
xlwings - Make Excel Fly!
Release dev

Zoomer Analytics LLC

May 05, 2019

Contents

1 Video course 1

2 Migrate to v0.11 (Add-in) 3
2.1 Upgrade the xlwings Python package . 3
2.2 Install the add-in . 3
2.3 Upgrade existing workbooks . 4

3 Migrate to v0.9 5
3.1 Full qualification: Using collections . 5
3.2 Connecting to Books . 5
3.3 Active Objects . 6
3.4 Round vs. Square Brackets . 6
3.5 Access the underlying Library/Engine . 6
3.6 Cheat sheet . 6

4 Installation 9
4.1 Dependencies . 9
4.2 Optional Dependencies . 10
4.3 Add-in . 10
4.4 Python version support . 10

5 Quickstart 11
5.1 1. Scripting: Automate/interact with Excel from Python 11
5.2 2. Macros: Call Python from Excel . 12
5.3 3. UDFs: User Defined Functions (Windows only) . 13

6 Connect to a Book 15
6.1 Python to Excel . 15
6.2 Excel to Python (RunPython) . 16
6.3 User Defined Functions (UDFs) . 16

7 Syntax Overview 17
7.1 Active Objects . 17

i

7.2 Full qualification . 18
7.3 Range indexing/slicing . 18
7.4 Range Shortcuts . 18
7.5 Object Hierarchy . 19

8 Data Structures Tutorial 21
8.1 Single Cells . 21
8.2 Lists . 22
8.3 Range expanding . 23
8.4 NumPy arrays . 23
8.5 Pandas DataFrames . 23
8.6 Pandas Series . 24

9 Add-in 25
9.1 Installation . 25
9.2 Global Settings . 26
9.3 Global Config: Ribbon/Config File . 27
9.4 Workbook Directory Config: Config file . 27
9.5 Workbook Config: xlwings.conf Sheet . 27
9.6 Alternative: Standalone VBA module . 28
9.7 Log File default locations . 28

10 VBA: RunPython 29
10.1 xlwings add-in . 29
10.2 Call Python with “RunPython” . 29
10.3 Function Arguments and Return Values . 30

11 VBA: User Defined Functions (UDFs) 31
11.1 One-time Excel preparations . 31
11.2 Workbook preparation . 31
11.3 A simple UDF . 32
11.4 Array formulas: Get efficient . 32
11.5 Array formulas with NumPy and Pandas . 33
11.6 @xw.arg and @xw.ret decorators . 34
11.7 Dynamic Array Formulas . 34
11.8 Docstrings . 36
11.9 The “vba” keyword . 36
11.10 Macros . 36
11.11 Call UDFs from VBA . 37
11.12 Asynchronous UDFs . 37

12 Debugging 39
12.1 RunPython . 40
12.2 UDF debug server . 40

13 Matplotlib 43
13.1 Getting started . 43
13.2 Full integration with Excel . 43
13.3 Properties . 44

ii

13.4 Getting a Matplotlib figure . 46

14 Converters and Options 47
14.1 Default Converter . 48
14.2 Built-in Converters . 50
14.3 Custom Converter . 54

15 Threading and Multiprocessing 57
15.1 Threading . 57
15.2 Multiprocessing . 58

16 Command Line Client 61
16.1 Quickstart . 61
16.2 Add-in . 61
16.3 RunPython . 62

17 Missing Features 63
17.1 Example: Workaround to use VBA’s Range.WrapText 63

18 xlwings with other Office Apps 65
18.1 How To . 65
18.2 Config . 66

19 Deployment 67
19.1 Zip files . 67
19.2 RunFrozenPython . 67

20 Extensions 69
20.1 In-Excel SQL . 69

21 xlwings with R and Julia 71
21.1 R . 71
21.2 Julia . 73

22 Troubleshooting 75
22.1 Issue: dll not found . 75

23 REST API 77
23.1 Quickstart . 77
23.2 Run the server . 79
23.3 Indexing . 79
23.4 Range Options . 79
23.5 Endpoint overview . 79
23.6 Endpoint details . 80

24 Python API 107
24.1 Top-level functions . 107
24.2 Object model . 108
24.3 UDF decorators . 133

iii

25 License 137

iv

CHAPTER 1

Video course

Those who prefer a didactically structured video course over this documentation should have a look at our
video course:

https://training.zoomeranalytics.com/p/xlwings

It’s also a great way to support the ongoing development of xlwings :)

1

https://training.zoomeranalytics.com/p/xlwings

xlwings - Make Excel Fly!, Release dev

2 Chapter 1. Video course

CHAPTER 2

Migrate to v0.11 (Add-in)

This migration guide shows you how you can start using the new xlwings add-in as opposed to the old
xlwings VBA module (and the old add-in that consisted of just a single import button).

2.1 Upgrade the xlwings Python package

1. Check where xlwings is currently installed

>>> import xlwings
>>> xlwings.__path__

2. If you installed xlwings with pip, for once, you should first uninstall xlwings: pip uninstall
xlwings

3. Check the directory that you got under 1): if there are any files left over, delete the xlwings folder
and the remaining files manually

4. Install the latest xlwings version: pip install xlwings

5. Verify that you have >= 0.11 by doing

>>> import xlwings
>>> xlwings.__version__

2.2 Install the add-in

1. If you have the old xlwings addin installed, find the location and remove it or overwrite it with the
new version (see next step). If you installed it via the xlwings command line client, you should be

3

xlwings - Make Excel Fly!, Release dev

able to do: xlwings addin remove.

2. Close Excel. Run xlwings addin install from a command prompt. Reopen Excel and check
if the xlwings Ribbon appears. If not, copy xlwings.xlam (from your xlwings installation folder
under addin\xlwings.xlam manually into the XLSTART folder. You can find the location of
this folder under Options > Trust Center > Trust Center Settings. . . > Trusted Locations, under the
description Excel default location: User StartUp. Restart Excel and you should see
the add-in.

2.3 Upgrade existing workbooks

1. Make a backup of your Excel file

2. Open the file and go to the VBA Editor (Alt-F11)

3. Remove the xlwings VBA module

4. Add a reference to the xlwings addin, see Installation

5. If you want to use workbook specific settings, add a sheet xlwings.conf, see Workbook Config:
xlwings.conf Sheet

Note: To import UDFs, you need to have the reference to the xlwings add-in set!

4 Chapter 2. Migrate to v0.11 (Add-in)

CHAPTER 3

Migrate to v0.9

The purpose of this document is to enable you a smooth experience when upgrading to xlwings v0.9.0 and
above by laying out the concept and syntax changes in detail. If you want to get an overview of the new
features and bug fixes, have a look at the release notes. Note that the syntax for User Defined Functions
(UDFs) didn’t change.

3.1 Full qualification: Using collections

The new object model allows to specify the Excel application instance if needed:

• old: xw.Range('Sheet1', 'A1', wkb=xw.Workbook('Book1'))

• new: xw.apps[0].books['Book1'].sheets['Sheet1'].range('A1')

See Syntax Overview for the details of the new object model.

3.2 Connecting to Books

• old: xw.Workbook()

• new: xw.Book() or via xw.books if you need to control the app instance.

See Connect to a Book for the details.

5

xlwings - Make Excel Fly!, Release dev

3.3 Active Objects

Active app (i.e. Excel instance)
>>> app = xw.apps.active

Active book
>>> wb = xw.books.active # in active app
>>> wb = app.books.active # in specific app

Active sheet
>>> sht = xw.sheets.active # in active book
>>> sht = wb.sheets.active # in specific book

Range on active sheet
>>> xw.Range('A1') # on active sheet of active book of active app

3.4 Round vs. Square Brackets

Round brackets follow Excel’s behavior (i.e. 1-based indexing), while square brackets use Python’s 0-based
indexing/slicing.

As an example, the following all reference the same range:

xw.apps[0].books[0].sheets[0].range('A1')
xw.apps(1).books(1).sheets(1).range('A1')
xw.apps[0].books['Book1'].sheets['Sheet1'].range('A1')
xw.apps(1).books('Book1').sheets('Sheet1').range('A1')

3.5 Access the underlying Library/Engine

• old: xw.Range('A1').xl_range and xl_sheet etc.

• new: xw.Range('A1').api, same for all other objects

This returns a pywin32 COM object on Windows and an appscript object on Mac.

3.6 Cheat sheet

Note that sht stands for a sheet object, like e.g. (in 0.9.0 syntax): sht = xw.books['Book1'].
sheets[0]

v0.9.0 v0.7.2
Active Excel instance xw.apps.active unsupported
New Excel instance app = xw.App() unsupported

Continued on next page

6 Chapter 3. Migrate to v0.9

xlwings - Make Excel Fly!, Release dev

Table 1 – continued from previous page
v0.9.0 v0.7.2

Get app from book app = wb.app app = xw.Application(wb)
Target installation (Mac) app = xw.App(spec=...) wb = xw.Workbook(app_target=...)
Hide Excel Instance app = xw.App(visible=False) wb = xw.Workbook(app_visible=False)
Selected Range app.selection wb.get_selection()
Calculation mode app.calculation = 'manual' app.calculation = xw.constants.Calculation.xlCalculationManual
All books in app app.books unsupported

Fully qualified book app.books['Book1'] unsupported
Active book in active app xw.books.active xw.Workbook.active()
New book in active app wb = xw.Book() wb = xw.Workbook()
New book in specific app wb = app.books.add() unsupported
All sheets in book wb.sheets xw.Sheet.all(wb)
Call a macro in an addin app.macro('MacroName') unsupported

First sheet of book wb wb.sheets[0] xw.Sheet(1, wkb=wb)
Active sheet wb.sheets.active xw.Sheet.active(wkb=wb) or wb.active_sheet
Add sheet wb.sheets.add() xw.Sheet.add(wkb=wb)
Sheet count wb.sheets.count or len(wb.sheets) xw.Sheet.count(wb)

Add chart to sheet chart = wb.sheets[0].charts.add() chart = xw.Chart.add(sheet=1, wkb=wb)
Existing chart wb.sheets['Sheet 1'].charts[0] xw.Chart('Sheet 1', 1)
Chart Type chart.chart_type = '3d_area' chart.chart_type = xw.constants.ChartType.xl3DArea

Add picture to sheet wb.sheets[0].pictures.add('path/to/pic') xw.Picture.add('path/to/pic', sheet=1, wkb=wb)
Existing picture wb.sheets['Sheet 1'].pictures[0] xw.Picture('Sheet 1', 1)
Matplotlib sht.pictures.add(fig, name='x', update=True) xw.Plot(fig).show('MyPlot', sheet=sht, wkb=wb)

Table expansion sht.range('A1').expand('table') xw.Range(sht, 'A1', wkb=wb).table
Vertical expansion sht.range('A1').expand('down') xw.Range(sht, 'A1', wkb=wb).vertical
Horizontal expansion sht.range('A1').expand('right') xw.Range(sht, 'A1', wkb=wb).horizontal

Set name of range sht.range('A1').name = 'name' xw.Range(sht, 'A1', wkb=wb).name = 'name'
Get name of range sht.range('A1').name.name xw.Range(sht, 'A1', wkb=wb).name

mock caller xw.Book('file.xlsm').set_mock_caller() xw.Workbook.set_mock_caller('file.xlsm')

3.6. Cheat sheet 7

xlwings - Make Excel Fly!, Release dev

8 Chapter 3. Migrate to v0.9

CHAPTER 4

Installation

The easiest way to install xlwings is via pip:

pip install xlwings

or conda:

conda install xlwings

Note that the official conda package might be few releases behind. You can, however, use the
conda-forge channel (see: https://anaconda.org/conda-forge/xlwings) which should usually be up to
date (but might still be a day or so behind the pip release):

conda install -c conda-forge xlwings

Note: When you are using Mac Excel 2016 and are installing xlwings with conda (or use the version
that comes with Anaconda), you’ll need to run $ xlwings runpython install once to enable the
RunPython calls from VBA. Alternatively, you can simply install xlwings with pip.

4.1 Dependencies

• Windows: pywin32, comtypes

On Windows, the dependencies are automatically being handled if xlwings is installed with conda
or pip.

• Mac: psutil, appscript

9

https://anaconda.org/conda-forge/xlwings

xlwings - Make Excel Fly!, Release dev

On Mac, the dependencies are automatically being handled if xlwings is installed with conda or
pip. However, with pip, the Xcode command line tools need to be available. Mac OS X 10.4 (Tiger)
or later is required. The recommended Python distribution for Mac is Anaconda.

4.2 Optional Dependencies

• NumPy

• Pandas

• Matplotlib

• Pillow/PIL

These packages are not required but highly recommended as they play very nicely with xlwings.

4.3 Add-in

Please see Add-in on how to install the xlwings add-in.

4.4 Python version support

xlwings is tested on Python 2.7 and 3.3+

10 Chapter 4. Installation

https://store.continuum.io/cshop/anaconda/

CHAPTER 5

Quickstart

This guide assumes you have xlwings already installed. If that’s not the case, head over to Installation.

5.1 1. Scripting: Automate/interact with Excel from Python

Establish a connection to a workbook:

>>> import xlwings as xw
>>> wb = xw.Book() # this will create a new workbook
>>> wb = xw.Book('FileName.xlsx') # connect to an existing file in the
→˓current working directory
>>> wb = xw.Book(r'C:\path\to\file.xlsx') # on Windows: use raw strings to
→˓escape backslashes

If you have the same file open in two instances of Excel, you need to fully qualify it and include the app
instance. You will find your app instance key (the PID) via xw.apps.keys():

>>> xw.apps[10559].books['FileName.xlsx']

Instantiate a sheet object:

>>> sht = wb.sheets['Sheet1']

Reading/writing values to/from ranges is as easy as:

>>> sht.range('A1').value = 'Foo 1'
>>> sht.range('A1').value
'Foo 1'

There are many convenience features available, e.g. Range expanding:

11

xlwings - Make Excel Fly!, Release dev

>>> sht.range('A1').value = [['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]
>>> sht.range('A1').expand().value
[['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]

Powerful converters handle most data types of interest, including Numpy arrays and Pandas DataFrames
in both directions:

>>> import pandas as pd
>>> df = pd.DataFrame([[1,2], [3,4]], columns=['a', 'b'])
>>> sht.range('A1').value = df
>>> sht.range('A1').options(pd.DataFrame, expand='table').value

a b
0.0 1.0 2.0
1.0 3.0 4.0

Matplotlib figures can be shown as pictures in Excel:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.plot([1, 2, 3, 4, 5])
[<matplotlib.lines.Line2D at 0x1071706a0>]
>>> sht.pictures.add(fig, name='MyPlot', update=True)
<Picture 'MyPlot' in <Sheet [Workbook4]Sheet1>>

Shortcut for the active sheet: xw.Range

If you want to quickly talk to the active sheet in the active workbook, you don’t need instantiate a workbook
and sheet object, but can simply do:

>>> import xlwings as xw
>>> xw.Range('A1').value = 'Foo'
>>> xw.Range('A1').value
'Foo'

Note: You should only use xw.Range when interacting with Excel. In scripts, you should always go via
book and sheet objects as shown above.

5.2 2. Macros: Call Python from Excel

You can call Python functions from VBA using the RunPython function:

Sub HelloWorld()
RunPython ("import hello; hello.world()")

End Sub

Per default, RunPython expects hello.py in the same directory as the Excel file. Refer to the calling
Excel book by using xw.Book.caller:

12 Chapter 5. Quickstart

xlwings - Make Excel Fly!, Release dev

hello.py
import numpy as np
import xlwings as xw

def world():
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = 'Hello World!'

To make this run, you’ll need to have the xlwings add-in installed. The easiest way to get everything set
up is to use the xlwings command line client from either a command prompt on Windows or a terminal on
Mac: xlwings quickstart myproject.

For details about the addin, see Add-in.

5.3 3. UDFs: User Defined Functions (Windows only)

Writing a UDF in Python is as easy as:

import xlwings as xw

@xw.func
def hello(name):

return 'Hello {0}'.format(name)

Converters can be used with UDFs, too. Again a Pandas DataFrame example:

import xlwings as xw
import pandas as pd

@xw.func
@xw.arg('x', pd.DataFrame)
def correl2(x):

x arrives as DataFrame
return x.corr()

Import this function into Excel by clicking the import button of the xlwings add-in: For further details, see
VBA: User Defined Functions (UDFs).

5.3. 3. UDFs: User Defined Functions (Windows only) 13

xlwings - Make Excel Fly!, Release dev

14 Chapter 5. Quickstart

CHAPTER 6

Connect to a Book

When reading/writing data to the active sheet, you don’t need a book object:

>>> import xlwings as xw
>>> xw.Range('A1').value = 'something'

6.1 Python to Excel

The easiest way to connect to a book is offered by xw.Book: it looks for the book in all app instances and
returns an error, should the same book be open in multiple instances. To connect to a book in the active app
instance, use xw.books and to refer to a specific app, use:

>>> app = xw.App() # or something like xw.apps[10559] for existing apps, get
→˓the available PIDs via xw.apps.keys()
>>> app.books['Book1']

xw.Book xw.books
New book xw.Book() xw.books.add()
Unsaved book xw.Book('Book1') xw.books['Book1']
Book by
(full)name

xw.Book(r'C:/path/to/
file.xlsx')

xw.books.open(r'C:/path/to/
file.xlsx')

Note: When specifying file paths on Windows, you should either use raw strings by putting an r in front
of the string or use double back-slashes like so: C:\\path\\to\\file.xlsx.

15

xlwings - Make Excel Fly!, Release dev

6.2 Excel to Python (RunPython)

To reference the calling book when using RunPython in VBA, use xw.Book.caller(), see Call
Python with “RunPython”. Check out the section about Debugging to see how you can call a script from
both sides, Python and Excel, without the need to constantly change between xw.Book.caller() and
one of the methods explained above.

6.3 User Defined Functions (UDFs)

Unlike RunPython, UDFs don’t need a call to xw.Book.caller(), see VBA: User Defined Functions
(UDFs). However, it’s available (restricted to read-only though), which sometimes proofs to be useful.

16 Chapter 6. Connect to a Book

CHAPTER 7

Syntax Overview

The xlwings object model is very similar to the one used by VBA.

All code samples below depend on the following import:

>>> import xlwings as xw

7.1 Active Objects

Active app (i.e. Excel instance)
>>> app = xw.apps.active

Active book
>>> wb = xw.books.active # in active app
>>> wb = app.books.active # in specific app

Active sheet
>>> sht = xw.sheets.active # in active book
>>> sht = wb.sheets.active # in specific book

Range on active sheet
>>> xw.Range('A1') # on active sheet of active book of active app

A Range can be instantiated with A1 notation, a tuple of Excel’s 1-based indices, a named range or two
Range objects:

xw.Range('A1')
xw.Range('A1:C3')
xw.Range((1,1))

(continues on next page)

17

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

xw.Range((1,1), (3,3))
xw.Range('NamedRange')
xw.Range(xw.Range('A1'), xw.Range('B2'))

7.2 Full qualification

Round brackets follow Excel’s behavior (i.e. 1-based indexing), while square brackets use Python’s 0-based
indexing/slicing. As an example, the following expressions all reference the same range:

xw.apps[763].books[0].sheets[0].range('A1')
xw.apps(10559).books(1).sheets(1).range('A1')
xw.apps[763].books['Book1'].sheets['Sheet1'].range('A1')
xw.apps(10559).books('Book1').sheets('Sheet1').range('A1')

Note that the apps keys are different for you as they are the process IDs (PID). You can get the list of your
PIDs via xw.apps.keys().

7.3 Range indexing/slicing

Range objects support indexing and slicing, a few examples:

>>> rng = xw.Book().sheets[0].range('A1:D5')
>>> rng[0, 0]
<Range [Workbook1]Sheet1!A1>

>>> rng[1]
<Range [Workbook1]Sheet1!B1>

>>> rng[:, 3:]
<Range [Workbook1]Sheet1!D1:D5>
>>> rng[1:3, 1:3]
<Range [Workbook1]Sheet1!B2:C3>

7.4 Range Shortcuts

Sheet objects offer a shortcut for range objects by using index/slice notation on the sheet object. This evalu-
ates to either sheet.range or sheet.cells depending on whether you pass a string or indices/slices:

>>> sht = xw.Book().sheets['Sheet1']
>>> sht['A1']
<Range [Book1]Sheet1!A1>
>>> sht['A1:B5']
<Range [Book1]Sheet1!A1:B5>
>>> sht[0, 1]
<Range [Book1]Sheet1!B1>
>>> sht[:10, :10]
<Range [Book1]Sheet1!A1:J10>

18 Chapter 7. Syntax Overview

xlwings - Make Excel Fly!, Release dev

7.5 Object Hierarchy

The following shows an example of the object hierarchy, i.e. how to get from an app to a range object and
all the way back:

>>> rng = xw.apps[10559].books[0].sheets[0].range('A1')
>>> rng.sheet.book.app
<Excel App 10559>

7.5. Object Hierarchy 19

xlwings - Make Excel Fly!, Release dev

20 Chapter 7. Syntax Overview

CHAPTER 8

Data Structures Tutorial

This tutorial gives you a quick introduction to the most common use cases and default behaviour of xlwings
when reading and writing values. For an in-depth documentation of how to control the behavior using the
options method, have a look at Converters and Options.

All code samples below depend on the following import:

>>> import xlwings as xw

8.1 Single Cells

Single cells are by default returned either as float, unicode, None or datetime objects, depending
on whether the cell contains a number, a string, is empty or represents a date:

>>> import datetime as dt
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = 1
>>> sht.range('A1').value
1.0
>>> sht.range('A2').value = 'Hello'
>>> sht.range('A2').value
'Hello'
>>> sht.range('A3').value is None
True
>>> sht.range('A4').value = dt.datetime(2000, 1, 1)
>>> sht.range('A4').value
datetime.datetime(2000, 1, 1, 0, 0)

21

xlwings - Make Excel Fly!, Release dev

8.2 Lists

• 1d lists: Ranges that represent rows or columns in Excel are returned as simple lists, which means
that once they are in Python, you’ve lost the information about the orientation. If that is an issue, the
next point shows you how to preserve this info:

>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [[1],[2],[3],[4],[5]] # Column orientation
→˓(nested list)
>>> sht.range('A1:A5').value
[1.0, 2.0, 3.0, 4.0, 5.0]
>>> sht.range('A1').value = [1, 2, 3, 4, 5]
>>> sht.range('A1:E1').value
[1.0, 2.0, 3.0, 4.0, 5.0]

To force a single cell to arrive as list, use:

>>> sht.range('A1').options(ndim=1).value
[1.0]

Note: To write a list in column orientation to Excel, use transpose: sht.range('A1').
options(transpose=True).value = [1,2,3,4]

• 2d lists: If the row or column orientation has to be preserved, set ndim in the Range options. This
will return the Ranges as nested lists (“2d lists”):

>>> sht.range('A1:A5').options(ndim=2).value
[[1.0], [2.0], [3.0], [4.0], [5.0]]
>>> sht.range('A1:E1').options(ndim=2).value
[[1.0, 2.0, 3.0, 4.0, 5.0]]

• 2 dimensional Ranges are automatically returned as nested lists. When assigning (nested) lists to a
Range in Excel, it’s enough to just specify the top left cell as target address. This sample also makes
use of index notation to read the values back into Python:

>>> sht.range('A10').value = [['Foo 1', 'Foo 2', 'Foo 3'], [10, 20, 30]]
>>> sht.range((10,1),(11,3)).value
[['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]

Note: Try to minimize the number of interactions with Excel. It is always more efficient to do
sht.range('A1').value = [[1,2],[3,4]] than sht.range('A1').value = [1, 2]
and sht.range('A2').value = [3, 4].

22 Chapter 8. Data Structures Tutorial

xlwings - Make Excel Fly!, Release dev

8.3 Range expanding

You can get the dimensions of Excel Ranges dynamically through either the method expand or through the
expand keyword in the options method. While expand gives back an expanded Range object, options
are only evaluated when accessing the values of a Range. The difference is best explained with an example:

>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [[1,2], [3,4]]
>>> rng1 = sht.range('A1').expand('table') # or just .expand()
>>> rng2 = sht.range('A1').options(expand='table')
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> sht.range('A3').value = [5, 6]
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

'table' expands to 'down' and 'right', the other available options which can be used for column or
row only expansion, respectively.

Note: Using expand() together with a named Range as top left cell gives you a flexible setup in Excel:
You can move around the table and change it’s size without having to adjust your code, e.g. by using
something like sht.range('NamedRange').expand().value.

8.4 NumPy arrays

NumPy arrays work similar to nested lists. However, empty cells are represented by nan instead of None.
If you want to read in a Range as array, set convert=np.array in the options method:

>>> import numpy as np
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = np.eye(3)
>>> sht.range('A1').options(np.array, expand='table').value
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

8.5 Pandas DataFrames

>>> sht = xw.Book().sheets[0]
>>> df = pd.DataFrame([[1.1, 2.2], [3.3, None]], columns=['one', 'two'])
>>> df

(continues on next page)

8.3. Range expanding 23

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

one two
0 1.1 2.2
1 3.3 NaN
>>> sht.range('A1').value = df
>>> sht.range('A1:C3').options(pd.DataFrame).value

one two
0 1.1 2.2
1 3.3 NaN
options: work for reading and writing
>>> sht.range('A5').options(index=False).value = df
>>> sht.range('A9').options(index=False, header=False).value = df

8.6 Pandas Series

>>> import pandas as pd
>>> import numpy as np
>>> sht = xw.Book().sheets[0]
>>> s = pd.Series([1.1, 3.3, 5., np.nan, 6., 8.], name='myseries')
>>> s
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
Name: myseries, dtype: float64
>>> sht.range('A1').value = s
>>> sht.range('A1:B7').options(pd.Series).value
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
Name: myseries, dtype: float64

Note: You only need to specify the top left cell when writing a list, a NumPy array or a Pandas DataFrame
to Excel, e.g.: sht.range('A1').value = np.eye(10)

24 Chapter 8. Data Structures Tutorial

CHAPTER 9

Add-in

The xlwings add-in is the preferred way to be able to use RunPython or UDFs. Note that you don’t need
an add-in if you just want to manipulate Excel from Python via xlwings.

Note: The ribbon of the add-in is compatible with Excel >= 2007 on Windows and >= 2016 on Mac. You
could, however, use the add-in with earlier versions but you would need to change the settings directly in
the config file, see below. On Mac, all UDF related functionality is not available.

Note: The add-in is password protected with the password xlwings. For debugging or to add new
extensions, you need to unprotect it.

9.1 Installation

To install the add-in, it’s easiest to use the command line client: xlwings addin install. Tech-
nically, this copies the add-in from Python’s installation directory to Excel’s XLSTART folder. If you
encounter issues, then you can also download the add-in (xlwings.xlam) from the GitHub Release

25

https://github.com/ZoomerAnalytics/xlwings/releases
https://github.com/ZoomerAnalytics/xlwings/releases

xlwings - Make Excel Fly!, Release dev

page (make sure you download the same version as the version of the Python package). Once down-
loaded, you can install the add-in by going to Developer > Excel Add-in > Browse. If you
don’t see Developer as tab in your ribbon, make sure to activate the tab first under File > Options
> Customize Ribbon (Mac: Cmd + , > Ribbon & Toolbar).

Then, to use RunPython or UDFs in a workbook, you need to set a reference to xlwings in the VBA
editor, see screenshot (Windows: Tools > References..., Mac: it’s on the lower left corner of the
VBA editor). Note that when you create a workbook via xlwings quickstart, the reference is already
set.

9.2 Global Settings

While the defaults will often work out-of-the box, you can change the global settings directly in the add-in:

• Interpreter: This is the path to the Python interpreter. This works also with virtual or conda
envs on Mac. If you use conda envs on Windows, then use Conda Base and Conda Env below
instead. Examples: "C:\Python35\pythonw.exe" or "/usr/local/bin/python3.5".
An empty field defaults to pythonw that expects the interpreter to be set in the PATH on Windows
or .bash_profile on Mac.

• PYTHONPATH: If the source file of your code is not found, add the path here.

• Conda Base: If you are on Windows and use a conda env, then type here the base name
of your Anaconda or Miniconda installation, e.g. C:\Users\Username\Miniconda3 or
%USERPROFILE%\Anaconda. NOTE that you need at least conda 4.6!

• Conda Env: If you are on Windows and use a conda env, then type here the name of your conda
env, e.g. myenv. Note that this requires you to either leave the Interpreter blank or set it to
python or pythonw.

• UDF Modules: Names of Python modules (without .py extension) from which the UDFs are be-
ing imported. Separate multiple modules by “;”. Example: UDF_MODULES = "common_udfs;
myproject" The default imports a file in the same directory as the Excel spreadsheet with the same
name but ending in .py.

• Debug UDFs: Check this box if you want to run the xlwings COM server manually for debugging,
see Debugging.

• Log File: Leave empty for default location (see below) or provide the full path, e.g. .

• RunPython: Use UDF Server: Uses the same COM Server for RunPython as for UDFs. This
will be faster, as the interpreter doesn’t shut down after each call.

26 Chapter 9. Add-in

https://github.com/ZoomerAnalytics/xlwings/releases
https://github.com/ZoomerAnalytics/xlwings/releases

xlwings - Make Excel Fly!, Release dev

• Restart UDF Server: This shuts down the UDF Server/Python interpreter. It’ll be restarted
upon the next function call.

Note: If you use Conda Base and Conda Env with UDFs, you currently can’t hide the command
prompt that pops up. You can still control if the output is printed to the command prompt or not though by
setting the Interpreter to python or pythonw, respectively.

9.3 Global Config: Ribbon/Config File

The settings in the xlwings Ribbon are stored in a config file that can also be manipulated externally. The
location is

• Windows: .xlwings\xlwings.conf in your user folder

• Mac Excel 2016: ~/Library/Containers/com.microsoft.Excel/Data/xlwings.
conf

Mac Excel 2011: ~/.xlwings/xlwings.conf

The format is as follows (keys are uppercase):

"INTERPRETER","pythonw"
"PYTHONPATH",""

Note: Mac Excel 2011 users have to create and edit the config file manually under ~/.xlwings/
xlwings.conf as the ribbon is not supported.

9.4 Workbook Directory Config: Config file

The global settings of the Ribbon/Config file can be overridden for one or more workbooks by creating a
xlwings.conf file in the workbook’s directory.

9.5 Workbook Config: xlwings.conf Sheet

Workbook specific settings will override global (Ribbon) and workbook directory config files: Workbook
specific settings are set by listing the config key/value pairs in a sheet with the name xlwings.conf.
When you create a new project with xlwings quickstart, it’ll already have such a sheet but you need
to rename it to xlwings.conf to make it active.

9.3. Global Config: Ribbon/Config File 27

xlwings - Make Excel Fly!, Release dev

9.6 Alternative: Standalone VBA module

Sometimes it might be useful to run xlwings code without having to install an add-in first. To do so, you need
to use the standalone option when creating a new project: xlwings quickstart myproject
--standalone.

This will add the content of the add-in as a single VBA module so you don’t need to set a reference to the
add-in anymore. It will still read in the settings from your xlwings.conf if you don’t override them by
using a sheet with the name xlwings.conf.

9.7 Log File default locations

These log files are used for the error pop-up windows:

• Windows: %APPDATA%\xlwings.log

• Mac with Excel 2011: /tmp/xlwings.log

• Mac with Excel 2016: ~/Library/Containers/com.microsoft.Excel/Data/
xlwings.log

28 Chapter 9. Add-in

CHAPTER 10

VBA: RunPython

10.1 xlwings add-in

To get access to the RunPython function, you’ll need the xlwings addin (or VBA module), see Add-in.

For new projects, the easiest way to get started is by using the command line client with the quickstart
command, see Command Line Client for details:

$ xlwings quickstart myproject

10.2 Call Python with “RunPython”

In the VBA Editor (Alt-F11), write the code below into a VBA module. xlwings quickstart
automatically adds a new module with a sample call. If you rather want to start from scratch, you can add
new module via Insert > Module.

Sub HelloWorld()
RunPython ("import hello; hello.world()")

End Sub

This calls the following code in hello.py:

hello.py
import numpy as np
import xlwings as xw

def world():
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = 'Hello World!'

29

xlwings - Make Excel Fly!, Release dev

You can then attach HelloWorld to a button or run it directly in the VBA Editor by hitting F5.

Note: Place xw.Book.caller() within the function that is being called from Excel and not outside as
global variable. Otherwise it prevents Excel from shutting down properly upon exiting and leaves you with
a zombie process when you use OPTIMIZED_CONNECTION = True.

10.3 Function Arguments and Return Values

While it’s technically possible to include arguments in the function call within RunPython, it’s not very
convenient. Also, RunPython does not allow you to return values. To overcome these issue, use UDFs,
see VBA: User Defined Functions (UDFs) - however, this is currently limited to Windows only.

30 Chapter 10. VBA: RunPython

CHAPTER 11

VBA: User Defined Functions (UDFs)

This tutorial gets you quickly started on how to write User Defined Functions.

Note:

• UDFs are currently only available on Windows.

• For details of how to control the behaviour of the arguments and return values, have a look at Con-
verters and Options.

• For a comprehensive overview of the available decorators and their options, check out the correspond-
ing API docs: UDF decorators.

11.1 One-time Excel preparations

1) Enable Trust access to the VBA project object model under File > Options >
Trust Center > Trust Center Settings > Macro Settings

2) Install the add-in via command prompt: xlwings addin install (see Add-in).

11.2 Workbook preparation

The easiest way to start a new project is to run xlwings quickstart myproject on a command
prompt (see Command Line Client). This automatically adds the xlwings reference to the generated work-
book.

31

xlwings - Make Excel Fly!, Release dev

11.3 A simple UDF

The default addin settings expect a Python source file in the way it is created by quickstart:

• in the same directory as the Excel file

• with the same name as the Excel file, but with a .py ending instead of .xlsm.

Alternatively, you can point to a specific module via UDF Modules in the xlwings ribbon.

Let’s assume you have a Workbook myproject.xlsm, then you would write the following code in
myproject.py:

import xlwings as xw

@xw.func
def double_sum(x, y):

"""Returns twice the sum of the two arguments"""
return 2 * (x + y)

• Now click on Import Python UDFs in the xlwings tab to pick up the changes made to
myproject.py.

• Enter the formula =double_sum(1, 2) into a cell and you will see the correct result:

• The docstring (in triple-quotes) will be shown as function description in Excel.

Note:

• You only need to re-import your functions if you change the function arguments or the function name.

• Code changes in the actual functions are picked up automatically (i.e. at the next calculation of the
formula, e.g. triggered by Ctrl-Alt-F9), but changes in imported modules are not. This is the
very behaviour of how Python imports work. If you want to make sure everything is in a fresh state,
click Restart UDF Server.

• The @xw.func decorator is only used by xlwings when the function is being imported into Excel. It
tells xlwings for which functions it should create a VBA wrapper function, otherwise it has no effect
on how the functions behave in Python.

11.4 Array formulas: Get efficient

Calling one big array formula in Excel is much more efficient than calling many single-cell formulas, so it’s
generally a good idea to use them, especially if you hit performance problems.

32 Chapter 11. VBA: User Defined Functions (UDFs)

xlwings - Make Excel Fly!, Release dev

You can pass an Excel Range as a function argument, as opposed to a single cell and it will show up in
Python as list of lists.

For example, you can write the following function to add 1 to every cell in a Range:

@xw.func
def add_one(data):

return [[cell + 1 for cell in row] for row in data]

To use this formula in Excel,

• Click on Import Python UDFs again

• Fill in the values in the range A1:B2

• Select the range D1:E2

• Type in the formula =add_one(A1:B2)

• Press Ctrl+Shift+Enter to create an array formula. If you did everything correctly, you’ll see
the formula surrounded by curly braces as in this screenshot:

11.4.1 Number of array dimensions: ndim

The above formula has the issue that it expects a “two dimensional” input, e.g. a nested list of the form [[1,
2], [3, 4]]. Therefore, if you would apply the formula to a single cell, you would get the following
error: TypeError: 'float' object is not iterable.

To force Excel to always give you a two-dimensional array, no matter whether the argument is a single cell,
a column/row or a two-dimensional Range, you can extend the above formula like this:

@xw.func
@xw.arg('data', ndim=2)
def add_one(data):

return [[cell + 1 for cell in row] for row in data]

11.5 Array formulas with NumPy and Pandas

Often, you’ll want to use NumPy arrays or Pandas DataFrames in your UDF, as this unlocks the full power
of Python’s ecosystem for scientific computing.

To define a formula for matrix multiplication using numpy arrays, you would define the following function:

11.5. Array formulas with NumPy and Pandas 33

xlwings - Make Excel Fly!, Release dev

import xlwings as xw
import numpy as np

@xw.func
@xw.arg('x', np.array, ndim=2)
@xw.arg('y', np.array, ndim=2)
def matrix_mult(x, y):

return x @ y

Note: If you are not on Python >= 3.5 with NumPy >= 1.10, use x.dot(y) instead of x @ y.

A great example of how you can put Pandas at work is the creation of an array-based CORREL formula.
Excel’s version of CORREL only works on 2 datasets and is cumbersome to use if you want to quickly
get the correlation matrix of a few time-series, for example. Pandas makes the creation of an array-based
CORREL2 formula basically a one-liner:

import xlwings as xw
import pandas as pd

@xw.func
@xw.arg('x', pd.DataFrame, index=False, header=False)
@xw.ret(index=False, header=False)
def CORREL2(x):

"""Like CORREL, but as array formula for more than 2 data sets"""
return x.corr()

11.6 @xw.arg and @xw.ret decorators

These decorators are to UDFs what the options method is to Range objects: they allow you to apply
converters and their options to function arguments (@xw.arg) and to the return value (@xw.ret). For
example, to convert the argument x into a pandas DataFrame and suppress the index when returning it, you
would do the following:

@xw.func
@xw.arg('x', pd.DataFrame)
@xw.ret(index=False)
def myfunction(x):

x is a DataFrame, do something with it
return x

For further details see the Converters and Options documentation.

11.7 Dynamic Array Formulas

34 Chapter 11. VBA: User Defined Functions (UDFs)

xlwings - Make Excel Fly!, Release dev

Note: If your version of Excel supports the new native dynamic arrays, then you don’t have to do anything
special, and you shouldn’t use the expand decorator! To check if your version of Excel supports it, see if
you have the =UNIQUE() formula available. Native dynamic arrays were introduced in Office 365 Insider
Fast at the end of September 2018.

As seen above, to use Excel’s array formulas, you need to specify their dimensions up front by selecting the
result array first, then entering the formula and finally hitting Ctrl-Shift-Enter. In practice, it often
turns out to be a cumbersome process, especially when working with dynamic arrays such as time series
data. Since v0.10, xlwings offers dynamic UDF expansion:

This is a simple example that demonstrates the syntax and effect of UDF expansion:

import numpy as np

@xw.func
@xw.ret(expand='table')
def dynamic_array(r, c):

return np.random.randn(int(r), int(c))

Note:

• Expanding array formulas will overwrite cells without prompting

• Pre v0.15.0 doesn’t allow to have volatile functions as arguments, e.g. you cannot use functions like
=TODAY() as arguments. Starting with v0.15.0, you can use volatile functions as input, but the UDF
will be called more than 1x.

• Dynamic Arrays have been refactored with v0.15.0 to be proper legacy arrays: To edit a dynamic
array with xlwings >= v0.15.0, you need to hit Ctrl-Shift-Enter while in the top left cell. Note
that you don’t have to do that when you enter the formula for the first time.

11.7. Dynamic Array Formulas 35

xlwings - Make Excel Fly!, Release dev

11.8 Docstrings

The following sample shows how to include docstrings both for the function and for the arguments x and y
that then show up in the function wizard in Excel:

import xlwings as xw

@xw.func
@xw.arg('x', doc='This is x.')
@xw.arg('y', doc='This is y.')
def double_sum(x, y):

"""Returns twice the sum of the two arguments"""
return 2 * (x + y)

11.9 The “vba” keyword

It’s often helpful to get the address of the calling cell. Right now, one of the easiest ways to accomplish
this is to use the vba keyword. vba, in fact, allows you to access any available VBA expression e.g.
Application. Note, however, that currently you’re acting directly on the pywin32 COM object:

@xw.func
@xw.arg('xl_app', vba='Application')
def get_caller_address(xl_app):

return xl_app.Caller.Address

11.10 Macros

On Windows, as alternative to calling macros via RunPython, you can also use the @xw.sub decorator:

import xlwings as xw

@xw.sub
def my_macro():

"""Writes the name of the Workbook into Range("A1") of Sheet 1"""
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = wb.name

After clicking on Import Python UDFs, you can then use this macro by executing it via Alt + F8 or
by binding it e.g. to a button. To to the latter, make sure you have the Developer tab selected under File
> Options > Customize Ribbon. Then, under the Developer tab, you can insert a button via
Insert > Form Controls. After drawing the button, you will be prompted to assign a macro to it
and you can select my_macro.

36 Chapter 11. VBA: User Defined Functions (UDFs)

xlwings - Make Excel Fly!, Release dev

11.11 Call UDFs from VBA

Imported functions can also be used from VBA. For example, for a function returning a 2d array:

Sub MySub()

Dim arr() As Variant
Dim i As Long, j As Long

arr = my_imported_function(...)

For j = LBound(arr, 2) To UBound(arr, 2)
For i = LBound(arr, 1) To UBound(arr, 1)

Debug.Print "(" & i & "," & j & ")", arr(i, j)
Next i

Next j

End Sub

11.12 Asynchronous UDFs

New in version v0.14.0.

xlwings offers an easy way to write asynchronous functions in Excel. Asynchronous functions return im-
mediately with #N/A waiting.... While the function is waiting for its return value, you can use Excel
to do other stuff and whenever the return value is available, the cell value will be updated.

The only available mode is currently async_mode='threading', meaning that it’s useful for I/O-
bound tasks, for example when you fetch data from an API over the web.

You make a function asynchronous simply by giving it the respective argument in the function decorator. In
this example, the time consuming I/O-bound task is simulated by using time.sleep:

import xlwings as xw
import time

@xw.func(async_mode='threading')
def myfunction(a):

time.sleep(5) # long running tasks
return a

You can use this function like any other xlwings function, simply by putting =myfunction("abcd")
into a cell (after you have imported the function, off course).

Note that xlwings doesn’t use the native asynchronous functions that were introduced with Excel 2010, so
xlwings asynchronous functions are supported with any version of Excel.

11.11. Call UDFs from VBA 37

xlwings - Make Excel Fly!, Release dev

38 Chapter 11. VBA: User Defined Functions (UDFs)

CHAPTER 12

Debugging

Since xlwings runs in every Python environment, you can use your preferred way of debugging.

• RunPython: When calling Python through RunPython, you can set a mock_caller to make it
easy to switch back and forth between calling the function from Excel and Python.

• UDFs: For debugging User Defined Functions, xlwings offers a convenient debugging server

To begin with, Excel will show Python errors in a Message Box:

Note: On Mac, if the import of a module/package fails before xlwings is imported, the popup will not
be shown and the StatusBar will not be reset. However, the error will still be logged in the log file. For the
location of the logfile, see Log File default locations.

39

xlwings - Make Excel Fly!, Release dev

12.1 RunPython

Consider the following sample code of your Python source code my_module.py:

my_module.py
import os
import xlwings as xw

def my_macro():
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = 1

if __name__ == '__main__':
Expects the Excel file next to this source file, adjust accordingly.
xw.Book('myfile.xlsm').set_mock_caller()
my_macro()

my_macro() can now easily be run from Python for debugging and from Excel via RunPython without
having to change the source code:

Sub my_macro()
RunPython ("import my_module; my_module.my_macro()")

End Sub

12.2 UDF debug server

Windows only: To debug UDFs, just check the Debug UDFs in the Add-in, at the top of the xlwings VBA
module. Then add the following lines at the end of your Python source file and run it. Depending on which
IDE you use, you might need to run the code in “debug” mode (e.g. in case you’re using PyCharm or
PyDev):

if __name__ == '__main__':
xw.serve()

When you recalculate the Sheet (Ctrl-Alt-F9), the code will stop at breakpoints or output any print calls
that you may have.

The following screenshot shows the code stopped at a breakpoint in the community version of PyCharm:

Note: When running the debug server from a command prompt, there is currently no gracious way to
terminate it, but closing the command prompt will kill it.

40 Chapter 12. Debugging

xlwings - Make Excel Fly!, Release dev

12.2. UDF debug server 41

xlwings - Make Excel Fly!, Release dev

42 Chapter 12. Debugging

CHAPTER 13

Matplotlib

Using pictures.add(), it is easy to paste a Matplotlib plot as picture in Excel.

13.1 Getting started

The easiest sample boils down to:

>>> import matplotlib.pyplot as plt
>>> import xlwings as xw

>>> fig = plt.figure()
>>> plt.plot([1, 2, 3])

>>> sht = xw.Book().sheets[0]
>>> sht.pictures.add(fig, name='MyPlot', update=True)

Note: If you set update=True, you can resize and position the plot on Excel: subsequent calls to
pictures.add()with the same name ('MyPlot') will update the picture without changing its position
or size.

13.2 Full integration with Excel

Calling the above code with RunPython and binding it e.g. to a button is straightforward and works cross-
platform.

43

xlwings - Make Excel Fly!, Release dev

However, on Windows you can make things feel even more integrated by setting up a UDF along the
following lines:

@xw.func
def myplot(n):

sht = xw.Book.caller().sheets.active
fig = plt.figure()
plt.plot(range(int(n)))
sht.pictures.add(fig, name='MyPlot', update=True)
return 'Plotted with n={}'.format(n)

If you import this function and call it from cell B2, then the plot gets automatically updated when cell B1
changes:

13.3 Properties

Size, position and other properties can either be set as arguments within pictures.add(), or by manip-
ulating the picture object that is returned, see xlwings.Picture().

For example:

>>> sht = xw.Book().sheets[0]
>>> sht.pictures.add(fig, name='MyPlot', update=True,

left=sht.range('B5').left, top=sht.range('B5').top)

or:

>>> plot = sht.pictures.add(fig, name='MyPlot', update=True)
>>> plot.height /= 2
>>> plot.width /= 2

44 Chapter 13. Matplotlib

xlwings - Make Excel Fly!, Release dev

13.3. Properties 45

xlwings - Make Excel Fly!, Release dev

13.4 Getting a Matplotlib figure

Here are a few examples of how you get a matplotlib figure object:

• via PyPlot interface:

import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot([1, 2, 3, 4, 5])

or:

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4, 5])
fig = plt.gcf()

• via object oriented interface:

from matplotlib.figure import Figure
fig = Figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.plot([1, 2, 3, 4, 5])

• via Pandas:

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
ax = df.plot(kind='bar')
fig = ax.get_figure()

46 Chapter 13. Matplotlib

CHAPTER 14

Converters and Options

Introduced with v0.7.0, converters define how Excel ranges and their values are converted both during
reading and writing operations. They also provide a consistent experience across xlwings.Range objects
and User Defined Functions (UDFs).

Converters are explicitely set in the options method when manipulating Range objects or in the @xw.
arg and @xw.ret decorators when using UDFs. If no converter is specified, the default converter is
applied when reading. When writing, xlwings will automatically apply the correct converter (if available)
according to the object’s type that is being written to Excel. If no converter is found for that type, it falls
back to the default converter.

All code samples below depend on the following import:

>>> import xlwings as xw

Syntax:

xw.Range UDFs
read-
ing

xw.Range.options(convert=None,

**kwargs).value
@arg('x',
convert=None,

**kwargs)
writ-
ing

xw.Range.options(convert=None,

**kwargs).value = myvalue
@ret(convert=None,

**kwargs)

Note: Keyword arguments (kwargs) may refer to the specific converter or the default converter. For
example, to set the numbers option in the default converter and the index option in the DataFrame
converter, you would write:

47

xlwings - Make Excel Fly!, Release dev

xw.Range('A1:C3').options(pd.DataFrame, index=False, numbers=int).value

14.1 Default Converter

If no options are set, the following conversions are performed:

• single cells are read in as floats in case the Excel cell holds a number, as unicode in case it holds
text, as datetime if it contains a date and as None in case it is empty.

• columns/rows are read in as lists, e.g. [None, 1.0, 'a string']

• 2d cell ranges are read in as list of lists, e.g. [[None, 1.0, 'a string'], [None, 2.0,
'another string']]

The following options can be set:

• ndim

Force the value to have either 1 or 2 dimensions regardless of the shape of the range:

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [[1, 2], [3, 4]]
>>> sht.range('A1').value
1.0
>>> sht.range('A1').options(ndim=1).value
[1.0]
>>> sht.range('A1').options(ndim=2).value
[[1.0]]
>>> sht.range('A1:A2').value
[1.0 3.0]
>>> sht.range('A1:A2').options(ndim=2).value
[[1.0], [3.0]]

• numbers

By default cells with numbers are read as float, but you can change it to int:

>>> sht.range('A1').value = 1
>>> sht.range('A1').value
1.0
>>> sht.range('A1').options(numbers=int).value
1

Alternatively, you can specify any other function or type which takes a single float argument.

Using this on UDFs looks like this:

@xw.func
@xw.arg('x', numbers=int)
def myfunction(x):

(continues on next page)

48 Chapter 14. Converters and Options

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

all numbers in x arrive as int
return x

Note: Excel always stores numbers internally as floats, which is the reason why the int converter
rounds numbers first before turning them into integers. Otherwise it could happen that e.g. 5 might be
returned as 4 in case it is represented as a floating point number that is slightly smaller than 5. Should
you require Python’s original int in your converter, use raw int instead.

• dates

By default cells with dates are read as datetime.datetime, but you can change it to datetime.
date:

– Range:

>>> import datetime as dt
>>> sht.range('A1').options(dates=dt.date).value

– UDFs: @xw.arg('x', dates=dt.date)

Alternatively, you can specify any other function or type which takes the same keyword arguments as
datetime.datetime, for example:

>>> my_date_handler = lambda year, month, day, **kwargs: "%04i-%02i-%02i
→˓" % (year, month, day)
>>> sht.range('A1').options(dates=my_date_handler).value
'2017-02-20'

• empty

Empty cells are converted per default into None, you can change this as follows:

– Range: >>> sht.range('A1').options(empty='NA').value

– UDFs: @xw.arg('x', empty='NA')

• transpose

This works for reading and writing and allows us to e.g. write a list in column orientation to Excel:

– Range: sht.range('A1').options(transpose=True).value = [1, 2, 3]

– UDFs:

@xw.arg('x', transpose=True)
@xw.ret(transpose=True)
def myfunction(x):

x will be returned unchanged as transposed both when reading
→˓and writing

return x

• expand

This works the same as the Range properties table, vertical and horizontal but is only
evaluated when getting the values of a Range:

14.1. Default Converter 49

xlwings - Make Excel Fly!, Release dev

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [[1,2], [3,4]]
>>> rng1 = sht.range('A1').expand()
>>> rng2 = sht.range('A1').options(expand='table')
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> sht.range('A3').value = [5, 6]
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

Note: The expand method is only available on Range objects as UDFs only allow to manipulate
the calling cells.

14.2 Built-in Converters

xlwings offers several built-in converters that perform type conversion to dictionaries, NumPy arrays,
Pandas Series and DataFrames. These build on top of the default converter, so in most cases the options
described above can be used in this context, too (unless they are meaningless, for example the ndim in the
case of a dictionary).

It is also possible to write and register custom converter for additional types, see below.

The samples below can be used with both xlwings.Range objects and UDFs even though only one
version may be shown.

14.2.1 Dictionary converter

The dictionary converter turns two Excel columns into a dictionary. If the data is in row orientation, use
transpose:

>>> sht = xw.sheets.active
>>> sht.range('A1:B2').options(dict).value
{'a': 1.0, 'b': 2.0}

(continues on next page)

50 Chapter 14. Converters and Options

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

>>> sht.range('A4:B5').options(dict, transpose=True).value
{'a': 1.0, 'b': 2.0}

Note: instead of dict, you can also use OrderedDict from collections.

14.2.2 Numpy array converter

options: dtype=None, copy=True, order=None, ndim=None

The first 3 options behave the same as when using np.array() directly. Also, ndim works the same
as shown above for lists (under default converter) and hence returns either numpy scalars, 1d arrays or 2d
arrays.

Example:

>>> import numpy as np
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').options(transpose=True).value = np.array([1, 2, 3])
>>> sht.range('A1:A3').options(np.array, ndim=2).value
array([[1.],

[2.],
[3.]])

14.2.3 Pandas Series converter

options: dtype=None, copy=False, index=1, header=True

The first 2 options behave the same as when using pd.Series() directly. ndim doesn’t have an effect
on Pandas series as they are always expected and returned in column orientation.

index: int or Boolean

When reading, it expects the number of index columns shown in Excel.
When writing, include or exclude the index by setting it to True or False.

header: Boolean

When reading, set it to False if Excel doesn’t show either index or series names.
When writing, include or exclude the index and series names by setting it to True or False.

For index and header, 1 and True may be used interchangeably.

Example:

>>> sht = xw.Book().sheets[0]
>>> s = sht.range('A1').options(pd.Series, expand='table').value
>>> s
date
2001-01-01 1
2001-01-02 2

(continues on next page)

14.2. Built-in Converters 51

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

2001-01-03 3
2001-01-04 4
2001-01-05 5
2001-01-06 6
Name: series name, dtype: float64
>>> sht.range('D1', header=False).value = s

14.2.4 Pandas DataFrame converter

options: dtype=None, copy=False, index=1, header=1

The first 2 options behave the same as when using pd.DataFrame() directly. ndim doesn’t have an
effect on Pandas DataFrames as they are automatically read in with ndim=2.

index: int or Boolean

When reading, it expects the number of index columns shown in Excel.
When writing, include or exclude the index by setting it to True or False.

header: int or Boolean

When reading, it expects the number of column headers shown in Excel.
When writing, include or exclude the index and series names by setting it to True or False.

For index and header, 1 and True may be used interchangeably.

Example:

>>> sht = xw.Book().sheets[0]
>>> df = sht.range('A1:D5').options(pd.DataFrame, header=2).value
>>> df

a b
c d e

ix
10 1 2 3
20 4 5 6
30 7 8 9

Writing back using the defaults:
>>> sht.range('A1').value = df

(continues on next page)

52 Chapter 14. Converters and Options

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

Writing back and changing some of the options, e.g. getting rid of the
→˓index:
>>> sht.range('B7').options(index=False).value = df

The same sample for UDF (starting in Range('A13') on screenshot) looks like this:

@xw.func
@xw.arg('x', pd.DataFrame, header=2)
@xw.ret(index=False)
def myfunction(x):

x is a DataFrame, do something with it
return x

14.2.5 xw.Range and ‘raw’ converters

Technically speaking, these are “no-converters”.

• If you need access to the xlwings.Range object directly, you can do:

@xw.func
@xw.arg('x', xw.Range)
def myfunction(x):

return x.formula

This returns x as xlwings.Range object, i.e. without applying any converters or options.

• The raw converter delivers the values unchanged from the underlying libraries (pywin32 on Win-
dows and appscript on Mac), i.e. no sanitizing/cross-platform harmonizing of values are being
made. This might be useful in a few cases for efficiency reasons. E.g:

14.2. Built-in Converters 53

xlwings - Make Excel Fly!, Release dev

>>> sht.range('A1:B2').value
[[1.0, 'text'], [datetime.datetime(2016, 2, 1, 0, 0), None]]

>>> sht.range('A1:B2').options('raw').value # or sht.range('A1:B2').raw_
→˓value
((1.0, 'text'), (pywintypes.datetime(2016, 2, 1, 0, 0,
→˓tzinfo=TimeZoneInfo('GMT Standard Time', True)), None))

14.3 Custom Converter

Here are the steps to implement your own converter:

• Inherit from xlwings.conversion.Converter

• Implement both a read_value and write_value method as static- or classmethod:

– In read_value, value is what the base converter returns: hence, if no base has been spec-
ified it arrives in the format of the default converter.

– In write_value, value is the original object being written to Excel. It must be returned
in the format that the base converter expects. Again, if no base has been specified, this is the
default converter.

The options dictionary will contain all keyword arguments specified in the xw.Range.options
method, e.g. when calling xw.Range('A1').options(myoption='some value') or as
specified in the @arg and @ret decorator when using UDFs. Here is the basic structure:

from xlwings.conversion import Converter

class MyConverter(Converter):

@staticmethod
def read_value(value, options):

myoption = options.get('myoption', default_value)
return_value = value # Implement your conversion here
return return_value

@staticmethod
def write_value(value, options):

myoption = options.get('myoption', default_value)
return_value = value # Implement your conversion here
return return_value

• Optional: set a base converter (base expects a class name) to build on top of an ex-
isting converter, e.g. for the built-in ones: DictCoverter, NumpyArrayConverter,
PandasDataFrameConverter, PandasSeriesConverter

• Optional: register the converter: you can (a) register a type so that your converter becomes the default
for this type during write operations and/or (b) you can register an alias that will allow you to explicitly
call your converter by name instead of just by class name

54 Chapter 14. Converters and Options

xlwings - Make Excel Fly!, Release dev

The following examples should make it much easier to follow - it defines a DataFrame converter that extends
the built-in DataFrame converter to add support for dropping nan’s:

from xlwings.conversion import Converter, PandasDataFrameConverter

class DataFrameDropna(Converter):

base = PandasDataFrameConverter

@staticmethod
def read_value(builtin_df, options):

dropna = options.get('dropna', False) # set default to False
if dropna:

converted_df = builtin_df.dropna()
else:

converted_df = builtin_df
This will arrive in Python when using the DataFrameDropna converter

→˓for reading
return converted_df

@staticmethod
def write_value(df, options):

dropna = options.get('dropna', False)
if dropna:

converted_df = df.dropna()
else:

converted_df = df
This will be passed to the built-in PandasDataFrameConverter when

→˓writing
return converted_df

Now let’s see how the different converters can be applied:

Fire up a Workbook and create a sample DataFrame
sht = xw.Book().sheets[0]
df = pd.DataFrame([[1.,10.],[2.,np.nan], [3., 30.]])

• Default converter for DataFrames:

Write
sht.range('A1').value = df

Read
sht.range('A1:C4').options(pd.DataFrame).value

• DataFrameDropna converter:

Write
sht.range('A7').options(DataFrameDropna, dropna=True).value = df

Read
sht.range('A1:C4').options(DataFrameDropna, dropna=True).value

14.3. Custom Converter 55

xlwings - Make Excel Fly!, Release dev

• Register an alias (optional):

DataFrameDropna.register('df_dropna')

Write
sht.range('A12').options('df_dropna', dropna=True).value = df

Read
sht.range('A1:C4').options('df_dropna', dropna=True).value

• Register DataFrameDropna as default converter for DataFrames (optional):

DataFrameDropna.register(pd.DataFrame)

Write
sht.range('A13').options(dropna=True).value = df

Read
sht.range('A1:C4').options(pd.DataFrame, dropna=True).value

These samples all work the same with UDFs, e.g.:

@xw.func
@arg('x', DataFrameDropna, dropna=True)
@ret(DataFrameDropna, dropna=True)
def myfunction(x):

...
return x

Note: Python objects run through multiple stages of a transformation pipeline when they are being written
to Excel. The same holds true in the other direction, when Excel/COM objects are being read into Python.

Pipelines are internally defined by Accessor classes. A Converter is just a special Accessor which converts
to/from a particular type by adding an extra stage to the pipeline of the default Accessor. For example, the
PandasDataFrameConverter defines how a list of list (as delivered by the default Accessor) should
be turned into a Pandas DataFrame.

The Converter class provides basic scaffolding to make the task of writing a new Converter easier. If you
need more control you can subclass Accessor directly, but this part requires more work and is currently
undocumented.

56 Chapter 14. Converters and Options

CHAPTER 15

Threading and Multiprocessing

New in version 0.13.0.

15.1 Threading

While xlwings is not technically thread safe, it’s still easy to use it in threads as long as you have at least
v0.13.0 and stick to a simple rule: Do not pass xlwings objects to threads. This rule isn’t a requirement on
macOS, but it’s still recommended if you want your programs to be cross-platform.

Consider the following example that will NOT work:

import threading
from queue import Queue
import xlwings as xw

num_threads = 4

def write_to_workbook():
while True:

rng = q.get()
rng.value = rng.address
print(rng.address)
q.task_done()

q = Queue()

for i in range(num_threads):
t = threading.Thread(target=write_to_workbook)

(continues on next page)

57

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

t.daemon = True
t.start()

for cell in ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10']:
THIS DOESN'T WORK - passing xlwings objects to threads will fail!
rng = xw.Book('Book1.xlsx').sheets[0].range(cell)
q.put(rng)

q.join()

To make it work, you simply have to fully qualify the cell reference in the thread instead of passing a Book
object:

import threading
from queue import Queue
import xlwings as xw

num_threads = 4

def write_to_workbook():
while True:

cell_ = q.get()
xw.Book('Book1.xlsx').sheets[0].range(cell_).value = cell_
print(cell_)
q.task_done()

q = Queue()

for i in range(num_threads):
t = threading.Thread(target=write_to_workbook)
t.daemon = True
t.start()

for cell in ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10']:
q.put(cell)

q.join()

15.2 Multiprocessing

Note: Multiprocessing is only support on Windows!

The same rules apply to multiprocessing as for threading, here’s a working example:

58 Chapter 15. Threading and Multiprocessing

xlwings - Make Excel Fly!, Release dev

from multiprocessing import Pool
import xlwings as xw

def write_to_workbook(cell):
xw.Book('Book1.xlsx').sheets[0].range(cell).value = cell
print(cell)

if __name__ == '__main__':
with Pool(4) as p:

p.map(write_to_workbook,
['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10'])

15.2. Multiprocessing 59

xlwings - Make Excel Fly!, Release dev

60 Chapter 15. Threading and Multiprocessing

CHAPTER 16

Command Line Client

xlwings comes with a command line client that makes it easy to set up workbooks and install the add-in. On
Windows, type the commands into a Command Prompt, on Mac, type them into a Terminal.

16.1 Quickstart

• xlwings quickstart myproject

This command is by far the fastest way to get off the ground: It creates a new folder myproject with an
Excel workbook that already has the reference to the xlwings addin and a Python file, ready to be used right
away:

myproject
|--myproject.xlsm
|--myproject.py

If you want to use xlwings via VBA module instead of addin, use the --standalone or -s flag:

xlwings quickstart myproject --standalone

16.2 Add-in

The addin command makes it easy on Windows to install/remove the addin. On Mac, you need to install it
manually, but xlwings addin install will show you how to do it.

Note: Excel needs to be closed before installing/updating the add-in via command line. If you’re still
getting an error, start the Task Manager and make sure there are no EXCEL.EXE processes left.

61

xlwings - Make Excel Fly!, Release dev

• xlwings addin install: Copies the xlwings add-in to the XLSTART folder

• xlwings addin update: Replaces the current add-in with the latest one

• xlwings addin remove: Removes the add-in from the XLSTART folder

• xlwings addin status: Shows if the add-in is installed together with the installation path

After installing the add-in, it will be available as xlwings tab on the Excel Ribbon.

New in version 0.6.0.

16.3 RunPython

Only required if you are on Mac, are using Excel 2016 and have xlwings installed via conda or as part of
Anaconda. To enable the RunPython calls in VBA, run this one time:

xlwings runpython install

Alternatively, install xlwings with pip.

New in version 0.7.0.

62 Chapter 16. Command Line Client

CHAPTER 17

Missing Features

If you’re missing a feature in xlwings, do the following:

1) Most importantly, open an issue on GitHub. If it’s something bigger or if you want support from other
users, consider opening a feature request. Adding functionality should be user driven, so only if you
tell us about what you’re missing, it’s eventually going to find its way into the library. By the way, we
also appreciate pull requests!

2) Workaround: in essence, xlwings is just a smart wrapper around pywin32 on Windows and appscript
on Mac. You can access the underlying objects by calling the api property:

>>> sht = xw.Book().sheets[0]
>>> sht.api
<COMObject <unknown>> # Windows/pywin32
app(pid=2319).workbooks['Workbook1'].worksheets[1] # Mac/appscript

This works accordingly for the other objects like sht.range('A1').api etc.

The underlying objects will offer you pretty much everything you can do with VBA, using the syntax
of pywin32 (which pretty much feels like VBA) and appscript (which doesn’t feel like VBA). But
apart from looking ugly, keep in mind that it makes your code platform specific (!), i.e. even if you
go for option 2), you should still follow option 1) and open an issue so the feature finds it’s way into
the library (cross-platform and with a Pythonic syntax).

17.1 Example: Workaround to use VBA’s Range.WrapText

Windows
sht.range('A1').api.WrapText = True

(continues on next page)

63

https://github.com/ZoomerAnalytics/xlwings/issues
https://zoomeranalytics.uservoice.com/
http://sourceforge.net/projects/pywin32/
http://appscript.sourceforge.net/

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

Mac
sht.range('A1').api.wrap_text.set(True)

64 Chapter 17. Missing Features

CHAPTER 18

xlwings with other Office Apps

xlwings can also be used to call Python functions from VBA within Office apps other than Excel (like
Outlook, Access etc.).

Note: New in v0.12.0 and still in a somewhat early stage that involves a bit of manual work. Currently,
this functionality is only available on Windows for UDFs. The RunPython functionality is currently not
supported.

18.1 How To

1) As usual, write your Python function and import it into Excel (see VBA: User Defined Functions
(UDFs)).

2) Press Alt-F11 to get into the VBA editor, then right-click on the xlwings_udfs VBA module
and select Export File.... Save the xlwings_udfs.bas file somewhere.

3) Switch into the other Office app, e.g. Microsoft Access and click again Alt-F11 to get into the
VBA editor. Right-click on the VBA Project and Import File..., then select the file that you
exported in the previous step. Once imported, replace the app name in the first line to the one that
you are using, i.e. Microsoft Access or Microsoft Outlook etc. so that the first line then
reads: #Const App = "Microsoft Access"

4) Now import the standalone xlwings VBA module (xlwings.bas). You can find it in your xlwings
installation folder. To know where that is, do:

>>> import xlwings as xw
>>> xlwings.__path__

65

xlwings - Make Excel Fly!, Release dev

And finally do the same as in the previous step and replace the App name in the first line with the
name of the corresponding app that you are using. You are now able to call the Python function from
VBA.

18.2 Config

The other Office apps will use the same global config file as you are editing via the Excel ribbon add-
in. When it makes sense, you’ll be able to use the directory config file (e.g. you can put it next to your
Access or Word file) or you can hardcode the path to the config file in the VBA standalone module, e.g. in
the function GetDirectoryConfigFilePath (e.g. suggested when using Outlook that doesn’t really
have the same concept of files like the other Office apps). NOTE: For Office apps without file concept, you
need to make sure that the PYTHONPATH points to the directory with the Python source file. For details on
the different config options, see Config.

66 Chapter 18. xlwings with other Office Apps

CHAPTER 19

Deployment

19.1 Zip files

New in version 0.15.2.

To make it easier to distribute, you can zip up your Python code into a zip file. If you use UDFs, this will
disable the automatic code reload, so this is a feature meant for distribution, not development. In practice,
this means that when your code is inside a zip file, you’ll have to click on re-import to get any changes.

If you name your zip file like your Excel file (but with .zip extension) and place it in the same folder as
your Excel workbook, xlwings will automatically find it (similar to how it works with a single python file).

If you want to use a different directory, make sure to add it to the PYTHONPATH in your config (Ribbon or
config file):

PYTHONPATH, "C:\path\to\myproject.zip"

19.2 RunFrozenPython

Changed in version 0.15.2.

You can use a freezer like PyInstaller, cx_Freeze, py2exe etc. to freeze your Python module into an exe-
cutable so that the recipient doesn’t have to install a full Python distribution.

Note:

• This does not work with UDFs.

• Currently only available on Windows, but support for Mac should be easy to add.

67

xlwings - Make Excel Fly!, Release dev

• You need at least 0.15.2 to support arguments

Use it as follows:

Sub MySample()
RunFrozenPython "C:\path\to\dist\myproject\myproject.exe arg1 arg2"

End Sub

68 Chapter 19. Deployment

CHAPTER 20

Extensions

It’s easy to extend the xlwings add-in with own code like UDFs or RunPython macros, so that they can
be deployed without end users having to import or write the functions themselves. Just add another VBA
module to the xlwings addin with the respective code.

UDF extensions can be used from every workbook without having to set a reference.

20.1 In-Excel SQL

The xlwings addin comes with a built-in extension that adds in-Excel SQL syntax (sqlite dialect):

=sql(SQL Statement, table a, table b, ...)

69

xlwings - Make Excel Fly!, Release dev

As this extension uses UDFs, it’s only available on Windows right now.

70 Chapter 20. Extensions

CHAPTER 21

xlwings with R and Julia

While xlwings is a pure Python package, there are cross-language packages that allow for a relative straight-
forward use from/with other languages. This means, however, that you’ll always need to have Python with
xlwings installed in addition to R or Julia. We recommend the Anaconda distribution, see also Installation.

21.1 R

The R instructions are for Windows, but things work accordingly on Mac except that calling the R functions
as User Defined Functions is not supported at the moment (but RunPython works, see Call Python with
“RunPython”).

Setup:

• Install R and Python

• Add R_HOME environment variable to base directory of installation, .e.g C:\Program
Files\R\R-x.x.x

• Add R_USER environment variable to user folder, e.g. C:\Users\<user>

• Add C:\Program Files\R\R-x.x.x\bin to PATH

• Restart Windows because of the environment variables (!)

21.1.1 Simple functions with R

Original R function that we want to access from Excel (saved in r_file.R):

71

https://store.continuum.io/cshop/anaconda/

xlwings - Make Excel Fly!, Release dev

myfunction <- function(x, y){
return(x * y)

}

Python wrapper code:

import xlwings as xw
import rpy2.robjects as robjects
you might want to use some relative path or place the file in R's current
→˓working dir
robjects.r.source(r"C:\path\to\r_file.R")

@xw.func
def myfunction(x, y):

myfunc = robjects.r['myfunction']
return tuple(myfunc(x, y))

After importing this function (see: VBA: User Defined Functions (UDFs)), it will be available as UDF from
Excel.

21.1.2 Array functions with R

Original R function that we want to access from Excel (saved in r_file.R):

array_function <- function(m1, m2){
Matrix multiplication
return(m1 %*% m2)

}

Python wrapper code:

import xlwings as xw
import numpy as np
import rpy2.robjects as robjects
from rpy2.robjects import numpy2ri

robjects.r.source(r"C:\path\to\r_file.R")
numpy2ri.activate()

@xw.func
@xw.arg("x", np.array, ndim=2)
@xw.arg("y", np.array, ndim=2)
def array_function(x, y):

array_func = robjects.r['array_function']
return np.array(array_func(x, y))

After importing this function (see: VBA: User Defined Functions (UDFs)), it will be available as UDF from
Excel.

72 Chapter 21. xlwings with R and Julia

xlwings - Make Excel Fly!, Release dev

21.2 Julia

Setup:

• Install Julia and Python

• Run Pkg.add("PyCall") from an interactive Julia interpreter

xlwings can then be called from Julia with the following syntax (the colons take care of automatic type
conversion):

julia> using PyCall
julia> @pyimport xlwings as xw

julia> xw.Book()
PyObject <Book [Workbook1]>

julia> xw.Range("A1")[:value] = "Hello World"
julia> xw.Range("A1")[:value]
"Hello World"

21.2. Julia 73

xlwings - Make Excel Fly!, Release dev

74 Chapter 21. xlwings with R and Julia

CHAPTER 22

Troubleshooting

22.1 Issue: dll not found

Solution:

1) xlwings32-<version>.dll and xlwings64-<version>.dll are both in the same direc-
tory as your python.exe. If not, something went wrong with your installation. Reinstall it with
pip or conda, see Installation.

2) Check your Interpreter in the add-in or config sheet. If it is empty, then you need to be
able to open a windows command prompt and type python to start an interactive Python session.
If you get the error 'python' is not recognized as an internal or external
command, operable program or batch file., then you have two options: Either add
the path of where your python.exe lives to your Windows path (see https://www.computerhope.
com/issues/ch000549.htm) or set the full path to your interpreter in the add-in or your config sheet,
e.g. C:\Users\MyUser\anaconda\pythonw.exe

75

https://www.computerhope.com/issues/ch000549.htm
https://www.computerhope.com/issues/ch000549.htm

xlwings - Make Excel Fly!, Release dev

76 Chapter 22. Troubleshooting

CHAPTER 23

REST API

New in version 0.13.0.

23.1 Quickstart

xlwings offers an easy way to expose an Excel workbook via REST API both on Windows and macOS. This
can be useful when you have a workbook running on a single computer and want to access it from another
computer. Or you can build a Linux based web app that can interact with a legacy Excel application while
you are in the progress of migrating the Excel functionality into your web app (if you need help with that,
give us a shout).

You can run the REST API server from a command prompt or terminal as follows (this requires Flask>=1.0,
so make sure to pip install Flask):

xlwings restapi run

Then perform a GET request e.g. via PowerShell on Windows or Terminal on Mac (while having an unsaved
“Book1” open). Note that you need to run the server and the GET request from two separate terminals (or
you can use something more convenient like Postman or Insomnia for testing the API):

$ curl "http://127.0.0.1:5000/book/book1/sheets/0/range/A1:B2"
{

"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 10.0,
"count": 4,
"current_region": "A1:B2",
"formula": [

(continues on next page)

77

https://www.zoomeranalytics.com/contact
https://www.getpostman.com/
https://insomnia.rest/

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

[
"1",
"2"

],
[

"3",
"4"

]
],
"formula_array": null,
"height": 32.0,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": "General",
"row": 1,
"row_height": 16.0,
"shape": [

2,
2

],
"size": 4,
"top": 0.0,
"value": [

[
1.0,
2.0

],
[

3.0,
4.0

]
],
"width": 130.0

}

In the command prompt where your server is running, press Ctrl-C to shut it down again.

The xlwings REST API is a thin wrapper around the Python API which makes it very easy if you have
worked previously with xlwings. It also means that the REST API does require the Excel application to be
up and running which makes it a great choice if the data in your Excel workbook is constantly changing as
the REST API will always deliver the current state of the workbook without the need of saving it first.

Note: Currently, we only provide the GET methods to read the workbook. If you are also interested in
the POST methods to edit the workbook, let us know via GitHub issues. Some other things will also need
improvement, most notably exception handling.

78 Chapter 23. REST API

xlwings - Make Excel Fly!, Release dev

23.2 Run the server

xlwings restapi run will run a Flask development server on http://127.0.0.1:5000. You can pro-
vide --host and --port as command line args and it also respects the Flask environment variables like
FLASK_ENV=development.

If you want to have more control, you can run the server directly with Flask, see the Flask docs for more
details:

set FLASK_APP=xlwings.rest.api
flask run

If you are on Mac, use export FLASK_APP=xlwings.rest.api instead of set
FLASK_APP=xlwings.rest.api.

For production, you can use any WSGI HTTP Server like gunicorn (on Mac) or waitress (on Mac/Windows)
to serve the API. For example, with gunicorn you would do: gunicorn xlwings.rest.api:api. Or
with waitress (adjust the host accordingly if you want to make the api accessible from outside of localhost):

from xlwings.rest.api import api
from waitress import serve
serve(wsgiapp, host='127.0.0.1', port=5000)

23.3 Indexing

While the Python API offers Python’s 0-based indexing (e.g. xw.books[0]) as well as Excel’s 1-based
indexing (e.g. xw.books(1)), the REST API only offers 0-based indexing, e.g. /books/0.

23.4 Range Options

The REST API accepts Range options as query parameters, see xlwings.Range.options() e.g.

/book/book1/sheets/0/range/A1?expand=table&transpose=true

Remember that options only affect the value property.

23.5 Endpoint overview

End-
point

Corresponds
to

Short Description

/book Book Finds your workbook across all open instances of Excel and will open it if
it can’t find it

/books Books Books collection of the active Excel instance
/apps Apps This allows you to specify the Excel instance you want to work with

23.2. Run the server 79

http://127.0.0.1:5000
http://flask.pocoo.org/docs/1.0/quickstart/
https://gunicorn.org/
https://docs.pylonsproject.org/projects/waitress/en/latest/

xlwings - Make Excel Fly!, Release dev

23.6 Endpoint details

23.6.1 /book

GET /book/<fullname_or_name>

Example response:

{
"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"name": "Book1.xlsx",
"names": [

"Sheet1!myname1",
"myname2"

],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1",
"Sheet2"

]
}

GET /book/<fullname_or_name>/names

Example response:

{
"names": [

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

},
{

"name": "myname2",
"refers_to": "=Sheet1!A1"

}
]

}

GET /book/<fullname_or_name>/names/<name>

Example response:

{
"name": "myname2",
"refers_to": "=Sheet1!A1"

}

GET /book/<fullname_or_name>/names/<name>/range

Example response:

80 Chapter 23. REST API

xlwings - Make Excel Fly!, Release dev

{
"address": "A1",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 1,
"current_region": "A1:B2",
"formula": "=1+1.1",
"formula_array": "=1+1,1",
"height": 14.25,
"last_cell": "A1",
"left": 0.0,
"name": "myname2",
"number_format": "General",
"row": 1,
"row_height": 14.3,
"shape": [

1,
1

],
"size": 1,
"top": 0.0,
"value": 2.1,
"width": 51.0

}

GET /book/<fullname_or_name>/sheets

Example response:

{
"sheets": [

{
"charts": [
"Chart 1"

],
"name": "Sheet1",
"names": [

"Sheet1!myname1"
],
"pictures": [
"Picture 3"

],
"shapes": [
"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

},
{

"charts": [],
"name": "Sheet2",
"names": [],

(continues on next page)

23.6. Endpoint details 81

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"pictures": [],
"shapes": [],
"used_range": "A1"

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>

Example response:

{
"charts": [

"Chart 1"
],
"name": "Sheet1",
"names": [

"Sheet1!myname1"
],
"pictures": [

"Picture 3"
],
"shapes": [

"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/charts

Example response:

{
"charts": [

{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/charts/<chart_name_or_ix>

Example response:

{
"chart_type": "line",

(continues on next page)

82 Chapter 23. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/names

Example response:

{
"names": [

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>

Example response:

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>/range

Example response:

{
"address": "B2:C3",
"color": null,
"column": 2,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"",
""

],
[

"",
""

]
],
"formula_array": "",
"height": 28.5,

(continues on next page)

23.6. Endpoint details 83

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"last_cell": "C3",
"left": 51.0,
"name": "Sheet1!myname1",
"number_format": "General",
"row": 2,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 14.25,
"value": [

[
null,
null

],
[

null,
null

]
],
"width": 102.0

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/pictures

Example response:

{
"pictures": [

{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/pictures/<picture_name_or_ix>

Example response:

{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}

84 Chapter 23. REST API

xlwings - Make Excel Fly!, Release dev

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/range

Example response:

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 0.0,
"value": [

[
2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/range/<address>

Example response:

{
"address": "A1:B2",

(continues on next page)

23.6. Endpoint details 85

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 0.0,
"value": [

[
2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/shapes

Example response:

{
"shapes": [

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",

(continues on next page)

86 Chapter 23. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"top": 0.0,
"type": "chart",
"width": 355.0

},
{

"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"type": "picture",
"width": 100.0

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/shapes/<shape_name_or_ix>

Example response:

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

}

23.6.2 /books

GET /books

Example response:

{
"books": [

{
"app": 1104,
"fullname": "Book1",
"name": "Book1",
"names": [],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1"
]

},
{

"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"name": "Book1.xlsx",

(continues on next page)

23.6. Endpoint details 87

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"names": [
"Sheet1!myname1",
"myname2"

],
"selection": "Sheet2!A1",
"sheets": [
"Sheet1",
"Sheet2"

]
},
{

"app": 1104,
"fullname": "Book4",
"name": "Book4",
"names": [],
"selection": "Sheet2!A1",
"sheets": [
"Sheet1"

]
}

]
}

GET /books/<book_name_or_ix>

Example response:

{
"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"name": "Book1.xlsx",
"names": [

"Sheet1!myname1",
"myname2"

],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1",
"Sheet2"

]
}

GET /books/<book_name_or_ix>/names

Example response:

{
"names": [

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

},

(continues on next page)

88 Chapter 23. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

{
"name": "myname2",
"refers_to": "=Sheet1!A1"

}
]

}

GET /books/<book_name_or_ix>/names/<name>

Example response:

{
"name": "myname2",
"refers_to": "=Sheet1!A1"

}

GET /books/<book_name_or_ix>/names/<name>/range

Example response:

{
"address": "A1",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 1,
"current_region": "A1:B2",
"formula": "=1+1.1",
"formula_array": "=1+1,1",
"height": 14.25,
"last_cell": "A1",
"left": 0.0,
"name": "myname2",
"number_format": "General",
"row": 1,
"row_height": 14.3,
"shape": [

1,
1

],
"size": 1,
"top": 0.0,
"value": 2.1,
"width": 51.0

}

GET /books/<book_name_or_ix>/sheets

Example response:

{
"sheets": [

(continues on next page)

23.6. Endpoint details 89

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

{
"charts": [

"Chart 1"
],
"name": "Sheet1",
"names": [

"Sheet1!myname1"
],
"pictures": [

"Picture 3"
],
"shapes": [

"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

},
{

"charts": [],
"name": "Sheet2",
"names": [],
"pictures": [],
"shapes": [],
"used_range": "A1"

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>

Example response:

{
"charts": [

"Chart 1"
],
"name": "Sheet1",
"names": [

"Sheet1!myname1"
],
"pictures": [

"Picture 3"
],
"shapes": [

"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts

Example response:

90 Chapter 23. REST API

xlwings - Make Excel Fly!, Release dev

{
"charts": [

{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts/<chart_name_or_ix>

Example response:

{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names

Example response:

{
"names": [

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>

Example response:

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>/range

Example response:

23.6. Endpoint details 91

xlwings - Make Excel Fly!, Release dev

{
"address": "B2:C3",
"color": null,
"column": 2,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"",
""

],
[

"",
""

]
],
"formula_array": "",
"height": 28.5,
"last_cell": "C3",
"left": 51.0,
"name": "Sheet1!myname1",
"number_format": "General",
"row": 2,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 14.25,
"value": [

[
null,
null

],
[

null,
null

]
],
"width": 102.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures

Example response:

{
"pictures": [

{
"height": 100.0,
"left": 0.0,

(continues on next page)

92 Chapter 23. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"name": "Picture 3",
"top": 0.0,
"width": 100.0

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures/<picture_name_or_ix>

Example response:

{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range

Example response:

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [

2,
2

],

(continues on next page)

23.6. Endpoint details 93

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"size": 4,
"top": 0.0,
"value": [

[
2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range/<address>

Example response:

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 0.0,
"value": [

[

(continues on next page)

94 Chapter 23. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes

Example response:

{
"shapes": [

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

},
{

"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"type": "picture",
"width": 100.0

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes/<shape_name_or_ix>

Example response:

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

}

23.6. Endpoint details 95

xlwings - Make Excel Fly!, Release dev

23.6.3 /apps

GET /apps

Example response:

{
"apps": [

{
"books": [
"Book1",
"C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"Book4"

],
"calculation": "automatic",
"display_alerts": true,
"pid": 1104,
"screen_updating": true,
"selection": "[Book1.xlsx]Sheet2!A1",
"version": "16.0",
"visible": true

},
{

"books": [
"Book2",
"Book5"

],
"calculation": "automatic",
"display_alerts": true,
"pid": 7920,
"screen_updating": true,
"selection": "[Book5]Sheet2!A1",
"version": "16.0",
"visible": true

}
]

}

GET /apps/<pid>

Example response:

{
"books": [

"Book1",
"C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"Book4"

],
"calculation": "automatic",
"display_alerts": true,
"pid": 1104,
"screen_updating": true,
"selection": "[Book1.xlsx]Sheet2!A1",

(continues on next page)

96 Chapter 23. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"version": "16.0",
"visible": true

}

GET /apps/<pid>/books

Example response:

{
"books": [

{
"app": 1104,
"fullname": "Book1",
"name": "Book1",
"names": [],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1"
]

},
{

"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"name": "Book1.xlsx",
"names": [

"Sheet1!myname1",
"myname2"

],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1",
"Sheet2"

]
},
{

"app": 1104,
"fullname": "Book4",
"name": "Book4",
"names": [],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1"
]

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>

Example response:

{

(continues on next page)

23.6. Endpoint details 97

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"name": "Book1.xlsx",
"names": [

"Sheet1!myname1",
"myname2"

],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1",
"Sheet2"

]
}

GET /apps/<pid>/books/<book_name_or_ix>/names

Example response:

{
"names": [

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

},
{

"name": "myname2",
"refers_to": "=Sheet1!A1"

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>/names/<name>

Example response:

{
"name": "myname2",
"refers_to": "=Sheet1!A1"

}

GET /apps/<pid>/books/<book_name_or_ix>/names/<name>/range

Example response:

{
"address": "A1",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 1,
"current_region": "A1:B2",
"formula": "=1+1.1",

(continues on next page)

98 Chapter 23. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"formula_array": "=1+1,1",
"height": 14.25,
"last_cell": "A1",
"left": 0.0,
"name": "myname2",
"number_format": "General",
"row": 1,
"row_height": 14.3,
"shape": [

1,
1

],
"size": 1,
"top": 0.0,
"value": 2.1,
"width": 51.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets

Example response:

{
"sheets": [

{
"charts": [
"Chart 1"

],
"name": "Sheet1",
"names": [

"Sheet1!myname1"
],
"pictures": [
"Picture 3"

],
"shapes": [
"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

},
{

"charts": [],
"name": "Sheet2",
"names": [],
"pictures": [],
"shapes": [],
"used_range": "A1"

}
]

}

23.6. Endpoint details 99

xlwings - Make Excel Fly!, Release dev

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>

Example response:

{
"charts": [

"Chart 1"
],
"name": "Sheet1",
"names": [

"Sheet1!myname1"
],
"pictures": [

"Picture 3"
],
"shapes": [

"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts

Example response:

{
"charts": [

{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts/<chart_name_or_ix>

Example response:

{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names

Example response:

100 Chapter 23. REST API

xlwings - Make Excel Fly!, Release dev

{
"names": [

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>

Example response:

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>/range

Example response:

{
"address": "B2:C3",
"color": null,
"column": 2,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"",
""

],
[

"",
""

]
],
"formula_array": "",
"height": 28.5,
"last_cell": "C3",
"left": 51.0,
"name": "Sheet1!myname1",
"number_format": "General",
"row": 2,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 14.25,

(continues on next page)

23.6. Endpoint details 101

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"value": [
[

null,
null

],
[

null,
null

]
],
"width": 102.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures

Example response:

{
"pictures": [

{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures/<picture_name_or_ix>

Example response:

{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range

Example response:

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",

(continues on next page)

102 Chapter 23. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 0.0,
"value": [

[
2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range/<address>

Example response:

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

(continues on next page)

23.6. Endpoint details 103

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 0.0,
"value": [

[
2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes

Example response:

{
"shapes": [

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

},
{

"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,

(continues on next page)

104 Chapter 23. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"type": "picture",
"width": 100.0

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes/<shape_name_or_ix>

Example response:

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

}

23.6. Endpoint details 105

xlwings - Make Excel Fly!, Release dev

106 Chapter 23. REST API

CHAPTER 24

Python API

24.1 Top-level functions

xlwings.view(obj, sheet=None)
Opens a new workbook and displays an object on its first sheet by default. If you provide a sheet
object, it will clear the sheet before displaying the object on the existing sheet.

Parameters

• obj (any type with built-in converter) – the object to display,
e.g. numbers, strings, lists, numpy arrays, pandas dataframes

• sheet (Sheet, default None) – Sheet object. If none provided, the first
sheet of a new workbook is used.

Examples

>>> import xlwings as xw
>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd
→˓'])
>>> xw.view(df)

New in version 0.7.1.

107

xlwings - Make Excel Fly!, Release dev

24.2 Object model

24.2.1 Apps

class xlwings.main.Apps(impl)
A collection of all app objects:

>>> import xlwings as xw
>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])

active
Returns the active app.

New in version 0.9.0.

add()
Creates a new App. The new App becomes the active one. Returns an App object.

count
Returns the number of apps.

New in version 0.9.0.

keys()
Provides the PIDs of the Excel instances that act as keys in the Apps collection.

New in version 0.13.0.

24.2.2 App

class xlwings.App(visible=None, spec=None, add_book=True, impl=None)
An app corresponds to an Excel instance. New Excel instances can be fired up like so:

>>> import xlwings as xw
>>> app1 = xw.App()
>>> app2 = xw.App()

An app object is a member of the apps collection:

>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])
>>> xw.apps[1668] # get the available PIDs via xw.apps.keys()
<Excel App 1668>
>>> xw.apps.active
<Excel App 1668>

Parameters

• visible (bool, default None) – Returns or sets a boolean value that
determines whether the app is visible. The default leaves the state unchanged or
sets visible=True if the object doesn’t exist yet.

108 Chapter 24. Python API

xlwings - Make Excel Fly!, Release dev

• spec (str, default None) – Mac-only, use the full path to the Excel appli-
cation, e.g. /Applications/Microsoft Office 2011/Microsoft
Excel or /Applications/Microsoft Excel

On Windows, if you want to change the version of Excel that xlwings talks to, go
to Control Panel > Programs and Features and Repair the Of-
fice version that you want as default.

Note: On Mac, while xlwings allows you to run multiple instances of Excel, it’s a feature that is
not officially supported by Excel for Mac: Unlike on Windows, Excel will not ask you to open a
read-only version of a file if it is already open in another instance. This means that you need to watch
out yourself so that the same file is not being overwritten from different instances.

activate(steal_focus=False)
Activates the Excel app.

Parameters steal_focus (bool, default False) – If True, make front-
most application and hand over focus from Python to Excel.

New in version 0.9.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

books
A collection of all Book objects that are currently open.

New in version 0.9.0.

calculate()
Calculates all open books.

New in version 0.3.6.

calculation
Returns or sets a calculation value that represents the calculation mode. Modes: 'manual',
'automatic', 'semiautomatic'

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.app.calculation = 'manual'

Changed in version 0.9.0.

display_alerts
The default value is True. Set this property to False to suppress prompts and alert messages
while code is running; when a message requires a response, Excel chooses the default response.

24.2. Object model 109

xlwings - Make Excel Fly!, Release dev

New in version 0.9.0.

hwnd
Returns the Window handle (Windows-only).

New in version 0.9.0.

kill()
Forces the Excel app to quit by killing its process.

New in version 0.9.0.

macro(name)
Runs a Sub or Function in Excel VBA that are not part of a specific workbook but e.g. are part
of an add-in.

Parameters name (Name of Sub or Function with or without module name, e.g.
'Module1.MyMacro' or 'MyMacro') –

Examples

This VBA function:

Function MySum(x, y)
MySum = x + y

End Function

can be accessed like this:

>>> import xlwings as xw
>>> app = xw.App()
>>> my_sum = app.macro('MySum')
>>> my_sum(1, 2)
3

See also: Book.macro()

New in version 0.9.0.

pid
Returns the PID of the app.

New in version 0.9.0.

quit()
Quits the application without saving any workbooks.

New in version 0.3.3.

range(cell1, cell2=None)
Range object from the active sheet of the active book, see Range().

New in version 0.9.0.

110 Chapter 24. Python API

xlwings - Make Excel Fly!, Release dev

screen_updating
Turn screen updating off to speed up your script. You won’t be able to see what the script is
doing, but it will run faster. Remember to set the screen_updating property back to True when
your script ends.

New in version 0.3.3.

selection
Returns the selected cells as Range.

New in version 0.9.0.

version
Returns the Excel version number object.

Examples

>>> import xlwings as xw
>>> xw.App().version
VersionNumber('15.24')
>>> xw.apps[10559].version.major
15

Changed in version 0.9.0.

visible
Gets or sets the visibility of Excel to True or False.

New in version 0.3.3.

24.2.3 Books

class xlwings.main.Books(impl)
A collection of all book objects:

>>> import xlwings as xw
>>> xw.books # active app
Books([<Book [Book1]>, <Book [Book2]>])
>>> xw.apps[10559].books # specific app, get the PIDs via xw.apps.keys()
Books([<Book [Book1]>, <Book [Book2]>])

New in version 0.9.0.

active
Returns the active Book.

add()
Creates a new Book. The new Book becomes the active Book. Returns a Book object.

open(fullname)
Opens a Book if it is not open yet and returns it. If it is already open, it doesn’t raise an exception
but simply returns the Book object.

24.2. Object model 111

xlwings - Make Excel Fly!, Release dev

Parameters fullname (str) – filename or fully qualified filename, e.g.
r'C:\path\to\file.xlsx' or 'file.xlsm'. Without a full path, it
looks for the file in the current working directory.

Returns Book

Return type Book that has been opened.

24.2.4 Book

class xlwings.Book(fullname=None, impl=None)
A book object is a member of the books collection:

>>> import xlwings as xw
>>> xw.books[0]
<Book [Book1]>

The easiest way to connect to a book is offered by xw.Book: it looks for the book in all app instances
and returns an error, should the same book be open in multiple instances. To connect to a book in the
active app instance, use xw.books and to refer to a specific app, use:

>>> app = xw.App() # or something like xw.apps[10559] for existing apps,
→˓ get the PIDs via xw.apps.keys()
>>> app.books['Book1']

xw.Book xw.books
New book xw.Book() xw.books.add()
Unsaved book xw.Book('Book1') xw.books['Book1']
Book by
(full)name

xw.Book(r'C:/path/to/
file.xlsx')

xw.books.open(r'C:/path/to/
file.xlsx')

Parameters fullname (str, default None) – Full path or name (incl. xlsx, xlsm
etc.) of existing workbook or name of an unsaved workbook. Without a full path, it
looks for the file in the current working directory.

activate(steal_focus=False)
Activates the book.

Parameters steal_focus (bool, default False) – If True, make front-
most window and hand over focus from Python to Excel.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

app
Returns an app object that represents the creator of the book.

New in version 0.9.0.

112 Chapter 24. Python API

xlwings - Make Excel Fly!, Release dev

classmethod caller()
References the calling book when the Python function is called from Excel via RunPython.
Pack it into the function being called from Excel, e.g.:

To be able to easily invoke such code from Python for debugging, use xw.Book.
set_mock_caller().

New in version 0.3.0.

close()
Closes the book without saving it.

New in version 0.1.1.

fullname
Returns the name of the object, including its path on disk, as a string. Read-only String.

macro(name)
Runs a Sub or Function in Excel VBA.

Parameters name (Name of Sub or Function with or without module name, e.g.
'Module1.MyMacro' or 'MyMacro') –

Examples

This VBA function:

Function MySum(x, y)
MySum = x + y

End Function

can be accessed like this:

>>> import xlwings as xw
>>> wb = xw.books.active
>>> my_sum = wb.macro('MySum')
>>> my_sum(1, 2)
3

See also: App.macro()

New in version 0.7.1.

name
Returns the name of the book as str.

names
Returns a names collection that represents all the names in the specified book (including all
sheet-specific names).

Changed in version 0.9.0.

24.2. Object model 113

xlwings - Make Excel Fly!, Release dev

static open_template()
Creates a new Excel file with the xlwings VBA module already included. This method must be
called from an interactive Python shell:

>>> xw.Book.open_template()

See also: Command Line Client

New in version 0.3.3.

save(path=None)
Saves the Workbook. If a path is being provided, this works like SaveAs() in Excel. If no path
is specified and if the file hasn’t been saved previously, it’s being saved in the current working
directory with the current filename. Existing files are overwritten without prompting.

Parameters path (str, default None) – Full path to the workbook

Example

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.save()
>>> wb.save(r'C:\path\to\new_file_name.xlsx')

New in version 0.3.1.

selection
Returns the selected cells as Range.

New in version 0.9.0.

set_mock_caller()
Sets the Excel file which is used to mock xw.Book.caller() when the code is called from
Python and not from Excel via RunPython.

Examples

This code runs unchanged from Excel via RunPython and from Python
→˓directly
import os
import xlwings as xw

def my_macro():
sht = xw.Book.caller().sheets[0]
sht.range('A1').value = 'Hello xlwings!'

if __name__ == '__main__':
xw.Book('file.xlsm').set_mock_caller()
my_macro()

New in version 0.3.1.

114 Chapter 24. Python API

xlwings - Make Excel Fly!, Release dev

sheets
Returns a sheets collection that represents all the sheets in the book.

New in version 0.9.0.

24.2.5 Sheets

class xlwings.main.Sheets(impl)
A collection of all sheet objects:

>>> import xlwings as xw
>>> xw.sheets # active book
Sheets([<Sheet [Book1]Sheet1>, <Sheet [Book1]Sheet2>])
>>> xw.Book('Book1').sheets # specific book
Sheets([<Sheet [Book1]Sheet1>, <Sheet [Book1]Sheet2>])

New in version 0.9.0.

active
Returns the active Sheet.

add(name=None, before=None, after=None)
Creates a new Sheet and makes it the active sheet.

Parameters

• name (str, default None) – Name of the new sheet. If None, will de-
fault to Excel’s default name.

• before (Sheet, default None) – An object that specifies the sheet be-
fore which the new sheet is added.

• after (Sheet, default None) – An object that specifies the sheet after
which the new sheet is added.

24.2.6 Sheet

class xlwings.Sheet(sheet=None, impl=None)
A sheet object is a member of the sheets collection:

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.sheets[0]
<Sheet [Book1]Sheet1>
>>> wb.sheets['Sheet1']
<Sheet [Book1]Sheet1>
>>> wb.sheets.add()
<Sheet [Book1]Sheet2>

Changed in version 0.9.0.

24.2. Object model 115

xlwings - Make Excel Fly!, Release dev

activate()
Activates the Sheet and returns it.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

autofit(axis=None)
Autofits the width of either columns, rows or both on a whole Sheet.

Parameters axis (string, default None) –

• To autofit rows, use one of the following: rows or r

• To autofit columns, use one of the following: columns or c

• To autofit rows and columns, provide no arguments

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.sheets['Sheet1'].autofit('c')
>>> wb.sheets['Sheet1'].autofit('r')
>>> wb.sheets['Sheet1'].autofit()

New in version 0.2.3.

book
Returns the Book of the specified Sheet. Read-only.

cells
Returns a Range object that represents all the cells on the Sheet (not just the cells that are
currently in use).

New in version 0.9.0.

charts
See Charts

New in version 0.9.0.

clear()
Clears the content and formatting of the whole sheet.

clear_contents()
Clears the content of the whole sheet but leaves the formatting.

delete()
Deletes the Sheet.

index
Returns the index of the Sheet (1-based as in Excel).

116 Chapter 24. Python API

xlwings - Make Excel Fly!, Release dev

name
Gets or sets the name of the Sheet.

names
Returns a names collection that represents all the sheet-specific names (names defined with the
“SheetName!” prefix).

New in version 0.9.0.

pictures
See Pictures

New in version 0.9.0.

range(cell1, cell2=None)
Returns a Range object from the active sheet of the active book, see Range().

New in version 0.9.0.

select()
Selects the Sheet. Select only works on the active book.

New in version 0.9.0.

shapes
See Shapes

New in version 0.9.0.

used_range
Used Range of Sheet.

Returns

Return type xw.Range

New in version 0.13.0.

24.2.7 Range

class xlwings.Range(cell1=None, cell2=None, **options)
Returns a Range object that represents a cell or a range of cells.

Parameters

• cell1 (str or tuple or Range) – Name of the range in the upper-left
corner in A1 notation or as index-tuple or as name or as xw.Range object. It can
also specify a range using the range operator (a colon), .e.g. ‘A1:B2’

• cell2 (str or tuple or Range, default None) – Name of the
range in the lower-right corner in A1 notation or as index-tuple or as name or
as xw.Range object.

24.2. Object model 117

xlwings - Make Excel Fly!, Release dev

Examples

Active Sheet:

import xlwings as xw
xw.Range('A1')
xw.Range('A1:C3')
xw.Range((1,1))
xw.Range((1,1), (3,3))
xw.Range('NamedRange')
xw.Range(xw.Range('A1'), xw.Range('B2'))

Specific Sheet:

xw.books['MyBook.xlsx'].sheets[0].range('A1')

add_hyperlink(address, text_to_display=None, screen_tip=None)
Adds a hyperlink to the specified Range (single Cell)

Parameters

• address (str) – The address of the hyperlink.

• text_to_display (str, default None) – The text to be displayed for
the hyperlink. Defaults to the hyperlink address.

• screen_tip (str, default None) – The screen tip to be displayed
when the mouse pointer is paused over the hyperlink. Default is set to ‘<ad-
dress> - Click once to follow. Click and hold to select this cell.’

New in version 0.3.0.

address
Returns a string value that represents the range reference. Use get_address() to be able to
provide paramaters.

New in version 0.9.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

autofit()
Autofits the width and height of all cells in the range.

• To autofit only the width of the columns use xw.Range('A1:B2').columns.
autofit()

• To autofit only the height of the rows use xw.Range('A1:B2').rows.autofit()

Changed in version 0.9.0.

clear()
Clears the content and the formatting of a Range.

118 Chapter 24. Python API

xlwings - Make Excel Fly!, Release dev

clear_contents()
Clears the content of a Range but leaves the formatting.

color
Gets and sets the background color of the specified Range.

To set the color, either use an RGB tuple (0, 0, 0) or a color constant. To remove the
background, set the color to None, see Examples.

Returns RGB

Return type tuple

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').color = (255,255,255)
>>> xw.Range('A2').color
(255, 255, 255)
>>> xw.Range('A2').color = None
>>> xw.Range('A2').color is None
True

New in version 0.3.0.

column
Returns the number of the first column in the in the specified range. Read-only.

Returns

Return type Integer

New in version 0.3.5.

column_width
Gets or sets the width, in characters, of a Range. One unit of column width is equal to the width
of one character in the Normal style. For proportional fonts, the width of the character 0 (zero)
is used.

If all columns in the Range have the same width, returns the width. If columns in the Range
have different widths, returns None.

column_width must be in the range: 0 <= column_width <= 255

Note: If the Range is outside the used range of the Worksheet, and columns in the Range have
different widths, returns the width of the first column.

Returns

Return type float

New in version 0.4.0.

columns
Returns a RangeColumns object that represents the columns in the specified range.

24.2. Object model 119

xlwings - Make Excel Fly!, Release dev

New in version 0.9.0.

count
Returns the number of cells.

current_region
This property returns a Range object representing a range bounded by (but not including) any
combination of blank rows and blank columns or the edges of the worksheet. It corresponds to
Ctrl-* on Windows and Shift-Ctrl-Space on Mac.

Returns

Return type Range object

end(direction)
Returns a Range object that represents the cell at the end of the region that contains the source
range. Equivalent to pressing Ctrl+Up, Ctrl+down, Ctrl+left, or Ctrl+right.

Parameters direction (One of 'up', 'down', 'right', 'left') –

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1:B2').value = 1
>>> xw.Range('A1').end('down')
<Range [Book1]Sheet1!A2>
>>> xw.Range('B2').end('right')
<Range [Book1]Sheet1!B2>

New in version 0.9.0.

expand(mode=’table’)
Expands the range according to the mode provided. Ignores empty top-left cells (unlike Range.
end()).

Parameters mode (str, default 'table') – One of 'table' (=down and
right), 'down', 'right'.

Returns

Return type Range

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').value = [[None, 1], [2, 3]]
>>> xw.Range('A1').expand().address
A1:B2
>>> xw.Range('A1').expand('right').address
A1:B1

120 Chapter 24. Python API

xlwings - Make Excel Fly!, Release dev

New in version 0.9.0.

formula
Gets or sets the formula for the given Range.

formula_array
Gets or sets an array formula for the given Range.

New in version 0.7.1.

get_address(row_absolute=True, column_absolute=True, include_sheetname=False, ex-
ternal=False)

Returns the address of the range in the specified format. address can be used instead if none
of the defaults need to be changed.

Parameters

• row_absolute (bool, default True) – Set to True to return the row
part of the reference as an absolute reference.

• column_absolute (bool, default True) – Set to True to return the
column part of the reference as an absolute reference.

• include_sheetname (bool, default False) – Set to True to include
the Sheet name in the address. Ignored if external=True.

• external (bool, default False) – Set to True to return an external
reference with workbook and worksheet name.

Returns

Return type str

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range((1,1)).get_address()
'A1'
>>> xw.Range((1,1)).get_address(False, False)
'A1'
>>> xw.Range((1,1), (3,3)).get_address(True, False, True)
'Sheet1!A$1:C$3'
>>> xw.Range((1,1), (3,3)).get_address(True, False, external=True)
'[Book1]Sheet1!A$1:C$3'

New in version 0.2.3.

height
Returns the height, in points, of a Range. Read-only.

Returns

Return type float

New in version 0.4.0.

24.2. Object model 121

xlwings - Make Excel Fly!, Release dev

hyperlink
Returns the hyperlink address of the specified Range (single Cell only)

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').value
'www.xlwings.org'
>>> xw.Range('A1').hyperlink
'http://www.xlwings.org'

New in version 0.3.0.

last_cell
Returns the bottom right cell of the specified range. Read-only.

Returns

Return type Range

Example

>>> import xlwings as xw
>>> wb = xw.Book()
>>> rng = xw.Range('A1:E4')
>>> rng.last_cell.row, rng.last_cell.column
(4, 5)

New in version 0.3.5.

left
Returns the distance, in points, from the left edge of column A to the left edge of the range.
Read-only.

Returns

Return type float

New in version 0.6.0.

name
Sets or gets the name of a Range.

New in version 0.4.0.

number_format
Gets and sets the number_format of a Range.

122 Chapter 24. Python API

xlwings - Make Excel Fly!, Release dev

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').number_format
'General'
>>> xw.Range('A1:C3').number_format = '0.00%'
>>> xw.Range('A1:C3').number_format
'0.00%'

New in version 0.2.3.

offset(row_offset=0, column_offset=0)
Returns a Range object that represents a Range that’s offset from the specified range.

Returns Range object

Return type Range

New in version 0.3.0.

options(convert=None, **options)
Allows you to set a converter and their options. Converters define how Excel Ranges and their
values are being converted both during reading and writing operations. If no explicit converter
is specified, the base converter is being applied, see Converters and Options.

Parameters convert (object, default None) – A converter, e.g. dict,
np.array, pd.DataFrame, pd.Series, defaults to default converter

Keyword Arguments

• ndim (int, default None) – number of dimensions

• numbers (type, default None) – type of numbers, e.g. int

• dates (type, default None) – e.g. datetime.date defaults to
datetime.datetime

• empty (object, default None) – transformation of empty cells

• transpose (Boolean, default False) – transpose values

• expand (str, default None) – One of 'table', 'down', 'right'

=> For converter-specific options, see Converters and Options.

Returns

Return type Range object

New in version 0.7.0.

raw_value
Gets and sets the values directly as delivered from/accepted by the engine that is being used
(pywin32 or appscript) without going through any of xlwings’ data cleaning/converting.
This can be helpful if speed is an issue but naturally will be engine specific, i.e. might remove
the cross-platform compatibility.

24.2. Object model 123

xlwings - Make Excel Fly!, Release dev

resize(row_size=None, column_size=None)
Resizes the specified Range

Parameters

• row_size (int > 0) – The number of rows in the new range (if None, the
number of rows in the range is unchanged).

• column_size (int > 0) – The number of columns in the new range (if
None, the number of columns in the range is unchanged).

Returns Range object

Return type Range

New in version 0.3.0.

row
Returns the number of the first row in the specified range. Read-only.

Returns

Return type Integer

New in version 0.3.5.

row_height
Gets or sets the height, in points, of a Range. If all rows in the Range have the same height,
returns the height. If rows in the Range have different heights, returns None.

row_height must be in the range: 0 <= row_height <= 409.5

Note: If the Range is outside the used range of the Worksheet, and rows in the Range have
different heights, returns the height of the first row.

Returns

Return type float

New in version 0.4.0.

rows
Returns a RangeRows object that represents the rows in the specified range.

New in version 0.9.0.

select()
Selects the range. Select only works on the active book.

New in version 0.9.0.

shape
Tuple of Range dimensions.

New in version 0.3.0.

sheet
Returns the Sheet object to which the Range belongs.

New in version 0.9.0.

124 Chapter 24. Python API

xlwings - Make Excel Fly!, Release dev

size
Number of elements in the Range.

New in version 0.3.0.

top
Returns the distance, in points, from the top edge of row 1 to the top edge of the range. Read-
only.

Returns

Return type float

New in version 0.6.0.

value
Gets and sets the values for the given Range.

Returns object

Return type returned object depends on the converter being used, see xlwings.
Range.options()

width
Returns the width, in points, of a Range. Read-only.

Returns

Return type float

New in version 0.4.0.

24.2.8 RangeRows

class xlwings.RangeRows(rng)
Represents the rows of a range. Do not construct this class directly, use Range.rows instead.

Example

import xlwings as xw

rng = xw.Range('A1:C4')

assert len(rng.rows) == 4 # or rng.rows.count

rng.rows[0].value = 'a'

assert rng.rows[2] == xw.Range('A3:C3')
assert rng.rows(2) == xw.Range('A2:C2')

for r in rng.rows:
print(r.address)

24.2. Object model 125

xlwings - Make Excel Fly!, Release dev

autofit()
Autofits the height of the rows.

count
Returns the number of rows.

New in version 0.9.0.

24.2.9 RangeColumns

class xlwings.RangeColumns(rng)
Represents the columns of a range. Do not construct this class directly, use Range.columns in-
stead.

Example

import xlwings as xw

rng = xw.Range('A1:C4')

assert len(rng.columns) == 3 # or rng.columns.count

rng.columns[0].value = 'a'

assert rng.columns[2] == xw.Range('C1:C4')
assert rng.columns(2) == xw.Range('B1:B4')

for c in rng.columns:
print(c.address)

autofit()
Autofits the width of the columns.

count
Returns the number of columns.

New in version 0.9.0.

24.2.10 Shapes

class xlwings.main.Shapes(impl)
A collection of all shape objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].shapes
Shapes([<Shape 'Oval 1' in <Sheet [Book1]Sheet1>>, <Shape 'Rectangle 1'
→˓in <Sheet [Book1]Sheet1>>])

New in version 0.9.0.

126 Chapter 24. Python API

xlwings - Make Excel Fly!, Release dev

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

count
Returns the number of objects in the collection.

24.2.11 Shape

class xlwings.Shape(*args, **options)
The shape object is a member of the shapes collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.shapes[0] # or sht.shapes['ShapeName']
<Shape 'Rectangle 1' in <Sheet [Book1]Sheet1>>

Changed in version 0.9.0.

activate()
Activates the shape.

New in version 0.5.0.

delete()
Deletes the shape.

New in version 0.5.0.

height
Returns or sets the number of points that represent the height of the shape.

New in version 0.5.0.

left
Returns or sets the number of points that represent the horizontal position of the shape.

New in version 0.5.0.

name
Returns or sets the name of the shape.

New in version 0.5.0.

parent
Returns the parent of the shape.

New in version 0.9.0.

top
Returns or sets the number of points that represent the vertical position of the shape.

New in version 0.5.0.

type
Returns the type of the shape.

24.2. Object model 127

xlwings - Make Excel Fly!, Release dev

New in version 0.9.0.

width
Returns or sets the number of points that represent the width of the shape.

New in version 0.5.0.

24.2.12 Charts

class xlwings.main.Charts(impl)
A collection of all chart objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].charts
Charts([<Chart 'Chart 1' in <Sheet [Book1]Sheet1>>, <Chart 'Chart 1' in
→˓<Sheet [Book1]Sheet1>>])

New in version 0.9.0.

add(left=0, top=0, width=355, height=211)
Creates a new chart on the specified sheet.

Parameters

• left (float, default 0) – left position in points

• top (float, default 0) – top position in points

• width (float, default 355) – width in points

• height (float, default 211) – height in points

Returns

Return type Chart

Examples

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [['Foo1', 'Foo2'], [1, 2]]
>>> chart = sht.charts.add()
>>> chart.set_source_data(sht.range('A1').expand())
>>> chart.chart_type = 'line'
>>> chart.name
'Chart1'

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

count
Returns the number of objects in the collection.

128 Chapter 24. Python API

xlwings - Make Excel Fly!, Release dev

24.2.13 Chart

class xlwings.Chart(name_or_index=None, impl=None)
The chart object is a member of the charts collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.charts[0] # or sht.charts['ChartName']
<Chart 'Chart 1' in <Sheet [Book1]Sheet1>>

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

chart_type
Returns and sets the chart type of the chart.

New in version 0.1.1.

delete()
Deletes the chart.

height
Returns or sets the number of points that represent the height of the chart.

left
Returns or sets the number of points that represent the horizontal position of the chart.

name
Returns or sets the name of the chart.

parent
Returns the parent of the chart.

New in version 0.9.0.

set_source_data(source)
Sets the source data range for the chart.

Parameters source (Range) – Range object, e.g. xw.books['Book1'].
sheets[0].range('A1')

top
Returns or sets the number of points that represent the vertical position of the chart.

width
Returns or sets the number of points that represent the width of the chart.

24.2.14 Pictures

class xlwings.main.Pictures(impl)
A collection of all picture objects on the specified sheet:

24.2. Object model 129

xlwings - Make Excel Fly!, Release dev

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].pictures
Pictures([<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>, <Picture
→˓'Picture 2' in <Sheet [Book1]Sheet1>>])

New in version 0.9.0.

add(image, link_to_file=False, save_with_document=True, left=0, top=0, width=None,
height=None, name=None, update=False)
Adds a picture to the specified sheet.

Parameters

• image (str or matplotlib.figure.Figure) – Either a filepath or a
Matplotlib figure object.

• left (float, default 0) – Left position in points.

• top (float, default 0) – Top position in points.

• width (float, default None) – Width in points. If PIL/Pillow is in-
stalled, it defaults to the width of the picture. Otherwise it defaults to 100 points.

• height (float, default None) – Height in points. If PIL/Pillow is in-
stalled, it defaults to the height of the picture. Otherwise it defaults to 100
points.

• name (str, default None) – Excel picture name. Defaults to Excel stan-
dard name if not provided, e.g. ‘Picture 1’.

• update (bool, default False) – Replace an existing picture with the
same name. Requires name to be set.

Returns

Return type Picture

Examples

1. Picture

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.pictures.add(r'C:\path\to\file.jpg')
<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>

2. Matplotlib

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.plot([1, 2, 3, 4, 5])

(continues on next page)

130 Chapter 24. Python API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

>>> sht.pictures.add(fig, name='MyPlot', update=True)
<Picture 'MyPlot' in <Sheet [Book1]Sheet1>>

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

count
Returns the number of objects in the collection.

24.2.15 Picture

class xlwings.Picture(impl=None)
The picture object is a member of the pictures collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.pictures[0] # or sht.charts['PictureName']
<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>

Changed in version 0.9.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

delete()
Deletes the picture.

New in version 0.5.0.

height
Returns or sets the number of points that represent the height of the picture.

New in version 0.5.0.

left
Returns or sets the number of points that represent the horizontal position of the picture.

New in version 0.5.0.

name
Returns or sets the name of the picture.

New in version 0.5.0.

parent
Returns the parent of the picture.

New in version 0.9.0.

top
Returns or sets the number of points that represent the vertical position of the picture.

24.2. Object model 131

xlwings - Make Excel Fly!, Release dev

New in version 0.5.0.

update(image)
Replaces an existing picture with a new one, taking over the attributes of the existing picture.

Parameters image (str or matplotlib.figure.Figure) – Either a
filepath or a Matplotlib figure object.

New in version 0.5.0.

width
Returns or sets the number of points that represent the width of the picture.

New in version 0.5.0.

24.2.16 Names

class xlwings.main.Names(impl)
A collection of all name objects in the workbook:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.names
[<Name 'MyName': =Sheet1!A3>]

New in version 0.9.0.

add(name, refers_to)
Defines a new name for a range of cells.

Parameters

• name (str) – Specifies the text to use as the name. Names cannot include
spaces and cannot be formatted as cell references.

• refers_to (str) – Describes what the name refers to, in English, using A1-
style notation.

Returns

Return type Name

New in version 0.9.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

count
Returns the number of objects in the collection.

132 Chapter 24. Python API

xlwings - Make Excel Fly!, Release dev

24.2.17 Name

class xlwings.Name(impl)
The name object is a member of the names collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.names[0] # or sht.names['MyName']
<Name 'MyName': =Sheet1!A3>

New in version 0.9.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

delete()
Deletes the name.

New in version 0.9.0.

name
Returns or sets the name of the name object.

New in version 0.9.0.

refers_to
Returns or sets the formula that the name is defined to refer to, in A1-style notation, beginning
with an equal sign.

New in version 0.9.0.

refers_to_range
Returns the Range object referred to by a Name object.

New in version 0.9.0.

24.3 UDF decorators

xlwings.func(category="xlwings", volatile=False, call_in_wizard=True)
Functions decorated with xlwings.func will be imported as Function to Excel when running
“Import Python UDFs”.

category [int or str, default “xlwings”] 1-14 represent built-in categories, for user-defined categories
use strings

New in version 0.10.3.

volatile [bool, default False] Marks a user-defined function as volatile. A volatile function must be
recalculated whenever calculation occurs in any cells on the worksheet. A nonvolatile function
is recalculated only when the input variables change. This method has no effect if it’s not inside
a user-defined function used to calculate a worksheet cell.

24.3. UDF decorators 133

xlwings - Make Excel Fly!, Release dev

New in version 0.10.3.

call_in_wizard [bool, default True] Set to False to suppress the function call in the function wizard.

New in version 0.10.3.

xlwings.sub()
Functions decorated with xlwings.sub will be imported as Sub (i.e. macro) to Excel when run-
ning “Import Python UDFs”.

xlwings.arg(arg, convert=None, **options)
Apply converters and options to arguments, see also Range.options().

Examples:

Convert x into a 2-dimensional numpy array:

import xlwings as xw
import numpy as np

@xw.func
@xw.arg('x', np.array, ndim=2)
def add_one(x):

return x + 1

xlwings.ret(convert=None, **options)
Apply converters and options to return values, see also Range.options().

Examples

1) Suppress the index and header of a returned DataFrame:

import pandas as pd

@xw.func
@xw.ret(index=False, header=False)
def get_dataframe(n, m):

return pd.DataFrame(np.arange(n * m).reshape((n, m)))

2) Dynamic array:

expand='table' turns the UDF into a dynamic array. Currently you must not use volatile func-
tions as arguments of a dynamic array, e.g. you cannot use =TODAY() as part of a dynamic array.
Also note that a dynamic array needs an empty row and column at the bottom and to the right and will
overwrite existing data without warning.

Unlike standard Excel arrays, dynamic arrays are being used from a single cell like a standard function
and auto-expand depending on the dimensions of the returned array:

import xlwings as xw
import numpy as np

@xw.func
@xw.ret(expand='table')

(continues on next page)

134 Chapter 24. Python API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

def dynamic_array(n, m):
return np.arange(n * m).reshape((n, m))

New in version 0.10.0.

24.3. UDF decorators 135

xlwings - Make Excel Fly!, Release dev

136 Chapter 24. Python API

CHAPTER 25

License

xlwings is distributed under a BSD 3-clause license.

Copyright (C) Zoomer Analytics LLC. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

137

xlwings - Make Excel Fly!, Release dev

138 Chapter 25. License

Index

A
activate() (xlwings.App method), 109
activate() (xlwings.Book method), 112
activate() (xlwings.Shape method), 127
activate() (xlwings.Sheet method), 115
active (xlwings.main.Apps attribute), 108
active (xlwings.main.Books attribute), 111
active (xlwings.main.Sheets attribute), 115
add() (xlwings.main.Apps method), 108
add() (xlwings.main.Books method), 111
add() (xlwings.main.Charts method), 128
add() (xlwings.main.Names method), 132
add() (xlwings.main.Pictures method), 130
add() (xlwings.main.Sheets method), 115
add_hyperlink() (xlwings.Range method), 118
address (xlwings.Range attribute), 118
api (xlwings.App attribute), 109
api (xlwings.Book attribute), 112
api (xlwings.Chart attribute), 129
api (xlwings.main.Charts attribute), 128
api (xlwings.main.Names attribute), 132
api (xlwings.main.Pictures attribute), 131
api (xlwings.main.Shapes attribute), 126
api (xlwings.Name attribute), 133
api (xlwings.Picture attribute), 131
api (xlwings.Range attribute), 118
api (xlwings.Sheet attribute), 116
App (class in xlwings), 108
app (xlwings.Book attribute), 112
Apps (class in xlwings.main), 108
autofit() (xlwings.Range method), 118
autofit() (xlwings.RangeColumns method), 126
autofit() (xlwings.RangeRows method), 125
autofit() (xlwings.Sheet method), 116

B
Book (class in xlwings), 112
book (xlwings.Sheet attribute), 116
Books (class in xlwings.main), 111
books (xlwings.App attribute), 109

C
calculate() (xlwings.App method), 109
calculation (xlwings.App attribute), 109
caller() (xlwings.Book class method), 112
cells (xlwings.Sheet attribute), 116
Chart (class in xlwings), 129
chart_type (xlwings.Chart attribute), 129
Charts (class in xlwings.main), 128
charts (xlwings.Sheet attribute), 116
clear() (xlwings.Range method), 118
clear() (xlwings.Sheet method), 116
clear_contents() (xlwings.Range method),

118
clear_contents() (xlwings.Sheet method),

116
close() (xlwings.Book method), 113
color (xlwings.Range attribute), 119
column (xlwings.Range attribute), 119
column_width (xlwings.Range attribute), 119
columns (xlwings.Range attribute), 119
count (xlwings.main.Apps attribute), 108
count (xlwings.main.Charts attribute), 128
count (xlwings.main.Names attribute), 132
count (xlwings.main.Pictures attribute), 131
count (xlwings.main.Shapes attribute), 127
count (xlwings.Range attribute), 120
count (xlwings.RangeColumns attribute), 126
count (xlwings.RangeRows attribute), 126
current_region (xlwings.Range attribute), 120

139

xlwings - Make Excel Fly!, Release dev

D
delete() (xlwings.Chart method), 129
delete() (xlwings.Name method), 133
delete() (xlwings.Picture method), 131
delete() (xlwings.Shape method), 127
delete() (xlwings.Sheet method), 116
display_alerts (xlwings.App attribute), 109

E
end() (xlwings.Range method), 120
expand() (xlwings.Range method), 120

F
formula (xlwings.Range attribute), 121
formula_array (xlwings.Range attribute), 121
fullname (xlwings.Book attribute), 113

G
get_address() (xlwings.Range method), 121

H
height (xlwings.Chart attribute), 129
height (xlwings.Picture attribute), 131
height (xlwings.Range attribute), 121
height (xlwings.Shape attribute), 127
hwnd (xlwings.App attribute), 110
hyperlink (xlwings.Range attribute), 121

I
index (xlwings.Sheet attribute), 116

K
keys() (xlwings.main.Apps method), 108
kill() (xlwings.App method), 110

L
last_cell (xlwings.Range attribute), 122
left (xlwings.Chart attribute), 129
left (xlwings.Picture attribute), 131
left (xlwings.Range attribute), 122
left (xlwings.Shape attribute), 127

M
macro() (xlwings.App method), 110
macro() (xlwings.Book method), 113

N
Name (class in xlwings), 133

name (xlwings.Book attribute), 113
name (xlwings.Chart attribute), 129
name (xlwings.Name attribute), 133
name (xlwings.Picture attribute), 131
name (xlwings.Range attribute), 122
name (xlwings.Shape attribute), 127
name (xlwings.Sheet attribute), 116
Names (class in xlwings.main), 132
names (xlwings.Book attribute), 113
names (xlwings.Sheet attribute), 117
number_format (xlwings.Range attribute), 122

O
offset() (xlwings.Range method), 123
open() (xlwings.main.Books method), 111
open_template() (xlwings.Book static method),

113
options() (xlwings.Range method), 123

P
parent (xlwings.Chart attribute), 129
parent (xlwings.Picture attribute), 131
parent (xlwings.Shape attribute), 127
Picture (class in xlwings), 131
Pictures (class in xlwings.main), 129
pictures (xlwings.Sheet attribute), 117
pid (xlwings.App attribute), 110

Q
quit() (xlwings.App method), 110

R
Range (class in xlwings), 117
range() (xlwings.App method), 110
range() (xlwings.Sheet method), 117
RangeColumns (class in xlwings), 126
RangeRows (class in xlwings), 125
raw_value (xlwings.Range attribute), 123
refers_to (xlwings.Name attribute), 133
refers_to_range (xlwings.Name attribute),

133
resize() (xlwings.Range method), 123
row (xlwings.Range attribute), 124
row_height (xlwings.Range attribute), 124
rows (xlwings.Range attribute), 124

S
save() (xlwings.Book method), 114

140 Index

xlwings - Make Excel Fly!, Release dev

screen_updating (xlwings.App attribute), 110
select() (xlwings.Range method), 124
select() (xlwings.Sheet method), 117
selection (xlwings.App attribute), 111
selection (xlwings.Book attribute), 114
set_mock_caller() (xlwings.Book method),

114
set_source_data() (xlwings.Chart method),

129
Shape (class in xlwings), 127
shape (xlwings.Range attribute), 124
Shapes (class in xlwings.main), 126
shapes (xlwings.Sheet attribute), 117
Sheet (class in xlwings), 115
sheet (xlwings.Range attribute), 124
Sheets (class in xlwings.main), 115
sheets (xlwings.Book attribute), 114
size (xlwings.Range attribute), 125

T
top (xlwings.Chart attribute), 129
top (xlwings.Picture attribute), 131
top (xlwings.Range attribute), 125
top (xlwings.Shape attribute), 127
type (xlwings.Shape attribute), 127

U
update() (xlwings.Picture method), 132
used_range (xlwings.Sheet attribute), 117

V
value (xlwings.Range attribute), 125
version (xlwings.App attribute), 111
view() (in module xlwings), 107
visible (xlwings.App attribute), 111

W
width (xlwings.Chart attribute), 129
width (xlwings.Picture attribute), 132
width (xlwings.Range attribute), 125
width (xlwings.Shape attribute), 128

X
xlwings (module), 107
xlwings.arg() (in module xlwings), 134
xlwings.func() (in module xlwings), 133
xlwings.ret() (in module xlwings), 134
xlwings.sub() (in module xlwings), 134

Index 141

	Video course
	Migrate to v0.11 (Add-in)
	Upgrade the xlwings Python package
	Install the add-in
	Upgrade existing workbooks

	Migrate to v0.9
	Full qualification: Using collections
	Connecting to Books
	Active Objects
	Round vs. Square Brackets
	Access the underlying Library/Engine
	Cheat sheet

	Installation
	Dependencies
	Optional Dependencies
	Add-in
	Python version support

	Quickstart
	1. Scripting: Automate/interact with Excel from Python
	2. Macros: Call Python from Excel
	3. UDFs: User Defined Functions (Windows only)

	Connect to a Book
	Python to Excel
	Excel to Python (RunPython)
	User Defined Functions (UDFs)

	Syntax Overview
	Active Objects
	Full qualification
	Range indexing/slicing
	Range Shortcuts
	Object Hierarchy

	Data Structures Tutorial
	Single Cells
	Lists
	Range expanding
	NumPy arrays
	Pandas DataFrames
	Pandas Series

	Add-in
	Installation
	Global Settings
	Global Config: Ribbon/Config File
	Workbook Directory Config: Config file
	Workbook Config: xlwings.conf Sheet
	Alternative: Standalone VBA module
	Log File default locations

	VBA: RunPython
	xlwings add-in
	Call Python with “RunPython”
	Function Arguments and Return Values

	VBA: User Defined Functions (UDFs)
	One-time Excel preparations
	Workbook preparation
	A simple UDF
	Array formulas: Get efficient
	Array formulas with NumPy and Pandas
	@xw.arg and @xw.ret decorators
	Dynamic Array Formulas
	Docstrings
	The “vba” keyword
	Macros
	Call UDFs from VBA
	Asynchronous UDFs

	Debugging
	RunPython
	UDF debug server

	Matplotlib
	Getting started
	Full integration with Excel
	Properties
	Getting a Matplotlib figure

	Converters and Options
	Default Converter
	Built-in Converters
	Custom Converter

	Threading and Multiprocessing
	Threading
	Multiprocessing

	Command Line Client
	Quickstart
	Add-in
	RunPython

	Missing Features
	Example: Workaround to use VBA’s Range.WrapText

	xlwings with other Office Apps
	How To
	Config

	Deployment
	Zip files
	RunFrozenPython

	Extensions
	In-Excel SQL

	xlwings with R and Julia
	R
	Julia

	Troubleshooting
	Issue: dll not found

	REST API
	Quickstart
	Run the server
	Indexing
	Range Options
	Endpoint overview
	Endpoint details

	Python API
	Top-level functions
	Object model
	UDF decorators

	License

