
ansible-workshop Documentation
Release 0.1

Praveen Kumar, Aditya Patawari

May 11, 2017

Contents

1 Introduction 3
1.1 Requirements . 3
1.2 Goal . 3

2 Basics of Ansible 5
2.1 What is Ansible? . 5
2.2 Why do we need it? . 5
2.3 What are the advantages of using it? . 5
2.4 How to install Ansible? . 5

3 Inventory File 7

4 Modules 9

5 Playbooks 11

6 Variables 15

7 Condition handling 17

8 System Configurations 19
8.1 Important modules . 19

9 Application Orchestration 21

10 Roles 23

11 Cloud Infra Provising 25

12 Custom Modules 27
12.1 Test Module . 27

13 Ansible Vault 29
13.1 Create Encrypted File . 29
13.2 Edit Encrypted File . 29
13.3 Rekeying Encrypted File . 29
13.4 View Content of Encrypted File . 29
13.5 Running a playbook with vault . 30

i

14 Further Reading 31

15 Indices and tables 33

ii

ansible-workshop Documentation, Release 0.1

Contents:

Contents 1

ansible-workshop Documentation, Release 0.1

2 Contents

CHAPTER 1

Introduction

Welcome to Ansible workshop.

Requirements

• A Fedora 24/25 virtual machine.

• Internet connection

Goal

To learn Ansible basics and create a simple Ansible playbook to install a web application and server.

3

ansible-workshop Documentation, Release 0.1

4 Chapter 1. Introduction

CHAPTER 2

Basics of Ansible

What is Ansible?

Ansible is a modern IT automation tool which makes your life easier by managing your servers for you. You just need
to define the configuration in which you are interested and ansible will go ahead and do it for you, be it installing
a package or configuring a server application or even restarting a service. Ansible is always ready to manage your
servers.

Why do we need it?

Managing a server is easy. Managing 5 is do’able. Managing hundreds or more is a painful task without automation.
Ansible is designed to be simple and effective. You can create identical, replicable servers and clusters of servers in a
painless and reliable manner.

What are the advantages of using it?

Ansible manages machines in an agent-less manner. You do not need to have anything installed on the client’s end.
However both push and pull mode are supported. Ansible is a security focused tool. It uses OpenSSH as transport
protocol. Ansible scripts (commonly known as playbooks) are written in YAML and are easy to read. If needed,
Ansible can easily connect with Kerberos, LDAP, and other centralized authentication management systems.

How to install Ansible?

We will install the Ansible by pip. Package managers like dnf, yum and apt can be used.

• On Fedora machines:

5

ansible-workshop Documentation, Release 0.1

dnf install ansible

• On CentOS machines

yum install epel-release
yum install ansible

6 Chapter 2. Basics of Ansible

CHAPTER 3

Inventory File

Inventory defines the groups of hosts which are alike in any way. For example, you would want to group your web
servers in one group and application servers in another. A group can have multiple server and one server can be a part
of multiple groups.

Name of group is enclosed in square brackets []. Server names can be their DNS names or IP addresses.

[webservers]
server1
[application]
server1
server2

By default, ansible looks for the inventory file at /etc/ansible/hosts, but that can be modified by passing a -i <inven-
tory_path to the ansible command line.

We can modify the way ansible connects to our hosts by supplying additional information in the inventory file.

[webservers]
server1 ansible_port=4242 ansible_user=adimania
[application]
server1
server2
[master]
localhost ansible_connection=local

A more exhaustive list of inventory parameters can be seen here - http://docs.ansible.com/ansible/intro_inventory.
html#list-of-behavioral-inventory-parameters

There are times when you would want to pull the inventory from a cloud provider, or from LDAP, or you would
want the inventory list to be generated using some logic, rather than from a simple text-based inventory list. For such
purposes, we can use Dynamic Inventory, but that’s a topic for another day.

7

http://docs.ansible.com/ansible/intro_inventory.html#list-of-behavioral-inventory-parameters
http://docs.ansible.com/ansible/intro_inventory.html#list-of-behavioral-inventory-parameters

ansible-workshop Documentation, Release 0.1

8 Chapter 3. Inventory File

CHAPTER 4

Modules

Modules are the executable plugins that get the real job done.

Usually modules can take “key=value” arguments and run in customized way depending up on the arguments them-
selves.

A module can be invoked from commandline or can be included in an Ansible playbook.

We will discuss playbooks in a minute but for now, let us see modules in action.

To use modules from the command line, we write ansible ad-hoc commands, like the following -

$ ansible all -m ping

Above example will use the ping module to ping all the hosts defined in the inventory. There are several modules
available in ansible. Let us try another one.

$ ansible webservers -m command -a "ls"

In the above example, we use command module to fire ls command on the webservers group.

$ ansible -i inventory all -m command -a "iptables -F" --become --ask-become-pass

Here, we use the command module to flush iptables rules on all the hosts in the inventory, and we tell ansible to execute
the command with sudo privileges using –become and ask us the sudo password using –ask-become-pass.

$ ansible all -m setup

Ansible gathers facts about the hosts the tasks are being run against, which can be used later in the playbook execution,
we can see all facts using the command above.

See how to extract particular facts in the documentation of setup module. To see the documentation, run -

$ ansible-doc setup

Using ansible-doc <module name> we can check the documentation of any ansible module.

9

ansible-workshop Documentation, Release 0.1

10 Chapter 4. Modules

CHAPTER 5

Playbooks

Playbooks are a description of policies that you want to apply to your systems. They consist of a listing of modules
and the arguments that will run on your system so that ansible gets to know the current state. They are written in
YAML. They begin with “—”, followed by the group name of the hosts where the playbook would be run.

Example:

hosts: localhost

- name: install nginx
yum: name=nginx state=installed

The example above will install Nginx on our systems. Let us also install pip, flask and our flask app.

hosts: localhost

- name: install nginx
yum: name=nginx state=installed

- name: install pip
yum: name=python-pip state=installed

- name: install flask
pip: name=flask

- name: fetch application
git: repo=https://gist.github.com/c454e2e839fcb20605a3.git dest=flask-demo

Now we should also copy the config file for Nginx and systemd service file for our flask app. We will also define a
couple of handlers. Handlers are executed if there is any change in state of the task which is supposed to notifies them.

When we will be done with the workshop, our final playbook will look something like this:

11

ansible-workshop Documentation, Release 0.1

- hosts: localhost

remote_user: fedora
become: yes
become_method: sudo
vars:
- server_port: 8080

tasks:
- name: install nginx

yum: name=nginx state=installed

- name: serve nginx config
template: src=../files/flask.conf dest=/etc/nginx/conf.d/
notify:
- restart nginx

- name: install pip
yum: name=python-pip state=installed

- name: install flask
pip: name=flask

- name: serve flask app systemd unit file
copy: src=../files/flask-demo.service dest=/etc/systemd/system/

- name: fetch application
git: repo=https://gist.github.com/c454e2e839fcb20605a3.git dest=/opt/flask-demo
notify:

- restart flask app

- name: set selinux to permissive for demo
selinux: policy=targeted state=permissive

handlers:
- name: restart nginx

service: name=nginx state=restarted

- name: restart flask app
service: name=flask-demo state=restarted

We can also skip a particular task or make a task execute only if a condition is met using the When statement.

tasks:
- shell: yum provides */elinks
when: ansible_os_family == "RedHat"

Suppose we have a list of items we have to iterate on for a particular task, we can use loops like the following

- name: add ssh users
user:
name: "{{ item }}"
state: present
generate_ssh_key: yes

with_items:
- sshuser1
- sshuser2
- sshuser3

12 Chapter 5. Playbooks

ansible-workshop Documentation, Release 0.1

We can also run certain tasks from a playbook by tagging them -

- hosts: localhost

become: yes

tasks:
- name: install nginx
yum: name=nginx state=present
tags:

- system

- name: install pip
yum: name=python-pip state=present
tags:

- system

- name: install flask
pip: name=flask
tags:

- dev

We can run the system tagged tasks by running ansible-playbook playbook.yml –ask-become-pass –tags system

We can skip the system tagges tasks by running ansible-playbook playbook.yml –ask-become-pass –skip-tags system

13

ansible-workshop Documentation, Release 0.1

14 Chapter 5. Playbooks

CHAPTER 6

Variables

There are times when we have a bunch of similar servers but they are not exactly the same. For example, consider
webservers. They may all run Nginx and might have same set of users accounts and ACLs but they may vary slightly
in configuration. For such scenarios, variables are very helpful. A variable name can only consist of letters, numbers,
and underscores and should always start with a letter. Below is an example of a variable definition in a playbook.

- hosts: webservers
vars:
http_port: 80

We can save the result of a command to a variable and use that somewhere else in the playbook, e.g. in conditionals.

tasks:

- name: list contents of directory
command: ls mydir
register: contents

- name: check contents for emptiness
debug: msg="Directory is empty"
when: contents.stdout == ""

15

ansible-workshop Documentation, Release 0.1

16 Chapter 6. Variables

CHAPTER 7

Condition handling

Conditionals help us evaluate a variable and take some action on the basis of the outcome.

Example:

- hosts: localhost
vars:
- state: false

tasks:
- shell: echo good state

when: state

17

ansible-workshop Documentation, Release 0.1

18 Chapter 7. Condition handling

CHAPTER 8

System Configurations

Important modules

• Software installation: yum, apt, pip

• Services management: service

• Selinux management: selinux

• User manamgement: user

Examples:

- name: install git
yum: name=git state=installed

- name: start nginx
service: name=nginx state=started

- name: put selinux to enforcing mode
selinux: policy=targeted state=enforcing

- name: create the user
user: name=aditya

19

ansible-workshop Documentation, Release 0.1

20 Chapter 8. System Configurations

CHAPTER 9

Application Orchestration

Ansible can be used to deploy applications. A very obvious strategy is to package the application into rpm or deb
package and use yum or apt module of ansible to install the application. Handlers can be used to reload or restart
the application post the deploy. Alternatively, git module can be used to clone or pull the code from a repository and
install or update the application.

Example:

- name: fetch application
git: repo=https://gist.github.com/c454e2e839fcb20605a3.git dest=/opt/flask-demo

21

ansible-workshop Documentation, Release 0.1

22 Chapter 9. Application Orchestration

CHAPTER 10

Roles

Ansible playbooks can get very, very long with time, and hence difficult to maintain. Also, if you would like to reuse
a subset of tasks from a playbook, that would get difficult as the playbooks get bigger and bigger.

Ansible roles can help you with grouping content, managing playbooks for a large project.

Example project structure:

site.yml
webservers.yml
fooservers.yml
roles/

common/
files/
templates/
tasks/
handlers/
vars/
defaults/
meta/

webservers/
files/
templates/
tasks/
handlers/
vars/
defaults/
meta/

In a playbook, it would look like this:

- hosts: webservers

roles:
- common
- webservers

23

ansible-workshop Documentation, Release 0.1

This designates the following behaviors, for each role ‘x’:

• If roles/x/tasks/main.yml exists, tasks listed therein will be added to the play

• If roles/x/handlers/main.yml exists, handlers listed therein will be added to the play

• If roles/x/vars/main.yml exists, variables listed therein will be added to the play

• If roles/x/defaults/main.yml exists, variables listed therein will be added to the play

• If roles/x/meta/main.yml exists, any role dependencies listed therein will be added to the list of roles (1.3 and
later)

• Any copy, script, template or include tasks (in the role) can reference files in roles/x/{files,templates,tasks}/ (dir
depends on task) without having to path them relatively or absolutely

24 Chapter 10. Roles

CHAPTER 11

Cloud Infra Provising

Ansible provide lots of module for different Cloud operators like AWS, Openstack, Rackspace, digitalOcean ...etc. to
manage your cloud infra.

http://docs.ansible.com/ansible/list_of_cloud_modules.html

Here we have sample playbook for openstack cloud provider.

vars/main.yml

OS_USERNAME: user1
OS_PASSWORD: demo_password
OS_TENANT_NAME: user1
OS_AUTH_URL: http://172.29.236.7:35357/v2.0
KEY_NAME: controller-key
SHARED_NETWORK: 11d0eb17-7e18-4a7b-978d-d9475c64d0e0
FLAVOR: m1.tiny
OSIMG: cirros-0.3.3
INSTCNT: 3
INSTNAME: ansible-demo

tasks/main.yml

- name: Launch instances in tenant
command: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_PASSWORD }} --os-

→˓tenant-name={{ OS_TENANT_NAME }}
--os-auth-url={{ OS_AUTH_URL }} boot --flavor {{ FLAVOR }} --image {{ OSIMG

→˓}} --nic net-id={{ SHARED_NETWORK }}
--security-group default --key-name {{ KEY_NAME }} --min-count {{ INSTCNT }}

→˓ {{ INSTNAME }}

you can use openstack-API instead of CLI to perform same task.

25

http://docs.ansible.com/ansible/list_of_cloud_modules.html

ansible-workshop Documentation, Release 0.1

For DigitalOcean Droplet provisioning, refer to the respective directory in the root of this repository for playbooks.

Before running the playbooks, make sure you have done the following -

• pip install dopy

• Login to your DO account, and under API, generate your API token, and then export it to the environment as
DO_API_TOKEN=<token>

26 Chapter 11. Cloud Infra Provising

CHAPTER 12

Custom Modules

Let we try to build a very basic module which will get and set system time. We will do it in step by step.

• Write a python script to get current time and print json dump.

• Write a python script to get time as argument and set it to system.

Test Module

git clone https://github.com/ansible/ansible.git --recursive
source ansible/hacking/env-setup
chmod +x ansible/hacking/test-module

ansible/hacking/test-module -m ./timetest.py

$ hacking/test-module -m workshop-ansible/code/timetest.py

* including generated source, if any, saving to:
/home/prkumar/.ansible_module_generated

* this may offset any line numbers in tracebacks/debuggers!

RAW OUTPUT
{"time": "2015-09-03 12:08:40.569710"}

PARSED OUTPUT
{

"time": "2015-09-03 12:08:40.569710"
}

If you don’t get any desired output then you might have to check your test module code again.

27

ansible-workshop Documentation, Release 0.1

Read Input

We will pass a key value pair (time=<string>) to module and check if we are able to set time for a system.

Let’s set time to “Oct 7 10:10”

• update timetest.py with latest changes (check in code directory)

$ hacking/test-module -m workshop-ansible/code/timetest_update.py -a "time=\"May 7
→˓10:10\""

* including generated source, if any, saving to:
/home/prkumar/.ansible_module_generated

* this may offset any line numbers in tracebacks/debuggers!

RAW OUTPUT
Thu May 7 10:10:00 IST 2015
{"msg": "failed setting the time", "failed": true}

date: cannot set date: Operation not permitted

INVALID OUTPUT FORMAT
Thu May 7 10:10:00 IST 2015
{"msg": "failed setting the time", "failed": true}

source

Example

28 Chapter 12. Custom Modules

http://docs.ansible.com/ansible/developing_modules.html#tutorial
https://github.com/rishabhdas/dmidecode-ansible

CHAPTER 13

Ansible Vault

This feature of Ansible allows you to keep your sensitive data encrypted like passwords and keys.

• Ansible provide a command line tool ansible-vault for edit sensitive files.

• When you run a playbook then command line flag -ask-vault-pass or -vault-password-file can be used.

• Vault can encrypt any structured data file used by Ansible.

Create Encrypted File

ansible-vault create foo.yml

Edit Encrypted File

ansible-vault edit foo.yml

Rekeying Encrypted File

ansible-vault rekey foo.yml

View Content of Encrypted File

ansible-vault view foo.yml

29

ansible-workshop Documentation, Release 0.1

Running a playbook with vault

ansible-playbook site.yml --ask-vault-pass
ansible-playbook site.yml --vault-password-file ~/.vault_pass.txt
ansible-playbook site.yml --vault-password-file ~/.vault_pass.py

30 Chapter 13. Ansible Vault

CHAPTER 14

Further Reading

• Ansible Documentation: http://docs.ansible.com/ansible/

• Fedora’s Ansible repo: https://infrastructure.fedoraproject.org/cgit/ansible.git

• Introduction to Ansible Video: https://www.youtube.com/watch?v=ak4yW6mF7Ns

31

http://docs.ansible.com/ansible/
https://infrastructure.fedoraproject.org/cgit/ansible.git
https://www.youtube.com/watch?v=ak4yW6mF7Ns

ansible-workshop Documentation, Release 0.1

32 Chapter 14. Further Reading

CHAPTER 15

Indices and tables

• genindex

• modindex

• search

33

	Introduction
	Requirements
	Goal

	Basics of Ansible
	What is Ansible?
	Why do we need it?
	What are the advantages of using it?
	How to install Ansible?

	Inventory File
	Modules
	Playbooks
	Variables
	Condition handling
	System Configurations
	Important modules

	Application Orchestration
	Roles
	Cloud Infra Provising
	Custom Modules
	Test Module

	Ansible Vault
	Create Encrypted File
	Edit Encrypted File
	Rekeying Encrypted File
	View Content of Encrypted File
	Running a playbook with vault

	Further Reading
	Indices and tables

