
xbus.broker Documentation
Release 0.1.6-dev

XCG Consulting

April 14, 2016

Contents

1 Getting started 3
1.1 With docker . 3
1.2 Using the source code . 3

2 General Presentation 5
2.1 High coherence . 5
2.2 Low coupling . 5
2.3 Xbus . 6

3 Architecture overview 7
3.1 Frontend . 7
3.2 Backend . 7

4 Semantics 9

5 Source code documentation 11
5.1 Front-End . 11
5.2 Back-End . 11

6 Xbus recipient API 13
6.1 Workflows . 13
6.2 get_metadata . 14
6.3 ping . 14
6.4 has_clearing . 15
6.5 has_immediate_reply . 15
6.6 start_event . 15
6.7 send_item . 15
6.8 end_event . 16
6.9 end_envelope . 16
6.10 stop_envelope . 16

7 Supervision 17
7.1 Configuration . 17
7.2 Polling . 17

8 Immediate reply Xbus feature 19
8.1 Description . 19

9 Data clearing Xbus feature 21

i

9.1 Feature dependencies . 21
9.2 Database schema . 21
9.3 Monitor-consumer communication . 21

10 TODO 23

11 Indices and tables 25

ii

xbus.broker Documentation, Release 0.1.6-dev

Contents:

Contents 1

xbus.broker Documentation, Release 0.1.6-dev

2 Contents

CHAPTER 1

Getting started

1.1 With docker

Xbus is packaged using docker to help deploy it. The docker images are available on the docker hub.

1.2 Using the source code

Copy the sample config file and edit it to suit your needs:

$ cp config.ini.sample config.ini

Create your own virtualenv:

$ virtualenv env-xbus
$ source env-xbus/bin/activate
(env-xbus)$ setup_xbusbroker -c config.ini

This should create your data tables into the database you chose in the configuration file. You should now start the
server:

$ start_xbusbroker -c config.ini

Once this is done, the broker is running.

3

https://hub.docker.com/r/xcgd/xbus.broker

xbus.broker Documentation, Release 0.1.6-dev

4 Chapter 1. Getting started

CHAPTER 2

General Presentation

Xbus is an Enterprise service bus. As such it aims to help IT departments achieve a better application infrastructure
layout by providing a way to urbanize the IT systems.

The goals of urbanization are:

• high coherence

• low coupling

2.1 High coherence

This is important because everyone wants applications to behave in a coherent way and not fall appart with bizare
errors in case of data failure. Think of your accounting system or your CRM. You want the accounting to achieve data
consistency event if an incoming invoices batch fails to load properly.

2.2 Low coupling

But this is not because you want coherence that you are happy with every application in your infrastructure talking
directly to the API of every other application. This may seem appealing when you have 3 or 4 applications, but quite
rapidly you’ll get tens or even hundreds of different interface flows between many applications. All these flows must
be maintained:

• at the emitter side, because the emitter needs to implement the receiver API, or at least flat file layout

• at the receiver side, because one day the receiver will want to change the file schema or the API it provides

• at the operator side, (yup!), because when you begin have tens or more of nightly (or on demand) interface flows
you will need to monitor them and make sure they get delivered. And you will also want to know when they
fail and what to do in those cases (ie: is this because the receiver failed and we should retry or is this an emitter
problem...)

When you don’t use a Bus or Broker you are in a situation of high coupling. Changing one component of your IT
infrastructure may prove a big challenge, just because it received interfaces from 3 different systems and provided
nightly data to 2 other.

5

xbus.broker Documentation, Release 0.1.6-dev

2.3 Xbus

With the Xbus broker we try to address those issues registering all emitters, all consumers and what kind of events
they can emit or receive.

Since the emitter is not technically aware of who will consume its event data it will not be necessary to change its side
of the interface when replacing a consumer by another in your infrastructure.

6 Chapter 2. General Presentation

CHAPTER 3

Architecture overview

Xbus is split into two distinct core components:

• the frontend xbus.broker.core.front.rpc.XbusBrokerFront: responsible to handle all emitters,
talk to them, get their events and acknowledge their data as soon as it is safely stored

• the backend xbus.broker.core.back.rpc.XbusBrokerBack: responsible to forward event data to
the network of workers and eventually consumers

Those two parts speak together transparently and the end-user does not necessarily sees a difference between the two.

Front and back both have their separate 0mq sockets. Emitters use the front socket while workers and consumers use
the backend socket.

When you start an xbus server it will generally start one frontend and one backend attached to it.

3.1 Frontend

xbus.broker.core.front.rpc.XbusBrokerFront is the component that handles all emitter connexions
and provides the emitter API. It operates on its own socket (by default listening on TCP/1984).

3.2 Backend

xbus.broker.core.back.rpc.XbusBrokerBack is the component that handles all worker and consumer
connexions. It operates on its own socket (by default listening on TCP/4891).

When a backend instance starts it tries to register itself to a given frontend by connecting to an internal 0mq socket.
The frontend will acknowlege this and then use the normal backend socket to send all the events it needs to send.

7

xbus.broker Documentation, Release 0.1.6-dev

8 Chapter 3. Architecture overview

CHAPTER 4

Semantics

Before you are able to connect an emitter to the Frontend or a worker to the Backend, you’ll need to understand the
xbus broker semantics.

The most important terms are:

• event

• event type

• event node

• emitter

• emitter profile

• item

• worker

• consumer

• service

• role

• envelope

• immediate reply

Event In the Xbus semantics the core of what we transfer between actors of the IT infrastructure are considered
as events. Events are arbitrary collections of data structures. An event will be received by the Frontend and
propagated to all the consumers that have registered to receive it.

Event Type Each and every event in xbus needs only one thing: an event type. This is only a name, but this means a
lot: Xbus does not try by itself to assert anything about the datastructure it transports and forwards. But at the
same time it is necessary for the consumers (receivers) to know what kind of data they will receive and how to
treat it. The event type is that contract. IE: if I say to the bus that I emit new_clients the consumers may rely on
the bus to make sure that the same kind of datastructure will be served to them each time.

Envelope Any event sent into the bus must be enclosed into an envelope. This is important because the evelope is
a transactional unit that permits to rollback operations at the envelope level if your consumers are transaction
aware.

This really depends on your application layout but you can easily imagine a simple network that handles invoices
and a final consumer that will write accounting lines into accounting books. If for any reason the envelope failed
in the middle you would want that NO single line was written in your books. Putting all the invoice lines in a
single envelope you ensure that everything in the same envelope will be part of the same transaction.

9

xbus.broker Documentation, Release 0.1.6-dev

Event Node Internally we use the term event node to describe a node in our graph that will handle an event. This is
specifically used in the Backend part of the broker and refers to eitheir a worker or a consumer.

Emitter An emitter is an independant program in your IT infrastructure that needs to send information about a
change, a new item or whatever. In the internal Xbus database each emitter is assigned an emitter row that
contains its login / password pair. An emitter is just that, it does not directly declare what it wants to emit.

This is declared by the Xbus administrator using emitter profiles

The emitter however declares what profile it is using.

Emitter Profile A profile is used to link one or more emitters to a list of allowed event types

An emitter can only emit the type of events that are linked to its profile. Xbus will refuse any other event type.

Item An event contain one or more items.

When sending, an event_id and data (JSON or msgpack) are needed.

Worker A worker is an independant program that connects to the xbus Backend and declares itself ready to handle
events as they are emitted in the network.

It is important to understand that a worker is not intended to be used as a final node of a graph but instead as an
intermediate node that will process data, transform or enrich it and then return it back to the broker.

The contract between a worker and the xbus backend is that the bus will send all items of an event down to a
worker and that the worker must send back a list of items.

Consumer A consumer as a worker node is still an independant program that connects to the xbus backend, but it is
considered as a final node that will not return data for each item received.

On the contrary it will wait for the end of an envelope to give some kind of answer to the Backend.

Recipient Nodes that form the actual execution path for an ongoing event.

Service An abstract representation of one or more event nodes be it a worker or consumer. The service is the link
between an event node and one or more concrete workers.

Attached to the service we will find a role, which is the concrete distinct instance of a worker or consumer.

Role The individual worker or consumer. There is a separation between service and role because you can connect
many different roles to your bus that will provide the same service.

In effect, once you have described your work graph using a tree of event nodes, each one attached to a distinct
service, you’ll be able to spawn as many real workers (programs that provide a service) that will attach to one
service.

The bus will automatically distribute the work between all the roles that provide the same service.

Immediate reply Emitters of events marked as wanting an “immediate reply” will wait for a reply from the consumer
once they have called the “end_event” RPC call.

The reply will be sent via the return value of the “end_event” call.

The “immediate reply” flag is an attribute of event types.

Restrictions:

• Immediate replies are disallowed when more than one consumer is available to the emitter wishing to send
events with that flag.

• The consumer MUST announce support for the “Immediate reply” feature (see the documentation about
the Xbus recipient API for details).

10 Chapter 4. Semantics

CHAPTER 5

Source code documentation

5.1 Front-End

5.1.1 Front-end RPC

5.2 Back-End

5.2.1 Back-end RPC

5.2.2 Envelope

5.2.3 Event

5.2.4 Node

11

xbus.broker Documentation, Release 0.1.6-dev

12 Chapter 5. Source code documentation

CHAPTER 6

Xbus recipient API

Description of the API Xbus recipients must implement in order to register into an Xbus network.

Version of this document: 0.2.

Methods described in this document:

• get_metadata()

• ping()

• has_clearing()

• has_immediate_reply()

• start_event()

• send_item()

• end_event()

• end_envelope()

• stop_envelope()

6.1 Workflows

Recipients can receive multiple events concurently, the only constraint is that the broker cannot send start_event
to a recipient until it is “ready”.

start readysends ready processingreceives start_event
sends ready

13

xbus.broker Documentation, Release 0.1.6-dev

Events corresponding to a particular envelope are sequential. There is no start_envelope event, the recipient is
expected to infer the begining of envelopes with the envelope IDs passed in each event.

start in_eventstart_event

wait_event

start_event stop

end_envelope

stop_envelope

end_event

stop_envelope

6.2 get_metadata

get_metadata()
Required.

Called to ask for information about the recipient.

Return type dict

Returns

A dictionary.

Required return dictionary keys:

• name (string): Name of the recipient.

• version (float): Version of the recipient.

• api_version (float): Version of the Xbus recipient API.

• host (string): Host name of the server hosting the recipient.

• start_date (string): ISO 8601 date-time of When the recipient was started.

• local_time (string): ISO 8601 time on the recipient server.

Optional return dictionary keys:

• locale (string): Locale code, in a format specified by BCP 47
<http://tools.ietf.org/html/bcp47>.

6.3 ping

ping(token)
Required.

Called when Xbus wants to check whether the recipient is up.

Parameters token (str) – String that must be sent back.

Returns The token string sent as parameter.

14 Chapter 6. Xbus recipient API

http://docs.python.org/3/library/stdtypes.html#dict
http://tools.ietf.org/html/bcp47
http://docs.python.org/3/library/stdtypes.html#str

xbus.broker Documentation, Release 0.1.6-dev

6.4 has_clearing

has_clearing()
Required.

Called to determine whether the recipient supports the “data clearing” feature; and if it does, to get more infor-
mation about that process.

Returns

2-element tuple:

• Boolean indicating whether the feature is supported.

• URL of the data clearing database (or nothing if the feature is not supported). The database
must respect the schema described in the “Data clearing” section of the Xbus documentation.

6.5 has_immediate_reply

has_immediate_reply()
Required.

Called to determine whether the recipient supports the “immediate reply” feature.

Returns

2-element tuple:

• Boolean indicating whether the feature is supported.

• List of event type names the recipient declares immediate reply support for.

6.6 start_event

start_event(envelope_id, event_id, type_name)
Required.

Called when a new event is available.

Parameters

• envelope_id (str) – [TODO] String.

• event_id (str) – [TODO] String.

• type_name (str) – [TODO] String.

Returns [TODO] tuple.

6.7 send_item

send_item(envelope_id, event_id, indices, data)
Required.

Called to send the recipient an item.

Parameters

6.4. has_clearing 15

http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str

xbus.broker Documentation, Release 0.1.6-dev

• envelope_id (str) – [TODO] String.

• event_id (str) – [TODO] String.

• index (int) – index of the item in the event.

• data – [TODO] Byte array.

Returns [TODO] tuple.

6.8 end_event

end_event(envelope_id, event_id)
Required.

Called at the end of an event.

Parameters

• envelope_id (str) – [TODO] String.

• event_id (str) – [TODO] String.

Returns [TODO] tuple.

6.9 end_envelope

end_envelope(envelope_id)
Required.

Called once an envelope (and its individual events) has been sent.

Parameters envelope_id (str) – [TODO] String.

Returns [TODO] tuple.

6.10 stop_envelope

stop_envelope(envelope_id)
Required.

Called to signal an early envelope exit.

Parameters envelope_id (str) – [TODO] String.

Returns [TODO] boolean.

16 Chapter 6. Xbus recipient API

http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str

CHAPTER 7

Supervision

The supervision service monitors the state of recipients logged into the backend.

7.1 Configuration

Supervision is disabled by default To enable it, set the enabled option in the supervision section of broker’s the
configuration file.

Options:

enabled Whether to enable supervision, defaults to false

node.polling.interval How often recipients should be checked, the value is the time interval in seconds

node.polling.timeout The timeout for checking recipients, the value is the duration in seconds

node.misses.threshold The number of consecutive polling timeouts to wait before the recipient can be
considered lost, the value is the number of timeouts to allow

Example configuration:

[supervision]
; supervision is disabled by default for backwards compatibility
enabled = true
; polling time interval in seconds, determines how often event nodes are checked
node.polling.interval = 5
; time between pings
node.polling.timeout = 1
; number of timed out pings to allow before considering the recipient as lost
node.misses.threshold = 2

backsocket = inproc://#back2sup

7.2 Polling

Supervision works by checking recipient regularly to make sure that they are still available. The supervisor issues an
RPC call to each recipient using the Xbus recipient API.

If the RPC call fails, the recipient is considered to have ‘missed’ the call. After a number of misses (see
node.misses.threshold above) the recipient is considered as lost.

17

xbus.broker Documentation, Release 0.1.6-dev

When a recipient is deemed lost, the broker terminates that recipient’s session (logout). The broker backend keeps a
list of inactive recipients.

18 Chapter 7. Supervision

CHAPTER 8

Immediate reply Xbus feature

This document describes the “immediate reply” feature Xbus recipient nodes may implement.

If they do, they must appropriately answer the “has_immediate_reply” API call (see the section of the Xbus documen-
tation describing Xbus recipient API calls for details).

8.1 Description

See the Immediate reply” section of the Xbus documentation for details about this feature.

19

xbus.broker Documentation, Release 0.1.6-dev

20 Chapter 8. Immediate reply Xbus feature

CHAPTER 9

Data clearing Xbus feature

This document describes the “data clearing” feature Xbus recipient nodes may implement.

If they do, they must appropriately answer the “has_clearing” API call (see the section of the Xbus documentation
describing Xbus recipient API calls for details).

9.1 Feature dependencies

Xbus recipient nodes providing data clearing MUST also support:

• Immediate replies.

9.2 Database schema

A database must be available and initialized with the schema described below.

TODO

9.3 Monitor-consumer communication

This section describes how the Xbus monitor and Xbus recipient nodes providing data clearing communicate.

For general duties, the Xbus monitor directly accesses the database announced by Xbus recipient node providing data
clearing.

Certain specific operations, however, happen via requests emitted through the Xbus broker.

• Theses requests are enclosed into regular Xbus envelopes / events / items.

• The requests use the “immediate reply” feature (so a specific event type).

• The Xbus monitor is the emitter of these requests.

• Xbus recipient nodes providing data clearing are consumers of these requests.

Each data blob sent in “send_item” calls is a dictionary with an “action” key, referencing one of the following actions:

• “get_item_details”: Provide details about a data clearing item.

Compulsory dictionary keys:

– item_id: ID of the data clearing item to clear.

21

xbus.broker Documentation, Release 0.1.6-dev

• “clear_items”: “Clear” a data clearing item. Compulsory dictionary keys:

– item_id: ID of the data clearing item to clear.

– values.

22 Chapter 9. Data clearing Xbus feature

CHAPTER 10

TODO

23

xbus.broker Documentation, Release 0.1.6-dev

24 Chapter 10. TODO

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

25

xbus.broker Documentation, Release 0.1.6-dev

26 Chapter 11. Indices and tables

Index

C
Consumer, 10

E
Emitter, 10
Emitter Profile, 10
end_envelope() (built-in function), 16
end_event() (built-in function), 16
Envelope, 9
Event, 9
Event Node, 10
Event Type, 9

G
get_metadata() (built-in function), 14

H
has_clearing() (built-in function), 15
has_immediate_reply() (built-in function), 15

I
Immediate reply, 10
Item, 10

P
ping() (built-in function), 14

R
Recipient, 10
Role, 10

S
send_item() (built-in function), 15
Service, 10
start_event() (built-in function), 15
stop_envelope() (built-in function), 16

W
Worker, 10

27

	Getting started
	With docker
	Using the source code

	General Presentation
	High coherence
	Low coupling
	Xbus

	Architecture overview
	Frontend
	Backend

	Semantics
	Source code documentation
	Front-End
	Back-End

	Xbus recipient API
	Workflows
	get_metadata
	ping
	has_clearing
	has_immediate_reply
	start_event
	send_item
	end_event
	end_envelope
	stop_envelope

	Supervision
	Configuration
	Polling

	Immediate reply Xbus feature
	Description

	Data clearing Xbus feature
	Feature dependencies
	Database schema
	Monitor-consumer communication

	TODO
	Indices and tables

