xphyle Documentation
Release 4.2.0+4.g1b6dd34.dirty

John P Didion

Dec 07, 2020

Contents

1 Installation 3
2 Working with files 5
2.1 Supported file formats e e e e e e e e e e e 6
2.2 ProCesses v o it e e e e e e e e e e 7
23 Buffers e e 7
24 Reading/writingdata L Lo e e 8
2.5 Filepaths o . o e e e e e e 10
3 Extending xphyle 13

xphyle Documentation, Release 4.2.0+4.9g1b6dd34.dirty

J

xphyle is a small python (3.4+) library that makes it easy to open compressed files and URLs for the highest
possible performance available on your system.

* API
¢ Source code

e Report an issue

Contents 1

api/modules.html
https://github.com/jdidion/xphyle/
https://github.com/jdidion/xphyle/issues

xphyle Documentation, Release 4.2.0+4.g1b6dd34.dirty

2 Contents

cHAPTER 1

Installation

xphyle is available from pypi:

pip install xphyle

xphyle tries to use the compression programs installed on your local machine (e.g. gzip, bzip2); if it can’t, it
will use the built-in python libraries (which are slower). Thus, xphyle has no required dependencies, but we
recommend that if you install gzip, etc. if you don’t already have them.

xphyle will use pigz for multi-threaded gzip compression if it is available. Multithreading support is disabled by
default; to set the number of threads that xphyle should use:

’xphyle.configure(threads:4)

or, to automatically set it to the number of cores available on your system:

’xphyle.configure(threads:True)

If you have programs installed at a location that is not on your path, you can add those locations to xphyle’s
executable search:

’xphyle.confiqure(executable_path:['/path', '/another/path', ...1)

If you would like progress bars displayed for file operations, you need to configure one or both of the python-level
and system-level progress bars.

For python-level operations, the pokrok API is used by default. Pokrok provides access to many popular progress
bar libraries with a single, standard interface. Please see the documentation for more information about which
libraries are currently supported and how to configure them. To enable this:

> pip install pokrok

xphyle.configure (progress=True)

You can also use you own preferred progress bar by passing a callable, which must take a single iterable argument
and two optional keyword arguments and return an iterable:

def my_progress_wrapper (itr, desc='My progress bar', size=None) :

(continues on next page)

http://zlib.net/pigz/
https://pypi.python.org/pypi/pokrok

xphyle Documentation, Release 4.2.0+4.g1b6dd34.dirty

(continued from previous page)

xphyle.configure (progress=my_progress_wrapper)

For system-level operations, an executable is required that reads from stdin and writes to stdout; pv is used by
default. To enable this:

xphyle.configure (system_progress=True)

You can also use your own preferred program by passing a tuple with the command and arguments (<xphyle.
progress.system_progress_command> () simplifies this):

xphyle.configure (system_progress=xphyle.progress.system_progress_command (

pv oy

pre', require=True))

4 Chapter 1. Installation

http://www.ivarch.com/programs/quickref/pv.shtml

CHAPTER 2

Working with files

The heart of xphyle is the simplicity of working with files. There is a single interface — xopen — for opening
“file-like objects”, regardless of whether they represent local files, remote files (referenced by URLs), or system
streams (stdin, stdout, stderr); and regardless of whether they are compressed.

The following are functionally equivalent ways to open a gzip file:

import gzip
f = gzip.open('input.gz', 'rt')

from xphyle import xopen
f = xopen('input.gz', 'rt')

So then why use xphyle? Two reasons:

1. The gzip.open method of opening a gzip file above requires you to know that you are expecting a gzip
file and only a gzip file. If your program optionally accepts either a compressed or a decompressed file, then
you’ll need several extra lines of code to either detect the file format or to make the user specify the format
of the file they are providing. This becomes increasingly cumbersome with each additional format you
want to support. On the other hand, xopen has the same interface regardless of the compression format.
Furthermore, if xphyle doesn’t currently support a file format that you would like to use, it enables you to
add it via a simple APIL.

2. The gzip.open method of opening a gzip file uses python code to decompress the file. It’s well written,
highly optimized python code, but unfortunately it’s still slower than your natively compiled system-level
applications (e.g. pigz or gzip). The xopen method of opening a gzip file first tries to use pigz or gzip to
decompress the file and provides access to the resulting stream of decompressed data (as a file-like object),
and only falls back to gzip. open if neither program is available.

If you want to be explicit about whether to expect a compressed file, what type of compression to expect, or
whether to try and use system programs, you can:

from xphyle import xopen
from xphyle.paths import STDIN

Expect the file to not be compressed
f = xopen('input', 'rb', compression=False)

Open a remote file. Expect the file to be compressed, and throw an error
1f it's not, or if the compression format cannot be determined.

(continues on next page)

xphyle Documentation, Release 4.2.0+4.g1b6dd34.dirty

(continued from previous page)

f = xopen('http://foo.com/input.gz', 'rt', compression=True)

Open stdin. Expect the input to be gzip compressed, and throw an error if
it's not
f = xopen(STDIN, 'rt', compression='gzip')

Do not try to use the system-level gzip program for decompression
f = xopen('input.gz', 'rt', compression='gzip', use_system=False)

By default, xopen returns the file. If desired, xopen can also wrap the file such that it behaves just like a file
with a few additional features:

* A file iterator is wrapped in a progress bar (if they have been enabled via the configure method described
above).

* A simple event system that enables callbacks to be registered for various events. Currently, the only sup-
ported event is closing the file. The xphyle.utils package provides a few useful event listeners, e.g. to
compress, move, or delete the file when it is closed.

» ContextManager functionality, such that the file is always compatible with with, e.g.:

def print_lines (path):
this works whether path refers to a local file, URL or STDIN
with xopen (path, context_wrapper=True) as infile:
for line in infile:
print (line)

The wrapping behavior can be enabled by passing context_wrapper=True to xopen. You can configure
xopen to wrap files by default:

xphyle.configure (default_xopen_context_wrapper=True)

Note that this represents a change from xphyle 1.x, in which wrapping occurred by default.

Another common pattern is to write functions that accept either a path or an open file object. Rather than having
to test whether the user passed a path or a file and handle each differently, you can use the open__ convenience
method:

from xphyle import open_

def print_lines (path_or_file):
with open_ (path_or_file) as infile:
for line in infile:
print (line)

Note that open_ wraps files by default, including already open file-like objects. To disable this, set
wrap_fileobj=False.

2.1 Supported file formats

Currently, xphyle supports the most commonly used file formats: gzip, bzip2/7zip, and lzma/xz.

Also supported is block-based gzip (bgzip), a format commonly used in bioinformatics. Somewhat confusingly,
‘.gz’ is an acceptable extension for bgzip files, and gzip will decompress bgzip files. Thus, to specifically use
bgzip, either use a ‘.bgz’ file extension or specify ‘bgzip’ as the compression format:

f = xopen('input.gz', 'rt', compression='bgzip', validate=False)

Additional compression formats may be added in the future. To get the most up-to-date list:

6 Chapter 2. Working with files

xphyle Documentation, Release 4.2.0+4.9g1b6dd34.dirty

from xphyle.formats import FORMATS
print (', '.join (FORMATS.list_compression_formats())

2.2 Processes

As of xphyle 2.0.0, you can easily open subprocesses using the xphyle.popen method. This method is similar
to python subprocess.Popen, except that it uses xopen to open files passed to stdin, stdout, and stderr,
and/or to wrap subprocess PIPEs. xphyle.popen returns an xphyle.Process object, which is a subclass
of subprocess.Popen but adds additional functionality, essentially making a Process behave like a regular
file. Writing to a process writes to its stdin PIPE, and reading from a process reads from its stdout or stderr PIPE:

from xphyle import popen, PIPE
proc = popen('cat', stdin=PIPE, stdout='myfile.gz")
try:
proc.write('foo')
finally:
proc.close ()

equivalent to:
with popen('cat', stdin=PIPE, stdout='myfile.gz'):
proc.write('foo')

and also to:
popen('cat', stdin=PIPE, stdout='myfile.gz').communicate('foo")

for the common case above, there's also a shortcut method
from xphyle.utils import exec_process
exec_process('cat', 'foo', stdout='myfile.gz')

In addition, open_ and xopen can open subprocesses. The primary difference is that popen enables customiza-
tion of stdin, stdout, and stderr, whereas opening a process through open_ or xopen uses default behavior of
opening PIPEs for all of the streams, and wrapping the PIPE indicated by the file mode. For example:

write to the process stdin
with open_('|cat', 'wt') as proc:
proc.write('foo')

this command wraps stdin with gzip compression
with open_('|zcat', 'wt', compression='gzip') as proc:
proc.write('foo'")

this command wraps stdout with gzip decompression;

furthermore, the compression format is determined

automatically

with open_('|gzip —-c¢ foobar.txt', 'rt') as proc:
text = proc.read()

Note that with open__and xopen, the system command must be specified as a string starting with ‘I’.

2.3 Buffers

As of xphyle 2.1.0, open__ and xopen can also open buffer types. A buffer is an instance of i0.StringIO or
io0.BytesIO (or similar) — basically an in memory read/write buffer. Passing open buffer objects worked before
(they were treated as file-like), but now there is a special file type — FileType .BUFFER — that will cause them
to be handled a bit differently. In addition, you can now pass str or bytes (the type objects) to automatically
create the corresponding buffer type:

2.2. Processes 7

xphyle Documentation, Release 4.2.0+4.g1b6dd34.dirty

with open_ (str) as buf:
buf.write('foo'")
string_foo = buf.getvalue()

with compression, type must be 'bytes'

with open_ (bytes, compression='gzip') as buf:
buf.write('foo'")

compressed_foo = buf.getvalue()

You can also create readable buffers by passing the string/bytes to read instead of a path, and explicitly specifying
the file type:

with open_("This is a string I want to read", file_type=FileType.BUFFER) as buf:
buf_str = buf.read()

2.4 Reading/writing data

The xphyle.utils module provides methods for many of the common operations that you’ll want to perform
on files. A few examples are shown below; you can read the API docs for a full list of methods and more detailed
descriptions of each.

There are pairs of methods for reading/writing text and binary data using iterators:

Copy from one file to another, changing the line separator from
unix to windows
from xphyle.utils import read_lines, write_lines
write_lines (
read_lines('linux_file.txt")
'windows_file.txt',
linesep="'\r'")

Copy from one binary file to another, changing the encoding from
ascii to utf-8
from xphyle.utils import read_bytes, write_bytes
def ascii2utf8 (x):
if isinstance(x, bytes):
x = xX.decode('ascii')
return x.encode ('utf-8")
write_bytes(
read_bytes ('ascii_ file.txt', convert=ascii2utifg),
'utf8-file.txt'")

There’s another pair of methods for reading/writing key=value files:

from collections import OrderedDict
from xphyle.utils import read_dict, write_dict

cats = OrderedDict ((fluffy, 'calico'), (droopy, 'tabby'), (sneezy, 'siamese'))
write_dict (cats, 'cats.txt.gz')
change from '=' to '\t' delimited; preserve the order of the items

write_dict (
read_dict (cats, 'cats.txt.gz', ordered=True),
'cats.tsv', sep='\t'")

You can also read from delimited files such as csv and tsv:

from xphyle.utils import read_delimited, read_delimited_as_dict

class Dog(object) :
def _ _init__ (self, name, age, breed):

(continues on next page)

8 Chapter 2. Working with files

api/modules.html#module-xphyle.utils

xphyle Documentation, Release 4.2.0+4.g1b6dd34.dirty

(continued from previous page)

self.name = name
self.age = age
self.breed = breed
def pet (self):
def say(self, message):

for dog in read_delimited(
'dogs.txt.gz', header=True,
converters=(str,int, str),
row_type=Dog) :
dog.pet ()

dogs = read_delimited_as_dict (
'dogs.txt.gz', header=True,
key="'name', converters=(str,int,str),
row_type=Dog) :
dogs|['Barney'].say ('Good Boy!")

There are convenience methods for compressing and decompressing files:

from xphyle.utils import compress_file, decompress_file, transcode_file

Gzip compress recipes.txt, and delete the original
compress_file('recipes.txt', compression='gzip', keep=False)

decompress a remote compressed file to a local file
decompress_file('http://recipes.com/allrecipes.txt.gz',
'local_recipes.txt')

Change from gzip to bz2 compression:
transcode_file('http://recipes.com/allrecipes.txt.gz"',
'local_recipes.txt.bz2")

There is a replacement for fileinput:

from xphyle.utils import fileinput

By default, read from the files specified as command line arguments,
or stdin if there are no command line arguments, and autodetect
the compression format
for line in fileinput():
print (line)

Read from multiple files as if they were one
for line in fileinput (('myfile.txt', 'myotherfile.txt.gz')):
print (line)

There’s also a set of classes for writing to multiple files:

from xphyle.utils import fileoutput
from xphyle.utils import TeeFileOutput, CycleFileOutput, NCycleFileOutput

write all lines in sourcefile.txt to both filel and file2.gz
with fileoutput (
('filel', 'file2.gz'),
file_output_type=TeeFileOutput) as out:
out.writelines (read_lines ('sourcefile.txt'))

Alternate writing each line in sourcefile.txt to filel and file2.gz
with fileoutput (
('filel', 'file2.gz'),

(continues on next page)

2.4. Reading/writing data 9

xphyle Documentation, Release 4.2.0+4.g1b6dd34.dirty

(continued from previous page)

file_output_type=CycleFileOutput) as out:
out.writelines (read_lines ('sourcefile.txt'))

Alternate writing four lines in sourcefile.txt to filel and file2.gz
with fileoutput (
('filel', 'file2.gz'),
file_output_type=NCycleFileOutput, n=4) as out:
out.writelines (read_lines ('sourcefile.txt'))

Write up to 10,000 lines in each file before opening the next file
with RollingFileOutput ('file{}.gz', n=10000) as out:
out.writelines (read_lines ('sourcefile.txt'))

And finally, there’s some miscellaneous methods such as linecount:

from xphyle.utils import linecount
print ("There are {} lines in file {}".format (
linecount (path), path))

2.5 File paths

The xphyle.paths module provides methods for working with file paths. The API docs have a full list of
methods and more detailed descriptions of each. Here are a few examples:

from xphyle.paths import =

Get the absolute path, being smart about STDIN/STDOUT/STDERR and
home directory shortcuts

abspath ('/foo/bar/baz') # -> /foo/bar/baz

abspath('foo'") # -> /path/to/current/dir/foo

abspath('~/foo') # —-> /home/myname/foo

abspath (STDIN) # —-> SIDIN

Splat a path into its component parts

dir, name, xextensions = split_path('/home/joe/foo.txt.gz") # —>
dir = '/home/joe'
name = 'foo'
extensions = ['txt', 'gz']

Check that a path exists, is a file, and allows reading
Raises IOError if any of the expectations are violated,
otherwise returns the fully resolved path

path = check_path('file.txt.gz', 'f£', 'r'")

Shortcuts to check whether a file is readable/writeable
path = check_readable_file('file.txt")
path = check_writeable_file('file.txt'")

There are also 'safe' versions of the methods that return
None rather than raise IOError
path = safe_check_readable_file('nonexistant_file.txt') # path = None

Find all files in a directory (recursively) that match a
regular expression pattern
find('mydir', 'file.x\.txt\.gz")

Lookup the path to an executable
gzip_path = get_executable_path('gzip')

10 Chapter 2. Working with files

api/modules.html#module-xphyle.paths

xphyle Documentation, Release 4.2.0+4.9g1b6dd34.dirty

TempDir is a particularly useful class, especially for unit testing. In fact, it us used extensively for unit testing
xphyle itself. TempDir can be thought of as a virtual file system. It creates a temporary directory, and it provides
methods to create subdirectories and files within that directory. When the close () method is called, the entire
temporary directory is deleted. TempD1ir can also be used as a ContextManager:

with TempDir () as temp:
create three randomly named files under 'tempdir'
paths = temp.make_empty_files (3)
create directory 'tempdir/foo'
foo = temp.make_directory('foo')

create a randomly named file with the '

.gz' suffix
within directory 'tempdir/foo'
gzfile = temp[foo] .make_file(suffix='.gz")

Another useful set of classes is FileSpec, DirSpec, and PathSpec. These classes help with the common problem of
working files that match a specific pattern, especially when you need to then extract some pieces of information
from the file names. For example, you may need to find all the files starting with ‘foo’ within any subdirectory of
‘/bar’, and then performing different operations depending on the extension. You could use a PathSpec for this:

spec = PathSpec(
DirSpec (PathVar ('subdir'), template=os.path.join('/bar', ' "))y,
FileSpec (
PathVar ('name', pattern='foo.x'"),
PathVar ('ext'"),
template="' . "))
files spec.find (recursive=True)
for £ in files:
if f'ext'] == 'txt':
process_text_file (f)
else:

process_binary_file (f)

A FileSpec or DirSpec has two related fields: a template, which is a python fstring and is used for constructing
filenames from component pieces; and a pattern, which is a regular expression and is used for matching to path
strings. The named components of the template correspond to path variables (instances of the PathVar class). Each
PathVar can provide its own pattern, as well as lists of valid or invalid values. If a pattern is not specified during
FileSpec/DirSpec creation, the pattern is automatically created by simply substituting the PathVar patterns for the
corresponding components in the template string (*.*’ by default).

Note that a DirSpec is only able to construct/match directory paths, and a FileSpec is only able to construct/match
file names. A PathSpec is simply a composite type of a DirSpec and a FileSpec that can be used to construct/match
full paths.

Each of the *Spec classes has three methods:

* construct: Given values for all of the path vars, construct a new path. Note that __call__ is an alias for
construct.

e parse: Match a path against the *Spec’s pattern. If the path matches, the component’s are extracted (through
the use of named capture groups), otherwise an exception is raised.

* find: Find all directories/files/paths that match the *Spec’s pattern.

All of these methods return a Pathlnst, which is a subclass of pathlib.Path (specifically, a subclass of path-
lib.WindowsPath when code is run on Windows, otherwise a PosixPath) that has an additional slot, ‘values’,
that is a dictionary of the component name, value pairs, and overrides a few methods.

2.5. File paths 11

api/modules.html#xphyle.paths.TempDir
api/modules.html#xphyle.paths.FileSpec
api/modules.html#xphyle.paths.DirSpec
api/modules.html#xphyle.paths.PathSpec
https://www.python.org/dev/peps/pep-0498
api/modules.html#xphyle.paths.PathVar

xphyle Documentation, Release 4.2.0+4.g1b6dd34.dirty

12 Chapter 2. Working with files

CHAPTER 3

Extending xphyle

You can add support for another compression format by extending one of the base classes in <xphyle.

format>:

import xphyle.formats

class FooFormat (xphyle.formats.SingleExeCompressionFormat) :

"""Implementation of CompressionFormat for foo files.
mmwn
@property
def name (self) -> str:
return 'foo'

@property
def exts(self) —-> Tuple[str, ...]:
return ('foo',)

@property
def system_commands (self) -> Tuple[str, ...]:
return ('foo',)

@property
def compresslevel_range(self) —-> Tuplel[int, int]:
return (1, 11)

@property
def default_compresslevel (self) —-> int:
return 6

@property
def magic_bytes(self) -> Tuple[Tuple[int, ...]1, ...]:
return ((0xO0F, 0x00),)

@property
def mime_types(self) —-> Tuple[str, ...]:
return ('application/foo',)

build the system command
op = 'c' for compress, 'd' for decompress

src = the source file, or STDIN if input should be read from stdin

(continues on next page)

13

xphyle Documentation, Release 4.2.0+4.g1b6dd34.dirty

(continued from previous page)

stdout = True if output should be written to stdout
compresslevel = the compression level
def get_command(self, op, src=STDIN, stdout=True, compresslevel=0):
cmd = [self.executable_path]
if op == 'c¢c':
adjust the compresslevel to be within the range allowed
by the program
compresslevel = self._get_compresslevel (compresslevel)
cmd. append (' - '.format (compresslevel))
cmd.append ('-z")
elif op == 'd':
cmd. append ('-d")
if stdout:
cmd.append ('-c')
if src != STDIN:
cmd.append(src)
return cmd

def open_file_python(self, filename, mode, xxkwargs):
self.lib is a property that lazily imports and returns the
python library named in the " 'name’ member above
return self.lib.open_foo(filename, mode, =**kwargs)

Then, register your format:

’xphyle.formats.register_compression_format(FooFormat) ‘

Also, note that you can support custom URL schemes by the standard method of adding urllib handlers:

import urllib.request
urllib.request.OpenerDirector.add_handler (my_handler)

14 Chapter 3. Extending xphyle

https://docs.python.org/3/library/urllib.request.html#openerdirector-objects

	Installation
	Working with files
	Supported file formats
	Processes
	Buffers
	Reading/writing data
	File paths

	Extending xphyle

