
xcube
Release 1.5.2.dev0

Brockmann Consult GmbH

Apr 12, 2024

GETTING STARTED

1 Overview 3

2 Examples 7

3 Installation 15

4 CLI 19

5 Python API 51

6 Web API and Server 99

7 Viewer App 101

8 Data Access 111

9 Cube Generator 121

10 Plugins 127

11 xcube Dataset Convention 131

12 xcube Multi-Resolution Datasets 137

13 Common data store conventions 141

14 Spatial Rectification Algorithm 147

15 xcube Developer Guide 153

16 Indices and tables 163

Index 165

i

ii

xcube, Release 1.5.2.dev0

xcube has been developed to generate, manipulate, analyse, and publish data cubes from EO data.

GETTING STARTED 1

xcube, Release 1.5.2.dev0

2 GETTING STARTED

CHAPTER

ONE

OVERVIEW

xcube is an open-source Python package and toolkit that has been developed to provide Earth observation (EO) data in
an analysis-ready form to users. xcube achieves this by carefully converting EO data sources into self-contained data
cubes that can be published in the cloud. The Python package is expanded and maintained by [Brockmann Consult
GmbH](https://www.brockmann-consult.de)

1.1 Data Cube

The interpretation of the term data cube in the EO domain usually depends on the current context. It may refer to a
data service such as Sentinel Hub, to some abstract API, or to a concrete set of spatial images that form a time-series.

This section briefly explains the specific concept of a data cube used in the xcube project - the xcube dataset.

1.2 xcube Dataset

1.2.1 Data Model

An xcube dataset contains one or more (geo-physical) data variables whose values are stored in cells of a common multi-
dimensional, spatio-temporal grid. The dimensions are usually time, latitude, and longitude, however other dimensions
may be present.

All xcube datasets are structured in the same way following a common data model. They are also self-describing
by providing metadata for the cube and all cube’s variables following the CF conventions. For details regarding the
common data model, please refer to the xcube Dataset Convention.

A xcube dataset’s in-memory representation in Python programs is an xarray.Dataset instance. Each dataset variable is
represented by multi-dimensional xarray.DataArray that is arranged in non-overlapping, contiguous sub-regions called
data chunks.

1.2.2 Data Chunks

Chunked variables allow for out-of-core computations of xcube dataset that don’t fit in a single computer’s RAM as
data chunks can be processed independently from each other.

The way how dataset variables are sub-divided into smaller chunks - their chunking - has a substantial impact on
processing performance and there is no single ideal chunking for all use cases. For time series analyses it is preferable
to have chunks with a smaller spatial dimensions and larger time dimension, for spatial analyses and visualisation on
using a map, the opposite is the case.

3

https://www.brockmann-consult.de
https://www.sentinel-hub.com/
http://cfconventions.org/cf-conventions/cf-conventions.html
http://xarray.pydata.org/en/stable/data-structures.html#dataset
http://xarray.pydata.org/en/stable/data-structures.html#dataarray

xcube, Release 1.5.2.dev0

xcube provide tools for re-chunking of xcube datasets (xcube chunk, xcube level) and the xcube server (xcube serve)
allows serving the same data cubes using different chunkings. For further reading have a look into the Chunking and
Performance section of the xarray documentation.

1.2.3 Processing Model

When xcube datasets are opened, only the cube’s structure and its metadata are loaded into memory. The actual data
arrays of variables are loaded on-demand only, and only for chunks intersecting the desired sub-region.

Operations that generate new data variables from existing ones will be chunked in the same way. Therefore, such
operation chains generate a processing graph providing a deferred, concurrent execution model.

1.2.4 Data Format

For the external, physical representation of xcube datasets we usually use the Zarr format. Zarr takes full advantage of
data chunks and supports parallel processing of chunks that may originate from the local file system or from remote
cloud storage such as S3 and GCS.

1.2.5 Python Packages

The xcube package builds heavily on Python’s big data ecosystem for handling huge N-dimensional data arrays and
exploiting cloud-based storage and processing resources. In particular, xcube’s in-memory data model is provided by
xarray, the memory management and processing model is provided through dask, and the external format is provided
by zarr. xarray, dask, and zarr have increased their popularity for big data solutions over the last couple of years, for
creating scalable and efficient EO data solutions.

1.3 Toolkit

On top of xarray, dask, zarr, and other popular Python data science packages, xcube provides various higher-level tools
to generate, manipulate, and publish xcube datasets:

• CLI - access, generate, modify, and analyse xcube datasets using the xcube tool;

• Python API - access, generate, modify, and analyse xcube datasets via Python programs and notebooks;

• Web API and Server - access, analyse, visualize xcube datasets via an xcube server;

• Viewer App – publish and visualise xcube datasets using maps and time-series charts.

1.4 Workflows

The basic use case is to generate an xcube dataset and deploy it so that your users can access it:

1. generate an xcube dataset from some EO data sources using the xcube gen tool with a specific input processor.

2. optimize the generated xcube dataset with respect to specific use cases using the xcube chunk tool.

3. optimize the generated xcube dataset by consolidating metadata and elimination of empty chunks using xcube
optimize and xcube prune tools.

4. deploy the optimized xcube dataset(s) to some location (e.g. on AWS S3) where users can access them.

Then you can:

4 Chapter 1. Overview

http://xarray.pydata.org/en/stable/dask.html#chunking-and-performance
http://xarray.pydata.org/en/stable/dask.html#chunking-and-performance
https://zarr.readthedocs.io/en/stable/spec/v2.html
http://xarray.pydata.org/
https://dask.readthedocs.io/
https://zarr.readthedocs.io/
http://xarray.pydata.org/
https://dask.readthedocs.io/
https://zarr.readthedocs.io/

xcube, Release 1.5.2.dev0

5. access, analyse, modify, transform, visualise the data using the Python API and xarray API through Python
programs or JupyterLab, or

6. extract data points by coordinates from a cube using the xcube extract tool, or

7. resample the cube in time to generate temporal aggregations using the xcube resample tool.

Another way to provide the data to users is via the xcube server, that provides a RESTful API and a WMTS. The latter
is used to visualise spatial subsets of xcube datasets efficiently at any zoom level. To provide optimal visualisation and
data extraction performance through the xcube server, xcube datasets may be prepared beforehand. Steps 8 to 10 are
optional.

8. verify a dataset to be published conforms with the xcube Dataset Convention using the xcube verify tool.

9. adjust your dataset chunking to be optimal for generating spatial image tiles and generate a multi-resolution image
pyramid using the xcube chunk and xcube level tools.

10. create a dataset variant optimal for time series-extraction again using the xcube chunk tool.

11. configure xcube datasets and publish them through the xcube server using the xcube serve tool.

You may then use a WMTS-compatible client to visualise the datasets or develop your own xcube server client that will
make use of the xcube’s REST API.

The easiest way to visualise your data is using the xcube Viewer App, a single-page web application that can be config-
ured to work with xcube server URLs.

1.4. Workflows 5

http://xarray.pydata.org/en/stable/api.html
https://jupyterlab.readthedocs.io/
https://en.wikipedia.org/wiki/Web_Map_Tile_Service

xcube, Release 1.5.2.dev0

6 Chapter 1. Overview

CHAPTER

TWO

EXAMPLES

When you follow the examples section you can build your first tiny xcube dataset and view it in the xcube-viewer by
using the xcube server. The examples section is still growing and improving :)

Have fun exploring xcube!

Warning: This chapter is a work in progress and currently less than a draft.

2.1 Generating an xcube dataset

In the following example a tiny demo xcube dataset is generated.

2.1.1 Analysed Sea Surface Temperature over the Global Ocean

Input data for this example is located in the xcube repository. The input files contain analysed sea surface temperature
and sea surface temperature anomaly over the global ocean and are provided by Copernicus Marine Environment
Monitoring Service. The data is described in a dedicated Product User Manual.

Before starting the example, you need to activate the xcube environment:

$ conda activate xcube

If you want to take a look at the input data you can use xcube dump to print out the metadata of a selected input file:

$ xcube dump examples/gen/data/20170605120000-UKMO-L4_GHRSST-SSTfnd-OSTIAanom-GLOB-v02.0-
→˓fv02.0.nc

<xarray.Dataset>
Dimensions: (lat: 720, lon: 1440, time: 1)
Coordinates:
* lat (lat) float32 -89.875 -89.625 -89.375 ... 89.375 89.625 89.875
* lon (lon) float32 0.125 0.375 0.625 ... 359.375 359.625 359.875
* time (time) object 2017-06-05 12:00:00

Data variables:
sst_anomaly (time, lat, lon) float32 ...
analysed_sst (time, lat, lon) float32 ...

Attributes:
Conventions: CF-1.4

(continues on next page)

7

https://github.com/dcs4cop/xcube/tree/main/examples/gen/data
http://marine.copernicus.eu/
http://marine.copernicus.eu/
http://resources.marine.copernicus.eu/documents/PUM/CMEMS-SST-PUM-010-001.pdf

xcube, Release 1.5.2.dev0

(continued from previous page)

title: Global SST & Sea Ice Anomaly, L4 OSTIA, 0.25 ...
summary: A merged, multi-sensor L4 Foundation SST anom...
references: Donlon, C.J., Martin, M., Stark, J.D., Robert...
institution: UKMO
history: Created from sst:temperature regridded with a...
comment: WARNING Some applications are unable to prope...
license: These data are available free of charge under...
id: UKMO-L4LRfnd_GLOB-OSTIAanom
naming_authority: org.ghrsst
product_version: 2.0
uuid: 5c1665b7-06e8-499d-a281-857dcbfd07e2
gds_version_id: 2.0
netcdf_version_id: 3.6
date_created: 20170606T061737Z
start_time: 20170605T000000Z
time_coverage_start: 20170605T000000Z
stop_time: 20170606T000000Z
time_coverage_end: 20170606T000000Z
file_quality_level: 3
source: UKMO-L4HRfnd-GLOB-OSTIA
platform: Aqua, Envisat, NOAA-18, NOAA-19, MetOpA, MSG1...
sensor: AATSR, AMSR, AVHRR, AVHRR_GAC, SEVIRI, TMI
metadata_conventions: Unidata Observation Dataset v1.0
metadata_link: http://data.nodc.noaa.gov/NESDIS_DataCenters/...
keywords: Oceans > Ocean Temperature > Sea Surface Temp...
keywords_vocabulary: NASA Global Change Master Directory (GCMD) Sc...
standard_name_vocabulary: NetCDF Climate and Forecast (CF) Metadata Con...
westernmost_longitude: 0.0
easternmost_longitude: 360.0
southernmost_latitude: -90.0
northernmost_latitude: 90.0
spatial_resolution: 0.25 degree
geospatial_lat_units: degrees_north
geospatial_lat_resolution: 0.25 degree
geospatial_lon_units: degrees_east
geospatial_lon_resolution: 0.25 degree
acknowledgment: Please acknowledge the use of these data with...
creator_name: Met Office as part of CMEMS
creator_email: servicedesk.cmems@mercator-ocean.eu
creator_url: http://marine.copernicus.eu/
project: Group for High Resolution Sea Surface Tempera...
publisher_name: GHRSST Project Office
publisher_url: http://www.ghrsst.org
publisher_email: ghrsst-po@nceo.ac.uk
processing_level: L4
cdm_data_type: grid

Below an example xcube dataset will be created, which will contain the variable analysed_sst. The metadata for a
specific variable can be viewed by:

$ xcube dump examples/gen/data/20170605120000-UKMO-L4_GHRSST-SSTfnd-OSTIAanom-GLOB-v02.0-
→˓fv02.0.nc --var analysed_sst

8 Chapter 2. Examples

xcube, Release 1.5.2.dev0

<xarray.DataArray 'analysed_sst' (time: 1, lat: 720, lon: 1440)>
[1036800 values with dtype=float32]
Coordinates:
* lat (lat) float32 -89.875 -89.625 -89.375 ... 89.375 89.625 89.875
* lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.375 359.625 359.875
* time (time) object 2017-06-05 12:00:00

Attributes:
long_name: analysed sea surface temperature
standard_name: sea_surface_foundation_temperature
type: foundation
units: kelvin
valid_min: -300
valid_max: 4500
source: UKMO-L4HRfnd-GLOB-OSTIA
comment:

For creating a toy xcube dataset you can execute the command-line below. Please adjust the paths to your needs:

$ xcube gen -o "your/output/path/demo_SST_xcube.zarr" -c examples/gen/config_files/xcube_
→˓sst_demo_config.yml --sort examples/gen/data/*.nc

The configuration file specifies the input processor, which in this case is the default one. The output size is 10240,
5632. The bounding box of the data cube is given by output_region in the configuration file. The output for-
mat (output_writer_name) is defined as well. The chunking of the dimensions can be set by the chunksizes
attribute of the output_writer_params parameter, and in the example configuration file the chunking is set for
latitude and longitude. If the chunking is not set, a automatic chunking is applied. The spatial resampling method
(output_resampling) is set to ‘nearest’ and the configuration file contains only one variable which will be included
into the xcube dataset - ‘analysed-sst’.

The Analysed Sea Surface Temperature data set contains the variable already as needed. This means no pixel masking
needs to be applied. However, this might differ depending on the input data. You can take a look at a configuration file
which takes Sentinel-3 Ocean and Land Colour Instrument (OLCI) as input files, which is a bit more complex. The
advantage of using pixel expressions is, that the generated cube contains only valid pixels and the user of the data cube
does not have to worry about something like land-masking or invalid values. Furthermore, the generated data cube
is spatially regular. This means the data are aligned on a common spatial grid and cover the same region. The time
stamps are kept from the input data set.

Caution: If you have input data that has file names not only varying with the time stamp but with e.g. A and B as well,
you need to pass the input files in the desired order via a text file. Each line of the text file should contain the path to one
input file. If you pass the input files in a desired order, then do not use the parameter --sort within the commandline
interface.

2.1.2 Optimizing and pruning a xcube dataset

If you want to optimize your generated xcube dataset e.g. for publishing it in a xcube viewer via xcube serve you can
use xcube optimize:

$ xcube optimize demo_SST_xcube.zarr -C

By executing the command above, an optimized xcube dataset called demo_SST_xcube-optimized.zarr will be created.
You can take a look into the directory of the original xcube dataset and the optimized one, and you will notice that a file
called .zmetadata. .zmetadata contains the information stored in .zattrs and .zarray of each variable of the xcube dataset
and makes requests of metadata faster. The option -C optimizes coordinate variables by converting any chunked arrays
into single, non-chunked, contiguous arrays.

2.1. Generating an xcube dataset 9

https://github.com/dcs4cop/xcube/tree/main/examples/gen/config_files/xcube_sst_demo_config.yml
https://github.com/dcs4cop/xcube/tree/main/examples/gen/config_files/xcube_olci_demo_config.yml
https://github.com/dcs4cop/xcube/tree/main/examples/gen/config_files/xcube_olci_demo_config.yml

xcube, Release 1.5.2.dev0

For deleting empty chunks xcube prune can be used. It deletes all data files associated with empty (NaN-only) chunks
of an xcube dataset, and is restricted to the ZARR format.

$ xcube prune demo_SST_xcube-optimized.zarr

The pruned xcube dataset is saved in place and does not need an output path. The size of the xcube dataset was 6,8 MB
before pruning it and 6,5 MB afterwards. According to the output printed to the terminal, 30 block files were deleted.

The metadata of the xcube dataset can be viewed with xcube dump as well:

$ xcube dump demo_SST_xcube-optimized.zarr

<xarray.Dataset>
Dimensions: (bnds: 2, lat: 5632, lon: 10240, time: 3)
Coordinates:
* lat (lat) float64 62.67 62.66 62.66 62.66 ... 48.01 48.0 48.0
lat_bnds (lat, bnds) float64 dask.array<shape=(5632, 2), chunksize=(5632, 2)>

* lon (lon) float64 -16.0 -16.0 -15.99 -15.99 ... 10.66 10.66 10.67
lon_bnds (lon, bnds) float64 dask.array<shape=(10240, 2), chunksize=(10240, 2)>

* time (time) datetime64[ns] 2017-06-05T12:00:00 ... 2017-06-07T12:00:00
time_bnds (time, bnds) datetime64[ns] dask.array<shape=(3, 2), chunksize=(3, 2)>

Dimensions without coordinates: bnds
Data variables:

analysed_sst (time, lat, lon) float64 dask.array<shape=(3, 5632, 10240),␣
→˓chunksize=(1, 704, 640)>
Attributes:

acknowledgment: Data Cube produced based on data provided by ...
comment:
contributor_name:
contributor_role:
creator_email: info@brockmann-consult.de
creator_name: Brockmann Consult GmbH
creator_url: https://www.brockmann-consult.de
date_modified: 2019-09-25T08:50:32.169031
geospatial_lat_max: 62.666666666666664
geospatial_lat_min: 48.0
geospatial_lat_resolution: 0.002604166666666666
geospatial_lat_units: degrees_north
geospatial_lon_max: 10.666666666666664
geospatial_lon_min: -16.0
geospatial_lon_resolution: 0.0026041666666666665
geospatial_lon_units: degrees_east
history: xcube/reproj-snap-nc
id: demo-bc-sst-sns-l2c-v1
institution: Brockmann Consult GmbH
keywords:
license: terms and conditions of the DCS4COP data dist...
naming_authority: bc
processing_level: L2C
project: xcube
publisher_email: info@brockmann-consult.de
publisher_name: Brockmann Consult GmbH
publisher_url: https://www.brockmann-consult.de
references: https://dcs4cop.eu/

(continues on next page)

10 Chapter 2. Examples

xcube, Release 1.5.2.dev0

(continued from previous page)

source: CMEMS Global SST & Sea Ice Anomaly Data Cube
standard_name_vocabulary:
summary:
time_coverage_end: 2017-06-08T00:00:00.000000000
time_coverage_start: 2017-06-05T00:00:00.000000000
title: CMEMS Global SST Anomaly Data Cube

The metadata for the variable analysed_sst can be viewed:

$ xcube dump demo_SST_xcube-optimized.zarr --var analysed_sst

<xarray.DataArray 'analysed_sst' (time: 3, lat: 5632, lon: 10240)>
dask.array<shape=(3, 5632, 10240), dtype=float64, chunksize=(1, 704, 640)>
Coordinates:
* lat (lat) float64 62.67 62.66 62.66 62.66 ... 48.01 48.01 48.0 48.0
* lon (lon) float64 -16.0 -16.0 -15.99 -15.99 ... 10.66 10.66 10.66 10.67
* time (time) datetime64[ns] 2017-06-05T12:00:00 ... 2017-06-07T12:00:00

Attributes:
comment:
long_name: analysed sea surface temperature
source: UKMO-L4HRfnd-GLOB-OSTIA
spatial_resampling: Nearest
standard_name: sea_surface_foundation_temperature
type: foundation
units: kelvin
valid_max: 4500
valid_min: -300

Warning: This chapter is a work in progress and currently less than a draft.

2.2 Publishing xcube datasets

This example demonstrates how to run an xcube server to publish existing xcube datasets.

2.2.1 Running the server

To run the server on default port 8080 using the demo configuration:

$ xcube serve --verbose -c examples/serve/demo/config.yml

To run the server using a particular xcube dataset path and styling information for a variable:

$ xcube serve --styles conc_chl=(0,20,"viridis") examples/serve/demo/cube-1-250-250.zarr

2.2. Publishing xcube datasets 11

xcube, Release 1.5.2.dev0

2.2.2 Test it

After starting the server, you can check the various functions provided by xcube Web API. To explore the functions,
open <base-url>/openapi.html.

2.2.3 xcube Viewer

xcube datasets published through xcube serve can be visualised using the xcube-viewer web application. To do so,
run xcube serve with the --open-viewer flag.

In order make this option usable, xcube-viewer must be installed and build:

1. Download and install yarn.

2. Download and build xcube-viewer:

$ git clone https://github.com/dcs4cop/xcube-viewer.git
$ cd xcube-viewer
$ yarn install
$ yarn build

3. Configure xcube serve so it finds the xcube-viewer On Linux (please adjust path):

$ export XCUBE_VIEWER_PATH=/abs/path/to/xcube-viewer/build

On Windows (please adjust path):

> SET XCUBE_VIEWER_PATH=/abs/path/to/xcube-viewer/build

4. Then run xcube serve --open-viewer:

$ xcube serve --open-viewer --styles conc_chl=(0,20,"viridis") examples/serve/demo/cube-
→˓1-250-250.zarr

Viewing the generated xcube dataset described in the example Generating an xcube dataset:

$ xcube serve --open-viewer --styles "analysed_sst=(280,290,'plasma')" demo_SST_xcube-
→˓optimized.zarr

12 Chapter 2. Examples

https://github.com/dcs4cop/xcube-viewer/
https://yarnpkg.com/lang/en/

xcube, Release 1.5.2.dev0

In case you get an error message “cannot reach server” on the very bottom of the web app’s main window, refresh the
page.

You can play around with the value range displayed in the viewer, here it is set to min=280K and max=290K. The
colormap used for mapping can be modified as well and the colormaps provided by matplotlib can be used.

2.2.4 Other clients

There are example HTML pages for some tile server clients. They need to be run in a web server. If you don’t have
one, you can use Node’s httpserver:

$ npm install -g httpserver

After starting both the xcube server and web server, e.g. on port 9090:

$ httpserver -d -p 9090

you can run the client demos by following their links given below.

2.2. Publishing xcube datasets 13

https://matplotlib.org/examples/color/colormaps_reference.html

xcube, Release 1.5.2.dev0

OpenLayers

• OpenLayers 4 Demo

• OpenLayers 4 Demo with WMTS

Cesium

To run the Cesium Demo first download Cesium and unpack the zip into the xcube serve source directory so that
there exists an ./Cesium-x.y.z sub-directory. You may have to adapt the Cesium version number in the demo’s
HTML file.

14 Chapter 2. Examples

http://localhost:9090/examples/serve/demo/index-ol4.html
http://localhost:9090/examples/serve/demo/index-ol4-wmts.html
http://localhost:9090/examples/serve/demo/index-cesium.html
https://cesiumjs.org/downloads/
https://github.com/dcs4cop/xcube/blob/main/examples/serve/demo/index-cesium.html
https://github.com/dcs4cop/xcube/blob/main/examples/serve/demo/index-cesium.html

CHAPTER

THREE

INSTALLATION

3.1 Prerequisites

xcube releases are packaged as conda packages in the conda-forge channel. It is recommended to install xcube into
a conda environment using the mamba package manager, which will also automatically install and manage xcube’s
dependencies. You can find installation instructions for mamba itself here, if you don’t already have it installed.

In addition to mamba, there are alternative package managers available for conda environments:

1. The original conda tool. When considering this tool, please note that package installation and management with
conda may be significantly slower than with mamba.

2. The micromamba tool, a minimalistic, self-contained version of mamba.

3.2 Overview of installation methods

There are two main ways to install the xcube package:

1. Install an official release from a conda-forge package, using the mamba package manager. This method is
recommended for most users.

2. Use mamba to install only xcube’s dependencies, but not xcube itself. Then clone the xcube git repository
and install directly from your local repository. You should use this method if you intend to participate in the
development of xcube, or if you need to use features that are so new that they are not yet available in an officially
release conda-forge package.

These methods are described in more detail in the following sections.

3.3 Installation from the conda-forge package

To install the latest release of xcube into a new conda environment called xcube, run the following command.

mamba create --name xcube --channel conda-forge xcube

You can give the environment a different name by providing a different argument to the --name option.

To install xcube into an existing, currently activated conda environment, use the following command.

mamba install --channel conda-forge xcube

15

https://conda-forge.org/
https://github.com/mamba-org/mamba
https://mamba.readthedocs.io/en/latest/installation.html

xcube, Release 1.5.2.dev0

3.4 Installation from the source code repository

First, clone the repository and create a conda environment from it:

git clone https://github.com/dcs4cop/xcube.git
cd xcube
mamba env create

From this point on, all instructions assume that your current directory is the root of the xcube repository.

The mamba env create command above creates an environment according to the specifications in the environment.
yml file in the repository, which by default takes the name xcube. Then, to activate the environment and install xcube
from the repository:

mamba activate xcube
pip install --no-deps --editable .

The second command installs xcube in ‘editable mode’, meaning that it will be run directly from the repository, and
changes to the code in the repository will take immediate effect without reinstallation. (As an alternative to pip, the
command python setup.py develop can be used, but this is no longer recommended. Among other things, pip
has the advantage of allowing easy deinstallation of installed packages.)

To update the install to the latest repository version and update the environment to reflect to any changes in
environment.yml:

mamba activate xcube
git pull --force
mamba env update -n xcube --file environment.yml --prune

To install pytest and run the unit test suite:

mamba install pytest
pytest

To analyse test coverage (after installing pytest as above):

pytest --cov=xcube

To produce an HTML coverage report:

pytest --cov-report html --cov=xcube

3.5 Docker

To start a demo using docker use the following commands

docker build -t [your name] .
docker run [your name]
docker run -d -p [host port]:8080 [your name]

Example 1:

docker build -t xcube:0.10.0 .
docker run xcube:0.10.0

16 Chapter 3. Installation

https://docs.python.org/3/install/#introduction
https://pytest-cov.readthedocs.io/en/latest/reporting.html

xcube, Release 1.5.2.dev0

This will create the docker container and list the functionality of the xcube cli.

Example 2:

docker build -t xcube:0.10.0 .
docker run -d -p 8001:8080 xcube:0.10.0 "xcube serve -v --address 0.0.0.0 --port 8080 -c␣
→˓/home/xcube/examples/serve/demo/config.yml"
docker ps

This will start a service in the background which can be accessed through port 8001, as the startup of a service is
configured as default behaviour.

3.6 Installing soft dependencies

In addition to xcube’s ‘hard’ dependencies, which the standard installation methods install automatically when required,
there are ‘soft’ dependencies. These are packages which are not required to install or use xcube, but enable additional
functionality if they are present. Users who need this functionality should install the requisite soft dependencies ex-
plicitly. xcube’s current soft dependencies are listed below.

• adlfs: required by the abfs data store, which is used for access to Azure Blob storage. Trying to create an abfs
data store without adlfs installed will raise an exception advising that you install it.

3.6. Installing soft dependencies 17

xcube, Release 1.5.2.dev0

18 Chapter 3. Installation

CHAPTER

FOUR

CLI

The xcube command-line interface (CLI) is a single executable cli/xcube with several sub-commands comprising func-
tions ranging from xcube dataset generation, over analysis and manipulation, to dataset publication.

4.1 Common Arguments and Options

Most of the commands operate on inputs that are xcube datasets. Such inputs are consistently named CUBE and provided
as one or more command arguments. CUBE inputs may be a path into the local file system or a path into some object
storage bucket, e.g. in AWS S3. Command inputs of other types are consistently called INPUT.

Many commands also output something, i.e. are writing files. The paths or names of such outputs are consistently
provided by the -o OUTPUT or --output OUTPUT option. As the output is an option, there is usually a default value
for it. If multiply file formats are supported, commands usually provide a -f FORMAT or --format FORMAT option.
If omitted, the format may be guessed from the output’s name.

4.2 Cube generation

4.2.1 xcube gen

Synopsis

Generate xcube dataset.

$ xcube gen --help

Usage: xcube gen [OPTIONS] [INPUT]...

Generate xcube dataset. Data cubes may be created in one go or successively
for all given inputs. Each input is expected to provide a single time slice
which may be appended, inserted or which may replace an existing time slice
in the output dataset. The input paths may be one or more input files or a
pattern that may contain wildcards '?', '*', and '**'. The input paths can
also be passed as lines of a text file. To do so, provide exactly one input
file with ".txt" extension which contains the actual input paths to be used.

Options:
-P, --proc INPUT-PROCESSOR Input processor name. The available input

processor names and additional information
(continues on next page)

19

xcube, Release 1.5.2.dev0

(continued from previous page)

about input processors can be accessed by
calling xcube gen --info . Defaults to
"default", an input processor that can deal
with simple datasets whose variables have
dimensions ("lat", "lon") and conform with
the CF conventions.

-c, --config CONFIG xcube dataset configuration file in YAML
format. More than one config input file is
allowed.When passing several config files,
they are merged considering the order passed
via command line.

-o, --output OUTPUT Output path. Defaults to 'out.zarr'
-f, --format FORMAT Output format. Information about output

formats can be accessed by calling xcube gen
--info. If omitted, the format will be
guessed from the given output path.

-S, --size SIZE Output size in pixels using format
"<width>,<height>".

-R, --region REGION Output region using format "<lon-min>,<lat-
min>,<lon-max>,<lat-max>"

--variables, --vars VARIABLES Variables to be included in output. Comma-
separated list of names which may contain
wildcard characters "*" and "?".

--resampling␣
→˓[Average|Bilinear|Cubic|CubicSpline|Lanczos|Max|Median|Min|Mode|Nearest|Q1|Q3]

Fallback spatial resampling algorithm to be
used for all variables. Defaults to
'Nearest'. The choices for the resampling
algorithm are: ['Average', 'Bilinear',
'Cubic', 'CubicSpline', 'Lanczos', 'Max',
'Median', 'Min', 'Mode', 'Nearest', 'Q1',
'Q3']

-a, --append Deprecated. The command will now always
create, insert, replace, or append input
slices.

--prof Collect profiling information and dump
results after processing.

--no_sort The input file list will not be sorted
before creating the xcube dataset. If
--no_sort parameter is passed, the order of
the input list will be kept. This parameter
should be used for better performance,
provided that the input file list is in
correct order (continuous time).

-I, --info Displays additional information about format
options or about input processors.

--dry_run Just read and process inputs, but don't
produce any outputs.

--help Show this message and exit.

Below is the ouput of a xcube gen --info call showing five input processors installed via plugins.

20 Chapter 4. CLI

xcube, Release 1.5.2.dev0

$ xcube gen --info

input processors to be used with option --proc:
default Single-scene NetCDF/CF inputs in xcube standard␣

→˓format
rbins-seviri-highroc-scene-l2 RBINS SEVIRI HIGHROC single-scene Level-2 NetCDF␣

→˓inputs
rbins-seviri-highroc-daily-l2 RBINS SEVIRI HIGHROC daily Level-2 NetCDF inputs
snap-olci-highroc-l2 SNAP Sentinel-3 OLCI HIGHROC Level-2 NetCDF inputs
snap-olci-cyanoalert-l2 SNAP Sentinel-3 OLCI CyanoAlert Level-2 NetCDF inputs
vito-s2plus-l2 VITO Sentinel-2 Plus Level 2 NetCDF inputs

For more input processors use existing "xcube-gen-..." plugins from the github␣
→˓organisation DCS4COP or write own plugin.

Output formats to be used with option --format:
zarr (*.zarr) Zarr file format (http://zarr.readthedocs.io)
netcdf4 (*.nc) NetCDF-4 file format
csv (*.csv) CSV file format
mem (*.mem) In-memory dataset I/O

Configuration File

Configuration files passed to xcube gen via the -c, --config option use YAML format. Multiple configuration
files may be given. In this case all configurations are merged into a single one. Parameter values will be overwritten
by subsequent configurations if they are scalars. If they are objects / mappings, their values will be deeply merged.

The following parameters can be used in the configuration files:

input_processor
[str] The name of an input processor. See -P, --proc option above.

Default
The default value is 'default', xcube’s default input processor. It can ingest and process inputs
that

• use an EPSG:4326 (or compatible) grid;

• have 1-D lon and lat coordinate variables using WGS84 coordinates and decimal degrees;

• have a decodable 1-D time coordinate or define the one of the following global attribute
pairs time_coverage_start and time_coverage_end, time_start and time_end or
time_stop;

• provide data variables with the dimensions time, lat, lon, in this order.

• conform to the `CF Conventions`_.

output_size
[[int, int]] The spatial dimension sizes of the output dataset given as number of grid cells in longitude and latitude
direction (width and height).

output_region
[[float, float, float, float]] The spatial extent of output datasets given as a bounding box [lat-min, lat-min, lon-max,
lat-max] using decimal degrees.

4.2. Cube generation 21

https://en.wikipedia.org/wiki/YAML

xcube, Release 1.5.2.dev0

output_variables
[[variable-definitions]] The definition of variables that will be included in the output dataset. Each variable
definition may be just a name or a mapping from a name to variable attributes. If it is just a name it must be the
name of an existing variable either in the INPUT or in processed_variables. If the variable definition is a
mapping, some of the attributes affect the way how variables are processed. All but the name attributes become
variable metadata in the output.

name
[str] The new name of the variable in the output.

valid_pixel_expression
[str] An expression used to mask this variable, see Expressions. The expression identifies all valid pixels
in each INPUT.

resampling
[str] The resampling method used. See --resampling option above.

Default
By default, all variables in INPUT will occur in output.

processed_variables
[[variable-definitions]] The definition of variables that will be produced or processed after reading each IN-
PUT. The main purpose is to generate intermediate variables that can be referred to in the expression in
other variable definitions in processed_variables and valid_pixel_expression in variable definitions
in output_variables. The following attributes are recognised:

expression
[str] An expression used to produce this variable, see Expressions.

output_writer_name
[str] The name of a supported output format. May be one of 'zarr', 'netcdf4', 'mem'.

Default
'zarr'

output_writer_params
[str] A mapping that defines parameters that are passed to output writer denoted by output_writer_name.
Through the output_writer_params a packing of the variables may be defined. If not specified the default
does not apply any packing which results in:

_FillValue: nan
dtype: dtype('float32')

and for coordinate variables

dtype: dtype('int64')

The user may specify a different packing variables, which might be useful for reducing the storage size of the
datacubes. Currently it is only implemented for zarr format. This may be done by passing the parameters for
packing as the following:

output_writer_params:

packing:
analysed_sst:

scale_factor: 0.07324442274239326
add_offset: -300.0
dtype: 'uint16'
_FillValue: 0.65535

22 Chapter 4. CLI

xcube, Release 1.5.2.dev0

Furthermore the compressor may be defined as well by, if not specified the default compressor (cname=’lz4’,
clevel=5, shuffle=SHUFFLE, blocksize=0) is used.

output_writer_params:

compressor:
cname: 'zstd'
clevel: 1
shuffle: 2

output_metadata
[[attribute-definitions]] General metadata that will be present in the output dataset as global attributes. You can
put any common CF attributes here.

Any attributes that are mappings will be “flattened” by concatenating the attribute names using the underscrore
character. For example,:

publisher:
name: "Brockmann Consult GmbH"
url: "https://www.brockmann-consult.de"

will create the two entries:

publisher_name: "Brockmann Consult GmbH"
publisher_url: "https://www.brockmann-consult.de"

Expressions

Expressions are plain text values of the expression and valid_pixel_expression attributes of the variable defi-
nitions in the processed_variables and output_variables parameters. The expression syntax is that of standard
Python. xcube gen uses expressions to produce new variables listed in processed_variables and to mask variables
by the valid_pixel_expression.

An expression may refer any variables in the INPUT datasets and any variables defined by the processed_variables
parameter. Expressions may make use of most of the standard Python operators and may apply all numpy ufuncs to
referred variables. Also most of the xarray.DataArray API may be used on variables within an expression.

In order to utilise flagged variables, the syntax variable_name.flag_name can be used in expressions. According
to the CF Conventions, flagged variables are variables whose metadata include the attributes flag_meanings and
flag_values and/or flag_masks. The flag_meanings attribute enumerates the allowed values for flag_name.
The flag attributes must be present in the variables of each INPUT.

Example

An example that uses a configuration file only:

$ xcube gen --config ./config.yml /data/eo-data/SST/2018/**/*.nc

An example that uses the default input processor and passes all other configuration via command-line options:

$ xcube gen -S 2000,1000 -R 0,50,5,52.5 --vars conc_chl,conc_tsm,kd489,c2rcc_flags,
→˓quality_flags -o hiroc-cube.zarr /data/eo-data/SST/2018/**/*.nc

Some input processors have been developed for specific EO data sources used within the DCS4COP project. They may
serve as examples how to develop input processor plug-ins:

4.2. Cube generation 23

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#attribute-appendix
https://docs.scipy.org/doc/numpy/reference/ufuncs.html
http://xarray.pydata.org/en/stable/api.html#dataarray
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#flags

xcube, Release 1.5.2.dev0

• xcube-gen-rbins

• xcube-gen-bc

• xcube-gen-vito

Python API

The related Python API function is xcube.core.gen.gen.gen_cube().

4.2.2 xcube grid

Attention: This tool will likely change in the near future.

Synopsis

Find spatial xcube dataset resolutions and adjust bounding boxes.

$ xcube grid --help

Usage: xcube grid [OPTIONS] COMMAND [ARGS]...

Find spatial xcube dataset resolutions and adjust bounding boxes.

We find suitable resolutions with respect to a possibly regional fixed
Earth grid and adjust regional spatial bounding boxes to that grid. We
also try to select the resolutions such that they are taken from a certain
level of a multi-resolution pyramid whose level resolutions increase by a
factor of two.

The graticule at a given resolution level L within the grid is given by

RES(L) = COVERAGE * HEIGHT(L)
HEIGHT(L) = HEIGHT_0 * 2 ^ L
LON(L, I) = LON_MIN + I * HEIGHT_0 * RES(L)
LAT(L, J) = LAT_MIN + J * HEIGHT_0 * RES(L)

With

RES: Grid resolution in degrees.
HEIGHT: Number of vertical grid cells for given level
HEIGHT_0: Number of vertical grid cells at lowest resolution level.

Let WIDTH and HEIGHT be the number of horizontal and vertical grid cells
of a global grid at a certain LEVEL with WIDTH * RES = 360 and HEIGHT *
RES = 180, then we also force HEIGHT = TILE * 2 ^ LEVEL.

Options:
--help Show this message and exit.

Commands:
(continues on next page)

24 Chapter 4. CLI

https://github.com/dcs4cop/xcube-gen-rbins
https://github.com/dcs4cop/xcube-gen-bc
https://github.com/dcs4cop/xcube-gen-vito

xcube, Release 1.5.2.dev0

(continued from previous page)

abox Adjust a bounding box to a fixed Earth grid.
levels List levels for a resolution or a tile size.
res List resolutions close to a target resolution.

Example: Find suitable target resolution for a ~300m (Sentinel 3 OLCI FR resolution) fixed Earth grid within a devi-
ation of 5%.

$ xcube grid res 300m -D 5%

TILE LEVEL HEIGHT INV_RES RES (deg) RES (m), DELTA_RES (%)
540 7 69120 384 0.0026041666666666665 289.9 -3.4
4140 4 66240 368 0.002717391304347826 302.5 0.8
8100 3 64800 360 0.002777777777777778 309.2 3.1
...

289.9m is close enough and provides 7 resolution levels, which is good. Its inverse resolution is 384, which is the fixed
Earth grid identifier.

We want to see if the resolution pyramid also supports a resolution close to 10m (Sentinel 2 MSI resolution).

$ xcube grid levels 384 -m 6

LEVEL HEIGHT INV_RES RES (deg) RES (m)
0 540 3 0.3333333333333333 37106.5
1 1080 6 0.16666666666666666 18553.2
2 2160 12 0.08333333333333333 9276.6
...
11 1105920 6144 0.00016276041666666666 18.1
12 2211840 12288 8.138020833333333e-05 9.1
13 4423680 24576 4.0690104166666664e-05 4.5

This indicates we have a resolution of 9.1m at level 12.

Lets assume we have xcube dataset region with longitude from 0 to 5 degrees and latitudes from 50 to 52.5 degrees.
What is the adjusted bounding box on a fixed Earth grid with the inverse resolution 384?

$ xcube grid abox 0,50,5,52.5 384

Orig. box coord. = 0.0,50.0,5.0,52.5
Adj. box coord. = 0.0,49.21875,5.625,53.4375
Orig. box WKT = POLYGON ((0.0 50.0, 5.0 50.0, 5.0 52.5, 0.0 52.5, 0.0 50.0))
Adj. box WKT = POLYGON ((0.0 49.21875, 5.625 49.21875, 5.625 53.4375, 0.0 53.4375, 0.
→˓0 49.21875))
Grid size = 2160 x 1620 cells
with
TILE = 540
LEVEL = 7
INV_RES = 384
RES (deg) = 0.0026041666666666665
RES (m) = 289.89450727414993

Note, to check bounding box WKTs, you can use the handy Wicket tool.

4.2. Cube generation 25

https://arthur-e.github.io/Wicket/sandbox-gmaps3.html

xcube, Release 1.5.2.dev0

4.3 Cube computation

4.3.1 xcube compute

Synopsis

Compute a cube variable from other cube variables using a user-provided Python function.

$ xcube compute --help

Usage: xcube compute [OPTIONS] SCRIPT [CUBE]...

Compute a cube from one or more other cubes.

The command computes a cube variable from other cube variables in CUBEs
using a user-provided Python function in SCRIPT.

The SCRIPT must define a function named "compute":

def compute(*input_vars: numpy.ndarray,
input_params: Mapping[str, Any] = None,
dim_coords: Mapping[str, np.ndarray] = None,
dim_ranges: Mapping[str, Tuple[int, int]] = None) \
-> numpy.ndarray:

Compute new numpy array from inputs
output_array = ...
return output_array

where input_vars are numpy arrays (chunks) in the order given by VARIABLES
or given by the variable names returned by an optional "initialize" function
that my be defined in SCRIPT too, see below. input_params is a mapping of
parameter names to values according to PARAMS or the ones returned by the
aforesaid "initialize" function. dim_coords is a mapping from dimension name
to coordinate labels for the current chunk to be computed. dim_ranges is a
mapping from dimension name to index ranges into coordinate arrays of the
cube.

The SCRIPT may define a function named "initialize":

def initialize(input_cubes: Sequence[xr.Dataset],
input_var_names: Sequence[str],
input_params: Mapping[str, Any]) \
-> Tuple[Sequence[str], Mapping[str, Any]]:

Compute new variable names and/or new parameters
new_input_var_names = ...
new_input_params = ...
return new_input_var_names, new_input_params

where input_cubes are the respective CUBEs, input_var_names the respective
VARIABLES, and input_params are the respective PARAMS. The "initialize"
function can be used to validate the data cubes, extract the desired
variables in desired order and to provide some extra processing parameters

(continues on next page)

26 Chapter 4. CLI

xcube, Release 1.5.2.dev0

(continued from previous page)

passed to the "compute" function.

Note that if no input variable names are specified, no variables are passed
to the "compute" function.

The SCRIPT may also define a function named "finalize":

def finalize(output_cube: xr.Dataset,
input_params: Mapping[str, Any]) \
-> Optional[xr.Dataset]:

Optionally modify output_cube and return it or return None
return output_cube

If defined, the "finalize" function will be called before the command writes
the new cube and then exists. The functions may perform a cleaning up or
perform side effects such as write the cube to some sink. If the functions
returns None, the CLI will *not* write any cube data.

Options:
--variables, --vars VARIABLES Comma-separated list of variable names.
-p, --params PARAMS Parameters passed as 'input_params' dict to

compute() and init() functions in SCRIPT.
-o, --output OUTPUT Output path. Defaults to 'out.zarr'
-f, --format FORMAT Output format.
-N, --name NAME Output variable's name.
-D, --dtype DTYPE Output variable's data type.
--help Show this message and exit.

Example

$ xcube compute s3-olci-cube.zarr ./algoithms/s3-olci-ndvi.py

with ./algoithms/s3-olci-ndvi.py being:

TODO

4.3. Cube computation 27

xcube, Release 1.5.2.dev0

Python API

The related Python API function is xcube.core.compute.compute_cube().

4.4 Cube inspection

4.4.1 xcube dump

Synopsis

Dump contents of a dataset.

$ xcube dump --help

Usage: xcube dump [OPTIONS] INPUT

Dump contents of an input dataset.

Options:
--variable, --var VARIABLE Name of a variable (multiple allowed).
-E, --encoding Dump also variable encoding information.
--help Show this message and exit.

Example

$ xcube dump xcube_cube.zarr

4.4.2 xcube verify

Synopsis

Perform cube verification.

$ xcube verify --help

Usage: xcube verify [OPTIONS] CUBE

Perform cube verification.

The tool verifies that CUBE
* defines the dimensions "time", "lat", "lon";
* has corresponding "time", "lat", "lon" coordinate variables and that they
are valid, e.g. 1-D, non-empty, using correct units;

* has valid bounds variables for "time", "lat", "lon" coordinate
variables, if any;

* has any data variables and that they are valid, e.g. min. 3-D, all have
same dimensions, have at least dimensions "time", "lat", "lon".

* spatial coordinates and their corresponding bounds (if exist) are equidistant
(continues on next page)

28 Chapter 4. CLI

xcube, Release 1.5.2.dev0

(continued from previous page)

and monotonically increasing or decreasing.

If INPUT is a valid xcube dataset, the tool returns exit code 0. Otherwise a
violation report is written to stdout and the tool returns exit code 3.

Options:
--help Show this message and exit.

Python API

The related Python API functions are

• xcube.core.verify.verify_cube(), and

• xcube.core.verify.assert_cube().

4.5 Cube data extraction

4.5.1 xcube extract

Synopsis

Extract cube points.

$ xcube extract --help

Usage: xcube extract [OPTIONS] CUBE POINTS

Extract cube points.

Extracts data cells from CUBE at coordinates given in each POINTS record and
writes the resulting values to given output path and format.

POINTS must be a CSV file that provides at least the columns "lon", "lat",
and "time". The "lon" and "lat" columns provide a point's location in
decimal degrees. The "time" column provides a point's date or date-time. Its
format should preferably be ISO, but other formats may work as well.

Options:
-o, --output OUTPUT Output path. If omitted, output is written to stdout.
-f, --format FORMAT Output format. Currently, only 'csv' is supported.
-C, --coords Include cube cell coordinates in output.
-B, --bounds Include cube cell coordinate boundaries (if any) in

output.
-I, --indexes Include cube cell indexes in output.
-R, --refs Include point values as reference in output.
--help Show this message and exit.

4.5. Cube data extraction 29

xcube, Release 1.5.2.dev0

Example

$ xcube extract xcube_cube.zarr -o point_data.csv -Cb --indexes --refs

Python API

Related Python API functions are

• xcube.core.extract.get_cube_values_for_points(),

• xcube.core.extract.get_cube_point_indexes(), and

• xcube.core.extract.get_cube_values_for_indexes().

4.6 Cube manipulation

4.6.1 xcube chunk

Synopsis

(Re-)chunk xcube dataset.

$ xcube chunk --help

Usage: xcube chunk [OPTIONS] CUBE

(Re-)chunk xcube dataset. Changes the external chunking of all variables of
CUBE according to CHUNKS and writes the result to OUTPUT.

Note: There is a possibly more efficient way to (re-)chunk datasets through
the dedicated tool "rechunker", see https://rechunker.readthedocs.io.

Options:
-o, --output OUTPUT Output path. Defaults to 'out.zarr'
-f, --format FORMAT Format of the output. If not given, guessed from

OUTPUT.
-p, --params PARAMS Parameters specific for the output format. Comma-

separated list of <key>=<value> pairs.
-C, --chunks CHUNKS Chunk sizes for each dimension. Comma-separated list of

<dim>=<size> pairs, e.g. "time=1,lat=270,lon=270"
-q, --quiet Disable output of log messages to the console entirely.

Note, this will also suppress error and warning
messages.

-v, --verbose Enable output of log messages to the console. Has no
effect if --quiet/-q is used. May be given multiple
times to control the level of log messages, i.e., -v
refers to level INFO, -vv to DETAIL, -vvv to DEBUG,
-vvvv to TRACE. If omitted, the log level of the
console is WARNING.

--help Show this message and exit.

30 Chapter 4. CLI

xcube, Release 1.5.2.dev0

Example

$ xcube chunk input_not_chunked.zarr -o output_rechunked.zarr --chunks "time=1,lat=270,
→˓lon=270"

Python API

The related Python API function is xcube.core.chunk.chunk_dataset().

4.6.2 xcube level

Synopsis

Generate multi-resolution levels.

$ xcube level --help

Usage: xcube level [OPTIONS] INPUT

Generate multi-resolution levels.

Transform the given dataset by INPUT into the levels of a multi-level
pyramid with spatial resolution decreasing by a factor of two in both
spatial dimensions and write the result to directory OUTPUT.

INPUT may be an S3 object storage URL of the form "s3://<bucket>/<path>" or
"https://<endpoint>".

Options:
-o, --output OUTPUT Output path. If omitted, "INPUT.levels" will

be used. You can also use S3 object storage
URLs of the form "s3://<bucket>/<path>" or
"https://<endpoint>"

-L, --link Link the INPUT instead of converting it to a
level zero dataset. Use with care, as the
INPUT's internal spatial chunk sizes may be
inappropriate for imaging purposes.

-t, --tile-size TILE_SIZE Tile size, given as single integer number or
as <tile-width>,<tile-height>. If omitted,
the tile size will be derived from the
INPUT's internal spatial chunk sizes. If the
INPUT is not chunked, tile size will be 512.

-n, --num-levels-max NUM_LEVELS_MAX
Maximum number of levels to generate. If not
given, the number of levels will be derived
from spatial dimension and tile sizes.

-A, --agg-methods AGG_METHODS Aggregation method(s) to be used for data
variables. Either one of "first", "min",
"max", "mean", "median", "auto" or list of
assignments to individual variables using
the notation

(continues on next page)

4.6. Cube manipulation 31

xcube, Release 1.5.2.dev0

(continued from previous page)

"<var1>=<method1>,<var2>=<method2>,..."
Defaults to "first".

-r, --replace Whether to replace an existing dataset at
OUTPUT.

-a, --anon For S3 inputs or outputs, whether the access
is anonymous. By default, credentials are
required.

-q, --quiet Disable output of log messages to the
console entirely. Note, this will also
suppress error and warning messages.

-v, --verbose Enable output of log messages to the
console. Has no effect if --quiet/-q is
used. May be given multiple times to control
the level of log messages, i.e., -v refers
to level INFO, -vv to DETAIL, -vvv to DEBUG,
-vvvv to TRACE. If omitted, the log level of
the console is WARNING.

--help Show this message and exit.

Example

$ xcube level --link -t 720 data/cubes/test-cube.zarr

Python API

The related Python API functions are

• xcube.core.level.compute_levels(),

• xcube.core.level.read_levels(), and

• xcube.core.level.write_levels().

4.6.3 xcube optimize

Synopsis

Optimize xcube dataset for faster access.

$ xcube optimize --help

Usage: xcube optimize [OPTIONS] CUBE

Optimize xcube dataset for faster access.

Reduces the number of metadata and coordinate data files in xcube dataset
given by CUBE. Consolidated cubes open much faster especially from remote
locations, e.g. in object storage, because obviously much less HTTP requests
are required to fetch initial cube meta information. That is, it merges all
metadata files into a single top-level JSON file ".zmetadata". Optionally,

(continues on next page)

32 Chapter 4. CLI

xcube, Release 1.5.2.dev0

(continued from previous page)

it removes any chunking of coordinate variables so they comprise a single
binary data file instead of one file per data chunk. The primary usage of
this command is to optimize data cubes for cloud object storage. The command
currently works only for data cubes using ZARR format.

Options:
-o, --output OUTPUT Output path. The placeholder "<built-in function

input>" will be replaced by the input's filename
without extension (such as ".zarr"). Defaults to
"{input}-optimized.zarr".

-I, --in-place Optimize cube in place. Ignores output path.
-C, --coords Also optimize coordinate variables by converting any

chunked arrays into single, non-chunked, contiguous
arrays.

--help Show this message and exit.

Examples

Write an cube with consolidated metadata to cube-optimized.zarr:

$ xcube optimize ./cube.zarr

Write an optimized cube with consolidated metadata and consolidated coordinate variables to optimized/cube.zarr
(directory optimized must exist):

$ xcube optimize -C -o ./optimized/cube.zarr ./cube.zarr

Optimize a cube in-place with consolidated metadata and consolidated coordinate variables:

$ xcube optimize -IC ./cube.zarr

Python API

The related Python API function is xcube.core.optimize.optimize_dataset().

4.6.4 xcube patch

Synopsis

Patch and consolidate the metadata of a xcube dataset.

$ xcube patch --help

Usage: xcube patch [OPTIONS] DATASET

Patch and consolidate the metadata of a dataset.

DATASET can be either a local filesystem path or a URL. It must point to
either a Zarr dataset (*.zarr) or a xcube multi-level dataset (*.levels).

(continues on next page)

4.6. Cube manipulation 33

xcube, Release 1.5.2.dev0

(continued from previous page)

Additional storage options for a given protocol may be passed by the OPTIONS
option.

In METADATA, the special attribute value "__delete__" can be used to remove
that attribute from dataset or array metadata.

Options:
--metadata METADATA The metadata to be patched. Must be a JSON or YAML file

using Zarr consolidated metadata format.
--options OPTIONS Protocol-specific storage options (see fsspec). Must be

a JSON or YAML file.
-q, --quiet Disable output of log messages to the console entirely.

Note, this will also suppress error and warning
messages.

-v, --verbose Enable output of log messages to the console. Has no
effect if --quiet/-q is used. May be given multiple
times to control the level of log messages, i.e., -v
refers to level INFO, -vv to DETAIL, -vvv to DEBUG,
-vvvv to TRACE. If omitted, the log level of the
console is WARNING.

-d, --dry-run Do not change any data, just report what would have
been changed.

--help Show this message and exit.

Patch file example

Patch files use the Zarr Consolidated Metadata Format, v1. For example, the following patch file (YAML) will delete
the global attribute TileSize and change the value of the attribute long_name of variable conc_chl:

zarr_consolidated_format: 1
metadata:

.zattrs:
TileSize: __delete__

conc_chl/.zattrs:
long_name: Chlorophyll concentration

Storage options file example

Here is a storage options file for the “s3” protocol that provides credentials for AWS S3 access:

key: AJDKJCLSKKA
secret: kjkl456lkj45632k45j63l

34 Chapter 4. CLI

xcube, Release 1.5.2.dev0

Usage example

$ xcube patch s3://my-cubes-bucket/test.zarr --metadata patch.yml -v

4.6.5 xcube prune

Delete empty chunks.

Attention: This tool will likely be integrated into xcube optimize in the near future.

$ xcube prune --help

Usage: xcube prune [OPTIONS] DATASET

Delete empty chunks. Deletes all data files associated with empty (NaN-only)
chunks in given DATASET, which must have Zarr format.

Options:
-q, --quiet Disable output of log messages to the console entirely. Note,

this will also suppress error and warning messages.
-v, --verbose Enable output of log messages to the console. Has no effect

if --quiet/-q is used. May be given multiple times to control
the level of log messages, i.e., -v refers to level INFO, -vv
to DETAIL, -vvv to DEBUG, -vvvv to TRACE. If omitted, the log
level of the console is WARNING.

--dry-run Just read and process input, but don't produce any output.
--help Show this message and exit.

A related Python API function is xcube.core.optimize.get_empty_dataset_chunks().

4.6.6 xcube resample

Synopsis

Resample data along the time dimension.

$ xcube resample --help

Usage: xcube resample [OPTIONS] CUBE

Resample data along the time dimension.

Options:
-c, --config CONFIG xcube dataset configuration file in YAML

format. More than one config input file is
allowed.When passing several config files,
they are merged considering the order passed
via command line.

(continues on next page)

4.6. Cube manipulation 35

xcube, Release 1.5.2.dev0

(continued from previous page)

-o, --output OUTPUT Output path. Defaults to 'out.zarr'.
-f, --format [zarr|netcdf4|mem]

Output format. If omitted, format will be
guessed from output path.

--variables, --vars VARIABLES Comma-separated list of names of variables
to be included.

-M, --method TEXT Temporal resampling method. Available
downsampling methods are 'count', 'first',
'last', 'min', 'max', 'sum', 'prod', 'mean',
'median', 'std', 'var', the upsampling
methods are 'asfreq', 'ffill', 'bfill',
'pad', 'nearest', 'interpolate'. If the
upsampling method is 'interpolate', the
option '--kind' will be used, if given.
Other upsampling methods that select
existing values honour the '--tolerance'
option. Defaults to 'mean'.

-F, --frequency TEXT Temporal aggregation frequency. Use format
"<count><offset>" where <offset> is one of
'H', 'D', 'W', 'M', 'Q', 'Y'. Use 'all' to
aggregate all time steps included in the
dataset.Defaults to '1D'.

-O, --offset TEXT Offset used to adjust the resampled time
labels. Uses same syntax as frequency. Some
Pandas date offset strings are supported as
well.

-B, --base INTEGER For frequencies that evenly subdivide 1 day,
the origin of the aggregated intervals. For
example, for '24H' frequency, base could
range from 0 through 23. Defaults to 0.

-K, --kind TEXT Interpolation kind which will be used if
upsampling method is 'interpolation'. May be
one of 'zero', 'slinear', 'quadratic',
'cubic', 'linear', 'nearest', 'previous',
'next' where 'zero', 'slinear', 'quadratic',
'cubic' refer to a spline interpolation of
zeroth, first, second or third order;
'previous' and 'next' simply return the
previous or next value of the point. For
more info refer to
scipy.interpolate.interp1d(). Defaults to
'linear'.

-T, --tolerance TEXT Tolerance for selective upsampling methods.
Uses same syntax as frequency. If the time
delta exceeds the tolerance, fill values
(NaN) will be used. Defaults to the given
frequency.

-q, --quiet Disable output of log messages to the
console entirely. Note, this will also
suppress error and warning messages.

-v, --verbose Enable output of log messages to the
console. Has no effect if --quiet/-q is

(continues on next page)

36 Chapter 4. CLI

xcube, Release 1.5.2.dev0

(continued from previous page)

used. May be given multiple times to control
the level of log messages, i.e., -v refers
to level INFO, -vv to DETAIL, -vvv to DEBUG,
-vvvv to TRACE. If omitted, the log level of
the console is WARNING.

--dry-run Just read and process inputs, but don't
produce any outputs.

--help Show this message and exit.

Examples

Upsampling example:

$ xcube resample --vars conc_chl,conc_tsm -F 12H -T 6H -M interpolation -K linear␣
→˓examples/serve/demo/cube.nc

Downsampling example:

$ xcube resample --vars conc_chl,conc_tsm -F 3D -M mean -M std -M count examples/serve/
→˓demo/cube.nc

Python API

The related Python API function is xcube.core.resample.resample_in_time().

4.6.7 xcube vars2dim

Synopsis

Convert cube variables into new dimension.

$ xcube vars2dim --help

Usage: xcube vars2dim [OPTIONS] CUBE

Convert cube variables into new dimension. Moves all variables of CUBE
into a single new variable <var-name> with a new dimension DIM-NAME and
writes the results to OUTPUT.

Options:
--variable, --var VARIABLE Name of the new variable that includes all

variables. Defaults to "data".
-D, --dim_name DIM-NAME Name of the new dimension into variables.

Defaults to "var".
-o, --output OUTPUT Output path. If omitted, 'INPUT-vars2dim.FORMAT'

will be used.
-f, --format FORMAT Format of the output. If not given, guessed from

OUTPUT.
--help Show this message and exit.

4.6. Cube manipulation 37

xcube, Release 1.5.2.dev0

Python API

The related Python API function is xcube.core.vars2dim.vars_to_dim().

4.7 Cube conversion

4.8 Cube publication

4.8.1 xcube serve

Synopsis

Serve data cubes via web service.

xcube serve starts a light-weight web server that provides various services based on xcube datasets:

• Catalogue services to query for xcube datasets and their variables and dimensions, and feature collections;

• Tile map service, with some OGC WMTS 1.0 compatibility (REST and KVP APIs);

• Dataset services to extract subsets like time-series and profiles for e.g. JavaScript clients.

$ xcube serve --help

Usage: xcube serve [OPTIONS] [PATHS...]

Run the xcube Server for the given configuration and/or the given raster
dataset paths given by PATHS.

Each of the PATHS arguments can point to a raster dataset such as a Zarr
directory (*.zarr), an xcube multi-level Zarr dataset (*.levels), a NetCDF
file (*.nc), or a GeoTIFF/COG file (*.tiff).

If one of PATHS is a directory that is not a dataset itself, it is scanned
for readable raster datasets.

The --show ASSET option can be used to inspect the current configuration of
the server. ASSET is one of:

apis outputs the list of APIs provided by the server
endpoints outputs the list of all endpoints provided by the server
openapi outputs the OpenAPI document representing this server
config outputs the effective server configuration
configschema outputs the JSON Schema for the server configuration

The ASSET may be suffixed by ".yaml" or ".json" forcing the respective
output format. The default format is YAML.

Note, if --show is provided, the ASSET will be shown and the program will
exit immediately.

Options:
(continues on next page)

38 Chapter 4. CLI

xcube, Release 1.5.2.dev0

(continued from previous page)

--framework FRAMEWORK Web server framework. Defaults to "tornado"
-p, --port PORT Service port number. Defaults to 8080
-a, --address ADDRESS Service address. Defaults to "0.0.0.0".
-c, --config CONFIG Configuration YAML or JSON file. If

multiple configuration files are passed, they will be␣
→˓merged in

order.
--base-dir BASE_DIR Directory used to resolve relative paths in

CONFIG files. Defaults to the parent
directory of (last) CONFIG file.

--prefix URL_PREFIX Prefix path to be used for all endpoint
URLs. May include template variables, e.g.,
"api/{version}".

--revprefix REVERSE_URL_PREFIX Prefix path to be used for reverse endpoint
URLs that may be reported by server
responses. May include template variables,
e.g., "/proxy/{port}". Defaults to value of
URL_PREFIX.

--traceperf Whether to output extra performance logs.
--update-after TIME Check for server configuration updates every

TIME seconds.
--stop-after TIME Unconditionally stop service after TIME

seconds.
--show ASSET Show ASSET and exit. Possible values for

ASSET are 'apis', 'endpoints', 'openapi',
'config', 'configschema' optionally suffixed
by '.yaml' or '.json'.

--open-viewer After starting the server, open xcube Viewer
in a browser tab.

-q, --quiet Disable output of log messages to the
console entirely. Note, this will also
suppress error and warning messages.

-v, --verbose Enable output of log messages to the
console. Has no effect if --quiet/-q is
used. May be given multiple times to control
the level of log messages, i.e., -v refers
to level INFO, -vv to DETAIL, -vvv to DEBUG,
-vvvv to TRACE. If omitted, the log level of
the console is WARNING.

--help Show this message and exit.

Configuration File

The xcube server is used to configure the xcube datasets to be published.

xcube datasets are any datasets that

• that comply to Unidata’s CDM and to the CF Conventions;

• that can be opened with the xarray Python library;

• that have variables that have the dimensions and shape (lat, lon) or (time, lat, lon);

• that have 1D-coordinate variables corresponding to the dimensions;

4.8. Cube publication 39

https://docs.unidata.ucar.edu/netcdf-java/current/userguide/common_data_model_overview.html
http://cfconventions.org/
https://xarray.pydata.org/en/stable/

xcube, Release 1.5.2.dev0

• that have their spatial grid defined in arbitrary spatial coordinate reference systems.

The xcube server supports xcube datasets stored as local NetCDF files, as well as Zarr directories in the local file system
or remote object storage. Remote Zarr datasets must be stored AWS S3 compatible object storage.

As an example, here is the configuration of the demo server. The parts of the demo configuration file are explained in
detail further down.

Some hints before, which are not addressed in the server demo configuration file. To increase imaging performance,
xcube datasets can be converted to multi-resolution pyramids using the xcube level tool. In the configuration, the format
must be set to 'levels'. Leveled xcube datasets are configured this way:

Datasets:

- Identifier: my_multi_level_dataset
Title: My Multi-Level Dataset
FileSystem: file
Path: my_multi_level_dataset.levels

- ...

To increase time-series extraction performance, xcube datasets may be rechunked with larger chunk size in the time
dimension using the xcube chunk tool. In the xcube server configuration a hidden dataset is given, and the it is referred
to by the non-hidden, actual dataset using the TimeSeriesDataset setting:

Datasets:

- Identifier: my_dataset
Title: My Dataset
FileSystem: file
Path: my_dataset.zarr
TimeSeriesDataset: my_dataset_opt_for_ts

- Identifier: my_dataset_opt_for_ts
Title: My Dataset optimized for Time-Series
FileSystem: file
Path: my_ts_opt_dataset.zarr
Hidden: True

- ...

40 Chapter 4. CLI

https://zarr.readthedocs.io/en/stable/
https://github.com/dcs4cop/xcube/blob/main/examples/serve/demo/config.yml

xcube, Release 1.5.2.dev0

Server Demo Configuration File

The server configuration file consists of various parts, some of them are necessary others are optional. Here the demo
configuration file used in the example is explained in detail.

The configuration file consists of five main parts authentication, dataset attribution, datasets, place groups and styles.

Authentication [optional]

In order to display data via xcube-viewer exclusively to registered and authorized users, the data served by xcube serve
may be protected by adding Authentication to the server configuration. In order to ensure protection, an Authority
and an Audience needs to be provided. Here authentication by Auth0 is used. Please note the trailing slash in the
“Authority” URL.

Authentication:
Authority: https://xcube-dev.eu.auth0.com/
Audience: https://xcube-dev/api/

Example of OIDC configuration for Keycloak. Please note that there is no trailing slash in the “Authority” URL.

Authentication:
Authority: https://kc.brockmann-consult.de/auth/realms/AVL
Audience: avl-xc-api

Dataset Attribution [optional]

Dataset Attribution may be added to the server via DatasetAttribution.

DatasetAttribution:
- "© by Brockmann Consult GmbH 2020, contains modified Copernicus Data 2019, processed␣

→˓by ESA"
- "© by EU H2020 CyanoAlert project"

Base Directory [optional]

A typical xcube server configuration comprises many paths, and relative paths of known configuration parameters are
resolved against the base_dir configuration parameter.

base_dir: s3://<bucket>/<path-to-your>/<resources>/

However, for values of parameters passed to user functions that represent paths in user code, this cannot be done
automatically. For such situations, expressions can be used. An expression is any string between "${"` and `"}"
in a configuration value. An expression can contain the variables base_dir (a string), ctx the current server context
(type xcube.webapi.datasets.DatasetsContext), as well as the function resolve_config_path(path) that
is used to make a path absolut with respect to base_dir and to normalize it. For example

Augmentation:
Path: augmentation/metadata.py
Function: metadata:update_metadata
InputParameters:

bands_config: ${resolve_config_path("../common/bands.yaml")}

4.8. Cube publication 41

https://github.com/dcs4cop/xcube/blob/main/examples/serve/demo/config.yml
https://github.com/dcs4cop/xcube/blob/main/examples/serve/demo/config.yml
https://auth0.com/

xcube, Release 1.5.2.dev0

Viewer Configuration [optional]

The xcube server endpoint /viewer/config/{*path} allows for configuring the viewer accessible via endpoint /
viewer. The actual source for the configuration items is configured by xcube server configuration using the new entry
Viewer/Configuration/Path, for example:

Viewer:
Configuration:
Path: s3://<bucket>/<viewer-config-dir-path>

Path [mandatory] must be an absolute filesystem path or a S3 path as in the example above. It points to a directory that
is expected to contain the the viewer configuration file config.json among other configuration resources, such as cus-
tom favicon.ico or logo.png. The file config.json should conform to the [configuration JSON Schema](https:
//github.com/dcs4cop/xcube-viewer/blob/main/src/resources/config.schema.json). All its values are optional, if not
provided, [default values](https://github.com/dcs4cop/xcube-viewer/blob/main/src/resources/config.json) are used in-
stead.

Datasets [mandatory]

In order to publish selected xcube datasets via xcube serve, the datasets need to be described in the server configu-
ration.

Remotely stored xcube Datasets

The following configuration snippet demonstrates how to publish static (persistent) xcube datasets stored in S3-
compatible object storage:

Datasets:
- Identifier: remote
Title: Remote OLCI L2C cube for region SNS
BoundingBox: [0.0, 50, 5.0, 52.5]
FileSystem: s3
Endpoint: "https://s3.eu-central-1.amazonaws.com"
Path: xcube-examples/OLCI-SNS-RAW-CUBE-2.zarr
Region: eu-central-1
Anonymous: true
Style: default
ChunkCacheSize: 250M
PlaceGroups:
- PlaceGroupRef: inside-cube
- PlaceGroupRef: outside-cube

AccessControl:
RequiredScopes:

- read:datasets

The above example of how to specify a xcube dataset to be served above is using a datacube stored in an S3 bucket within
the Amazon Cloud. Please have a closer look at the parameter Anonymous: true. This means, the datasets permissions
are set to public read in your source s3 bucket. If you have a dataset that is not public-read, set Anonymous: false.
Furthermore, you need to have valid credentials on the machine where the server runs. Credentials may be saved either
in a file called .aws/credentials with content like below:

[default]

42 Chapter 4. CLI

https://github.com/dcs4cop/xcube-viewer/blob/main/src/resources/config.schema.json
https://github.com/dcs4cop/xcube-viewer/blob/main/src/resources/config.schema.json
https://github.com/dcs4cop/xcube-viewer/blob/main/src/resources/config.json

xcube, Release 1.5.2.dev0

aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Or they may be exported as environment variables AWS_SECRET_ACCESS_KEY and AWS_ACCESS_KEY_ID.

Further down an example for a locally stored xcube datasets will be given, as well as an example of dynamic xcube
datasets.

Identifier [mandatory] is a unique ID for each xcube dataset, it is ment for machine-to-machine interaction and therefore
does not have to be a fancy human-readable name.

Title [optional] should be understandable for humans. This title that will be displayed within the viewer for the dataset
selection. If omitted, the key title from the dataset metadata will be used. If that is missing too, the identifier will be
used.

BoundingBox [optional] may be set in order to restrict the region which is served from a certain datacube. The notation
of the BoundingBox is [lon_min,lat_min,lon_max,lat_max].

FileSystem [mandatory] is set to “s3” which lets xcube serve know, that the datacube is located in the cloud.

Endpoint [mandatory] contains information about the cloud provider endpoint, this will differ if you use a different
cloud provider.

Path [mandatory] leads to the specific location of the datacube. The particular datacube is stored in an OpenTelecom-
Cloud S3 bucket called “xcube-examples” and the datacube is called “OLCI-SNS-RAW-CUBE-2.zarr”.

Region [optional] is the region where the specified cloud provider is operating.

Styles [optional] influence the visualization of the xucbe dataset in the xcube viewer if specified in the server configu-
ration file. The usage of Styles is described in section styles.

PlaceGroups [optional] allow to associate places (e.g. polygons or point-location) with a particular xcube dataset.
Several different place groups may be connected to a xcube dataset, these different place groups are distinguished by
the PlaceGroupRef. The configuration of PlaceGroups is described in section place groups.

AccessControl [optional] can only be used when providing authentication. Datasets may be protected by configuring
the RequiredScopes entry whose value is a list of required scopes, e.g. “read:datasets”.

Variables [optional] enforces the order of variables reported by xcube server. Is a list of wildcard patterns that deter-
mines the order of variables and the subset of variables to be reported.

The following example reports only variables whose name starts with “conc_”:

Datasets:
- Path: demo.zarr
Variables:
- "conc_*"

The next example reports all variables but ensures that conc_chl and conc_tsm are the first ones:

Datasets:
- Path: demo.zarr
Variables:
- conc_chl
- conc_tsm
- "*"

4.8. Cube publication 43

xcube, Release 1.5.2.dev0

Locally stored xcube Datasets

The following configuration snippet demonstrates how to publish static (persistent) xcube datasets stored in the local
filesystem:

- Identifier: local
Title: Local OLCI L2C cube for region SNS
BoundingBox: [0.0, 50, 5.0, 52.5]
FileSystem: file
Path: cube-1-250-250.zarr
Style: default
TimeSeriesDataset: local_ts
Augmentation:
Path: compute_extra_vars.py
Function: compute_variables
InputParameters:
factor_chl: 0.2
factor_tsm: 0.7

PlaceGroups:
- PlaceGroupRef: inside-cube
- PlaceGroupRef: outside-cube

AccessControl:
IsSubstitute: true

Most of the configuration of locally stored datasets is equal to the configuration of remotely stored xcube datasets.

FileSystem [mandatory] is set to “file” which lets xcube serve know, that the datacube is locally stored.

TimeSeriesDataset [optional] is not bound to local datasets, this parameter may be used for remotely stored datasets as
well. By using this parameter a time optimized datacube will be used for generating the time series. The configuration
of this time optimized datacube is shown below. By adding Hidden with true to the dataset configuration, the time
optimized datacube will not appear among the displayed datasets in xcube viewer.

Will not appear at all, because it is a "hidden" resource
- Identifier: local_ts
Title: 'local' optimized for time-series
BoundingBox: [0.0, 50, 5.0, 52.5]
FileSystem: file
Path: cube-5-100-200.zarr
Hidden: true
Style: default

Augmentation [optional] augments data cubes by new variables computed on-the-fly, the generation of the on-the-
fly variables depends on the implementation of the python module specified in the Path within the Augmentation
configuration.

AccessControl [optional] can only be used when providing authentication. By passing the IsSubstitute flag a dataset
disappears for authorized requests. This might be useful for showing a demo dataset in the viewer for user who are not
logged in.

44 Chapter 4. CLI

xcube, Release 1.5.2.dev0

Dynamic xcube Datasets

There is the possibility to define dynamic xcube datasets that are computed on-the-fly. Given here is an example that
obtains daily or weekly averages of an xcube dataset named “local”.

- Identifier: local_1w
Title: OLCI weekly L3 cube for region SNS computed from local L2C cube
BoundingBox: [0.0, 50, 5.0, 52.5]
FileSystem: memory
Path: resample_in_time.py
Function: compute_dataset
InputDatasets: ["local"]
InputParameters:
period: 1W
incl_stdev: True

Style: default
PlaceGroups:

- PlaceGroupRef: inside-cube
- PlaceGroupRef: outside-cube

AccessControl:
IsSubstitute: True

FileSystem [mandatory] must be “memory” for dynamically generated datasets.

Path [mandatory] points to a Python module. Can be a Python file, a package, or a Zip file.

Function [mandatory, mutually exclusive with Class] references a function in the Python file given by Path. Must
be suffixed by colon-separated module name, if Path references a package or Zip file. The function receives one
or more datasets of type xarray.Dataset as defined by InputDatasets and optional keyword-arguments as given
by InputParameters, if any. It must return a new xarray.Dataset with same spatial coordinates as the inputs. If
“resample_in_time.py” is compressed among any other modules in a zip archive, the original module name must be
indicated by the prefix to the function name:

Path: modules.zip
Function: resample_in_time:compute_dataset
InputDatasets: ["local"]

Class [mandatory, mutually exclusive with Function] references a callable in the Python file given by Path. Must
be suffixed by colon-separated module name, if Path references a package or Zip file. The callable is either a class
derived from xcube.core.mldataset.MultiLevelDataset or a function that returns an instance of xcube.core.
mldataset.MultiLevelDataset. The callable receives one or more datasets of type xcube.core.mldataset.
MultiLevelDataset as defined by InputDatasets and optional keyword-arguments as given by InputParameters, if
any.

InputDatasets [mandatory] specifies the input datasets passed to Function or Class.

InputParameters [mandatory] specifies optional keyword arguments passed to Function or Class. In the example,
InputParameters defines which kind of resampling should be performed.

Again, the dataset may be associated with place groups.

4.8. Cube publication 45

xcube, Release 1.5.2.dev0

Place Groups [optional]

Place groups are specified in a similar manner compared to specifying datasets within a server. Place groups may be
stored e.g. in shapefiles or a geoJson.

PlaceGroups:
- Identifier: outside-cube
Title: Points outside the cube
Path: places/outside-cube.geojson
PropertyMapping:
image: ${resolve_config_path("images/outside-cube/${ID}.jpg")}

Identifier [mandatory] is a unique ID for each place group, it is the one xcube serve uses to associate a place group to
a particular dataset.

Title [mandatory] should be understandable for humans and this is the title that will be displayed within the viewer for
the place selection if the selected xcube dataset contains a place group.

Path [mandatory] defines where the file storing the place group is located. Please note that the paths within the example
config are relative.

PropertyMapping [mandatory] determines which information contained within the place group should be used for
selecting a certain location of the given place group. This depends very strongly of the data used. In the above example,
the image URL is determined by a feature’s ID property.

Property Mappings

The entry PropertyMapping is used to map a set of well-known properties (or roles) to the actual properties provided
by a place feature in a place group. For example, the well-known properties are used to in xcube viewer to display
information about the currently selected place. The possible well-known properties are:

• label: The property that provides a label for the place, if any. Defaults to to case-insensitive names label,
title, name, id in xcube viewer.

• color: The property that provides a place’s color. Defaults to the case-insensitive name color in xcube viewer.

• image: The property that provides a place’s image URL, if any. Defaults to case-insensitive names image, img,
picture, pic in xcube viewer.

• description: The property that provides a place’s description text, if any. Defaults to case-insensitive names
description, desc, abstract, comment in xcube viewer.

In the following example, a place’s label is provided by the place feature’s NAME property, while an image is provided
by the place feature’s IMG_URL property:

PlaceGroups:
Identifier: my_group
...
PropertyMapping:

label: NAME
image: IMG_URL

The values on the right side may either be feature property names or contain them as placeholders in the form
${PROPERTY}.

46 Chapter 4. CLI

xcube, Release 1.5.2.dev0

Styles [optional]

Within the Styles section, colorbars may be defined which should be used initially for a certain variable of a dataset, as
well as the value ranges. For xcube viewer version 0.3.0 or higher the colorbars and the value ranges may be adjusted
by the user within the xcube viewer.

Styles:
- Identifier: default
ColorMappings:
conc_chl:
ColorBar: plasma
ValueRange: [0., 24.]

conc_tsm:
ColorBar: PuBuGn
ValueRange: [0., 100.]

kd489:
ColorBar: jet
ValueRange: [0., 6.]

rgb:
Red:
Variable: conc_chl
ValueRange: [0., 24.]

Green:
Variable: conc_tsm
ValueRange: [0., 100.]

Blue:
Variable: kd489
ValueRange: [0., 6.]

The ColorMapping may be specified for each variable of the datasets to be served. If not specified, xcube server will
try to extract default values from attributes of dataset variables. The default value ranges are determined by:

• xcube-specific variable attributes color_value_min and color_value_max;

• The CF variable attributes valid_min, valid_max or valid_range.

• Or otherwise, the value range [0, 1] is assumed.

The colorbar name can be set using the

• xcube-specific variable attribute color_bar_name;

• Otherwise, the default colorbar name will be viridis.

The special name rgb may be used to generate an RGB-image from any other three dataset variables used for the
individual Red, Green and Blue channels of the resulting image. An example is shown in the configuration above.

Colormaps may be reversed by using name suffix “_r”. They also can have alpha blending indicated by name suffix
“_alpha”. Both, reversed and alpha blending is possible as well and can be configured by name suffix “_r_alpha”.

Styles:
- Identifier: default
ColorMappings:
conc_chl:
ColorBar: plasma_r_alpha
ValueRange: [0., 24.]

4.8. Cube publication 47

xcube, Release 1.5.2.dev0

Example

xcube serve --port 8080 --config ./examples/serve/demo/config.yml --verbose

xcube Server: WMTS, catalogue, data access, tile, feature, time-series services for␣
→˓xarray-enabled data cubes, version 0.2.0
[I 190924 17:08:54 service:228] configuration file 'D:\\Projects\\xcube\\examples\\serve\
→˓\demo\\config.yml' successfully loaded
[I 190924 17:08:54 service:158] service running, listening on localhost:8080, try http://
→˓localhost:8080/datasets
[I 190924 17:08:54 service:159] press CTRL+C to stop service

Server Demo Configuration File for DataStores

The server configuration file consists of various parts, some of them are necessary, others are optional. Here the demo
stores configuration file used in the example stores is explained in detail.

This configuration file differs only in one part compared to section Server Demo Configuration File: data stores. The
other main parts (authentication, dataset attribution, place groups, and styles) can be used in combination with data
stores.

DataStores [mandatory]

Datasets, which are stored in the same location, may be configured in the configuration file using DataStores.

DataStores:
- Identifier: edc
StoreId: s3
StoreParams:
root: xcube-dcfs/edc-xc-viewer-data
max_depth: 1
storage_options:
anon: true
client_kwargs:
endpoint_url: https://s3.eu-central-1.amazonaws.com

Datasets:
- Path: "*2.zarr"
Style: default
ChunkCacheSize: 1G

Identifier [mandatory] is a unique ID for each DataStore.

StoreID [mandatory] can be file for locally stored datasets and s3 for datasets located in the cloud.

StoreParams [mandatory]
root [mandatory] states a common beginning part of the paths of the served datasets.
max_depth [optional] if wildcard is used in Dataset Path this indicated how far the server should step down and serve
the discovered datasets.
storage_options [optional] is necessary when serving datasets from the cloud. With anon the accessibility is
configured, if the datasets are public-read, anon is set to “true”, “false” indicates they are protected. Credentials may
be set by keywords key and secret.

48 Chapter 4. CLI

https://github.com/dcs4cop/xcube/blob/main/examples/serve/demo/config-with-stores.yml
https://github.com/dcs4cop/xcube/blob/main/examples/serve/demo/config-with-stores.yml

xcube, Release 1.5.2.dev0

Datasets [optional] if not specified, every dataset in the indicated location supported by xcube will be read and served
by xcube serve. In order to filter certain datasets you can list Paths that shall be served by xcube serve. Path may contain
wildcards. Each Dataset entry may have Styles and PlaceGroups associated with them, the same way as described in
section Server Demo Configuration File.

Example Stores

xcube serve --port 8080 --config ./examples/serve/demo/config-with-stores.yml --verbose

xcube Server: WMTS, catalogue, data access, tile, feature, time-series services for␣
→˓xarray-enabled data cubes, version
[I 190924 17:08:54 service:228] configuration file 'D:\\Projects\\xcube\\examples\\serve\
→˓\demo\\config.yml' successfully loaded
[I 190924 17:08:54 service:158] service running, listening on localhost:8080, try http://
→˓localhost:8080/datasets
[I 190924 17:08:54 service:159] press CTRL+C to stop service

Example Azure Blob Storage filesystem Stores

xcube server includes support for Azure Blob Storage filesystem by a data store abfs. This enables access to data cubes
(.zarr or .levels) in Azure blob storage as shown here:

DataStores:
- Identifier: siec
StoreId: abfs
StoreParams:
root: my_blob_container
max_depth: 1
storage_options:
anon: true
account_name: "xxx"
account_key': "xxx"
or
connection_string: "xxx"

Datasets:
- Path: "*.levels"
Style: default

Web API

The xcube server has a dedicated self describing Web API Documentation. After starting the server, you can check the
various functions provided by xcube Web API. To explore the functions, open <base-url>/openapi.html.

The xcube server implements the OGC WMTS RESTful and KVP architectural styles of the OGC WMTS 1.0.0 spec-
ification. The following operations are supported:

• GetCapabilities: /xcube/wmts/1.0.0/WMTSCapabilities.xml
• GetTile: /xcube/wmts/1.0.0/tile/{DatasetName}/{VarName}/{TileMatrix}/{TileCol}/
{TileRow}.png

• GetFeatureInfo: in progress

4.8. Cube publication 49

http://www.opengeospatial.org/standards/wmts
http://www.opengeospatial.org/standards/wmts

xcube, Release 1.5.2.dev0

50 Chapter 4. CLI

CHAPTER

FIVE

PYTHON API

5.1 Data Store Framework

5.1.1 Functions

xcube.core.store.new_data_store(data_store_id: str, extension_registry: ExtensionRegistry | None = None,
**data_store_params)→ DataStore | MutableDataStore

Create a new data store instance for given data_store_id and data_store_params.

Parameters
• data_store_id – A data store identifier.

• extension_registry – Optional extension registry. If not given, the global extension reg-
istry will be used.

• **data_store_params – Data store specific parameters.

Returns
A new data store instance

xcube.core.store.new_fs_data_store(protocol: str, root: str = '', max_depth: int | None = 1, read_only: bool
= False, includes: Sequence[str] | None = None, excludes:
Sequence[str] | None = None, storage_options: Dict[str, Any] = None)
→ FsDataStore

Create a new instance of a filesystem-based data store.

The data store is capable of filtering the data identifiers reported by get_data_ids(). For this purpose the
optional keywords excludes and includes are used which can both take the form of a wildcard pattern or a sequence
of wildcard patterns:

• excludes: if given and if any pattern matches the identifier, the identifier is not reported.

• includes: if not given or if any pattern matches the identifier, the identifier is reported.

Parameters
• protocol – The filesystem protocol, for example “file”, “s3”, “memory”.

• root – Root or base directory. Defaults to “”.

• max_depth – Maximum recursion depth. None means limitless. Defaults to 1.

• read_only – Whether this is a read-only store. Defaults to False.

• includes – Optional sequence of wildcards that include certain filesystem paths. Affects
the data identifiers (paths) returned by get_data_ids(). By default, all paths are included.

51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

xcube, Release 1.5.2.dev0

• excludes – Optional sequence of wildcards that exclude certain filesystem paths. Affects
the data identifiers (paths) returned by get_data_ids(). By default, no paths are excluded.

• storage_options – Options specific to the underlying filesystem identified by protocol.
Used to instantiate the filesystem.

Returns
A new data store instance of type FsDataStore.

xcube.core.store.find_data_store_extensions(predicate: Callable[[Extension], bool] = None,
extension_registry: ExtensionRegistry | None = None)→
List[Extension]

Find data store extensions using the optional filter function predicate.

Parameters
• predicate – An optional filter function.

• extension_registry – Optional extension registry. If not given, the global extension reg-
istry will be used.

Returns
List of data store extensions.

xcube.core.store.get_data_store_class(data_store_id: str, extension_registry: ExtensionRegistry | None =
None)→ Type[DataStore] | Type[MutableDataStore]

Get the class for the data store identified by data_store_id.

Parameters
• data_store_id – A data store identifier.

• extension_registry – Optional extension registry. If not given, the global extension reg-
istry will be used.

Returns
The class for the data store.

xcube.core.store.get_data_store_params_schema(data_store_id: str, extension_registry:
ExtensionRegistry | None = None)→
JsonObjectSchema

Get the JSON schema for instantiating a new data store identified by data_store_id.

Parameters
• data_store_id – A data store identifier.

• extension_registry – Optional extension registry. If not given, the global extension reg-
istry will be used.

Returns
The JSON schema for the data store’s parameters.

52 Chapter 5. Python API

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

xcube, Release 1.5.2.dev0

5.1.2 Classes

class xcube.core.store.DataStore

A data store represents a collection of data resources that can be enumerated, queried, and opened in order to
obtain in-memory representations of the data. The same data resource may be made available using different
data types. Therefore, many methods allow specifying a data_type parameter.

A store implementation may use any existing openers/writers, or define its own, or not use any openers/writers
at all.

Store implementers should follow the conventions outlined in https://xcube.readthedocs.io/en/latest/storeconv.
html .

The DataStore is an abstract base class that both read-only and mutable data stores must implement.

classmethod get_data_store_params_schema()→ JsonObjectSchema
Get descriptions of parameters that must or can be used to instantiate a new DataStore object. Parameters
are named and described by the properties of the returned JSON object schema. The default implementation
returns JSON object schema that can have any properties.

abstract classmethod get_data_types()→ Tuple[str, ...]
Get alias names for all data types supported by this store. The first entry in the tuple represents this store’s
default data type.

Returns
The tuple of supported data types.

abstract get_data_types_for_data(data_id: str)→ Tuple[str, ...]
Get alias names for of data types that are supported by this store for the given data_id.

Parameters
data_id – An identifier of data that is provided by this store

Returns
A tuple of data types that apply to the given data_id.

Raises
DataStoreError – If an error occurs.

abstract get_data_ids(data_type: str | None | type | DataType = None, include_attrs: Container[str] =
None)→ Iterator[str] | Iterator[Tuple[str, Dict[str, Any]]]

Get an iterator over the data resource identifiers for the given type data_type. If data_type is omitted, all
data resource identifiers are returned.

If a store implementation supports only a single data type, it should verify that data_type is either None or
compatible with the supported data type.

If include_attrs is provided, it must be a sequence of names of metadata attributes. The store will then
return extra metadata for each returned data resource identifier according to the names of the metadata
attributes as tuples (data_id, attrs).

Hence, the type of the returned iterator items depends on the value of include_attrs:

• If include_attrs is None (the default), the method returns an iterator of dataset identifiers data_id of
type str.

• If include_attrs is a sequence of attribute names, even an empty one, the method returns an iterator of
tuples (data_id, attrs) of type Tuple[str, Dict], where attrs is a dictionary filled according to the names
in include_attrs. If a store cannot provide a given attribute, it should simply ignore it. This may even
yield to an empty dictionary for a given data_id.

5.1. Data Store Framework 53

https://xcube.readthedocs.io/en/latest/storeconv.html
https://xcube.readthedocs.io/en/latest/storeconv.html
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Container
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

xcube, Release 1.5.2.dev0

The individual attributes do not have to exist in the dataset’s metadata, they may
also be generated on-the-fly. An example for a generic attribute name is “title”. A
store should try to resolve include_attrs=["title"] by returning items such as
("ESACCI-L4_GHRSST-SSTdepth-OSTIA-GLOB_CDR2.1-v02.0-fv01.0.zarr", {"title":
"Level-4 GHRSST Analysed Sea Surface Temperature"}).

Parameters
• data_type – If given, only data identifiers that are available as this type are returned. If

this is omitted, all available data identifiers are returned.

• include_attrs – A sequence of names of attributes to be returned for each dataset iden-
tifier. If given, the store will attempt to provide the set of requested dataset attributes in
addition to the data ids. (added in xcube 0.8.0)

Returns
An iterator over the identifiers and titles of data resources provided by this data store.

Raises
DataStoreError – If an error occurs.

list_data_ids(data_type: str | None | type | DataType = None, include_attrs: Container[str] = None)→
List[str] | List[Tuple[str, Dict[str, Any]]]

Convenience version of get_data_ids() that returns a list rather than an iterator.

Parameters
• data_type – If given, only data identifiers that are available as this type are returned. If

this is omitted, all available data identifiers are returned.

• include_attrs – A sequence of names of attributes to be returned for each dataset iden-
tifier. If given, the store will attempt to provide the set of requested dataset attributes in
addition to the data ids. (added in xcube 0.8.0)

Returns
A list comprising the identifiers and titles of data resources provided by this data store.

Raises
DataStoreError – If an error occurs.

abstract has_data(data_id: str, data_type: str | None | type | DataType = None)→ bool
Check if the data resource given by data_id is available in this store.

Parameters
• data_id – A data identifier

• data_type – An optional data type. If given, it will also be checked whether the data is
available as the specified type. May be given as type alias name, as a type, or as a DataType
instance.

Returns
True, if the data resource is available in this store, False otherwise.

abstract describe_data(data_id: str, data_type: str | None | type | DataType = None)→ DataDescriptor
Get the descriptor for the data resource given by data_id.

Raises a DataStoreError if data_id does not exist in this store or the data is not available as the specified
data_type.

Parameters
• data_id – An identifier of data provided by this store

54 Chapter 5. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Container
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type

xcube, Release 1.5.2.dev0

• data_type – If given, the descriptor of the data will describe the data as specified by the
data type. May be given as type alias name, as a type, or as a DataType instance.

Returns: a data-type specific data descriptor

Raises
DataStoreError – If an error occurs.

abstract get_data_opener_ids(data_id: str = None, data_type: str | None | type | DataType = None)→
Tuple[str, ...]

Get identifiers of data openers that can be used to open data resources from this store.

If data_id is given, data accessors are restricted to the ones that can open the identified data resource. Raises
if data_id does not exist in this store.

If data_type is given, only openers that are compatible with this data type are returned.

If a store implementation supports only a single data type, it should verify that data_type is either None or
equal to that single data type.

Parameters
• data_id – An optional data resource identifier that is known to exist in this data store.

• data_type – An optional data type that is known to be supported by this data store. May
be given as type alias name, as a type, or as a DataType instance.

Returns
A tuple of identifiers of data openers that can be used to open data resources.

Raises
DataStoreError – If an error occurs.

abstract get_open_data_params_schema(data_id: str = None, opener_id: str = None)→
JsonObjectSchema

Get the schema for the parameters passed as open_params to open_data().

If data_id is given, the returned schema will be tailored to the constraints implied by the identified data
resource. Some openers might not support this, therefore data_id is optional, and if it is omitted, the
returned schema will be less restrictive. If given, the method raises if data_id does not exist in this store.

If opener_id is given, the returned schema will be tailored to the constraints implied by the identified
opener. Some openers might not support this, therefore opener_id is optional, and if it is omitted, the
returned schema will be less restrictive.

For maximum compatibility of stores, it is strongly encouraged to apply the following conventions on pa-
rameter names, types, and their interpretation.

Let P be the value of an optional, data constraining open parameter, then it should be interpreted as follows:

• _if P is None_ means, parameter not given, hence no constraint applies, hence no additional restrictions
on requested data.

• _if not P_ means, we exclude data that would be included by default.

• _else_, the given constraint applies.

Given here are names, types, and descriptions of common, constraining open parameters for gridded
datasets. Note, whether any of these is optional or mandatory depends on the individual data store. A
store may also define other open parameters or support only a subset of the following. Note all parameters
may be optional, the Python-types given here refer to _given_, non-Null parameters:

• variable_names: List[str]: Included data variables. Available coordinate variables will be
auto-included for any dimension of the data variables.

5.1. Data Store Framework 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

xcube, Release 1.5.2.dev0

• bbox: Tuple[float, float, float, float]: Spatial coverage as xmin, ymin, xmax, ymax.

• crs: str: Spatial CRS, e.g. “EPSG:4326” or OGC CRS URI.

• spatial_res: float: Spatial resolution in coordinates of the spatial CRS.

• time_range: Tuple[Optional[str], Optional[str]]: Time range interval in UTC
date/time units using ISO format. Start or end time may be missing which means everything until
available start or end time.

• ``time_period: str`: Pandas-compatible period/frequency string, e.g. “8D”, “2W”.

E.g. applied to an optional variable_names parameter, this means

• variable_names is None - include all data variables

• variable_names == [] - do not include data variables (schema only)

• variable_names == [“<var_1>”, “<var_2>”, . . .] only include data variables named “<var_1>”,
“<var_2>”, . . .

Parameters
• data_id – An optional data identifier that is known to exist in this data store.

• opener_id – An optional data opener identifier.

Returns
The schema for the parameters in open_params.

Raises
DataStoreError – If an error occurs.

abstract open_data(data_id: str, opener_id: str = None, **open_params)→ Any
Open the data given by the data resource identifier data_id using the supplied open_params.

The data type of the return value depends on the data opener used to open the data resource.

If opener_id is given, the identified data opener will be used to open the data resource and open_params
must comply with the schema of the opener’s parameters. Note that some store implementations may not
support using different openers or just support a single one.

Raises if data_id does not exist in this store.

Parameters
• data_id – The data identifier that is known to exist in this data store.

• opener_id – An optional data opener identifier.

• **open_params – Opener-specific parameters.

Returns
An in-memory representation of the data resources identified by data_id and open_params.

Raises
DataStoreError – If an error occurs.

class xcube.core.store.MutableDataStore

A mutable data store is a data store that also allows for adding, updating, and removing data resources.

MutableDataStore is an abstract base class that any mutable data store must implement.

56 Chapter 5. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

xcube, Release 1.5.2.dev0

abstract get_data_writer_ids(data_type: str | None | type | DataType = None)→ Tuple[str, ...]
Get identifiers of data writers that can be used to write data resources to this store.

If data_type is given, only writers that support this data type are returned.

If a store implementation supports only a single data type, it should verify that data_type is either None or
equal to that single data type.

Parameters
data_type – An optional data type specifier that is known to be supported by this data store.
May be given as type alias name, as a type, or as a DataType instance.

Returns
A tuple of identifiers of data writers that can be used to write data resources.

Raises
DataStoreError – If an error occurs.

abstract get_write_data_params_schema(writer_id: str = None)→ JsonObjectSchema
Get the schema for the parameters passed as write_params to write_data().

If writer_id is given, the returned schema will be tailored to the constraints implied by the identified writer.
Some writers might not support this, therefore writer_id is optional, and if it is omitted, the returned schema
will be less restrictive.

Given here is a pseudo-code implementation for stores that support multiple writers and where the store
has common parameters with the writer:

store_params_schema = self.get_data_store_params_schema() writer_params_schema
= get_writer(writer_id).get_write_data_params_schema() return sub-
tract_param_schemas(writer_params_schema, store_params_schema)

Parameters
writer_id – An optional data writer identifier.

Returns
The schema for the parameters in write_params.

Raises
DataStoreError – If an error occurs.

abstract write_data(data: Any, data_id: str = None, writer_id: str = None, replace: bool = False,
**write_params)→ str

Write a data in-memory instance using the supplied data_id
and write_params.

If data identifier data_id is not given, a writer-specific default will be generated, used, and returned.

If writer_id is given, the identified data writer will be used to write the data resource and write_params must
comply with the schema of writers’s parameters. Note that some store implementations may not support
using different writers or just support a single one.

Given here is a pseudo-code implementation for stores that support multiple writers:

writer_id = writer_id or self.gen_data_id() path = self.resolve_data_id_to_path(data_id)
write_params = add_params(self.get_data_store_params(), write_params)
get_writer(writer_id).write_data(data, path, **write_params) self.register_data(data_id, data)

Raises if data_id does not exist in this store.

Parameters

5.1. Data Store Framework 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

xcube, Release 1.5.2.dev0

• data – The data in-memory instance to be written.

• data_id – An optional data identifier that is known to be unique in this data store.

• writer_id – An optional data writer identifier.

• replace – Whether to replace an existing data resource.

• **write_params – Writer-specific parameters.

Returns
The data identifier used to write the data.

Raises
DataStoreError – If an error occurs.

abstract delete_data(data_id: str, **delete_params)
Delete the data resource identified by data_id.

Typically, an implementation would delete the data resource from the physical storage and also remove any
registered metadata from an associated database.

Raises if data_id does not exist in this store.

Parameters
data_id – An data identifier that is known to exist in this data store.

Raises
DataStoreError – If an error occurs.

abstract register_data(data_id: str, data: Any)
Register the in-memory representation of a data resource data using the given data resource identifier
data_id.

This method can be used to register data resources that are already physically stored in the data store, but
are not yet searchable or otherwise accessible by the given data_id.

Typically, an implementation would extract metadata from data and store it in a store-specific database. An
implementation should just store the metadata of data. It should not write data.

Parameters
• data_id – A data resource identifier that is known to be unique in this data store.

• data – An in-memory representation of a data resource.

Raises
DataStoreError – If an error occurs.

abstract deregister_data(data_id: str)
De-register a data resource identified by data_id from this data store.

This method can be used to de-register data resources so it will be no longer searchable or otherwise ac-
cessible by the given data_id.

Typically, an implementation would extract metadata from data and store it in a store-specific database. An
implementation should only remove a data resource’s metadata. It should not delete data from its physical
storage space.

Raises if data_id does not exist in this store.

Parameters
data_id – A data resource identifier that is known to exist in this data store.

58 Chapter 5. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str

xcube, Release 1.5.2.dev0

Raises
DataStoreError – If an error occurs.

class xcube.core.store.DataOpener

An interface that specifies a parameterized open_data() operation.

Possible open parameters are implementation-specific and are described by a JSON Schema.

Note this interface uses the term “opener” to underline the expected laziness of the operation. For example, when
a xarray.Dataset is returned from a Zarr directory, the actual data is represented by Dask arrays and will be loaded
only on-demand.

abstract get_open_data_params_schema(data_id: str = None)→ JsonObjectSchema
Get the schema for the parameters passed as open_params to open_data(). If data_id is given, the re-
turned schema will be tailored to the constraints implied by the identified data resource. Some openers
might not support this, therefore data_id is optional, and if it is omitted, the returned schema will be less
restrictive.

Parameters
data_id – An optional data resource identifier.

Returns
The schema for the parameters in open_params.

Raises
DataStoreError – If an error occurs.

abstract open_data(data_id: str, **open_params)→ Any
Open the data resource given by the data resource identifier data_id using the supplied open_params.

Raises if data_id does not exist.

Parameters
• data_id – The data resource identifier.

• **open_params – Opener-specific parameters.

Returns
An xarray.Dataset instance.

Raises
DataStoreError – If an error occurs.

class xcube.core.store.DataSearcher

Allow searching data in a data store.

abstract classmethod get_search_params_schema(data_type: str | None | type | DataType = None)
→ JsonObjectSchema

Get the schema for the parameters that can be passed as search_params to search_data(). Parameters
are named and described by the properties of the returned JSON object schema.

Parameters
data_type – If given, the search parameters will be tailored to search for data for the given
data_type.

Returns
A JSON object schema whose properties describe this store’s search parameters.

abstract search_data(data_type: str | None | type | DataType = None, **search_params)→
Iterator[DataDescriptor]

5.1. Data Store Framework 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Iterator

xcube, Release 1.5.2.dev0

Search this store for data resources. If data_type is given, the search is restricted to data resources of that
type.

Returns an iterator over the search results which are returned as DataDescriptor objects.

If a store implementation supports only a single data type, it should verify that data_type is either None or
compatible with the supported data type specifier.

Parameters
• data_type – An optional data type that is known to be supported by this data store.

• **search_params – The search parameters.

Returns
An iterator of data descriptors for the found data resources.

Raises
DataStoreError – If an error occurs.

class xcube.core.store.DataWriter

An interface that specifies a parameterized write_data() operation.

Possible write parameters are implementation-specific and are described by a JSON Schema.

abstract get_write_data_params_schema()→ JsonObjectSchema
Get the schema for the parameters passed as write_params to write_data().

Returns
The schema for the parameters in write_params.

Raises
DataStoreError – If an error occurs.

abstract write_data(data: Any, data_id: str, replace: bool = False, **write_params)→ str
Write a data resource using the supplied data_id and write_params.

Parameters
• data – The data resource’s in-memory representation to be written.

• data_id – A unique data resource identifier.

• replace – Whether to replace an existing data resource.

• **write_params – Writer-specific parameters.

Returns
The data resource identifier used to write the data resource.

Raises
DataStoreError – If an error occurs.

class xcube.core.store.DataStoreError(message: str)
Raised on error in any of the data store, opener, or writer methods.

Parameters
message – The error message.

class xcube.core.store.DataDescriptor(data_id: str, data_type: str | None | type | DataType, *, crs: str =
None, bbox: Tuple[float, float, float, float] = None, time_range:
Tuple[str | None, str | None] = None, time_period: str = None,
open_params_schema: JsonObjectSchema = None,
**additional_properties)

60 Chapter 5. Python API

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

xcube, Release 1.5.2.dev0

A generic descriptor for any data. Also serves as a base class for more specific data descriptors.

Parameters
• data_id – An identifier for the data

• data_type – A type specifier for the data

• crs – A coordinate reference system identifier, as an EPSG, PROJ or WKT string

• bbox – A bounding box of the data

• time_range – Start and end time delimiting this data’s temporal extent

• time_period – The data’s periodicity if it is evenly temporally resolved.

• open_params_schema – A JSON schema describing the parameters that may be used to
open this data.

classmethod get_schema()→ JsonObjectSchema
Get JSON object schema.

class xcube.core.store.DatasetDescriptor(data_id: str, *, data_type: str | None | type | DataType =
'dataset', crs: str = None, bbox: Tuple[float, float, float, float]
= None, time_range: Tuple[str | None, str | None] = None,
time_period: str = None, spatial_res: float = None, dims:
Mapping[str, int] = None, coords: Mapping[str,
VariableDescriptor] = None, data_vars: Mapping[str,
VariableDescriptor] = None, attrs: Mapping[Hashable, any] =
None, open_params_schema: JsonObjectSchema = None,
**additional_properties)

A descriptor for a gridded, N-dimensional dataset represented by xarray.Dataset. Comprises a description of the
data variables contained in the dataset.

Regrading time_range and time_period parameters, please refer to https://github.com/dcs4cop/xcube/blob/main/
docs/source/storeconv.md#date-time-and-duration-specifications

Parameters
• data_id – An identifier for the data

• data_type – The data type of the data described

• crs – A coordinate reference system identifier, as an EPSG, PROJ or WKT string

• bbox – A bounding box of the data

• time_range – Start and end time delimiting this data’s temporal extent

• time_period – The data’s periodicity if it is evenly temporally resolved

• spatial_res – The spatial extent of a pixel in crs units

• dims – A mapping of the dataset’s dimensions to their sizes

• coords – mapping of the dataset’s data coordinate names to instances of
VariableDescriptor

• data_vars – A mapping of the dataset’s variable names to instances of
VariableDescriptor

• attrs – A mapping containing arbitrary attributes of the dataset

5.1. Data Store Framework 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Hashable
https://github.com/dcs4cop/xcube/blob/main/docs/source/storeconv.md#date-time-and-duration-specifications
https://github.com/dcs4cop/xcube/blob/main/docs/source/storeconv.md#date-time-and-duration-specifications

xcube, Release 1.5.2.dev0

• open_params_schema – A JSON schema describing the parameters that may be used to
open this data

classmethod get_schema()→ JsonObjectSchema
Get JSON object schema.

class xcube.core.store.MultiLevelDatasetDescriptor(data_id: str, num_levels: int, *, data_type: str |
None | type | DataType = 'mldataset', **kwargs)

A descriptor for a gridded, N-dimensional, multi-level, multi-resolution dataset represented by
xcube.core.mldataset.MultiLevelDataset.

Parameters
• data_id – An identifier of the multi-level dataset

• num_levels – The number of levels of this multi-level dataset

• data_type – A type specifier for the multi-level dataset

classmethod get_schema()→ JsonObjectSchema
Get JSON object schema.

class xcube.core.store.DatasetDescriptor(data_id: str, *, data_type: str | None | type | DataType =
'dataset', crs: str = None, bbox: Tuple[float, float, float, float]
= None, time_range: Tuple[str | None, str | None] = None,
time_period: str = None, spatial_res: float = None, dims:
Mapping[str, int] = None, coords: Mapping[str,
VariableDescriptor] = None, data_vars: Mapping[str,
VariableDescriptor] = None, attrs: Mapping[Hashable, any] =
None, open_params_schema: JsonObjectSchema = None,
**additional_properties)

A descriptor for a gridded, N-dimensional dataset represented by xarray.Dataset. Comprises a description of the
data variables contained in the dataset.

Regrading time_range and time_period parameters, please refer to https://github.com/dcs4cop/xcube/blob/main/
docs/source/storeconv.md#date-time-and-duration-specifications

Parameters
• data_id – An identifier for the data

• data_type – The data type of the data described

• crs – A coordinate reference system identifier, as an EPSG, PROJ or WKT string

• bbox – A bounding box of the data

• time_range – Start and end time delimiting this data’s temporal extent

• time_period – The data’s periodicity if it is evenly temporally resolved

• spatial_res – The spatial extent of a pixel in crs units

• dims – A mapping of the dataset’s dimensions to their sizes

• coords – mapping of the dataset’s data coordinate names to instances of
VariableDescriptor

• data_vars – A mapping of the dataset’s variable names to instances of
VariableDescriptor

• attrs – A mapping containing arbitrary attributes of the dataset

62 Chapter 5. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Hashable
https://github.com/dcs4cop/xcube/blob/main/docs/source/storeconv.md#date-time-and-duration-specifications
https://github.com/dcs4cop/xcube/blob/main/docs/source/storeconv.md#date-time-and-duration-specifications

xcube, Release 1.5.2.dev0

• open_params_schema – A JSON schema describing the parameters that may be used to
open this data

classmethod get_schema()→ JsonObjectSchema
Get JSON object schema.

class xcube.core.store.VariableDescriptor(name: str, dtype: str, dims: Sequence[str], *, chunks:
Sequence[int] = None, attrs: Mapping[Hashable, any] =
None, **additional_properties)

A descriptor for dataset variable represented by xarray.DataArray instances. They are part of dataset descriptor
for an gridded, N-dimensional dataset represented by xarray.Dataset.

Parameters
• name – The variable name

• dtype – The data type of the variable.

• dims – A list of the names of the variable’s dimensions.

• chunks – A list of the chunk sizes of the variable’s dimensions

• attrs – A mapping containing arbitrary attributes of the variable

property ndim: int

Number of dimensions.

classmethod get_schema()→ JsonObjectSchema
Get JSON object schema.

class xcube.core.store.GeoDataFrameDescriptor(data_id: str, *, data_type: str | None | type | DataType =
'geodataframe', feature_schema: JsonObjectSchema =
None, **kwargs)

A descriptor for a geo-vector dataset represented by a geopandas.GeoDataFrame instance.

Parameters
• data_id – An identifier of the geopandas.GeoDataFrame

• feature_schema – A schema describing the properties of the vector data

• kwargs – Parameters passed to super DataDescriptor

classmethod get_schema()→ JsonObjectSchema
Get JSON object schema.

5.2 Cube generation

xcube.core.gen.gen.gen_cube(input_paths: Sequence[str] = None, input_processor_name: str = None,
input_processor_params: Dict = None, input_reader_name: str = None,
input_reader_params: Dict[str, Any] = None, output_region: Tuple[float, float,
float, float] = None, output_size: Tuple[int, int] = [512, 512],
output_resampling: str = 'Nearest', output_path: str = 'out.zarr',
output_writer_name: str = None, output_writer_params: Dict[str, Any] = None,
output_metadata: Dict[str, Any] = None, output_variables: List[Tuple[str,
Dict[str, Any] | None]] = None, processed_variables: List[Tuple[str, Dict[str,
Any] | None]] = None, profile_mode: bool = False, no_sort_mode: bool =
False, append_mode: bool = None, dry_run: bool = False, monitor:
Callable[[...], None] = None)→ bool

5.2. Cube generation 63

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Hashable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

xcube, Release 1.5.2.dev0

Generate a xcube dataset from one or more input files.

Parameters
• no_sort_mode –

• input_paths – The input paths.

• input_processor_name – Name of a registered input processor
(xcube.core.gen.inputprocessor.InputProcessor) to be used to transform the inputs.

• input_processor_params – Parameters to be passed to the input processor.

• input_reader_name – Name of a registered input reader (xcube.core.util.dsio.DatasetIO).

• input_reader_params – Parameters passed to the input reader.

• output_region – Output region as tuple of floats: (lon_min, lat_min, lon_max, lat_max).

• output_size – The spatial dimensions of the output as tuple of ints: (width, height).

• output_resampling – The resampling method for the output.

• output_path – The output directory.

• output_writer_name – Name of an output writer (xcube.core.util.dsio.DatasetIO) used to
write the cube.

• output_writer_params – Parameters passed to the output writer.

• output_metadata – Extra metadata passed to output cube.

• output_variables – Output variables.

• processed_variables – Processed variables computed on-the-fly.

• profile_mode – Whether profiling should be enabled.

• append_mode – Deprecated. The function will always either insert, replace, or append new
time slices.

• dry_run – Doesn’t write any data. For testing.

• monitor – A progress monitor.

Returns
True for success.

xcube.core.new.new_cube(title='Test Cube', width=360, height=180, x_name='lon', y_name='lat',
x_dtype='float64', y_dtype=None, x_units='degrees_east', y_units='degrees_north',
x_res=1.0, y_res=None, x_start=-180.0, y_start=-90.0, inverse_y=False,
time_name='time', time_dtype='datetime64[s]', time_units='seconds since
1970-01-01T00:00:00', time_calendar='proleptic_gregorian', time_periods=5,
time_freq='D', time_start='2010-01-01T00:00:00', use_cftime=False,
drop_bounds=False, variables=None, crs=None, crs_name=None,
time_encoding_dtype='int64')

Create a new empty cube. Useful for creating cubes templates with predefined coordinate variables and metadata.
The function is also heavily used by xcube’s unit tests.

The values of the variables dictionary can be either constants, array-like objects, or functions that compute their
return value from passed coordinate indexes. The expected signature is::

def my_func(time: int, y: int, x: int) -> Union[bool, int, float]

64 Chapter 5. Python API

xcube, Release 1.5.2.dev0

Parameters
• title – A title. Defaults to ‘Test Cube’.

• width – Horizontal number of grid cells. Defaults to 360.

• height – Vertical number of grid cells. Defaults to 180.

• x_name – Name of the x coordinate variable. Defaults to ‘lon’.

• y_name – Name of the y coordinate variable. Defaults to ‘lat’.

• x_dtype – Data type of x coordinates. Defaults to ‘float64’.

• y_dtype – Data type of y coordinates. Defaults to ‘float64’.

• x_units – Units of the x coordinates. Defaults to ‘degrees_east’.

• y_units – Units of the y coordinates. Defaults to ‘degrees_north’.

• x_start – Minimum x value. Defaults to -180.

• y_start – Minimum y value. Defaults to -90.

• x_res – Spatial resolution in x-direction. Defaults to 1.0.

• y_res – Spatial resolution in y-direction. Defaults to 1.0.

• inverse_y – Whether to create an inverse y axis. Defaults to False.

• time_name – Name of the time coordinate variable. Defaults to ‘time’.

• time_periods – Number of time steps. Defaults to 5.

• time_freq – Duration of each time step. Defaults to `1D’.

• time_start – First time value. Defaults to ‘2010-01-01T00:00:00’.

• time_dtype – Numpy data type for time coordinates. Defaults to ‘datetime64[s]’. If used,
parameter ‘use_cftime’ must be False.

• time_units – Units for time coordinates. Defaults to ‘seconds since 1970-01-01T00:00:00’.

• time_calendar – Calender for time coordinates. Defaults to ‘proleptic_gregorian’.

• use_cftime – If True, the time will be given as data types according to the ‘cftime’ package.
If used, the time_calendar parameter must be also be given with an appropriate value such
as ‘gregorian’ or ‘julian’. If used, parameter ‘time_dtype’ must be None.

• drop_bounds – If True, coordinate bounds variables are not created. Defaults to False.

• variables – Dictionary of data variables to be added. None by default.

• crs – pyproj-compatible CRS string or instance of pyproj.CRS or None

• crs_name – Name of the variable that will hold the CRS information. Ignored, if crs is not
given.

• time_encoding_dtype – data type used to encode the time variable when serializing the
dataset

Returns
A cube instance

5.2. Cube generation 65

xcube, Release 1.5.2.dev0

5.3 Cube computation

xcube.core.compute.compute_cube(cube_func: ~typing.Callable[[...], ~xarray.core.dataarray.DataArray |
~numpy.ndarray | ~typing.Sequence[~xarray.core.dataarray.DataArray |
~numpy.ndarray]], *input_cubes: ~xarray.core.dataset.Dataset,
input_cube_schema: ~xcube.core.schema.CubeSchema = None,
input_var_names: ~typing.Sequence[str] = None, input_params:
~typing.Dict[str, ~typing.Any] = None, output_var_name: str = 'output',
output_var_dtype: ~typing.Any = <class 'numpy.float64'>,
output_var_attrs: ~typing.Dict[str, ~typing.Any] = None, vectorize: bool =
None, cube_asserted: bool = False)→ Dataset

Compute a new output data cube with a single variable named output_var_name from variables named in-
put_var_names contained in zero, one, or more input data cubes in input_cubes using a cube factory function
cube_func.

For a more detailed description of the function usage, please refer to compute_dataset().

Parameters
• cube_func – The cube factory function.

• input_cubes – An optional sequence of input cube datasets, must be provided if in-
put_cube_schema is not.

• input_cube_schema – An optional input cube schema, must be provided if input_cubes is
not. Will be ignored if input_cubes is provided.

• input_var_names – A sequence of variable names

• input_params – Optional dictionary with processing parameters passed to cube_func.

• output_var_name – Optional name of the output variable, defaults to 'output'.

• output_var_dtype – Optional numpy datatype of the output variable, defaults to
'float32'.

• output_var_attrs – Optional metadata attributes for the output variable.

• vectorize – Whether all input_cubes have the same variables which are concatenated and
passed as vectors to cube_func. Not implemented yet.

• cube_asserted – If False, cube will be verified, otherwise it is expected to be a valid cube.

Returns
A new dataset that contains the computed output variable.

xcube.core.evaluate.evaluate_dataset(dataset: Dataset, processed_variables: List[Tuple[str, Dict[str, Any]
| None]] = None, errors: str = 'raise')→ Dataset

Compute new variables or mask existing variables in dataset by the evaluation of Python expressions, that may
refer to other existing or new variables. Returns a new dataset that contains the old and new variables, where
both may bew now masked.

Expressions may be given by attributes of existing variables in dataset or passed a via the processed_variables
argument which is a sequence of variable name / attributes tuples.

Two types of expression attributes are recognized in the attributes:

1. The attribute expression generates a new variable computed from its attribute value.

2. The attribute valid_pixel_expression masks out invalid variable values.

66 Chapter 5. Python API

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset

xcube, Release 1.5.2.dev0

In both cases the attribuite value must be a string that forms a valid Python expression that can reference any other
preceding variables by name. The expression can also reference any flags defined by another variable according
the their CF attributes flag_meaning and flag_values.

Invalid variable values may be masked out using the value the valid_pixel_expression attribute whose
value should form a Boolean Python expression. In case, the expression returns zero or false, the value of the
_FillValue attribute or NaN will be used in the new variable.

Other attributes will be stored as variable metadata as-is.

Parameters
• dataset – A dataset.

• processed_variables – Optional list of variable name-attributes pairs that will processed
in the given order.

• errors – How to deal with errors while evaluating expressions. May be be one of “raise”,
“warn”, or “ignore”.

Returns
new dataset with computed variables

5.4 Cube data extraction

xcube.core.extract.get_cube_values_for_points(cube: Dataset, points: Dataset | DataFrame |
Mapping[str, ndarray | Array | DataArray | Series |
Sequence[int | float]], var_names: Sequence[str] =
None, include_coords: bool = False, include_bounds:
bool = False, include_indexes: bool = False,
index_name_pattern: str = '{name}_index',
include_refs: bool = False, ref_name_pattern: str =
'{name}_ref', method: str = 'nearest', cube_asserted:
bool = False)→ Dataset

Extract values from cube variables at given coordinates in points.

Returns a new dataset with values of variables from cube selected by the coordinate columns provided in points.
All variables will be 1-D and have the same order as the rows in points.

Parameters
• cube – The cube dataset.

• points – Dictionary that maps dimension name to coordinate arrays.

• var_names – An optional list of names of data variables in cube whose values shall be
extracted.

• include_coords – Whether to include the cube coordinates for each point in return value.

• include_bounds – Whether to include the cube coordinate boundaries (if any) for each
point in return value.

• include_indexes – Whether to include computed indexes into the cube for each point in
return value.

• index_name_pattern – A naming pattern for the computed index columns. Must include
“{name}” which will be replaced by the index’ dimension name.

• include_refs – Whether to include point (reference) values from points in return value.

5.4. Cube data extraction 67

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset

xcube, Release 1.5.2.dev0

• ref_name_pattern – A naming pattern for the computed point data columns. Must include
“{name}” which will be replaced by the point’s attribute name.

• method – “nearest” or “linear”.

• cube_asserted – If False, cube will be verified, otherwise it is expected to be a valid cube.

Returns
A new data frame whose columns are values from cube variables at given points.

xcube.core.extract.get_cube_point_indexes(cube: ~xarray.core.dataset.Dataset, points:
~xarray.core.dataset.Dataset |
~pandas.core.frame.DataFrame | ~typing.Mapping[str,
~numpy.ndarray | ~dask.array.core.Array |
~xarray.core.dataarray.DataArray |
~pandas.core.series.Series | ~typing.Sequence[int | float]],
dim_name_mapping: ~typing.Mapping[str, str] = None,
index_name_pattern: str = '{name}_index',
index_dtype=<class 'numpy.float64'>, cube_asserted: bool =
False)→ Dataset

Get indexes of given point coordinates points into the given dataset.

Parameters
• cube – The cube dataset.

• points – A mapping from column names to column data arrays, which must all have the
same length.

• dim_name_mapping – A mapping from dimension names in cube to column names in points.

• index_name_pattern – A naming pattern for the computed indexes columns. Must include
“{name}” which will be replaced by the dimension name.

• index_dtype – Numpy data type for the indexes. If it is a floating point type (default), then
indexes will contain fractions, which may be used for interpolation. For out-of- range coor-
dinates in points, indexes will be -1 if index_dtype is an integer type, and NaN, if index_dtype
is a floating point types.

• cube_asserted – If False, cube will be verified, otherwise it is expected to be a valid cube.

Returns
A dataset containing the index columns.

xcube.core.extract.get_cube_values_for_indexes(cube: Dataset, indexes: Dataset | DataFrame |
Mapping[str, Any], include_coords: bool = False,
include_bounds: bool = False, data_var_names:
Sequence[str] = None, index_name_pattern: str =
'{name}_index', method: str = 'nearest', cube_asserted:
bool = False)→ Dataset

Get values from the cube at given indexes.

Parameters
• cube – A cube dataset.

• indexes – A mapping from column names to index and fraction arrays for all cube dimen-
sions.

• include_coords – Whether to include the cube coordinates for each point in return value.

68 Chapter 5. Python API

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset

xcube, Release 1.5.2.dev0

• include_bounds – Whether to include the cube coordinate boundaries (if any) for each
point in return value.

• data_var_names – An optional list of names of data variables in cube whose values shall
be extracted.

• index_name_pattern – A naming pattern for the computed indexes columns. Must include
“{name}” which will be replaced by the dimension name.

• method – “nearest” or “linear”.

• cube_asserted – If False, cube will be verified, otherwise it is expected to be a valid cube.

Returns
A new data frame whose columns are values from cube variables at given indexes.

xcube.core.extract.get_dataset_indexes(dataset: ~xarray.core.dataset.Dataset, coord_var_name: str,
coord_values: ~numpy.ndarray | ~dask.array.core.Array |
~xarray.core.dataarray.DataArray | ~pandas.core.series.Series |
~typing.Sequence[int | float], index_dtype=<class
'numpy.float64'>)→ DataArray | ndarray

Compute the indexes and their fractions into a coordinate variable coord_var_name of a dataset for the given
coordinate values coord_values.

The coordinate variable’s labels must be monotonic increasing or decreasing, otherwise the result will be non-
sense.

For any value in coord_values that is out of the bounds of the coordinate variable’s values, the index depends on
the value of index_dtype. If index_dtype is an integer type, invalid indexes are encoded as -1 while for floating
point types, NaN will be used.

Returns a tuple of indexes as int64 array and fractions as float64 array.

Parameters
• dataset – A cube dataset.

• coord_var_name – Name of a coordinate variable.

• coord_values – Array-like coordinate values.

• index_dtype – Numpy data type for the indexes. If it is floating point type (default), then
indexes contain fractions, which may be used for interpolation. If dtype is an integer type
out-of-range coordinates are indicated by index -1, and NaN if it is is a floating point type.

Returns
The indexes and their fractions as a tuple of numpy int64 and float64 arrays.

xcube.core.timeseries.get_time_series(cube: Dataset, grid_mapping: GridMapping | None = None,
geometry: BaseGeometry | Dict[str, Any] | str | Sequence[float |
int] | None = None, var_names: Sequence[str] | None = None,
start_date: datetime64 | str | None = None, end_date: datetime64 |
str | None = None, agg_methods: str | Sequence[str] |
AbstractSet[str] = 'mean', use_groupby: bool = False,
cube_asserted: bool | None = None)→ Dataset | None

Get a time series dataset from a data cube.

geometry may be provided as a (shapely) geometry object, a valid GeoJSON object, a valid WKT string, a
sequence of box coordinates (x1, y1, x2, y2), or point coordinates (x, y). If geometry covers an area, i.e. is
not a point, the function aggregates the variables to compute a mean value and if desired, the number of valid
observations and the standard deviation.

5.4. Cube data extraction 69

https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.AbstractSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/constants.html#None

xcube, Release 1.5.2.dev0

start_date and end_date may be provided as a numpy.datetime64 or an ISO datetime string.

Returns a time-series dataset whose data variables have a time dimension but no longer have spatial di-
mensions, hence the resulting dataset’s variables will only have N-2 dimensions. A global attribute
max_number_of_observations will be set to the maximum number of observations that could have been
made in each time step. If the given geometry does not overlap the cube’s boundaries, or if not output variables
remain, the function returns None.

Parameters
• cube – The xcube dataset

• grid_mapping – Grid mapping of cube.

• geometry – Optional geometry

• var_names – Optional sequence of names of variables to be included.

• start_date – Optional start date.

• end_date – Optional end date.

• agg_methods – Aggregation methods. May be single string or sequence of strings. Possible
values are ‘mean’, ‘median’, ‘min’, ‘max’, ‘std’, ‘count’. Defaults to ‘mean’. Ignored if
geometry is a point.

• use_groupby – Use group-by operation. May increase or decrease runtime performance
and/or memory consumption.

• cube_asserted – Deprecated and ignored since xcube 0.11.0. No replacement.

5.5 Cube Resampling

xcube.core.resampling.affine_transform_dataset(dataset: Dataset, source_gm: GridMapping,
target_gm: GridMapping, var_configs:
Mapping[Hashable, Mapping[str, Any]] = None,
encode_cf: bool = True, gm_name: str | None = None,
reuse_coords: bool = False)→ Dataset

Resample dataset according to an affine transformation.

The affine transformation will be applied only if the CRS of source_gm and the CRS of target_gm are both
geographic or equal. Otherwise, a ValueError will be raised.

Parameters
• dataset – The source dataset

• source_gm – Source grid mapping of dataset. Must be regular. Must have same CRS as
target_gm.

• target_gm – Target grid mapping. Must be regular. Must have same CRS as source_gm.

• var_configs – Optional resampling configurations for individual variables.

• encode_cf – Whether to encode the target grid mapping into the resampled dataset in a
CF-compliant way. Defaults to True.

• gm_name – Name for the grid mapping variable. Defaults to “crs”. Used only if encode_cf
is True.

• reuse_coords – Whether to either reuse target coordinate arrays from target_gm or to com-
pute new ones.

70 Chapter 5. Python API

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Hashable
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset

xcube, Release 1.5.2.dev0

Returns
The resampled target dataset.

xcube.core.resampling.resample_ndimage(image: ~numpy.ndarray | ~dask.array.core.Array, scale: float |
~typing.Tuple[float, float] = 1, offset: float | ~typing.Tuple[float,
float] = None, shape: int | ~typing.Tuple[int, int] = None, chunks:
~typing.Sequence[int] = None, spline_order: int = 1, aggregator:
~typing.Callable[[~numpy.ndarray | ~dask.array.core.Array],
~numpy.ndarray | ~dask.array.core.Array] | None = <function
nanmean>, recover_nan: bool = False)→ Array

xcube.core.resampling.encode_grid_mapping(ds: Dataset, gm: GridMapping, gm_name: str | None = None,
force: bool | None = None)→ Dataset

Encode the given grid mapping gm into a copy of ds in a CF-compliant way and return the dataset copy. The
function removes any existing grid mappings.

If the CRS of gm is geographic and the spatial dimension and coordinate names are “lat”, “lon” and force is
False, or force is None and no former grid mapping was encoded in ds, then nothing else is done and the dataset
copy is returned without further action.

Otherwise, for every spatial data variable with dims=(. . . , y, x), the function sets the attribute “grid_mapping” to
gm_name. The grid mapping CRS is encoded in a new 0-D variable named gm_name.

Parameters
• ds – The dataset.

• gm – The dataset’s grid mapping.

• gm_name – Name for the grid mapping variable. Defaults to “crs”.

• force – Whether to force encoding of grid mapping even if CRS is geographic and spatial
dimension names are “lon”, “lat”. Optional value, if not provided, force will be assumed
True if a former grid mapping was encoded in ds.

Returns
A copy of ds with gm encoded into it.

xcube.core.resampling.rectify_dataset(source_ds: Dataset, *, var_names: str | Sequence[str] = None,
source_gm: GridMapping = None, target_gm: GridMapping =
None, encode_cf: bool = True, gm_name: str | None = None,
tile_size: int | Tuple[int, int] = None, is_j_axis_up: bool = None,
output_ij_names: Tuple[str, str] = None, compute_subset: bool =
True, uv_delta: float = 0.001, interpolation: str | None = None,
xy_var_names: Tuple[str, str] = None)→ Dataset | None

Reproject dataset source_ds using its per-pixel x,y coordinates or the given source_gm.

The function expects source_ds or the given source_gm to have either one- or two-dimensional coordinate vari-
ables that provide spatial x,y coordinates for every data variable with the same spatial dimensions.

For example, a dataset may comprise variables with spatial dimensions var(..., y_dim, x_dim), then one
the function expects coordinates to be provided in two forms:

1. One-dimensional x_var(x_dim) and y_var(y_dim) (coordinate) variables.

2. Two-dimensional x_var(y_dim, x_dim) and y_var(y_dim, x_dim) (coordinate) variables.

If target_gm is given and it defines a tile size or tile_size is given, and the number of tiles is greater than one in the
output’s x- or y-direction, then the returned dataset will be composed of lazy, chunked dask arrays. Otherwise,
the returned dataset will be composed of ordinary numpy arrays.

5.5. Cube Resampling 71

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/constants.html#None

xcube, Release 1.5.2.dev0

Parameters
• source_ds – Source dataset grid mapping.

• var_names – Optional variable name or sequence of variable names.

• source_gm – Source dataset grid mapping.

• target_gm – Optional target geometry. If not given, output geometry will be computed to
spatially fit dataset and to retain its spatial resolution.

• encode_cf – Whether to encode the target grid mapping into the resampled dataset in a
CF-compliant way. Defaults to True.

• gm_name – Name for the grid mapping variable. Defaults to “crs”. Used only if encode_cf
is True.

• tile_size – Optional tile size for the output.

• is_j_axis_up – Whether y coordinates are increasing with positive image j axis.

• output_ij_names – If given, a tuple of variable names in which to store the computed
source pixel coordinates in the returned output.

• compute_subset – Whether to compute a spatial subset from dataset using output_geom.
If set, the function may return None in case there is no overlap.

• uv_delta – A normalized value that is used to determine whether x,y coordinates in the
output are contained in the triangles defined by the input x,y coordinates. The higher this
value, the more inaccurate the rectification will be.

• interpolation – Interpolation method for computing output pixels. If given, must be
“nearest”, “triangular”, or “bilinear”. The default is “nearest”. The “triangular” interpolation
is performed between 3 and “bilinear” between 4 adjacent source pixels. Both are applied
only to variables of floating point type. If you need to interpolate between integer data you
should cast it to float first.

• xy_var_names – Deprecated. No longer used since 1.0.0, no replacement.

Returns
a reprojected dataset, or None if the requested output does not intersect with dataset.

For implementation details refer to Spatial Rectification Algorithm.

xcube.core.resampling.resample_in_space(dataset: Dataset, source_gm: GridMapping = None, target_gm:
GridMapping = None, var_configs: Mapping[Hashable,
Mapping[str, Any]] = None, encode_cf: bool = True, gm_name:
str | None = None, rectify_kwargs: dict | None = None)

Resample a dataset in the spatial dimensions.

If the source grid mapping source_gm is not given, it is derived from dataset: source_gm = GridMapping.
from_dataset(dataset).

If the target grid mapping target_gm is not given, it is derived from source_gm: target_gm = source_gm.
to_regular().

If source_gm is almost equal to target_gm, this function is a no-op and dataset is returned unchanged.

Otherwise, the function computes a spatially resampled version of dataset and returns it.

Using var_configs, the resampling of individual variables can be configured. If given, var_configs must be a
mapping from variable names to configuration dictionaries which can have the following properties:

72 Chapter 5. Python API

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Hashable
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

xcube, Release 1.5.2.dev0

• spline_order (int) - The order of spline polynomials
used for interpolating. It is used for upsampling only. Possible values are 0 to 5. Default is 1 (bi-linear)
for floating point variables, and 0 (= nearest neighbor) for integer and bool variables.

• aggregator (str) - An optional aggregating
function. It is used for downsampling only. Examples are numpy.nanmean, numpy.nanmin,
numpy.nanmax. Default is numpy.nanmean for floating point variables, and None (= nearest neighbor)
for integer and bool variables.

• recover_nan (bool) - whether a special algorithm
shall be used that is able to recover values that would otherwise yield NaN during resampling. Default
is True for floating point variables, and False for integer and bool variables.

Note that var_configs is only used if the resampling involves an affine transformation. This is true if the CRS of
source_gm and CRS of target_gm are equal and one of two cases is given:

1. source_gm is regular. In this case the resampling is the affine transformation. and the result is returned
directly.

2. source_gm is not regular and has a lower resolution than target_cm. In this case dataset is downsampled
first using an affine transformation. Then the result is rectified.

In all other cases, no affine transformation is applied and the resampling is a direct rectification.

Parameters
• dataset – The source dataset.

• source_gm – The source grid mapping.

• target_gm – The target grid mapping. Must be regular.

• var_configs – Optional resampling configurations for individual variables.

• encode_cf – Whether to encode the target grid mapping into the resampled dataset in a
CF-compliant way. Defaults to True.

• gm_name – Name for the grid mapping variable. Defaults to “crs”. Used only if encode_cf
is True.

Returns: The spatially resampled dataset.

xcube.core.resampling.resample_in_time(dataset: Dataset, frequency: str, method: str | Sequence[str],
offset=None, base=None, tolerance=None, interp_kind=None,
time_chunk_size=None, var_names: Sequence[str] = None,
metadata: Dict[str, Any] = None, cube_asserted: bool = False)
→ Dataset

Resample a dataset in the time dimension.

The argument method may be one or a sequence of 'all', 'any', 'argmax', 'argmin', 'count', 'first',
'last', 'max', 'min', 'mean', 'median', 'percentile_<p>', 'std', 'sum', 'var'.

In value 'percentile_<p>' is a placeholder, where '<p>' must be replaced by an integer percentage value,
e.g. 'percentile_90' is the 90%-percentile.

Important note: As of xarray 0.14 and dask 2.8, the methods 'median' and 'percentile_<p>'` cannot be
used if the variables in *cube* comprise chunked dask arrays. In this case, use the
``compute() or load() method to convert dask arrays into numpy arrays.

Parameters
• dataset – The xcube dataset.

5.5. Cube Resampling 73

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset

xcube, Release 1.5.2.dev0

• frequency – Temporal aggregation frequency. Use format “<count><offset>” where <off-
set> is one of ‘H’, ‘D’, ‘W’, ‘M’, ‘Q’, ‘Y’.

• method – Resampling method or sequence of resampling methods.

• offset – Offset used to adjust the resampled time labels. Uses same syntax as frequency.

• base – Deprecated since xcube 1.0.4. No longer used as of pandas 2.0.

• time_chunk_size – If not None, the chunk size to be used for the “time” dimension.

• var_names – Variable names to include.

• tolerance – Time tolerance for selective upsampling methods. Defaults to frequency.

• interp_kind – Kind of interpolation if method is ‘interpolation’.

• metadata – Output metadata.

• cube_asserted – If False, cube will be verified, otherwise it is expected to be a valid cube.

Returns
A new xcube dataset resampled in time.

5.6 Cube Manipulation

xcube.core.vars2dim.vars_to_dim(cube: Dataset, dim_name: str = 'var', var_name='data', cube_asserted:
bool = False)

Convert data variables into a dimension.

Parameters
• cube – The xcube dataset.

• dim_name – The name of the new dimension and coordinate variable. Defaults to ‘var’.

• var_name – The name of the new, single data variable. Defaults to ‘data’.

• cube_asserted – If False, cube will be verified, otherwise it is expected to be a valid cube.

Returns
A new xcube dataset with data variables turned into a new dimension.

xcube.core.chunk.chunk_dataset(dataset: Dataset, chunk_sizes: Dict[str, int] = None, format_name: str =
None, data_vars_only: bool = False)→ Dataset

Chunk dataset using chunk_sizes and optionally update encodings for given format_name.

Parameters
• dataset – input dataset

• chunk_sizes – mapping from dimension name to new chunk size

• format_name – optional format, e.g. “zarr” or “netcdf4”

• data_vars_only – only chunk data variables, not coordinates

Returns
the (re)chunked dataset

74 Chapter 5. Python API

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset

xcube, Release 1.5.2.dev0

xcube.core.unchunk.unchunk_dataset(dataset_path: str, var_names: Sequence[str] = None, coords_only:
bool = False)

Unchunk dataset variables in-place.

Parameters
• dataset_path – Path to ZARR dataset directory.

• var_names – Optional list of variable names.

• coords_only – Un-chunk coordinate variables only.

xcube.core.optimize.optimize_dataset(input_path: str, output_path: str = None, in_place: bool = False,
unchunk_coords: bool | str | ~typing.Sequence[str] = False,
exception_type: ~typing.Type[Exception] = <class 'ValueError'>)

Optimize a dataset for faster access.

Reduces the number of metadata and coordinate data files in xcube dataset given by given by dataset_path.
Consolidated cubes open much faster from remote locations, e.g. in object storage, because obviously much less
HTTP requests are required to fetch initial cube meta information. That is, it merges all metadata files into a
single top-level JSON file “.zmetadata”.

If unchunk_coords is given, it also removes any chunking of coordinate variables so they comprise a single binary
data file instead of one file per data chunk. The primary usage of this function is to optimize data cubes for cloud
object storage. The function currently works only for data cubes using Zarr format. unchunk_coords can be a
name, or list of names of the coordinate variable(s) to be consolidated. If boolean True is used, coordinate all
variables will be consolidated.

Parameters
• input_path – Path to input dataset with ZARR format.

• output_path – Path to output dataset with ZARR format. May contain “{input}” template
string, which is replaced by the input path’s file name without file name extension.

• in_place – Whether to modify the dataset in place. If False, a copy is made and output_path
must be given.

• unchunk_coords – The name of a coordinate variable or a list of coordinate variables whose
chunks should be consolidated. Pass True to consolidate chunks of all coordinate variables.

• exception_type – Type of exception to be used on value errors.

5.7 Cube Subsetting

xcube.core.select.select_variables_subset(dataset: Dataset, var_names: Collection[str] | None = None)
→ Dataset

Select data variable from given dataset and create new dataset.

Parameters
• dataset – The dataset from which to select variables.

• var_names – The names of data variables to select.

Returns
A new dataset. It is empty, if var_names is empty. It is dataset, if var_names is None.

5.7. Cube Subsetting 75

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset

xcube, Release 1.5.2.dev0

xcube.core.geom.clip_dataset_by_geometry(dataset: Dataset, geometry: BaseGeometry | Dict[str, Any] | str
| Sequence[float | int], save_geometry_wkt: str | bool = False)
→ Dataset | None

Spatially clip a dataset according to the bounding box of a given geometry.

Parameters
• dataset – The dataset

• geometry – A geometry-like object, see convert_geometry().

• save_geometry_wkt – If the value is a string, the effective intersection geometry is stored
as a Geometry WKT string in the global attribute named by save_geometry. If the value is
True, the name “geometry_wkt” is used.

Returns
The dataset spatial subset, or None if the bounding box of the dataset has a no or a zero area
intersection with the bounding box of the geometry.

5.8 Cube Masking

xcube.core.geom.mask_dataset_by_geometry(dataset: Dataset, geometry: BaseGeometry | Dict[str, Any] | str
| Sequence[float | int], tile_size: int | Tuple[int, int] = None,
excluded_vars: Sequence[str] = None, no_clip: bool = False,
all_touched: bool = False, save_geometry_mask: str | bool =
False, save_geometry_wkt: str | bool = False)→ Dataset |
None

Mask a dataset according to the given geometry. The cells of variables of the returned dataset will have NaN-
values where their spatial coordinates are not intersecting the given geometry.

Parameters
• dataset – The dataset

• geometry – A geometry-like object, see convert_geometry().

• tile_size – If given, the unconditional spatial chunk sizes in x- and y-direction in pixels.
May be given as integer scalar or x,y-pair of integers.

• excluded_vars – Optional sequence of names of data variables that should not be masked
(but still may be clipped).

• no_clip – If True, the function will not clip the dataset before masking, this is, the returned
dataset will have the same dimension size as the given dataset.

• all_touched – If True, all pixels intersected by geometry outlines will be included in the
mask. If False, only pixels whose center is within the polygon or that are selected by Bre-
senham’s line algorithm will be included in the mask. The default value is set to False.

• save_geometry_mask – If the value is a string, the effective geometry mask array is stored
as a 2D data variable named by save_geometry_mask. If the value is True, the name “geom-
etry_mask” is used.

• save_geometry_wkt – If the value is a string, the effective intersection geometry is stored
as a Geometry WKT string in the global attribute named by save_geometry. If the value is
True, the name “geometry_wkt” is used.

76 Chapter 5. Python API

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/constants.html#None
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/constants.html#None

xcube, Release 1.5.2.dev0

Returns
The dataset spatial subset, or None if the bounding box of the dataset has a no or a zero area
intersection with the bounding box of the geometry.

class xcube.core.maskset.MaskSet(flag_var: DataArray)
A set of mask variables derived from a variable flag_var with the following CF attributes:

• One or both of flag_masks and flag_values

• flag_meanings (always required)

See https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#flags for details on
the use of these attributes.

Each mask is represented by an xarray.DataArray, has the name of the flag, is of type numpy.unit8, and has the
dimensions of the given flag_var.

Parameters
flag_var – an xarray.DataArray that defines flag values. The CF attributes flag_meanings and
one or both of flag_masks and flag_values are expected to exist and be valid.

classmethod get_mask_sets(dataset: Dataset)→ Dict[str, MaskSet]
For each “flag” variable in given dataset, turn it into a MaskSet, store it in a dictionary.

Parameters
dataset – The dataset

Returns
A mapping of flag names to MaskSet. Will be empty if there are no flag variables in dataset.

5.9 Rasterisation of Features

xcube.core.geom.rasterize_features(dataset: Dataset, features: pandas.geodataframe.GeoDataFrame |
Sequence[Mapping[str, Any]], feature_props: Sequence[str],
var_props: Dict[str, Mapping[str, Mapping[str, Any]]] = None,
tile_size: int | Tuple[int, int] = None, all_touched: bool = False,
in_place: bool = False)→ Dataset | None

Rasterize feature properties given by feature_props of vector-data features as new variables into dataset.

dataset must have two spatial 1-D coordinates, either lon and lat in degrees, reprojected coordinates, x and y,
or similar.

feature_props is a sequence of names of feature properties that must exists in each feature of features.

features may be passed as pandas.GeoDataFrame`` or as an iterable of GeoJSON features.

Using the optional var_props, the properties of newly created variables from feature properties can be specified.
It is a mapping of feature property names to mappings of variable properties. Here is an example variable
properties mapping::

{

‘name’: ‘land_class’, # (str) - the variable’s name,
default is the feature property name;

‘dtype’ np.int16, # (str|np.dtype) - the variable’s dtype,
default is np.float64;

5.9. Rasterisation of Features 77

https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#flags
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/constants.html#None

xcube, Release 1.5.2.dev0

‘fill_value’: -999, # (bool|int|float|np.nparray) -
the variable’s fill value, # default is np.nan;

‘attrs’: {}, # (Mapping[str, Any]) -
the variable’s fill value, default is {};

‘converter’: int, # (Callable[[Any], Any]) -
a converter function used to convert # from property feature value to variable # value, default
is float. # Deprecated, no longer used.

}

Note that newly created variables will have data type np.float64 because np.nan is used to encode missing
values. fill_value and dtype are used to encode the variables when persisting the data.

Currently, the coordinates of the geometries in the given features must use the same CRS as the given dataset.

Parameters
• dataset – The xarray dataset.

• features – A geopandas.GeoDataFrame instance or a sequence of GeoJSON features.

• feature_props – Sequence of names of numeric feature properties to be rasterized.

• var_props – Optional mapping of feature property name to a name or a 5-tuple (name,
dtype, fill_value, attributes, converter) for the new variable.

• tile_size – If given, the unconditional spatial chunk sizes in x- and y-direction in pixels.
May be given as integer scalar or x,y-pair of integers.

• all_touched – If True, all pixels intersected by a feature’s geometry outlines will be in-
cluded. If False, only pixels whose center is within the feature polygon or that are selected
by Bresenham’s line algorithm will be included in the mask. The default is False.

• in_place – Whether to add new variables to dataset. If False, a copy will be created and
returned.

Returns
dataset with rasterized feature_property

5.10 Cube Metadata

xcube.core.update.update_dataset_attrs(dataset: Dataset, global_attrs: Dict[str, Any] = None,
update_existing: bool = False, in_place: bool = False)→
Dataset

Update spatio-temporal CF/THREDDS attributes given dataset according to spatio-temporal coordinate vari-
ables time, lat, and lon.

Parameters
• dataset – The dataset.

• global_attrs – Optional global attributes.

• update_existing – If True, any existing attributes will be updated.

• in_place – If True, dataset will be modified in place and returned.

Returns
A new dataset, if in_place if False (default), else the passed and modified dataset.

78 Chapter 5. Python API

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset

xcube, Release 1.5.2.dev0

xcube.core.update.update_dataset_spatial_attrs(dataset: Dataset, update_existing: bool = False,
in_place: bool = False)→ Dataset

Update spatial CF/THREDDS attributes of given dataset.

Parameters
• dataset – The dataset.

• update_existing – If True, any existing attributes will be updated.

• in_place – If True, dataset will be modified in place and returned.

Returns
A new dataset, if in_place if False (default), else the passed and modified dataset.

xcube.core.update.update_dataset_temporal_attrs(dataset: Dataset, update_existing: bool = False,
in_place: bool = False)→ Dataset

Update temporal CF/THREDDS attributes of given dataset.

Parameters
• dataset – The dataset.

• update_existing – If True, any existing attributes will be updated.

• in_place – If True, dataset will be modified in place and returned.

Returns
A new dataset, if in_place is False (default), else the passed and modified dataset.

5.11 Cube verification

xcube.core.verify.assert_cube(dataset: Dataset, name=None)→ Dataset
Assert that the given dataset is a valid xcube dataset.

Parameters
• dataset – The dataset to be validated.

• name – Optional parameter name.

Raises
ValueError, if dataset is not a valid xcube dataset –

xcube.core.verify.verify_cube(dataset: Dataset)→ List[str]
Verify the given dataset for being a valid xcube dataset.

The tool verifies that dataset * defines two spatial x,y coordinate variables, that are 1D, non-empty, using correct
units; * defines a time coordinate variables, that are 1D, non-empty, using correct units; * has valid bounds
variables for spatial x,y and time coordinate variables, if any; * has any data variables and that they are valid,
e.g. min. 3-D, all have

same dimensions, have at least the dimensions dim(time), dim(y), dim(x) in that order.

Returns a list of issues, which is empty if dataset is a valid xcube dataset.

Parameters
dataset – A dataset to be verified.

Returns
List of issues or empty list.

5.11. Cube verification 79

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

xcube, Release 1.5.2.dev0

5.12 Multi-Resolution Datasets

class xcube.core.mldataset.MultiLevelDataset

A multi-level dataset of decreasing spatial resolutions (a multi-resolution pyramid).

The pyramid level at index zero provides the original spatial dimensions. The size of the spatial dimen-
sions in subsequent levels is computed by the formula size[index + 1] = (size[index] + 1) // 2 with
size[index] being the maximum size of the spatial dimensions at level zero.

Any dataset chunks are assumed to be the same in all levels. Usually, the number of chunks is one in one of the
spatial dimensions of the highest level.

abstract property ds_id: str

Returns: the dataset identifier.

abstract property grid_mapping: GridMapping

Returns: the CF-conformal grid mapping

abstract property num_levels: int

Returns: the number of pyramid levels.

property resolutions: Sequence[Tuple[float, float]]

Returns: the x,y resolutions for each level given in the spatial units of the dataset’s CRS (i.e. self.
grid_mapping.crs).

property avg_resolutions: Sequence[float]

Returns: the average x,y resolutions for each level given in the spatial units of the dataset’s CRS (i.e. self.
grid_mapping.crs).

property base_dataset: Dataset

Returns: the base dataset for lowest level at index 0.

property datasets: Sequence[Dataset]

Get datasets for all levels.

Calling this method will trigger any lazy dataset instantiation.

Returns
the datasets for all levels.

abstract get_dataset(index: int)→ Dataset

Parameters
index – the level index

Returns
the dataset for the level at index.

close()

Close all datasets. Default implementation does nothing.

apply(function: Callable[[Dataset, Dict[str, Any]], Dataset], kwargs: Dict[str, Any] = None, ds_id: str =
None)→ MultiLevelDataset

Apply function to all level datasets and return a new multi-level dataset.

derive_tiling_scheme(tiling_scheme: TilingScheme)
Derive a new tiling scheme for the given one with defined minimum and maximum level indices.

80 Chapter 5. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/functions.html#int
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str

xcube, Release 1.5.2.dev0

get_level_for_resolution(xy_res: float | Tuple[float, float])→ int
Get the index of the level that best represents the given resolution.

Parameters
xy_res – the resolution in x- and y-direction

Returns
a level ranging from 0 to self.num_levels - 1

class xcube.core.mldataset.BaseMultiLevelDataset(base_dataset: Dataset, grid_mapping: GridMapping
| None = None, num_levels: int | None = None,
agg_methods: None | str | Mapping[str, None | str]
= 'first', ds_id: str | None = None)

A multi-level dataset whose level datasets are created by down-sampling a base dataset.

Parameters
• base_dataset – The base dataset for the level at index zero.

• grid_mapping – Optional grid mapping for base_dataset.

• num_levels – Optional number of levels.

• ds_id – Optional dataset identifier.

• agg_methods – Optional aggregation methods. May be given as string or as mapping from
variable name pattern to aggregation method. Valid aggregation methods are None, “first”,
“min”, “max”, “mean”, “median”. If None, the default, “first” is used for integer variables
and “mean” for floating point variables.

class xcube.core.mldataset.CombinedMultiLevelDataset(ml_datasets: Sequence[MultiLevelDataset],
ds_id: str | None = None, combiner_function:
Callable | None = None, combiner_params:
Dict[str, Any] | None = None)

A multi-level dataset that is a combination of other multi-level datasets.

Parameters
• ml_datasets – The multi-level datasets to be combined. At least two must be provided.

• ds_id – Optional dataset identifier.

• combiner_function – An optional function used to combine the datasets, for example
xarray.merge. If given, it receives a list of datasets (xarray.Dataset instances) and
combiner_params as keyword arguments. If not given or None is passed, a copy of the
first dataset is made, which is then subsequently updated by the remaining datasets using
xarray.Dataset.update().

• combiner_params – Parameters to the combiner_function passed as keyword arguments.

close()

Close all datasets. Default implementation does nothing.

class xcube.core.mldataset.ComputedMultiLevelDataset(script_path: str, callable_name: str,
input_ml_dataset_ids: ~typing.Sequence[str],
input_ml_dataset_getter:
~typing.Callable[[str],
~xcube.core.mldataset.abc.MultiLevelDataset],
input_parameters: ~typing.Mapping[str,
~typing.Any] | None = None, ds_id: str = '',
exception_type: type = <class 'ValueError'>)

5.12. Multi-Resolution Datasets 81

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

xcube, Release 1.5.2.dev0

A multi-level dataset whose level datasets are computed by a user function.

The script can import other Python modules located in the same directory as script_path.

class xcube.core.mldataset.FsMultiLevelDataset(path: str, fs: AbstractFileSystem | None = None,
fs_root: str | None = None, fs_kwargs: Mapping[str,
Any] | None = None, cache_size: int | None = None,
consolidate: bool | None = None, **zarr_kwargs)

property size_weights: ndarray

Size weights are used to distribute the cache size over the levels.

class xcube.core.mldataset.IdentityMultiLevelDataset(ml_dataset: MultiLevelDataset, ds_id: str =
None)

The identity.

class xcube.core.mldataset.LazyMultiLevelDataset(grid_mapping: GridMapping | None = None,
num_levels: int | None = None, ds_id: str | None =
None, parameters: Mapping[str, Any] | None =
None)

A multi-level dataset where each level dataset is lazily retrieved, i.e. read or computed by the abstract method
get_dataset_lazily(index, **kwargs).

Parameters
• ds_id – Optional dataset identifier.

• parameters – Optional keyword arguments that will be passed to the
get_dataset_lazily method.

property ds_id: str

Returns: the dataset identifier.

property grid_mapping: GridMapping

Returns: the CF-conformal grid mapping

property num_levels: int

Returns: the number of pyramid levels.

property lock: RLock

Get the reentrant lock used by this object to synchronize lazy instantiation of properties.

get_dataset(index: int)→ Dataset
Get or compute the dataset for the level at given index.

Parameters
index – the level index

Returns
the dataset for the level at index.

set_dataset(index: int, level_dataset: Dataset)
Set the dataset for the level at given index.

Callers need to ensure that the given level_dataset has the correct spatial dimension sizes for the given level
at index.

Parameters
• index – the level index

82 Chapter 5. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/threading.html#threading.RLock
https://docs.python.org/3/library/functions.html#int
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/functions.html#int
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset

xcube, Release 1.5.2.dev0

• level_dataset – the dataset for the level at index.

close()

Close all datasets. Default implementation does nothing.

class xcube.core.mldataset.MappedMultiLevelDataset(ml_dataset: MultiLevelDataset, mapper_function:
Callable[[Dataset], Dataset], ds_id: str = None,
mapper_params: Dict[str, Any] = None)

close()

Close all datasets. Default implementation does nothing.

5.13 Zarr Store

class xcube.core.zarrstore.ZarrStoreHolder(dataset: Dataset)
Represents a xarray dataset property zarr_store.

It is used to permanently associate a dataset with its Zarr store, which would otherwise not be possible.

In xcube server, we use the new property to expose datasets via the S3 emulation API.

For that concept to work, datasets must be associated with their Zarr stores explicitly. Therefore, the xcube data
store framework sets the Zarr stores of datasets after opening them xr.open_zarr()::

dataset = xr.open_zarr(zarr_store, **open_params)
dataset.zarr_store.set(zarr_store)

Note, that the dataset may change after the Zarr store has been set, so that the dataset and its Zarr store are no
longer in sync. This may be an issue and limit the application of the new property.

Parameters
dataset – The xarray dataset that is associated with a Zarr store.

get()→ MutableMapping
Get the Zarr store of a dataset. If no Zarr store has been set, the method will use GenericZarrStore.
from_dataset() to create and set one.

Returns
The Zarr store.

set(zarr_store: MutableMapping)→ None
Set the Zarr store of a dataset.

Parameters
zarr_store – The Zarr store.

reset()→ None
Resets the Zarr store.

class xcube.core.zarrstore.GenericZarrStore(*arrays: GenericArray | Dict[str, Any], attrs: Dict[str,
Any] | None = None, array_defaults: GenericArray |
Dict[str, Any] | None = None)

A Zarr store that maintains generic arrays in a flat, top-level hierarchy. The root of the store is a Zarr group
conforming to the Zarr spec v2.

It is designed to serve as a Zarr store for xarray datasets that compute their data arrays dynamically.

See class GenericArray for specifying the arrays’ properties.

5.13. Zarr Store 83

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

xcube, Release 1.5.2.dev0

The array data of this store’s arrays are either retrieved from static (numpy) arrays or from a callable that provides
the array’s data chunks as bytes or numpy arrays.

Parameters
• arrays – Arrays to be added. Typically, these will be instances of GenericArray.

• attrs – Optional attributes of the top-level group. If given, it must be JSON serializable.

• array_defaults – Optional array defaults for array properties not passed to add_array.
Typically, this will be an instance of GenericArray.

Array

alias of GenericArray

add_array(array: GenericArray | Dict[str, Any] | None = None, **array_kwargs)→ None
Add a new array to this store.

Parameters
• array – Optional array properties. Typically, this will be an instance of GenericArray.

• array_kwargs – Keyword arguments form for the properties of GenericArray.

is_writeable()→ bool
Return False, because arrays in this store are generative.

listdir(path: str = '')→ List[str]
List a store path.

Parameters
path – The path.

Returns: List of sorted directory entries.

rmdir(path: str = '')→ None
The general form removes store paths. This implementation can remove entire arrays only.

Parameters
path – The array’s name.

rename(src_path: str, dst_path: str)→ None
The general form renames store paths. This implementation can rename arrays only.

Parameters
• src_path – Source array name.

• dst_path – Target array name.

close()→ None
Calls the “on_close” handlers, if any, of arrays.

classmethod from_dataset(dataset: Dataset, array_defaults: GenericArray | Dict[str, Any] | None =
None)→ GenericZarrStore

Create a Zarr store for given dataset. to the dataset’s attributes. The following array_defaults properties
can be provided (other properties are prescribed by the dataset):

• fill_value- defaults to None

• compressor- defaults to None

• filters- defaults to None

84 Chapter 5. Python API

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

xcube, Release 1.5.2.dev0

• order- defaults to “C”

• chunk_encoding - defaults to “bytes”

Parameters
• dataset – The dataset

• array_defaults – Array default values.

Returns: A new Zarr store instance.

class xcube.core.zarrstore.GenericArray(array: Dict[str, any] | None = None, name: str | None = None,
get_data: Callable[[Tuple[int]], bytes | ndarray] | None = None,
get_data_params: Dict[str, Any] | None = None, data: ndarray |
None = None, dtype: str | dtype | None = None, dims: str |
Sequence[str] | None = None, shape: Sequence[int] | None =
None, chunks: Sequence[int] | None = None, fill_value: bool |
int | float | str | None = None, compressor: Codec | None =
None, filters: Sequence[Codec] | None = None, order: str | None
= None, attrs: Dict[str, Any] | None = None, on_close:
Callable[[Dict[str, Any]], None] | None = None,
chunk_encoding: str | None = None, **kwargs)

Represent a generic array in the GenericZarrStore as dictionary of properties.

Although all properties of this class are optional, some of them are mandatory when added to the
GenericZarrStore.

When added to the store using GenericZarrStore.add_array(), the array name and dims must always be
present. Other mandatory properties depend on the data and get_data properties, which are mutually exclusive:

• get_data is called for a requested data chunk of an array. It must return a bytes object or a numpy nd-
array and is passed the chunk index, the chunk shape, and this array info dictionary. get_data requires the
following properties to be present too: name, dims, dtype, shape. chunks is optional and defaults to shape.

• data must be a bytes object or a numpy nd-array. data requires the following properties to be present too:
name, dims. chunks must be same as shape.

The function get_data receives only keyword-arguments which comprises the ones passed by get_data_params,
if any, and two special ones which may occur in the signature of get_data:

• The keyword argument chunk_info, if given, provides a dictionary that holds information about the current
chunk: - index: tuple[int, ...] - the chunk’s index - shape: tuple[int, ...] - the chunk’s
shape - slices: tuple[slice, ...] - the chunk’s array slices

• The keyword argument array_info, if given, provides a dictionary that holds information about the overall
array. It contains all array properties passed to the constructor of GenericArray plus - ndim: int -
number of dimensions - num_chunks: tuple[int, ...] - number of chunks in every dimension

GenericZarrStore will convert a Numpy array returned by get_data or given by data into a bytes object.
It will also be compressed, if a compressor is given. It is important that the array chunks always See also
https://zarr.readthedocs.io/en/stable/spec/v2.html#chunks

Note that if the value of a named keyword argument is None, it will not be stored.

Parameters
• array – Optional array info dictionary

• name – Optional array name

5.13. Zarr Store 85

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://zarr.readthedocs.io/en/stable/spec/v2.html#chunks

xcube, Release 1.5.2.dev0

• data – Optional array data. Mutually exclusive with get_data. Must be a bytes object or a
numpy array.

• get_data – Optional array data chunk getter. Mutually exclusive with data. Called for a
requested data chunk of an array. Must return a bytes object or a numpy array.

• get_data_params – Optional keyword-arguments passed to get_data.

• dtype – Optional array data type. Either a string using syntax of the Zarr spec or a numpy.
dtype. For string encoded data types, see https://zarr.readthedocs.io/en/stable/spec/v2.
html#data- type-encoding

• dims – Optional sequence of dimension names.

• shape – Optional sequence of shape sizes for each dimension.

• chunks – Optional sequence of chunk sizes for each dimension.

• fill_value – Optional fill value, see https://zarr.readthedocs.io/en/stable/spec/v2.html#
fill- value-encoding

• compressor – Optional compressor. If given, it must be an instance of numcodecs.abc.
Codec.

• filters – Optional sequence of filters, see https://zarr.readthedocs.io/en/stable/spec/v2.
html#filters.

• order – Optional array endian ordering. If given, must be “C” or “F”. Defaults to “C”.

• attrs – Optional array attributes. If given, must be JSON- serializable.

• on_close – Optional array close handler. Called if the store is closed.

• chunk_encoding – Optional encoding type of the chunk data returned for the array. Can be
“bytes” (the default) or “ndarray” for array chunks that are numpy.ndarray instances.

• kwargs – Other keyword arguments passed directly to the dictionary constructor.

finalize()→ GenericArray
Normalize and validate array properties and return a valid array info dictionary to be stored in the Gener-
icZarrStore.

class xcube.core.zarrstore.CachedZarrStore(store: MutableMapping, cache: MutableMapping)
A read-only Zarr store that is faster than store because it uses a writable cache store.

The cache store is assumed to read values for a given key much faster than store.

Note that iterating keys and containment checks are performed on store only.

Parameters
• store – A Zarr store that is known to be slow in reading values.

• cache – A writable Zarr store that can read values faster than store.

class xcube.core.zarrstore.DiagnosticZarrStore(store: MutableMapping)
A diagnostic Zarr store used for testing and investigating behaviour of Zarr and xarray’s Zarr backend.

Parameters
store – Wrapped Zarr store.

keys()→ a set-like object providing a view on D's keys

86 Chapter 5. Python API

https://zarr.readthedocs.io/en/stable/spec/v2.html#data
https://zarr.readthedocs.io/en/stable/spec/v2.html#data
https://zarr.readthedocs.io/en/stable/spec/v2.html#fill
https://zarr.readthedocs.io/en/stable/spec/v2.html#fill
https://zarr.readthedocs.io/en/stable/spec/v2.html#filters
https://zarr.readthedocs.io/en/stable/spec/v2.html#filters
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping

xcube, Release 1.5.2.dev0

5.14 Utilities

class xcube.core.gridmapping.GridMapping(size: int | Tuple[int, int], tile_size: int | Tuple[int, int] | None,
xy_bbox: Tuple[int | float, int | float, int | float, int | float],
xy_res: int | float | Tuple[int | float, int | float], crs: CRS,
xy_var_names: Tuple[str, str], xy_dim_names: Tuple[str, str],
is_regular: bool | None, is_lon_360: bool | None,
is_j_axis_up: bool | None, x_coords: DataArray | None =
None, y_coords: DataArray | None = None, xy_coords:
DataArray | None = None)

An abstract base class for grid mappings that define an image grid and a transformation from image pixel coor-
dinates to spatial Earth coordinates defined in a well-known coordinate reference system (CRS).

This class cannot be instantiated directly. Use one of its factory methods to create instances:

• regular()

• from_dataset()

• from_coords()

Some instance methods can be used to derive new instances:

• derive()

• scale()

• transform()

• to_regular()

This class is thread-safe.

derive(xy_var_names: Tuple[str, str] = None, xy_dim_names: Tuple[str, str] = None, tile_size: int |
Tuple[int, int] = None, is_j_axis_up: bool = None)

Derive a new grid mapping from this one with some properties changed.

Parameters
• xy_var_names – The new x-, and y-variable names.

• xy_dim_names – The new x-, and y-dimension names.

• tile_size – The new tile size

• is_j_axis_up – Whether j-axis points up.

Returns
A new, derived grid mapping.

scale(xy_scale: int | float | Tuple[int | float, int | float], tile_size: int | Tuple[int, int] = None)→
GridMapping

Derive a scaled version of this regular grid mapping.

Scaling factors lower than one correspond to up-scaling (pixels sizes decrease, image size increases).

Scaling factors larger than one correspond to down-scaling. (pixels sizes increase, image size decreases).

Parameters
• xy_scale – The x-, and y-scaling factors. May be a single number or tuple.

• tile_size – The new tile size

5.14. Utilities 87

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.python.org/3/library/constants.html#None
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.python.org/3/library/constants.html#None
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

xcube, Release 1.5.2.dev0

Returns
A new, scaled grid mapping.

property size: Tuple[int, int]

Image size (width, height) in pixels.

property width: int

Image width in pixels.

property height: int

Image height in pixels.

property tile_size: Tuple[int, int]

Image tile size (width, height) in pixels.

property is_tiled: bool

Whether the image is tiled.

property tile_width: int

Image tile width in pixels.

property tile_height: int

Image tile height in pixels.

property x_coords

The 1D or 2D x-coordinate array of shape (width,) or (height, width).

property y_coords

The 1D or 2D y-coordinate array of shape (width,) or (height, width).

property xy_coords: DataArray

The x,y coordinates as data array of shape (2, height, width). Coordinates are given in units of the CRS.

property xy_coords_chunks: Tuple[int, int, int]

Get the chunks for the xy_coords array.

property xy_var_names: Tuple[str, str]

The variable names of the x,y coordinates as tuple (x_var_name, y_var_name).

property xy_dim_names: Tuple[str, str]

The dimension names of the x,y coordinates as tuple (x_dim_name, y_dim_name).

property xy_bbox: Tuple[float, float, float, float]

The image’s bounding box in CRS coordinates.

property x_min: int | float

Minimum x-coordinate in CRS units.

property y_min: int | float

Minimum y-coordinate in CRS units.

property x_max: int | float

Maximum x-coordinate in CRS units.

property y_max: int | float

Maximum y-coordinate in CRS units.

property xy_res: Tuple[int | float, int | float]

Pixel size in x and y direction.

88 Chapter 5. Python API

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

xcube, Release 1.5.2.dev0

property x_res: int | float

Pixel size in CRS units per pixel in x-direction.

property y_res: int | float

Pixel size in CRS units per pixel in y-direction.

property crs: CRS

The coordinate reference system.

property is_lon_360: bool | None

Check whether x_max is greater than 180 degrees. Effectively tests whether the range x_min, x_max crosses
the anti-meridian at 180 degrees. Works only for geographical coordinate reference systems.

property is_regular: bool | None

Do the x,y coordinates for a regular grid? A regular grid has a constant delta in both x- and y-directions of
the x- and y-coordinates.

Returns: None, if this property cannot be determined,
True or False otherwise.

property is_j_axis_up: bool | None

Does the positive image j-axis point up? By default, the positive image j-axis points down.

Returns: None, if this property cannot be determined,
True or False otherwise.

property ij_to_xy_transform: Tuple[Tuple[int | float, int | float, int | float],
Tuple[int | float, int | float, int | float]]

The affine transformation matrix from image to CRS coordinates. Defined only for grid mappings with
rectified x,y coordinates.

property xy_to_ij_transform: Tuple[Tuple[int | float, int | float, int | float],
Tuple[int | float, int | float, int | float]]

The affine transformation matrix from CRS to image coordinates. Defined only for grid mappings with
rectified x,y coordinates.

ij_transform_to(other: GridMapping)→ Tuple[Tuple[int | float, int | float, int | float], Tuple[int | float, int |
float, int | float]]

Get the affine transformation matrix that transforms image coordinates of other into image coordinates of
this image geometry.

Defined only for grid mappings with rectified x,y coordinates.

Parameters
other – The other image geometry

Returns
Affine transformation matrix

ij_transform_from(other: GridMapping)→ Tuple[Tuple[int | float, int | float, int | float], Tuple[int | float,
int | float, int | float]]

Get the affine transformation matrix that transforms image coordinates of this image geometry to image
coordinates of other.

Defined only for grid mappings with rectified x,y coordinates.

Parameters
other – The other image geometry

5.14. Utilities 89

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

xcube, Release 1.5.2.dev0

Returns
Affine transformation matrix

property ij_bbox: Tuple[int, int, int, int]

The image’s bounding box in pixel coordinates.

property ij_bboxes: ndarray

The image tiles’ bounding boxes in image pixel coordinates.

property xy_bboxes: ndarray

The image tiles’ bounding boxes in CRS coordinates.

ij_bbox_from_xy_bbox(xy_bbox: Tuple[float, float, float, float], xy_border: float = 0.0, ij_border: int = 0)
→ Tuple[int, int, int, int]

Compute bounding box in i,j pixel coordinates given a bounding box xy_bbox in x,y coordinates.

Parameters
• xy_bbox – Box (x_min, y_min, x_max, y_max) given in the same CS as x and y.

• xy_border – If non-zero, grows the bounding box xy_bbox before using it for comparisons.
Defaults to 0.

• ij_border – If non-zero, grows the returned i,j bounding box and clips it to size. Defaults
to 0.

Returns
Bounding box in (i_min, j_min, i_max, j_max) in pixel coordinates. Returns (-1, -1, -1,
-1) if xy_bbox isn’t intersecting any of the x,y coordinates.

ij_bboxes_from_xy_bboxes(xy_bboxes: ndarray, xy_border: float = 0.0, ij_border: int = 0, ij_bboxes:
ndarray = None)→ ndarray

Compute bounding boxes in pixel coordinates given bounding boxes xy_bboxes [[x_min, y_min, x_max,
y_max], . . .] in x,y coordinates.

The returned array in i,j pixel coordinates has the same shape as xy_bboxes. The value ranges in the returned
array [[i_min, j_min, i_max, j_max], ..]] are:

• i_min from 0 to width-1, i_max from 1 to width;

• j_min from 0 to height-1, j_max from 1 to height;

so the i,j pixel coordinates can be used as array index slices.

Parameters
• xy_bboxes – Numpy array of x,y bounding boxes [[x_min, y_min, x_max, y_max], . . .]

given in the same CS as x and y.

• xy_border – If non-zero, grows the bounding box xy_bbox before using it for comparisons.
Defaults to 0.

• ij_border – If non-zero, grows the returned i,j bounding box and clips it to size. Defaults
to 0.

• ij_bboxes – Numpy array of pixel i,j bounding boxes [[x_min, y_min, x_max, y_max],
. . .]. If given, must have same shape as xy_bboxes.

Returns
Bounding boxes in [[i_min, j_min, i_max, j_max], ..]] in pixel coordinates.

90 Chapter 5. Python API

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xcube, Release 1.5.2.dev0

to_dataset_attrs()→ Mapping[str, Any]
Get spatial dataset attributes as recommended by https://wiki.esipfed.org/Attribute_Convention_for_Data_
Discovery_1-3#Recommended

Returns
dictionary with dataset coordinate attributes.

to_coords(xy_var_names: Tuple[str, str] = None, xy_dim_names: Tuple[str, str] = None, exclude_bounds:
bool = False, reuse_coords: bool = False)→ Mapping[str, DataArray]

Get CF-compliant axis coordinate variables and cell boundary coordinate variables.

Defined only for grid mappings with regular x,y coordinates.

Parameters
• xy_var_names – Optional coordinate variable names (x_var_name, y_var_name).

• xy_dim_names – Optional coordinate dimensions names (x_dim_name, y_dim_name).

• exclude_bounds – If True, do not create bounds coordinates. Defaults to False.

• reuse_coords – Whether to either reuse target coordinate arrays from target_gm or to
compute new ones.

Returns
dictionary with coordinate variables

transform(crs: str | CRS, *, tile_size: int | Tuple[int, int] = None, xy_var_names: Tuple[str, str] = None,
tolerance: float = 1e-05)→ GridMapping

Transform this grid mapping so it uses the given spatial coordinate reference system into another crs.

Parameters
• crs – The new spatial coordinate reference system.

• tile_size – Optional new tile size.

• xy_var_names – Optional new coordinate names.

• tolerance – Absolute tolerance used when comparing coordinates with each other. Must
be in the units of the crs and must be greater zero.

Returns
A new grid mapping that uses crs.

classmethod regular(size: int | Tuple[int, int], xy_min: Tuple[float, float], xy_res: float | Tuple[float,
float], crs: str | CRS, *, tile_size: int | Tuple[int, int] = None, is_j_axis_up: bool =
False)→ GridMapping

Create a new regular grid mapping.

Parameters
• size – Size in pixels.

• xy_min – Minimum x- and y-coordinates.

• xy_res – Resolution in x- and y-directions.

• crs – Spatial coordinate reference system.

• tile_size – Optional tile size.

• is_j_axis_up – Whether positive j-axis points up. Defaults to false.

5.14. Utilities 91

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://wiki.esipfed.org/Attribute_Convention_for_Data_Discovery_1-3#Recommended
https://wiki.esipfed.org/Attribute_Convention_for_Data_Discovery_1-3#Recommended
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

xcube, Release 1.5.2.dev0

Returns
A new regular grid mapping.

to_regular(tile_size: int | Tuple[int, int] = None, is_j_axis_up: bool = False)→ GridMapping
Transform this grid mapping into one that is regular.

Parameters
• tile_size – Optional tile size.

• is_j_axis_up – Whether positive j-axis points up. Defaults to false.

Returns
A new regular grid mapping or this grid mapping, if it is already regular.

classmethod from_dataset(dataset: Dataset, *, crs: str | CRS = None, tile_size: int | Tuple[int, int] =
None, prefer_is_regular: bool = True, prefer_crs: str | CRS = None,
emit_warnings: bool = False, tolerance: float = 1e-05)→ GridMapping

Create a grid mapping for the given dataset.

Parameters
• dataset – The dataset.

• crs – Optional spatial coordinate reference system.

• tile_size – Optional tile size

• prefer_is_regular – Whether to prefer a regular grid mapping if multiple found. De-
fault is True.

• prefer_crs – The preferred CRS of a grid mapping if multiple found.

• emit_warnings – Whether to emit warning for non-CF compliant datasets.

• tolerance – Absolute tolerance used when comparing coordinates with each other. Must
be in the units of the crs and must be greater zero.

Returns
a new grid mapping instance.

classmethod from_coords(x_coords: DataArray, y_coords: DataArray, crs: str | CRS, *, tile_size: int |
Tuple[int, int] = None, tolerance: float = 1e-05)→ GridMapping

Create a grid mapping from given x- and y-coordinates x_coords, y_coords and spatial coordinate reference
system crs.

Parameters
• x_coords – The x-coordinates.

• y_coords – The y-coordinates.

• crs – The spatial coordinate reference system.

• tile_size – Optional tile size.

• tolerance – Absolute tolerance used when comparing coordinates with each other. Must
be in the units of the crs and must be greater zero.

Returns
A new grid mapping.

92 Chapter 5. Python API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

xcube, Release 1.5.2.dev0

is_close(other: GridMapping, tolerance: float = 1e-05)→ bool
Tests whether this grid mapping is close to other.

Parameters
• other – The other grid mapping.

• tolerance – Absolute tolerance used when comparing coordinates with each other. Must
be in the units of the crs and must be greater zero.

Returns
True, if so, False otherwise.

xcube.core.geom.convert_geometry(geometry: BaseGeometry | Dict[str, Any] | str | Sequence[float | int] |
None)→ BaseGeometry | None

Convert a geometry-like object into a shapely geometry object (shapely.geometry.BaseGeometry).

A geometry-like object may be any shapely geometry object, * a dictionary that can be serialized to valid GeoJ-
SON, * a WKT string, * a box given by a string of the form “<x1>,<y1>,<x2>,<y2>”

or by a sequence of four numbers x1, y1, x2, y2,

• a point by a string of the form “<x>,<y>” or by a sequence of two numbers x, y.

Handling of geometries crossing the anti-meridian:

• If box coordinates are given, it is allowed to pass x1, x2 where x1 > x2, which is interpreted as a box
crossing the anti-meridian. In this case the function splits the box along the anti-meridian and returns a
multi-polygon.

• In all other cases, 2D geometries are assumed to _not cross the anti-meridian at all_.

Parameters
geometry – A geometry-like object

Returns
Shapely geometry object or None.

class xcube.core.schema.CubeSchema(shape: Sequence[int], coords: Mapping[str, DataArray], x_name: str
= 'lon', y_name: str = 'lat', time_name: str = 'time', dims:
Sequence[str] = None, chunks: Sequence[int] = None)

A schema that can be used to create new xcube datasets. The given shape, dims, and chunks, coords apply to all
data variables.

Parameters
• shape – A tuple of dimension sizes.

• coords – A dictionary of coordinate variables. Must have values for all dims.

• dims – A sequence of dimension names. Defaults to ('time', 'lat', 'lon').

• chunks – A tuple of chunk sizes in each dimension.

property ndim: int

Number of dimensions.

property dims: Tuple[str, ...]

Tuple of dimension names.

5.14. Utilities 93

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str

xcube, Release 1.5.2.dev0

property x_name: str

Name of the spatial x coordinate variable.

property y_name: str

Name of the spatial y coordinate variable.

property time_name: str

Name of the time coordinate variable.

property x_var: DataArray

Spatial x coordinate variable.

property y_var: DataArray

Spatial y coordinate variable.

property time_var: DataArray

Time coordinate variable.

property x_dim: str

Name of the spatial x dimension.

property y_dim: str

Name of the spatial y dimension.

property time_dim: str

Name of the time dimension.

property x_size: int

Size of the spatial x dimension.

property y_size: int

Size of the spatial y dimension.

property time_size: int

Size of the time dimension.

property shape: Tuple[int, ...]

Tuple of dimension sizes.

property chunks: Tuple[int] | None

Tuple of dimension chunk sizes.

property coords: Dict[str, DataArray]

Dictionary of coordinate variables.

classmethod new(cube: Dataset)→ CubeSchema
Create a cube schema from given cube.

xcube.util.dask.new_cluster(provider: str = 'coiled', name: str | None = None, software: str | None = None,
n_workers: int = 4, resource_tags: Dict[str, str] | None = None, account: str =
None, region: str = 'eu-central-1', **kwargs)→ Cluster

Create a new Dask cluster.

Cloud resource tags can be specified in an environment variable XCUBE_DASK_CLUSTER_TAGS in the
format tag_1=value_1:tag_2=value_2:...:tag_n=value_n. In case of conflicts, tags specified in
resource_tags will override tags specified by the environment variable.

The cluster provider account name can be specified in an environment variable
XCUBE_DASK_CLUSTER_ACCOUNT. If the account argument is given to new_cluster, it will override
the value from the environment variable.

94 Chapter 5. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

xcube, Release 1.5.2.dev0

Parameters
• provider – identifier of the provider to use. Currently, only ‘coiled’ is supported.

• name – name to use as an identifier for the cluster

• software – identifier for the software environment to be used.

• n_workers – number of workers in the cluster

• resource_tags – tags to apply to the cloud resources forming the cluster

• account – cluster provider account name

• **kwargs – further named arguments will be passed on to the cluster creation function

• region – default region where workers of the cluster will be deployed set to eu-central-1

5.15 Plugin Development

class xcube.util.extension.ExtensionRegistry

A registry of extensions. Typically used by plugins to register extensions.

has_extension(point: str, name: str)→ bool
Test if an extension with given point and name is registered.

Parameters
• point – extension point identifier

• name – extension name

Returns
True, if extension exists

get_extension(point: str, name: str)→ Extension | None
Get registered extension for given point and name.

Parameters
• point – extension point identifier

• name – extension name

Returns
the extension or None, if no such exists

get_component(point: str, name: str)→ Any
Get extension component for given point and name. Raises a ValueError if no such extension exists.

Parameters
• point – extension point identifier

• name – extension name

Returns
extension component

find_extensions(point: str, predicate: Callable[[Extension], bool] = None)→ List[Extension]
Find extensions for point and optional filter function predicate.

The filter function is called with an extension and should return a truth value to indicate a match or mis-
match.

5.15. Plugin Development 95

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List

xcube, Release 1.5.2.dev0

Parameters
• point – extension point identifier

• predicate – optional filter function

Returns
list of matching extensions

find_components(point: str, predicate: Callable[[Extension], bool] = None)→ List[Any]
Find extension components for point and optional filter function predicate.

The filter function is called with an extension and should return a truth value to indicate a match or mis-
match.

Parameters
• point – extension point identifier

• predicate – optional filter function

Returns
list of matching extension components

add_extension(point: str, name: str, component: Any = None, loader: Callable[[Extension], Any] = None,
**metadata)→ Extension

Register an extension component or an extension component loader for the given extension point, name,
and additional metadata.

Either component or loader must be specified, but not both.

A given loader must be a callable with one positional argument extension of type Extension and is ex-
pected to return the actual extension component, which may be of any type. The loader will only be called
once and only when the actual extension component is requested for the first time. Consider using the
function import_component() to create a loader that lazily imports a component from a module and
optionally executes it.

Parameters
• point – extension point identifier

• name – extension name

• component – extension component

• loader – extension component loader function

• **metadata – extension metadata

Returns
a registered extension

remove_extension(point: str, name: str)
Remove registered extension name from given point.

Parameters
• point – extension point identifier

• name – extension name

to_dict()

Get a JSON-serializable dictionary representation of this extension registry.

96 Chapter 5. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

xcube, Release 1.5.2.dev0

class xcube.util.extension.Extension(point: str, name: str, component: Any = None, loader:
Callable[[Extension], Any] = None, **metadata)

An extension that provides a component of any type.

Extensions are registered in a ExtensionRegistry.

Extension objects are not meant to be instantiated directly. Instead, ExtensionRegistry#add_extension()
is used to register extensions.

Parameters
• point – extension point identifier

• name – extension name

• component – extension component

• loader – extension component loader function

• metadata – extension metadata

property is_lazy: bool

Whether this is a lazy extension that uses a loader.

property component: Any

Extension component.

property point: str

Extension point identifier.

property name: str

Extension name.

property metadata: Dict[str, Any]

Extension metadata.

to_dict()→ Dict[str, Any]
Get a JSON-serializable dictionary representation of this extension.

xcube.util.extension.import_component(spec: str, transform: Callable[[Any, Extension], Any] = None,
call: bool = False, call_args: Sequence[Any] = None,
call_kwargs: Mapping[str, Any] = None)→ Callable[[Extension],
Any]

Return a component loader that imports a module or module component from spec. To import a module, spec
should be the fully qualified module name. To import a component, spec must also append the component name
to the fully qualified module name separated by a color (“:”) character.

An optional transform callable my be used to transform the imported component. If given, a new component is
computed:

component = transform(component, extension)

If the call flag is set, the component is expected to be a callable which will be called using the given call_args
and call_kwargs to produce a new component:

component = component(*call_kwargs, **call_kwargs)

Finally, the component is returned.

Parameters

5.15. Plugin Development 97

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any

xcube, Release 1.5.2.dev0

• spec – String of the form “module_path” or “module_path:component_name”

• transform – callable that takes two positional arguments, the imported component and the
extension of type Extension

• call – Whether to finally call the component with given call_args and call_kwargs

• call_args – arguments passed to a callable component if call flag is set

• call_kwargs – keyword arguments passed to callable component if call flag is set

Returns
a component loader

xcube.constants.EXTENSION_POINT_INPUT_PROCESSORS = 'xcube.core.gen.iproc'

The extension point identifier for input processor extensions

xcube.constants.EXTENSION_POINT_DATASET_IOS = 'xcube.core.dsio'

The extension point identifier for dataset I/O extensions

xcube.constants.EXTENSION_POINT_CLI_COMMANDS = 'xcube.cli'

The extension point identifier for CLI command extensions

xcube.util.plugin.get_extension_registry()→ ExtensionRegistry
Get populated extension registry.

xcube.util.plugin.get_plugins()→ Dict[str, Dict]
Get mapping of “xcube_plugins” entry point names to JSON-serializable plugin meta-information.

98 Chapter 5. Python API

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict

CHAPTER

SIX

WEB API AND SERVER

xcube’s RESTful web API is used to publish data cubes to clients. Using the API, clients can

• List configured xcube datasets;

• Get xcube dataset details including metadata, coordinate data, and metadata about all included variables;

• Get cube data;

• Extract time-series statistics from any variable given any geometry;

• Get spatial image tiles from any variable;

• Browse datasets and retrieve dataset data and metadata using the STAC API;

• Get places (GeoJSON features including vector data) that can be associated with xcube datasets;

• Perform compute operations on datasets, with the results calculated on demand and presented as new, dynami-
cally generated datasets;

• Retrieve coverages backed by datasets using the OGC API - Coverages API.

Later versions of API will also allow for xcube dataset management including generation, modification, and deletion
of xcube datasets.

The complete description of all available functions is provided via openapi.html after starting the server locally. Please
check out Publishing xcube datasets to learn how to do access it.

The web API is provided through the xcube server which is started using the xcube serve CLI command.

99

xcube, Release 1.5.2.dev0

100 Chapter 6. Web API and Server

CHAPTER

SEVEN

VIEWER APP

The xcube viewer app is a simple, single-page web application to be used with the xcube server.

7.1 Demo

To test the viewer app, you can use the xcube viewer demo. This is our Brockmann Consult Demo xcube viewer. Via
the viewer’s settings it is possible to change the xcube server url which is used for displaying data. To do so open the
viewer’s settings panels, select “Server”. A “Select Server” panel is opened, click the “+” button to add a new server.
Here is demo server that you may add for testing:

• Euro Data Cube Server (https://edc-api.brockmann-consult.de/api) has integrated amongst others a
data cube with global essential climate variables (ECVs) variables from the ESA Earth System Data Lab Project.
To access the Euro Data Cube viewer directly please visit https://edc-viewer.brockmann-consult.de .

7.2 Functionality

The xcube viewer functionality is described exemplary using the xcube viewer demo. The viewer visualizes data from
the xcube datasets on top of a basemap. For zooming use the buttons in the top right corner of the map window or the
zooming function of your computer mouse. A scale for the map is located in the lower right corner and in the upper
left corner a corresponding legend to the mapped data of the data cube is available.

101

https://bc-viewer.brockmann-consult.de/
https://edc-viewer.brockmann-consult.de
https://bc-viewer.brockmann-consult.de/

xcube, Release 1.5.2.dev0

A xcube viewer may hold several xcube datasets which you can select via the drop-down menu Dataset. The viewed
area automatically adjusts to a selected xcube dataset, meaning that if a newly selected dataset is located in a different
region, the correct region is displayed on the map.

If more than one variable is available within a selected xcube dataset, you may change the variable by using the drop-
down menu Variable.

102 Chapter 7. Viewer App

xcube, Release 1.5.2.dev0

To see metadata for a dataset click on the info-icon on the right-hand side. Besides the dataset metadata you will see
the metadata for the selected variable.

To obtain a time series set a point marker on the map and then select the graph-icon next to the Variables drop-down
menu. You can select a different date by clicking into the time series graph on a value of interest. The data displayed
in the viewer changes accordingly to the newly selected date.

7.2. Functionality 103

xcube, Release 1.5.2.dev0

The current date is preserved when you select a different variable and the data of the variable is mapped for the date.

To generate a time series for the newly selected variable press the time series-icon again.

104 Chapter 7. Viewer App

xcube, Release 1.5.2.dev0

You may place multiple points on the map and you can generate time series for them. This allows a comparison
between two locations. The color of the points corresponds to the color of the graph in the time series. You can find
the coordinates of the point markers visualized in the time series beneath the graphs.

To delete a created location use the remove-icon next to the Place drop-down menu. Not only point location may be
selected via the viewer, you can draw polygons and circular areas by using the icons on the right-hand side of the Place
drop-down menu as well. You can visualize time series for areas, too.

7.2. Functionality 105

xcube, Release 1.5.2.dev0

In order to change the date for the data display use the calendar or step through the time line with the arrows on the
right-hand side of the calendar.

106 Chapter 7. Viewer App

xcube, Release 1.5.2.dev0

When a time series is displayed two time-line tools are visible, the upper one for selecting the date displayed on the
map of the viewer and the lower one may be used to narrow the time frame displayed in the time series graph. Just
above the graph of the time series on the right-hand side is an x-icon for removing the time series from the view and to
left of it is an icon which sets the time series back to the whole time extent.

To adjust the default settings select the Settings-icon on the very top right corner. There you have the possibility to
change the server url, in order to view data which is available via a different server. You can choose a different language
- if available - as well as set your preferences of displaying data and graph of the time series.

7.2. Functionality 107

xcube, Release 1.5.2.dev0

To see the map settings please scroll down in the settings window. There you can adjust the base map, switch the
displayed projection between Geographic and Mercator. You can also choose to turn image smoothing on and to view
the dataset boundaries.

On the very bottom of the Settings pop-up window you can see information about the viewer and server version.

Back to the general view, if you would like to change the value ranges of the displayed variable you can do it by clicking
into the area of the legend where the value ticks are located or you can enter the desired values in the Minimum and/or
Maximum text field.

108 Chapter 7. Viewer App

xcube, Release 1.5.2.dev0

You can change the color mapping as well by clicking into the color range of the legend. There you can also decide to
hide lower values and it is possible to adjust the opacity.

The xcube viewer app is constantly evolving and enhancements are added, therefore please be aware that the above
described features may not always be completely up-to-date.

7.2. Functionality 109

xcube, Release 1.5.2.dev0

7.3 Build and Deploy

You can also build and deploy your own viewer instance. In the latter case, visit the xcube-viewer repository on GitHub
and follow the instructions provides in the related README file.

110 Chapter 7. Viewer App

https://github.com/dcs4cop/xcube-viewer
https://github.com/dcs4cop/xcube-viewer/blob/master/README.md

CHAPTER

EIGHT

DATA ACCESS

In xcube, data cubes are raster datasets that are basically a collection of N-dimensional geo-physical variables rep-
resented by xarray.Dataset Python objects (see also xcube Dataset Convention). Data cubes may be provided by a
variety of sources and may be stored using different data formats. In the simplest case you have a NetCDF file or a
Zarr directory in your local filesystem that already represents a data cube. Data cubes may also be stored on AWS S3
or Google Cloud Storage using the Zarr format. Sometimes a set of NetCDF or GeoTIFF files in some storage must
first be concatenated to form a data cube. In other cases, data cubes can be generated on-the-fly by suitable requests to
some cloud-hosted data API such as the ESA Climate Data Centre or Sentinel Hub.

8.1 Data Store Framework

The xcube data store framework provides a simple and consistent Python interface that is used to open xarray.Dataset
and other data objects from data stores which abstract away the individual data sources, protocols, formats and hides
involved data processing steps. For example, the following two lines open a data cube from the ESA Climate Data
Centre comprising the essential climate variable Sea Surface Temperature (SST):

store = new_data_store("cciodp")
cube = store.open_data("esacci.SST.day.L4.SSTdepth.multi-sensor.multi-platform.OSTIA.1-1.
→˓r1")

Often, and in the example above, data stores create data cube views on a given data source. That is, the actual data
arrays are subdivided into chunks and each chunk is fetched from the source in a “lazy” manner. In such cases, the
xarray.Dataset’s variables are backed by Dask arrays. This allows data cubes to be virtually of any size.

Data stores can provide the data using different Python in-memory representations or data types. The most common
representation for a data cube is an xarray.Dataset instance, multi-resolution data cubes would be represented as a
xcube MultiLevelDataset instance (see also xcube Multi-Level Dataset Convention). Vector data is usually provided as
an instance of geopandas.GeoDataFrame.

Data stores can also be writable. All read-only data stores share the same functional interface share the same functional
interface and so do writable data stores. Of course, different data stores will have different configuration parameters.
Also, the parameters passed to the open_data() method, or respectively the write_data() method, may change
based on the store’s capabilities. Depending on what is offered by a given data store, also the parameters passed to the
open_data() method may change.

The xcube data store framework is exported from the xcube.core.store package, see also its API reference.

The DataStore abstract base class is the primary user interface for accessing data in xcube. The most important opera-
tions of a data store are:

• list_data_ids() - enumerate the datasets of a data store by returning their data identifiers;

• describe_data(data_id) - describe a given dataset in terms of its metadata by returning a specific DataDe-
scriptor, e.g., a DatasetDescriptor;

111

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html
https://climate.esa.int/en/odp/
https://www.sentinel-hub.com/
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html
https://climate.esa.int/en/odp/
https://climate.esa.int/en/odp/
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html
https://docs.dask.org/en/stable/array.html
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.mldataset.MultiLevelDataset
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoDataFrame.html
https://github.com/dcs4cop/xcube/tree/main/xcube/core/store
https://xcube.readthedocs.io/en/latest/api.html#data-store-framework
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.DataStore
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.DataDescriptor
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.DataDescriptor
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.DatasetDescriptor

xcube, Release 1.5.2.dev0

• search_data(...) - search for datasets in the data store and return a DataDescriptor iterator;

• open_data(data_id, ...) - open a given dataset and return, e.g., an xarray.Dataset instance.

The MutableDataStore abstract base class represents a writable data store and extends DataStore by the following
operations:

• write_data(dataset, data_id, ...) - write a dataset to the data store;

• delete_data(data_id) - delete a dataset from the data store;

Above, the ellipses ... are used to indicate store-specific parameters that are passed as keyword-arguments. For a given
data store instance, it is not obvious what are parameters are allowed. Therefore, data stores provide a programmatic
way to describe the allowed parameters for theoperations of a given data store by the means of a parameter schema:

• get_open_data_params_schema() - describes parameters of open_data();

• get_search_data_params_schema() - describes parameters of search_data();

• get_write_data_params_schema() - describes parameters of write_data().

All operations return an instance of a JSON Object Schema. The JSON object’s properties describe the set of allowed
and required parameters as well as the type and value range of each parameter. The schemas are also used internally to
validate the parameters passed by the user.

xcube comes with a predefined set of writable, filesystem-based data stores, Since data stores are xcube extensions,
additional data stores can be added by xcube plugins. The data store framework provides a number of global functions
that can be used to access the available data stores:

• find_data_store_extensions() -> list[Extension] - get a list of xcube data store extensions;

• new_data_store(store_id, ...) -> DataStore - instantiate a data store with store-specific parameters;

• get_data_store_params_schema(store_id) -> Schema - describe the store-specific parameters that
must/can be passed to new_data_store() as JSON Object Schema.

The following example outputs all installed data stores:

from xcube.core.store import find_data_store_extensions

for ex in find_data_store_extensions():
store_id = ex.name
store_md = ex.metadata
print(store_id, "-", store_md.get("description"))

If one of the installed data stores is, e.g. sentinelhub, you could further introspect its specific parameters and datasets
as shown in the following example:

from xcube.core.store import get_data_store_params_schema
from xcube.core.store import new_data_store

store_schema = get_data_store_params_schema("sentinelhub")
store = new_data_store("sentinelhub",

The following parameters are specific to the
"sentinelhub" data store.
Refer to the store_schema.
client_id="YOURID",
client_secret="YOURSECRET",
num_retries=250,
enable_warnings=True)

(continues on next page)

112 Chapter 8. Data Access

https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.DataDescriptor
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.MutableDataStore
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.DataStore
https://json-schema.org/understanding-json-schema/reference/object.html
https://json-schema.org/understanding-json-schema/reference/object.html

xcube, Release 1.5.2.dev0

(continued from previous page)

data_ids = store.list_data_ids()
Among others, we find "S2L2A" in data_ids

open_schema = store.get_open_data_params_schema("S2L2A")
cube = store.open_data("S2L2A",

The following parameters are specific to
"sentinelhub" datasets, such as "S2L2A".
Refer to the open_schema.
variable_names=["B03", "B06", "B8A"],
bbox=[9, 53, 20, 62],
spatial_res=0.025,
crs="WGS-84",
time_range=["2022-01-01", "2022-01-05"],
time_period="1D")

8.2 Available Data Stores

This sections lists briefly the official data stores available for xcube. We provide the store identifier, list the store
parameters, and list the common parameters used to open data cubes, i.e., xarray.Dataset instances.

Note that some data stores the open parameters may differ by from dataset to dataset depending on the actual dataset
layout, coordinate references system or data type. Some data stores may also provide vector data.

For every data store we also provide a dedicated example Notebook that demonstrates its specific usage in exam-
ples/notebooks/datastores.

8.2.1 Filesystem-based data stores

The following filesystem-based data stores are available in xcube:

• "file" for the local filesystem;

• "s3" for AWS S3 compatible object storage;

• "abfs" for Azure blob storage;

• "memory" for mimicking an in-memory filesystem.

All filesystem-based data store have the following parameters:

• root: str - The root directory of the store in the filesystem. Defaults to ''.

• max_depth: int - Maximum directory traversal depth. Defaults to 1.

• read_only: bool - Whether this store is read-only. Defaults to False.

• includes: list[str] - A list of paths to include into the store. May contain wildcards * and ?. Defaults to
UNDEFINED.

• excludes: list[str] - A list of paths to exclude from the store. May contain wildcards * and ?. Defaults
to UNDEFINED.

• storage_options: dict[str, any] - Filesystem-specific options.

The parameter storage_options is filesystem-specific. Valid storage_options for all filesystem data stores are:

• use_listings_cache: bool

8.2. Available Data Stores 113

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html
https://github.com/dcs4cop/xcube/tree/main/examples/notebooks/datastores
https://github.com/dcs4cop/xcube/tree/main/examples/notebooks/datastores

xcube, Release 1.5.2.dev0

• listings_expiry_time: float

• max_paths: int

• skip_instance_cache: bool

• asynchronous: bool

The following storage_options can be used for the file data store:

• auto_mkdirs: bool - Whether, when opening a file, the directory containing it should be created (if it doesn’t
already exist).

The following storage_options can be used for the s3 data store:

• anon: bool - Whether to anonymously connect to AWS S3.

• key: str - AWS access key identifier.

• secret: str - AWS secret access key.

• token: str - Session token.

• use_ssl: bool - Whether to use SSL in connections to S3; may be faster without, but insecure. Defaults to
True.

• requester_pays: bool - If “RequesterPays” buckets are supported. Defaults to False.

• s3_additional_kwargs: dict - parameters that are used when calling S3 API methods. Typically, used for
things like “ServerSideEncryption”.

• client_kwargs: dict - Parameters for the botocore client.

The following storage_options can be used for the abfs data store:

• anon: bool - Whether to anonymously connect to Azure Blob Storage.

• account_name: str - Azure storage account name.

• account_key: str - Azure storage account key.

• connection_string: str - Connection string for Azure blob storage.

All filesystem data stores can open datasets from various data formats. Datasets in Zarr, GeoTIFF / COG, or NetCDF
format will be provided either by xarray.Dataset or xcube MultiLevelDataset instances. Datasets stored in GeoJSON
or ESRI Shapefile will yield geopandas.GeoDataFrame instances.

Common parameters for opening xarray.Dataset instances:

• cache_size: int - Defaults to UNDEFINED.

• group: str - Group path. (a.k.a. path in zarr terminology.). Defaults to UNDEFINED.

• chunks: dict[str, int | str] - Optional chunk sizes along each dimension. Chunk size values may be
None, “auto” or an integer value. Defaults to UNDEFINED.

• decode_cf: bool - Whether to decode these variables, assuming they were saved according to CF conven-
tions. Defaults to True.

• mask_and_scale: bool - If True, replace array values equal to attribute “_FillValue” with NaN. Use
“scale_factor” and “add_offset” attributes to compute actual values.. Defaults to True.

• decode_times: bool - If True, decode times encoded in the standard NetCDF datetime format into datetime
objects. Otherwise, leave them encoded as numbers.. Defaults to True.

• decode_coords: bool - If True, decode the “coordinates” attribute to identify coordinates in the resulting
dataset. Defaults to True.

114 Chapter 8. Data Access

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.mldataset.MultiLevelDataset
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoDataFrame.html
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html

xcube, Release 1.5.2.dev0

• drop_variables: list[str] - List of names of variables to be dropped. Defaults to UNDEFINED.

• consolidated: bool - Whether to open the store using Zarr’s consolidated metadata capability. Only works
for stores that have already been consolidated. Defaults to False.

• log_access: bool - Defaults to False.

8.2.2 ESA Climate Data Centre cciodp

The data store cciodp provides the datasets of the ESA Climate Data Centre.

This data store is provided by the xcube plugin xcube-cci. You can install it using conda install -c conda-forge
xcube-cci.

Data store parameters:

• endpoint_url: str - Defaults to 'https://archive.opensearch.ceda.ac.uk/opensearch/
request'.

• endpoint_description_url: str - Defaults to 'https://archive.opensearch.ceda.ac.uk/
opensearch/description.xml?parentIdentifier=cci'.

• enable_warnings: bool - Whether to output warnings. Defaults to False.

• num_retries: int - Number of retries when requesting data fails. Defaults to 200.

• retry_backoff_max: int - Defaults to 40.

• retry_backoff_base: float - Defaults to 1.001.

Common parameters for opening xarray.Dataset instances:

• variable_names: list[str] - List of variable names. Defaults to all.

• bbox: (float, float, float, float) - Bounding box in geographical coordinates.

• time_range: (str, str) - Time range.

• normalize_data: bool - Whether to normalize and sanitize the data. Defaults to True.

8.2.3 ESA Climate Data Centre ccizarr

A subset of the datasets of the cciodp store have been made available using the Zarr format using the data store
ccizarr. It provides much better data access performance.

It has no dedicated data store parameters.

Its common dataset open parameters for opening xarray.Dataset instances are the same as for the filesystem-based data
stores described above.

8.2.4 ESA SMOS

A data store for ESA SMOS data is currently under development and will be released soon.

This data store is provided by the xcube plugin xcube-smos. Once available, you will be able to install it using conda
install -c conda-forge xcube-smos.

8.2. Available Data Stores 115

https://climate.esa.int/en/odp/
https://github.com/dcs4cop/xcube-cci
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html
https://github.com/dcs4cop/xcube-smos

xcube, Release 1.5.2.dev0

8.2.5 Copernicus Climate Data Store cds

The data store cds provides datasets of the Copernicus Climate Data Store.

This data store is provided by the xcube plugin xcube-cds. You can install it using conda install -c conda-forge
xcube-cds.

Data store parameters:

• cds_api_key: str - User API key for Copernicus Climate Data Store.

• endpoint_url: str - API endpoint URL.

• num_retries: int - Defaults to 200.

• normalize_names: bool - Defaults to False.

Common parameters for opening xarray.Dataset instances:

• bbox: (float, float, float, float) - Bounding box in geographical coordinates.

• time_range: (str, str) - Time range.

• variable_names: list[str] - List of names of variables to be included. Defaults to all.

• spatial_res: float - Spatial resolution. Defaults to 0.1.

8.2.6 Copernicus Marine Service cmems

The data store cmems provides datasets of the Copernicus Marine Service.

This data store is provided by the xcube plugin xcube-cmems. You can install it using conda install -c
conda-forge xcube-cmems.

Data store parameters:

• cmems_username: str - CMEMS API username

• cmems_password: str - CMEMS API password

• cas_url: str - Defaults to 'https://cmems-cas.cls.fr/cas/login'.

• csw_url: str - Defaults to 'https://cmems-catalog-ro.cls.fr/geonetwork/srv/eng/
csw-MYOCEAN-CORE-PRODUCTS?'.

• databases: str - One of ['nrt', 'my'].

• server: str - Defaults to 'cmems-du.eu/thredds/dodsC/'.

Common parameters for opening xarray.Dataset instances:

• variable_names: list[str] - List of variable names.

• time_range: [str, str] - Time range.

116 Chapter 8. Data Access

https://cds.climate.copernicus.eu/
https://github.com/dcs4cop/xcube-cds
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html
https://marine.copernicus.eu/
https://github.com/dcs4cop/xcube-cmems
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html

xcube, Release 1.5.2.dev0

8.2.7 Sentinel Hub API

The data store sentinelhub provides the datasets of the Sentinel Hub API.

This data store is provided by the xcube plugin xcube-sh. You can install it using conda install -c conda-forge
xcube-sh.

Data store parameters:

• client_id: str - Sentinel Hub API client identifier

• client_secret: str - Sentinel Hub API client secret

• api_url: str - Sentinel Hub API URL. Defaults to 'https://services.sentinel-hub.com'.

• oauth2_url: str - Sentinel Hub API authorisation URL. Defaults to 'https://services.
sentinel-hub.com/oauth'.

• enable_warnings: bool - Whether to output warnings. Defaults to False.

• error_policy: str - Policy for errors while requesting data. Defaults to 'fail'.

• num_retries: int - Number of retries when requesting data fails. Defaults to 200.

• retry_backoff_max: int - Defaults to 40.

• retry_backoff_base: number - Defaults to 1.001.

Common parameters for opening xarray.Dataset instances:

• bbox: (float, float, float, float) - Bounding box in coordinate units of crs. Required.

• crs: str - Defaults to 'WGS84'.

• time_range: (str, str) - Time range. Required.

• variable_names: list[str] - List of variable names. Defaults to all.

• variable_fill_values: list[float] - List of fill values according to variable_names

• variable_sample_types: list[str] - List of sample types according to variable_names

• variable_units: list[str] - List of sample units according to variable_names

• tile_size: (int, int) - Defaults to (1000, 1000).

• spatial_res: float - Required.

• upsampling: str - Defaults to 'NEAREST'.

• downsampling: str - Defaults to 'NEAREST'.

• mosaicking_order: str - Defaults to 'mostRecent'.

• time_period: str - Defaults to '1D'.

• time_tolerance: str - Defaults to '10M'.

• collection_id: str - Name of the collection.

• four_d: bool - Defaults to False.

• extra_search_params: dict - Extra search parameters passed to a catalogue query.

• max_cache_size: int - Maximum chunk cache size in bytes.

8.2. Available Data Stores 117

https://www.sentinel-hub.com/
https://github.com/dcs4cop/xcube-sh
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html

xcube, Release 1.5.2.dev0

8.3 Developing new data stores

8.3.1 Implementing the data store

New data stores can be developed by implementing the xcube DataStore interface for read-only data store, or the
MutableDataStore interface for writable data stores, and should follow the xcube Data Store Conventions.

If a data store supports combinations of Python data types, external storagestypes, and/or data formats it should consider
the following design pattern:

Here, we implement a dedicated DataOpener for a suitable combination of supported Python data types, external stor-
ages types, and/or data formats. The DataStore, which implements the DataOpener interface delegates to specialized
DataOpener implementations based on the open parameters passed to the open_data() method. The same holds for
the DataWriter implementations for a MutableDataStore.

New data stores that are backed by some cloud-based data API can make use the xcube GenericZarrStore to implement
the lazy fetching of data array chunks from the API.

118 Chapter 8. Data Access

https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.DataStore
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.MutableDataStore
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.DataOpener
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.DataStore
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.DataOpener
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.DataOpener
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.DataOpener
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.store.MutableDataStore
https://xcube.readthedocs.io/en/latest/api.html#xcube.core.zarrstore.GenericZarrStore

xcube, Release 1.5.2.dev0

8.3.2 Registering the data store

To register the new data store with xcube, it must be provided as a Python package. Based on the package’s name
there are to ways to register it with xcube. If your package name matches the pattern xcube_*, then you would need to
provide a function init_plugin() in the package’s plugin module (hence {package}.plugin.init_plugin()).

Alternatively, the package can have any name, but then it must register a setuptools entry point in the slot
“xcube_plugins”. In this case the function init_plugin() can also be placed anywhere in your code. If you use
setup.cfg:

[options.entry_points]
xcube_plugins =

{your_name} = {your_package}.plugin:init_plugin

If you are (still) using setup.py:

from setuptools import setup

setup(
...,
entry_points={

'xcube_plugins': [
'{your_name} = {your_package}.plugin:init_plugin',

]
}

)

The function init_plugin will be implemented as follows:

from xcube.constants import EXTENSION_POINT_DATA_OPENERS
from xcube.constants import EXTENSION_POINT_DATA_STORES
from xcube.constants import EXTENSION_POINT_DATA_WRITERS
from xcube.util import extension

def init_plugin(ext_registry: extension.ExtensionRegistry):

register your DataStore extension
ext_registry.add_extension(

loader=extension.import_component(
'{your_package}.store:{YourStoreClass}'),

point=EXTENSION_POINT_DATA_STORES,
name="{your_store_id}",
description='{your store description}'

)

register any extra DataOpener (EXTENSION_POINT_DATA_OPENERS)
or DataWriter (EXTENSION_POINT_DATA_WRITERS) extensions (optional)
ext_registry.add_extension(

loader=extension.import_component(
'{your_package}.opener:{YourOpenerClass}'),

point=EXTENSION_POINT_DATA_OPENERS,
name="{your_opener_id}",
description='{your opener description}'

)

8.3. Developing new data stores 119

https://setuptools.pypa.io/en/latest/userguide/entry_point.html

xcube, Release 1.5.2.dev0

120 Chapter 8. Data Access

CHAPTER

NINE

CUBE GENERATOR

9.1 Introduction

The cube generator is an xcube feature which allows users to create, manipulate, and write xcube datasets according
to a supplied configuration. The same configuration can be used to generate a dataset on the user’s local computer or
remotely, using an online server.

The generator offers two main user interfaces: A Python API, configured using Python objects; and a command-line
interface, configured using YAML or JSON files. The Python and file-based configurations have the same structure
and are interconvertible.

The online generator service interfaces with the xcube client via a well-defined REST API; it is also possible for third-
party clients to make use of this API directly, though it is expected that the Python and command-line interfaces will
be more convenient in most cases.

9.2 Further documentation

This document aims to provide a brief overview of the generation process and the available configuration options. More
details are available in other documents and in the code itself:

• Probably the most thorough documentation is available in the Jupyter demo notebooks in the xcube repository.
These can be run in any JupyterLab environment containing an xcube installation. They combine explanation
with interactive worked examples to demonstrate practical usage of the generator in typical use cases.

• For the Python API in particular, the xcube API documentation is generated from the docstrings included in the
code itself and serves as a detailed low-level reference for individual Python classes and methods. The docstrings
can also be read from a Python environment (e.g. using the ? postfix in IPython or JupyterLab) or, of course, by
browsing the source code itself.

• For the YAML/JSON configuration syntax used with the command-line interface, there are several examples
available in the examples/gen2/configs subdirectory of the xcube repository.

• For the REST API underlying the Python and command-line interfaces, there is a formal definition on Swagger-
Hub, and one of the example notebooks demonstrates its usage with the Python requests library.

121

https://github.com/dcs4cop/xcube/tree/main/examples/notebooks/generators
https://jupyterlab.readthedocs.io/en/latest/
https://xcube.readthedocs.io/en/latest/api.html
https://github.com/dcs4cop/xcube/tree/main/examples/gen2/configs
https://app.swaggerhub.com/apis/bcdev/xcube-generator_api/
https://app.swaggerhub.com/apis/bcdev/xcube-generator_api/
https://github.com/dcs4cop/xcube/tree/main/examples/notebooks/generators/5_rest_api.ipynb

xcube, Release 1.5.2.dev0

9.3 The generation process

The usual cube generation process is as follows:

1. The generator opens the input data store using the store identifier and parameters in the input configuration.

2. The generator reads from the input store the data specified in the cube configuration and uses them to create a
data cube, often with additional manipulation steps such as resampling the data.

3. If an optional code configuration has been given, the user-supplied code is run on the created data cube, poten-
tially modifying it.

4. The generator writes the generated cube to the data store specified in the output configuration.

9.4 Invoking the generator from a Python environment

The configurations for the various parts of the generator are used to initialize a GeneratorRequest, which is then
passed to xcube.core.gen2.generator.CubeGenerator.generate_cube. The generate_cubemethod returns
a cube reference which can be used to open the cube from the output data store.

The generator can also be directly invoked with a configuration file from a Python environment, using the xcube.
core.gen2.generator.CubeGenerator.from_file method.

9.5 Invoking the generator from the command line

The generator can be invoked from the command line using the xcube gen2 subcommand. (Note: the subcommand
xcube gen invokes an earlier, deprecated generator feature which is not compatible with the generator framework
described here.)

9.6 Configuration syntax

All Python configuration classes are defined in the xcube.core.gen2 package, except for CodeConfig, which is in
xcube.core.byoa.

The types in the parameter tables are given in an ad-hoc, semi-formal notation whose corresponding Python and JSON
representations should be obvious. For the formal Python type definitions, see the signatures of the __init__ methods
of the configuration classes; for the formal JSON type definitions, see the JSON schemata (in JSON Schema format)
produced by the get_schema methods of the configuration classes.

9.6.1 Remote generator service configuration

The command-line interface allows a service configuration for the remote generator service to be provided as a YAML
or JSON file. This file defines the endpoint and access credentials for an online generator service. If it is provided,
the specified remote service will be used to generate the cube. If it is omitted, the cube will be generated locally.
The configuration file defines three values: endpoint_url, client_id, and client_secret. A typical service
configuration YAML file might look as follows:

endpoint_url: "https://xcube-gen.brockmann-consult.de/api/v2/"
client_id: "93da366d7c39517865e4f141ddf1dd81"
client_secret: "d2l0aG91dCByZXN0cmljdGlvbiwgaW5jbHVkaW5nIHd"

122 Chapter 9. Cube Generator

https://json-schema.org/

xcube, Release 1.5.2.dev0

9.6.2 Store configuration

In the command-line interface, an additional YAML or JSON file containing one or more store configurations may be
supplied. A store configuration encapsulates a data store ID and an associated set of store parameters, which can then
be referenced by an associated store configuration identifier. This identifier can be used in the input configuration, as
described below. A typical YAML store configuration might look as follows:

sentinelhub_eu:
title: SENTINEL Hub (Central Europe)
description: Datasets from the SENTINEL Hub API deployment in Central Europe
store_id: sentinelhub
store_params:
api_url: https://services.sentinel-hub.com
client_id: myid123
client_secret: 0c5892208a0a82f1599df026b5e19017

cds:
title: C3S Climate Data Store (CDS)
description: Selected datasets from the Copernicus CDS API
store_id: cds
store_params:
normalize_names: true
num_retries: 3

my_data_bucket:
title: S3 output bucket
description: An S3 bucket for output data sets
store_id: s3
store_params:
root: cube-outputs
storage_options:
key: qwerty12345
secret: 7ff889c0aea254d5e00440858289b85c
client_kwargs:
endpoint_url: https://my-endpoint.some-domain.org/

9.6.3 Input configuration

The input configuration defines the data store from which data for the cube are to be read, and any additional parameters
which this data store requires.

The Python configuration object is InputConfig; the corresponding YAML configuration section is input_configs.

Parameter Required? Type Description
store_id N str Identifier for the data store
opener_id N str Identifier for the data opener
data_id Y str Identifier for the dataset
store_params N map(str→*) Parameters for the data store
open_params N map(str→*) Parameters for the data opener

store_id is a string identifier for a particular xcube data store, defined by the data store itself. If a store configuration
file has been supplied (see above), a store configuration identifier can also be supplied here in place of a ‘plain’ store

9.6. Configuration syntax 123

xcube, Release 1.5.2.dev0

identifier. Store configuration identifiers must be prefixed by an @ symbol. If a store configuration identifier is supplied
in place of a store identifier, store_params values will be supplied from the predefined store configuration and can
be omitted from the input configuration.

data_id is a string identifier for the dataset within a particular store.

The format and content of the store_params and open_params dictionaries is defined by the individual store or
opener.

The generator service does not yet provide a remote interface to list available data stores, datasets, and store pa-
rameters (i.e. allowed values for the parameters in the table above). In a local xcube Python environment, you
can list the currently available store identifiers with the expression list(map(lambda e: e.name, xcube.core.
store.find_data_store_extensions())). You can create a local store object for an identifier store_id
with xcube.core.store.get_data_store_instance(store_id).store. The store object provides methods
list_data_ids, get_data_store_params_schema, and get_open_data_params_schema to describe the al-
lowed values for the corresponding parameters. Note that the available stores and datasets on a remote xcube generator
server may not be the same as those available in your local xcube environment.

9.6.4 Cube configuration

This configuration element defines the characteristics of the cube that should be generated. The Python configuration
class is called CubeConfig, and the YAML section cube_config. All parameters are optional and will be filled in
with defaults if omitted; the default values are dependent on the data store and dataset.

Parameter Type Units/Description
variable_names[str, . . .] Available variables are data store dependent.
crs str PROJ string, JSON string with PROJ parameters, CRS WKT string, or

authority string
bbox [float, float, float,

float]
Bounding-box (min_x, min_y, max_x, max_y) CRS-dependent, usually
degrees

spatial_res float or [float, float] CRS-dependent, usually degrees
tile_size int or [int, int] pixels
time_range str or [str, str] ISO 8601 subset
time_period str integer + unit
chunks map(str→null/int) maps variable names to chunk sizes

The crs parameter string is interpreted using `CRS.from_string in the pyproj package <https://pyproj4.github.io/
pyproj/dev/api/crs/crs.html#pyproj.crs.CRS.from_string>`__ and therefore accepts the same specifiers.

time_range specified the start and end of the requested time range. can be specified either as a date in the format
YYYY-MM-DD or as a date and time in the format YYYY-MM-DD HH:MM:SS. If the time is omitted, it is taken to be
00:00:00 (the start of the day) for the start specifier and 24:00:00 (the end of the day) for the specifier. The end
specifier may be omitted; in this case the current time is used.

time_period specified the duration of a single time step in the requested cube, which determines the temporal resolu-
tion. It consists of an integer denoting the number of time units, followed by single upper-case letter denoting the time
unit. Valid time unit specifiers are D (day), W (week), M (month), and Y (year). Examples of time_period values:
1Y (one year), 2M (two months), 10D (ten days).

The value of the chunksmapping determines how the generated data is chunked for storage. The chunking has no effect
on the data itself, but can have a dramatic impact on data access speeds in different scenarios. The value of chunks is
structured a map from variable names (corresponding to those specified by the variable_names parameter) to chunk
sizes.

124 Chapter 9. Cube Generator

https://pyproj4.github.io/pyproj/dev/api/crs/crs.html#pyproj.crs.CRS.from_string
https://pyproj4.github.io/pyproj/dev/api/crs/crs.html#pyproj.crs.CRS.from_string

xcube, Release 1.5.2.dev0

9.6.5 Code configuration

The code configuration supports multiple ways to define a dataset processor – fundamentally, a Python function which
takes a dataset and returns a processed version of the input dataset. Since the code configuration can work directly with
instantiated Python objects (which can’t be stored in a YAML file), there are some differences in code configuration
between the Python API and the YAML format.

Parameter Type Units/description
_callable † Callable Function to be called to process the datacube. Only available via

Python API
callable_ref str (non-empty) A reference to a Python class or function, in the format <module>:<

function_or_class>
callable_paramsmap(str→*) Parameters to be passed to the specified callable
inline_code
†

str (non-empty) An inline snippet of Python code

file_set † FileSet (Python) / map
(YAML)

A bundle of Python modules or packages (see details below)

install_requiredboolean If set, indicates that file_set contains modules or packages to be
installed.

All parameters are optional (as is the entire code configuration itself). The three parameters marked † are mutually
exclusive: at most one of them may be given.

_callable provides the dataset processor directly and is only available in the Python API. It must be either a function
or a class.

• If a function, it takes a Dataset and optional additional named parameters, and returns a Dataset. Any addi-
tional parameters are supplied in the callable_params parameter of the code configuration.

• If an object, it must implement a method process_dataset, which is treated like the function described
above, and may optionally implement a class method get_process_params_schema, which returns a
JsonObjectSchema describing the additional parameters. For convenience and clarity, the object may extend
the abstract base class DatasetProcessor, which declares both these methods.

callable_ref is a string with the structure <module>:<function_or_class>, and specifies the function or class
to call when inline_code or file_set is provided. The specified function or class is handled like the _callable
parameter described above.

callable_params specifies a dictionary of named parameters which are passed to the processor function or method.

inline_code is a string containing Python source code. If supplied, it should contain the definition of a function or
object as described for the _callable parameter. The module and class identifiers for the callable in the inline code
snippet should be specified in callable_ref parameter.

file_set specifies a set of files which should be read from an fsspec file system and which contain a definition of a
dataset processor. As with inline_code, the parameter callable_ref should also be supplied to tell the generator
which class or function in the file set is the actual processor. The parameters of file_set are identical with those of
the constructor of the corresponding Python FileSet class, and are as follows:

Parameter Type Description
path str fsspec-compatible root path specifier
sub_path str optional sub-path to append to main path
includes [str] include files matching any of these patterns
excludes [str] exclude files matching any of these patterns
storage_params map(str→*) FS-specific parameters (passed to fsspec)

9.6. Configuration syntax 125

https://filesystem-spec.readthedocs.io/

xcube, Release 1.5.2.dev0

9.6.6 Output configuration

This configuration element determines where the generated cube should be written to. The Python configuration class
is called OutputConfig, and the YAML section output_config.

Parameter Type Units/description
store_id str Identifier of output store
writer_id str Identifier of data writer
data_id str Identifier under which to write the cube
store_params map(str→*) Store-dependent parameters for output store
write_params map(str→*) Writer-dependent parameters for output writer
replace bool If true, replace any existing data with the same identifier.

126 Chapter 9. Cube Generator

CHAPTER

TEN

PLUGINS

xcube’s functionality can be extended by plugins. A plugin contributes extensions to specific extension points defined
by xcube. Plugins are detected and dynamically loaded, once the available extensions need to be inquired.

10.1 Installing Plugins

Plugins are installed by simply installing the plugin’s package into xcube’s Python environment.

In order to be detected by xcube, an plugin package’s name must either start with xcube_ or the plugin package’s
setup.py file must specify an entry point in the group xcube_plugins. Details are provided below in section plu-
gin_development.

10.2 Available Plugins

10.2.1 SENTINEL Hub

The xcube_sh plugin adds support for the SENTINEL Hub Cloud API. It extends xcube by a new Python API function
xcube_sh.cube.open_cube to create data cubes from SENTINEL Hub on-the-fly. It also adds a new CLI command
xcube sh gen to generate and write data cubes created from SENTINEL Hub into the file system.

10.2.2 ESA CCI Open Data Portal

The xcube_cci plugin provides support for the ESA CCI Open Data Portal.

10.2.3 Copernicus Climate Data Store

The xcube_cds plugin provides support for the Copernicus Climate Data Store.

127

https://github.com/dcs4cop/xcube-sh
https://www.sentinel-hub.com/
https://github.com/dcs4cop/xcube-cci
https://climate.esa.int/en/odp/
https://github.com/dcs4cop/xcube-cds
https://cds.climate.copernicus.eu/

xcube, Release 1.5.2.dev0

10.2.4 Cube Generation

xcube’s GitHub organisation currently hosts a few plugins that add new input processor extensions (see below) to
xcube’s data cube generation tool xcube gen. They are very specific but are a good starting point for developing your
own input processors:

• xcube_gen_bc - adds new input processors for specific Ocean Colour Earth Observation products derived from
the Sentinel-3 OLCI measurements.

• xcube_gen_rbins - adds new input processors for specific Ocean Colour Earth Observation products derived from
the SEVIRI measurements.

• xcube_gen_vito - adds new input processors for specific Ocean Colour Earth Observation products derived from
the Sentinel-2 MSI measurements.

10.3 Plugin Development

10.3.1 Plugin Definition

An xcube plugin is a Python package that is installed in xcube’s Python environment. xcube can detect plugins either

1. by naming convention (more simple);

2. by entry point (more flexible).

By naming convention: Any Python package named xcube_<name> that defines a plugin initializer function named
init_plugin either defined in xcube_<name>/plugin.py (preferred) or xcube_<name>/__init__.py is an xcube
plugin.

By entry point: Any Python package installed using Setuptools that defines a non-empty entry point group
xcube_plugins is an xcube plugin. An entry point in the xcube_plugins group has the format <name> =
<fully-qualified-module-path>:<init-func-name>, and therefore specifies where plugin initializer function
named <init-func-name> is found. As an example, refer to the xcube standard plugin definitions in xcube’s setup.py
file.

For more information on Setuptools entry points refer to section Creating and discovering plugins in the Python Packing
User Guide and Dynamic Discovery of Services and Plugins in the Setuptools documentation.

10.3.2 Initializer Function

xcube plugins are initialized using a dedicated function that has a single extension registry argument of type xcube.
util.extension.ExtensionRegistry, that is used by plugins’s to register their extensions to xcube. By convention,
this function is called init_plugin, however, when using entry points, it can have any name. As an example, here is
the initializer function of the SENTINEL Hub plugin xcube_sh/plugin.py::

from xcube.constants import EXTENSION_POINT_CLI_COMMANDS
from xcube.util import extension

def init_plugin(ext_registry: extension.ExtensionRegistry):
"""xcube SentinelHub extensions"""
ext_registry.add_extension(loader=extension.import_component('xcube_sh.cli:cli'),

point=EXTENSION_POINT_CLI_COMMANDS,
name='sh_cli')

128 Chapter 10. Plugins

https://github.com/dcs4cop/xcube-gen-bc
https://github.com/dcs4cop/xcube-gen-rbins
https://github.com/dcs4cop/xcube-gen-vito
https://setuptools.readthedocs.io/
https://github.com/dcs4cop/xcube/blob/main/setup.py
https://packaging.python.org/guides/creating-and-discovering-plugins/
https://packaging.python.org/
https://packaging.python.org/
https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins
https://setuptools.readthedocs.io/

xcube, Release 1.5.2.dev0

10.3.3 Extension Points and Extensions

When a plugin is loaded, it adds its extensions to predefined extension points defined by xcube. xcube defines the
following extension points:

• xcube.core.gen.iproc: input processor extensions

• xcube.core.dsio: dataset I/O extensions

• xcube.cli: Command-line interface (CLI) extensions

An extension is added to the extension registry’s add_extension method. The extension registry is passed to the
plugin initializer function as its only argument.

10.3.4 Input Processor Extensions

Input processors are used the xcube genCLI command and gen_cubeAPI function. An input processor is responsible
for processing individual time slices after they have been opened from their sources and before they are appended to or
inserted into the data cube to be generated. New input processors are usually programmed to support the characteristics
of specific xcube gen inputs, mostly specific Earth Observation data products.

By default, xcube uses a standard input processor named default that expects inputs to be individual NetCDF files
that conform to the CF-convention. Every file is expected to contain a single spatial image with dimensions lat and
lon and the time is expected to be given as global attributes.

If your input files do not conform with the default expectations, you can extend xcube and write your own input
processor. An input processor is an implementation of the xcube.core.gen.iproc.InputProcessor or xcube.
core.gen.iproc.XYInputProcessor class.

As an example take a look at the implementation of the default input processor
xcube.core.gen.iproc.DefaultInputProcessor or the various input processor plugins mentioned above.

The extension point identifier is defined by the constant xcube.constants.
EXTENSION_POINT_INPUT_PROCESSORS.

10.3.5 Dataset I/O Extensions

More coming soon. . .

The extension point identifier is defined by the constant xcube.constants.EXTENSION_POINT_DATASET_IOS.

10.3.6 CLI Extensions

CLI extensions enhance the xcube command-line tool by new sub-commands. The xcube CLI is implemented using
the click library, therefore the extension components must be click commands or command groups.

The extension point identifier is defined by the constant xcube.constants.EXTENSION_POINT_CLI_COMMANDS.

10.3. Plugin Development 129

https://github.com/dcs4cop/xcube/blob/main/xcube/core/gen/iproc.py
https://click.palletsprojects.com
https://click.palletsprojects.com/en/7.x/commands/

xcube, Release 1.5.2.dev0

130 Chapter 10. Plugins

CHAPTER

ELEVEN

XCUBE DATASET CONVENTION

Version 1.0 Draft, last updated April 28, 2023

11.1 Introduction

The purpose of this document is to define a convention for how geospatial data cubes accessed and generated by xcube
should look. The goal of the convention is to ease access to data, make it compliant to existing data standards, make it
comprehensive and understandable, and minimize the effort to ingest the data into users’ processing, visualisation, and
analysis code. In short, the goal is to make xcube datasets analysis-ready. The intention is neither to invent any new
data formats nor to try to establish new “standards”. Instead, the xcube conventions solely build on existing, popular,
well-established data formats and data standards.

This convention applies to gridded (array) datasets only.

In this document, the verbs must, should, and may have a special meaning when used to describe conventions. A must
is a mandatory requirement that must be fulfilled, should is optional but always recommended, and may is optional and
recommended in cases (like good to have).

11.2 Table of Contents

• Data Model and Format

• Metadata

• Spatial Reference

• Temporal Reference

• Encoding of Units

• Encoding of Flags

• Encoding of Missing Values

• Encoding of Scale/Offset Values

• Multi-Resolution Datasets

• Multi-Band Datasets

• Metadata Consolidation

• Zip Archives

• Dataset Examples

131

xcube, Release 1.5.2.dev0

11.3 Data Model and Format

The data model for xcube gridded datasets is a subset of the Unidata Common Data Model (CDM). The CDM has
originally been established for NetCDF (Network Common Data Form) but is implemented also for the OPenDAP
protocol and the HDF and Zarr formats. Other common gridded data models can be easily translated into the CDM,
for example GeoTIFF.

xcube gridded datasets must fully comply to the Climate and Forecast Metadata Conventions, CF Conventions for
short. The following sections in this chapter describe how these conventions are tailored and applied to xcube datasets.
By default, xcube gridded datasets are made available in the Zarr format v2 as this format is ideal for Cloud storage,
e.g. Object Storage such as AWS S3, and can be easily converted to other formats such as NetCDF or TIFF. We
consider the popular xarray Python package to be the primary in-memory representation for xcube gridded datasets.
The xarray.Dataset data model represents a subset of the CDM, interprets CF compliant data correctly, and we will
follow this simplified CDM model for xcube gridded datasets in both structure and terminology:

• A dataset is a container for variables. A dataset has metadata in form of a key-value mapping (global attributes).

• A variable has N dimensions in a prescribed order, and each dimension has a name and a size. A variable
contains the actual gridded data in the form of an N-dimensional data array that has the shape of the dimension
sizes. The data type of the array should be numeric, however also text strings and complex types are allowed.
A variable has metadata in form of a key-value mapping (variable attributes). There are two types of variables,
coordinates and data variables.

• Coordinates usually contain the labels for a dimension. For example, the coordinate lon could have a 1-D array
that contains 3600 longitude values for the dimension lon of size 3600. However, coordinates may also be 2-D.
For example. a dataset using satellite geometry may provide its lon coordinate as a 2-D array for the dimensions
x and y (for which co-ordinates should also exist).

• All variables that are not coordinates are data variables. They provide the actual dataset’s data. For each of
the dimensions used by a data variable, a corresponding coordinate must exist. For example, for a data variable
NDVI with dimensions time, lat, lon, the coordinates time, lat, lon must exist too.

11.4 Metadata

Global and variable metadata must follow the recommendations of the ESIP Attribute Convention for Data Discovery
v1.3. If other metadata attributes are used, they should be covered by the CF Conventions v1.8.

11.5 Spatial Reference

The spatial dimensions of a data variable must be the innermost dimensions, namely lat, lon for geographic
(EPGS:4326, WGS-84) grids, and y, x for other grids – in this order. Datasets that use a geographic (EPGS:4326,
WGS-84) grid must provide the 1-D coordinates lat for dimension lat and lon for dimension lon. Datasets that use
a non-geographic grid must provide the 1-D coordinates y for dimension y and x for dimension x.

• In case the grid refers to a known spatial reference system (projected CRS), the dataset must make use of the
CRS encoding described in the CF Conventions on Grid Mapping, i.e. add a variable crs.

• In case the grid is referring to satellite viewing geometry, the dataset must provide 2-D coordinates lat and lon
both having the dimensions y, x – in exactly this order, and apply the CF Conventions on 2-D Lat and Lon.

It is expected that the 1-D coordinates have a uniform spacing, i.e. there should be a unique linear mapping between
coordinate values and the image grid. Ideally, the spacing should also be the same in x- and y-direction. Note, it is
always a good practice to add geographic coordinates to non-geographic, projected grids. Therefore, a dataset may

132 Chapter 11. xcube Dataset Convention

https://www.unidata.ucar.edu/software/netcdf-java/v4.6/CDM/
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html
https://zarr.readthedocs.io/en/stable/spec/v2.html
http://xarray.pydata.org/
http://xarray.pydata.org/en/stable/user-guide/data-structures.html#dataset
https://wiki.esipfed.org/Attribute_Convention_for_Data_Discovery_1-3
https://wiki.esipfed.org/Attribute_Convention_for_Data_Discovery_1-3
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#grid-mappings-and-projections
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#_two_dimensional_latitude_longitude_coordinate_variables

xcube, Release 1.5.2.dev0

also provide the 2-D coordinates lat and lon in this case. Spatial coordinates must follow the CF Conventions on
Coordinates.

11.6 Temporal Reference

The temporal dimension of a data variables should be named time. It should be the variable’s outermost dimension.
A corresponding coordinate named time must exist and the CF Conventions on the Time Coordinate must be applied.
It is recommended to use the unit seconds since 1970.01.01.

Data variables may contain other dimensions in between the temporal dimension and the spatial dimensions, i.e. a
variable’s dimensions may be time, . . . ,lat, lon (geographic CRS), or time, . . . , y, x (non-geographic CRS) – both in
exactly this order, where the ellipsis . . . refers to such extra dimensions. If there is a requirement to store individual time
stamps per pixel value, this could still be done by adding a variable to the dataset which would then be e.g. pixel_time
with dimensions time, lat, and lon.

11.7 Encoding of Units

All variables that represent quantities must set the attributeunits according to the CF Convention on Units. Even if
the quantity is dimensionless, the units attribute must be set to indicate its dimensionless-ness by using the value "1".

11.8 Encoding of Flags

For data variables that are encoded as flags using named bits or bit masks/ranges, we strictly follow the CF Convention
on Flags.

11.9 Encoding of Missing Values

According to the CF Convention on Missing Data, missing data should be indicated by the variable attribute
_FillValue. However, Zarr does not define or interpret (decode) array attributes at all. The Zarr equivalent of the CF
attribute _FillValue is the array property fill_value (not an attribute). fill_value can and should be set for all
data types including integers, also because it is given in raw units, that is, before scaling_factor and add_offset
are applied (by xarray). Zarr’s fill_value has the advantage that data array chunks comprising only fill_value
values can and should be dropped entirely. This can reduce number of chunks dramatically and improve data access
performance a lot for many no-data chunks. In our case we should use fill_value to indicate that a data cube’s grid
cell does not contain a value at all, it does not exist, it does not make sense, it had no input, etc.

However, when reading a Zarr with Python xarray using decode_cf=True (the new default), xarray will also en-
code variable attribute _FillValue and missing_value and mask the data accordingly. It will unfortunately ignore
valid_min, valid_max, and valid_range.

Missing values shall therefore be indicated by the Zarr array property fill_value. In addition valid_min,
valid_max, valid_range variable attributes may be given, but they will not be decoded. However, applications
might still find them useful, e.g. xcube Viewer uses them, if provided as value range for mapping color bars.

11.6. Temporal Reference 133

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#coordinate-types
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#coordinate-types
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#time-coordinate
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#units
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#flags
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#flags
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#missing-data

xcube, Release 1.5.2.dev0

11.10 Encoding of Scale/Offset Values

Scale and offset encoding of bands / variables follows the CF Convention on Packed Data. In practice, affected variables
must have attributes scaling_factor (default is 1) and add_offset (with default 0).

11.11 Multi-Resolution Datasets

Spatial multi-resolution datasets are described in detail in a dedicated document xcube Multi-Resolution Datasets.

11.12 Multi-Band Datasets

Individual spectral bands of a dataset should be stored as variables. For example, this is the case for multi-band products,
like Sentinel-2, where each wavelength will be represented by a separate variable named B01, B02, etc.

11.13 Metadata Consolidation

Datasets using Zarr format should provide consolidated dataset metadata in their root directories. This allows reading
the metadata of datasets with many variables more efficiently, especially when data is stored in Object Storage and
every metadata file would need to fetched via an individual HTTP request.

The consolidated metadata file should be named .zmetadata, which is also the default name used by the Zarr format.

The format of the consolidated metadata must be JSON. It is a JSON object using the following structure:

{
"zarr_consolidated_format": 1,
"metadata": {

".zattrs": {...},
".zgroup": {...},
"band_1/.zarray": {...},
"band_1/.zattrs": {...},
"band_2/.zarray": {...},
"band_2/.zattrs": {...},
...

}
}

11.13.1 Zip Archives

Zarr datasets may also be provided as Zip archives. Such Zip archives should contain the contents of the archived Zarr
directory in their root. In other words, the keys of the entries in such an archive should not have a common prefix as is
often the case when directories are zipped for convenience. The name of a zipped Zarr dataset should be the original
Zarr dataset name plus the .zip extension. For example:

Desired:

134 Chapter 11. xcube Dataset Convention

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#packed-data

xcube, Release 1.5.2.dev0

${dataset-name}.zarr.zip/
.zarray
.zgroup
.zmetadata
band_1/
time/
...

Zipping the Zarr datasets this way allows opening the Zarr datasets directly from the Zip, e.g., for xarray this is xarray.
open_zarr("./dataset.zarr.zip").

11.13.2 Dataset Examples

TODO (forman)

• Global WGS-84

• Projected CRS

• Satellite Viewing Geometry

• Multi-resolution

11.13. Metadata Consolidation 135

xcube, Release 1.5.2.dev0

136 Chapter 11. xcube Dataset Convention

CHAPTER

TWELVE

XCUBE MULTI-RESOLUTION DATASETS

Version 1.0 Draft, 2023-04-28

12.1 Definition

A xcube multi-resolution dataset refers to an N-D image pyramid where an image refers to a 2-D dataset with two
spatial dimensions in some horizontal coordinate system.

A multi-resolution dataset comprises a fixed number of levels, which are regular datasets covering the same spatial area
at different resolutions. Level zero represents the original resolution res(L=0), higher level resolutions decrease by a
factor of two: res(L) = res(0) / 2^L.

12.2 Implementation in xcube

In xcube, multi-resolution datasets are represented by the abstract class xcube.core.mldataset.
MultiLevelDataset. The xcube data store framework refers to this datatype using the alias mldataset. The
corresponding default data format is the xcube Levels format, named levels. xcube also supports the Cloud
Optimized GeoTIFF (COG) format for reading multi-resolution datasets.

12.3 The xcube Levels Format

The xcube Levels format is basically a single top-level directory. The filename extension of that directory should be
.levels by convention. The directory entries are Zarr datasets

1. that are representations of regular xarray datasets named after their zero-based level index, {level}.zarr;

2. that comply with the xcube Dataset Convention.

The following is a multi-resolution dataset with three levels:

- test_pyramid.levels/
- 0.zarr/
- 1.zarr/
- 2.zarr/

An important use case is generating image pyramids from existing large datasets without the need to create a copy of
level zero.

137

https://en.wikipedia.org/wiki/Pyramid_(image_processing)

xcube, Release 1.5.2.dev0

To support this, the level zero dataset may be a link to an existing Zarr dataset. The filename is then 0.link rather
than 0.zarr. The link file contains the path to the actual Zarr dataset to be used as level zero as a plain text string. It
may be an absolute path or a path relative to the top-level dataset.

- test_pyramid.levels/
- 0.link # --> link to actual level zero dataset
- 1.zarr/
- 2.zarr/

Starting with xcube 0.13.1, an additional, optional file .zlevels has been made part of the levels format:

- test_pyramid.levels/
- .zlevels
- 0.zarr/
- 1.zarr/
- 2.zarr/

If present, it is a text file comprising a JSON object with the following properties:

| Name | Type | Description | |——————–|———————-|—————————————————————|
| version | "1.0" | Levels format version. | | num_levels | integer | Number of levels in this dataset | |
use_saved_levels | boolean | If a next level shall be computed from the predecessor level. | | tile_size | [integer,
integer] | Tile size width and height in pixels. | | agg_methods | object | Mapping from variable name to aggregation
method. |

Only version and num_levels are required.

The properties of the agg_methods objects are the names of data variables. The values are aggregation methods. Valid
values are

| Value | Description | |———-|————————————————————–| | first | Select the first pixel at
(0,0) of a window of N x N pixels. | | min | Minimum value of a window of N x N pixels. | | max | Minimum value of a
window of N x N pixels. | | mean | Mean value of a window of N x N pixels. | | median | Median value of a window of
N x N pixels. |

The following is an example of the .zlevels file for a dataset with the data variables CHL (chlorophyll) if type float32
and a variable qflags of type uint16:

{
"version": "1.0",
"num_levels": 8,
"use_saved_levels": true,
"tile_size": [2048, 2048],
"agg_methods": {
"CHL": "median",
"qflags": "first"

}
}

xcube implementation note: When writing datasets as multi-level datasets and the agg_methods parameter is miss-
ing, or a data variable’s name is not contained in given agg_methods then first is used for variables that have an
integer data type and median for a floating point data type. In xcube Server, when opening datasets and converting
them into multi-level datasets on-the-fly, agg_methods is first for all data variables for best performance.

138 Chapter 12. xcube Multi-Resolution Datasets

xcube, Release 1.5.2.dev0

12.4 Related reads

• WIP: Multiscale use-case in zarr-developers / zarr-specs on GitHub.

• Multiscale convention in zarr-developers / zarr-specs on GitHub.

• Package ndpyramid

12.5 To be discussed

• Allow links for all levels?

• Do not write 0.link file. Instead, provide in .zlevels where to find each level.

• No longer use .zarr extension for levels. Just use the index as name.

• Make top-level directory a Zarr group (.zgroup), so the multi-level dataset can be opened as a group using the
zarr package.

12.4. Related reads 139

https://github.com/zarr-developers/zarr-specs/issues/23
https://github.com/zarr-developers/zarr-specs/issues/125
https://github.com/carbonplan/ndpyramid

xcube, Release 1.5.2.dev0

140 Chapter 12. xcube Multi-Resolution Datasets

CHAPTER

THIRTEEN

COMMON DATA STORE CONVENTIONS

This document is a work in progress.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

Useful references related to this document include:

• The JSON Schema Specification and the book Understanding JSON Schema

• xcube Issue #330 (‘Establish common data store conventions’)

• The existing xcube store plugins xcube-sh, xcube-cci, and xcube-cds

• The xcube.util.jsonschema source code

13.1 Naming Identifiers

This section explains various identifiers used by the xcube data store framework and defines their format.

In the data store framework, identifiers are used to denote data sources, data stores, and data accessors. Data store,
data opener, and data writer identifiers are used to register the component as extension in a package’s plugin.py.
Identifiers MUST be unambiguous in the scope of the data store. They SHOULD be unambiguous across the entirety
of data stores.

There are no further restrictions for data source and data store identifiers.

A data accessor identifier MUST correspond to the following scheme:

<data_type>:<format>:<storage>[:<version>]

<data_type> identifies the in-memory data type to represent the data, e.g., dataset (or xarray.Dataset),
geodataframe (or geopandas.GeoDataFrame). <format> identifies the data format that may be accessed, e.g.,
zarr, netcdf, geojson. <storage> identifies the kind of storage or data provision the accessor can access. Example
values are file (the local file system), s3 (AWS S3-compatible object storage), or sentinelhub (the Sentinel Hub
API), or cciodp (the ESA CCI Open Data Portal API). The <version> finally is an optional notifier about a data
accessor’s version. The version MUST follow the Semantic Versioning.

Examples for valid data accessors identifiers are:

• dataset:netcdf:file

• dataset:zarr:sentinelhub

• geodataframe:geojson:file

• geodataframe:shapefile:cciodp:0.4.1

141

https://tools.ietf.org/html/rfc2119
https://json-schema.org/specification.html
https://json-schema.org/understanding-json-schema/
https://github.com/dcs4cop/xcube/issues/330
https://github.com/dcs4cop/xcube-sh/
https://github.com/dcs4cop/xcube-sh/
https://github.com/dcs4cop/xcube-cds
https://github.com/dcs4cop/xcube/blob/main/xcube/util/jsonschema.py
https://semver.org

xcube, Release 1.5.2.dev0

13.2 Open Parameters

This section aims to provide an overview of the interface defined by an xcube data store or opener in its open parameters
schema, and how this schema may be used by a UI generator to automatically construct a user interface for a data opener.

13.2.1 Specification of open parameters

Every implementation of the xcube.core.store.DataOpener or xcube.core.store.DataStore abstract base
classes MUST implement the get_open_data_params_schema method in order to provide a description of the al-
lowed arguments to open_data for each dataset supported by the DataOpener or DataStore. The description is
provided as a JsonObjectSchema object corresponding to a JSON Schema. The intention is that this description
should be full and detailed enough to allow the automatic construction of a user interface for access to the available
datasets. Note that, under this system:

1. Every dataset provided by an opener can support a different set of open parameters.

2. The schema does not allow the representation of interdependencies between values of open parameters within a
dataset. For instance, the following interdependencies between two open parameters sensor_type and variables
would not be representable in an open parameters schema:

sensor_type: A or Bvariables: [temperature, humidity] for sensor type A; [temperature, pressure] for sensor type
B

To work around some of the restrictions of point (2) above, a dataset MAY be presented by the opener as multiple
“virtual” datasets with different parameter schemas. For instance, the hypothetical dataset described above MAY be
offered not as a single dataset envdata but as two datasets envdata:sensor-a (with a fixed sensor_type of A) and
envdata:sensor-b, (with a fixed sensor_type of B), offering different sets of permitted variables. Sometimes, the
interdependencies between parameters are too complex to be fully represented by splitting datasets in this manner. In
these cases:

1. The JSON Schema SHOULD describe the smallest possible superset of the allowed parameter combinations.

2. The additional restrictions on parameter combinations MUST be clearly documented.

3. If illegal parameter combinations are supplied, the opener MUST raise an exception with an informative error
message, and the user interface SHOULD present this message clearly to the user.

13.2.2 Common parameters

While an opener is free to define any open parameters for any of its datasets, there are some common parameters which
are likely to be used by the majority of datasets. Furthermore, there are some parameters which are fundamental for
the description of a dataset and therefore MUST be included in a schema (these parameters are denoted explicitly in
the list below). In case that an opener does not support varying values of one of these parameters, a constant value
must defined. This may be achieved by the JSON schema’s const property or by an enum property value whose is a
one-element array.

Any dataset requiring the specification of these parameters MUST use the standard parameter names, syntax, and
semantics defined below, in order to keep the interface consistent. For instance, if a dataset allows a time aggregation
period to be specified, it MUST use the time_period parameter with the format described below rather than some
other alternative name and/or format. Below, the parameters are described with their Python type annotations.

• variable_names: List[str]A list of the identifiers of the requested variables. This parameter MUST be
included in an opener parameters schema.

• bbox: Union[str,Tuple[float, float, float, float]] The bounding box for the requested data, in
the order xmin, ymin, xmax, ymax. Must be given in the units of the specified spatial coordinate reference system
crs. This parameter MUST be included in an opener parameters schema.

142 Chapter 13. Common data store conventions

https://json-schema.org/

xcube, Release 1.5.2.dev0

• crs: strThe identifier for the spatial coordinate reference system of geographic data.

• spatial_res: floatThe requested spatial resolution (x and y) of the returned data. Must be given in the
units of the specified spatial coordinate reference system crs. This parameter MUST be included in an opener
parameters schema.

• time_range: Tuple[Optional[str], Optional[str]]The requested time range for the data to be re-
turned. The first member of the tuple is the start time; the second is the end time. See section ‘Date, time, and
duration specifications’. This parameter MUST be included in an opener parameters schema. If a date without
a time is given as the start time, it is interpeted as 00:00 on the specified date. If a date without a time is given
as the end time, it is interpreted as 24:00 on the specified date (identical with 00:00 on the date following the
specified date). If the end time is specified as None, it is interpreted as the current time.

• time_period: strThe requested temporal aggregation period for the data. See section ‘Date, time, and
duration specifications’. This parameter MUST be included in an opener parameters schema.

• force_cube: boolWhether to return results as a specification-compliant xcube. If a store supports this param-
eter and if a dataset is opened with this parameter set to True, the store MUST return a specification-compliant
xcube dataset. If this parameter is not supported or if a dataset is opened with this parameter set to False, the
caller MUST NOT assume that the returned data conform to the xcube specification.

13.2.3 Semantics of list-valued parameters

The variables parameter takes as its value a list, with no duplicated members and the values of its members drawn
from a predefined set. The values of this parameter, and other parameters whose values also follow such a format, are
interpreted by xcube as a restriction, much like a bounding box or time range. That is:

• By default (if the parameter is omitted or if a None value is supplied for it), all the possible member values
MUST be included in the list. In the case of variables, this will result in a dataset containing all the available
variables.

• If a list containing some of the possible members is given, a dataset corresponding to those members only MUST
be returned. In the case of variables, this will result in a dataset containing only the requested variables.

• A special case of the above: if an empty list is supplied, a dataset containing no data MUST be returned – but
with the requested spatial and temporal dimensions.

13.2.4 Date, time, and duration specifications

In the common parameter time_range, times can be specified using the standard JSON Schema formats date-time or
date. Any additional time or date parameters supported by an xcube opener dataset SHOULD also use these formats,
unless there is some good reason to prefer a different format.

The formats are described in the JSON Schema Validation 2019 draft, which adopts definitions from RFC 3339 Section
5.6. The JSON Schema date-time format corresponds to RFC 3339’s date-time production, and JSON Schema’s
date format to RFC 3339’s full-date production. These formats are subsets of the widely adopted ISO 8601 format.

The date format corresponds to the pattern YYYY-MM-DD (four-digit year – month – day), for example 1995-08-20.
The date-time format consists of a date (in the date format), a time (in HH:MM:SS format), and timezone (Z for UTC,
or +HH:MM or -HH:MM format). The date and time are separated by the letter T. Examples of date-time format include
1961-03-23T12:22:45Z and 2018-04-01T21:12:00+08:00. Fractions of a second MAY also be included, but are
unlikely to be relevant for xcube openers.

The format for durations, as used for aggregation period, does not conform to the syntax defined for this purpose in the
ISO 8601 standard (which is also quoted as Appendix A of RFC 3339). Instead, the required format is a small subset
of the pandas time series frequency syntax, defined by the following regular expression:

13.2. Open Parameters 143

https://github.com/dcs4cop/xcube/blob/main/docs/source/cubespec.md
https://json-schema.org/draft/2019-09/json-schema-validation.html#rfc.section.7.3.1
https://tools.ietf.org/html/rfc3339#section-5.6
https://tools.ietf.org/html/rfc3339#section-5.6
https://en.wikipedia.org/wiki/ISO_8601
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases

xcube, Release 1.5.2.dev0

^([1-9][0-9]*)?[HDWMY]$

That is: an optional positive integer followed by one of the letters H (hour), D (day), W (week), M (month), and Y
(year). The letter specifies the time unit and the integer specifies the number of units. If the integer is omitted, 1 is
assumed.

13.2.5 Time limits: an extension to the JSON Schema

JSON Schema itself does not offer a way to impose time limits on a string schema with the date or date-time for-
mat. This is a problem for xcube generator UI creation, since it might be reasonably expected that a UI will show
and enforce such limits. The xcube opener API therefore defines an unofficial extension to the JSON string schema: a
JsonStringSchema object (as returned as part of a JsonSchema by a call to get_open_data_params_schema)
MAY, if it has a format property with a value of date or date-time, also have one or both of the properties
min_datetime and max_datetime. These properties must also conform to the date or date-time format. xcube
provides a dedicated JsonDatetimeSchema for this purpose. Internally, it extends JsonStringSchema by adding the
required properties to the JSON string schema.

13.2.6 Generating a UI from a schema

With the addition of the time limits extension described above, the JSON Schema returned by
get_open_data_params_schema is expected to be extensive and detailed enough to fully describe a UI for
cube generation.

Order of properties in a schema

Sub-elements of a JsonObjectSchema are passed to the constructor using the properties parameter with type sig-
nature Mapping[str, JsonSchema]. Openers SHOULD provide an ordered mapping as the value of properties,
with the elements placed in an order suitable for presentation in a UI, and UI generators SHOULD lay out the UI in
the provided order, with the exception of the common parameters discussed below. Note that the CPython dict object
preserves the insertion order of its elements as of Python 3.6, and that this behaviour is officially guaranteed as of
Python 3.7, so additional classes like OrderedDict are no longer necessary to fulfil this requirement.

Special handling of common parameters

Any of the common parameters listed above SHOULD, if present, be recognized and handled specially. They SHOULD
be presented in a consistent position (e.g. at the top of the page for a web GUI), in a consistent order, and with user-
friendly labels and tooltips even if the title and description annotations (see below) are absent. The UI generator
MAY provide special representations for these parameters, for instance an interactive map for the bbox parameter.

An opener MAY provide title, description, and/or examples annotations for any of the common parameters,
and a UI generator MAY choose to use any of these to supplement or modify its standard presentation of the common
parameters.

144 Chapter 13. Common data store conventions

xcube, Release 1.5.2.dev0

Schema annotations (title, description, examples, and default)

For JSON Schemas describing parameters other than the common parameters, an opener SHOULD provide the title
and description annotations. A UI generator SHOULD make use of these annotations, for example by taking the
label for a UI control from title and the tooltip from description. The opener and UI generator MAY additionally
make use of the examples annotation to record and display example values for a parameter. If a sensible default value
can be envisaged, the opener SHOULD record this default as the value of the default annotation and the UI generator
SHOULD set the default value in the UI accordingly. If the title annotation is absent, the UI generator SHOULD
use the key corresponding to the parameter’s schema in the parent schema as a fallback.

Generalized conversion of parameter schemas

For parameters other than the common parameters, the UI can be generated automatically from the schema structure.
In the case of a GUI, a one-to-one conversion of values of JSON Schema properties into GUI elements will generally
be fairly straightforward. For instance:

• A schema of type boolean can be represented as a checkbox.

• A schema of type string without restrictions on allowed items can be represented as an editable text field.

• A schema of type stringwith an enum keyword giving a list of allowed values can be represented as a drop-down
menu.

• A schema of type string with the keyword setting "format": "date" can be represented as a specialized
date selector.

• A schema of type array with the keyword setting "uniqueItems": true and an items keyword giving a
fixed list of allowed values can be represented as a list of checkboxes.

13.2. Open Parameters 145

xcube, Release 1.5.2.dev0

146 Chapter 13. Common data store conventions

CHAPTER

FOURTEEN

SPATIAL RECTIFICATION ALGORITHM

This chapter describes the algorithm used in the function rectify_dataset() of module xcube.core.resampling.
The function geometrically transforms spatial data variables of a given dataset from an irregular source grid mapping
into new data variables for a given regular target grid mapping and returns them as a new dataset.

14.1 Problem Description

The following figure shows a Sentinel-3 OLCI Level-1b scene in its original satellite perspective. In addition to the
measured reflectances, the data product also provides the latitude and longitude for each pixel as two individual coor-
dinate images. To the right, the absolute value of the gradient vectors of the latitude and longitude |(lon)2 + (lat)2|
are shown:

The given coordinates, latitude and longitude, are terrain corrected with respect to a digital elevation model (DEM)
that approximates the Earth’s true fractal surface. Therefore, the gradient vectors are not monotonically varying over
the scene, instead they represent the roughness of the DEM. Areas of high surface roughness are indicated by the red
circles in the figure above. The figure below should explain the cause of the effect.

147

api.html#xcube.core.resampling.rectify_dataset
https://docs.xarray.dev/en/stable/user-guide/terminology.html#term-Variable
https://docs.xarray.dev/en/stable/user-guide/terminology.html#term-Dataset
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.11/cf-conventions.html#grid-mappings-and-projections

xcube, Release 1.5.2.dev0

A rectification is the transformation of satellite imagery from its original viewing geometry into a target geometry that
forms a regular grid in a defined coordinate reference system (CRS) with uniform spatial resolution for each pixel in
each dimension. For the Sentinel-3 OLCI Level-1b scene above, the rectified measurement image for the geographic
projection (CRS EPSG:4326) is shown here:

148 Chapter 14. Spatial Rectification Algorithm

xcube, Release 1.5.2.dev0

14.2 Algorithm Description

The input to the rectification algorithm is satellite imagery in satellite viewing perspective. In addition, two images –
one for each spatial dimension – provide the terrain corrected spatial coordinates. Thus, for each source pixel we have
a given spatial coordinate pair x,y, which is assumed to refer to a source image pixel’s center at i+½,j+½. The expected
algorithm input is:

• N source measurement images;

• 2 source coordinate images (one for each spatial dimension) comprising terrain corrected coordinates x,y in units
of the CRS for each pixel i,j;

The output produced by the algorithm is

• N target measurement images generated from source measurement images by projection.

• Target image geometry given as pixel size x=y and the coordinate offset of the upper left target image pixel x0,y0.
Pixel size and offsets are given in units of the CRS.

• 2 target lookup images (one for each spatial dimension) comprising fractional source pixel coordinates i+½+u,
j+½+v (explained below);

In the following, the CRS of the target and source is assumed to be the same. This is not a limitation, see remarks
below.

While the gradient of the coordinate images, x and y per pixel, is generally not constant in the source image geometry,
we demand that the target pixel size x = y = const for all pixels in the generated target images.

A fast and simple algorithm to perform the rectification is to visit each source pixel i,j, collect the spatial coordinates
P = x,y, span two triangles between four adjacent coordinates, (P1, P2, P3) and (P2, P4, P3), and “paint” fractional
source pixel coordinates into a new target lookup image. The lookup image can than be used to retrieve the pixel values
from a source measurement image for a given pixel of the corresponding target measurement image, either by nearest
neighbor lookup or by interpolation.

The true Earth surface is unknown in between any given coordinates points P(i+½, j+½) and its neighborhood, and
there is no defined “best guess” for any point P(i+u, j+v) with 0 u 1 and 0 v 1. Hence, we use triangulation for its
simplicity so that any in-between P is found by triangular interpolation.

From the coordinates (P1, P2, P3) of the first source triangle, the bounding box in pixel coordinates in the target image
can be exactly determined, because the target grid is regular, P = x0 + i x, y0 - j y, for each target pixel i,j, target pixel
size x,y, and x0,y0 being the coordinates of the upper left pixel at i=½, j=½. Given P and the plane given by (P1, P2,

14.2. Algorithm Description 149

xcube, Release 1.5.2.dev0

P3) the parameters u, v can be computed from triangular interpolation form P = P1 + u (P2 – P1) + v (P3 – P1). If 0
u 1, 0 u 1, u+v 1, then P is a point within the triangle.

At the same time, u and v are the fractions of source pixel coordinate, i + ½ + u and j + ½ + v, which will be both
stored in two target lookup images.

After all source pixels have been processed, the resulting target lookup images containing the fractional source pixel
indexes, i + ½ + u and j + ½ + v, can be used to efficiently map a source measurement image V into the target
measurement image. The pixel values of the source measurement image are given as V1 = V(i, j), V2 = V(i+1, j),
V3 = V(i ,j+1), and V4 = V(i+1, j+1) here and are represented by different colour values, e.g., measurements such as
radiances, reflectances, or higher level data variables:

150 Chapter 14. Spatial Rectification Algorithm

xcube, Release 1.5.2.dev0

In the simplest case, as shown above, a nearest neighbor lookup is performed to determine the pixel value V for the
target measurement image according to:

V = V2 if u > ½; V3 if v > ½; V1 else

The fractions u, v can also be used to perform the triangular interpolation between the three adjacent source measure-
ments pixels. Note that the u, v were found from the three coordinate pairs that formed the original source triangle:

V = VA + u (V2 V1) + v (V3 V1)

Using bilinear interpolation between the four adjacent source measurements pixels also takes the fourth source coordi-
nate P4 into account:

V = VA + v (VB VA)

with

VA = V1 + u (V2 V1)VB = V3 + u (V4 V3)

14.3 Remarks

(1) The target pixel size should be less or equal the source pixel size, so that triangle patches in the source refer to
multiple pixels in the target image. However, if the target pixel size is distinctly smaller than the source pixel size, and
the source has a low spatial resolution, results will be inaccurate, as curved source pixel boundaries need to be taken
into account for many projections.

(2) If the target pixel size is greater than the source pixel size, target bounding boxes refer to single source pixels
only. However, if the target pixel size is distinctly larger than the source pixel size, a prepended down-sampling or
convolution of source images should be taken into account, e.g., using a Gaussian filter. Note, the algorithm can also
be easily adapted to aggregate values of source pixels that refer to same target pixels.

(3) The algorithm description assumes that the source CRS and target CRS be the same. Different reference systems
can be easily and efficiently supported by initially transforming each coordinate P(i, j) = (x, y) in the source coordinate
images into the desired target CRS, i.e., P_new = transform_coord(P, CRS_S, CRS_T).

(4) If x, y are decimal longitude and latitude, and the north or south poles are in the scene, than the algorithm will fail.
One can get around this problem by transforming source coordinates into a another suitable CRS first or by transforming
longitude values x into complex numbers and optionally normalizing latitudes y to the same range from -1 to +1:

x’ = cos(x) + i sin(x)y’ = 2y /

14.3. Remarks 151

xcube, Release 1.5.2.dev0

(5) The algorithm can be rewritten to use bilinear surface patches comprising the adjacent four coordinates (P1, P2,
P2, P4) instead of two triangles. The bilinear interpolation between the four coordinates is

PA = P2 + u (P2 P1)PB = P3 + u (P4 P3)P = PA + v (PB PA)

Given that P is a known point on that surface the above can be rewritten as the two equations in u and v

0 = a + u b + v c + u v d0 = e + u f + v g + u v h

with the solutions for u and v (from Wolfram|Alpha1):

and with the differences

a = P1.x P.xb = P2.x P1.xc = P3.x P1.xd = P4.x P3.xe = P1.y P.yf = P2.y P1.yg = P3.y P1.yh = P4.y P3.y
1 Wolfram Alpha LLC, 2024. Wolfram|Alpha. https://www.wolframalpha.com/input?i2d=true&i=0+%3D+a+%2B+u++b+%2B+v++c+%2B+u++v++d%5C%2844%29+0+%3D+e+%2B+u++f+%2B+v++g+%2B+u++v++h+for+u%5C%2844%29+v
(access April 8, 2024).

152 Chapter 14. Spatial Rectification Algorithm

CHAPTER

FIFTEEN

XCUBE DEVELOPER GUIDE

Version 0.2, draft

IMPORTANT NOTE: Any changes to this doc must be reviewed by dev-team through pull requests.

15.1 Table of Contents

• Versioning

• Coding Style

• Main Packages

– Package xcube.core

– Package xcube.cli

– Package xcube.webapi

– Package xcube.util

• Development Process

15.2 Versioning

We adhere to PEP-440. Therefore, the xcube software version uses the format <major>.<minor>.<micro> for re-
leased versions and <major>.<minor>.<micro>.dev<n> for versions in development.

• <major> is increased for major enhancements. CLI / API changes may introduce incompatibilities with former
version.

• <minor> is increased for new features and and minor enhancements. CLI / API changes are backward compatible
with former version.

• <micro> is increased for bug fixes and micro enhancements. CLI / API changes are backward compatible with
former version.

• <n> is increased whenever the team (internally) deploys new builds of a development snapshot.

The current software version is in xcube/version.py.

153

https://www.python.org/dev/peps/pep-0440/

xcube, Release 1.5.2.dev0

15.3 Coding Style

We follow PEP-8, including its recommendation of PEP-484 syntax for type hints.

15.3.1 Updating code style in the existing codebase

A significant portion of the existing codebase does not adhere to our current code style guidelines. It is of course a
goal to bring these parts into conformance with the style guide, but major style changes should not be bundled into
pull requests focused on other improvements or bug fixes, because they obscure the significant code changes and make
reviews difficult. Large-scale style and formatting updates should instead be made via dedicated pull requests.

15.3.2 Line length

As recommended in PEP-8, all lines should be limited to a maximum of 79 characters, including docstrings and com-
ments.

15.3.3 Quotation marks for string literals

In general, single quotation marks should always be used for string literals. Double quotation marks should only be
used if there is a compelling reason to do so in a particular case.

15.4 Main Packages

• xcube.core - Hosts core API functions. Code in here should be maintained w.r.t. backward compatibility.
Therefore think twice before adding new or change existing core API.

• xcube.cli - Hosts CLI commands. CLI command implementations should be lightweight. Move implementa-
tion code either into core or util.CLI commands must be maintained w.r.t. backward compatibility. Therefore
think twice before adding new or change existing CLI commands.

• xcube.webapi - Hosts Web API functions. Web API command implementations should be lightweight. Move
implementation code either into core or util.Web API interface must be maintained w.r.t. backward compati-
bility. Therefore think twice before adding new or change existing web API.

• xcube.util - Mainly implementation helpers. Comprises classes and functions that are used by cli, core,
webapi in order to maximize modularisation and testability but to minimize code duplication.The code in here
must not be dependent on any of cli, core, webapi. The code in here may change often and in any way as
desired by code implementing the cli, core, webapi packages.

The following sections will guide you through extending or changing the main packages that form xcube’s public
interface.

154 Chapter 15. xcube Developer Guide

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0484/

xcube, Release 1.5.2.dev0

15.4.1 Package xcube.cli

Checklist

Make sure your change

1. is covered by unit-tests (package test/cli);

2. is reflected by the CLI’s doc-strings and tools documentation (currently in README.md);

3. follows existing xcube CLI conventions;

4. follows our code style conventions;

5. is reflected in API and WebAPI, if desired;

6. is reflected in CHANGES.md.

Hints

Make sure your new CLI command is in line with the others commands regarding command name, option names, as
well as metavar arguments names. The CLI command name shall ideally be a verb.

Avoid introducing new option arguments if similar options are already in use for existing commands.

In the following common arguments and options are listed.

Input argument:

@click.argument('input')

If input argument is restricted to an xcube dataset:

@click.argument('cube')

Output (directory) option:

@click.option('--output', '-o', metavar='OUTPUT',
help='Output directory. If omitted, "INPUT.levels" will be used.')

Output format:

@click.option('--format', '-f', metavar='FORMAT', type=click.Choice(['zarr', 'netcdf']),
help="Format of the output. If not given, guessed from OUTPUT.")

Output parameters:

@click.option('--param', '-p', metavar='PARAM', multiple=True,
help="Parameter specific for the output format. Multiple allowed.")

Variable names:

@click.option('--variable',--var', metavar='VARIABLE', multiple=True,
help="Name of a variable. Multiple allowed.")

For parsing CLI inputs, use helper functions that are already in use. In the CLI command implementation code, raise
click.ClickException(message) with a clear message for users.

15.4. Main Packages 155

xcube, Release 1.5.2.dev0

Common xcube CLI options like -f for FORMAT should be lower case letters and specific xcube CLI options like -S
for SIZE in xcube gen are recommended to be uppercase letters.

Extensively validate CLI inputs to avoid that API functions raise ValueError, TypeError, etc. Such errors and their
message texts are usually hard to understand by users. They are actually dedicated to to developers, not CLI users.

There is a global option --traceback flag that user can set to dump stack traces. You don’t need to print stack traces
from your code.

15.4.2 Package xcube.core

Checklist

Make sure your change

1. is covered by unit-tests (package test/core);

2. is covered by API documentation;

3. follows existing xcube API conventions;

4. follows our code style conventions;

5. is reflected in xarray extension class xcube.core.xarray.DatasetAccessor;

6. is reflected in CLI and WebAPI if desired;

7. is reflected in CHANGES.md.

Hints

Create new module in xcube.core and add your functions. For any functions added make sure naming is in line with
other API. Add clear doc-string to the new API using Google style.

Decide if your API methods requires xcube datasets as inputs, if so, name the primary dataset argument cube and add
a keyword parameter cube_asserted: bool = False. Otherwise name the primary dataset argument dataset.

Reflect the fact, that a certain API method or function operates only on datasets that conform with the xcube dataset
specifications by using cube in its name rather than dataset. For example compute_dataset can operate on any
xarray datasets, while get_cube_values_for_points expects a xcube dataset as input or read_cube ensures it will
return valid xcube datasets only.

In the implementation, if not cube_asserted, we must assert and verify the cube is a cube. Pass True to
cube_asserted argument of other API called later on:

from xcube.core.verify import assert_cube

def frombosify_cube(cube: xr.Dataset, ..., cube_asserted: bool = False):
if not cube_asserted:

assert_cube(cube)
...
result = bibosify_cube(cube, ..., cube_asserted=True)
...

If import xcube.core.xarray is imported in client code, any xarray.Dataset object will have an extra property
xcube whose interface is defined by the class xcube.core.xarray.DatasetAccessor. This class is an xarray
extension that is used to reflect xcube.core functions and make it directly applicable to the xarray.Dataset object.

Therefore any xcube API shall be reflected in this extension class.

156 Chapter 15. xcube Developer Guide

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
http://xarray.pydata.org/en/stable/internals.html#extending-xarray
http://xarray.pydata.org/en/stable/internals.html#extending-xarray

xcube, Release 1.5.2.dev0

15.4.3 Package xcube.webapi

Checklist

Make sure your change

1. is covered by unit-tests (package test/webapi);

2. is covered by Web API specification and documentation (currently in webapi/res/openapi.yml);

3. follows existing xcube Web API conventions;

4. follows our code style conventions;

5. is reflected in CLI and API, if desired;

6. is reflected in CHANGES.md.

15.4.4 Hints

• The Web API is defined in webapi.app which defines mapping from resource URLs to handlers

• All handlers are implemented in webapi.handlers. Handler code just delegates to dedicated controllers.

• All controllers are implemented in webapi.controllers.*. They might further delegate into core.*

15.5 Development Process

1. Make sure there is an issue ticket for your code change work item.

2. Select issue; priorities are as follows:

1. “urgent” and (”important” and “bug”)

2. “urgent” and (”important” or “bug”)

3. “urgent”

4. “important” and “bug”

5. “important” or “bug”

6. others

3. Make sure issue is assigned to you; if unclear, agree with team first.

4. Add issue label “in progress”.

5. Clone the GitHub repository to your local machine, if you haven’t already done so.

6. Check out the main branch and make sure it’s up to date (git pull).

7. Create a development branch named "<developer>-<issue>-<title>" (see below).

8. Develop, having in mind the checklists and implementation hints above.

1. In your first commit, refer the issue so it will appear as link in the issue history.

2. It is useful to push your first commit to the GitHub repository at once and create a draft pull request for your
branch, to make it easier to find online. Also, it will run continuous integration and check the compatibility
of your branch with the main branch.

3. Develop, test, and push to the remote branch as desired.

15.5. Development Process 157

xcube, Release 1.5.2.dev0

4. In your last commit, utilize checklists above. (You can include the line “closes #<issue>” in your commit
message to auto-close the issue once the PR is merged.)

9. When your branch is ready to merge (as determined by the checklist), either create a pull request, or, if you
had created a draft in the previous step, remove its draft status and invite one or more reviewers. Exactly who
should review depends on how potentially dangerous your changes are, who’s available, who knows that part of
the codebase well, etc. – if unsure, discuss with the team. You can also mention other team members with the
@username syntax in a PR comment to make sure that they’re aware of the PR even if they don’t need to review
it.

10. Wait for reviewers to review your PR and respond to comments and suggestions. Reviewers can also commit to
your branch with additional changes.

11. Once all reviewers have given an “approve” review and all CI checks have passed, the PR should be merged. If
the PR has been assigned, one of the assignees should merge. If the PR is unassigned:

1. By default, the PR author should merge.

2. If there are no comments requiring attention from the PR author (e.g. optional change suggestions accom-
panying an approving review), then the last reviewer may merge after approving.

12. Remove issue label “in progress”.

13. Delete the feature branch.

14. If the PR completely solves the associated issue: close the issue, if it wasn’t already automatically closed by a
keyword in the pull request description, and make sure that there is a link from the issue to the PR (e.g. by adding
a “fixed by PR #123” comment on the issue).

15. If the PR is only partly solving an issue:

1. Make sure the issue contains a to-do list (checkboxes) to complete the issue.

2. Do not include the line “closes #<issue>” in your last commit message.

3. Add “relates to issue#” in PR.

4. Make sure to check the corresponding to-do items (checkboxes) after the PR is merged.

5. Remove issue label “in progress”.

6. Leave issue open.

15.6 Branches and Releases

15.6.1 Target Branch

The main branch contains latest developments, including new features and fixes. Its software version string is always
<major>.<minor>.<micro>.dev<n>. The branch is used to generate major, minor, or maintenance releases. That
is, either <major>, <minor>, or <fix> is increased. Before a release, the last thing we do is to remove the .dev<n>
suffix, after a release, the first thing we do is to increase the micro version and add the .dev<n> suffix.

158 Chapter 15. xcube Developer Guide

xcube, Release 1.5.2.dev0

15.6.2 Development Branches

Development branches should be named <developer>-<issue>-<title> where

• <developer> is the github name of the code author

• <issue> is the number of the issue in the github issue tracker that is targeted by the work on this branch

• <title> is either the name of the issue or an abbreviated version of it

15.7 Release Process

15.7.1 Release on GitHub

This describes the release process for xcube. For a plugin release, you need to adjust the paths accordingly.

• Check issues in progress, close any open issues that have been fixed.

• Make sure that all unit tests pass and that test coverage is 100% (or as near to 100% as practicable).

• In xcube/version.py remove the .dev suffix from version name.

• Make sure CHANGES.md is complete. Remove the suffix (in development) from the last version headline.

• Push changes to either main or a new maintenance branch (see above).

• Await results from Travis CI and ReadTheDocs builds. If broken, fix.

• Go to xcube/releases and press button “Draft a new Release”.

– Tag version is: v${version} (with a “v” prefix)

– Release title is: ${version} (without a “v” prefix)

– Paste latest changes from CHANGES.md into field “Describe this release”

– Press “Publish release” button

• After the release on GitHub, rebase sources, if the branch was main, create a new maintenance branch (see above)

• In xcube/version.py increase version number and append a .dev0 suffix to the version name so that it is still
PEP-440 compatible.

• In CHANGES.md add a new version headline and attach (in development) to it.

• Push changes to either main or a new maintenance branch (see above).

• Activate new doc version on ReadTheDocs.

Go through the same procedure for all xcube plugin packages dependent on this version of xcube.

15.7.2 Release on Conda-Forge

These instructions are based on the documentation at conda-forge.

Conda-forge packages are produced from a github feedstock repository belonging to the conda-forge organization. A
repository’s feedstock is usually located at https://github.com/conda-forge/<repo-name>-feedstock, e.g.,
https://github.com/conda-forge/xcube-feedstock.

Usually, a conda-forge bot will create a feedstock pull request automatically for each new GitHub release, and the
maintainers only need to merge it (potentially after some manual improvements). The manual procedure below is only

15.7. Release Process 159

https://github.com/dcs4cop/xcube/releases
https://conda-forge.org/docs/maintainer/updating_pkgs.html

xcube, Release 1.5.2.dev0

needed if there isn’t time to wait for the bot, or if an additional conda-forge build has to be done without a new GitHub
release. The package is updated by

• forking the repository

• creating a new branch for the changes

• creating a pull request to merge this branch into conda-forge’s feedstock repository (this is done automatically if
the build number is 0).

In detail, the steps are:

1. Fork https://github.com/conda-forge/<repo-name>-feedstock in your personal GitHub account.

2. Clone the repository locally and create a new branch. The name of the branch is not strictly prescribed, but it’s
sensible to choose an informative name like update_0_5_3.

3. In case the build number is 0, a bot will render the feedstock during the pull request. Otherwise, conduct the
following steps: Rerender the feedstock using conda-smithy. This updates common conda-forge feedstock files.
It’s probably easiest to install conda-smithy in a fresh environment for this:

conda install -c conda-forge conda-smithy

conda smithy rerender -c auto

4. Update recipe/meta.yaml for the new version. Mainly this will involve the following steps:

1. Update the value of the version variable (or, if the version number has not changed, increment the build
number).

2. If the version number has changed, ensure that the build number is set to 0.

3. Update the sha256 hash of the source archive prepared by GitHub.

4. If the dependencies have changed, update the list of dependencies in the -run subsection to match those in
the environment.yml file.

5. Commit the changes and push them to GitHub. A pull request at the feedstock repository on conda-forge will
be automatically created by a bot if the build number is 0. If it is higher, you will have to create the pull request
yourself.

6. Once conda-forge’s automated checks have passed, merge the pull request.

7. Delete your personal fork of the xcube-feedstock-repository.

Once the pull request has been merged, the updated package should usually become available from conda-forge within
a couple of hours.

TODO: Describe deployment of xcube Docker image after release

If any changes apply to xcube serve and the xcube Web API:

Make sure changes are reflected in xcube/webapi/res/openapi.yml. If there are changes, sync xcube/webapi/
res/openapi.yml with xcube Web API docs on SwaggerHub.

Check if changes affect the xcube-viewer code. If so make sure changes are reflected in xcube-viewer code and test
viewer with latest xcube Web API. Then release a new xcube viewer.

160 Chapter 15. xcube Developer Guide

xcube, Release 1.5.2.dev0

15.7.3 xcube Viewer

• Cd into viewer project directory (.../xcube-viewer/.).

• Remove the -dev suffix from version property in package.json.

• Remove the -dev suffix from version constant in src/config.ts.

• Make sure CHANGES.md is complete. Remove the suffix (in development) from the last version headline.

• Build the app and test the build using a local http-server, e.g.:

$ npm install -g http-server $ cd build $ http-server -p 3000 -c-1

• Push changes to either main or a new maintenance branch (see above).

• Goto xcube-viewer/releases and press button “Draft a new Release”.

– Tag version is: v${version} (with a “v” prefix).

– Release title is: ${version}.

– Paste latest changes from CHANGES.md into field “Describe this release”.

– Press “Publish release” button.

• After the release on GitHub, if the branch was main, create a new maintenance branch (see above).

• Increase version property and version constant in package.json and src/config.ts and append -dev.0
suffix to version name so it is SemVer compatible.

• In CHANGES.md add a new version headline and attach (in development) to it.

• Push changes to either main or a new maintenance branch (see above).

• Deploy builds of main branches to related web content providers.

15.7. Release Process 161

https://github.com/dcs4cop/xcube-viewer/releases

xcube, Release 1.5.2.dev0

162 Chapter 15. xcube Developer Guide

CHAPTER

SIXTEEN

INDICES AND TABLES

• genindex

• modindex

• search

163

xcube, Release 1.5.2.dev0

164 Chapter 16. Indices and tables

INDEX

A
add_array() (xcube.core.zarrstore.GenericZarrStore

method), 84
add_extension() (xcube.util.extension.ExtensionRegistry

method), 96
affine_transform_dataset() (in module

xcube.core.resampling), 70
apply() (xcube.core.mldataset.MultiLevelDataset

method), 80
Array (xcube.core.zarrstore.GenericZarrStore attribute),

84
assert_cube() (in module xcube.core.verify), 79
avg_resolutions (xcube.core.mldataset.MultiLevelDataset

property), 80

B
base_dataset (xcube.core.mldataset.MultiLevelDataset

property), 80
BaseMultiLevelDataset (class in

xcube.core.mldataset), 81

C
CachedZarrStore (class in xcube.core.zarrstore), 86
chunk_dataset() (in module xcube.core.chunk), 74
chunks (xcube.core.schema.CubeSchema property), 94
clip_dataset_by_geometry() (in module

xcube.core.geom), 75
close() (xcube.core.mldataset.CombinedMultiLevelDataset

method), 81
close() (xcube.core.mldataset.LazyMultiLevelDataset

method), 83
close() (xcube.core.mldataset.MappedMultiLevelDataset

method), 83
close() (xcube.core.mldataset.MultiLevelDataset

method), 80
close() (xcube.core.zarrstore.GenericZarrStore

method), 84
CombinedMultiLevelDataset (class in

xcube.core.mldataset), 81
component (xcube.util.extension.Extension property), 97
compute_cube() (in module xcube.core.compute), 66

ComputedMultiLevelDataset (class in
xcube.core.mldataset), 81

convert_geometry() (in module xcube.core.geom), 93
coords (xcube.core.schema.CubeSchema property), 94
crs (xcube.core.gridmapping.GridMapping property), 89
CubeSchema (class in xcube.core.schema), 93

D
DataDescriptor (class in xcube.core.store), 60
DataOpener (class in xcube.core.store), 59
DataSearcher (class in xcube.core.store), 59
DatasetDescriptor (class in xcube.core.store), 61, 62
datasets (xcube.core.mldataset.MultiLevelDataset

property), 80
DataStore (class in xcube.core.store), 53
DataStoreError (class in xcube.core.store), 60
DataWriter (class in xcube.core.store), 60
delete_data() (xcube.core.store.MutableDataStore

method), 58
deregister_data() (xcube.core.store.MutableDataStore

method), 58
derive() (xcube.core.gridmapping.GridMapping

method), 87
derive_tiling_scheme()

(xcube.core.mldataset.MultiLevelDataset
method), 80

describe_data() (xcube.core.store.DataStore method),
54

DiagnosticZarrStore (class in xcube.core.zarrstore),
86

dims (xcube.core.schema.CubeSchema property), 93
ds_id (xcube.core.mldataset.LazyMultiLevelDataset

property), 82
ds_id (xcube.core.mldataset.MultiLevelDataset prop-

erty), 80

E
encode_grid_mapping() (in module

xcube.core.resampling), 71
evaluate_dataset() (in module xcube.core.evaluate),

66
Extension (class in xcube.util.extension), 96

165

xcube, Release 1.5.2.dev0

EXTENSION_POINT_CLI_COMMANDS (in module
xcube.constants), 98

EXTENSION_POINT_DATASET_IOS (in module
xcube.constants), 98

EXTENSION_POINT_INPUT_PROCESSORS (in module
xcube.constants), 98

ExtensionRegistry (class in xcube.util.extension), 95

F
finalize() (xcube.core.zarrstore.GenericArray

method), 86
find_components() (xcube.util.extension.ExtensionRegistry

method), 96
find_data_store_extensions() (in module

xcube.core.store), 52
find_extensions() (xcube.util.extension.ExtensionRegistry

method), 95
from_coords() (xcube.core.gridmapping.GridMapping

class method), 92
from_dataset() (xcube.core.gridmapping.GridMapping

class method), 92
from_dataset() (xcube.core.zarrstore.GenericZarrStore

class method), 84
FsMultiLevelDataset (class in xcube.core.mldataset),

82

G
gen_cube() (in module xcube.core.gen.gen), 63
GenericArray (class in xcube.core.zarrstore), 85
GenericZarrStore (class in xcube.core.zarrstore), 83
GeoDataFrameDescriptor (class in xcube.core.store),

63
get() (xcube.core.zarrstore.ZarrStoreHolder method),

83
get_component() (xcube.util.extension.ExtensionRegistry

method), 95
get_cube_point_indexes() (in module

xcube.core.extract), 68
get_cube_values_for_indexes() (in module

xcube.core.extract), 68
get_cube_values_for_points() (in module

xcube.core.extract), 67
get_data_ids() (xcube.core.store.DataStore method),

53
get_data_opener_ids() (xcube.core.store.DataStore

method), 55
get_data_store_class() (in module

xcube.core.store), 52
get_data_store_params_schema() (in module

xcube.core.store), 52
get_data_store_params_schema()

(xcube.core.store.DataStore class method),
53

get_data_types() (xcube.core.store.DataStore class
method), 53

get_data_types_for_data()
(xcube.core.store.DataStore method), 53

get_data_writer_ids()
(xcube.core.store.MutableDataStore method),
56

get_dataset() (xcube.core.mldataset.LazyMultiLevelDataset
method), 82

get_dataset() (xcube.core.mldataset.MultiLevelDataset
method), 80

get_dataset_indexes() (in module
xcube.core.extract), 69

get_extension() (xcube.util.extension.ExtensionRegistry
method), 95

get_extension_registry() (in module
xcube.util.plugin), 98

get_level_for_resolution()
(xcube.core.mldataset.MultiLevelDataset
method), 80

get_mask_sets() (xcube.core.maskset.MaskSet class
method), 77

get_open_data_params_schema()
(xcube.core.store.DataOpener method), 59

get_open_data_params_schema()
(xcube.core.store.DataStore method), 55

get_plugins() (in module xcube.util.plugin), 98
get_schema() (xcube.core.store.DataDescriptor class

method), 61
get_schema() (xcube.core.store.DatasetDescriptor

class method), 62, 63
get_schema() (xcube.core.store.GeoDataFrameDescriptor

class method), 63
get_schema() (xcube.core.store.MultiLevelDatasetDescriptor

class method), 62
get_schema() (xcube.core.store.VariableDescriptor

class method), 63
get_search_params_schema()

(xcube.core.store.DataSearcher class method),
59

get_time_series() (in module xcube.core.timeseries),
69

get_write_data_params_schema()
(xcube.core.store.DataWriter method), 60

get_write_data_params_schema()
(xcube.core.store.MutableDataStore method),
57

grid_mapping (xcube.core.mldataset.LazyMultiLevelDataset
property), 82

grid_mapping (xcube.core.mldataset.MultiLevelDataset
property), 80

GridMapping (class in xcube.core.gridmapping), 87

166 Index

xcube, Release 1.5.2.dev0

H
has_data() (xcube.core.store.DataStore method), 54
has_extension() (xcube.util.extension.ExtensionRegistry

method), 95
height (xcube.core.gridmapping.GridMapping prop-

erty), 88

I
IdentityMultiLevelDataset (class in

xcube.core.mldataset), 82
ij_bbox (xcube.core.gridmapping.GridMapping prop-

erty), 90
ij_bbox_from_xy_bbox()

(xcube.core.gridmapping.GridMapping
method), 90

ij_bboxes (xcube.core.gridmapping.GridMapping
property), 90

ij_bboxes_from_xy_bboxes()
(xcube.core.gridmapping.GridMapping
method), 90

ij_to_xy_transform (xcube.core.gridmapping.GridMapping
property), 89

ij_transform_from()
(xcube.core.gridmapping.GridMapping
method), 89

ij_transform_to() (xcube.core.gridmapping.GridMapping
method), 89

import_component() (in module xcube.util.extension),
97

is_close() (xcube.core.gridmapping.GridMapping
method), 92

is_j_axis_up (xcube.core.gridmapping.GridMapping
property), 89

is_lazy (xcube.util.extension.Extension property), 97
is_lon_360 (xcube.core.gridmapping.GridMapping

property), 89
is_regular (xcube.core.gridmapping.GridMapping

property), 89
is_tiled (xcube.core.gridmapping.GridMapping prop-

erty), 88
is_writeable() (xcube.core.zarrstore.GenericZarrStore

method), 84

K
keys() (xcube.core.zarrstore.DiagnosticZarrStore

method), 86

L
LazyMultiLevelDataset (class in

xcube.core.mldataset), 82
list_data_ids() (xcube.core.store.DataStore method),

54
listdir() (xcube.core.zarrstore.GenericZarrStore

method), 84

lock (xcube.core.mldataset.LazyMultiLevelDataset prop-
erty), 82

M
MappedMultiLevelDataset (class in

xcube.core.mldataset), 83
mask_dataset_by_geometry() (in module

xcube.core.geom), 76
MaskSet (class in xcube.core.maskset), 77
metadata (xcube.util.extension.Extension property), 97
MultiLevelDataset (class in xcube.core.mldataset), 80
MultiLevelDatasetDescriptor (class in

xcube.core.store), 62
MutableDataStore (class in xcube.core.store), 56

N
name (xcube.util.extension.Extension property), 97
ndim (xcube.core.schema.CubeSchema property), 93
ndim (xcube.core.store.VariableDescriptor property), 63
new() (xcube.core.schema.CubeSchema class method),

94
new_cluster() (in module xcube.util.dask), 94
new_cube() (in module xcube.core.new), 64
new_data_store() (in module xcube.core.store), 51
new_fs_data_store() (in module xcube.core.store), 51
num_levels (xcube.core.mldataset.LazyMultiLevelDataset

property), 82
num_levels (xcube.core.mldataset.MultiLevelDataset

property), 80

O
open_data() (xcube.core.store.DataOpener method), 59
open_data() (xcube.core.store.DataStore method), 56
optimize_dataset() (in module xcube.core.optimize),

75

P
point (xcube.util.extension.Extension property), 97

R
rasterize_features() (in module xcube.core.geom),

77
rectify_dataset() (in module

xcube.core.resampling), 71
register_data() (xcube.core.store.MutableDataStore

method), 58
regular() (xcube.core.gridmapping.GridMapping class

method), 91
remove_extension() (xcube.util.extension.ExtensionRegistry

method), 96
rename() (xcube.core.zarrstore.GenericZarrStore

method), 84
resample_in_space() (in module

xcube.core.resampling), 72

Index 167

xcube, Release 1.5.2.dev0

resample_in_time() (in module
xcube.core.resampling), 73

resample_ndimage() (in module
xcube.core.resampling), 71

reset() (xcube.core.zarrstore.ZarrStoreHolder
method), 83

resolutions (xcube.core.mldataset.MultiLevelDataset
property), 80

rmdir() (xcube.core.zarrstore.GenericZarrStore
method), 84

S
scale() (xcube.core.gridmapping.GridMapping

method), 87
search_data() (xcube.core.store.DataSearcher

method), 59
select_variables_subset() (in module

xcube.core.select), 75
set() (xcube.core.zarrstore.ZarrStoreHolder method),

83
set_dataset() (xcube.core.mldataset.LazyMultiLevelDataset

method), 82
shape (xcube.core.schema.CubeSchema property), 94
size (xcube.core.gridmapping.GridMapping property),

88
size_weights (xcube.core.mldataset.FsMultiLevelDataset

property), 82

T
tile_height (xcube.core.gridmapping.GridMapping

property), 88
tile_size (xcube.core.gridmapping.GridMapping

property), 88
tile_width (xcube.core.gridmapping.GridMapping

property), 88
time_dim (xcube.core.schema.CubeSchema property),

94
time_name (xcube.core.schema.CubeSchema property),

94
time_size (xcube.core.schema.CubeSchema property),

94
time_var (xcube.core.schema.CubeSchema property),

94
to_coords() (xcube.core.gridmapping.GridMapping

method), 91
to_dataset_attrs() (xcube.core.gridmapping.GridMapping

method), 90
to_dict() (xcube.util.extension.Extension method), 97
to_dict() (xcube.util.extension.ExtensionRegistry

method), 96
to_regular() (xcube.core.gridmapping.GridMapping

method), 92
transform() (xcube.core.gridmapping.GridMapping

method), 91

U
unchunk_dataset() (in module xcube.core.unchunk),

74
update_dataset_attrs() (in module

xcube.core.update), 78
update_dataset_spatial_attrs() (in module

xcube.core.update), 78
update_dataset_temporal_attrs() (in module

xcube.core.update), 79

V
VariableDescriptor (class in xcube.core.store), 63
vars_to_dim() (in module xcube.core.vars2dim), 74
verify_cube() (in module xcube.core.verify), 79

W
width (xcube.core.gridmapping.GridMapping property),

88
write_data() (xcube.core.store.DataWriter method),

60
write_data() (xcube.core.store.MutableDataStore

method), 57

X
x_coords (xcube.core.gridmapping.GridMapping prop-

erty), 88
x_dim (xcube.core.schema.CubeSchema property), 94
x_max (xcube.core.gridmapping.GridMapping property),

88
x_min (xcube.core.gridmapping.GridMapping property),

88
x_name (xcube.core.schema.CubeSchema property), 93
x_res (xcube.core.gridmapping.GridMapping property),

88
x_size (xcube.core.schema.CubeSchema property), 94
x_var (xcube.core.schema.CubeSchema property), 94
xy_bbox (xcube.core.gridmapping.GridMapping prop-

erty), 88
xy_bboxes (xcube.core.gridmapping.GridMapping

property), 90
xy_coords (xcube.core.gridmapping.GridMapping

property), 88
xy_coords_chunks (xcube.core.gridmapping.GridMapping

property), 88
xy_dim_names (xcube.core.gridmapping.GridMapping

property), 88
xy_res (xcube.core.gridmapping.GridMapping prop-

erty), 88
xy_to_ij_transform (xcube.core.gridmapping.GridMapping

property), 89
xy_var_names (xcube.core.gridmapping.GridMapping

property), 88

168 Index

xcube, Release 1.5.2.dev0

Y
y_coords (xcube.core.gridmapping.GridMapping prop-

erty), 88
y_dim (xcube.core.schema.CubeSchema property), 94
y_max (xcube.core.gridmapping.GridMapping property),

88
y_min (xcube.core.gridmapping.GridMapping property),

88
y_name (xcube.core.schema.CubeSchema property), 94
y_res (xcube.core.gridmapping.GridMapping property),

89
y_size (xcube.core.schema.CubeSchema property), 94
y_var (xcube.core.schema.CubeSchema property), 94

Z
ZarrStoreHolder (class in xcube.core.zarrstore), 83

Index 169

	Overview
	Data Cube
	xcube Dataset
	Data Model
	Data Chunks
	Processing Model
	Data Format
	Python Packages

	Toolkit
	Workflows

	Examples
	Generating an xcube dataset
	Analysed Sea Surface Temperature over the Global Ocean
	Optimizing and pruning a xcube dataset

	Publishing xcube datasets
	Running the server
	Test it
	xcube Viewer
	Other clients
	OpenLayers
	Cesium

	Installation
	Prerequisites
	Overview of installation methods
	Installation from the conda-forge package
	Installation from the source code repository
	Docker
	Installing soft dependencies

	CLI
	Common Arguments and Options
	Cube generation
	xcube gen
	Synopsis
	Configuration File
	Expressions
	Example
	Python API

	xcube grid
	Synopsis

	Cube computation
	xcube compute
	Synopsis
	Example
	Python API

	Cube inspection
	xcube dump
	Synopsis
	Example

	xcube verify
	Synopsis
	Python API

	Cube data extraction
	xcube extract
	Synopsis
	Example
	Python API

	Cube manipulation
	xcube chunk
	Synopsis
	Example
	Python API

	xcube level
	Synopsis
	Example
	Python API

	xcube optimize
	Synopsis
	Examples
	Python API

	xcube patch
	Synopsis
	Patch file example
	Storage options file example
	Usage example

	xcube prune
	xcube resample
	Synopsis
	Examples
	Python API

	xcube vars2dim
	Synopsis
	Python API

	Cube conversion
	Cube publication
	xcube serve
	Synopsis
	Configuration File
	Server Demo Configuration File
	Authentication [optional]
	Dataset Attribution [optional]
	Base Directory [optional]
	Viewer Configuration [optional]
	Datasets [mandatory]
	Remotely stored xcube Datasets
	Locally stored xcube Datasets
	Dynamic xcube Datasets
	Place Groups [optional]
	Property Mappings
	Styles [optional]

	Example
	Server Demo Configuration File for DataStores
	DataStores [mandatory]

	Example Stores
	Example Azure Blob Storage filesystem Stores
	Web API

	Python API
	Data Store Framework
	Functions
	Classes

	Cube generation
	Cube computation
	Cube data extraction
	Cube Resampling
	Cube Manipulation
	Cube Subsetting
	Cube Masking
	Rasterisation of Features
	Cube Metadata
	Cube verification
	Multi-Resolution Datasets
	Zarr Store
	Utilities
	Plugin Development

	Web API and Server
	Viewer App
	Demo
	Functionality
	Build and Deploy

	Data Access
	Data Store Framework
	Available Data Stores
	Filesystem-based data stores
	ESA Climate Data Centre cciodp
	ESA Climate Data Centre ccizarr
	ESA SMOS
	Copernicus Climate Data Store cds
	Copernicus Marine Service cmems
	Sentinel Hub API

	Developing new data stores
	Implementing the data store
	Registering the data store

	Cube Generator
	Introduction
	Further documentation
	The generation process
	Invoking the generator from a Python environment
	Invoking the generator from the command line
	Configuration syntax
	Remote generator service configuration
	Store configuration
	Input configuration
	Cube configuration
	Code configuration
	Output configuration

	Plugins
	Installing Plugins
	Available Plugins
	SENTINEL Hub
	ESA CCI Open Data Portal
	Copernicus Climate Data Store
	Cube Generation

	Plugin Development
	Plugin Definition
	Initializer Function
	Extension Points and Extensions
	Input Processor Extensions
	Dataset I/O Extensions
	CLI Extensions

	xcube Dataset Convention
	Introduction
	Table of Contents
	Data Model and Format
	Metadata
	Spatial Reference
	Temporal Reference
	Encoding of Units
	Encoding of Flags
	Encoding of Missing Values
	Encoding of Scale/Offset Values
	Multi-Resolution Datasets
	Multi-Band Datasets
	Metadata Consolidation
	Zip Archives
	Dataset Examples

	xcube Multi-Resolution Datasets
	Definition
	Implementation in xcube
	The xcube Levels Format
	Related reads
	To be discussed

	Common data store conventions
	Naming Identifiers
	Open Parameters
	Specification of open parameters
	Common parameters
	Semantics of list-valued parameters
	Date, time, and duration specifications
	Time limits: an extension to the JSON Schema
	Generating a UI from a schema
	Order of properties in a schema
	Special handling of common parameters
	Schema annotations (title, description, examples, and default)
	Generalized conversion of parameter schemas

	Spatial Rectification Algorithm
	Problem Description
	Algorithm Description
	Remarks

	xcube Developer Guide
	Table of Contents
	Versioning
	Coding Style
	Updating code style in the existing codebase
	Line length
	Quotation marks for string literals

	Main Packages
	Package xcube.cli
	Checklist
	Hints

	Package xcube.core
	Checklist
	Hints

	Package xcube.webapi
	Checklist

	Hints

	Development Process
	Branches and Releases
	Target Branch
	Development Branches

	Release Process
	Release on GitHub
	Release on Conda-Forge
	xcube Viewer

	Indices and tables
	Index

