

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	xgboost 0.4 documentation 
 
      

    


    
      
          
            
  
XGBoost Documentation

This is document of xgboost library.
XGBoost is short for eXtreme gradient boosting. This is a library that is designed, and optimized for boosted (tree) algorithms.
The goal of this library is to push the extreme of the computation limits of machines to provide a scalable, portable and accurate
for large scale tree boosting.

This document is hosted at http://xgboost.readthedocs.org/. You can also browse most of the documents in github directly.


How to Get Started

The best way to get started to learn xgboost is by the examples. There are three types of examples you can find in xgboost.


	Tutorials are self-conatained tutorials on a complete data science tasks.

	XGBoost Code Examples [https://github.com/dmlc/xgboost/tree/master/doc/../demo] are collections of code and benchmarks of xgboost.
	There is a walkthrough section in this to walk you through specific API features.





	Highlight Solutions are presentations using xgboost to solve real world problems.
	These examples are usually more advanced. You can usually find state-of-art solutions to many problems and challenges in here.







After you gets familiar with the interface, checkout the following additional resources


	Frequently Asked Questions

	Learning what is in Behind: Introduction to Boosted Trees

	User Guide contains comprehensive list of documents of xgboost.

	Developer Guide






Tutorials

Tutorials are self contained materials that teaches you how to achieve a complete data science task with xgboost, these
are great resources to learn xgboost by real examples. If you think you have something that belongs to here, send a pull request.


	Binary classification using XGBoost Command Line [https://github.com/dmlc/xgboost/tree/master/doc/../demo/binary_classification] (CLI)
	This tutorial introduces the basic usage of CLI version of xgboost





	Introduction of XGBoost in Python (python)
	This tutorial introduces the python package of xgboost





	Introduction to XGBoost in R [https://github.com/dmlc/xgboost/tree/master/doc/../R-package/vignettes/xgboostPresentation.Rmd] (R package)
	This is a general presentation about xgboost in R.





	Discover your data with XGBoost in R [https://github.com/dmlc/xgboost/tree/master/doc/../R-package/vignettes/discoverYourData.Rmd] (R package)
	This tutorial explaining feature analysis in xgboost.





	Understanding XGBoost Model on Otto Dataset [https://github.com/dmlc/xgboost/tree/master/doc/../demo/kaggle-otto/understandingXGBoostModel.Rmd] (R package)
	This tutorial teaches you how to use xgboost to compete kaggle otto challenge.










Highlight Solutions

This section is about blogposts, presentation and videos discussing how to use xgboost to solve your interesting problem. If you think something belongs to here, send a pull request.


	Kaggle CrowdFlower winner’s solution by Chenglong Chen [https://github.com/ChenglongChen/Kaggle_CrowdFlower]

	Kaggle Malware Prediction winner’s solution [https://github.com/xiaozhouwang/kaggle_Microsoft_Malware]

	Kaggle Tradeshift winning solution by daxiongshu [https://github.com/daxiongshu/kaggle-tradeshift-winning-solution]

	Feature Importance Analysis with XGBoost in Tax audit [http://fr.slideshare.net/MichaelBENESTY/feature-importance-analysis-with-xgboost-in-tax-audit]

	Video tutorial: Better Optimization with Repeated Cross Validation and the XGBoost model [https://www.youtube.com/watch?v=Og7CGAfSr_Y]

	Winning solution of Kaggle Higgs competition: what a single model can do [http://no2147483647.wordpress.com/2014/09/17/winning-solution-of-kaggle-higgs-competition-what-a-single-model-can-do/]






User Guide



	Frequently Asked Questions

	Introduction to Boosted Trees

	Using XGBoost in Python

	Using XGBoost in R [https://github.com/dmlc/xgboost/tree/master/doc/../R-package/vignettes/xgboostPresentation.Rmd]

	Learning to use XGBoost by Example [https://github.com/dmlc/xgboost/tree/master/doc/../demo]

	External Memory Version

	Text input format

	Build Instruction

	Parameters

	Notes on Parameter Tunning








Developer Guide



	Developer Guide








API Reference



	Python API Reference
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Frequently Asked Questions

This document contains frequently asked questions about xgboost.


How to tune parameters

See Parameter Tunning Guide




Description on the model

See Introduction to Boosted Trees




I have a big dataset

XGBoost is designed to be memory efficient. Usually it can handle problems as long as the data fit into your memory
(This usually means millions of instances).
If you are running out of memory, checkout external memory version or
distributed version [https://github.com/dmlc/wormhole/tree/master/learn/xgboost] of xgboost.




Running xgboost on Platform X (Hadoop/Yarn, Mesos)

The distributed version of XGBoost is designed to be portable to various environment.
Distributed XGBoost can be ported to any platform that supports rabit [https://github.com/dmlc/rabit].
You can directly run xgboost on Yarn. In theory Mesos and other resource allocation engines can be easily supported as well.




Why not implement distributed xgboost on top of X (Spark, Hadoop)

The first fact we need to know is going distributed does not necessarily solve all the problems.
Instead, it creates more problems such as more communication overhead and fault tolerance.
The ultimate question will still come back to how to push the limit of each computation node
and use less resources to complete the task (thus with less communication and chance of failure).

To achieve these, we decide to reuse the optimizations in the single node xgboost and build distributed version on top of it.
The demand of communication in machine learning is rather simple, in the sense that we can depend on a limited set of API (in our case rabit).
Such design allows us to reuse most of the code, while being portable to major platforms such as Hadoop/Yarn, MPI, SGE.
Most importantly, it pushes the limit of the computation resources we can use.




How can I port the model to my own system

The model and data format of XGBoost is exchangable,
which means the model trained by one language can be loaded in another.
This means you can train the model using R, while running prediction using
Java or C++, which are more common in production systems.
You can also train the model using distributed versions,
and load them in from Python to do some interactive analysis.




Do you support LambdaMART

Yes, xgboost implements LambdaMART. Checkout the objective section in parameters




How to deal with Missing Value

xgboost support missing value by default




Slightly different result between runs

This could happen, due to non-determinism in floating point summation order and multi-threading.
Though the general accuracy will usually remain the same.
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Introduction to Boosted Trees

XGBoost is short for “Extreme Gradient Boosting”, where the term “Gradient Boosting” is proposed in the paper Greedy Function Approximation: A Gradient Boosting Machine, Friedman. Based on this original model. This is a tutorial on boosted trees, most of content are based on this slide [http://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf] by the author of xgboost.

The GBM(boosted trees) has been around for really a while, and there are a lot of materials on the topic. This tutorial tries to explain boosted trees in a self-contained and principled way of supervised learning. We think this explanation is cleaner, more formal, and motivates the variant used in xgboost.


Elements of Supervised Learning

XGBoost is used for supervised learning problems, where we use the training data \( x_i \) to predict a target variable \( y_i \).
Before we dive into trees, let us start by reviewing the basic elements in supervised learning.


Model and Parameters

The model in supervised learning usually refers to the mathematical structure on how to given the prediction \( y_i \) given \( x_i \).
For example, a common model is linear model, where the prediction is given by \( \hat{y}_i = \sum_j w_j x_{ij} \), a linear combination of weighted input features.
The prediction value can have different interpretations, depending on the task.
For example, it can be logistic transformed to get the probability of positive class in logistic regression, and it can also be used as ranking score when we want to rank the outputs.

The parameters are the undermined part that we need to learn from data. In linear regression problem, the parameters are the co-efficients \( w \).
Usually we will use \( \Theta \) to denote the parameters.




Objective Function : Training Loss + Regularization

Based on different understanding or assumption of \( y_i \), we can have different problems as regression, classification, ordering, etc.
We need to find a way to find the best parameters given the training data. In order to do so, we need to define a so called objective function,
to measure the performance of the model under certain set of parameters.

A very important fact about objective functions, is they must always contains two parts: training loss and regularization.


\[Obj(\Theta) = L(\Theta) + \Omega(\Theta)
\]

where \( L \) is the training loss function, and \( \Omega \) is the regularization term. The training loss measures how predictive our model is on training data.
For example, a commonly used training loss is mean squared error.


\[L(\Theta) = \sum_i (y_i-\hat{y}_i)^2
\]

Another commonly used loss function is logistic loss for logistic regression


\[L(\theta) = \sum_i[ y_i\ln (1+e^{-\hat{y}_i}) + (1-y_i)\ln (1+e^{\hat{y}_i})]
\]

The regularization term is what people usually forget to add. The regularization term controls the complexity of the model, which helps us to avoid overfitting.
This sounds a bit abstract, so let us consider the following problem in the following picture. You are asked to fit visually a step function given the input data points
on the upper left corner of the image, which solution among the tree you think is the best fit?

[image: Step function]

The answer is already marked as red. Please think if it is reasonable to you visually. The general principle is we want a simple and predictive model.
The tradeoff between the two is also referred as bias-variance tradeoff in machine learning.




Why introduce the general principle

The elements introduced in above forms the basic elements of supervised learning, and they are naturally the building blocks of machine learning toolkits.
For example, you should be able to answer what is the difference and common parts between boosted trees and random forest.
Understanding the process in a formalized way also helps us to understand the objective that we are learning and the reason behind the heurestics such as
pruning and smoothing.






Tree Ensemble

Now that we have introduced the elements of supervised learning, let us get started with real trees.
To begin with, let us first learn what is the model of xgboost: tree ensembles.
The tree ensemble model is a set of classification and regression trees (CART). Here’s a simple example of a CART
that classifies is someone will like computer games.

[image: CART]

We classify the members in thie family into different leaves, and assign them the score on corresponding leaf.
A CART is a bit different from decision trees, where the leaf only contain decision values. In CART, a real score
is associated with each of the leaves, which gives us richer interpretations that go beyond classification.
This also makes the unified optimization step easier, as we will see in later part of this tutorial.

Usually, a single tree is not so strong enough to be used in practice. What is actually used is the so called
tree ensemble model, that sums the prediction of multiple trees together.

[image: TwoCART]

Here is an example of tree ensemble of two trees. The prediction scores of each individual tree are summed up to get the final score.
If you look at the example, an important fact is that the two trees try to complement each other.
Mathematically, we can write our model in the form


\[\hat{y}_i = \sum_{k=1}^K f_k(x_i), f_k \in \mathcal{F}
\]

where \( K \) is the number of trees, \( f \) is a function in the functional space \( \mathcal{F} \), and \( \mathcal{F} \) is the set of all possible CARTs. Therefore our objective to optimize can be written as


\[obj(\Theta) = \sum_i^n l(y_i, \hat{y}_i) + \sum_{k=1}^K \Omega(f_k)
\]

Now here comes the question, what is the model of random forest? It is exactly tree ensembles! So random forest and boosted trees are not different in terms of model,
the difference is how we train them. This means if you write a predictive service of tree ensembles, you only need to write one of them and they should directly work
for both random forest and boosted trees. One example of elements of supervised learning rocks.




Tree Boosting

After introducing the model, let us begin with the real training part. How should we learn the trees?
The answer is, as is always for all supervised learning models: define an objective function, and optimize it!

Assume we have the following objective function (remember it always need to contain training loss, and regularization)


\[\begin{split}Obj = \sum_{i=1}^n l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^t\Omega(f_i) \\
\end{split}\]


Additive Training

First thing we want to ask is what are parameters of trees. You can find what we need to learn are those functions \(f_i\), with each contains the structure
of the tree, and the leaf score. This is much harder than traditional optimization problem where you can take the gradient and go.
It is not easy to train all the trees at once.
Instead, we use an additive strategy: fix what we have learned, add a new tree at a time.
We note the prediction value at step \(t\) by \( \hat{y}_i^{(t)}\), so we have


\[\begin{split}\hat{y}_i^{(0)} &= 0\\
\hat{y}_i^{(1)} &= f_1(x_i) = \hat{y}_i^{(0)} + f_1(x_i)\\
\hat{y}_i^{(2)} &= f_1(x_i) + f_2(x_i)= \hat{y}_i^{(1)} + f_2(x_i)\\
&\dots\\
\hat{y}_i^{(t)} &= \sum_{k=1}^t f_k(x_i)= \hat{y}_i^{(t-1)} + f_t(x_i)
\end{split}\]

It remains to ask Which tree do we want at each step?  A natural thing is to add the one that optimizes our objective.


\[\begin{split}Obj^{(t)} & = \sum_{i=1}^n l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^t\Omega(f_i) \\
          & = \sum_{i=1}^n l(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \Omega(f_t) + constant
\end{split}\]

If we  consider using MSE as our loss function, it becomes the following form.


\[\begin{split}Obj^{(t)} & = \sum_{i=1}^n (y_i - (\hat{y}_i^{(t-1)} + f_t(x_i)))^2 + \sum_{i=1}^t\Omega(f_i) \\
          & = \sum_{i=1}^n [2(\hat{y}_i^{(t-1)} - y_i)f_t(x_i) + f_t(x_i)^2] + \Omega(f_t) + constant
\end{split}\]

The form of MSE is friendly, with a first order term (usually called residual) and a quadratic term.
For other loss of interest (for example, logistic loss), it is not so easy to get such a nice form.
So in general case, we take the Taylor expansion of the loss function up to the second order


\[Obj^{(t)} = \sum_{i=1}^n [l(y_i, \hat{y}_i^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i)] + \Omega(f_t) + constant
\]

where the \(g_i\) and \(h_i\) are defined as


\[\begin{split}g_i &= \partial_{\hat{y}_i^{(t)}} l(y_i, \hat{y}_i^{(t-1)})\\
h_i &= \partial_{\hat{y}_i^{(t)}}^2 l(y_i, \hat{y}_i^{(t-1)})
\end{split}\]

After we remove all the constants, the specific objective at t step becomes


\[\sum_{i=1}^n [g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i)] + \Omega(f_t)
\]

This becomes our optimization goal for the new tree. One important advantage of this definition, is that
it only depends on \(g_i\) and \(h_i\), this is how xgboost allows support of customization of loss functions.
We can optimized every loss function, including logistic regression, weighted logistic regression, using the exactly
the same solver that takes \(g_i\) and \(h_i\) as input!




Model Complexity

We have introduced the training step, but wait, there is one important thing, the regularization!
We need to define the complexity of the tree \(\Omega(f)\). In order to do so, let us first refine the definition of the tree a tree \( f(x) \) as


\[f_t(x) = w_{q(x)}, w \in R^T, q:R^d\rightarrow \{1,2,\cdots,T\} .
\]

Here \( w \) is the vector of scores on leaves, \( q \) is a function assigning each data point to the corresponding leaf and\( T \) is the number of leaves.
In XGBoost, we define the complexity as


\[\Omega(f) = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^T w_j^2
\]

Of course there is more than one way to define the complexity, but this specific one works well in practice. The regularization is one part most tree packages takes
less carefully, or simply ignore. This was due to the traditional treatment tree learning only emphasize improving impurity, while the complexity control part
are more lies as part of heuristics. By defining it formally, we can get a better idea of what we are learning, and yes it works well in practice.




The Structure Score

Here is the magical part of the derivation. After reformalizing the tree model, we can write the objective value with the \( t\)-th tree as:


\[\begin{split}Obj^{(t)} &\approx \sum_{i=1}^n [g_i w_q(x_i) + \frac{1}{2} h_i w_{q(x_i)}^2] + \gamma T + \frac{1}{2}\lambda \sum_{j=1}^T w_j^2\\
&= \sum^T_{j=1} [(\sum_{i\in I_j} g_i) w_j + \frac{1}{2} (\sum_{i\in I_j} h_i + \lambda) w_j^2 ] + \gamma T
\end{split}\]

where \( I_j = \{i|q(x_i)=j\} \) is the set of indices of data points assigned to the \( j \)-th leaf. Notice that in the second line we have change the index of the summation because all the data points on the same leaf get the same score. We could further compress the expression by defining \( G_j = \sum_{i\in I_j} g_i \) and \( H_j = \sum_{i\in I_j} h_i \):


\[Obj^{(t)} = \sum^T_{j=1} [G_jw_j + \frac{1}{2} (H_j+\lambda) w_j^2] +\gamma T
\]

In this equation \( w_j \) are independent to each other, the form \( G_jw_j+\frac{1}{2}(H_j+\lambda)w_j^2 \) is quadratic and the best \( w_j \) for a given structure \(q(x)\) and the best objective reduction we can get:


\[\begin{split}w_j^\ast = -\frac{G_j}{H_j+\lambda}\\
Obj^\ast = -\frac{1}{2} \sum_{j=1}^T \frac{G_j^2}{H_j+\lambda} + \gamma T
\end{split}\]

The last equation measures how good a tree structure \(q(x)\) is.

[image: Structure Score]

If all these sounds a bit complicated. Let us take a look the the picture, and see how the scores can be calculated.
Basically, for a given tree structure, we push the statistics \(g_i\) and \(h_i\) to the leaves they belong to,
sum the statistics together, and use the formula to calulate how good the tree is.
This score is like impurity measure in decision tree, except that it also takes the model complexity into account.




Learn the tree structure

Now we have a way to measure how good a tree is ideally we can enumerate all possible trees and pick the best one.
In practice it is impossible, so we will try to one level of the tree at a time.
Specifically we try to split a leaf into two leaves, and the score it gains is


\[Gain = \frac{1}{2} \left[\frac{G_L^2}{H_L+\lambda}+\frac{G_R^2}{H_R+\lambda}-\frac{(G_L+G_R)^2}{H_L+H_R+\lambda}\right] - \gamma
\]

This formula can be decomposited as 1) the score on the new left leaf 2) the score on the new right leaf 3) The score on the original leaf 4) regularization on the additional leaf.
We can find an important fact here: if the gain is smaller than \(\gamma\), we would better not to add that branch. This is exactly the prunning techniques in tree based
models! By using the principles of supervised learning, we can naturally comes up with the reason these techniques :)

For real valued data, we usually want to search for an optimal split. To efficiently do so, we place all the instances in a sorted way, like the following picture.
[image: Best split]
Then a left to right scan is sufficient to calculate the structure score of all possible split solutions, and we can find the best split efficiently.






Final words on XGBoost

Now you have understand what is a boosted tree, you may ask, where is the introduction on XGBoost [https://github.com/dmlc/xgboost]?
XGBoost is exactly a tool motivated by the formal principle introduced in this tutorial!
More importantly, it is developed with both deep consideration in terms of systems optimization and principles in machine learning.
The goal of this library is to push the extreme of the computation limits of machines to provide a scalable, portable and accurate library.
Make sure you try it out [https://github.com/dmlc/xgboost], and most importantly, contribute your piece of wisdom (code, examples, tutorials) to the community!
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Python Package Introduction

This document gives a basic walkthrough of xgboost python package.

List of other Helpful Links



	Python walkthrough code collections [https://github.com/tqchen/xgboost/blob/master/demo/guide-python]

	Python API Reference






Install XGBoost

To install XGBoost, do the following steps.


	You need to run make in the root directory of the project

	In the  python-package directory run



python setup.py install





import xgboost as xgb








Data Interface

XGBoost python module is able to loading from libsvm txt format file, Numpy 2D array and xgboost binary buffer file. The data will be store in DMatrix object.


	To load libsvm text format file and XGBoost binary file into DMatrix, the usage is like



dtrain = xgb.DMatrix('train.svm.txt')
dtest = xgb.DMatrix('test.svm.buffer')






	To load numpy array into DMatrix, the usage is like



data = np.random.rand(5,10) # 5 entities, each contains 10 features
label = np.random.randint(2, size=5) # binary target
dtrain = xgb.DMatrix( data, label=label)






	Build DMatrix from scipy.sparse



csr = scipy.sparse.csr_matrix((dat, (row, col)))
dtrain = xgb.DMatrix(csr)






	Saving DMatrix into XGBoost binary file will make loading faster in next time. The usage is like:



dtrain = xgb.DMatrix('train.svm.txt')
dtrain.save_binary("train.buffer")






	To handle missing value in DMatrix, you can initialize the DMatrix like:



dtrain = xgb.DMatrix(data, label=label, missing = -999.0)






	Weight can be set when needed, like



w = np.random.rand(5, 1)
dtrain = xgb.DMatrix(data, label=label, missing = -999.0, weight=w)








Setting Parameters

XGBoost use list of pair to save parameters. Eg


	Booster parameters



param = {'bst:max_depth':2, 'bst:eta':1, 'silent':1, 'objective':'binary:logistic' }
param['nthread'] = 4
plst = param.items()
plst += [('eval_metric', 'auc')] # Multiple evals can be handled in this way
plst += [('eval_metric', 'ams@0')]






	Specify validations set to watch performance



evallist  = [(dtest,'eval'), (dtrain,'train')]








Training

With parameter list and data, you are able to train a model.


	Training



num_round = 10
bst = xgb.train( plst, dtrain, num_round, evallist )






	Saving model
After training, you can save model and dump it out.



bst.save_model('0001.model')






	Dump Model and Feature Map
You can dump the model to txt and review the meaning of model



# dump model
bst.dump_model('dump.raw.txt')
# dump model with feature map
bst.dump_model('dump.raw.txt','featmap.txt')






	Loading model
After you save your model, you can load model file at anytime by using



bst = xgb.Booster({'nthread':4}) #init model
bst.load_model("model.bin") # load data








Early Stopping

If you have a validation set, you can use early stopping to find the optimal number of boosting rounds.
Early stopping requires at least one set in evals. If there’s more than one, it will use the last.

train(..., evals=evals, early_stopping_rounds=10)

The model will train until the validation score stops improving. Validation error needs to decrease at least every early_stopping_rounds to continue training.

If early stopping occurs, the model will have two additional fields: bst.best_score and bst.best_iteration. Note that train() will return a model from the last iteration, not the best one.

This works with both metrics to minimize (RMSE, log loss, etc.) and to maximize (MAP, NDCG, AUC).




Prediction

After you training/loading a model and preparing the data, you can start to do prediction.

# 7 entities, each contains 10 features
data = np.random.rand(7, 10)
dtest = xgb.DMatrix(data)
ypred = bst.predict(xgmat)





If early stopping is enabled during training, you can predict with the best iteration.

ypred = bst.predict(xgmat,ntree_limit=bst.best_iteration)








Plotting

You can use plotting module to plot importance and output tree.

To plot importance, use plot_importance. This function requires matplotlib to be installed.

xgb.plot_importance(bst)





To output tree via matplotlib, use plot_tree specifying ordinal number of the target tree.
This function requires graphviz and matplotlib.

xgb.plot_tree(bst, num_trees=2)





When you use IPython, you can use to_graphviz function which converts the target tree to graphviz instance. graphviz instance is automatically rendered on IPython.

xgb.to_graphviz(bst, num_trees=2)











          

      

      

    


    
         Copyright 2015, xgboost developers.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	xgboost 0.4 documentation 
 
      

    


    
      
          
            
  
Python API Reference

This page gives the Python API reference of xgboost, please also refer to Python Package Introduction for more information about python package.

The document in this page is automatically generated by sphinx. The content do not render at github, you can view it at http://xgboost.readthedocs.org/en/latest/python/python_api.html


Core Data Structure

Core XGBoost Library.


	
class xgboost.DMatrix(data, label=None, missing=0.0, weight=None, silent=False, feature_names=None, feature_types=None)

	Bases: object

Data Matrix used in XGBoost.

DMatrix is a internal data structure that used by XGBoost
which is optimized for both memory efficiency and training speed.
You can construct DMatrix from numpy.arrays


	
feature_names

	Get feature names (column labels).





	Returns:	feature_names


	Return type:	list or None










	
feature_types

	Get feature types (column types).





	Returns:	feature_types


	Return type:	list or None










	
get_base_margin()

	Get the base margin of the DMatrix.





	Returns:	base_margin


	Return type:	float










	
get_float_info(field)

	Get float property from the DMatrix.





	Parameters:	field (str) – The field name of the information


	Returns:	info –
a numpy array of float information of the data


	Return type:	array










	
get_label()

	Get the label of the DMatrix.





	Returns:	label


	Return type:	array










	
get_uint_info(field)

	Get unsigned integer property from the DMatrix.





	Parameters:	field (str) – The field name of the information


	Returns:	info –
a numpy array of float information of the data


	Return type:	array










	
get_weight()

	Get the weight of the DMatrix.





	Returns:	weight


	Return type:	array










	
num_col()

	Get the number of columns (features) in the DMatrix.





	Returns:	number of columns


	Return type:	int










	
num_row()

	Get the number of rows in the DMatrix.





	Returns:	number of rows


	Return type:	int










	
save_binary(fname, silent=True)

	Save DMatrix to an XGBoost buffer.





	Parameters:	
	fname (string) – Name of the output buffer file.

	silent (bool (optional; default: True)) – If set, the output is suppressed.














	
set_base_margin(margin)

	Set base margin of booster to start from.

This can be used to specify a prediction value of
existing model to be base_margin
However, remember margin is needed, instead of transformed prediction
e.g. for logistic regression: need to put in value before logistic transformation
see also example/demo.py





	Parameters:	margin (array like) – Prediction margin of each datapoint










	
set_float_info(field, data)

	Set float type property into the DMatrix.





	Parameters:	
	field (str) – The field name of the information

	data (numpy array) – The array ofdata to be set














	
set_group(group)

	Set group size of DMatrix (used for ranking).





	Parameters:	group (array like) – Group size of each group










	
set_label(label)

	Set label of dmatrix





	Parameters:	label (array like) – The label information to be set into DMatrix










	
set_uint_info(field, data)

	Set uint type property into the DMatrix.





	Parameters:	
	field (str) – The field name of the information

	data (numpy array) – The array ofdata to be set














	
set_weight(weight)

	Set weight of each instance.





	Parameters:	weight (array like) – Weight for each data point










	
slice(rindex)

	Slice the DMatrix and return a new DMatrix that only contains rindex.





	Parameters:	rindex (list) – List of indices to be selected.


	Returns:	res –
A new DMatrix containing only selected indices.


	Return type:	DMatrix














	
class xgboost.Booster(params=None, cache=(), model_file=None)

	Bases: object

“A Booster of of XGBoost.

Booster is the model of xgboost, that contains low level routines for
training, prediction and evaluation.


	
boost(dtrain, grad, hess)

	Boost the booster for one iteration, with customized gradient statistics.





	Parameters:	
	dtrain (DMatrix) – The training DMatrix.

	grad (list) – The first order of gradient.

	hess (list) – The second order of gradient.














	
copy()

	Copy the booster object.





	Returns:	booster –
a copied booster model


	Return type:	Booster










	
dump_model(fout, fmap='', with_stats=False)

	Dump model into a text file.





	Parameters:	
	foout (string) – Output file name.

	fmap (string, optional) – Name of the file containing feature map names.

	with_stats (bool (optional)) – Controls whether the split statistics are output.














	
eval(data, name='eval', iteration=0)

	Evaluate the model on mat.





	Parameters:	
	data (DMatrix) – The dmatrix storing the input.

	name (str, optional) – The name of the dataset.

	iteration (int, optional) – The current iteration number.






	Returns:	result –
Evaluation result string.




	Return type:	str












	
eval_set(evals, iteration=0, feval=None)

	Evaluate  a set of data.





	Parameters:	
	evals (list of tuples (DMatrix, string)) – List of items to be evaluated.

	iteration (int) – Current iteration.

	feval (function) – Custom evaluation function.






	Returns:	result –
Evaluation result string.




	Return type:	str












	
get_dump(fmap='', with_stats=False)

	Returns the dump the model as a list of strings.






	
get_fscore(fmap='')

	Get feature importance of each feature.





	Parameters:	fmap (str (optional)) – The name of feature map file










	
load_model(fname)

	Load the model from a file.





	Parameters:	fname (string or a memory buffer) – Input file name or memory buffer(see also save_raw)










	
predict(data, output_margin=False, ntree_limit=0, pred_leaf=False)

	Predict with data.


	NOTE: This function is not thread safe.

	For each booster object, predict can only be called from one thread.
If you want to run prediction using multiple thread, call bst.copy() to make copies
of model object and then call predict







	Parameters:	
	data (DMatrix) – The dmatrix storing the input.

	output_margin (bool) – Whether to output the raw untransformed margin value.

	ntree_limit (int) – Limit number of trees in the prediction; defaults to 0 (use all trees).

	pred_leaf (bool) – When this option is on, the output will be a matrix of (nsample, ntrees)
with each record indicating the predicted leaf index of each sample in each tree.
Note that the leaf index of a tree is unique per tree, so you may find leaf 1
in both tree 1 and tree 0.






	Returns:	prediction




	Return type:	numpy array












	
save_model(fname)

	Save the model to a file.





	Parameters:	fname (string) – Output file name










	
save_raw()

	Save the model to a in memory buffer represetation





	Returns:	


	Return type:	a in memory buffer represetation of the model










	
set_param(params, value=None)

	Set parameters into the Booster.





	Parameters:	
	params (dict/list/str) – list of key,value paris, dict of key to value or simply str key

	value (optional) – value of the specified parameter, when params is str key














	
update(dtrain, iteration, fobj=None)

	Update for one iteration, with objective function calculated internally.





	Parameters:	
	dtrain (DMatrix) – Training data.

	iteration (int) – Current iteration number.

	fobj (function) – Customized objective function.




















Learning API

Training Library containing training routines.


	
xgboost.train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None, early_stopping_rounds=None, evals_result=None, verbose_eval=True)

	Train a booster with given parameters.





	Parameters:	
	params (dict) – Booster params.

	dtrain (DMatrix) – Data to be trained.

	num_boost_round (int) – Number of boosting iterations.

	(evals) (watchlist) – List of items to be evaluated during training, this allows user to watch
performance on the validation set.

	obj (function) – Customized objective function.

	feval (function) – Customized evaluation function.

	early_stopping_rounds (int) – Activates early stopping. Validation error needs to decrease at least
every <early_stopping_rounds> round(s) to continue training.
Requires at least one item in evals.
If there’s more than one, will use the last.
Returns the model from the last iteration (not the best one).
If early stopping occurs, the model will have two additional fields:
bst.best_score and bst.best_iteration.

	evals_result (dict) – This dictionary stores the evaluation results of all the items in watchlist

	verbose_eval (bool) – If verbose_eval then the evaluation metric on the validation set, if
given, is printed at each boosting stage.






	Returns:	booster




	Return type:	a trained booster model












	
xgboost.cv(params, dtrain, num_boost_round=10, nfold=3, metrics=(), obj=None, feval=None, fpreproc=None, as_pandas=True, show_progress=None, show_stdv=True, seed=0)

	Cross-validation with given paramaters.





	Parameters:	
	params (dict) – Booster params.

	dtrain (DMatrix) – Data to be trained.

	num_boost_round (int) – Number of boosting iterations.

	nfold (int) – Number of folds in CV.

	metrics (list of strings) – Evaluation metrics to be watched in CV.

	obj (function) – Custom objective function.

	feval (function) – Custom evaluation function.

	fpreproc (function) – Preprocessing function that takes (dtrain, dtest, param) and returns
transformed versions of those.

	as_pandas (bool, default True) – Return pd.DataFrame when pandas is installed.
If False or pandas is not installed, return np.ndarray

	show_progress (bool or None, default None) – Whether to display the progress. If None, progress will be displayed
when np.ndarray is returned.

	show_stdv (bool, default True) – Whether to display the standard deviation in progress.
Results are not affected, and always contains std.

	seed (int) – Seed used to generate the folds (passed to numpy.random.seed).






	Returns:	evaluation history




	Return type:	list(string)














Scikit-Learn API

Scikit-Learn Wrapper interface for XGBoost.


	
class xgboost.XGBRegressor(max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective='reg:linear', nthread=-1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1, base_score=0.5, seed=0, missing=None)

	Bases: xgboost.sklearn.XGBModel, object


	Implementation of the scikit-learn API for XGBoost regression.

	Parameters




	max_depth : int

	Maximum tree depth for base learners.

	learning_rate : float

	Boosting learning rate (xgb’s “eta”)

	n_estimators : int

	Number of boosted trees to fit.

	silent : boolean

	Whether to print messages while running boosting.

	objective : string

	Specify the learning task and the corresponding learning objective.

	nthread : int

	Number of parallel threads used to run xgboost.

	gamma : float

	Minimum loss reduction required to make a further partition on a leaf node of the tree.

	min_child_weight : int

	Minimum sum of instance weight(hessian) needed in a child.

	max_delta_step : int

	Maximum delta step we allow each tree’s weight estimation to be.

	subsample : float

	Subsample ratio of the training instance.

	colsample_bytree : float

	Subsample ratio of columns when constructing each tree.

	base_score:

	The initial prediction score of all instances, global bias.

	seed : int

	Random number seed.

	missing : float, optional

	Value in the data which needs to be present as a missing value. If
None, defaults to np.nan.








	
class xgboost.XGBClassifier(max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective='binary:logistic', nthread=-1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1, base_score=0.5, seed=0, missing=None)

	Bases: xgboost.sklearn.XGBModel, object

Implementation of the scikit-learn API for XGBoost classification.


Parameters



	max_depth : int

	Maximum tree depth for base learners.

	learning_rate : float

	Boosting learning rate (xgb’s “eta”)

	n_estimators : int

	Number of boosted trees to fit.

	silent : boolean

	Whether to print messages while running boosting.

	objective : string

	Specify the learning task and the corresponding learning objective.

	nthread : int

	Number of parallel threads used to run xgboost.

	gamma : float

	Minimum loss reduction required to make a further partition on a leaf node of the tree.

	min_child_weight : int

	Minimum sum of instance weight(hessian) needed in a child.

	max_delta_step : int

	Maximum delta step we allow each tree’s weight estimation to be.

	subsample : float

	Subsample ratio of the training instance.

	colsample_bytree : float

	Subsample ratio of columns when constructing each tree.

	base_score:

	The initial prediction score of all instances, global bias.

	seed : int

	Random number seed.

	missing : float, optional

	Value in the data which needs to be present as a missing value. If
None, defaults to np.nan.




	
fit(X, y, sample_weight=None, eval_set=None, eval_metric=None, early_stopping_rounds=None, verbose=True)

	Fit gradient boosting classifier





	Parameters:	
	X (array_like) – Feature matrix

	y (array_like) – Labels

	sample_weight (array_like) – Weight for each instance

	eval_set (list, optional) – A list of (X, y) pairs to use as a validation set for
early-stopping

	eval_metric (str, callable, optional) – If a str, should be a built-in evaluation metric to use. See
doc/parameter.md. If callable, a custom evaluation metric. The call
signature is func(y_predicted, y_true) where y_true will be a
DMatrix object such that you may need to call the get_label
method. It must return a str, value pair where the str is a name
for the evaluation and value is the value of the evaluation
function. This objective is always minimized.

	early_stopping_rounds (int, optional) – Activates early stopping. Validation error needs to decrease at
least every <early_stopping_rounds> round(s) to continue training.
Requires at least one item in evals.  If there’s more than one,
will use the last. Returns the model from the last iteration
(not the best one). If early stopping occurs, the model will
have two additional fields: bst.best_score and bst.best_iteration.

	verbose (bool) – If verbose and an evaluation set is used, writes the evaluation
metric measured on the validation set to stderr.




















Plotting API

Plotting Library.


	
xgboost.plot_importance(booster, ax=None, height=0.2, xlim=None, title='Feature importance', xlabel='F score', ylabel='Features', grid=True, **kwargs)

	Plot importance based on fitted trees.





	Parameters:	
	booster (Booster or dict) – Booster instance, or dict taken by Booster.get_fscore()

	ax (matplotlib Axes, default None) – Target axes instance. If None, new figure and axes will be created.

	height (float, default 0.2) – Bar height, passed to ax.barh()

	xlim (tuple, default None) – Tuple passed to axes.xlim()

	title (str, default “Feature importance”) – Axes title. To disable, pass None.

	xlabel (str, default “F score”) – X axis title label. To disable, pass None.

	ylabel (str, default “Features”) – Y axis title label. To disable, pass None.

	kwargs – Other keywords passed to ax.barh()






	Returns:	ax




	Return type:	matplotlib Axes












	
xgboost.plot_tree(booster, num_trees=0, rankdir='UT', ax=None, **kwargs)

	Plot specified tree.





	Parameters:	
	booster (Booster) – Booster instance

	num_trees (int, default 0) – Specify the ordinal number of target tree

	rankdir (str, default “UT”) – Passed to graphiz via graph_attr

	ax (matplotlib Axes, default None) – Target axes instance. If None, new figure and axes will be created.

	kwargs – Other keywords passed to to_graphviz






	Returns:	ax




	Return type:	matplotlib Axes












	
xgboost.to_graphviz(booster, num_trees=0, rankdir='UT', yes_color='#0000FF', no_color='#FF0000', **kwargs)

	Convert specified tree to graphviz instance. IPython can automatically plot the
returned graphiz instance. Otherwise, you shoud call .render() method
of the returned graphiz instance.





	Parameters:	
	booster (Booster) – Booster instance

	num_trees (int, default 0) – Specify the ordinal number of target tree

	rankdir (str, default “UT”) – Passed to graphiz via graph_attr

	yes_color (str, default ‘#0000FF’) – Edge color when meets the node condigion.

	no_color (str, default ‘#FF0000’) – Edge color when doesn’t meet the node condigion.

	kwargs – Other keywords passed to graphviz graph_attr






	Returns:	ax




	Return type:	matplotlib Axes
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Using XGBoost External Memory Version(beta)

There is no big difference between using external memory version and in-memory version.
The only difference is the filename format.

The external memory version takes in the following filename format


filename#cacheprefix


The filename is the normal path to libsvm file you want to load in, cacheprefix is a
path to a cache file that xgboost will use for external memory cache.

The following code was extracted from ../demo/guide-python/external_memory.py [https://github.com/dmlc/xgboost/tree/master/doc/../demo/guide-python/external_memory.py]

dtrain = xgb.DMatrix('../data/agaricus.txt.train#dtrain.cache')





You can find that there is additional #dtrain.cache following the libsvm file, this is the name of cache file.
For CLI version, simply use "../data/agaricus.txt.train#dtrain.cache" in filename.


Performance Note


	the parameter nthread should be set to number of real cores
	Most modern CPU offer hyperthreading, which means you can have a 4 core cpu with 8 threads

	Set nthread to be 4 for maximum performance in such case










Distributed Version

The external memory mode naturally works on distributed version, you can simply set path like


data = "hdfs:///path-to-data/#dtrain.cache"


xgboost will cache the data to the local position. When you run on YARN, the current folder is temporal
so that you can directly use dtrain.cache to cache to current folder.




Usage Note


	This is a experimental version
	If you like to try and test it, report results to https://github.com/dmlc/xgboost/issues/244





	Currently only importing from libsvm format is supported
	Contribution of ingestion from other common external memory data source is welcomed
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Text Input Format of DMatrix


Basic Input Format

As we have mentioned, XGBoost takes LibSVM format. For training or predicting, XGBoost takes an instance file with the format as below:

train.txt


1 101:1.2 102:0.03
0 1:2.1 10001:300 10002:400
0 0:1.3 1:0.3
1 0:0.01 1:0.3
0 0:0.2 1:0.3


Each line represent a single instance, and in the first line ‘1’ is the instance label,‘101’ and ‘102’ are feature indices, ‘1.2’ and ‘0.03’ are feature values. In the binary classification case, ‘1’ is used to indicate positive samples, and ‘0’ is used to indicate negative samples. We also support probability values in [0,1] as label, to indicate the probability of the instance being positive.




Group Input Format

As XGBoost supports accomplishing ranking task [https://github.com/dmlc/xgboost/tree/master/doc/../demo/rank], we support the group input format. In ranking task, instances are categorized into different groups in real world scenarios, for example, in the learning to rank web pages scenario, the web page instances are grouped by their queries. Except the instance file mentioned in the group input format, XGBoost need an file indicating the group information. For example, if the instance file is the “train.txt” shown above,
and the group file is as below:

train.txt.group


2
3


This means that, the data set contains 5 instances, and the first two instances are in a group and the other three are in another group. The numbers in the group file are actually indicating the number of instances in each group in the instance file in order.
While configuration, you do not have to indicate the path of the group file. If the instance file name is “xxx”, XGBoost will check whether there is a file named “xxx.group” in the same directory and decides whether to read the data as group input format.




Instance Weight File

XGBoost supports providing each instance an weight to differentiate the importance of instances. For example, if we provide an instance weight file for the “train.txt” file in the example as below:

train.txt.weight


1
0.5
0.5
1
0.5


It means that XGBoost will emphasize more on the first and fourth instance， that is to say positive instances while training.
The configuration is similar to configuring the group information. If the instance file name is “xxx”, XGBoost will check whether there is a file named “xxx.weight” in the same directory and if there is, will use the weights while training models. Weights will be included into an “xxx.buffer” file that is created by XGBoost automatically. If you want to update the weights, you need to delete the “xxx.buffer” file prior to launching XGBoost.




Initial Margin file

XGBoost supports providing each instance an initial margin prediction. For example, if we have a initial prediction using logistic regression for “train.txt” file, we can create the following file:

train.txt.base_margin


-0.4
1.0
3.4


XGBoost will take these values as intial margin prediction and boost from that. An important note about base_margin is that it should be margin prediction before transformation, so if you are doing logistic loss, you will need to put in value before logistic transformation. If you are using XGBoost predictor, use pred_margin=1 to output margin values.
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Build XGBoost


	Run bash build.sh (you can also type make)

	If you have C++11 compiler, it is recommended to type make cxx11=1
	C++11 is not used by default





	If your compiler does not come with OpenMP support, it will fire an warning telling you that the code will compile into single thread mode, and you will get single thread xgboost

	You may get a error: -lgomp is not found
	You can type make no_omp=1, this will get you single thread xgboost

	Alternatively, you can upgrade your compiler to compile multi-thread version





	Windows(VS 2010): see ../windows [https://github.com/dmlc/xgboost/tree/master/doc/../windows] folder
	In principle, you put all the cpp files in the Makefile to the project, and build





	OS X with multi-threading support: see next section




Build XGBoost in OS X with OpenMP

Here is the complete solution to use OpenMp-enabled compilers to install XGBoost.


	Obtain gcc with openmp support by brew install gcc --without-multilib or clang with openmp by brew install clang-omp. The clang one is recommended because the first method requires us compiling gcc inside the machine (more than an hour in mine)! (BTW, brew is the de facto standard of apt-get on OS X. So installing HPC [http://hpc.sourceforge.net/] separately is not recommended, but it should work.)

	if you are planing to use clang-omp - in step 3 and/or 4, change line 9 in xgboost/src/utils/omp.h to



#include <libiomp/omp.h> /* instead of #include <omp.h> */`





to make it work, otherwise you might get this error

src/tree/../utils/omp.h:9:10: error: 'omp.h' file not found...


	Set the Makefile correctly for compiling cpp version xgboost then python version xgboost.



export CC  = gcc-4.9
export CXX = g++-4.9





Or

export CC = clang-omp
export CXX = clang-omp++





Remember to change header (mentioned in step 2) if using clang-omp.

Then cd xgboost then bash build.sh to compile XGBoost. And go to wrapper sub-folder to install python version.


	Set the Makevars file in highest piority for R.



The point is, there are three Makevars : ~/.R/Makevars, xgboost/R-package/src/Makevars, and /usr/local/Cellar/r/3.2.0/R.framework/Resources/etc/Makeconf (the last one obtained by running file.path(R.home("etc"), "Makeconf") in R), and SHLIB_OPENMP_CXXFLAGS is not set by default!! After trying, it seems that the first one has highest piority (surprise!).

So, add or change ~/.R/Makevars to the following lines:

CC=gcc-4.9
CXX=g++-4.9
SHLIB_OPENMP_CFLAGS = -fopenmp
SHLIB_OPENMP_CXXFLAGS = -fopenmp
SHLIB_OPENMP_FCFLAGS = -fopenmp
SHLIB_OPENMP_FFLAGS = -fopenmp





Or

CC=clang-omp
CXX=clang-omp++
SHLIB_OPENMP_CFLAGS = -fopenmp
SHLIB_OPENMP_CXXFLAGS = -fopenmp
SHLIB_OPENMP_FCFLAGS = -fopenmp
SHLIB_OPENMP_FFLAGS = -fopenmp





Again, remember to change header if using clang-omp.

Then inside R, run

install.packages('xgboost/R-package/', repos=NULL, type='source')





Or

devtools::install_local('xgboost/', subdir = 'R-package') # you may use devtools








Build with HDFS and S3 Support


	To build xgboost use with HDFS/S3 support and distributed learnig. It is recommended to build with dmlc, with the following steps
	git clone https://github.com/dmlc/dmlc-core

	Follow instruction in dmlc-core/make/config.mk to compile libdmlc.a

	In root folder of xgboost, type make dmlc=dmlc-core





	This will allow xgboost to directly load data and save model from/to hdfs and s3
	Simply replace the filename with prefix s3:// or hdfs://





	This xgboost that can be used for distributed learning
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XGBoost Parameters

Before running XGboost, we must set three types of parameters, general parameters, booster parameters and task parameters:


	General parameters relates to which booster we are using to do boosting, commonly tree or linear model

	Booster parameters depends on which booster you have chosen

	Learning Task parameters that decides on the learning scenario, for example, regression tasks may use different parameters with ranking tasks.

	Command line parameters that relates to behavior of CLI version of xgboost.




Parameters in R Package

In R-package, you can use .(dot) to replace under score in the parameters, for example, you can use max.depth as max_depth. The underscore parameters are also valid in R.




General Parameters


	booster [default=gbtree]
	which booster to use, can be gbtree or gblinear. gbtree uses tree based model while gblinear uses linear function.





	silent [default=0]
	0 means printing running messages, 1 means silent mode.





	nthread [default to maximum number of threads available if not set]
	number of parallel threads used to run xgboost





	num_pbuffer [set automatically by xgboost, no need to be set by user]
	size of prediction buffer, normally set to number of training instances. The buffers are used to save the prediction results of last boosting step.





	num_feature [set automatically by xgboost, no need to be set by user]
	feature dimension used in boosting, set to maximum dimension of the feature










Parameters for Tree Booster


	eta [default=0.3]
	step size shrinkage used in update to prevents overfitting. After each boosting step, we can directly get the weights of new features. and eta actually shrinks the feature weights to make the boosting process more conservative.

	range: [0,1]





	gamma [default=0]
	minimum loss reduction required to make a further partition on a leaf node of the tree. the larger, the more conservative the algorithm will be.

	range: [0,∞]





	max_depth [default=6]
	maximum depth of a tree

	range: [1,∞]





	min_child_weight [default=1]
	minimum sum of instance weight(hessian) needed in a child. If the tree partition step results in a leaf node with the sum of instance weight less than min_child_weight, then the building process will give up further partitioning. In linear regression mode, this simply corresponds to minimum number of instances needed to be in each node. The larger, the more conservative the algorithm will be.

	range: [0,∞]





	max_delta_step [default=0]
	Maximum delta step we allow each tree’s weight estimation to be. If the value is set to 0, it means there is no constraint. If it is set to a positive value, it can help making the update step more conservative. Usually this parameter is not needed, but it might help in logistic regression when class is extremely imbalanced. Set it to value of 1-10 might help control the update

	range: [0,∞]





	subsample [default=1]
	subsample ratio of the training instance. Setting it to 0.5 means that XGBoost randomly collected half of the data instances to grow trees and this will prevent overfitting.

	range: (0,1]





	colsample_bytree [default=1]
	subsample ratio of columns when constructing each tree.

	range: (0,1]





	lambda [default=1]
	L2 regularization term on weights





	alpha [default=0]
	L1 regularization term on weights










Parameters for Linear Booster


	lambda [default=0]
	L2 regularization term on weights





	alpha [default=0]
	L1 regularization term on weights





	lambda_bias
	L2 regularization term on bias, default 0(no L1 reg on bias because it is not important)










Learning Task Parameters


	objective [ default=reg:linear ]




	specify the learning task and the corresponding learning objective, and the objective options are below:

	“reg:linear” –linear regression

	“reg:logistic” –logistic regression

	“binary:logistic” –logistic regression for binary classification, output probability

	“binary:logitraw” –logistic regression for binary classification, output score before logistic transformation

	“count:poisson” –poisson regression for count data, output mean of poisson distribution
	max_delta_step is set to 0.7 by default in poisson regression (used to safeguard optimization)





	“multi:softmax” –set XGBoost to do multiclass classification using the softmax objective, you also need to set num_class(number of classes)

	“multi:softprob” –same as softmax, but output a vector of ndata * nclass, which can be further reshaped to ndata, nclass matrix. The result contains predicted probability of each data point belonging to each class.

	“rank:pairwise” –set XGBoost to do ranking task by minimizing the pairwise loss




	base_score [ default=0.5 ]
	the initial prediction score of all instances, global bias





	eval_metric [ default according to objective ]
	evaluation metrics for validation data, a default metric will be assigned according to objective( rmse for regression, and error for classification, mean average precision for ranking )

	User can add multiple evaluation metrics, for python user, remember to pass the metrics in as list of parameters pairs instead of map, so that latter ‘eval_metric’ won’t override previous one

	The choices are listed below:

	“rmse”: root mean square error [http://en.wikipedia.org/wiki/Root_mean_square_error]

	“logloss”: negative log-likelihood [http://en.wikipedia.org/wiki/Log-likelihood]

	“error”: Binary classification error rate. It is calculated as #(wrong cases)/#(all cases). For the predictions, the evaluation will regard the instances with prediction value larger than 0.5 as positive instances, and the others as negative instances.

	“merror”: Multiclass classification error rate. It is calculated as #(wrong cases)/#(all cases).

	“mlogloss”:  Multiclass logloss

	“auc”: Area under the curve [http://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_curve] for ranking evaluation.

	“ndcg”:Normalized Discounted Cumulative Gain [http://en.wikipedia.org/wiki/NDCG]

	“map”:Mean average precision [http://en.wikipedia.org/wiki/Mean_average_precision#Mean_average_precision]

	“ndcg@n”,”map@n”: n can be assigned as an integer to cut off the top positions in the lists for evaluation.

	“ndcg-”,”map-”,”ndcg@n-”,”map@n-”: In XGBoost, NDCG and MAP will evaluate the score of a list without any positive samples as 1. By adding “-” in the evaluation metric XGBoost will evaluate these score as 0 to be consistent under some conditions.
training repeatively





	seed [ default=0 ]




	random number seed.






Command Line Parameters

The following parameters are only used in the console version of xgboost


	use_buffer [ default=1 ]




	whether create binary buffer for text input, this normally will speedup loading when do




	num_round




	the number of round for boosting.




	data
	The path of training data





	test:data
	The path of test data to do prediction





	save_period [default=0]




	the period to save the model, setting save_period=10 means that for every 10 rounds XGBoost will save the model, setting it to 0 means not save any model during training.




	task [default=train] options: train, pred, eval, dump
	train: training using data

	pred: making prediction for test:data

	eval: for evaluating statistics specified by eval[name]=filename

	dump: for dump the learned model into text format(preliminary)





	model_in [default=NULL]
	path to input model, needed for test, eval, dump, if it is specified in training, xgboost will continue training from the input model





	model_out [default=NULL]
	path to output model after training finishes, if not specified, will output like 0003.model where 0003 is number of rounds to do boosting.





	model_dir [default=models]
	The output directory of the saved models during training





	fmap
	feature map, used for dump model





	name_dump [default=dump.txt]
	name of model dump file





	name_pred [default=pred.txt]
	name of prediction file, used in pred mode





	pred_margin [default=0]
	predict margin instead of transformed probability
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Notes on Parameter Tuning

Parameter tuning is a dark art in machine learning, the optimal parameters
of a model can depend on many scenarios. So it is impossible to create a
comprehensive guide for doing so.

This document tries to provide some guideline for parameters in xgboost.


Understanding Bias-Variance Tradeoff

If you take a machine learning or statistics course, this is likely to be one
of the most important concepts.
When we allow the model to get more complicated (e.g. more depth), the model
has better ability to fit the training data, resulting in a less biased model.
However, such complicated model requires more data to fit.

Most of parameters in xgboost are about bias variance tradeoff. The best model
should trade the model complexity with its predictive power carefully.
Parameters Documentation will tell you whether each parameter
will make the model more conservative or not. This can be used to help you
turn the knob between complicated model and simple model.




Control Overfitting

When you observe high training accuracy, but low tests accuracy, it is likely that you encounter overfitting problem.

There are in general two ways that you can control overfitting in xgboost


	The first way is to directly control model complexity
	This include max_depth, min_child_weight and gamma





	The second way is to add randomness to make training robust to noise
	This include subsample, colsample_bytree

	You can also reduce stepsize eta, but needs to remember to increase num_round when you do so.










Handle Imbalanced Dataset

For common cases such as ads clickthrough log, the dataset is extremely imbalanced.
This can affect the training of xgboost model, and there are two ways to improve it.


	If you care only about the ranking order (AUC) of your prediction
	Balance the positive and negative weights, via scale_pos_weight

	Use AUC for evaluation





	If you care about predicting the right probability
	In such a case, you cannot re-balance the dataset

	In such a case, set parameter max_delta_step to a finite number (say 1) will help convergence













          

      

      

    


    
         Copyright 2015, xgboost developers.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	xgboost 0.4 documentation 
 
      

    


    
      
          
            
  
Developer Guide

This page contains guide for developers of xgboost. XGBoost has been developed and used by a group of active community.
Everyone is more than welcomed to is a great way to make the project better.
The project is maintained by a committee of committers [https://github.com/dmlc/xgboost/tree/master/doc/../CONTRIBUTORS.md#comitters] who will review and merge pull requests from contributors.


Contributing Code


	The C++ code follows Google C++ style

	We follow numpy style to document our python module

	Tools to precheck codestyle
	clone https://github.com/dmlc/dmlc-core into root directory

	type make lint and fix possible errors.
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Python API Reference

This page gives the Python API reference of xgboost, please also refer to Python Package Introduction for more information about python package.

The document in this page is automatically generated by sphinx. The content do not render at github, you can view it at http://xgboost.readthedocs.org/en/latest/python/python_api.html


Core Data Structure

Core XGBoost Library.


	
class xgboost.DMatrix(data, label=None, missing=0.0, weight=None, silent=False, feature_names=None, feature_types=None)

	Bases: object

Data Matrix used in XGBoost.

DMatrix is a internal data structure that used by XGBoost
which is optimized for both memory efficiency and training speed.
You can construct DMatrix from numpy.arrays


	
feature_names

	Get feature names (column labels).





	Returns:	feature_names


	Return type:	list or None










	
feature_types

	Get feature types (column types).





	Returns:	feature_types


	Return type:	list or None










	
get_base_margin()

	Get the base margin of the DMatrix.





	Returns:	base_margin


	Return type:	float










	
get_float_info(field)

	Get float property from the DMatrix.





	Parameters:	field (str) – The field name of the information


	Returns:	info –
a numpy array of float information of the data


	Return type:	array










	
get_label()

	Get the label of the DMatrix.





	Returns:	label


	Return type:	array










	
get_uint_info(field)

	Get unsigned integer property from the DMatrix.





	Parameters:	field (str) – The field name of the information


	Returns:	info –
a numpy array of float information of the data


	Return type:	array










	
get_weight()

	Get the weight of the DMatrix.





	Returns:	weight


	Return type:	array










	
num_col()

	Get the number of columns (features) in the DMatrix.





	Returns:	number of columns


	Return type:	int










	
num_row()

	Get the number of rows in the DMatrix.





	Returns:	number of rows


	Return type:	int










	
save_binary(fname, silent=True)

	Save DMatrix to an XGBoost buffer.





	Parameters:	
	fname (string) – Name of the output buffer file.

	silent (bool (optional; default: True)) – If set, the output is suppressed.














	
set_base_margin(margin)

	Set base margin of booster to start from.

This can be used to specify a prediction value of
existing model to be base_margin
However, remember margin is needed, instead of transformed prediction
e.g. for logistic regression: need to put in value before logistic transformation
see also example/demo.py





	Parameters:	margin (array like) – Prediction margin of each datapoint










	
set_float_info(field, data)

	Set float type property into the DMatrix.





	Parameters:	
	field (str) – The field name of the information

	data (numpy array) – The array ofdata to be set














	
set_group(group)

	Set group size of DMatrix (used for ranking).





	Parameters:	group (array like) – Group size of each group










	
set_label(label)

	Set label of dmatrix





	Parameters:	label (array like) – The label information to be set into DMatrix










	
set_uint_info(field, data)

	Set uint type property into the DMatrix.





	Parameters:	
	field (str) – The field name of the information

	data (numpy array) – The array ofdata to be set














	
set_weight(weight)

	Set weight of each instance.





	Parameters:	weight (array like) – Weight for each data point










	
slice(rindex)

	Slice the DMatrix and return a new DMatrix that only contains rindex.





	Parameters:	rindex (list) – List of indices to be selected.


	Returns:	res –
A new DMatrix containing only selected indices.


	Return type:	DMatrix














	
class xgboost.Booster(params=None, cache=(), model_file=None)

	Bases: object

“A Booster of of XGBoost.

Booster is the model of xgboost, that contains low level routines for
training, prediction and evaluation.


	
boost(dtrain, grad, hess)

	Boost the booster for one iteration, with customized gradient statistics.





	Parameters:	
	dtrain (DMatrix) – The training DMatrix.

	grad (list) – The first order of gradient.

	hess (list) – The second order of gradient.














	
copy()

	Copy the booster object.





	Returns:	booster –
a copied booster model


	Return type:	Booster










	
dump_model(fout, fmap='', with_stats=False)

	Dump model into a text file.





	Parameters:	
	foout (string) – Output file name.

	fmap (string, optional) – Name of the file containing feature map names.

	with_stats (bool (optional)) – Controls whether the split statistics are output.














	
eval(data, name='eval', iteration=0)

	Evaluate the model on mat.





	Parameters:	
	data (DMatrix) – The dmatrix storing the input.

	name (str, optional) – The name of the dataset.

	iteration (int, optional) – The current iteration number.






	Returns:	result –
Evaluation result string.




	Return type:	str












	
eval_set(evals, iteration=0, feval=None)

	Evaluate  a set of data.





	Parameters:	
	evals (list of tuples (DMatrix, string)) – List of items to be evaluated.

	iteration (int) – Current iteration.

	feval (function) – Custom evaluation function.






	Returns:	result –
Evaluation result string.




	Return type:	str












	
get_dump(fmap='', with_stats=False)

	Returns the dump the model as a list of strings.






	
get_fscore(fmap='')

	Get feature importance of each feature.





	Parameters:	fmap (str (optional)) – The name of feature map file










	
load_model(fname)

	Load the model from a file.





	Parameters:	fname (string or a memory buffer) – Input file name or memory buffer(see also save_raw)










	
predict(data, output_margin=False, ntree_limit=0, pred_leaf=False)

	Predict with data.


	NOTE: This function is not thread safe.

	For each booster object, predict can only be called from one thread.
If you want to run prediction using multiple thread, call bst.copy() to make copies
of model object and then call predict







	Parameters:	
	data (DMatrix) – The dmatrix storing the input.

	output_margin (bool) – Whether to output the raw untransformed margin value.

	ntree_limit (int) – Limit number of trees in the prediction; defaults to 0 (use all trees).

	pred_leaf (bool) – When this option is on, the output will be a matrix of (nsample, ntrees)
with each record indicating the predicted leaf index of each sample in each tree.
Note that the leaf index of a tree is unique per tree, so you may find leaf 1
in both tree 1 and tree 0.






	Returns:	prediction




	Return type:	numpy array












	
save_model(fname)

	Save the model to a file.





	Parameters:	fname (string) – Output file name










	
save_raw()

	Save the model to a in memory buffer represetation





	Returns:	


	Return type:	a in memory buffer represetation of the model










	
set_param(params, value=None)

	Set parameters into the Booster.





	Parameters:	
	params (dict/list/str) – list of key,value paris, dict of key to value or simply str key

	value (optional) – value of the specified parameter, when params is str key














	
update(dtrain, iteration, fobj=None)

	Update for one iteration, with objective function calculated internally.





	Parameters:	
	dtrain (DMatrix) – Training data.

	iteration (int) – Current iteration number.

	fobj (function) – Customized objective function.




















Learning API

Training Library containing training routines.


	
xgboost.train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None, early_stopping_rounds=None, evals_result=None, verbose_eval=True)

	Train a booster with given parameters.





	Parameters:	
	params (dict) – Booster params.

	dtrain (DMatrix) – Data to be trained.

	num_boost_round (int) – Number of boosting iterations.

	(evals) (watchlist) – List of items to be evaluated during training, this allows user to watch
performance on the validation set.

	obj (function) – Customized objective function.

	feval (function) – Customized evaluation function.

	early_stopping_rounds (int) – Activates early stopping. Validation error needs to decrease at least
every <early_stopping_rounds> round(s) to continue training.
Requires at least one item in evals.
If there’s more than one, will use the last.
Returns the model from the last iteration (not the best one).
If early stopping occurs, the model will have two additional fields:
bst.best_score and bst.best_iteration.

	evals_result (dict) – This dictionary stores the evaluation results of all the items in watchlist

	verbose_eval (bool) – If verbose_eval then the evaluation metric on the validation set, if
given, is printed at each boosting stage.






	Returns:	booster




	Return type:	a trained booster model












	
xgboost.cv(params, dtrain, num_boost_round=10, nfold=3, metrics=(), obj=None, feval=None, fpreproc=None, as_pandas=True, show_progress=None, show_stdv=True, seed=0)

	Cross-validation with given paramaters.





	Parameters:	
	params (dict) – Booster params.

	dtrain (DMatrix) – Data to be trained.

	num_boost_round (int) – Number of boosting iterations.

	nfold (int) – Number of folds in CV.

	metrics (list of strings) – Evaluation metrics to be watched in CV.

	obj (function) – Custom objective function.

	feval (function) – Custom evaluation function.

	fpreproc (function) – Preprocessing function that takes (dtrain, dtest, param) and returns
transformed versions of those.

	as_pandas (bool, default True) – Return pd.DataFrame when pandas is installed.
If False or pandas is not installed, return np.ndarray

	show_progress (bool or None, default None) – Whether to display the progress. If None, progress will be displayed
when np.ndarray is returned.

	show_stdv (bool, default True) – Whether to display the standard deviation in progress.
Results are not affected, and always contains std.

	seed (int) – Seed used to generate the folds (passed to numpy.random.seed).






	Returns:	evaluation history




	Return type:	list(string)














Scikit-Learn API

Scikit-Learn Wrapper interface for XGBoost.


	
class xgboost.XGBRegressor(max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective='reg:linear', nthread=-1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1, base_score=0.5, seed=0, missing=None)

	Bases: xgboost.sklearn.XGBModel, object


	Implementation of the scikit-learn API for XGBoost regression.

	Parameters




	max_depth : int

	Maximum tree depth for base learners.

	learning_rate : float

	Boosting learning rate (xgb’s “eta”)

	n_estimators : int

	Number of boosted trees to fit.

	silent : boolean

	Whether to print messages while running boosting.

	objective : string

	Specify the learning task and the corresponding learning objective.

	nthread : int

	Number of parallel threads used to run xgboost.

	gamma : float

	Minimum loss reduction required to make a further partition on a leaf node of the tree.

	min_child_weight : int

	Minimum sum of instance weight(hessian) needed in a child.

	max_delta_step : int

	Maximum delta step we allow each tree’s weight estimation to be.

	subsample : float

	Subsample ratio of the training instance.

	colsample_bytree : float

	Subsample ratio of columns when constructing each tree.

	base_score:

	The initial prediction score of all instances, global bias.

	seed : int

	Random number seed.

	missing : float, optional

	Value in the data which needs to be present as a missing value. If
None, defaults to np.nan.








	
class xgboost.XGBClassifier(max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective='binary:logistic', nthread=-1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1, base_score=0.5, seed=0, missing=None)

	Bases: xgboost.sklearn.XGBModel, object

Implementation of the scikit-learn API for XGBoost classification.


Parameters



	max_depth : int

	Maximum tree depth for base learners.

	learning_rate : float

	Boosting learning rate (xgb’s “eta”)

	n_estimators : int

	Number of boosted trees to fit.

	silent : boolean

	Whether to print messages while running boosting.

	objective : string

	Specify the learning task and the corresponding learning objective.

	nthread : int

	Number of parallel threads used to run xgboost.

	gamma : float

	Minimum loss reduction required to make a further partition on a leaf node of the tree.

	min_child_weight : int

	Minimum sum of instance weight(hessian) needed in a child.

	max_delta_step : int

	Maximum delta step we allow each tree’s weight estimation to be.

	subsample : float

	Subsample ratio of the training instance.

	colsample_bytree : float

	Subsample ratio of columns when constructing each tree.

	base_score:

	The initial prediction score of all instances, global bias.

	seed : int

	Random number seed.

	missing : float, optional

	Value in the data which needs to be present as a missing value. If
None, defaults to np.nan.




	
fit(X, y, sample_weight=None, eval_set=None, eval_metric=None, early_stopping_rounds=None, verbose=True)

	Fit gradient boosting classifier





	Parameters:	
	X (array_like) – Feature matrix

	y (array_like) – Labels

	sample_weight (array_like) – Weight for each instance

	eval_set (list, optional) – A list of (X, y) pairs to use as a validation set for
early-stopping

	eval_metric (str, callable, optional) – If a str, should be a built-in evaluation metric to use. See
doc/parameter.md. If callable, a custom evaluation metric. The call
signature is func(y_predicted, y_true) where y_true will be a
DMatrix object such that you may need to call the get_label
method. It must return a str, value pair where the str is a name
for the evaluation and value is the value of the evaluation
function. This objective is always minimized.

	early_stopping_rounds (int, optional) – Activates early stopping. Validation error needs to decrease at
least every <early_stopping_rounds> round(s) to continue training.
Requires at least one item in evals.  If there’s more than one,
will use the last. Returns the model from the last iteration
(not the best one). If early stopping occurs, the model will
have two additional fields: bst.best_score and bst.best_iteration.

	verbose (bool) – If verbose and an evaluation set is used, writes the evaluation
metric measured on the validation set to stderr.




















Plotting API

Plotting Library.


	
xgboost.plot_importance(booster, ax=None, height=0.2, xlim=None, title='Feature importance', xlabel='F score', ylabel='Features', grid=True, **kwargs)

	Plot importance based on fitted trees.





	Parameters:	
	booster (Booster or dict) – Booster instance, or dict taken by Booster.get_fscore()

	ax (matplotlib Axes, default None) – Target axes instance. If None, new figure and axes will be created.

	height (float, default 0.2) – Bar height, passed to ax.barh()

	xlim (tuple, default None) – Tuple passed to axes.xlim()

	title (str, default “Feature importance”) – Axes title. To disable, pass None.

	xlabel (str, default “F score”) – X axis title label. To disable, pass None.

	ylabel (str, default “Features”) – Y axis title label. To disable, pass None.

	kwargs – Other keywords passed to ax.barh()






	Returns:	ax




	Return type:	matplotlib Axes












	
xgboost.plot_tree(booster, num_trees=0, rankdir='UT', ax=None, **kwargs)

	Plot specified tree.





	Parameters:	
	booster (Booster) – Booster instance

	num_trees (int, default 0) – Specify the ordinal number of target tree

	rankdir (str, default “UT”) – Passed to graphiz via graph_attr

	ax (matplotlib Axes, default None) – Target axes instance. If None, new figure and axes will be created.

	kwargs – Other keywords passed to to_graphviz






	Returns:	ax




	Return type:	matplotlib Axes












	
xgboost.to_graphviz(booster, num_trees=0, rankdir='UT', yes_color='#0000FF', no_color='#FF0000', **kwargs)

	Convert specified tree to graphviz instance. IPython can automatically plot the
returned graphiz instance. Otherwise, you shoud call .render() method
of the returned graphiz instance.





	Parameters:	
	booster (Booster) – Booster instance

	num_trees (int, default 0) – Specify the ordinal number of target tree

	rankdir (str, default “UT”) – Passed to graphiz via graph_attr

	yes_color (str, default ‘#0000FF’) – Edge color when meets the node condigion.

	no_color (str, default ‘#FF0000’) – Edge color when doesn’t meet the node condigion.

	kwargs – Other keywords passed to graphviz graph_attr






	Returns:	ax




	Return type:	matplotlib Axes
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