XMPP Documentation
Release 0.1.10

Gabriel Falcao

Jan 12, 2023

Contents

1 XMPP Tutorial 3
1.1 Client TCP Connection v v v v i it e e e e e e e e e e e e e e e e e e 3
LI1 code . . . o o e e e e e 3

2 XMPP Connection 5
2.1 Events e e e e e e e 5

2.2 APL . e 5

3 The XML Stream 9
3.1 EVventso e e e e e e e 9

3.2 APL . . e 10

4 API Reference 13
5 Extensions for XEPs 21
5.1 Service Discovery (0030) L e e e e e e e e e e 21
511 EVents . . . o . e e e e e 21

5.1.2 APL . . o e e 21

5.13 Example L e e e e e 21

52 Component (0114) e e 23
5.2.1 Events e e e 23

522 APL . . e 23

5.3 Create YOUr OWN . . ¢ v v v v v e it e 24
53.1 XEP 9999 e e e e 24

6 Indices and tables 27
Python Module Index 29
Index 31

XMPP Documentation, Release 0.1.10

Contents:

Contents 1

XMPP Documentation, Release 0.1.10

2 Contents

CHAPTER 1

XMPP Tutorial

This is a simple barebones tutorial of XMPP in python.

Note: This tutorial does not cover use of parallel execution like light threads, posix threads or subprocessed. For the
didatic purposes we will be building a blocking application.

1.1 Client TCP Connection

Let’s start by creating a simple TCP connection to a XMPP server.

The XMPP toolkit provides the XMPPConnect ion that performs all the TCP socket management and exposes simple
events.

Also you should never write XML manually, instead use a XMLSt ream bound to a connection in order to send

1.1.1 code

Notice the debug=True in the connection creation, that tells the lib to print the traffic in the stderr, this can be
useful for debugging your application.

from xmpp import XMPPConnection
from xmpp import XMLStream
from xmpp import JID

class Application (object) :

def _ init_ (self, jid, password):
self.user = JID(Jjid)
self.password = password
self.connection = XMPPConnection(self.user.domain, 5222, debug=True)

XMPP Documentation, Release 0.1.10

self.stream = XMLStream(self.connection, debug=True)
self.setup_handlers()

def setup_handlers(self):
self.connection.on.tcp_established(self.do_open_stream)
self.connection.on.read(self.do_disconnect)

def do_open_stream(self, =xargs, *xkw):
self.stream.open_client (self.user.domain)

def do_disconnect (self, xargs, *xkw):
self.connection.close ()

def run_forever (self):
self.connection.connect ()

while self.connection.is_active():
self.connection.loop_once ()

if name == '__main__ ':
app = Application('romeolcapulet.com', 'Jjuli3t")

app.run_forever ()

would output something like this

XMPP SEND: <?xml version='l.0'?><stream:stream
from='romeolcapulet.com'
to="'capulet.com'
version='1.0"
xml:lang='en'
xmlns="'jabber:client'
xmlns:stream="http://etherx. jabber.org/streams'>
XMPP RECV: <?xml version='l.0'?><stream:stream
xmlns:stream="http://etherx. jabber.org/streams'
version='1.0"
from="'capulet.com'
id='cla2cc21-a35d-4545-807b-2b368e567e4e’
xml:lang="en'
xmlns="Jjabber:client'>
<stream:features>
<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
<register xmlns='http://jabber.org/features/ig-register'/>
<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>SCRAM-SHA-1</mechanism>
</mechanisms>
</stream: features>
TCP DISCONNECT: intentional

4 Chapter 1. XMPP Tutorial

CHAPTER 2

XMPP Connection

2.1 Events

2.2 API

class xmpp.networking.core.XMPPConnection (host,

tcp_established

the TCP connection was established

tcp_restablished

the TCP connection was lost and restablished

tcp_downgraded

the TLS connection was downgraded to TCP

tcp_disconnect

the TCP connection was lost

tcp_failed

the TCP connection failed to be established

tls_established

the TLS connection was established

tls_invalid_chain

the TLS handshake failed for invalid chain

tls_invalid_cert

the TLS handshake failed for invalid server cert

tls_failed failed to establish a TLS connection
tls_start started SSL negotiation

write the TCP/TLS connection has sent data
read the TCP/TLS connection has received data

ready_to_write

the TCP/TLS connection is ready to send data

ready_to_read

the TCP/TLS connection is ready to receive data

Event-based TCP/TLS connection.

port=5222,
auto_reconnect=False,

debug=False,

queue_class=<class

Queue.Queue>, hwm_in=256, hwm_out=256,

recv_chunk_size=65536)

It buffers up received messages and also the messages to be sent.

Parameters

XMPP Documentation, Release 0.1.10

* host — a string containing a domain or ip address. If a domain is given the name will be
resolved before connecting.

* port — defaults to 5222. If you are using a component you might point to 5347 or
something else.

* debug — bool defaults to False: whether to print the XML traffic on stderr

* queue_class —bool defaults to :py:class‘Queue.Queue*

* hwm_in — int defaults to 256: how many incomming messages to buffer before blocking

* hwm_out — int defaults to 256: how many outcomming messages to buffer before block-
ing

* recv_chunk_size — int defaults to 65536: how many bytes to read at a time.

connect (timeout_in_seconds=3)
connects

Parameters timeout_in_seconds —

disconnect ()
disconencts the socket

published events:

e tcp_disconnect ("intentional") - when succeeded
Parameters timeout_in_seconds —

is alive()
Returns True if the connection is alive

loop_once (timeout=3)
entrypoint for any mainloop.

basically call this continuously to keep the connection up

perform_read (connection)
reads from the socket and populates the read queue :param connection: a socket that is ready to write

perform write (connection)
consumes the write queue and writes to the given socket

Parameters connection — a socket that is ready to write

receive (timeout=3)
retrieves a message from the queue, returns None if there are no messages.

Parameters timeout — int in seconds

reconnect (timeout_in_seconds=3)
reconnects the socket

published events:
* tcp_restablished (host) - when succeeded

e tcp_failed (host) - when failed

Parameters timeout_in_seconds —

6 Chapter 2. XMPP Connection

XMPP Documentation, Release 0.1.10

resolve_dns ()
resolves the given host

send (data, timeout=3)
adds bytes to the be sent in the next time the socket is ready

Parameters
¢ data — the data to be sent
e timeout — int in seconds

send_whitespace_keepalive (timeout=3)
sends a whitespace keepalive to avoid connection timeouts and dead connections

published events:

* tcp_disconnect ("intentional") - when succeeded

Parameters timeout_in_seconds —

2.2. API 7

https://tools.ietf.org/html/rfc6120#section-4.9.3.4
https://tools.ietf.org/html/rfc6120#section-4.6.1

XMPP Documentation, Release 0.1.10

8 Chapter 2. XMPP Connection

CHAPTER 3

The XML Stream

3.1 Events
feed the XMLStream has just been fed with xml
open the XMLStream is open
closed the XMLStream has been closed
error received a <stream:error></stream:error> from the server

unhandled_xml

the XMLStream failed to feed the incremental XML parser with the given value

node

a new xmpp.Node was just parsed by the stream and is available to use

iq a new xmpp.IQ was node was received
message a new xmpp.Message node was received
presence a new xmpp.Presence node was received
start_stream a new stream is being negotiated
start_tls server sent <starttls />

tls_proceed

the peer allowed the TCP connection to upgrade to TLS

sasl_challenge

the peer sent a SASL challenge

sasl_success

the peer sent a SASL success

sasl_failure

the peer sent a SASL failure

sasl_response

the peer sent a SASL response

sasl_support

the peer says it supports SASL

bind_support

the peer says it supports binding resource

iq_result the peer returned a <iq type-“result”></iq>

iq_set the peer returned a <iq type-“set”></iq>

iq_get the peer returned a <iq type-“get’></iq>

iq_error the peer returned a <iq type-“error”></iq>

user_registration| the peer supports user registration

bound_jid the peer returned a <jid>username @domain/resource</jid> that should be used in the from- of

stanzas

XMPP Documentation, Release 0.1.10

3.2 API

class xmpp.stream.XMLStream (connection, debug="False)

XML Stream behavior class.
Parameters
* connection —a XMPPConnect ion instance
* debug - whether to print errors to the stderr

add_contact (contact_jid, from_jid=None, groups=None)
adds a contact to the roster of the bound_jid or the provided from_jid parameter.

Automatically sends a <presence type="subscribe"> with a subsequent <ig type="set">.
Parameters
* contact_jid - the jid to add in the roster
e from_jid - custom from= field to designate the owner of the roster
* groups — a list of strings with group names to categorize this contact in the roster

bind to_resource (name)
sends an <ig type="set"><resource>name</resource></1iqg> in order to bind the resource

Parameters name — the name of the resource

bound_jid
aJID or None

Automatically captured from the XML traffic.

close (disconnect=True)
sends a final </stream:stream> to the server then immediately closes the bound TCP connec-
tion,disposes it and resets the minimum state kept by the stream, so it can be reutilized right away.

feed (data, attempt=1)
feeds the stream with incoming data from the XMPP server. This is the basic entrypoint for usage with the
XML received from the XMPPConnection

Parameters data — the XML string
id
returns the stream id provided by the server. <stream:stream id="SOMETHING">
Mainly used by the authenticate () when crafting the secret.

load_extensions ()
reloads all the available extensions bound to this stream

open_client (domain)
Sends a <stream:stream xmlns="jabber:client”> to the given domain

Parameters domain — the FQDN of the XMPP server

parse ()
attempts to parse whatever is in the buffer of the incremental XML parser and creates a new parser.

ready_to_read (_, connection)
event handler for the on.ready_to_read event of a XMPP Connection.

You should probably never have to call this by hand, use bind () instead

10

Chapter 3. The XML Stream

https://xmpp.org/rfcs/rfc3920.html#streams
https://xmpp.org/rfcs/rfc3921.html#int

XMPP Documentation, Release 0.1.10

ready_to_write (_, connection)
even handler for the on.ready_to_write event of a XMPP Connection.

You should probably never have to call this by hand, use bind () instead

reset ()
resets the minimal state of the XML Stream, that is: * attributes of the <stream> sent by the server during
negotiation, used by 1d () * a bound JID sent by the server * a successful sasl result node to leverage
has_gone_through_sasl ()

send (node)
sends a XML serialized Node through the bound XMPP connection

Parameters node — the Node
send_message (message, to, **params)
Parameters
* message - the string with the message
* to —the jid to send the message to
* xxparams — keyword args for designating attributes of the message

send_presence (fo=None, delay=None, priority=10, **params)
sends presence

Parameters
* to —jid to receive presence.
* delay - if set, it must be a ISO compatible date string
e priority — the priority of this resource

send_sasl_auth (mechanism, message)
sends a SASL response to the server in order to proceed with authentication handshakes

Parameters mechanism — the name of SASL mechanism (i.e. SCRAM-SHA-1, PLAIN, EX-
TERNAL)

send_sasl_response (mechanism, message)
sends a SASL response to the server in order to proceed with authentication handshakes

Parameters mechanism — the name of SASL mechanism (i.e. SCRAM-SHA-1, PLAIN, EX-
TERNAL)

3.2. API 11

XMPP Documentation, Release 0.1.10

12 Chapter 3. The XML Stream

CHAPTER 4

API Reference

class xmpp.networking.XMPPConnection (host, port=5222, debug=False, auto_reconnect=False,

queue_class=<class Queue.Queue>, hwm_in=256,
hwm_out=256, recv_chunk_size=65536)

Event-based TCP/TLS connection.

It buffers up received messages and also the messages to be sent.

Parameters

host — a string containing a domain or ip address. If a domain is given the name will be
resolved before connecting.

port — defaults to 5222. If you are using a component you might point to 5347 or
something else.

debug — bool defaults to False: whether to print the XML traffic on stderr
queue_class — bool defaults to :py:class‘Queue.Queue’

hwm_in — int defaults to 256: how many incomming messages to buffer before blocking
hwm_out — int defaults to 256: how many outcomming messages to buffer before block-
ing

recv_chunk_size — int defaults to 65536: how many bytes to read at a time.

connect (timeout_in_seconds=3)

connects

Parameters timeout_in_seconds —

disconnect ()
disconencts the socket

published events:

* tcp_disconnect ("intentional™) - when succeeded

Parameters timeout_in seconds -

13

XMPP Documentation, Release 0.1.10

is_alive()
Returns True if the connection is alive

loop_once (timeout=3)
entrypoint for any mainloop.

basically call this continuously to keep the connection up

perform_read (connection)
reads from the socket and populates the read queue :param connection: a socket that is

perform_write (connection)
consumes the write queue and writes to the given socket

Parameters connection — a socket that is ready to write

receive (timeout=3)
retrieves a message from the queue, returns None if there are no messages.

Parameters timeout — int in seconds

reconnect (timeout_in_seconds=3)
reconnects the socket

published events:
e tcp_restablished (host) - when succeeded

e tcp_failed (host) - when failed
Parameters timeout_in seconds —
resolve_dns ()

resolves the given host

send (data, timeout=3)
adds bytes to the be sent in the next time the socket is ready

Parameters
¢ data - the data to be sent
e timeout — int in seconds

send_whitespace_keepalive (timeout=3)
sends a whitespace keepalive to avoid connection timeouts and dead connections

published events:

* tcp_disconnect ("intentional™) - when succeeded
Parameters timeout_in_seconds —

class xmpp.stream.XMLStream (connection, debug=False)
XML Stream behavior class.
Parameters

e connection —a XMPPConnect ion instance

* debug — whether to print errors to the stderr

ready to write

14 Chapter 4

. API Reference

https://tools.ietf.org/html/rfc6120#section-4.9.3.4
https://tools.ietf.org/html/rfc6120#section-4.6.1
https://xmpp.org/rfcs/rfc3920.html#streams

XMPP Documentation, Release 0.1.10

add_contact (contact_jid, from_jid=None, groups=None)
adds a contact to the roster of the bound_jid or the provided from_jid parameter.

Automatically sends a <presence type="subscribe"> with a subsequent <igq type="set">.
Parameters
* contact_jid - the jid to add in the roster
* from_ jid - custom from= field to designate the owner of the roster
* groups — a list of strings with group names to categorize this contact in the roster

bind_to_resource (name)
sends an <ig type="set"><resource>name</resource></1iqg> in order to bind the resource

Parameters name — the name of the resource

bound_jid
aJID or None

Automatically captured from the XML traffic.

close (disconnect=True)
sends a final </stream:stream> to the server then immediately closes the bound TCP connec-
tion,disposes it and resets the minimum state kept by the stream, so it can be reutilized right away.

feed (data, attempt=1)
feeds the stream with incoming data from the XMPP server. This is the basic entrypoint for usage with the
XML received from the XMPPConnection

Parameters data — the XML string
id
returns the stream id provided by the server. <stream:stream id="SOMETHING">
Mainly used by the aut henticate () when crafting the secret.

load_extensions ()
reloads all the available extensions bound to this stream

open_client (domain)
Sends a <stream:stream xmlns="jabber:client”> to the given domain

Parameters domain — the FQDN of the XMPP server

parse ()
attempts to parse whatever is in the buffer of the incremental XML parser and creates a new parser.

ready_to_read (_, connection)
event handler for the on.ready_to_read event of a XMPP Connection.

You should probably never have to call this by hand, use bind () instead

ready_to_write (_, connection)
even handler for the on.ready_to_write event of a XMPP Connection.

You should probably never have to call this by hand, use bind () instead

reset ()
resets the minimal state of the XML Stream, that is: * attributes of the <stream> sent by the server during
negotiation, used by 1d () * a bound JID sent by the server * a successful sasl result node to leverage
has_gone_through_sasl ()

send (node)
sends a XML serialized Node through the bound XMPP connection

15

https://xmpp.org/rfcs/rfc3921.html#int

XMPP Documentation, Release 0.1.10

Parameters node — the Node
send_message (message, to, **params)
Parameters
* message - the string with the message
* to —the jid to send the message to
* xxparams — keyword args for designating attributes of the message

send_presence (fo=None, delay=None, priority=10, **params)
sends presence

Parameters
* to —jid to receive presence.
* delay —if set, it must be a ISO compatible date string
e priority — the priority of this resource

send_sasl_auth (mechanism, message)
sends a SASL response to the server in order to proceed with authentication handshakes

Parameters mechanism — the name of SASL mechanism (i.e. SCRAM-SHA-1, PLAIN, EX-
TERNAL)

send_sasl_response (mechanism, message)
sends a SASL response to the server in order to proceed with authentication handshakes

Parameters mechanism — the name of SASL mechanism (i.e. SCRAM-SHA-1, PLAIN, EX-
TERNAL)

class xmpp.models.node.Node (element, closed=False)
Base class for all XML node definitions.

The xmpp library only supports XML tags that are explicitly defined as python classes that inherit from this one.

classmethod create (_stringcontent=None, **kw)
creates a node instance

Parameters
e _stringcontent — the content text of the tag, if any
* xxkw — keyword arguments that will become tag attributes

class xmpp.models.core.ClientStream (element, closed=False)
<stream:stream xmlns='jabber:client' version="1.0" xmlns:stream="http://
etherx. jabber.org/streams' />

class xmpp.models.core.IQ (element, closed=False)
<ig></ig>
class xmpp.models.core.IQRegister (element, closed=False)
<register xmlns="http://Jjabber.org/features/ig-register" />

class xmpp.models.core.Message (element, closed=False)
<message type="chat"></message>

exception xmpp.models.core.MissingJID
raised when trying to send a stanza but it is missing either the “to” or “from” fields

16 Chapter 4. API Reference

XMPP Documentation, Release 0.1.10

class xmpp.models.core.Presence (element, closed=False)
<presence></presence>

class xmpp.models.core.ProceedTLS (element, closed=False)
<proceed xmlns="urn:ietf:params:xml:ns:xmpp-tls" />

class xmpp.models.core.SASLMechanism (element, closed=False)
<mechanism></mechanism>

class xmpp.models.core.SASLMechanismSet (element, closed=False)
<mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl"></mechanisms>

class xmpp.models.core.StartTLS (element, closed=False)
<starttls xmlns="urn:ietf:params:xml:ns:xmpp-tls" />

class xmpp.models.core.StreamFeatures (element, closed=False)
<stream: features></stream: features>

SASL authentication implementaion for PyXMPP.
Normative reference:
e RFC 4422

xmpp.sasl.filter_mechanism_list (mechanisms, properties, allow_insecure=Fualse,
server_side=False)

Filter a mechanisms list only to include those mechanisms that cans succeed with the provided properties and

are secure enough.
Parameters
* mechanisms: list of the mechanisms names
* properties: available authentication properties
* allow_insecure: allow insecure mechanisms
Types
* mechanisms: sequence of unicode
* properties: mapping
e allow_insecure: bool
Returntype list of unicode

xmpp . sasl.server_authenticator_factory (mechanism, password_database)
Create a server authenticator object for given SASL mechanism and password databaser.

Parameters
e mechanism: name of the SASL mechanism (“PLAIN”, “DIGEST-MD5” or “GSSAPI”).

* password_database: name of the password database object to be used for authentication
credentials verification.

Types

* mechanism: str

* password_database: PasswordDatabase
Raises KeyError — if no server authenticator is available for this mechanism
Returns new authenticator.

Returntype sasl.core.ServerAuthenticator

17

http://www.ietf.org/rfc/rfc4422.txt
https://docs.python.org/3/library/exceptions.html#KeyError

XMPP Documentation, Release 0.1.10

xmpp.sasl.client_authenticator_factory (mechanism)
Create a client authenticator object for given SASL mechanism.

Parameters
e mechanism: name of the SASL mechanism (“PLAIN”, “DIGEST-MDS5” or “GSSAPI”).
Types
* mechanism: unicode
Raises KeyError — if no client authenticator is available for this mechanism
Returns new authenticator.
Returntype sasl.core.ClientAuthenticator

class xmpp.sasl.Success (properties=None, data=None)
The success SASL message (sent by the server on authentication success).

class xmpp.sasl.Failure (reason)
The failure SASL message.

Ivariables

* reason: the failure reason.
Types

e reason: unicode.

class xmpp.sasl.Challenge (data)
The challenge SASL message (server’s challenge for the client).

class xmpp.sasl.Response (data)
The response SASL message (clients’s reply the server’s challenge).

class xmpp.sasl.Reply (data=None)
Base class for SASL authentication reply objects.

Ivariables

* data: optional reply data.
Types

* data: bytes

encode ()
Base64-encode the data contained in the reply when appropriate.

Returns encoded data.
Returntype unicode

class xmpp.sasl.PasswordDatabase
Password database interface.

PasswordDatabase object is responsible for providing or verification of user authentication credentials on a
server.

All the methods of the PasswordDatabase may be overridden in derived classes for specific authentication and
authorization policy.

check_password (username, password, properties)
Check the password validity.

Used by plain-text authentication mechanisms.

18 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#KeyError

XMPP Documentation, Release 0.1.10

Default implementation: retrieve a “plain” password for the username and realm using self.get_password
and compare it with the password provided.

May be overridden e.g. to check the password against some external authentication mechanism (PAM,
LDAP, etc.).

Parameters
* username: the username for which the password verification is requested.
* password: the password to verify.

* properties: mapping with authentication properties (those provided to the authenticator’s
start () method plus some already obtained via the mechanism).

Types

* username: unicode

* password: unicode

* properties: mapping
Returns True if the password is valid.
Returntype bool

get_password (username, acceptable_formats, properties)
Get the password for user authentication.

By default returns (None, None) providing no password. Should be overridden in derived classes unless
only check_password functionality is available.

Parameters
* username: the username for which the password is requested.

* acceptable_formats: a sequence of acceptable formats of the password data. Could
be “plain” (plain text password), “md5:user:realm:password” (MDS5 hex digest of
user:realm:password) or any other mechanism-specific encoding. This allows non-plain-
text storage of passwords. But only “plain” format will work with all password authenti-
cation mechanisms.

* properties: mapping with authentication properties (those provided to the authenticator’s
start () method plus some already obtained via the mechanism).

Types
* username: unicode
* acceptable_formats: sequence of unicode
* properties: mapping

Returns the password and its encoding (format).

Returntype unicode,‘unicode‘ tuple.

19

md5:user:realm:password

XMPP Documentation, Release 0.1.10

20 Chapter 4. API Reference

CHAPTER B

Extensions for XEPs

5.1 Service Discovery (0030)

5.1.1 Events

query_items

the server returned a list of items

query_info

the server returned a list of identities and features

5.1.2 API

class xmpp.extensions.xep0030.ServiceDiscovery (stream)
extension for discovering information about other XMPP entities. Two kinds of information can be discovered:
(1) the identity and capabilities of an entity, including the protocols and features it supports; and (2) the items
associated with an entity, such as the list of rooms hosted at a multi-user chat service.

5.1.3 Example

from xmpp import XMLStream

from xmpp import XMPPConnection

from xmpp import JID

from xmpp.auth import SASLAuthenticationHandler

DEBUG = True

DOMAIN = 'falcao.it'

jid = JID('presencel@falcao.it/xmpp-test')

password = 'presencel'

SASL_MECHANISM = 'SCRAM-SHA-1'

21

XMPP Documentation, Release 0.1.10

connection = XMPPConnection (DOMAIN, 5222, debug=DEBUG)

create a XML stream
stream = XMLStream(connection, debug=DEBUG)

prepare the SASL mechanism
sasl = SASLAuthenticationHandler (SASL_MECHANISM, jid, password)
sasl.bind(stream)

@stream.on.closed

def stream_closed(event, node):
connection.disconnect ()
connection.connect ()
stream.reset ()

@stream.on.presence
def handle_presence (event, presence):

logging.debug ("presence from: %s %s(¢s)", presence.attr['from'], presence.status.
—~strip (), presence.show.strip())

@connection.on.tcp_established
def stepl_open_stream(event, host_ip):
"sends a <stream:stream> to the XMPP server"
n

logging.info ("connected to %s", host_ip)
stream.open_client (jid.domain)

@stream.on.sasl_support

def step2_send_sasl_auth(event, node):
"sends a <auth /> to the XMPP server"
sasl.authenticate ()

@sasl.on.success

def step3_handle_success (event, result):
"the SASL authentication succeeded, it's our time to reopen the stream"
stream.open_client (jid.domain)

@stream.on.bind_support

def step4_bind_to_a_resource_name (event, node) :
"the server said it supports binding"
stream.bind_to_resource (jid.resource)

@stream.on.bound_jid

def step5_send_presence (event, jid):
stream.send_presence ()
logging.info ("echobot jid: £s", jid.text)

@stream.on.presence
def step6_ensure_connectivity (event, presence):
if presence.delay:
stream.send_presence ()

@connection.on.ready_to_write
def keep_alive (event, connection):
if stream.has_gone_through_sasl () and (time.time() % 60 == 0):
print 'keepalive'
connection.send_whitespace_keepalive ()

@stream.on.message

22 Chapter 5. Extensions for XEPs

XMPP Documentation, Release 0.1.10

def auto_reply(event, message) :
stream.send_presence ()

from_jid = JID(message.attr['from'])
if message.is_composing() :
logging.warning (" is composing", from_jid.nick)

if message.is_active():
logging.warning (" is active", from_jid.nick)

body = message.get_body ()

if body:
logging.critical (" says: ", from_jid.nick, body)
stream.send_message (body, to=from_jid.text)
stream.send_presence (to=from_jid.text)

connection.connect ()
try:
while connection.is_alive():

connection.loop_once ()

except KeyboardInterrupt as e:
print "\r ".format (traceback.format_exc(e))

raise SystemExit (1)

5.2 Component (0114)

5.2.1 Events

success | the server sent a <handshake />
error the server returned a <stream:error>

5.2.2 API

class xmpp.extensions.xep(01l14.Component (stream)
Provides an external component API while keeping minimal state based on a single boolean flag.

authenticate (secrer)
sends a <handshake> to the server with the encoded version of the given secret :param secret: the secret
string to authenticate the component

create_node (to, tls=False)
creates a Component St ream with an optional <starttls /> init.

is_authenticated()
Returns True if a success handshake was received by the bound
XMLStream

open (domain, tls=False)
sends an <stream:stream xmlns="Jjabber:component:accept">

5.2. Component (0114) 23

http://www.xmpp.org/extensions/xep-0114.html

XMPP Documentation, Release 0.1.10

5.3 Create your own

You can easily have your own implementation of a XEP by extending the class xmpp .extensions.Extension.

As long as your implementation is being imported by your application, the XMPP toolkit will automatically recognize
your subclass and make it available whenever a XMPP St ream is instantiated.

5.3.1 XEP 9999

Let’s come up with our own XEP

1. Introduction
This document defines a protocol for communicating dummy from one user to another. Such information MUST be

appended to a received_dummy_1list in the receiving entity. The entity MAY also send a dummy which SHALL
be appended to a sent_dummy_11st in the sending entity.

2. Protocol

Sending a dummy

<ig 1d="23713d" type="set" from="tybalt@shakespeare.org" to="rosalinel@shakespeare.org
">

<dummy xmlns="xmpp:xep:example">Romeo</dummy>
</ig>

Receiving a dummy

<ig 1d="23713d" type="result" from="tybalt@shakespeare.org" to="rosaline@shakespeare.
—org">

<dummy xmlns="xmpp:xep:example">Juliet</dummy>
</ig>

Here is the implementation, notice its statelessness

from speakers import Speaker as Events
from xmpp.models import Node, IQ, JID
from xmpp.extensions import Extension

class Dummy (Node) :

__tag___ = 'dummy'
__etag___ = '{xmpp:xep:example}dummy'
__namespaces__ = [

('', 'xmpp:xep:example')
]
_ children_of__ = IQ

class Fake (Extension) :

__xep__ = '9999"

def initialize(self):
self.on = Events ('fake', [

24 Chapter 5. Extensions for XEPs

XMPP Documentation, Release 0.1.10

'dummy ', # the server sent a dummy inside of an IQ

1)

self.stream.on.node (self.route_nodes)

def route_nodes(self, _, node):
if isinstance (node, Dummy) :
self.on.dummy.shout (node)

def send_dummy (self, to, value):

params = {
'to': to,
'type': 'set',

}

node = IQ.with_child_and_attributes(
Dummy .create (value),
*x*xparams

)

self.stream.send (node)

Usage of your newly created extension

from xmpp import XMLStream

from xmpp import XMPPConnection

from xmpp import JID

from xmpp.auth import SASLAuthenticationHandler

DEBUG = True

DOMAIN = 'shakespeare.oreg'
jid = JID('tybalt@shakespeare.oef/cahoots')
password = 'sk3tchy'

SASL_MECHANISM = 'SCRAM-SHA-1'

RECEIVED_DUMMY LIST = []
SENT_DUMMY_LIST = []

connection = XMPPConnection (DOMAIN, 5222, debug=DEBUG)
stream = XMLStream(connection, debug=DEBUG)

sasl = SASLAuthenticationHandler (SASL_MECHANISM, jid, password)
sasl.bind(stream)

@connection.on.tcp_established
def stepl_open_stream(event, host_ip):
stream.open_client (jid.domain)

@stream.on.sasl_support
def step2_send_sasl_auth (event, node):
sasl.authenticate ()

@sasl.on.success
def step3_handle_success (event, result):
stream.open_client (jid.domain)

@stream.on.bind_support
def step4_bind_to_a_resource_name (event, node):

5.3. Create your own

25

XMPP Documentation, Release 0.1.10

stream.bind_to_resource (jid.resource)

@stream.on.bound_jid

def step5_send_presence (event, jid):
dummies.send_dummy (to='rosalinel@shakespeare.org',
SENT_DUMMY_LIST.append('Romeo")

@dummies. on.dummy
def step6_store_dummy (event, dummy) :
RECEIVED_DUMMY_LIST.append (dummy.value)
connection.connect ()
try:
while connection.is_alive():

connection.loop_once ()

except KeyboardInterrupt as e:
print "\r ".format (traceback.format_exc (e))

raise SystemExit (1)

value="'Romeo')

26

Chapter 5. Extensions for XEPs

CHAPTER O

Indices and tables

* genindex
* modindex

e search

27

XMPP Documentation, Release 0.1.10

28 Chapter 6. Indices and tables

Python Module Index

Xmpp

Xmpp

Xmpp .
Xmpp .
Xmpp .
XmppP .

.auth, 14
XMpp .
.extensions, 17

Xmpp .
.models.node, 16

core, 14
models.core, 16

networking, 13
sasl, 17
security, 14
stream, 14

29

XMPP Documentation, Release 0.1.10

30 Python Module Index

Index

A

add_contact() (xmpp.stream. XMLStream method), 10, 14
authenticate() (xmpp.extensions.xep0114.Component
method), 23

B

bind_to_resource() (xmpp.stream.XMLStream method),
10, 15
bound_jid (xmpp.stream.XMLStream attribute), 10, 15

C

Challenge (class in xmpp.sasl), 18

check_password() (xmpp.sasl.PasswordDatabase
method), 18

client_authenticator_factory() (in module xmpp.sasl), 17

ClientStream (class in xmpp.models.core), 16

close() (xmpp.stream. XMLStream method), 10, 15

Component (class in xmpp.extensions.xep0114), 23

connect() (xmpp.networking.core. XMPPConnection
method), 6

connect() (xmpp.networking. XMPPConnection method),
13

create() (xmpp.models.node.Node class method), 16

create_node() (xmpp.extensions.xep0O114.Component
method), 23

D

disconnect() (xmpp.networking.core. XMPPConnection
method), 6

disconnect() (xmpp.networking. XMPPConnection
method), 13

E

encode() (xmpp.sasl.Reply method), 18

F

Failure (class in xmpp.sasl), 18
feed() (xmpp.stream.XMLStream method), 10, 15
filter_mechanism_list() (in module xmpp.sasl), 17

G

get_password() (xmpp.sasl.PasswordDatabase method),
19

id (xmpp.stream.XMLStream attribute), 10, 15

1Q (class in xmpp.models.core), 16

IQRegister (class in xmpp.models.core), 16

is_alive() (xmpp.networking.core. XMPPConnection
method), 6

is_alive() (xmpp.networking. XMPPConnection method),
13

is_authenticated() (xmpp.extensions.xep0O114.Component
method), 23

L

load_extensions() (xmpp.stream.XMLStream method),
10, 15

loop_once() (xmpp.networking.core. XMPPConnection
method), 6

loop_once() (xmpp.networking. XMPPConnection
method), 14

M

Message (class in xmpp.models.core), 16
MissingJID, 16

N

Node (class in xmpp.models.node), 16

O

open() (xmpp.extensions.xep0114.Component method),
23
open_client() (xmpp.stream.XMLStream method), 10, 15

P

parse() (xmpp.stream.XMLStream method), 10, 15
PasswordDatabase (class in xmpp.sasl), 18

31

XMPP Documentation, Release 0.1.10

perform_read() (xmpp.networking.core. XMPPConnection
method), 6

perform_read() (xmpp.networking. XMPPConnection
method), 14

perform_write() (xmpp.networking.core. XMPPConnection

method), 6

perform_write() (xmpp.networking. XMPPConnection
method), 14

Presence (class in xmpp.models.core), 16

ProceedTLS (class in xmpp.models.core), 17

R

ready_to_read() (xmpp.stream.XMLStream method), 10,
15

ready_to_write() (xmpp.stream.XMLStream method), 10,
15

receive() (xmpp.networking.core. XMPPConnection

method), 6

receive() (xmpp.networking. XMPPConnection method),
14

reconnect() (xmpp.networking.core. XMPPConnection
method), 6

reconnect() (xmpp.networking. XMPPConnection
method), 14

Reply (class in xmpp.sasl), 18

reset() (xmpp.stream.XMLStream method), 11, 15

resolve_dns() (xmpp.networking.core. XMPPConnection
method), 6

resolve_dns() (xmpp.networking. XMPPConnection
method), 14

Response (class in xmpp.sasl), 18

S

SASLMechanism (class in xmpp.models.core), 17

SASLMechanismSet (class in xmpp.models.core), 17

send() (xmpp.networking.core. XMPPConnection
method), 7

send() (xmpp.networking. XMPPConnection method), 14

send() (xmpp.stream.XMLStream method), 11, 15

send_message() (xmpp.stream.XMLStream method), 11,
16

send_presence() (xmpp.stream.XMLStream method), 11,
16

send_sasl_auth() (xmpp.stream.XMLStream method), 11,
16

send_sasl_response()
method), 11, 16

send_whitespace_keepalive()
(xmpp.networking.core. XMPPConnection
method), 7

send_whitespace_keepalive()
(xmpp.networking. XMPPConnection method),
14

server_authenticator_factory() (in module xmpp.sasl), 17

(xmpp.stream.XMLStream

ServiceDiscovery (class in xmpp.extensions.xep0030), 21
StartTLS (class in xmpp.models.core), 17
StreamFeatures (class in xmpp.models.core), 17

Success (class in xmpp.sasl), 18

XMLStream (class in xmpp.stream), 10, 14
xmpp.auth (module), 14

xmpp.core (module), 14

xmpp.extensions (module), 17

xmpp.models.core (module), 16
xmpp.models.node (module), 16
xmpp.networking (module), 13

xmpp.sasl (module), 17

xmpp.security (module), 14

xmpp.stream (module), 14

XMPPConnection (class in xmpp.networking), 13
XMPPConnection (class in xmpp.networking.core), 5

32

Index

	XMPP Tutorial
	Client TCP Connection
	code

	XMPP Connection
	Events
	API

	The XML Stream
	Events
	API

	API Reference
	Extensions for XEPs
	Service Discovery (0030)
	Events
	API
	Example

	Component (0114)
	Events
	API

	Create your own
	XEP 9999

	Indices and tables
	Python Module Index
	Index

