
wsproto
Release 1.2.0

Aug 23, 2022

Contents

1 Installation 3

2 Getting Started 5
2.1 Connections . 5
2.2 WebSocket Clients . 6
2.3 WebSocket Servers . 7
2.4 Protocol Errors . 7
2.5 Closing . 7
2.6 Ping Pong . 8

3 Advanced Usage 9
3.1 Back-pressure . 9
3.2 Post handshake connection . 10
3.3 HTTP/2 . 10

4 wsproto API 11
4.1 Semantic Versioning . 11
4.2 Connection . 11
4.3 Handshake . 12
4.4 Events . 13
4.5 Frame Protocol . 16
4.6 Extensions . 17
4.7 Exceptions . 18

Index 19

i

ii

wsproto, Release 1.2.0

wsproto is a WebSocket protocol stack written to be as flexible as possible. To that end it is written in pure Python and
performs no I/O of its own. Instead it relies on the user to provide a bridge between it and whichever I/O mechanism
is in use, allowing it to be used in single-threaded, multi-threaded or event-driven code.

The goal for wsproto is 100% compliance with RFC 6455. Additionally a mechanism is provided to add extensions
allowing the implementation of extra functionally such as per-message compression as specified in RFC 7692.

For usage examples, see Getting Started or see the examples provided.

Contents:

Contents 1

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc7692

wsproto, Release 1.2.0

2 Contents

CHAPTER 1

Installation

wsproto is a pure Python project. To install it you can use pip like so:

$ pip install wsproto

Alternatively you can get either a release tarball or a development branch from our GitHub repository and run:

$ python setup.py install

3

https://github.com/python-hyper/wsproto

wsproto, Release 1.2.0

4 Chapter 1. Installation

CHAPTER 2

Getting Started

This document explains how to get started using wsproto to connect to WebSocket servers as well as how to write your
own.

We assume some level of familiarity with writing Python and networking code. If you’re not familiar with these we
highly recommend you read up on these first. It may also be helpful to study Sans-I/O, which describes the ideas
behind writing a network protocol library that doesn’t do any network I/O.

2.1 Connections

The main class you’ll be working with is the WSConnection object. This object represents a connection to a
WebSocket peer. This class can handle both WebSocket clients and WebSocket servers.

wsproto provides two layers of abstractions. You need to write code that interfaces with both of these layers. The
following diagram illustrates how your code is like a sandwich around wsproto.

Application
APPLICATION GLUE
wsproto
NETWORK GLUE
Network Layer

wsproto does not do perform any network I/O, so NETWORK GLUE represents the code you need to write to glue
wsproto to an actual network, for example using Python’s socket module. The WSConnection class provides two
methods for this purpose. When data has been received on a network socket, you should feed this data into a connection
instance by calling WSConnection.receive_data(). When you want to communicate with the remote peer,
e.g. send a message, ping, or close the connection, you should create an instance of one of the wsproto.events.
Event subclasses and pass it to WSConnection.send() to get the corresponding bytes that need to be sent. Your
code is responsible for actually sending that data over the network.

5

https://docs.python.org/3/howto/sockets.html
https://sans-io.readthedocs.io/
https://docs.python.org/3/library/socket.html

wsproto, Release 1.2.0

Note: If the connection drops, a standard Python socket.recv() will return zero bytes. You should call
receive_data(None) to update the internal wsproto state to indicate that the connection has been closed.

Internally, wsproto processes the raw network data you feed into it and turns it into higher level representations
of WebSocket events. In APPLICATION GLUE, you need to write code to process these events. Incoming data is
exposed though the generator method WSConnection.events(), which yields WebSocket events. Each event is
an instance of an events.Event subclass.

2.2 WebSocket Clients

Begin by instantiating a connection object in client mode and then create a wsproto.events.Request instance.
The Request must specify host and target arguments. If the WebSocket server is located at http://example.
com/foo, then you would instantiate the connection as follows:

from wsproto import ConnectionType, WSConnection
from wsproto.events import Request
ws = WSConnection(ConnectionType.CLIENT)
request = Request(host="example.com", target='foo')
data = ws.send(request)

Keep in mind that wsproto does not do any network I/O. Instead, WSConnection.send() returns data that you
must send to the remote peer. Here is an example using a standard Python socket:

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(("example.com", 80))
sock.send(data)

To receive communications from the peer, you must pass the data received from the peer into the connection instance:

data = sock.recv(4096)
ws.receive_data(data)

The connection instance parses the received data and determines if any high-level events have occurred, such as
receiving a ping or a message. To retrieve these events, use the generator function WSConnection.events():

for event in ws.events():
if isinstance(event, AcceptConnection):

print('Connection established')
elif isinstance(event, RejectConnection):

print('Connection rejected')
elif isinstance(event, CloseConnection):

print('Connection closed: code={} reason={}'.format(
event.code, event.reason

))
sock.send(ws.send(event.response()))

elif isinstance(event, Ping):
print('Received Ping frame with payload {}'.format(event.payload))
sock.send(ws.send(event.response()))

elif isinstance(event, TextMessage):
print('Received TEXT data: {}'.format(event.data))
if event.message_finished:

print('Message finished.')
elif isinstance(event, BytesMessage):

(continues on next page)

6 Chapter 2. Getting Started

wsproto, Release 1.2.0

(continued from previous page)

print('Received BINARY data: {}'.format(event.data))
if event.message_finished:

print('BINARY Message finished.')
else:

print('Unknown event: {!r}'.format(event))

The method events() returns a generator which will yield events for all of the data currently in the wsproto
internal buffer and then exit. Therefore, you should iterate over this generator after receiving new network data.

For a more complete example, see synchronous_client.py.

2.3 WebSocket Servers

A WebSocket server is similar to a client, but it uses a different wsproto.ConnectionType constant.

from wsproto import ConnectionType, WSConnection
from wsproto.events import Request
ws = WSConnection(ConnectionType.SERVER)

A server also needs to explicitly send an AcceptConnection after it receives a Request event:

for event in ws.events():
if isinstance(event, Request):

print('Accepting connection request')
sock.send(ws.send(AcceptConnection()))

elif...

Alternatively a server can explicitly reject the connection by sending RejectConnection after receiving a
Request event.

For a more complete example, see synchronous_server.py.

2.4 Protocol Errors

Protocol errors relating to either incorrect data or incorrect state changes are raised when the connection receives
data or when events are sent. A LocalProtocolError is raised if the local actions are in error whereas a
RemoteProtocolError is raised if the remote actions are in error.

2.5 Closing

WebSockets are closed with a handshake that requires each endpoint to send one frame and receive one frame. Sending
a CloseConnection instance sets the state to LOCAL_CLOSING. When a close frame is received, it yields a
CloseConnection event, sets the state to REMOTE_CLOSING and requires a reply to be sent. This reply should
be a CloseConnection event. To aid with this the CloseConnection class has a response() method to
create the appropriate reply. For example,

if isinstance(event, CloseConnection):
sock.send(ws.send(event.response()))

2.3. WebSocket Servers 7

https://github.com/python-hyper/wsproto/blob/main/example/synchronous_client.py
https://github.com/python-hyper/wsproto/blob/main/example/synchronous_server.py

wsproto, Release 1.2.0

When the reply has been received by the initiator, it will also yield a CloseConnection event.

Regardless of which endpoint initiates the closing handshake, the server is responsible for tearing down the underlying
connection. When a CloseConnection event is generated, it should send pending any wsproto data and then
tear down the underlying connection.

Note: Both client and server connections must remember to reply to CloseConnection events initiated by the
remote party.

2.6 Ping Pong

The WSConnection class supports sending WebSocket ping and pong frames via sending Ping and Pong. When
a Ping frame is received it requires a reply, this reply should be a Pong event. To aid with this the Ping class has
a response() method to create the appropriate reply. For example,

if isinstance(event, Ping):
sock.send(ws.send(event.response()))

Note: Both client and server connections must remember to reply to Ping events initiated by the remote party.

8 Chapter 2. Getting Started

CHAPTER 3

Advanced Usage

This document explains some of the more advanced usage concepts with wsproto. This is assume you are familiar
with wsproto and I/O in Python.

3.1 Back-pressure

Back-pressure is an important concept to understand when implementing a client/server protocol. This section briefly
explains the issue and then explains how to handle back-pressure when using wsproto.

Imagine that you have a WebSocket server that reads messages from the client, does some processing, and then
sends a response. What happens if the client sends messages faster than the server can process them? If
the incoming messages are buffered in memory, then the server will slowly use more and more memory, un-
til the OS eventually kills it. This scenario is directly applicable to wsproto, because every time you call
receive_data(some_byte_string_of_data), it appends that data to an internal buffer.

The slow endpoint needs a way to signal the fast endpoint to stop sending messages until the slow endpoint can catch
up. This signaling is called “back-pressure”. As a Sans-IO library, wsproto is not responsible for network concerns
like back-pressure, so that responsibility belongs to your network glue code.

Fortunately, TCP has the ability to signal backpressure, and the operating system will do that for you automatically—if
you follow a few rules! The OS buffers all incoming and outgoing network data. Standard Python socket methods,
such as send(...) and recv(), copy data to and from those OS buffers. For example, if the peer is sending data
too quickly, then the OS receive buffer will start to get full, and the OS will signal the peer to stop transmitting. When
recv() is called, the OS will copy data from its internal buffer into your process, free up space in its own buffer, and
then signal to the peer to start transmitting again.

Therefore, you need to follow these two rules to implement back-pressure over TCP:

1. Do not receive from the socket faster than your code can process the messages. Your processing code may need
to signal the receiving code when its ready to receive more data.

2. Do not store out-going messages in an unbounded collection. Ideally, out-going messages should be sent to the
OS as soon as possible. If you need to buffer messages in memory, the buffer should be bounded so that it can
not grow indefinitely.

9

wsproto, Release 1.2.0

3.2 Post handshake connection

A WebSocket connection starts with a handshake, which is an agreement to use the WebSocket protocol, and on which
sub-protocol and extensions to use. It can be advantageous to perform this handshake outside of wsproto, for example
in a dual stack setup whereby the HTTP handling is completed seperately. In this case the Connection class can be
used directly.

connection = Connection(extensions) # Agreed extensions
sock.send(connection.send(Message(data=b"Hi")))

connection.receive_data(sock.recv(4096))

for event in connection.events():
As with WSConnection, only without any handshake events

3.3 HTTP/2

WebSockets over HTTP/2 have a distinct difference to HTTP/1 in that only a single HTTP/2 stream is dedicated to
the WebSocket rather than the entire connection (as in HTTP/1). This requires the HTTP/2 connection to be managed
before the WebSocket connection with Hyper-h2 being recommended for HTTP/2.

Although wsproto doesn’t manage the HTTP/2 connection it can still be used for the WebSocket stream. The HTTP/2
connection will need to handshake the WebSocket stream, with the key being agreement on the extensions used. Once
the extensions have been agreed the Connection class can be used to manage the WebSocket connection, noting
that data to be sent or received will need to be parsed by the HTTP/2 connection first. In practice for a server this looks
like,

from wsproto.connection import Connection, ConnectionType
from wsproto.extensions import PerMessageDeflate
from wsproto.handshake import server_extensions_handshake

WebSocket request has been received
request_extensions: List[str]
supported_extensions = [PerMessageDeflate()]
accepts = server_extensions_handshake(request_extensions, supported_extensions)
if accepts:

response_headers.append({"sec-websocket-extensions": accepts})
Send the response headers
connection = Connection(ConnectionType.SERVER, supported_extensions)

and for a client

from wsproto.connection import Connection, ConnectionType
from wsproto.extensions import PerMessageDeflate
from wsproto.handshake import client_extensions_handshake

WebSocket response has been received
accepted_extensions: List[str]
proposed_extensions = [PerMessageDeflate()]
extensions = client_extensions_handshake(accepted_extensions, proposed_extensions)
connection = Connection(ConnectionType.CLIENT, supported_extensions)

any data received on the stream should be passed to the connection via the receive_bytes method and bytes
returned from the connection.send method should be wrapped in a HTTP/2 data frame and sent.

10 Chapter 3. Advanced Usage

https://python-hyper.org/h2

CHAPTER 4

wsproto API

This document details the API of wsproto.

4.1 Semantic Versioning

wsproto follows semantic versioning for its public API. Please note that the guarantees of semantic versioning apply
only to the API that is documented here. Simply because a method or data field is not prefaced by an underscore does
not make it part of wsproto’s public API. Anything not documented here is subject to change at any time.

4.2 Connection

class wsproto.WSConnection(connection_type: wsproto.connection.ConnectionType)
Represents the local end of a WebSocket connection to a remote peer.

__init__(connection_type: wsproto.connection.ConnectionType)→ None
Constructor

Parameters connection_type (wsproto.connection.ConnectionType) – Con-
trols whether the library behaves as a client or as a server.

events()→ Generator[wsproto.events.Event, None, None]
A generator that yields pending events.

Each event is an instance of a subclass of wsproto.events.Event.

receive_data(data: Optional[bytes])→ None
Feed network data into the connection instance.

After calling this method, you should call events() to see if the received data triggered any new events.

Parameters data (bytes) – Data received from remote peer

11

https://docs.python.org/3/library/stdtypes.html#bytes

wsproto, Release 1.2.0

send(event: wsproto.events.Event)→ bytes
Generate network data for the specified event.

When you want to communicate with a WebSocket peer, you should construct an event and pass it to this
method. This method will return the bytes that you should send to the peer.

Parameters event (wsproto.events.Event) – The event to generate data for

Returns bytes The data to send to the peer

state

Returns Connection state

Return type wsproto.connection.ConnectionState

class wsproto.ConnectionType
An enumeration of connection types.

CLIENT = 1
This connection will act as client and talk to a remote server

SERVER = 2
This connection will as as server and waits for client connections

class wsproto.connection.ConnectionState
RFC 6455, Section 4 - Opening Handshake

CLOSED = 4
The closing handshake has completed.

CONNECTING = 0
The opening handshake is in progress.

LOCAL_CLOSING = 3
The local WebSocket (i.e. this instance) has initiated a connection close.

OPEN = 1
The opening handshake is complete.

REJECTING = 5
The connection was rejected during the opening handshake.

REMOTE_CLOSING = 2
The remote WebSocket has initiated a connection close.

4.3 Handshake

class wsproto.handshake.H11Handshake(connection_type: wsproto.connection.ConnectionType)
A Handshake implementation for HTTP/1.1 connections.

connection
Return the established connection.

This will either return the connection or raise a LocalProtocolError if the connection has not yet been
established.

Return type h11.Connection

events()→ Generator[wsproto.events.Event, None, None]
Return a generator that provides any events that have been generated by protocol activity.

Returns a generator that yields H11 events.

12 Chapter 4. wsproto API

wsproto, Release 1.2.0

initiate_upgrade_connection(headers: List[Tuple[bytes, bytes]], path: Union[bytes, str])→
None

Initiate an upgrade connection.

This should be used if the request has already be received and parsed.

Parameters

• headers (list) – HTTP headers represented as a list of 2-tuples.

• path (str) – A URL path.

receive_data(data: Optional[bytes])→ None
Receive data from the remote.

A list of events that the remote peer triggered by sending this data can be retrieved with events().

Parameters data (bytes) – Data received from the WebSocket peer.

send(event: wsproto.events.Event)→ bytes
Send an event to the remote.

This will return the bytes to send based on the event or raise a LocalProtocolError if the event is not valid
given the state.

Returns Data to send to the WebSocket peer.

Return type bytes

wsproto.handshake.client_extensions_handshake(accepted: Iterable[str], supported: Se-
quence[wsproto.extensions.Extension])
→ List[wsproto.extensions.Extension]

wsproto.handshake.server_extensions_handshake(requested: Iterable[str], supported:
List[wsproto.extensions.Extension]) →
Optional[bytes]

Agree on the extensions to use returning an appropriate header value.

This returns None if there are no agreed extensions

4.4 Events

Event constructors accept any field as a keyword argument. Some fields are required, while others have default values.

class wsproto.events.Event
Base class for wsproto events.

class wsproto.events.Request(host: str, target: str, extensions:
Union[Sequence[wsproto.extensions.Extension], Sequence[str]] =
<factory>, extra_headers: List[Tuple[bytes, bytes]] = <factory>,
subprotocols: List[str] = <factory>)

The beginning of a Websocket connection, the HTTP Upgrade request

This event is fired when a SERVER connection receives a WebSocket handshake request (HTTP with upgrade
header).

Fields:

host
(Required) The hostname, or host header value.

4.4. Events 13

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

wsproto, Release 1.2.0

target
(Required) The request target (path and query string)

extensions
The proposed extensions.

extra_headers
The additional request headers, excluding extensions, host, subprotocols, and version headers.

subprotocols
A list of the subprotocols proposed in the request, as a list of strings.

class wsproto.events.AcceptConnection(subprotocol: Optional[str] = None, extensions:
List[wsproto.extensions.Extension] = <factory>, ex-
tra_headers: List[Tuple[bytes, bytes]] = <factory>)

The acceptance of a Websocket upgrade request.

This event is fired when a CLIENT receives an acceptance response from a server. It is also used to accept an
upgrade request when acting as a SERVER.

Fields:

extra_headers
Any additional (non websocket related) headers present in the acceptance response.

subprotocol
The accepted subprotocol to use.

class wsproto.events.RejectConnection(status_code: int = 400, headers: List[Tuple[bytes,
bytes]] = <factory>, has_body: bool = False)

The rejection of a Websocket upgrade request, the HTTP response.

The RejectConnection event sends the appropriate HTTP headers to communicate to the peer that the
handshake has been rejected. You may also send an HTTP body by setting the has_body attribute to True
and then sending one or more RejectData events after this one. When sending a response body, the caller
should set the Content-Length, Content-Type, and/or Transfer-Encoding headers as appropriate.

When receiving a RejectConnection event, the has_body attribute will in almost all cases be True
(even if the server set it to False) and will be followed by at least one RejectData events, even though the
data itself might be just b"". (The only scenario in which the caller receives a RejectConnection with
has_body == False is if the peer violates sends an informational status code (1xx) other than 101.)

The has_body attribute should only be used when receiving the event. (It has) is False the headers must
include a content-length or transfer encoding.

Fields:

headers(Headers)
The headers to send with the response.

has_body
This defaults to False, but set to True if there is a body. See also RejectData.

status_code
The response status code.

class wsproto.events.RejectData(data: bytes, body_finished: bool = True)
The rejection HTTP response body.

The caller may send multiple RejectData events. The final event should have the body_finished at-
tribute set to True.

Fields:

14 Chapter 4. wsproto API

wsproto, Release 1.2.0

body_finished
True if this is the final chunk of the body data.

data(bytes)
(Required) The raw body data.

class wsproto.events.CloseConnection(code: int, reason: Optional[str] = None)
The end of a Websocket connection, represents a closure frame.

wsproto does not automatically send a response to a close event. To comply with the RFC you MUST send
a close event back to the remote WebSocket if you have not already sent one. The response() method
provides a suitable event for this purpose, and you should check if a response needs to be sent by checking
wsproto.WSConnection.state().

Fields:

code
(Required) The integer close code to indicate why the connection has closed.

reason
Additional reasoning for why the connection has closed.

response()→ wsproto.events.CloseConnection
Generate an RFC-compliant close frame to send back to the peer.

class wsproto.events.Message(data: T, frame_finished: bool = True, message_finished: bool =
True)

The websocket data message.

Fields:

data
(Required) The message data as byte string, can be decoded as UTF-8 for TEXT messages. This only
represents a single chunk of data and not a full WebSocket message. You need to buffer and reassemble
these chunks to get the full message.

frame_finished
This has no semantic content, but is provided just in case some weird edge case user wants to be able to
reconstruct the fragmentation pattern of the original stream.

message_finished
True if this frame is the last one of this message, False if more frames are expected.

class wsproto.events.TextMessage(data: str, frame_finished: bool = True, message_finished:
bool = True)

This event is fired when a data frame with TEXT payload is received.

Fields:

data
The message data as string, This only represents a single chunk of data and not a full WebSocket message.
You need to buffer and reassemble these chunks to get the full message.

class wsproto.events.BytesMessage(data: bytes, frame_finished: bool = True, message_finished:
bool = True)

This event is fired when a data frame with BINARY payload is received.

Fields:

data
The message data as byte string, can be decoded as UTF-8 for TEXT messages. This only represents a
single chunk of data and not a full WebSocket message. You need to buffer and reassemble these chunks
to get the full message.

4.4. Events 15

wsproto, Release 1.2.0

class wsproto.events.Ping(payload: bytes = b”)
The Ping event can be sent to trigger a ping frame and is fired when a Ping is received.

wsproto does not automatically send a pong response to a ping event. To comply with the RFC you MUST
send a pong even as soon as is practical. The response() method provides a suitable event for this purpose.

Fields:

payload
An optional payload to emit with the ping frame.

response()→ wsproto.events.Pong
Generate an RFC-compliant Pong response to this ping.

class wsproto.events.Pong(payload: bytes = b”)
The Pong event is fired when a Pong is received.

Fields:

payload
An optional payload to emit with the pong frame.

4.5 Frame Protocol

class wsproto.frame_protocol.Opcode
RFC 6455, Section 5.2 - Base Framing Protocol

BINARY = 2
Binary message

CLOSE = 8
Close frame

CONTINUATION = 0
Continuation frame

PING = 9
Ping frame

PONG = 10
Pong frame

TEXT = 1
Text message

class wsproto.frame_protocol.CloseReason
RFC 6455, Section 7.4.1 - Defined Status Codes

ABNORMAL_CLOSURE = 1006
is a reserved value and MUST NOT be set as a status code in a Close control frame by an endpoint. It
is designated for use in applications expecting a status code to indicate that the connection was closed
abnormally, e.g., without sending or receiving a Close control frame.

GOING_AWAY = 1001
indicates that an endpoint is “going away”, such as a server going down or a browser having navigated
away from a page.

INTERNAL_ERROR = 1011
indicates that a server is terminating the connection because it encountered an unexpected condition that
prevented it from fulfilling the request.

16 Chapter 4. wsproto API

wsproto, Release 1.2.0

INVALID_FRAME_PAYLOAD_DATA = 1007
indicates that an endpoint is terminating the connection because it has received data within a message that
was not consistent with the type of the message (e.g., non-UTF-8 [RFC3629] data within a text message).

MANDATORY_EXT = 1010
indicates that an endpoint (client) is terminating the connection because it has expected the server to ne-
gotiate one or more extension, but the server didn’t return them in the response message of the WebSocket
handshake. The list of extensions that are needed SHOULD appear in the /reason/ part of the Close frame.
Note that this status code is not used by the server, because it can fail the WebSocket handshake instead.

MESSAGE_TOO_BIG = 1009
indicates that an endpoint is terminating the connection because it has received a message that is too big
for it to process.

NORMAL_CLOSURE = 1000
indicates a normal closure, meaning that the purpose for which the connection was established has been
fulfilled.

NO_STATUS_RCVD = 1005
is a reserved value and MUST NOT be set as a status code in a Close control frame by an endpoint. It
is designated for use in applications expecting a status code to indicate that no status code was actually
present.

POLICY_VIOLATION = 1008
indicates that an endpoint is terminating the connection because it has received a message that violates its
policy. This is a generic status code that can be returned when there is no other more suitable status code
(e.g., 1003 or 1009) or if there is a need to hide specific details about the policy.

PROTOCOL_ERROR = 1002
indicates that an endpoint is terminating the connection due to a protocol error.

SERVICE_RESTART = 1012
Server/service is restarting (not part of RFC6455)

TLS_HANDSHAKE_FAILED = 1015
is a reserved value and MUST NOT be set as a status code in a Close control frame by an endpoint. It is
designated for use in applications expecting a status code to indicate that the connection was closed due to
a failure to perform a TLS handshake (e.g., the server certificate can’t be verified).

TRY_AGAIN_LATER = 1013
Temporary server condition forced blocking client’s request (not part of RFC6455)

UNSUPPORTED_DATA = 1003
indicates that an endpoint is terminating the connection because it has received a type of data it cannot
accept (e.g., an endpoint that understands only text data MAY send this if it receives a binary message).

4.6 Extensions

class wsproto.extensions.Extension

wsproto.extensions.SUPPORTED_EXTENSIONS = {'permessage-deflate': <class 'wsproto.extensions.PerMessageDeflate'>}
SUPPORTED_EXTENSIONS maps all supported extension names to their class. This can be used to iterate all
supported extensions of wsproto, instantiate new extensions based on their name, or check if a given extension
is supported or not.

4.6. Extensions 17

wsproto, Release 1.2.0

4.7 Exceptions

class wsproto.utilities.LocalProtocolError
Indicates an error due to local/programming errors.

This is raised when the connection is asked to do something that is either incompatible with the state or the
websocket standard.

class wsproto.utilities.RemoteProtocolError(message: str, event_hint: Op-
tional[wsproto.events.Event] = None)

Indicates an error due to the remote’s actions.

This is raised when processing the bytes from the remote if the remote has sent data that is incompatible with
the websocket standard.

event_hint
This is a suggested wsproto Event to send to the client based on the error. It could be None if no hint is
available.

18 Chapter 4. wsproto API

Index

Symbols
__init__() (wsproto.WSConnection method), 11

A
ABNORMAL_CLOSURE (wsproto.frame_protocol.CloseReason

attribute), 16
AcceptConnection (class in wsproto.events), 14

B
BINARY (wsproto.frame_protocol.Opcode attribute), 16
body_finished (wsproto.events.RejectData at-

tribute), 14
BytesMessage (class in wsproto.events), 15

C
CLIENT (wsproto.ConnectionType attribute), 12
client_extensions_handshake() (in module

wsproto.handshake), 13
CLOSE (wsproto.frame_protocol.Opcode attribute), 16
CloseConnection (class in wsproto.events), 15
CLOSED (wsproto.connection.ConnectionState at-

tribute), 12
CloseReason (class in wsproto.frame_protocol), 16
code (wsproto.events.CloseConnection attribute), 15
CONNECTING (wsproto.connection.ConnectionState at-

tribute), 12
connection (wsproto.handshake.H11Handshake at-

tribute), 12
ConnectionState (class in wsproto.connection), 12
ConnectionType (class in wsproto), 12
CONTINUATION (wsproto.frame_protocol.Opcode at-

tribute), 16

D
data (wsproto.events.BytesMessage attribute), 15
data (wsproto.events.Message attribute), 15
data (wsproto.events.RejectData attribute), 15
data (wsproto.events.TextMessage attribute), 15

E
Event (class in wsproto.events), 13
event_hint (wsproto.utilities.RemoteProtocolError

attribute), 18
events() (wsproto.handshake.H11Handshake

method), 12
events() (wsproto.WSConnection method), 11
Extension (class in wsproto.extensions), 17
extensions (wsproto.events.Request attribute), 14
extra_headers (wsproto.events.AcceptConnection

attribute), 14
extra_headers (wsproto.events.Request attribute),

14

F
frame_finished (wsproto.events.Message attribute),

15

G
GOING_AWAY (wsproto.frame_protocol.CloseReason at-

tribute), 16

H
H11Handshake (class in wsproto.handshake), 12
has_body (wsproto.events.RejectConnection attribute),

14
headers (wsproto.events.RejectConnection attribute),

14
host (wsproto.events.Request attribute), 13

I
initiate_upgrade_connection()

(wsproto.handshake.H11Handshake method),
12

INTERNAL_ERROR (wsproto.frame_protocol.CloseReason
attribute), 16

INVALID_FRAME_PAYLOAD_DATA
(wsproto.frame_protocol.CloseReason at-
tribute), 16

19

wsproto, Release 1.2.0

L
LOCAL_CLOSING (wsproto.connection.ConnectionState

attribute), 12
LocalProtocolError (class in wsproto.utilities), 18

M
MANDATORY_EXT (wsproto.frame_protocol.CloseReason

attribute), 17
Message (class in wsproto.events), 15
message_finished (wsproto.events.Message at-

tribute), 15
MESSAGE_TOO_BIG (wsproto.frame_protocol.CloseReason

attribute), 17

N
NO_STATUS_RCVD (wsproto.frame_protocol.CloseReason

attribute), 17
NORMAL_CLOSURE (wsproto.frame_protocol.CloseReason

attribute), 17

O
Opcode (class in wsproto.frame_protocol), 16
OPEN (wsproto.connection.ConnectionState attribute),

12

P
payload (wsproto.events.Ping attribute), 16
payload (wsproto.events.Pong attribute), 16
Ping (class in wsproto.events), 15
PING (wsproto.frame_protocol.Opcode attribute), 16
POLICY_VIOLATION (wsproto.frame_protocol.CloseReason

attribute), 17
Pong (class in wsproto.events), 16
PONG (wsproto.frame_protocol.Opcode attribute), 16
PROTOCOL_ERROR (wsproto.frame_protocol.CloseReason

attribute), 17

R
reason (wsproto.events.CloseConnection attribute), 15
receive_data() (wsproto.handshake.H11Handshake

method), 13
receive_data() (wsproto.WSConnection method),

11
RejectConnection (class in wsproto.events), 14
RejectData (class in wsproto.events), 14
REJECTING (wsproto.connection.ConnectionState at-

tribute), 12
REMOTE_CLOSING (wsproto.connection.ConnectionState

attribute), 12
RemoteProtocolError (class in wsproto.utilities),

18
Request (class in wsproto.events), 13

response() (wsproto.events.CloseConnection
method), 15

response() (wsproto.events.Ping method), 16

S
send() (wsproto.handshake.H11Handshake method),

13
send() (wsproto.WSConnection method), 11
SERVER (wsproto.ConnectionType attribute), 12
server_extensions_handshake() (in module

wsproto.handshake), 13
SERVICE_RESTART (wsproto.frame_protocol.CloseReason

attribute), 17
state (wsproto.WSConnection attribute), 12
status_code (wsproto.events.RejectConnection at-

tribute), 14
subprotocol (wsproto.events.AcceptConnection at-

tribute), 14
subprotocols (wsproto.events.Request attribute), 14
SUPPORTED_EXTENSIONS (in module

wsproto.extensions), 17

T
target (wsproto.events.Request attribute), 13
TEXT (wsproto.frame_protocol.Opcode attribute), 16
TextMessage (class in wsproto.events), 15
TLS_HANDSHAKE_FAILED

(wsproto.frame_protocol.CloseReason at-
tribute), 17

TRY_AGAIN_LATER (wsproto.frame_protocol.CloseReason
attribute), 17

U
UNSUPPORTED_DATA (wsproto.frame_protocol.CloseReason

attribute), 17

W
WSConnection (class in wsproto), 11

20 Index

	Installation
	Getting Started
	Connections
	WebSocket Clients
	WebSocket Servers
	Protocol Errors
	Closing
	Ping Pong

	Advanced Usage
	Back-pressure
	Post handshake connection
	HTTP/2

	wsproto API
	Semantic Versioning
	Connection
	Handshake
	Events
	Frame Protocol
	Extensions
	Exceptions

	Index

