
Wrappyr Documentation
Release 0.1a1

Vincent den Boer

Sep 27, 2017

Contents

1 Introduction 3
1.1 Requirements . 3
1.2 Getting started . 4
1.3 Where to go from here . 4

2 Creating Package classes 5

3 Ctypes API generation 7
3.1 Reference . 7
3.2 Examples . 14

4 Memory management 17
4.1 Providing memory management hints . 18
4.2 Examples . 18

5 Indices and tables 21

Python Module Index 23

i

ii

Wrappyr Documentation, Release 0.1a1

Contents:

Contents 1

Wrappyr Documentation, Release 0.1a1

2 Contents

CHAPTER 1

Introduction

Wrappyr is a collection of tools aiming for tight integration both-way between Python and C/C++ using Ctypes. This
means that when this goal is reached, you can write parts of your code in Python or C/C++ and switch between them
without needing to change the rest of your program.

It is composed of three parts:

• A tool that imports the XML file produced by the Clang plugin and does two things:

– Optional: Generate a C API for your C++ code.

– Generate an XML file describing how the Python API should look, which C calls should be made where,
etc.

• A tool that creates the Ctypes-based Python API from an XML file.

• A Clang plugin that dumps classes, functions, etc. from a header file to XML, which you can use when GC-
CXML produces incomplete output.

Requirements

General requirements:

• Recommended: GCCXML, which you can probably install through your package manager.

Python requirements:

• Python 2.6+

• lxml (installable through pip)

• argparse, available in standard library in Python >= 2.7 and through pip for earlier versions

• importlib, available in standard library in Python >= 2.7 and through pip for earlier versions

3

http://clang.llvm.org/
http://lxml.de/

Wrappyr Documentation, Release 0.1a1

Getting started

To go from C/C++ to a working Python API, quite some things need to happen. First some data about the C/C++
code must be extracted. Then some code needs to be generated and compiled to make your code accessible through
Ctypes. Also, an XML file needs to be generated which describes the final Python API and how it exactly it will use
Ctypes wich will be used to generate the final Python code. You can do all these steps by hand using the commmands
available in wrappyr/generate.py, but since you’ll need to do these steps more than once, it’s better to write a class
(called a Package) that helps Wrappyr do most of these things by itself. We’ll use the Box2D package shipped with
Wrappyr for this example.

To generate all files needed for a working Python API, you can use the following commands (in the Wrappyr directory)
to generate all needed code:

$ export PYTHONPATH="."
$ wrappyr/generate.py --package path.to.Package generate_from_package /tmp/ # Will
→˓create Python packages in /tmp/

So to generate a Python API for Box2D (assuming it’s installed on your system), use this command:

$ wrappyr/generate.py --package packages.Box2D.Box2DPackage generate_from_package /
→˓tmp/ # Will generate /tmp/Box2D

After that you’ll need to compile the C API to your C++ yourself. The code generated for Box2D is located in /tmp/
and you can compile it with the following commands:

$ cd /tmp/
$ g++ -shared -o libBox2DC.so box2d.cpp -lBox2D

Then after ensuring both the wrappyr and your generated packages are in your Python path, you’re ready to use the
generated Python API:

>>> from Box2D.common import b2Vec2
>>> v = b2Vec2(1.0, 3.1)
>>> v.Normalize()
3.2572994232177734
>>> v.x
0.30700278282165527

If you have any trouble setting getting started, feel free to contact me.

Where to go from here

Since the chances of Wrappyr generating a Python API that fully satisfies all your needs straight out of the box is
very small, you’ll want to write your own Package class to adapt the generation of the Python API to your needs. See
Creating Package classes for information on how to do this.

4 Chapter 1. Introduction

CHAPTER 2

Creating Package classes

Create a Package class is the preferred way to customize to generation of a Python API. In a Package class you can:

• Tell Wrappyr some basic stuff about your project, like whether you’re using C or C++, which header file read,
etc.

• Tell Wrappyr to use your custom classes when generating the C API and the initial XML file describing the
Python API.

• Preprocess the data exported from GCCXML or Clang.

• Preprocess the final Python API just before the code is generated.

To create a Package, subclass from wrappyr.Package. Below, I will describe each method you can override and
how you can use it.

class wrappyr.Package
Base class for all Wrappyr packages.

Overriding the methods of this class is the preferred way to hook into the wrappyr/generate.py script. To use
your Package subclass, pass the dotted path to it to the --package option of the wrappyr/generate.py script.

get_header_export()
Returns class used to generate the header of the C API.

You will almost always want to return a subclass of wrappyr.code_data_conversion.
HeaderExport. The main reason to do this is to use a custom export filter controlling which classes
and functions get exported to the Python API.

get_source_export()
Returns class used to generate the source of the C API.

You will almost always want to return a subclass of wrappyr.code_data_conversion.
SourceExport. The main reasons to do this are to use a custom export filter controlling which classes
and functions get exported to the Python API and to add custom includes to the source of the C API.

get_ctypes_export()
Returns class used to generate the XML describing the Python API.

5

Wrappyr Documentation, Release 0.1a1

You will almost always want to return a subclass of wrappyr.code_data_conversion.
CtypesExport. Such a subclass can have a custom filter used to control which classes and functions
get exported to the Python API. You can also use this to provide a basic namespace to package mapping.

get_source_language()
Returns which language your C/C++ is using as a string.

Return either lowercase c or c+.

get_source_header_path()
Returns the path of the header used to generate the Python API.

The default implementation searches /usr/local/include and /usr/include for the header file in the
source_header_name attribute.

get_generated_header_path()
Returns the path where to write the header of the generated C API.

By default this generates a random temporary file ending in .h and stores it name in
generated_wrapper_prefix so get_generated_source_path can use the same name end-
ing in .cpp .

get_generated_source_path()
Returns the path where to write the source of the generated C API.

By default this generates a random temporary file ending in .cpp and stores it name in
generated_wrapper_prefix so get_generated_header_path can use the same name end-
ing in .h .

process_code_import(importer)
Preprocess the imported code data.

You can use this to store information about the C/C++ code. See the Box2D pack-
age in packages/Box2D.py which uses this to store the location of classes, which it uses in
process_ctypes_structure to organize the final Python API into packages.

process_ctypes_structure(structure)
Preprocess the final Python API imported from XML.

This method is passed an argument named structure, which is an instance of the class wrappyr.
ctypes_api_builder.structure.CTypesStructure.

Use this to do both changes that are cosmetic and changes that are necessary for the Python API to work.
Cosmetic changes include converting method names to PEP8 convention and organizing classes into pack-
ages. Necessary changes include renaming arguments that are reserved Python keywords and removing
ambiguous overloads.

See Ctypes API generation for the docs you’ll need and some examples. Also, see the Box2D package in
packages/Box2D.py for a real life example.

source_header_name
Property used by the default implementation of get_source_header_path to find the header file used as a
starting point for generating everything necessary for the Python API. You can set this to something like
Box2D/Box2D.h.

6 Chapter 2. Creating Package classes

CHAPTER 3

Ctypes API generation

One of the parts of the Wrappyr project is the Ctypes API builder. It loads a description of a Ctypes based
API (typically from XML) and generates Python code from that. The code that does this lives in wrappyr.
ctypes_api_builder. Before Wrappyr generates the Python code, it gives you the chance to manipulate the
API by calling the the process_ctypes_structure of your Package class. Here you can do things like:

• Grouping C functions into classes

• Renaming classes, methods, parameter names to match PEP8 naming conventions

• Organizing the API into packages

• And more...

This document describes all classes used to represent a Python API that you can manipulate and examples on how to
use this API.

Reference

class wrappyr.ctypes_api_builder.structure.Node
The base class for all classes used to represent the API.

name
The name of this node, which will be used to look up Nodes by path.

parent
The parent node of this node. It will be set automatically if you you make this node a child of another
node, like when you add a Method to a Class

get_path([top])
Get the dotted path from top to this node. If top is not given, the path from the furthest ancestor is returned.

>>> struct = CTypesStructure()
>>> Box2D = Package("Box2D")
>>> dyn = Package("dynamics")
>>> Box2D.add_package(dyn)

7

Wrappyr Documentation, Release 0.1a1

>>> dyn.get_path()
'dynamics'
>>> struct.add_package(Box2D)
>>> dyn.get_path()
'Box2D.dynamics'
>>> dyn.get_path(Box2D)
'dynamics'

get_closest_parent_of_type(type)
Get the closest ancestor of type

>>> p = Package("package")
>>> m = Module("module")
>>> c = Class("class")
>>> p.add_module(m)
>>> m.add_class(c)
>>> m == c.get_closest_parent_of_type(Module)
True
>>> p == c.get_closest_parent_of_type(Package)
True

get_closest_parent_module()
Shorthand for get_closest_parent_of_type(Module)

get_distance_to_parent(parent)
Returns the depth of this node calculated from parent or None if parent is not an ancestor of this node.

>>> p = Package("package")
>>> m = Module("module")
>>> c = Class("class")
>>> p.add_module(m)
>>> m.add_class(c)
>>> c.get_distance_to_parent(m)
1
>>> c.get_distance_to_parent(p)
2

find_lowest_common_parent(other)
Returns the first ancestor that this node shares with other

>>> dynamics = Package("dynamics")
>>> b2Body = Class("b2Body")
>>> joints = Package("joints")
>>> b2WeldJoint = Class("b2WeldJoint")
>>> dynamics.add_class(b2Body)
>>> dynamics.add_package(joints)
>>> joints.add_class(b2WeldJoint)
>>> dynamics == b2WeldJoint.find_lowest_common_parent(b2Body)
True

parents()
Returns a generator that iterates over all ancestors starting with the closest one.

>>> dynamics = Package("dynamics")
>>> joints = Package("joints")
>>> b2WeldJoint = Class("b2WeldJoint")
>>> dynamics.add_package(joints)
>>> joints.add_class(b2WeldJoint)

8 Chapter 3. Ctypes API generation

Wrappyr Documentation, Release 0.1a1

>>> tuple(b2WeldJoint.parents()) == (joints, dynamics)
True

class wrappyr.ctypes_api_builder.structure.Module(Node)
Class used to represent a Python module. A module can contain:

•Library instances

•Function instances

•Class instances

•PointerType instances

You can create a Module from XML by using the <module> tag:

<module name="test">
...

</module>

find_library([name])
Find Library with specified name in this Module or one of it’s parents. If name is not given, it will
search for a library specified as default.

add_library(library)
Add Library instance library to this module and set its parent to this node. This does not remove it from
its current parent, so you must remove it from its parent first (if it has one of course).

remove_library(library)
Remove Library instance library from this module and set its parent to None.

every_library()
Returns all Library instances that this module contains.

add_class(class)
Add Class instance class to this module and set its parent to this node. This does not remove it from its
current parent, so you must remove it from its parent first (if it has one of course).

remove_class(class)
Remove Class instance class from this module and set its parent to None.

every_class()
Returns all Class instances that this module contains.

add_function(function)
Add Function instance function to this module and set its parent to this node. This does not remove it
from its current parent, so you must remove it from its parent first (if it has one of course).

remove_function(function)
Remove Function instance function from this module and set its parent to None.

every_function()
Returns all Function instances that this module contains.

add_pointer(pointer)
Add PointerType instance pointer to this module and set its parent to this node. This does not remove
it from its current parent, so you must remove it from its parent first (if it has one of course).

Since a PointerType does not need to be a child of a Node to be used, this is probably only useful for
loading from XML.

3.1. Reference 9

Wrappyr Documentation, Release 0.1a1

remove_pointer(pointer)
Remove PointerType instance pointer from this module and set its parent to None.

every_pointer()
Returns all PointerType instances that this module contains.

exception LibraryNotFound(Exception)
Exception thrown by Module.find_library() when it cannot find the requested Library .

class wrappyr.ctypes_api_builder.structure.Package(Module)
Class used to represent a Python package. In addition to everything a Module can contain, a package can
contain:

•Package instances

•Module instances

You can create a Package from XML by using the <package> tag:

<package name="test">
...

</module>

add_package(package)
Add Package instance package to this package and set its parent to this node. This does not remove it
from its current parent, so you must remove it from its parent first (if it has one of course).

remove_package(package)
Remove Package instance package from this package and set its parent to None.

every_package()
Returns all Package instances that this package contains.

add_module(module)
Add Module instance module to this package and set its parent to this node. This does not remove it from
its current parent, so you must remove it from its parent first (if it has one of course).

remove_module(module)
Remove Module instance module from this package and set its parent to None.

every_module()
Returns all Module instances that this package contains.

class wrappyr.ctypes_api_builder.structure.Library(Node)
Class used to represent a C library. A library will be available for the Node it’s placed in (either a Package or
a Module) and all of its descendents.

You can create a Library from XML by using the <library> tag:

<package name="test">
<library name="libA" path="libA.so" default="true" />
<library name="libB" path="libB.so" />

<function name="func_a">
<call symbol="funcA">

<!--
Since libA is the default for this Package,
the symbol funcA will be retrieved from libA.so
-->
...

</call>
</function>

10 Chapter 3. Ctypes API generation

Wrappyr Documentation, Release 0.1a1

<function name="func_b">
<call symbol="funcB" library="libB">

<!--
We've explicitly chosen libB, so the symbol funcB
will be retrieved from libB.so
-->
...

</call>
</function>

</module>

class wrappyr.ctypes_api_builder.structure.Class(Node)
Class used to represent a Python class.

add_method(method)
Add Method instance method to this class and set its parent to this node. This does not remove it from its
current parent, so you must remove it from its parent first (if it has one of course).

remove_method(method)
Remove Method instance method from this class and set its parent to None.

every_module()
Returns all Method instances that this class contains.

add_member(member)
Add Member instance member to this class and set its parent to this node. This does not remove it from
its current parent, so you must remove it from its parent first (if it has one of course).

remove_member(member)
Remove Member instance member from this class and set its parent to None.

every_module()
Returns all Member instances that this class contains.

add_pointer(pointer)
Add PointerType instance pointer to this class and set its parent to this node. This does not remove it
from its current parent, so you must remove it from its parent first (if it has one of course).

Since a PointerType does not need to be a child of a Node to be used, this is probably only useful for
loading from XML.

remove_pointer(pointer)
Remove PointerType instance pointer from this class and set its parent to None.

every_pointer()
Returns all PointerType instances that this class contains.

class wrappyr.ctypes_api_builder.structure.Function(Node)
Class used to represent a Python function.

You can create a Function from XML by using the <function> tag:

<function name="func_a">
<call symbol="funcA">

<!-- A function makes calls to C functions. -->
</call>

</function>

class wrappyr.ctypes_api_builder.structure.Method(Function)
Class used to represent a method of a Python class.

3.1. Reference 11

Wrappyr Documentation, Release 0.1a1

You can create a Method from XML by using the <method> tag:

<class name="Test">
<method name="spam">

<!-- Python likes spam and eggs, C like foo and bar ;) -->
<call symbol="foo" />

</method>
</class>

class wrappyr.ctypes_api_builder.structure.Member(Node)
Class used to represent a member Python of a class.

You can create a Member from XML by using the <member> tag and specify its getter and setter using the
<getter> and <setter> tags respectively:

<class name="Vector">
<member name="x">

<getter>
<call symbol="Vector_GetX">

<returns type="ctypes.c_float" />
</call>

</getter>
<setter>

<call symbol="Vector_SetX">
<argument type="ctypes.c_float" />

</call>
</setter>

</method>
</class>

class wrappyr.ctypes_api_builder.structure.Call(Node)
Class used to represent a call to a C function.

You can create a Call from XML by using the <call> tag:

<function name="take_over_the_world">
<!--
Obviously much more effecient in C, altough things
will probably crash before anything useful happens.
-->
<call symbol="conquerWorld">

<argument name="timeout" type="ctypes.c_uint" />
<returns type="ctypes.c_bool">

</call>
</function>

class wrappyr.ctypes_api_builder.structure.Argument(Node)
Class used to represent an argument to a C function.

You can create an Argument instance from XML by using the <argument> tag:

<module name="module">
<class name="Class" />

<function name="func">
<call symbol="func">

<!-- You can reference existing classes by using full dotted paths -->
<argument name="a" type="module.Class" />

12 Chapter 3. Ctypes API generation

Wrappyr Documentation, Release 0.1a1

<!-- You can also use ctypes.* types -->
<argument name="b" type="ctypes.c_int" />

</call>
</function>

</module>

steals
Boolean value indicating whether passing an object as this argument to a call will steal the ownership over
the object. Defaults to False. See Memory management for more information.

invalidates
Boolean value indicating whether passing an object as this argument to a call will invalidate the object.
Defaults to False. See Memory management for more information.

class wrappyr.ctypes_api_builder.structure.ReturnValue(Node)
Class used to represent the return value of a C function.

You can create a ReturnValue instance from XML by using the <returns> tag:

<function name="func">
<call symbol="func">

<returns type="ctypes.c_float" />
</call>

</function>

ownership
Boolean value indicating whether we have ownership over objects returned by this call. See Memory
management for more information.

class wrappyr.ctypes_api_builder.structure.CTypesStructure(Node)
The root of the structure that describes the Python API. This will contain the root Package s and Module s of
the Python API.

This class is represented by the XML tag <ctypes>. Since this is the root of the structure, this must also be the
root node of the XML document:

<?xml version="1.0"?>
<ctypes>

<package name="MyPackage">
...

</package>
</ctypes>

get_by_path(path)
Return the Node found under the dotted path path:

>>> structure = CTypesStructure()
>>> mod = Module("mod")
>>> cls = Class("Class")
>>> structure.add_module(module)
>>> mod.add_class(cls)
>>> cls == structure.get_by_path("mod.Class")
True

class wrappyr.ctypes_api_builder.structure.CTypesStructureVisitor
A convenience class that takes a CTypesStructure and calls visit_<class name> on itself for every node it
finds. So as an example, it will call visit_Method(method) for every method it finds.

Example:

3.1. Reference 13

Wrappyr Documentation, Release 0.1a1

class ClassPrinter(CTypesStructureVisitor):
def visit_Class(cls):

print "Found class: " + cls.name

process(node)
Will start at node and call the corresponding visit_* method for node and all of its descendents.

Examples

The recommended way to use this API is to process a CTypesStructure from within a wrappyr.Package.
See Creating Package classes for an introduction on Packages. This section gives a few exmples of how you might
preprocess a Python API.

Reorganize an API that doesn’t use namespaces into packages:

import wrappyr
from wrappyr.ctypes_api_builder.structure import Package

class Box2DPackage(wrappyr.Package):
CLASS_TO_PACKAGE = {

'b2Vec2': 'Box2D.common',
'b2Vec3': 'Box2D.common',
'b2Shape': 'Box2D.collision',
'b2PolygonShape': 'Box2D.collision',
'b2World': 'Box2D.dynamics',
'b2Body': 'Box2D.dynamics',
'b2Joint': 'Box2D.dynamic.joints',
'b2WeldJoint': 'Box2D.dynamic.joints',

}

def process_ctypes_structure(structure):
Get all unique package paths
package_paths = set(self.CLASS_TO_PACKAGE.values())
Sort by depth in tree
package_paths = sorted(packages, lambda name: name.count("."))

Dictionary to hold all packages to be looked up by path
packages = {}
for path in package_paths:

last_dot = path.rfind(".")

The name of the package is the part after the last dot
name = path[last_dot + 1 :]
package = Package(name)
packages[path] = package

Add the package to its parent in the tree.
We assume that the Box2D package already exists.
parent_path = path[: last_dot]
parent = structure.get_by_path(parent_path)
parent.add_package(package)

Now we remove classes from their current parent and
add them to their new package.
for class_name, package_path in self.CLASS_TO_PACKAGE.items():

cls = structure.get_by_path("Box2D." + class_name)

14 Chapter 3. Ctypes API generation

Wrappyr Documentation, Release 0.1a1

cls.parent.remove_class(cls)
packages[package_path].add_class(cls)

Convert camelCase method names into lowercase_with_underscores:

import re
import wrappyr
from wrappyr.ctypes_api_builder.structure import CTypesStructureVisitor

class CamelCaseTerminator(CTypesStructureVisitor):
def __init__(self):

self.to_rename = []

def visit_Method(self, method):
self.to_rename.append(method)

def terminate(self):
regex = re.compile(r'([a-z])([A-Z])')
to_underscore = lambda match: "%s_%s" % (match.group(1), match.group(2).

→˓lower())
for method in self.to_rename:

parent = method.parent
parent.remove_method(method)
method.name = regex.sub(to_underscore, method.name)
parent.add_method(method)

class MyPackage(wrappyr.Package):
def process_ctypes_structure(structure):

terminator = CamelCaseTerminator()
terminator.process(structure)
terminator.terminate()

3.2. Examples 15

Wrappyr Documentation, Release 0.1a1

16 Chapter 3. Ctypes API generation

CHAPTER 4

Memory management

Warning: This is not actually implemented yet, but I’m writing this in the spirit of Documentation Driven
Development. Memory management is currently broken in Wrappyr and will crash your program or leak memory
if you’re lucky. Yes, I’m working on it :).

Memory management is quite an important part of programming in C/C++. When working in Python however, we
expect this to work automatically. For this to happen, we need to provide some hints to Wrappyr how it can safely
clean up after the Python programmer.

By default Wrappyr is extremely careful not to free memory it does not manage and will leak a lot of memory as
a result. This is because there are different models of memory management. Let’s say for example that you have a
Window class with a method createWindow that returns a pointer to to newly created Window. Does Wrappyr need
to destroy the Window after we’re done with it, or will the parent Window destroy it? And when you pass a Window
pointer to a its parent’s removeWindow method, can we continue to work with that Window? Wrappyr relies on you
for answers to the questions, because only you as a human fully know what is going on.

When Wrappyr runs, it ask the following questions to manage memory:

• I have a pointer; does it still point to a valid object so I can safely apply operations to it?

• I have a pointer; do I have ownership and do I need to deallocate the object when I’m done with it?

• I’m passing an object as an argument to a function; will the call invalidate my object?

• I’m passing an object as an argument to a function; will the call steal my ownership over the object?

• A function returned an object; do I now have the ownership over the object?

By default Wrappyr assumes the following to answer these questions:

• When a funtion returns an object that Wrappyr copied to the heap, Wrappyr has ownership over that copy. This
applies to functions like:

Vector2 Cross(Vector2 a, Vector2 b);

17

Wrappyr Documentation, Release 0.1a1

• When a function returns a pointer or reference to an object, Wrappyr does not have ownership over the object,
so you must deallocate it manually if necessary.

• Passing an object to a function not change whether the object is valid or wheter Wrappyr has ownership over it.

Providing memory management hints

Wrappyr uses memory management hints when generating the Python API, so to provide memory management hints to
Wrappyr, you modify the Python API representation (which you typically do in a wrappyr.Package, specifically
the wrappyr.Package.process_ctypes_structure() method).

Now I’ll provide a list of hints you can give. Before you read this, make sure you have read and understood the
concepts of valid, ownership and stealing is explained in the previous section.

• To indicate that passing an object as argument to a call will invalidate the object, set the Argument.
invalidates attribute to True. If you then pass an object to this call, the object will be marked as invalid
and its internal pointer to None. If you then try to pass the object to another call, an exception will be raised.

• To indicate that the ownership of an object will be stolen when passing it as an argument to a function, set
the Argument.steals attribute to True. After this, the object won’t be deallocated when it’s not used in
Python anymore. When you then try to pass the object to another call that will try to steal the ownership, an
exception will be raised. To mark that it’s safe to pass the object that is not owned to the stealing call, set the
Argument.steals attribute to the string safe.

• To indicate a call gives you ownership over the object it returns, set the ReturnValue.ownership attribute
to true.

Examples

Provide hints about memory management for some calls in the API:

import wrappyr

class hint(object):
def __init__(name, argument = None, steals = None, invalidates = None, ownership

→˓= None):
self.name = name
self.argument = argument
self.steals = steals
self.invalidates = invalidates
self.ownership = ownership

def apply(self, call):
for prop in ("steals", "invalidates"):

value = getattr(self, prop)
if value is not None:

for arg in call.args:
if arg.name == self.argument:

setattr(arg, prop, value)
if self.ownership is not None and call.returns:

call.returns.ownership = self.ownership

class MyGuiPackage(wrappyr.Package):
HINTS = [

hint("MyGui.Window.add_child", "child", ownership = True),

18 Chapter 4. Memory management

Wrappyr Documentation, Release 0.1a1

hint("MyGui.Window.destroy_child", "child", invalidates = True),
hint("MyGui.Window.detach_child", ownership = True),

]

def process_ctypes_structure(self, structure):
for hint in self.hints:

f = structure.get_by_path(hint.name)
for call in f.ops:

hint.apply(call)

Assume that all methods that begin with destroy_ invalidate the arguments passed to them:

import wrappyr
from wrappyr.ctypes_api_builder.structure import CTypesStructureVisitor

class FixDestroyMethods(CTypesStructureVisitor):
def visit_Method(self, method):

if method.raw:
return # Method only conains Python code, so skip it.

if not method.name.startswith("destroy_"):
return # Method does not start with destroy_

for call in method.ops:
for arg in call.args:

arg.invalidates = True

class MyPackage(wrappyr.Package):
def process_ctypes_structure(self, structure):

FixDestroyMethods().process(structure)

4.2. Examples 19

Wrappyr Documentation, Release 0.1a1

20 Chapter 4. Memory management

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

21

Wrappyr Documentation, Release 0.1a1

22 Chapter 5. Indices and tables

Python Module Index

w
wrappyr.ctypes_api_builder.structure, 7

23

Wrappyr Documentation, Release 0.1a1

24 Python Module Index

Index

A
add_class() (wrappyr.ctypes_api_builder.structure.Module

method), 9
add_function() (wrappyr.ctypes_api_builder.structure.Module

method), 9
add_library() (wrappyr.ctypes_api_builder.structure.Module

method), 9
add_member() (wrappyr.ctypes_api_builder.structure.Class

method), 11
add_method() (wrappyr.ctypes_api_builder.structure.Class

method), 11
add_module() (wrappyr.ctypes_api_builder.structure.Package

method), 10
add_package() (wrappyr.ctypes_api_builder.structure.Package

method), 10
add_pointer() (wrappyr.ctypes_api_builder.structure.Class

method), 11
add_pointer() (wrappyr.ctypes_api_builder.structure.Module

method), 9
Argument (class in wrap-

pyr.ctypes_api_builder.structure), 12

C
Call (class in wrappyr.ctypes_api_builder.structure), 12
Class (class in wrappyr.ctypes_api_builder.structure), 11
CTypesStructure (class in wrap-

pyr.ctypes_api_builder.structure), 13
CTypesStructureVisitor (class in wrap-

pyr.ctypes_api_builder.structure), 13

E
every_class() (wrappyr.ctypes_api_builder.structure.Module

method), 9
every_function() (wrap-

pyr.ctypes_api_builder.structure.Module
method), 9

every_library() (wrappyr.ctypes_api_builder.structure.Module
method), 9

every_module() (wrappyr.ctypes_api_builder.structure.Class
method), 11

every_module() (wrappyr.ctypes_api_builder.structure.Package
method), 10

every_package() (wrap-
pyr.ctypes_api_builder.structure.Package
method), 10

every_pointer() (wrappyr.ctypes_api_builder.structure.Class
method), 11

every_pointer() (wrappyr.ctypes_api_builder.structure.Module
method), 10

F
find_library() (wrappyr.ctypes_api_builder.structure.Module

method), 9
find_lowest_common_parent() (wrap-

pyr.ctypes_api_builder.structure.Node
method), 8

Function (class in wrappyr.ctypes_api_builder.structure),
11

G
get_by_path() (wrappyr.ctypes_api_builder.structure.CTypesStructure

method), 13
get_closest_parent_module() (wrap-

pyr.ctypes_api_builder.structure.Node
method), 8

get_closest_parent_of_type() (wrap-
pyr.ctypes_api_builder.structure.Node
method), 8

get_ctypes_export() (wrappyr.Package method), 5
get_distance_to_parent() (wrap-

pyr.ctypes_api_builder.structure.Node
method), 8

get_generated_header_path() (wrappyr.Package method),
6

get_generated_source_path() (wrappyr.Package method),
6

get_header_export() (wrappyr.Package method), 5

25

Wrappyr Documentation, Release 0.1a1

get_path() (wrappyr.ctypes_api_builder.structure.Node
method), 7

get_source_export() (wrappyr.Package method), 5
get_source_header_path() (wrappyr.Package method), 6
get_source_language() (wrappyr.Package method), 6

I
invalidates (wrappyr.ctypes_api_builder.structure.Argument

attribute), 13

L
Library (class in wrappyr.ctypes_api_builder.structure),

10

M
Member (class in wrappyr.ctypes_api_builder.structure),

12
Method (class in wrappyr.ctypes_api_builder.structure),

11
Module (class in wrappyr.ctypes_api_builder.structure), 9
Module.LibraryNotFound, 10

N
name (wrappyr.ctypes_api_builder.structure.Node at-

tribute), 7
Node (class in wrappyr.ctypes_api_builder.structure), 7

O
ownership (wrappyr.ctypes_api_builder.structure.ReturnValue

attribute), 13

P
Package (class in wrappyr.ctypes_api_builder.structure),

10
parent (wrappyr.ctypes_api_builder.structure.Node

attribute), 7
parents() (wrappyr.ctypes_api_builder.structure.Node

method), 8
process() (wrappyr.ctypes_api_builder.structure.CTypesStructureVisitor

method), 14
process_code_import() (wrappyr.Package method), 6
process_ctypes_structure() (wrappyr.Package method), 6

R
remove_class() (wrappyr.ctypes_api_builder.structure.Module

method), 9
remove_function() (wrap-

pyr.ctypes_api_builder.structure.Module
method), 9

remove_library() (wrap-
pyr.ctypes_api_builder.structure.Module
method), 9

remove_member() (wrap-
pyr.ctypes_api_builder.structure.Class
method), 11

remove_method() (wrap-
pyr.ctypes_api_builder.structure.Class
method), 11

remove_module() (wrap-
pyr.ctypes_api_builder.structure.Package
method), 10

remove_package() (wrap-
pyr.ctypes_api_builder.structure.Package
method), 10

remove_pointer() (wrap-
pyr.ctypes_api_builder.structure.Class
method), 11

remove_pointer() (wrap-
pyr.ctypes_api_builder.structure.Module
method), 9

ReturnValue (class in wrap-
pyr.ctypes_api_builder.structure), 13

S
source_header_name (wrappyr.Package attribute), 6
steals (wrappyr.ctypes_api_builder.structure.Argument

attribute), 13

W
wrappyr.ctypes_api_builder.structure (module), 7
wrappyr.Package (built-in class), 5

26 Index

	Introduction
	Requirements
	Getting started
	Where to go from here

	Creating Package classes
	Ctypes API generation
	Reference
	Examples

	Memory management
	Providing memory management hints
	Examples

	Indices and tables
	Python Module Index

