

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

wpk API

wpk comes with a number of useful modules that can be used by third-party commands
to enhance functionality and also to ensure consistency with the native wpk commands’
user-experience.

@wpk-cli/prompt

Wraps an Inquirer instance to allow a command:

	to display live, per-question help text beneath the user prompt

	to hook into key press events during the prompt session

	to ask the user if they want to save answers to the prompt

	…and more

Default export class WpkPrompt(options).

Create a wpk prompter.

Options object properties:

	name (string) name of the prompt

	questions (function|object) questions of the prompt

	defaultAnswers (function|object) default answers of the prompt

	[message] (string) message to display above prompt

	[runBeforePrompt] (function) invoked before prompts begin, returns true/false whether prompt will run

	[runAfterPrompt] (function) invoked after all questions of the prompt are answers

	[onRenderQuestion] (function) invoked after Inquirer has performed a render

	[onKeyPress] (function) callback to invoke on user key press

	[persistable] (boolean) ask if the user wants to save prompt answers

See the @wpk-cli/prompt source [https://github.com/wpk-cli/wpk/blob/master/packages/wpk-prompt/src/WpkPrompt.js] for more information.

@wpk-cli/config

Used to create, serialise, and deserialise webpack configuration files into an AST and class-representation
which allows manipulation of config properties, plugins, module rules, loaders, and dependencies.

By using WebpackConfig.load(<path>) it is possible to parse, manipulate, and then save existing
configs. The parser will make a best guess at the location of various webpack config component
paths, for example by following references to arrays for the plugins, optimization.minimizers and module.rule
properties, and amend these in-place. (It will also do this for normal config properties, however they are less commonly
set through identifiers.)

Named export class WebpackConfig(options)

Represents a webpack configuration with all its components.

Options object properties:

	[ast] (object) the original, underlying AST of the configuration

	[extends] (string[]) an array of paths to configs the config extends

	[environments] (string[]) an array of environment names

	[dependencies] (WebpackDependency[]) external dependencies of the config

	[configuration] (object) the webpack configuration object

	[minimizers] (WebpackPlugin[]) minimizer plugins of the config

	[plugins] (WebpackPlugin[]) normal plugins of the config

	[rules] (WebpackModuleRule[]) module rules of the config

Named export class WebpackOption(options)

Represents a value in the configuration - not necessarily an actual property
on the configuration object, just a value that is aware of such things
as environments and will be serialised as such.

Options object properties:

	[config] (WebpackConfig) reference to the parent WebpackConfig

	[path] (string) config property name as dot-path

	[raw] (value) is value raw @babel/types AST

	[pathSensitive] (boolean) is the value path sensitive, i.e. should be wrapped with call to `path.resolve

	[environments] (string[]) environments when option will be value

	[value] _(*)_ the value of the option when environments match (or no environments given)

	[valueOnNotEnvMatch] _(*)_ the value of the option when environments do not match

Named export class WebpackDependency(options)

Represents an external dependency of a configuration, i.e. a require call and variable declaration.

Options object properties:

	path (string) path given to require

	[identifier] (string) variable name (if identifiers not given)

	[identifiers] (string[]) variable names, used in destructure (if identifier not given)

	[memberPath] (string) dot-path member expression, e.g. optimize.PluginName

Named export class WebpackPlugin(options)

Represents a webpack plugin used in the config.

Options object properties:

	name (string) the plugin name, used as the variable name for the constructor

	package (string) package name, used to require the plugin’s package

	[memberPath] (string) dot-path member expression, used in constructing require call

	[arguments] _(*[])_ array of arguments to pass when instantiating the plugin (supports WebpackOptions)

	[environments] (string[]) environments the plugin will be active in

	[type] (string) the type of the plugin (enum at WebpackPlugin.type)

Named export class WebpackModuleRule(options)

Represents a module rule in the config. A module rule has loaders (see below).

Options object properties:

	``

Named export class WebpackLoader(options)

@wpk-cli/builder

A wrapper around the webpack Node API that introduces a Builder class representing a single webpack building
process and optionally off-loads the actual build to a separate worker process.

@wpk-cli/logger

A simple wrapper around console.log and chalk that allows you it to be silenced,
for example when the user passes the --quiet flag. Only errors are printed (via log.error)
when the logger is “off”.

Default export log(...messages)

Log a message, like console.log.

Methods on log:

	log.info(...messages) log with “info” prefix

	log.warn(...messages) log with “warn” prefix

	log.error(...messages) log with “err!” prefix

	log.done(...messages) log with “done” prefix

	log.off() silence the logger (except for errors)

	log.on() un-silence the logger

log.intercept(callback)

The logger comes with an “intercept” mode. When enabled any call to console.log (not calls to wpk own’s logger)
will be intercepted and passed to the callbacks registered via the intercept.on method.

The intercept mode is used within config builder workers so that logs within workers can be handed back to the
parent process and displayed to the user.

Example:

log.intercept((args) => {
 // args is `arguments` of call to console[method]
})

log.transform(callback)

Hook into calls to any log method and transform the arguments.

Example:

log.transform((args) => {
 // change args directly (return value ignored)
 args[0] = 'spongebob'
})

wpk Development

Linting

The project uses Prettier [https://prettier.io/] to enforce code style consistency.

On git commit staged files will be amended to match the default prettier code style.

Testing

Tests are orchestrated using Jest [https://facebook.github.io/jest/].

Each package has its own __tests__ folder at the root.

Tests are separated into integration (smoke) tests and unit tests:

	npm run test to run unit tests & generate coverage report

	npm run test:smoke to run the smoke tests

Tests require webpack to be installed globally.

Build tooling

The build is performed by Gulp [https://gulpjs.com].

Available Gulp tasks are as follows.

build [--clean] (default task)

Build each package for distribution.

	--clean runs the clean task first

watch [--clean]

Watch and build each package on changes to the source files.

	--clean runs the clean task first

clean

Remove all data from the 'dist/' path in each package directory.

Debug mode

Enable debug logging with the --wpk-debug flag.

Profiling

It is possible to profile wpk commands.

Enable profiling by setting the WPK_PROFILE environment variable, e.g. export WPK_PROFILE=1, or passing the --wpk-profile flag.

Profiling is done with 0x [https://github.com/davidmarkclements/0x] and the result (a flamegraph) will be created in the project root.

wpk Plugins

It is possible to write third-party commands for wpk.

The approach is very simple:

	the package name will begin with wpk-command- or @wpk-cli/command-

	the package will default export a command definition object (see below)

Packages matching these criteria are searched for globally and locally and loaded automatically when found.

Command definition

Take a look at the source code for one of the commands [https://github.com/wpk-cli/wpk/tree/master/packages] to see an example.

definition.name

The command name, should be the same as the command configured in definition.install.

definition.get()

The function that returns the command function.

The command function should be require’d and returned inside get() so that the command is lazy loaded
on invocation.

definition.install(program, defaults)

The function called to install a third-party wpk command by declaring the command on the Commander instance.

	program the Commander [https://github.com/tj/commander.js] instance

	defaults option defaults that may be set by the environment, e.g. defaults.config

Note: you should not declare an action on the Commander instance. This will be done automatically by wpk
during its initialisation phase in order that the actual command function is not loaded until a command is invoked
via command line by the user.

wpk-def.json

A wpk-def.json describes a webpack loader or a plugin, what its arguments are and what form they should take.

It allows the user to use the wpk command suite to configure and add the component to their
webpack configuration all within the terminal.

wpk comes ready with definitions for the webpack native plugins and a number of the popular third-party
plugins and loaders too, such as HtmlWebpackPlugin, CleanWebpackPlugin and babel-loader.

wpk will look for a wpk-def.json in the root of a plugin or loader package directory. If you are a plugin or
loader maintainer this means you can add support for the wpk command suite to your component by
creating a wpk-def.json at the root of your package, ensuring it is published to npm.

Look at the built-in definitions [https://github.com/wpk-cli/wpk/tree/master/packages/defs] for examples.

When creating your own, you can validate a wpk-def.json using the
wpk validate wpk-def <file> command.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

