Xproperty

Johan Mabille and Sylvain Corlay

Jan 21, 2021

INSTALLATION

1 Licensing 3
L1 Installation o o o e e e e e e e e e e e e e e e 3
L2 USage . . . o o o e e e e e e e e e e 3

Xproperty

C++ properties and observer pattern
xproperty is a C++ library providing traitlets-style properties.

xproperty provides an implementation of the observer patterns relying on C++ template and preprocessor metapro-
gramming techniques.

Properies of observed objects have no additional memory footprint than the value they hold. The assignment of a new
value is simply replaced at compiled time by

* the call to the validator for that property
¢ the actual underlying assigment
* the call to the observor for that property.

We also provide the implementation of an xobserved class whose static validator and observer are bound to a
dynamic unordered map of callbacks that can be registered dynamically.

xproperty requires a modern C++ compiler supporting C++14. The following C++ compilers are supported:
* On Windows platforms, Visual C++ 2015 Update 2, or more recent

* On Unix platforms, gcc 4.9 or a recent version of Clang

INSTALLATION 1

Xproperty

2 INSTALLATION

CHAPTER
ONE

LICENSING

We use a shared copyright model that enables all contributors to maintain the copyright on their contributions.

This software is licensed under the BSD-3-Clause license. See the LICENSE file for details.

1.1 Installation

xproperty is a header-only library. We provide a package for the conda package manager.

’conda install -c¢ conda-forge xproperty

Or you can directly install it from the sources:

cmake -D CMAKE_INSTALL_PREFIX=your_install_ prefix
make install

1.2 Usage

1.2.1 Basic Usage

* Declaring an observed object Foo with two properties named bar and baz of type double.
» Registering a validator, executed prior to assignment, which can potentially coerce the proposed value.

» Registering a notifier, executed after the assignement.

#include <iostream>
#include <stdexcept>
#include <string>

#include "xproperty/xobserved.hpp"

struct Foo : public xp::xobserved<Foo>
{
XPROPERTY (double, Foo, bar);
XPROPERTY (std::string, Foo, baz);
}i

Registering an observer and a validator

Xproperty

Foo foo;

XOBSERVE (foo, bar, [] (const Foo& f) {
std::cout << "Observer: New value of bar: " << f.bar << std::endl;
}) i

XVALIDATE (foo, bar, [](Foo&, double proposal) {
std::cout << "Validator: Proposal: " << proposal << std::endl;
if (proposal < 0)
{
throw std::runtime_error ("Only non-negative values are valid.");
}
return proposal;
}) i

Testing the validated and observed properties

foo.bar = 1.0; // Assigning a valid value
// The notifier prints "Observer: New value,,

—of bar: 1"
std::cout << foo.bar << std::endl; // Outputs 1.0
try
{

foo.bar = -1.0; // Assigning an invalid value
}
catch (...)

{
std::cout << foo.bar << std::endl; // Still outputs 1.0

Shortcuts to link properties of observed objects

// Create two observed objects
Foo source, target;
source.bar = 1.0;

// Link “source.bar’' and ‘target.bar’
XDLINK (source, bar, target, bar);

source.bar = 2.0;
std::cout << target.bar << std::endl; // Outputs 2.0

Out-of-order initialization of properties

auto foo = Foo()
.baz ("hello, world");

std::cout << foo.baz << std::endl; // Outputs hello, world

4 Chapter 1. Licensing

	Licensing
	Installation
	Usage

