
wtforms-webwidgets Documentation
Release 0.1

Nick Whyte

Jan 02, 2018

Contents

1 Common Library 1

2 Bootstrap 3

3 Extending 5

4 Usage In Flask (And Others) 7

i

ii

CHAPTER 1

Common Library

1

wtforms-webwidgets Documentation, Release 0.1

2 Chapter 1. Common Library

CHAPTER 2

Bootstrap

default_widgets
A dictionary defining the default widget type for each kind of WTForms Field.

Very useful when using FieldRenderer to automatically render your fields without declaring
widget=MyWidget().

2.1 Core

2.2 HTML5

2.3 Extras

2.4 Util

2.5 Abstract Widgets

3

wtforms-webwidgets Documentation, Release 0.1

4 Chapter 2. Bootstrap

CHAPTER 3

Extending

3.1 Making Widgets For Your Favourite Framework

Create a submodule within this module named the title of the web framework you wish to bring functionality to.

When creating widgets from scratch, be sure to apply the wtforms_webwidgets.common.
CustomWidgetMixin mixin to your class.

If you are extending an existing wtforms.widgets class, decorate it with wtforms_webwidgets.common.
custom_widget_wrapper. This allows our FieldRenderer know this is a custom widget, and not to check
the lookup dictionary to render a field which has this widget.

3.2 Contibuting

To contribute your improvements to this library, please fork the repository, add functionality and submit a pull request.

5

wtforms-webwidgets Documentation, Release 0.1

6 Chapter 3. Extending

CHAPTER 4

Usage In Flask (And Others)

When declaring fields as part of a form using WTForms, if you wished to set a custom widget for a field, you would
need to set widget=MyWidget().

I have found when overriding all widgets with some skinned widgets, it’s very tedious and prone to errors to set this
value every time. Instead, it is more intuitive to set a dictionary of defaults, and look up field types and get their
apropriate widget.

To use this method we need:

1. A way of identifying when a widget has been set from the Field kwargs.

2. A way of overriding a default widget when it is not provided.

I have found that it is most aproriatly done within a render_field templating macro.

Provided within the common submodule of this framework is the class FieldRenderer. This class provides an
interface for setting a lookup table for default renderers and a method to render a given field.

4.1 Example

An example from Flask/Jinja.

from wtforms_webwidgets import FieldRenderer
from wtforms_webwidgets.bootstrap import default_widgets

renderer = FieldRenderer(lookup_dict=default_widgets)

Alternatively, you can declare your own lookup dictionary:
import wtforms_webwidgets.bootstrap as wt_bs
renderer = FieldRenderer(lookup_dict={

'TextField': wt_bs.TextInput(),
})

Example for injecting into Jinja within Flask
app.jinja_env.globals['render_field'] = renderer

7

wtforms-webwidgets Documentation, Release 0.1

Now, within your templates you can do the following:

{{ render_field(form.my_field) }}

If the widget was not declared with a custom widget, it will be renderered accordingly to the FieldRender’s lookup
dictionary.

8 Chapter 4. Usage In Flask (And Others)

Index

D
default_widgets, 3

9

	Common Library
	Bootstrap
	Extending
	Usage In Flask (And Others)

