

Guide To Designing An IoT Solution

This guide is intended to give the user an introduction to building an IoT
solution based on the Exosite cloud. This guide encompasses getting
data from your physical devices up to the Exosite OnePlatform.

Exosite also has an optional frontend component available. The frontend product
is called Portals. Further information about Portals can be read at a yet to be
determined place.

If you are new to Exosite, please see our How Does My Device Interact With One Platform? document.
It will get you familiar with terms and concepts used in describing/designing
your solution. Once you are familiar with Exosite please checkout the rest
of our guides

Guides:

	Provisioning

	Gateway Design Guide

	API Usage

	Gateway Engine

Indices and tables

	Index

	Module Index

	Search Page

Provisioning

For a physical device to communicate with with Exosite, it must first obtain a CIK.
Before this can happen, you need to add the device to your Exosite account using
Portals. The CIK can than be obtained one of two ways:

	Hardcoding the CIK into your application code

	Retrieving the CIK over the provisioning API.

This document covers how to retrieve the CIK through the provisioning API.

The Exosite provisioning API requires 3 pieces of information:

	vendor

	model

	sn (serial number)

The vendor and model are set when the client model is created. The vendor
name is unique among all Exosite customers, the model is unique under each
Exosite customer, and the sn is unique among all models.

[image: _images/vendor_model_schema.png]
We will be covering the portion of the API that allows a device to retrieve its
CIK, but more detailed documentation about the provisioning API can be found on
Github [https://github.com/exosite/api/blob/master/provision/]

A device can be in 3 different states.

	Pending Activation

	Activated

	Expired

When a device is first added to a Portal, it is in the Pending Activation state.
This means that a device is eligible to activate on the platform, but has not
yet done so. If a device doesn’t successfully activate after 24 hours, it will
go into the Expired. This means that even if the device calls in to activate
it will not succeed. The device will nee to be “re-enabled” before it can
successfully complete its activation. If a device does successfully activate
within the 24 hour window. It will be in the Active state and able to receive
data through the OneP API’s.

The provisioning API allows a device to retrieve its CIK. This method only
works when a device is unactivated. After the call has been made the device
will activate and it will no longer be able to retrieve its CIK through this
API.

The HTTP request to retrieve a CIK looks like the following:

POST /provision/activate HTTP/1.1
Host: m2.exosite.com
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Content-Length: <length>

vendor=<vendor>&model=<model>&sn=<sn>

Where <vendor>, <model>, and <sn> will be specific for your individual project.

This request can return four different response codes:

	200 – Request was accepted and the response body will have the CIK

	404 – The serial number of the device isn’t in the 1P

	403 – Invalid vendor/model pair

	409 – Device has not yet been added to a portal, or it has already been
added to a portal and gone through its activation process.

Gateway Design Guide

This document is intended to describe some typical uses of a gateway/node
system and design guidelines for implementing a system.

What Is A Gateway/Node System?

Gateway/node systems are described by a system where one, or many, node devices
uses the Internet connection of a single device (the gateway). The gateway
typically communicate with the nodes via a local wire or wired network (e.g.
BACnet, Bluetooth, CAN, Modbus...) and communicates with Exosite via a cellular,
Ethernet, or WiFi network.

[image: _images/gateway_diagram.png]

	Gateway

	A device that has a connection to the Internet. This connection can be WiFi,
Ethernet, cellular, or any other link that allows it to talk to Exosite. The
gateway will also have a way to communicate with local nodes

	Node

	A device that has data it needs to send to Exosite, but it doesn’t
have its own connection to Exosite. It therefore relays that data through
a gateway.

Gateway/Node System Architectures

There are typically two different ways that the gateway/node system send data
up to Exosite:

	Batch sending

	Real-time sending

Batch sending

With the batch sending method, when the gateway receives data from the nodes,
it will store the data in memory, or on disk. At regular intervals (e.g. once
a day) it will send all of the stored data up to Exosite.

Advantages

	Since the gateway opens a socket to Exosite at a slower rate (e.g. once per day)
the system is able to reduce the data overhead of opening a socket for every piece of data

	For low power systems, the modem wakes up less often, thus improving battery life.

Disadvantages

	The main disadvantage to the batch sending method is the loss of real-time
data viewing. By storing the data on the local gateway, the end user is unable
to see that data until the gateway sends the data up to Exosite.

	The end user is unable to receive real-time alert notifications (e.g. over temperature condition).

When using the batch send method, it typically also requires that your gateway
have access to an accurate time source. This allows the gateway to store the
actual timestamp of when the node sends the data. If you have an accurate
timestamp, when all of the batch data is finally sent to Exosite, the timestamps
can be included with it, allowing the UI to be able to show when each individual datapoint occurred.

Real-time sending

With Real-time sending, the gateway sends data as soon as it receives it from the nodes.

Advantages

	The user is able to always see the most recent data in their cloud UI

	Notifications are able to be sent immediately when a threshold is crossed.

	Since Exosite is able to timestamp the record as soon as it receives it, the
gateway does not necessarily need access to a time source.

Disadvantages

	The data overhead of all these connections uses much more data than a single
batch report.

	If an Internet connection is unavailable, the application will either need to
throw the data on the ground, or decide how to buffer it.

The overhead of a typical TCP/IP/HTTP request/response is around 1.3kB. This
means that even though your payload may only be 20 bytes long, each request/response
will use 1.3kB of data. On cellular networks this has the potential to add up
quickly and result in unexpected cellular data usage numbers.

Hybrid approach

Often times a solution ends up being a hybrid of the above two approaches.
Using a hybrid approach allows the application to gain some of the benefits of
each approach while still keeping some of the benefits of the other approach.

One popular method is to batch data and send on regular intervals, but if some
predefined condition happens the batched data can be sent up earlier. For
example a gateway is programmed to batch a nodes temperature data for one day.
At the end of a 24 hour period, the gateway should send all of the batched data
for the previous day.

Let’s say, for this example, that the user wants to be notified when the
temperature goes above 40. If the application was developed using a pure batch
and send method, the user wouldn’t know that the temperature violation occurred
until after the 24 hour report had been sent. If we instead update the gateway
app to send its batched data every 24 hours, or when it receives a reading over
40, we save on bandwidth usage during normal operations but are still able to
get real-time notifications of when violations occur.

In the above situation the gateway acts in batch mode when things are working
as expecting and goes to real-time mode when a special condition happens.

Another potential architecture is to have the device send all data up in real
time, but when the connection to Exosite goes down, fall back to a batch mode
to keep data points stored locally on the gateway until the connection is restored
and the points can be sent to Exosite. This allows you to keep all the benefits
of real-time reporting, but you are also able to handle periods of offline time.

Important consideration when choosing an architecture

Often times the deciding factor for choosing an architecture is how the gateway
will connect to Exosite. If the connection is over cellular, data usage tends
to be much more expensive and a more batch send type architecture is used. If
the connection is using WiFi or Ethernet, data usage typically isn’t a concern
and the architecture slides more towards the real-time end.

Choosing a connection type

Connection types are typically divided into the follow three categories:

	Cellular

	WiFi

	Ethernet

Cellular

Cellular devices use a cellular network to communicate with One Platform. The
networks used for communications are often the same networks that cell phones
use.

WiFi

Gateways that use WiFi use the same WiFi networks that your computer connects to.

Ethernet

Ethernet connections are hardwired connections that connect directly to a network
with access to the

Given the choice, a non-cellular connection type is almost always the preferred
method of connection. However, there is one potential drawback to using the
end user’s Ethernet connection, and that is their network infrastructure. Often
times an end users network will have firewalls and/or proxies in place to protect
against malicious activity. Unfortunately, these security devices also can
hamper your gateway’s activity. Making it difficult, or impossible for your data
to reach Exosite’s servers.

When choosing the gateway’s Internet connection, it often involves a balance
between the complexities of navigating the end users IT network policies and
the cost of a recurring cellular bill, in combination with the desired
architecture (batch vs real-time sending).

General best practices

	When possible, always UTC time or Linux epoch time. This makes dealing with
different timezones much easier

	Use separate threads for asynchronous communications to the local network and Exosite

Additional Topics

	Choosing a Device Hierarchy

	Provisioning

	API Usage

	Gateway Engine

Choosing a Device Hierarchy

When designing a solution that utilizes one, or many, gateways with nodes attached
to that gateway, a decision needs to be made about how to handle the CIKs for
each device. This page will give an introduction to the topic of choosing
how to store these ciks

Common Hierarchies

How to structure the hierarcy of the devices in your system typically falls
into one of three different ways.

	Each node and gateway stores and uses its own cik

	Each node and gateway has its own cik, but the gateway stores the cik for each node

	Only the gateway has a cik and it uses

Which Hierarchy To Choose?

Choosing one of the three methods is a decision that should be made after you
know what type of hardware you will be using, and what type of information you
want to send to One Platform.

Options #1 and #2 both use the same concept of one cik per device, whereas
option #3 uses one CIK per node/gateway group. The most flexible solution
is a one-to-one relationship between physical devices (nodes/gateway) and
the devices on your platform. This allow you to add/remove devices as nodes
are updated/replaced, without having to change your data model.

There are, however, times when you will only want one cik per gateway and all
of it’s nodes. This may happen when the configuration of nodes/gateways is
always the same. For example, your system measures tire pressures on a
motorcycle. In this instance you know that you will always have a front tire
pressure and a rear tire pressure sensor, and one gateway. In this case, even
if you swap out sensors, you still have one front pressure sensor and one rear
pressure sensor.

The only difference between options #1 and #2 is the where the CIK is stored.
Often times your sensor node devices may not be able to store their cik on board
or they are already in working systems and you do not want to alter their
firmware/software. If this is the case you will want to go with option #2. This
adds more complexity and additional state to the gateway.

Alternatively this complexity and state can be moved to the sensor nodes. The
main advantages to storing the cik on the nodes is the ability to decouple the
node devices from the gateway devices.

Other advantages?

Provisioning

For a physical device to communicate with with Exosite, it must first obtain a CIK.
Before this can happen, you need to add the device to your Exosite account using
Portals. The CIK can than be obtained one of two ways:

	Hardcoding the CIK into your application code

	Retrieving the CIK over the provisioning API.

This document covers how to retrieve the CIK through the provisioning API.

The Exosite provisioning API requires 3 pieces of information:

	vendor

	model

	sn (serial number)

The vendor and model are set when the client model is created. The vendor
name is unique among all Exosite customers, the model is unique under each
Exosite customer, and the sn is unique among all models.

[image: _images/vendor_model_schema.png]
We will be covering the portion of the API that allows a device to retrieve its
CIK, but more detailed documentation about the provisioning API can be found on
Github [https://github.com/exosite/api/blob/master/provision/]

A device can be in 3 different states.

	Pending Activation

	Activated

	Expired

When a device is first added to a Portal, it is in the Pending Activation state.
This means that a device is eligible to activate on the platform, but has not
yet done so. If a device doesn’t successfully activate after 24 hours, it will
go into the Expired. This means that even if the device calls in to activate
it will not succeed. The device will nee to be “re-enabled” before it can
successfully complete its activation. If a device does successfully activate
within the 24 hour window. It will be in the Active state and able to receive
data through the OneP API’s.

The provisioning API allows a device to retrieve its CIK. This method only
works when a device is unactivated. After the call has been made the device
will activate and it will no longer be able to retrieve its CIK through this
API.

The HTTP request to retrieve a CIK looks like the following:

POST /provision/activate HTTP/1.1
Host: m2.exosite.com
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Content-Length: <length>

vendor=<vendor>&model=<model>&sn=<sn>

Where <vendor>, <model>, and <sn> will be specific for your individual project.

This request can return four different response codes:

	200 – Request was accepted and the response body will have the CIK

	404 – The serial number of the device isn’t in the 1P

	403 – Invalid vendor/model pair

	409 – Device has not yet been added to a portal, or it has already been
added to a portal and gone through its activation process.

API Usage

This is meant to be a high level primer on using Exosite’s APIs. For the full
API documentation, please see the official Exosite docs page (http://docs.exosite.com/).
Before reading this document, you should be familiar with HTTP. If you’re not
familiar, this page [http://www.jmarshall.com/easy/http/] gives a good introduction.

This page does not cover the device provisioning process for details on the
API’s required to provision your device, please see the Provisioning doc.

Data, RPC, or CoAP?

Exosite API calls can be made using
the Exosite Data Interface [http://docs.exosite.com/http/],
the Exosite JSON RPC interface [http://docs.exosite.com/rpc/], or
the Exosite CoAP Interface [http://docs.exosite.com/http/]. Which API
you choose depends on the architeture of your gateway.

Data API

The Data API is a simple API built on top of HTTP. It uses HTTP and provides
the following basic functions.

	Write [http://docs.exosite.com/http/#write]

	Read [http://docs.exosite.com/http/#read]

	Read/Write [http://docs.exosite.com/http/#hybrid-readwrite]

	Long-Polling [http://docs.exosite.com/http/#long-polling]

Write

If you want to write the value 24 to your devices temperature
datasource, the body of your POST request is simply temperature=24.

Data API Example:

POST /onep:v1/stack/alias HTTP/1.1
Host: m2.exosite.com
X-Exosite-CIK: < your cik >
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Content-Length: 14

temperature=24

Read

If you want to read from a datasource, you make a GET request to
GET /onep:v1/stack/alias?<alias 1> where <alias 1> is the name of your
devices datasource you want to read from. For example, if you want to read from
your device’s temperature datasource, you would make a GET request to
GET /onep:v1/stack/alias?temperature, and the body of the response would
look like this: temperature=24.

Data API Example:

GET /onep:v1/stack/alias?temperature HTTP/1.1
Host: m2.exosite.com
X-Exosite-CIK: < your cik >
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Content-Length: 0

Note

Your read responses will have the body
url encoded [http://www.w3schools.com/tags/ref_urlencode.asp]

Note

With the data API, if your requests has multiple aliases, they will
be seperated by a \r\n in the body.

If you want to read from multiple datasources at the same time, you would add
multiple datasources as URL parameters and seperate them with an &
(e.g. /onep:v1/stack/alias?temperature&humidity). The response would contain
your read values seperated by an & (e.g. temperature=25&humidity=77).

Read/Write

The read/write command allows you to perform a read and a write request at the
same time. To do this, you combine both of the above methods and make a POST
request to /onep:v1/stack/alias?<alias 1> while also including your write
values in the body of your request. The response of your request will contain
the values of your read requests.

Data API Example:

POST /onep:v1/stack/alias?temperature HTTP/1.1
Host: m2.exosite.com
X-Exosite-CIK: < your cik >
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Content-Length: 14

temperature=24

JSON RPC

The JSON RPC uses commands encoded in as JSON [http://www.w3schools.com/json/].
Using the JSON RPC, you can send multiple commands at once. It provides the most
features of any of Exosite’s APIs.

The main disadvantage to using the JSON RPC is that it requires the most bandwidth
and it also requires the application to parse/build json. Most higher level
languages have support for this. If you are developing in C, Exosite has
successfully used the Jsmn library for parsing JSON. For more details on using
Jsmn in your project, please see the `Jsmn development guide <>`_.

Here is a full list of the JSON RPC commands. We will cover a small subset of
the commands that allow your device to read/write data to Exosite.

CoAP

The CoAP API is intended to be used for low bandwidth devices.

DTLS

The CoAP API also has the ability to use a form of DTLS to keep the link between
Exosite and your device private.

Gateway Engine

Gateway Engine is a framework that eases the development of gateway applications.
This page gives a brief introduction to what te Exosite Gateway Engine is. For
more detailed documentation, please see the project’s readme file.

Key Features

It provides the following key features:

Application Hosting

Gateway Engine’s core feature is to provide a framework for your application/s
to run in. This allows you to focus development efforts on just the business
logic of your application.

Process Monitoring

Gateway Engine incorporates Supervisord [http://supervisord.org/] to watch
application processes and make sure that if they die, they will be restarted.

Application Logging

Gateway Engine captures all of an applications stdout and writes that to a log
file. The Log files are automatically rotated and the oldest ones deleted,
ensuring that your logs won’t fill up your disk space.

Bandwidth Usage and Monitoring (Beta)

If using the Exo-Python module, Gateway Engine can automatically watch your
bandwidth for you and help make sure that you don’t have any unexpected costly
cellular bills.

Warning

This feature is still in early beta and is still being tested.

Application Updates

Gateway Engine allows you to remotely update your application by using the
Exosite Content Area.

Exosite Interface Module

Gateway Engine comes with a Python module that allows your application to easily
communicate with Exosite.

Block Diagram

The following block diagram shows the basic pieces of Gateway Engine:

[image: _images/gateway_engine_block.png]

	App Updater

	Allows remote updates of applications.

	Data Monitoring/NTP Update

	Optional applications that are provided with Exosite. They are used
to monitor your data usage and keep the system clock up to date.

	Supervisord

	Makes sure that applications start on boot and restarts them if they
die.

	Application 1/2

	Your business application. You can have 1 or many applications running
on in Gateway Engine.

	Exosite Library

	A Python library that is uses to track data usage as well as provide an
interface for Python applications to use.

	Node 1/2

	Your node devices that are communicating with the gateway.

API Usage

This is meant to be a high level primer on using Exosite’s APIs. For the full
API documentation, please see the official Exosite docs page (http://docs.exosite.com/).
Before reading this document, you should be familiar with HTTP. If you’re not
familiar, this page [http://www.jmarshall.com/easy/http/] gives a good introduction.

This page does not cover the device provisioning process for details on the
API’s required to provision your device, please see the Provisioning doc.

Data, RPC, or CoAP?

Exosite API calls can be made using
the Exosite Data Interface [http://docs.exosite.com/http/],
the Exosite JSON RPC interface [http://docs.exosite.com/rpc/], or
the Exosite CoAP Interface [http://docs.exosite.com/http/]. Which API
you choose depends on the architeture of your gateway.

Data API

The Data API is a simple API built on top of HTTP. It uses HTTP and provides
the following basic functions.

	Write [http://docs.exosite.com/http/#write]

	Read [http://docs.exosite.com/http/#read]

	Read/Write [http://docs.exosite.com/http/#hybrid-readwrite]

	Long-Polling [http://docs.exosite.com/http/#long-polling]

Write

If you want to write the value 24 to your devices temperature
datasource, the body of your POST request is simply temperature=24.

Data API Example:

POST /onep:v1/stack/alias HTTP/1.1
Host: m2.exosite.com
X-Exosite-CIK: < your cik >
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Content-Length: 14

temperature=24

Read

If you want to read from a datasource, you make a GET request to
GET /onep:v1/stack/alias?<alias 1> where <alias 1> is the name of your
devices datasource you want to read from. For example, if you want to read from
your device’s temperature datasource, you would make a GET request to
GET /onep:v1/stack/alias?temperature, and the body of the response would
look like this: temperature=24.

Data API Example:

GET /onep:v1/stack/alias?temperature HTTP/1.1
Host: m2.exosite.com
X-Exosite-CIK: < your cik >
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Content-Length: 0

Note

Your read responses will have the body
url encoded [http://www.w3schools.com/tags/ref_urlencode.asp]

Note

With the data API, if your requests has multiple aliases, they will
be seperated by a \r\n in the body.

If you want to read from multiple datasources at the same time, you would add
multiple datasources as URL parameters and seperate them with an &
(e.g. /onep:v1/stack/alias?temperature&humidity). The response would contain
your read values seperated by an & (e.g. temperature=25&humidity=77).

Read/Write

The read/write command allows you to perform a read and a write request at the
same time. To do this, you combine both of the above methods and make a POST
request to /onep:v1/stack/alias?<alias 1> while also including your write
values in the body of your request. The response of your request will contain
the values of your read requests.

Data API Example:

POST /onep:v1/stack/alias?temperature HTTP/1.1
Host: m2.exosite.com
X-Exosite-CIK: < your cik >
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Content-Length: 14

temperature=24

JSON RPC

The JSON RPC uses commands encoded in as JSON [http://www.w3schools.com/json/].
Using the JSON RPC, you can send multiple commands at once. It provides the most
features of any of Exosite’s APIs.

The main disadvantage to using the JSON RPC is that it requires the most bandwidth
and it also requires the application to parse/build json. Most higher level
languages have support for this. If you are developing in C, Exosite has
successfully used the Jsmn library for parsing JSON. For more details on using
Jsmn in your project, please see the `Jsmn development guide <>`_.

Here is a full list of the JSON RPC commands. We will cover a small subset of
the commands that allow your device to read/write data to Exosite.

CoAP

The CoAP API is intended to be used for low bandwidth devices.

DTLS

The CoAP API also has the ability to use a form of DTLS to keep the link between
Exosite and your device private.

Gateway Engine

Gateway Engine is a framework that eases the development of gateway applications.
This page gives a brief introduction to what te Exosite Gateway Engine is. For
more detailed documentation, please see the project’s readme file.

Key Features

It provides the following key features:

Application Hosting

Gateway Engine’s core feature is to provide a framework for your application/s
to run in. This allows you to focus development efforts on just the business
logic of your application.

Process Monitoring

Gateway Engine incorporates Supervisord [http://supervisord.org/] to watch
application processes and make sure that if they die, they will be restarted.

Application Logging

Gateway Engine captures all of an applications stdout and writes that to a log
file. The Log files are automatically rotated and the oldest ones deleted,
ensuring that your logs won’t fill up your disk space.

Bandwidth Usage and Monitoring (Beta)

If using the Exo-Python module, Gateway Engine can automatically watch your
bandwidth for you and help make sure that you don’t have any unexpected costly
cellular bills.

Warning

This feature is still in early beta and is still being tested.

Application Updates

Gateway Engine allows you to remotely update your application by using the
Exosite Content Area.

Exosite Interface Module

Gateway Engine comes with a Python module that allows your application to easily
communicate with Exosite.

Block Diagram

The following block diagram shows the basic pieces of Gateway Engine:

[image: _images/gateway_engine_block.png]

	App Updater

	Allows remote updates of applications.

	Data Monitoring/NTP Update

	Optional applications that are provided with Exosite. They are used
to monitor your data usage and keep the system clock up to date.

	Supervisord

	Makes sure that applications start on boot and restarts them if they
die.

	Application 1/2

	Your business application. You can have 1 or many applications running
on in Gateway Engine.

	Exosite Library

	A Python library that is uses to track data usage as well as provide an
interface for Python applications to use.

	Node 1/2

	Your node devices that are communicating with the gateway.

Index

 C
 | D
 | G
 | N
 | O
 | P
 | R
 | S
 | W

C

 	
 	CIK

D

 	
 	Datasource

 	
 	Device

G

 	
 	Gateway

N

 	
 	Node, [1]

O

 	
 	One Platform

P

 	
 	Portals

R

 	
 	RID

S

 	
 	Scripts

W

 	
 	White Label Account

How Does My Device Interact With One Platform?

This page will give the reader a brief introduction to One Platform concepts.

Glossary

	One Platform

	An Exosite product that stores and processes data for your devices.

	Device

	Represented by a node in the One Platform tree.

	Node

	A node is a leaf element on the One Platform tree. See What is One Platform?
for more information.

	Datasource

	A datasource is a node on the One Platform tree. They are used to store
time-series data. A device can have zero, or many, datasources underneath it.

	CIK

	A 40 character hexadecimal string that is used to authenticate as a
node in the One Platform. With the CIK, you can read/write data to a
node, or any of its children.

	RID

	A 40 character hexadecimal string that uniquely represents a node in the
One Platform. The RID never changes during the life of the node.

	Portals

	A graphical frontend for managing users and resources on the Exosite
One Platform.

	Scripts

	A lua script that processes data on the Exosite One Platform.

	White Label Account

	An Exosite account that has a url that is personalized to your
domain (e.g mycompany.exosite.com). Full custom domain names can also
be created (e.g. mycompany.com) .

What is One Platform?

One Platform is the backend Exosite product that stores and processes all of
the data for your device.

Conceptually, everything in One Platform is part of a hierarchical tree. If you
have a white label account, at the top of your tree is your domain node.
Underneath the domain node, you have user nodes. Each user in the system will
have their own node. Beneath each user is zero, or many, Portal nodes. A user
can also be granted access to another user’s Portal. Under each Portal node
are device nodes.

[image: _images/one_p_tree.png]
Although the above structure is the most common, your design is not limited to
this. However, for the purposes of this guide, we will assume you are using the
above structure.

What Is A Device

One Platform represents each device as a node on the tree. A device can have
scripts and datasources attached to it. Datasources are used to store data and
scripts are used to process data. A device on One Platform is meant to have a
one-to-one relationship with a physical device. For example, you may have a
physical device that can read the temperature in celsius. To represent this
device on One Platform, you would create a device and name it thermometer.
You would give add a datasource called temperature_celsius to the thermometer
device. We’re going to use the `thermometer` device as our example device
throughout the rest of this document.

What Is The Difference Between An RID And a CIK?

CIKs and RID are both 40 character hexadecimal strings. They both have a
one-to-one mapping with a device. The RID is used to identify a single device
on One Platform. As soon as a device is created, it is assigned an RID. For
the life of the device, the RID never changes its only job is to give the device
a globally unique identifier. The CIK is a key that is used to access a device.
The CIK for a device can be regenerated if the existing one is compromised or
the original one is lost.

The relationship between a CIK and an RID is akin to the relationship between
the address of a house and the keys to that house. Once a house is built, it’s
given an address that is unique across the world. Its address will never
change (much like an RID). However, the locks to the house can be re-keyed, at
any time. Re-keying a house is analogous to refreshing the CIK of a device. The
RID stays the same, but the old CIK no longer allows access to it and the newly
generated CIK now has access.

How Do I Read/Write Data From One Platform

Before you can read data from One Platform, you must first retrieve your devices
CIK. This is typically obtained via Provisioning. Once you have the CIK
for your device you use that CIK to authenticate with One Platform using your
API of choice(API Usage)

Note

Obtaining a portal/domain/user CIK is possible, but not covered in this document.

Datasources

Datasources are a named “port” that stores timeseries data for your device. In
our temperature reading device example, the temperature_celsius would be the
datasource that the device would write its temperature reading into.

Let’s say your device is currently reading a value of 23 (Celsius). Using the
data api, you can tell One Platform to write the value of 23 to the temperature_celsius
datasource with the following http request to m2.exosite.com. (We’ll assume our
temperature device has a CIK of 1234567890123456789012345678901234567890)

POST /onep:v1/stack/alias HTTP/1.1
Host: m2.exosite.com
X-Exosite-CIK: 1234567890123456789012345678901234567890
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Content-Length: 22

temperature_celsius=23

After this request, the temperature_celsius datasource on your device would
have a value of 23 that was indexed by the timestamp that One Platform
received it.

Warning

You can only write to One Platform once per second. If you try to write more
then one data point (per datasource) in the same second, the behavior is undefined.

How do I Process My Data On One Platform

Processing data on One Platform is done using lua scripts. Lua scripts are hosted
by your device node. The scripts will typically wait for a piece of data from
your device and then do some processing on that data and do something with the
results of the processing (e.g. Send email/sms or update another datasource.

Let’s say that we wanted to convert our temperature reading from Celsius to Fahrenheit.
To do this we would add a temperature_fahrenheit datasource to our device, and
a script called celsius_to_fahrenheit.lua The script would look like the
following:

-- declare our datasources
local temp_c = alias['temperature_celsius']
local temp_f = alias['temperature_fahrenheit']

while true do

 local ts = temp_c.wait()-- this call blocks until data arrives on temp_c.
 -- The returned value is the timestamp of when the device was written to
 -- One Platform.

 -- let's retrieve the value that the wait() told us about.
 local celsius_temp = temp_c[ts]

 -- Convert that value to Fahrenheit and write it to the `temperature_fahrenheit`
 -- datasource.
 temp_f.value = celsius_temp * (9/5) + 32

 _static/gateway_diagram.png
Local area network

Internet Connection’

Gateway

_images/one_p_tree.png

_images/gateway_engine_block.png
=7
= |
[} ol
& £I8 :
B|lE8 ”'§_| Gateway Engine
2 Qe s !
2/ Sii!
< = 2 l _

Exosite
Library

Physical Gateway

Legend

Core Gateway Engine applications

|_ e _| Optional Gateway Engine applications

- User applications

Node 1
Node 2

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

_images/gateway_diagram.png
Local area network

Internet Connection’

Gateway

_images/vendor_model_schema.png
Vendor

Model

Serial

Your unique vendor name

Model lines unique under a vendor (mycompany)

Serial numbers must be unique under int

ividual produc lines

_static/file.png

nav.xhtml

 Table of Contents

 		Guide To Designing An IoT Solution

 		Provisioning

 		Gateway Design Guide

 		What Is A Gateway/Node System?

 		Gateway/Node System Architectures

 		Batch sending

 		Real-time sending

 		Hybrid approach

 		Important consideration when choosing an architecture

 		Choosing a connection type

 		Cellular

 		WiFi

 		Ethernet

 		General best practices

 		Additional Topics

 		Choosing a Device Hierarchy

 		Provisioning

 		API Usage

 		Gateway Engine

 		API Usage

 		Data, RPC, or CoAP?

 		Data API

 		JSON RPC

 		CoAP

 		Gateway Engine

 		Key Features

 		Application Hosting

 		Process Monitoring

 		Application Logging

 		Bandwidth Usage and Monitoring (Beta)

 		Application Updates

 		Exosite Interface Module

 		Block Diagram

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/vendor_model_schema.png
Vendor

Model

Serial

Your unique vendor name

Model lines unique under a vendor (mycompany)

Serial numbers must be unique under int

ividual produc lines

_static/one_p_tree.png

_static/gateway_engine_block.png
=7
= |
[} ol
& £I8 :
B|lE8 ”'§_| Gateway Engine
2 Qe s !
2/ Sii!
< = 2 l _

Exosite
Library

Physical Gateway

Legend

Core Gateway Engine applications

|_ e _| Optional Gateway Engine applications

- User applications

Node 1
Node 2

