
wrfxpy Documentation
Release 1.0.0

Martin Vejmelka

Nov 25, 2018

Contents

1 Basic topics 3

2 Advanced topics 15

3 Indices and tables 17

i

ii

wrfxpy Documentation, Release 1.0.0

wrfxpy is a set of software modules that provide functionality related to running WPS and WRF.

In particular, the modules herein can:

• manipulate wps/input/fire namelists

• place and setup domains dynamically

• download GRIB files from various GRIB sources

• execute geogrid, ungrib, metgrid, real, WRF

• monitor WRF execution

• perform fuel moisture data assimilation using RAWS observations from the Mesowest network

• postprocess netCDF files to generate raster images or KMZ raster files

• assemble simulation outputs into coherent packages for visualization and synchronize them with a remote wr-
fxweb server

Contents 1

http://www.openwfm.org/
http://www.unidata.ucar.edu/software/netcdf/

wrfxpy Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Basic topics

1.1 Installation

1.1.1 Recommended method

We recommend using the Anaconda Python distribution. Alternative installation instructions are given at the bottom.

WPS/WRF-SFIRE

Please follow the instructions on OpenWFM to run WPS/WRF with real data. Ensure that you have working
WPS/WRF installation is available and compatible with the MPI on your cluster. Note that wrfxpy will not mod-
ify the WPS/WRF installation, instead for each job, it will clone their directories into its workspace.

Attention: Past this point, you should be able to run a fire simulation yourself, that is have a working WPS/
WRF-SFIRE installation including WPS-GEOG and fuels/topography downloaded. You should be able to submit
a parallel job into your cluster/supercomputer to run wrf.exe

Python and packages

Download and install the Python 2 Anaconda Python distribution for your platform. We recommend an installation
into the users home directory.

:: wget https://repo.continuum.io/archive/Anaconda2-5.3.0-Linux-x86_64.sh chmod +x Anaconda2-5.3.0-Linux-
x86_64.sh ./Anaconda2-5.3.0-Linux-x86_64.sh

Install pre-requisites:

conda install basemap netcdf4 pyproj paramiko dill
conda install -c conda-forge simplekml pygrib f90nml
conda install -c anaconda numpy

(continues on next page)

3

https://www.continuum.io/downloads
http://www.openwfm.org
https://www.continuum.io/downloads
https://repo.continuum.io/archive/Anaconda2-5.3.0-Linux-x86_64.sh

wrfxpy Documentation, Release 1.0.0

(continued from previous page)

pip install MesoPy
pip install python-cmr

Add your environment (~/.custom.csh) the following line setenv PROJ_LIB “$HOME/anaconda2/share/proj”

or if you are using bash to ~/.profile or ~/.bashrc export PROJ_LIB=”$HOME/anaconda2/share/proj”

Note that conda and pip are package managers available in the Anaconda Python distribution.

wrfxpy

Next, clone the wrfxpy code:

git clone https://github.com/openwfm/wrfxpy.git

configuration

And finally, a etc/conf.json file must be created with the keys discussed below. A template file etc/conf.
json.initial is provided as a starting point.

Configure the system directories, WPS/WRF-SFIRE locations and workspace locations by editing the following keys:

"workspace_path": "wksp"
"wps_install_path": "path/to/WPS"
"wrf_install_path": "path/to/WRF"
"sys_install_path": "/path/to/wrfxpy"
"wps_geog_path" : "/path/to/wps-geogrid"

Optionally, the wrfxpy installation can be connected to a visualization server wrfxweb. The following keys are all
optional (and only used if the postprocessed results of simulations are uploaded).

"shuttle_ssh_key": "path/to/your/priv_ssh_key/to/remote/host",
"shuttle_remote_user" : "remote_username",
"shuttle_remote_host" : "remote_hostname",
"shuttle_remote_root" : "remote directory for output storage"

This concludes the etc/conf.json file.

Next, wrfxpy needs to know how jobs are submitted on your cluster. Create an entry for your cluster, here we use
speedy as an example:

{
"speedy" : {
"qsub_cmd" : "qsub",
"qsub_script" : "etc/qsub/speedy.sub"

}
}

And then the file etc/qsub/speedy.sub should contain a submission script template, that makes use of the
following variables supplied by wrfxpy based on job configuration:

• %(nodes)d the number of nodes requested

• %(ppn)d the number of processors per node requested

• %(wall_time_hrs)d the number of hours requested

4 Chapter 1. Basic topics

https://github.com/vejmelkam/wrfxweb

wrfxpy Documentation, Release 1.0.0

• %(exec_path)d the path to the wrf.exe that should be executed

• %(cwd)d the job working directory

• %(task_id)d a task id that can be used to identify the job

• %(np)d the total number of processes requested, equals nodes x ppn

Note that not all keys need to be used, as shown in the speedy example:

#$ -S /bin/bash
#$ -N %(task_id)s
#$ -wd %(cwd)s
#$ -l h_rt=%(wall_time_hrs)d:00:00
#$ -pe mpich %(np)d
mpirun_rsh -np %(np)d -hostfile $TMPDIR/machines %(exec_path)s

The script template should be derived from a working submission script.

Attention: You are now ready for your first fire simulation, continue with Quickstart.

1.1.2 Custom installation

If Anaconda python is not practical, a different python distribution can be used. Below is a list of packages the system
requires:

• Python 2.7+

• Basemap to render the rasters

• simplekml to build KMZ files

• f90nml to manipulate Fortran namelists

• pyproj to place domains dynamically in LCC projection

• paramiko to communicate over SSH with remote hosts

• netCDF4 to manipulate WPS and WRF files

• MesoPy to retrieve fuel moisture observations from Mesowest

wrfxpy is installed by cloning a GitHub repository

git clone https://github.com/openwfm/wrfxpy.git

Configure wrfxpy by editing etc/conf.json as above and then continue with Quickstart.

1.2 Quickstart

Important: It is imperative that a working WRF-SFIRE installation is available. Please first follow the installation
instructions Installation.

1.2. Quickstart 5

https://www.python.org/download/releases/2.7/
http://matplotlib.org/basemap/
https://simplekml.readthedocs.org/en/latest/
https://pypi.python.org/pypi/f90nml
https://pypi.python.org/pypi/pyproj
https://pypi.python.org/pypi/paramiko
https://pypi.python.org/pypi/netCDF4
https://pypi.python.org/pypi/MesoPy

wrfxpy Documentation, Release 1.0.0

1.2.1 First fire forecast

The simplest way to start is to invoke the standalone script

./simple_forecast.sh

The script will ask you a series of questions with sensible defaults and at the end will create a JSON configuration file
and finish with instructions on how to run the simulation.

1.2.2 Example fire forecast

To perform a fire forecast, the script forecast.sh has to be executed with a JSON configuration file as an argument,
for example:

./forecast.sh <json-configuration-file>

An example configuration script is examples/simple_fire.json, also listed here for convenience. The script
has most of the values filled out but there are some placeholders.

Please set the following values:

• geogrid_path should point to the directory with your WPS-GEOG data

• num_nodes are the number of nodes to use for the parallel job

• ppn the number of processors per node to use

• wall_time_hrs number of hours of wall time to reserve for the job

• qsys the queueing subsystem id which point into etc/clusters.json

{
"grid_code": "test",
"grib_source": "NAM",
"wps_namelist_path": "etc/nlists/default.wps",
"wrf_namelist_path": "etc/nlists/default.input",
"fire_namelist_path": "etc/nlists/default.fire",
"emissions_namelist_path": "etc/nlists/default.fire_emissions",
"geogrid_path": "/path/to/your/WPS-GEOG",
"num_nodes": 10,
"ppn": 12,
"wall_time_hrs": 3,
"qsys": "sge",
"start_utc": "T-30",
"end_utc": "T+300",
"domains" : {
"1" : {

"cell_size" : [1000, 1000],
"domain_size" : [91, 91],
"center_latlon" : [39.1, -105.9],
"truelats" : [38.5, 39.6],
"stand_lon" : -105.9,
"time_step" : 5,
"history_interval" : 15,
"geog_res" : "0.3s",
"subgrid_ratio" : [50, 50]

}
},

(continues on next page)

6 Chapter 1. Basic topics

wrfxpy Documentation, Release 1.0.0

(continued from previous page)

"ignitions" : {
"1" : [{
"start_delay_s" : 600,
"duration_s" : 240,
"lat" : 39.894264,
"long" : -103.903222

}]
},

"postproc" : {
"1" : ["T2", "PSFC", "WINDSPD", "WINDVEC", "FIRE_AREA", "FGRNHFX", "FLINEINT",

→˓"SMOKE_INT"]
}

}

This example configuration runs a fire simulation with the following settings:

• a single domain configuration with a domain placed approximately around an ignition point

• use NAM as the source for initial and boundary conditions

• start at time now minus 30 mins and run a 5 hour simulation

• use 10 nodes, 12 CPU cores per node, allow a wall time of 3 hrs, the queue manager is SGE (Sun Grid Engine)

• use the default WPS/WRF/fire/emissions namelists as base

• ignite the fire 600s after the start of the simulation and deactivate the ignition after 4 minutes.

• generate surface temperature maps, wind information and fire fields for domain 1, the where the fire is burning

Tip: To learn how to configure jobs in more detail, refer to Forecasting.

1.3 Forecasting

The script forecast.sh serves to run weather forecasts, fire danger forecasts and fire simulations depending on its
settings.

The script requires a JSON configuration file to control its execution, for an example refer to the Quickstart. The
configuration file is JSON dictionary with the keys described in the following sections. Not all keys are required.

1.3.1 Domains

Domains are shared by WPS and by WRF and as they are very important, they have their own section. All domains
are given in the key domains : [dict].

The first domain is always the top-level domain, and subsequent domains are always child domains such that their
parent is always defined before they are. Each domain can be precomputed or dynamically placed. In the following,
we detail configuration of each type.

Note: in the input namelist, wrfxpy will set the top level domain as specified, while all other domains will be
nested.

All domains must have the following keys:

• history_interval : [integer] the history interval in minutes, default is 60

1.3. Forecasting 7

http://www.nco.ncep.noaa.gov/pmb/products/nam/

wrfxpy Documentation, Release 1.0.0

• parent_id : [integer] the id of the parent domain (can omit for parent domain with id=1)

A top-level precomputed domain must have the following keys:

Example:

"domains" : {
"1" : {
"time_step" : 5,
"precomputed" : "path/to/precomputed/geo_em.dYY.nc",
"history_interval" : 15

}

This will cause the use of the domain as precomputed in colorado_domain_1.nc with a time step of 5 seconds
and a history interval of 15 mins. All spatial information will be retrieved from the netCDF file.

Top-level dynamically placed

A top-level dynamically placed domain must have the following keys:

• time_step : [integer] time step in seconds

• subgrid_ratio : [integer, integer] the refinement ratio for x and y direction for the fire grid,
default is 1, 1

• cell_size : [integer, integer] the size of one grid cell in meters in DX, DY order (placed)

• domain_size : [integer, integer] the number of grid points in longitudinal and latitudinal di-
rection (placed)

• geog_res : [string] the resolution of geographical/fuel data to use for the domain (placed)

• center_latlon : [float, float] the latitude and longitude of grid center (placed)

• truelats : [float, float] the true lattitudes of the LCC projection

• stand_lon : [float] the standard longitude of the LCC projection

Example:

"domains" : {
"1" : {
"cell_size" : [1000, 1000],
"domain_size" : [101, 101],
"center_latlon" : [39.894264, -103.903222],
"truelats" : [39.2, 40.5],
"stand_lon" : -103.903222,
"time_step" : 5,
"history_interval" : 15,
"geog_res" : ".3s",
"subgrid_ratio" : [40, 40]

}
}

This will set up a top level domain domain with cell size 1km and 101x101 grid points, centered on the location
[39.894264, -103.903222], with true latitudes and standard longitude as provided. The time step will be 5 seconds and
history interval will be 15 mins. High resolution .3s geographical/fuel data will be used to construct the domain. The
domain will have a fire grid 25m x 25m.

If the domain is precomputed, the following key must be set:

• precomputed : [string] the precomputed geo_em.dYY.nc file path relative to wrfxpy installation

8 Chapter 1. Basic topics

wrfxpy Documentation, Release 1.0.0

Then, all values are loaded from the geo_em.dYY.nc file except for time_step and history_interval.

Child domain statically placed

A child domain requires the following keys:

• parent_time_step_ratio : [int] ratio of child time step to parent time step

• parent_cell_size_ratio : [int] ratio of the size of the child cell to the parent cell

• parent_start : [int, int] the x, y coordinates of the parent grid where this grid starts

• parent_end : [int, int] the x, y coordinates of the parent grid where this grid ends

Example

"domains" : {
"1" : {
"time_step" : 5,
"history_interval" : 30,
"precomputed" : "precomputed/my_grids/colorado_domain_1.nc"

},
"2" : {
"parent_id" : 1,
"parent_time_step_ratio" : 4,
"history_interval" : 30,
"precomputed" : "precomputed/my_grids/colorado_domain_2.nc"

}
}

If the child domain is precomputed, again all these values are read in from the geo_em file automatically except
timing information: parent_time_step_ratio must still be set.

• precomputed : [string] the precomputed geo_em.dYY.nc file path relative to wrfxpy installation

Child domain placed by bounding box

• parent_cell_size_ratio : [int] the ratio of cell size to parent cell size

• parent_time_step_ratio : [int] ratio of child time step to parent time step

• bounding_box : [float, float, float, float] the bounding box the domain should enclose
as [min_lon, min_lat, max_lon, max_lat]

Examples

"domains" : {
"1" : {
"time_step" : 50,
"history_interval" : 30,
"precomputed" : "precomputed/my_grids/colorado_domain_1.nc"

},
"2" : {
"parent_cell_size_ratio" : 3,
"parent_time_step_ratio" : 3,
"bounding_box" : [-105, 39, -105.5, 39.5],
"history_interval" : 15,
"geog_res" : ".3s",
"subgrid_ratio" : [50, 50]

(continues on next page)

1.3. Forecasting 9

wrfxpy Documentation, Release 1.0.0

(continued from previous page)

"parent_time_step_ratio: [int]``
}

}

The value must be a dictionary mapping geo_em.dYY.nc files to their actual location.

1.3.2 WRF-SFIRE inputs

All of the following keys are required.

• grid_code : [string] the grid code is part of the job id and semantically should identify the configured
grid

• grib_source : [string] must be one of NAM, NARR or HRRR

• geogrid_path : [string] the path to WPS GEOG data directory

• start_utc : [esmf_time] the start time of the simulation in ESMF format

• end_utc : [esmf_time] the end time of the simulation in ESMF format

The keys in the remainder of this section are optional.

• ignitions : [dict] (optional) is a dictionary of domains (string identifier, e.g. “1”) to a list of ignitions
that should be added to the domain, each being a dictionary with the following keys:

• time_utc : [esmf_time] time of ignition

• duration_s : [int] the length of time the ignition is active

• latlon : [int] the latitude and longitude of the ignition point

Including this option causes the fire model to be switched on in each domain listed. A total of five ignitions is
allowed (combined for all domains). For example

"ignitions" : {
"1" : [],
"2" : [{
"time_utc" : "2016-03-30_13:14:00",
"duration_s" : 240,
"latlon" : [39.894264, -103.903222]

}]
}

This would ignite a single fire 10 minutes after simulation start at the given lat/lon, hold the ignition for 4 minutes. In
the first domain, the fuel moisture model will be switched on and fire danger calculations will be performed.

Important:

• All ignitions are point ignitions.

• All ignitions have a rate of spread parameter set to 1m/s and the maximum radius 200 m, see WRF-SFIRE
documentation

• If a domain is listed without any ignitions, the fire model is switched on and computes quantities related to fire
danger, such as fire spread rates, fuel moisture values, etc.

10 Chapter 1. Basic topics

http://www.openwfm.org/wiki/WRF-Fire_ignition
http://www.openwfm.org/wiki/WRF-Fire_ignition

wrfxpy Documentation, Release 1.0.0

1.3.3 Namelist templates

All of the following keys are required.

• wps_namelist_path : [string] the WPS namelist template

• wrf_namelist_path : [string] the WRF namelist template

• fire_namelist_path : [string] the fire namelist template

• emissions_namelist_path : [string] the file_emissions namelist template

1.3.4 Parallel job configuration

The following keys are required.

• num_nodes : [int] the number of parallel nodes to use for WRF execution

• ppn : [int] the number of processors per node to request

• wall_time_hrs : [int] the wall time to request from the schedule in hours

• qman : [string] the queue manager to use, must be sge

1.3.5 Fuel moisture data assimilation

The key fuel_moisture_da is optional. If given, it needs to contain two keys:

• domains : [list(int)] a list of domains for which to run data assimilation

Important: In addition to this, the file etc/tokens.json must contain the key mesowest_token :
[string], which will be used to access the Mesowest API (you must obtain one here Mesowest).

The data assimilation code will download 10-hr fuel moisture observations from stations in the domain area and
assimilate them into the equilibrium.

Example:

"fuel_moisture_da" : {
"domains" : [1]

}

1.3.6 Postprocessing

The key postproc, when present contains a dictionary keyed by domain id (string), which identifies the variables
to postprocess for each domain. For each listed variable, a PNG and a KMZ file is created and if required, a colorbar
(configured in var_wisdom).

Additionally, if a remote visualization server is configured in etc/conf.json, the postprocessed rasters can be
automatically sent either during the forecast itself or after the forecast is complete.

Example without remote shuttling:

1.3. Forecasting 11

http://synopticlabs.org/api/signup/

wrfxpy Documentation, Release 1.0.0

"postproc" : {
"1" : ["T2", "PSFC", "WINDSPD"],
"2" : ["T2", "FIRE_AREA", "WINDVEC"]

}

In this example, the postprocessed raster files are generated in the products subdirectory of the workspace directory
where the job is executing.

Example with remote shuttling:

"postproc" : {
"1" : ["T2", "PSFC", "WINDSPD"],
"shuttle" : "on_completion",
"description" : "This should be a user-readable string that will be displayed to

→˓the user"
}

The second example will send the complete visualization package to the remote server after the forecast is complete.
The description string should be a short descriptive identifier of the simulation. This text will be shown to the
user in the initial catalog menu on wrfxweb and thus also shouldn’t be too long.

1.4 Standalone scripts

Although wrfxpy is meant to be an integrated system, some functionalities are exposed through separate scripts. These
are detailed in this section.

1.4.1 Domain setup

The script domain_setup.sh accepts a domain configuration description and injects the domain configuration into
a WPS nmelist file and into an input namelist file. Please refer to the domain configuration description in Forecasting.

Example:

./domain_setup.sh my_domains.json namelist.wps namelist.input

Assuming that my_domains.json contains the following:

{
"1" : {
"cell_size" : [1000, 1000],
"domain_size" : [91, 91],
"center_latlon" : [39.1, -105.9],
"truelats" : [38.5, 39.6],
"stand_lon" : -105.9,
"time_step" : 5,
"history_interval" : 15,
"geog_res" : "0.3s",
"subgrid_ratio" : [50, 50]

}
}

Then both namelists will be setup for a single-domain configuration (1km grid cell size, 91 x 91 domain size, 20m fire
grid).

12 Chapter 1. Basic topics

wrfxpy Documentation, Release 1.0.0

Note: The namelist files are overwritten.

1.4.2 Grib retrieval and examination

The script grib_retr.sh accepts fourth arguments, the grib source identifier, the UTC start, the end time of a
simulation in ESMF format and the ingest directory.

Example:

./grib_retr.sh HRRR 2016-03-26_14:00:00 2016-03-26_19:00:00 ingest

This will find out which GRIB2 files are required to perform this simulation and will download them into subdirectories
of the ingest directory.

Tip: Using the wrfxpy ingest directory (or the same directory) consistently will make best use of the transparent local
caching functionality. Any files that have already been downloaded are not re-downloaded.

The script grib_tool.sh allows the user to list the contents of a GRIB1/2 file and to convert it to a netCDF file.

Examples:

./grib_tool.sh list <grib-filename>

./grib_tool.sh to_netcdf <input-grib-filename> <message-to-convert> <output-netcdf-
→˓file>

1.4.3 Postprocessing

The script postprocess.sh accepts four arguments, the wrfout file to process, the variables to postprocess (or an
instruction file, see below), the prefix on which to base the filenames and the skip (the script will process every skip-th
frame). The script always generates PNG files and KMZ files for each variable and timestamp.

Example:

./postprocess.sh /path/to/wrfout T2,PSFC my_directory/file_prefix 1

Alternatively, instead of listing the variables, a more detailed configuration controlling the colormaps, ranges and other
parameters can be specified:

./postprocess.sh /path/to/wrfout @var_instructions my_directory/file_prefix 1

Where the file var_instructions contains:

{
"FGRNHFX" : {

"name" : "Grnd Heat flux",
"colorbar" : "W/m^2",
"colormap" : "jet",
"transparent_values" : [0, 1],
"scale" : [0, 6]

}
}

1.4. Standalone scripts 13

wrfxpy Documentation, Release 1.0.0

Will show the colorbar in W/m^2 units and change the displayed variable name to Grnd Heat flux, set the
colormap to jet, ensure that values between 0 and 1 are not shown and fix the scale from 0 to 6.

Tip: For the default and more information on values that can be set, examine src/vis/var_wisdom.py.

1.4.4 Fuel moisture DA

The script apply_fmda.sh accepts a single wrfinput path argument and performs a data assimilation step using
background covariance.

Example:

./apply_fmda.sh wrfinput_d01

The script will read in the timestamp from the wrfinput file, determine it’s physical extent (lat/lon) and download
all observations of 10-hr fuel moisture valid at that time available in the region. Then the equilibrium fuel moisture
content is computed and adjusted with respect to the observations using the background covariance. The updated
values are written back into the fuel moisture file.

1.4.5 SSH Shuttle

The script ssh_shuttle.sh accepts a local directory a remote directory name and an identifier and uploads the
entire local directory with simulation results to the remote host configured in conf.json and registers the simulation
in the catalog.json file on the remote server.

Examples:

./ssh_shuttle.sh wksp/my-simulation/products test_fire_april test_fire_april

The script scans all the files in wksp/my-simulation/products and uses SFTP to put them onto the remote
host. The remote directory must be either an absolute path or (recommended) should be relative to the remote host root
setup in conf.json. The identifier will be used as the description and also as the key under which the simulation is
stored in catalog.json on the remote host.

1.4.6 Data cleanup

The script cleanup.sh provides functionality to:

• list all simulations that are available on a configured visualization server,

• remove a selected simulation, freeing up diskspace.

Examples:

./cleanup.sh list

./cleanup.sh delete <simulation-id-from-list>

14 Chapter 1. Basic topics

CHAPTER 2

Advanced topics

2.1 Catalog and manifest

This document describes the catalog format and the manifest format. The catalog file collects computed simulations
for the visualizaion server and points to the manifest file for each simulation. The manifest contains postprocessed
rasters pertaining to a single simulation.

2.1.1 Catalog

The file catalog.json in the root visualization directory of the wrfxweb visualization system is a JSON file which
stores the following information about each simulation:

• manifest_path : [string] the path to the manifest string

• description : [string] a description that is shown in the selection menu to a user

• from_utc : [esmf_time] the start time of the simulation in ESMF format

• to_utc : [esmf_time] the end time of the simulation in ESMF format

Example:

{
"patch_fire": {
"manifest_path": "patch3/patch.json",
"description": "Patch Springs Fire [UT]",
"to_utc": "2013-08-19_09:00:00",
"from_utc": "2013-08-11_00:00:00"

},
"test_fire_3": {
"manifest_path": "test_fire_3/wfc-two-domain-fire.json",
"description": "2-domain test fire, viscosity=0",
"to_utc": "2016-04-08_23:00:00",
"from_utc": "2016-04-08_18:00:00"

(continues on next page)

15

wrfxpy Documentation, Release 1.0.0

(continued from previous page)

},
.
.
.

}

2.1.2 Manifest

The manifest file is a JSON file that collects information on which domains, timestamps and variables are generated
from a simulation. The top-level object is a dictionary keyed by string domain identifier (“1”, “2”, . . .) and contains
an object keyed by ESMF time (“2016-03-30_00:00:00”, . . .) which in turn contains a dictionary keyed by variable
names (e.g. “T2”, “WINDVEC”, . . .). The postprocessing results for each variable are represented by dictionary keys
as follows:

• colobar : [string] (optional) path to the colorbar, if any

• raster : [string] path to the display raster (PNG file)

• kml : [string] (optional) path to the KMZ file for possible download

• coords : [string] the corner coordinates of the PNG file (geolocation)

An partial example of one variable in a file is below:

{
"1" : {
.
.
"2016-03-30_16:15:00" : {
.
.

"FMC_G": {
"colorbar": "patch-2013-08-14_12:00:00-FMC_G-cb.png",
"raster": "patch-2013-08-14_12:30:00-FMC_G-raster.png",
"kml": "patch-2013-08-14_12:30:00-FMC_G.kmz",
"coords": [

[-113.15496826171875, 39.978614807128906],
[-112.26193237304688, 39.978614807128906],
[-112.26193237304688, 40.65946960449219],
[-113.15496826171875, 40.65946960449219]

]
}

}
}

}

16 Chapter 2. Advanced topics

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

17

	Basic topics
	Advanced topics
	Indices and tables

