (in module vergerpc.exceptions)

 	ServerInfo (class in vergerpc.data)

T

 	
 	TransactionInfo (class in vergerpc.data)

 	
 	TransportException

V

 	
 	VERGEException

 	vergerpc (module)

 	vergerpc.config (module)

 	
 	vergerpc.data (module)

 	vergerpc.exceptions (module)

 	vergerpc.util (module)

W

 	
 	WalletAlreadyUnlocked

 	WalletEncryptionFailed

 	WalletError

 	WalletPassphraseIncorrect

 	
 	WalletUnlockNeeded

 	WalletWrongEncState

 	WorkItem (class in vergerpc.data)

 	wrap_exception() (in module vergerpc.exceptions)

vergerpc.util — Generic utilities used by verge client library

Generic utilities used by verge client library.

	
class vergerpc.util.DStruct(*args_t, **args_d)

	Bases: object

Simple dynamic structure, like collections.namedtuple but more flexible
(and less memory-efficient)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 verge-python - Easy-to-use VERGE API client.

 		
 Getting Started

 		
 Introduction

 		
 Usage

 		
 Setting up verge for remote control

 		
 Connecting to the wallet from Python

 		
 How to use the API

 		
 The account API

 		
 Examples

 		
 API reference

 		
 vergerpc — Convenience functions

 		
 vergerpc.connection — Connect to VERGE server via JSON-RPC

 		
 vergerpc.exceptions — Exception definitions

 		
 vergerpc.data — VERGE RPC service, data objects

 		
 vergerpc.config — Utilities for reading verge configuration files

 		
 Testing

 		
 Configuration from environment variables

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

