
wa Documentation
Release 3.4.0.dev1

Arm Limited

Jan 09, 2024

CONTENTS

1 What’s New 3

2 User Information 19

3 Developer Information 79

4 Plugin Reference 137

5 API 257

6 Glossary 271

7 FAQ 273

Python Module Index 277

Index 279

i

ii

wa Documentation, Release 3.4.0.dev1

Workload Automation (WA) is a framework for executing workloads and collecting measurements on Android and
Linux devices. WA includes automation for nearly 40 workloads and supports some common instrumentation (ftrace,
hwmon) along with a number of output formats.

WA is designed primarily as a developer tool/framework to facilitate data driven development by providing a method
of collecting measurements from a device in a repeatable way.

WA is highly extensible. Most of the concrete functionality is implemented via plug-ins, and it is easy to write new
plug-ins to support new device types, workloads, instruments or output processing.

Note: To see the documentation of individual plugins please see the Plugin Reference.

Contents

• Welcome to Documentation for Workload Automation

– What’s New

– User Information

– Developer Information

– Plugin Reference

– API

– Glossary

– FAQ

CONTENTS 1

wa Documentation, Release 3.4.0.dev1

2 CONTENTS

CHAPTER

ONE

WHAT’S NEW

1.1 What’s New in Workload Automation

1.1.1 Version 3.3.1

Warning: This is the last release supporting Python 3.5 and Python 3.6. Subsequent releases will support Python
3.7+.

New Features:

Commands:

Instruments:

• perf: Add support for report-sample.

Workloads:

• PCMark: Add support for PCMark 3.0.

• Antutu: Add support for 9.1.6.

• Geekbench: Add support for Geekbench5.

• gfxbench: Support the non corporate version.

Fixes/Improvements

Framework:

• Fix installation on systems without git installed.

• Avoid querying online cpus if hotplug is disabled.

3

wa Documentation, Release 3.4.0.dev1

Dockerfile:

• Update base image to Ubuntu 20.04.

Instruments:

• perf: Fix parsing csv with using interval-only-values.

• perf: Improve error reporting of an invalid agenda.

Output Processors:

• postgres: Fixed SQL command when creating a new event.

Workloads:

• speedometer: Fix adb reverse when rebooting a device.

• googleplaybook: Support newer apk version.

• googlephotos: Support newer apk version.

• gmail: Support newer apk version.

Other:

• Upgrade Android Gradle to 7.2 and Gradle plugin to 4.2.

1.1.2 Version 3.3

New Features:

Commands:

• Add report command to provide a summary of a run.

Instruments:

• Add proc_stat instrument to monitor CPU load using data from /proc/stat.

4 Chapter 1. What’s New

wa Documentation, Release 3.4.0.dev1

Framework:

• Add support for simulating atomic writes to prevent race conditions when running current instances of WA.

• Add support file transfer for SSH connections via SFTP and falling back to using SCP implementation.

• Support detection of logcat buffer overflow and present a warning if this occurs.

• Allow skipping all remaining jobs if a job had exhausted all of its retires.

• Add polling mechanism for file transfers rather than relying on timeouts.

• Add run_completed reboot policy to enable rebooting a target after a run has been completed.

Android Devices:

• Enable configuration of whether to keep the screen on while the device is plugged in.

Output Processors:

• Enable the use of cascading deletion in Postgres databases to clean up after deletion of a run entry.

Fixes/Improvements

Framework:

• Improvements to the process command to correctly handle skipped and in process jobs.

• Add support for deprecated parameters allowing for a warning to be raised when providing a parameter that will
no longer have an effect.

• Switch implementation of SSH connections to use Paramiko for greater stability.

• By default use sftp for file transfers with SSH connections, allow falling back to scp by setting use_scp.

• Fix callbacks not being disconnected correctly when requested.

• ApkInfo objects are now cached to reduce re-parsing of APK files.

• Speed up discovery of wa output directories.

• Fix merge handling of parameters from multiple files.

Dockerfile:

• Install additional instruments for use in the docker environment.

• Fix environment variables not being defined in non interactive environments.

1.1. What’s New in Workload Automation 5

wa Documentation, Release 3.4.0.dev1

Instruments:

• trace_cmd additional fixes for python 3 support.

Output Processors:

• postgres: Fixed SQL command when creating a new event.

Workloads:

• aitutu: Improve reliability of results extraction.

• androbench: Enabling dismissing of additional popups on some devices.

• antutu: Now supports major version 8 in additional to version 7.X.

• exoplayer: Add support for Android 10.

• googlephotos: Support newer apk version.

• gfxbench: Allow user configuration for which tests should be ran.

• gfxbench: Improved score detection for a wider range of devices.

• gfxbench: Moved results extraction out of run stage.

• jankbench: Support newer versions of Pandas for processing.

• pcmark: Add support for handling additional popups and installation flows.

• pcmark: No longer clear and re-download test data before each execution.

• speedometer: Enable the workload to run offline and drops requirement for UiAutomator. To support this root
access is now required to run the workload.

• youtube: Update to support later versions of the apk.

Other:

• cpustates: Improved name handling for unknown idle states.

1.1.3 Version 3.2

Warning: This release only supports Python 3.5+. Python 2 support has now been dropped.

Fixes/Improvements

Framework:

• TargetInfo now tracks installed modules and will ensure the cache is also updated on module change.

• Migrated the build scripts for uiauto based workloads to Python 3.

• Uiauto applications now target SDK version 28 to prevent PlayProtect blocking the installation of the automation
apks on some devices.

6 Chapter 1. What’s New

wa Documentation, Release 3.4.0.dev1

• The workload metadata now includes the apk package name if applicable.

Instruments:

• energy_instruments will now have their teardown method called correctly.

• energy_instruments: Added a keep_raw parameter to control whether raw files generated during execution
should be deleted upon teardown.

• Update relevant instruments to make use of the new devlib collector interface, for more information please see
the devlib documentation.

Output Processors:

• postgres: If initialisation fails then the output processor will no longer attempt to reconnect at a later point
during the run.

• postgres: Will now ensure that the connection to the database is re-established if it is dropped e.g. due to a
long expecting workload.

• postgres: Change the type of the hostid field to Bigint to allow a larger range of ids.

• postgres: Bump schema version to 1.5.

• perf: Added support for the simpleperf profiling tool for android devices.

• perf: Added support for the perf record command.

• cpustates: Improve handling of situations where cpufreq and/or cpuinfo data is unavailable.

Workloads:

• adodereader: Now support apk version 19.7.1.10709.

• antutu: Supports dismissing of popup asking to create a shortcut on the homescreen.

• gmail: Now supports apk version 2019.05.26.252424914.

• googlemaps: Now supports apk version 10.19.1.

• googlephotos: Now supports apk version 4.28.0.

• geekbench: Added support for versions 4.3.4, 4.4.0 and 4.4.2.

• geekbench-corporate: Added support for versions 5.0.1 and 5.0.3.

• pcmark: Now locks device orientation to portrait to increase compatibility.

• pcmark: Supports dismissing new Android 10 permission warnings.

1.1. What’s New in Workload Automation 7

https://devlib.readthedocs.io/en/latest/collectors.html

wa Documentation, Release 3.4.0.dev1

Other:

• Improve documentation to help debugging module installation errors.

1.1.4 Version 3.1.4

Warning: This is the last release that supports Python 2. Subsequent versions will be support Python 3.5+ only.

New Features:

Framework:

• ApkWorkload: Allow specifying A maximum and minimum version of an APK instead of requiring a specific
version.

• TestPackageHandler: Added to support running android applications that are invoked via am instrument.

• Directories can now be added as Artifacts.

Workloads:

• aitutu: Executes the Aitutu Image Speed/Accuracy and Object Speed/Accuracy tests.

• uibench: Run a configurable activity of the UIBench workload suite.

• uibenchjanktests: Run an automated and instrument version of the UIBench JankTests.

• motionmark: Run a browser graphical benchmark.

Other:

• Added requirements.txt as a reference for known working package versions.

Fixes/Improvements

Framework:

• JobOuput: Added an augmentation attribute to allow listing of enabled augmentations for individual jobs.

• Better error handling for misconfiguration job selection.

• All Workload classes now have an uninstall parameter to control whether any binaries installed to the target
should be uninstalled again once the run has completed.

• The cleanup_assets parameter is now more consistently utilized across workloads.

• ApkWorkload: Added an activity attribute to allow for overriding the automatically detected version from
the APK.

• ApkWorkload Added support for providing an implicit activity path.

• Fixed retrieving job level artifacts from a database backend.

8 Chapter 1. What’s New

wa Documentation, Release 3.4.0.dev1

Output Processors:

• SysfsExtractor: Ensure that the extracted directories are added as Artifacts.

• InterruptStatsInstrument: Ensure that the output files are added as Artifacts.

• Postgres: Fix missing system_id field from TargetInfo.

• Postgres: Support uploading directory Artifacts.

• Postgres: Bump the schema version to v1.3.

Workloads:

• geekbench: Improved apk version handling.

• geekbench: Now supports apk version 4.3.2.

Other:

• Dockerfile: Now installs all optional extras for use with WA.

• Fixed support for YAML anchors.

• Fixed building of documentation with Python 3.

• Changed shorthand of installing all of WA extras to all as per the documentation.

• Upgraded the Dockerfile to use Ubuntu 18.10 and Python 3.

• Restricted maximum versions of numpy and pandas for Python 2.7.

1.1.5 Version 3.1.3

Fixes/Improvements

Other:

• Security update for PyYAML to attempt prevention of arbitrary code execution during parsing.

1.1.6 Version 3.1.2

Fixes/Improvements

Framework:

• Implement an explicit check for Devlib versions to ensure that versions are kept in sync with each other.

• Added a View parameter to ApkWorkloads for use with certain instruments for example fps.

• Added "supported_versions" attribute to workloads to allow specifying a list of supported version for a
particular workload.

• Change default behaviour to run any available version of a workload if a specific version is not specified.

1.1. What’s New in Workload Automation 9

wa Documentation, Release 3.4.0.dev1

Output Processors:

• Postgres: Fix handling of screen_resoultion during processing.

Other

• Added additional information to documentation

• Added fix for Devlib’s KernelConfig refactor

• Added a "label" property to Metrics

1.1.7 Version 3.1.1

Fixes/Improvements

Other

• Improve formatting when displaying metrics

• Update revent binaries to include latest fixes

• Update DockerImage to use new released version of WA and Devlib

• Fix broken package on PyPi

1.1.8 Version 3.1.0

New Features:

Commands

• create database: Added create subcommand command in order to initialize a PostgresSQL database to allow
for storing WA output with the Postgres Output Processor.

Output Processors:

• Postgres: Added output processor which can be used to populate a Postgres database with the output generated
from a WA run.

• logcat-regex: Add new output processor to extract arbitrary “key” “value” pairs from logcat.

10 Chapter 1. What’s New

wa Documentation, Release 3.4.0.dev1

Configuration:

• Configuration Includes: Add support for including other YAML files inside agendas and config files using
"include#:" entries.

• Section groups: This allows for a group entry to be specified for each section and will automatically cross product
the relevant sections with sections from other groups adding the relevant classifiers.

Framework:

• Added support for using the OutputAPI with a Postgres Database backend. Used to retrieve and process run data
uploaded by the Postgres output processor.

Workloads:

• gfxbench-corporate: Execute a set of on and offscreen graphical benchmarks from GFXBench including Car
Chase and Manhattan.

• glbench: Measures the graphics performance of Android devices by testing the underlying OpenGL (ES) im-
plementation.

Fixes/Improvements

Framework:

• Remove quotes from sudo_cmd parameter default value due to changes in devlib.

• Various Python 3 related fixes.

• Ensure plugin names are converted to identifiers internally to act more consistently when dealing with names
containing -‘s etc.

• Now correctly updates RunInfo with project and run name information.

• Add versioning support for POD structures with the ability to automatically update data structures / formats to
new versions.

Commands:

• Fix revent target initialization.

• Fix revent argument validation.

1.1. What’s New in Workload Automation 11

wa Documentation, Release 3.4.0.dev1

Workloads:

• Speedometer: Close open tabs upon workload completion.

• jankbench: Ensure that the logcat monitor thread is terminated correctly to prevent left over adb processes.

• UiAutomator workloads are now able to dismiss android warning that a workload has not been designed for the
latest version of android.

Other:

• Report additional metadata about target, including: system_id, page_size_kb.

• Uses cache directory to reduce target calls, e.g. will now use cached version of TargetInfo if local copy is found.

• Update recommended installation commands when installing from github due to pip not following dependency
links correctly.

• Fix incorrect parameter names in runtime parameter documentation.

1.1.9 Version 3.0.0

WA3 is a more or less from-scratch re-write of WA2. We have attempted to maintain configuration-level compatibility
wherever possible (so WA2 agendas should mostly work with WA3), however some breaks are likely and minor tweaks
may be needed.

It terms of the API, WA3 is completely different, and WA2 extensions will not work with WA3 – they would need to
be ported into WA3 plugins.

For more information on migrating from WA2 to WA3 please see the Migration Guide.

Not all of WA2 extensions have been ported for the initial 3.0.0 release. We have ported the ones we believe to be most
widely used and useful. The porting work will continue, and more of WA2’s extensions will be in the future releases.
However, we do not intend to port absolutely everything, as some things we believe to be no longer useful.

Note: If there a particular WA2 extension you would like to see in WA3 that is not yet there, please let us know via the
GitHub issues. (And, of course, we always welcome pull requests, if you have the time to do the port yourselves :-)).

New Features

• Python 3 support. WA now runs on both Python 2 and Python 3.

Warning: Python 2 support should now be considered deprecated. Python 2 will still be fully supported
up to the next major release (v3.1). After that, Python 2 will be supported for existing functionality, however
there will be no guarantee that newly added functionality would be compatible with Python 2. Support for
Python 2 will be dropped completely after release v3.2.

• There is a new Output API which can be used to aid in post processing a run’s output. For more information
please see Output.

12 Chapter 1. What’s New

wa Documentation, Release 3.4.0.dev1

• All “augmentations” can now be enabled on a per workload basis (in WA2 this was available for instruments,
but not result processors).

• More portable runtime parameter specification. Runtime parameters now support generic aliases, so instead of
specifying a73_frequency: 1805000 in your agenda, and then having to modify this for another target, it is
now possible to specify big_frequency: max.

• -c option can now be used multiple times to specify several config files for a single run, allowing for a more
fine-grained configuration management.

• It is now possible to disable all previously configured augmentations from an agenda using ~~.

• Offline output processing with wa process command. It is now possible to run processors on previously col-
lected WA results, without the need for a target connection.

• A lot more metadata is collected as part of the run, including much more detailed information about the target,
and MD5 hashes of all resources used during the run.

• Better show command. wa show command now utilizes pandoc and man to produce easier-to-browse docu-
mentation format, and has been enhanced to include documentation on general settings, runtime parameters, and
plugin aliases.

• Better logging. The default stdout output is now more informative. The verbose output is much more detailed.
Nested indentation is used for different phases of execution to make log output easier to parse visually.

• Full ChromeOS target support. Including support for the Android container apps.

• Implemented on top of devlib. WA3 plugins can make use of devlib’s enhanced target API (much richer and
more robust than WA2’s Device API).

• All-new documentation. The docs have been revamped to be more useful and complete.

Changes

• Configuration files config.py are now specified in YAML format in config.yaml. WA3 has support for
automatic conversion of the default config file and will be performed upon first invocation of WA3.

• The “config” and “global” sections in an agenda are now interchangeable so can all be specified in a “config”
section.

• “Results Processors” are now known as “Output Processors” and can now be ran offline.

• “Instrumentation” is now known as “Instruments” for more consistent naming.

• Both “Output Processor” and “Instrument” configuration have been merged into “Augmentations” (support for
the old naming schemes have been retained for backwards compatibility)

1.2 Migration Guide

Contents

• Users

– Configuration

∗ Default configuration file change

∗ Plugin Changes

1.2. Migration Guide 13

https://github.com/ARM-software/devlib

wa Documentation, Release 3.4.0.dev1

– Agendas

∗ Global Section

∗ Instrumentation and Results Processors merged

∗ Per workload enabling of augmentations

∗ Setting Runtime Parameters

∗ Parameter Changes

∗ Output

· Output Directory

· Output API

• Developers

– Framework

∗ Imports

∗ Asset Deployment

– Workloads

∗ Python Workload Structure

∗ APK Functionality

∗ UiAutomator Java Structure

∗ GUI Functionality

∗ Attributes

1.2.1 Users

Configuration

Default configuration file change

Instead of the standard config.py file located at $WA_USER_DIRECTORY/config.py WA now uses a confg.yaml
file (at the same location) which is written in the YAML format instead of python. Additionally upon first invocation
WA3 will automatically try and detect whether a WA2 config file is present and convert it to use the new WA3 format.
During this process any known parameter name changes should be detected and updated accordingly.

Plugin Changes

Please note that not all plugins that were available for WA2 are currently available for WA3 so you may need to remove
plugins that are no longer present from your config files. One plugin of note is the standard results processor, this
has been removed and it’s functionality built into the core framework.

14 Chapter 1. What’s New

wa Documentation, Release 3.4.0.dev1

Agendas

WA3 is designed to keep configuration as backwards compatible as possible so most agendas should work out of the
box, however the main changes in the style of WA3 agendas are:

Global Section

The global and config sections have been merged so now all configuration that was specified under the “global”
keyword can now also be specified under “config”. Although “global” is still a valid keyword you will need to ensure
that there are not duplicated entries in each section.

Instrumentation and Results Processors merged

The instrumentation and results_processors sections from WA2 have now been merged into a single
augmentations section to simplify the configuration process. Although for backwards compatibility, support for
the old sections has be retained.

Per workload enabling of augmentations

All augmentations can now been enabled and disabled on a per workload basis.

Setting Runtime Parameters

Runtime Parameters are now the preferred way of configuring, cpufreq, hotplug and cpuidle rather setting the corre-
sponding sysfile values as this will perform additional validation and ensure the nodes are set in the correct order to
avoid any conflicts.

Parameter Changes

Any parameter names changes listed below will also have their old names specified as aliases and should continue to
work as normal, however going forward the new parameter names should be preferred:

• The workload parameter clean_up has be renamed to cleanup_assets to better reflect its purpose.

• The workload parameter check_apk has been renamed to prefer_host_package to be more explicit in it’s
functionality to indicated whether a package on the target or the host should have priority when searching for a
suitable package.

• The execution order by_spec is now called by_workload for clarity of purpose. For more information please
see Configuration.

• The by_spec reboot policy has been removed as this is no longer relevant and the each_iteration reboot
policy has been renamed to each_job, please see Configuration for more information.

Individual workload parameters have been attempted to be standardized for the more common operations e.g.:

• iterations is now loops to indicate the how many ‘tight loops’ of the workload should be performed, e.g.
without the setup/teardown method calls.

• num_threads is now consistently threads across workloads.

• run_timeout is now consistently timeout across workloads.

1.2. Migration Guide 15

wa Documentation, Release 3.4.0.dev1

• taskset_mask and cpus have been changed to consistently be referred to as cpus and its types is now a
cpu_mask type allowing configuration to be supplied either directly as a mask, as a list of a list of cpu indexes
or as a sysfs-style string.

Output

Output Directory

The output directory’s structure has changed layout and now includes additional subdirectories. There is now a __meta
directory that contains copies of the agenda and config files supplied to WA for that particular run so that all the relevant
config is self contained. Additionally if one or more jobs fail during a run then corresponding output directory will be
moved into a __failed subdirectory to allow for quicker analysis.

Output API

There is now an Output API which can be used to more easily post process the output from a run. For more information
please see the Output API documentation.

1.2.2 Developers

Framework

Imports

To distinguish between the different versions of WA, WA3’s package name has been renamed to wa. This means that
all the old wlauto imports will need to be updated. For more information please see the corresponding section in the
developer reference section

Asset Deployment

WA3 now contains a generic assets deployment and clean up mechanism so if a workload was previously doing this
in an ad-hoc manner this should be updated to utilize the new functionality. To make use of this functionality a list
of assets should be set as the workload deployable_assets attribute, these will be automatically retrieved via WA’s
resource getters and deployed either to the targets working directory or a custom directory specified as the workloads
assets_directory attribute. If a custom implementation is required the deploy_assets method should be overrid-
den inside the workload. To allow for the removal of the additional assets any additional file paths should be added to
the self.deployed_assets list which is used to keep track of any assets that have been deployed for the workload.
This is what is used by the generic remove_assets method to clean up any files deployed to the target. Optionally if
the file structure of the deployed assets requires additional logic then the remove_assets method can be overridden
for a particular workload as well.

16 Chapter 1. What’s New

wa Documentation, Release 3.4.0.dev1

Workloads

Python Workload Structure

• The update_results method has been split out into 2 stages. There is now extract_results and
update_output which should be used for extracting any results from the target back to the host system and
to update the output with any metrics or artefacts for the specific workload iteration respectively.

• WA now features execution decorators which can be used to allow for more efficient binary deployment and
that they are only installed to the device once per run. For more information of implementing this please see
deploying executables to a target.

APK Functionality

All apk functionality has re-factored into an APKHandler object which is available as the apk attribute of the workload.
This means that for example self.launchapplication() would now become self.apk.start_activity()

UiAutomator Java Structure

Instead of a single runUiAutomation method to perform all of the UiAutomation, the structure has been refactored
into 5 methods that can optionally be overridden. The available methods are initialize, setup, runWorkload,
extactResults and teardown to better mimic the different stages in the python workload.

• initialize should be used to retrieve and set any relevant parameters required during the workload.

• setup should be used to perform any setup required for the workload, for example dismissing popups or config-
uring and required settings.

• runWorkload should be used to perform the actual measurable work of the workload.

• extractResults should be used to extract any relevant results from the target after the workload has been
completed.

• teardown should be used to perform any final clean up of the workload on the target.

Note: The initialize method should have the @Before tag attached to the method which will cause it to be ran
before each of the stages of the workload. The remaining method should all have the @Test tag attached to the method
to indicate that this is a test stage that should be called at the appropriate time.

GUI Functionality

For UI based applications all UI functionality has been re-factored to into a gui attribute which currently will be either
a UiAutomatorGUI object or a ReventGUI depending on the workload type. This means that for example if you wish
to pass parameters to a UiAuotmator workload you will now need to use self.gui.uiauto_params['Parameter
Name'] = value

1.2. Migration Guide 17

wa Documentation, Release 3.4.0.dev1

Attributes

• The old package attribute has been replaced by package_names which expects a list of strings which allows for
multiple package names to be specified if required. It is also no longer required to explicitly state the launch-able
activity, this will be automatically discovered from the apk so this workload attribute can be removed.

• The device attribute of the workload is now a devlib target. Some of the command names remain the same,
however there will be differences. The API can be found at http://devlib.readthedocs.io/en/latest/target.html
however some of the more common changes can be found below:

Original Method New Method
self.device.pull_file(file) self.target.pull(file)
self.device.push_file(file) self.target.push(file)
self.device.install_executable(file) self.target.install(file)
self.device.execute(cmd, background=True) self.target.background(cmd)

18 Chapter 1. What’s New

http://devlib.readthedocs.io/en/latest/target.html

CHAPTER

TWO

USER INFORMATION

This section lists general usage documentation. If you’re new to WA3, it is recommended you start with the User Guide
page. This section also contains installation and configuration guides.

2.1 User Information

Contents

• Installation

– Prerequisites

∗ Operating System

∗ Android SDK

∗ Python

∗ pip

∗ Python Packages

∗ Optional Python Packages

– Installing

– Dockerfile

– (Optional) Post Installation

∗ APK Files

∗ Gaming Workloads

∗ Maintaining Centralized Assets Repository

– (Optional) Uninstalling

– (Optional) Upgrading

• User Guide

– Install

∗ (Optional) Verify installation

∗ (Optional) APK files

– List Command

19

wa Documentation, Release 3.4.0.dev1

– Show Command

– Configure Your Device

∗ Android

∗ Linux

∗ Enabling and Disabling Augmentations

– Running Your First Workload

– Create an Agenda

∗ Using the Create Command

– Run Command

– Output

– Uninstall

– Upgrade

• How Tos

– Defining Experiments With an Agenda

∗ Specifying which workloads to run

∗ Multiple iterations

∗ Configuring Workloads

· APK Workloads

∗ IDs and Labels

∗ Classifiers

∗ Sections

∗ Section Groups

∗ Augmentations

· Configuring augmentations

· Disabling augmentations

· Workload-specific augmentation

· Augmentations Example

∗ Other Configuration

– Setting Up A Device

∗ Android

· General Device Setup

· Configuring Android

∗ Juno Setup

· UEFI

· Rebooting

20 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

∗ Linux

· General Device Setup

∗ Chrome OS

· General Device Setup

∗ Related Settings

· Reboot Policy

· Execution Order

∗ Adding a new target interface

– Automating GUI Interactions With Revent

∗ Overview and Usage

· Using revent with workloads

· Recording

· Replaying

∗ Revent vs UiAutomator

• User Reference

– Configuration

∗ Agenda

· config

· workloads

· sections

∗ Run Configuration

∗ Meta Configuration

∗ Environment Variables

∗ Runtime Parameters

· Example

· HotPlug

· CPUFreq

· CPUIdle

· Android Specific Runtime Parameters

· Setting Sysfiles

∗ Configuration Merging

∗ Configuration Includes

– Commands

∗ Run

∗ List

2.1. User Information 21

wa Documentation, Release 3.4.0.dev1

∗ Show

∗ Create

∗ Process

∗ Record

∗ Replay

– Output Directory Structure

∗ Overview

∗ Output Directory Entries

∗ Configuration and Metadata

2.1.1 Installation

Contents

• Prerequisites

– Operating System

– Android SDK

– Python

– pip

– Python Packages

– Optional Python Packages

• Installing

• Dockerfile

• (Optional) Post Installation

– APK Files

– Gaming Workloads

– Maintaining Centralized Assets Repository

• (Optional) Uninstalling

• (Optional) Upgrading

This page describes the 3 methods of installing Workload Automation 3. The first option is to use pip which will install
the latest release of WA, the latest development version from github or via a Dockerfile.

22 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

Prerequisites

Operating System

WA runs on a native Linux install. It has been tested on recent Ubuntu releases, but other recent Linux distributions
should work as well. It should run on either 32-bit or 64-bit OS, provided the correct version of dependencies (see
below) are installed. Officially, other environments are not supported. WA has been known to run on Linux Virtual
machines and in Cygwin environments, though additional configuration may be required in both cases (known issues
include makings sure USB/serial connections are passed to the VM, and wrong python/pip binaries being picked up in
Cygwin). WA should work on other Unix-based systems such as BSD or Mac OS X, but it has not been tested in those
environments. WA does not run on Windows (though it should be possible to get limited functionality with minimal
porting effort).

Note: If you plan to run Workload Automation on Linux devices only, SSH is required, and Android SDK is optional
if you wish to run WA on Android devices at a later time. Then follow the steps to install the necessary python packages
to set up WA.

However, you would be starting off with a limited number of workloads that will run on Linux devices.

Android SDK

To interact with Android devices you will need to have the Android SDK with at least one platform installed. To install
it, download the ADT Bundle from here. Extract it and add <path_to_android_sdk>/sdk/platform-tools and
<path_to_android_sdk>/sdk/tools to your PATH. To test that you’ve installed it properly, run adb version. The
output should be similar to this:

adb version
Android Debug Bridge version 1.0.39

Once that is working, run

android update sdk

This will open up a dialog box listing available android platforms and corresponding API levels, e.g. Android 4.3
(API 18). For WA, you will need at least API level 18 (i.e. Android 4.3), though installing the latest is usually the
best bet.

Optionally (but recommended), you should also set ANDROID_HOME to point to the install location of the SDK (i.e.
<path_to_android_sdk>/sdk).

Python

Workload Automation 3 currently supports Python 3.5+

Note: If your system’s default python version is still Python 2, please replace the commands listed here with their
Python3 equivalent (e.g. python3, pip3 etc.)

2.1. User Information 23

https://developer.android.com/sdk/index.html

wa Documentation, Release 3.4.0.dev1

pip

pip is the recommended package manager for Python. It is not part of standard Python distribution and would need to
be installed separately. On Ubuntu and similar distributions, this may be done with APT:

sudo apt-get install python-pip

Note: Some versions of pip (in particluar v1.5.4 which comes with Ubuntu 14.04) are know to set the wrong per-
missions when installing packages, resulting in WA failing to import them. To avoid this it is recommended that you
update pip and setuptools before proceeding with installation:

sudo -H pip install --upgrade pip
sudo -H pip install --upgrade setuptools

If you do run into this issue after already installing some packages, you can resolve it by running

sudo chmod -R a+r /usr/local/lib/python3.X/dist-packages
sudo find /usr/local/lib/python3.X/dist-packages -type d -exec chmod a+x {} \;

(The paths above will work for Ubuntu; they may need to be adjusted for other distros).

Python Packages

Note: pip should automatically download and install missing dependencies, so if you’re using pip, you can skip this
section. However some packages the will be installed have C plugins and will require Python development headers to
install. You can get those by installing python-dev package in apt on Ubuntu (or the equivalent for your distribution).

Workload Automation 3 depends on the following additional libraries:

• pexpect

• docutils

• pySerial

• pyYAML

• python-dateutil

• louie

• pandas

• devlib

• wrapt

• requests

• colorama

• future

You can install these with pip:

24 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

sudo -H pip install pexpect
sudo -H pip install pyserial
sudo -H pip install pyyaml
sudo -H pip install docutils
sudo -H pip install python-dateutil
sudo -H pip install devlib
sudo -H pip install pandas
sudo -H pip install louie
sudo -H pip install wrapt
sudo -H pip install requests
sudo -H pip install colorama
sudo -H pip install future

Some of these may also be available in your distro’s repositories, e.g.

sudo apt-get install python-serial

Distro package versions tend to be older, so pip installation is recommended. However, pip will always download and
try to build the source, so in some situations distro binaries may provide an easier fall back. Please also note that distro
package names may differ from pip packages.

Optional Python Packages

Note: Unlike the mandatory dependencies in the previous section, pip will not install these automatically, so you will
have to explicitly install them if/when you need them.

In addition to the mandatory packages listed in the previous sections, some WA functionality (e.g. certain plugins) may
have additional dependencies. Since they are not necessary to be able to use most of WA, they are not made mandatory
to simplify initial WA installation. If you try to use an plugin that has additional, unmet dependencies, WA will tell you
before starting the run, and you can install it then. They are listed here for those that would rather install them upfront
(e.g. if you’re planning to use WA to an environment that may not always have Internet access).

• nose

• mock

• daqpower

• sphinx

• sphinx_rtd_theme

• psycopg2-binary

2.1. User Information 25

wa Documentation, Release 3.4.0.dev1

Installing

Installing the latest released version from PyPI (Python Package Index):

sudo -H pip install wlauto

This will install WA along with its mandatory dependencies. If you would like to install all optional dependencies at
the same time, do the following instead:

sudo -H pip install wlauto[all]

Alternatively, you can also install the latest development version from GitHub (you will need git installed for this to
work):

git clone git@github.com:ARM-software/workload-automation.git workload-automation
cd workload-automation
sudo -H python setup.py install

Note: Please note that if using pip to install from github this will most likely result in an older and incompatible
version of devlib being installed alongside WA. If you wish to use pip please also manually install the latest version of
devlib.

Note: Please note that while a requirements.txt is included, this is designed to be a reference of known working pack-
ages rather to than to be used as part of a standard installation. The version restrictions in place as part of setup.py should
automatically ensure the correct packages are install however if encountering issues please try updating/downgrading
to the package versions list within.

If the above succeeds, try

wa --version

Hopefully, this should output something along the lines of

"Workload Automation version $version".

Dockerfile

As an alternative we also provide a Dockerfile that will create an image called wadocker, and is preconfigured to run
WA and devlib. Please note that the build process automatically accepts the licenses for the Android SDK, so please
be sure that you are willing to accept these prior to building and running the image in a container.

The Dockerfile can be found in the “extras” directory or online at https://github.com/ARM-software/
workload-automation/blob/next/extras/Dockerfile which contains additional information about how to build and
to use the file.

26 Chapter 2. User Information

https://github.com/ARM-software/devlib
https://github.com/ARM-software/workload-automation/blob/next/extras/Dockerfile
https://github.com/ARM-software/workload-automation/blob/next/extras/Dockerfile

wa Documentation, Release 3.4.0.dev1

(Optional) Post Installation

Some WA plugins have additional dependencies that need to be satisfied before they can be used. Not all of these can be
provided with WA and so will need to be supplied by the user. They should be placed into ~/.workload_automation/
dependencies/<extension name> so that WA can find them (you may need to create the directory if it doesn’t
already exist). You only need to provide the dependencies for workloads you want to use.

APK Files

APKs are application packages used by Android. These are necessary to install on a device when running an ApkWork-
load or derivative. Please see the workload description using the show command to see which version of the apk the UI
automation has been tested with and place the apk in the corresponding workloads dependency directory. Automation
may also work with other versions (especially if it’s only a minor or revision difference – major version differences are
more likely to contain incompatible UI changes) but this has not been tested. As a general rule we do not guarantee
support for the latest version of an app and they are updated on an as needed basis. We do however attempt to support
backwards compatibility with previous major releases however beyond this support will likely be dropped.

Gaming Workloads

Some workloads (games, demos, etc) cannot be automated using Android’s UIAutomator framework because they
render the entire UI inside a single OpenGL surface. For these, an interaction session needs to be recorded so that it
can be played back by WA. These recordings are device-specific, so they would need to be done for each device you’re
planning to use. The tool for doing is revent and it is packaged with WA. You can find instructions on how to use it
in the How To section.

This is the list of workloads that rely on such recordings:

angrybirds_rio
templerun2

Maintaining Centralized Assets Repository

If there are multiple users within an organization that may need to deploy assets for WA plugins, that organization may
wish to maintain a centralized repository of assets that individual WA installs will be able to automatically retrieve
asset files from as they are needed. This repository can be any directory on a network filer that mirrors the structure
of ~/.workload_automation/dependencies, i.e. has a subdirectories named after the plugins which assets they
contain. Individual WA installs can then set remote_assets_path setting in their config to point to the local mount
of that location.

2.1. User Information 27

wa Documentation, Release 3.4.0.dev1

(Optional) Uninstalling

If you have installed Workload Automation via pip and wish to remove it, run this command to uninstall it:

sudo -H pip uninstall wa

Note: This will not remove any user configuration (e.g. the ~/.workload_automation directory)

(Optional) Upgrading

To upgrade Workload Automation to the latest version via pip, run:

sudo -H pip install --upgrade --no-deps wa

2.1.2 User Guide

This guide will show you how to quickly start running workloads using Workload Automation 3.

Contents

• Install

– (Optional) Verify installation

– (Optional) APK files

• List Command

• Show Command

• Configure Your Device

– Android

– Linux

– Enabling and Disabling Augmentations

• Running Your First Workload

• Create an Agenda

– Using the Create Command

• Run Command

• Output

• Uninstall

• Upgrade

28 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

Install

Note: This is a quick summary. For more detailed instructions, please see the Installation section.

Make sure you have Python 3.5+ and a recent Android SDK with API level 18 or above installed on your system. A
complete install of the Android SDK is required, as WA uses a number of its utilities, not just adb. For the SDK, make
sure that either ANDROID_HOME environment variable is set, or that adb is in your PATH.

Note: If you plan to run Workload Automation on Linux devices only, SSH is required, and Android SDK is optional
if you wish to run WA on Android devices at a later time.

However, you would be starting off with a limited number of workloads that will run on Linux devices.

In addition to the base Python install, you will also need to have pip (Python’s package manager) installed as well.
This is usually a separate package.

Once you have those, you can install WA with:

sudo -H pip install wlauto

This will install Workload Automation on your system, along with its mandatory dependencies.

Alternatively we provide a Dockerfile that which can be used to create a Docker image for running WA along with its
dependencies. More information can be found in the Installation section.

(Optional) Verify installation

Once the tarball has been installed, try executing

wa -h

You should see a help message outlining available subcommands.

(Optional) APK files

A large number of WA workloads are installed as APK files. These cannot be distributed with WA and so you will need
to obtain those separately.

For more details, please see the installation section.

List Command

In order to get started with using WA we first we need to find out what is available to use. In order to do this we can
use the list command followed by the type of plugin that you wish to see.

For example to see what workloads are available along with a short description of each you run:

wa list workloads

Which will give an output in the format of:

2.1. User Information 29

wa Documentation, Release 3.4.0.dev1

adobereader: The Adobe Reader workflow carries out the following typical
productivity tasks.

androbench: Executes storage performance benchmarks
angrybirds_rio: Angry Birds Rio game.

antutu: Executes Antutu 3D, UX, CPU and Memory tests
applaunch: This workload launches and measures the launch time of applications

for supporting workloads.
benchmarkpi: Measures the time the target device takes to run and complete the

Pi calculation algorithm.
dhrystone: Runs the Dhrystone benchmark.
exoplayer: Android ExoPlayer
geekbench: Geekbench provides a comprehensive set of benchmarks engineered to

quickly and accurately measure
processor and memory performance.

#..

The same syntax can be used to display commands, energy_instrument_backends, instruments,
output_processors, resource_getters, targets. Once you have found the plugin you are looking for
you can use the show command to display more detailed information. Alternatively please see the Plugin Reference
for an online version.

Show Command

If you want to learn more information about a particular plugin, such as the parameters it supports, you can use the
“show” command:

wa show dhrystone

If you have pandoc installed on your system, this will display man page-like description of the plugin, and the param-
eters it supports. If you do not have pandoc, you will instead see the same information as raw restructured text.

Configure Your Device

There are multiple options for configuring your device depending on your particular use case.

You can either add your configuration to the default configuration file config.yaml, under the
$WA_USER_DIRECTORY/ directory or you can specify it in the config section of your agenda directly.

Alternatively if you are using multiple devices, you may want to create separate config files for each of your devices
you will be using. This allows you to specify which device you would like to use for a particular run and pass it as an
argument when invoking with the -c flag.

wa run dhrystone -c my_device.yaml

By default WA will use the “most specific” configuration available for example any configuration specified inside an
agenda will override a passed configuration file which will in turn overwrite the default configuration file.

Note: For a more information about configuring your device please see Setting Up A Device.

30 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

Android

By default, the device WA will use is set to ‘generic_android’. WA is configured to work with a generic Android device
through adb. If you only have one device listed when you execute adb devices, and your device has a standard
Android configuration, then no extra configuration is required.

However, if your device is connected via network, you will have to manually execute adb connect <device ip> (or
specify this in your agenda) so that it appears in the device listing.

If you have multiple devices connected, you will need to tell WA which one you want it to use. You can do that by
setting device in the device_config section.

...

device_config:
device: 'abcdef0123456789'
...

...

Linux

First, set the device to ‘generic_linux’

...
device: 'generic_linux'

...

Find the device_config section and add these parameters

...

device_config:
host: '192.168.0.100'
username: 'root'
password: 'password'
...

...

Parameters:

• Host is the IP of your target Linux device

• Username is the user for the device

• Password is the password for the device

2.1. User Information 31

wa Documentation, Release 3.4.0.dev1

Enabling and Disabling Augmentations

Augmentations are the collective name for “instruments” and “output processors” in WA3.

Some augmentations are enabled by default after your initial install of WA, which are specified in the config.yaml
file located in your WA_USER_DIRECTORY, typically ~/.workload_autoamation.

Note: Some Linux devices may not be able to run certain augmentations provided by WA (e.g. cpufreq is disabled or
unsupported by the device).

...

augmentations:
Records the time it took to run the workload
- execution_time

Collects /proc/interrupts before and after execution and does a diff.
- interrupts

Collects the contents of/sys/devices/system/cpu before and after
execution and does a diff.
- cpufreq

Generate a txt file containing general status information about
which runs failed and which were successful.
- status

...

If you only wanted to keep the ‘execution_time’ instrument enabled, you can comment out the rest of the list augmen-
tations to disable them.

This should give you basic functionality. If you are working with a development board or you need some advanced
functionality additional configuration may be required. Please see the device setup section for more details.

Note: In WA2 ‘Instrumentation’ and ‘Result Processors’ were divided up into their own sections in the agenda. In
WA3 they now fall under the same category of ‘augmentations’. For compatibility the old naming structure is still valid
however using the new entry names is recommended.

Running Your First Workload

The simplest way to run a workload is to specify it as a parameter to WA run run sub-command:

wa run dhrystone

You will see INFO output from WA as it executes each stage of the run. A completed run output should look something
like this:

INFO Creating output directory.
INFO Initializing run
INFO Connecting to target

(continues on next page)

32 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

(continued from previous page)

INFO Setting up target
INFO Initializing execution context
INFO Generating jobs
INFO Loading job wk1 (dhrystone) [1]
INFO Installing instruments
INFO Installing output processors
INFO Starting run
INFO Initializing run
INFO Initializing job wk1 (dhrystone) [1]
INFO Running job wk1
INFO Configuring augmentations
INFO Configuring target for job wk1 (dhrystone) [1]
INFO Setting up job wk1 (dhrystone) [1]
INFO Running job wk1 (dhrystone) [1]
INFO Tearing down job wk1 (dhrystone) [1]
INFO Completing job wk1
INFO Job completed with status OK
INFO Finalizing run
INFO Finalizing job wk1 (dhrystone) [1]
INFO Done.
INFO Run duration: 9 seconds
INFO Ran a total of 1 iterations: 1 OK
INFO Results can be found in wa_output

Once the run has completed, you will find a directory called wa_output in the location where you have invoked wa
run. Within this directory, you will find a “results.csv” file which will contain results obtained for dhrystone, as well as
a “run.log” file containing detailed log output for the run. You will also find a sub-directory called ‘wk1-dhrystone-1’
that contains the results for that iteration. Finally, you will find various additional information in the wa_output/
__meta subdirectory for example information extracted from the target and a copy of the agenda file. The contents of
iteration-specific subdirectories will vary from workload to workload, and, along with the contents of the main output
directory, will depend on the augmentations that were enabled for that run.

The run sub-command takes a number of options that control its behaviour, you can view those by executing wa run
-h. Please see the Commands section for details.

Create an Agenda

Simply running a single workload is normally of little use. Typically, you would want to specify several workloads,
setup the device state and, possibly, enable additional augmentations. To do this, you would need to create an “agenda”
for the run that outlines everything you want WA to do.

Agendas are written using YAML markup language. A simple agenda might look like this:

config:
augmentations:

- ~execution_time
- targz

iterations: 2
workloads:

- memcpy
- name: dhrystone
params:

(continues on next page)

2.1. User Information 33

http://en.wikipedia.org/wiki/YAML

wa Documentation, Release 3.4.0.dev1

(continued from previous page)

mloops: 5
threads: 1

This agenda:

• Specifies two workloads: memcpy and dhrystone.

• Specifies that dhrystone should run in one thread and execute five million loops.

• Specifies that each of the two workloads should be run twice.

• Enables the targz output processor, in addition to the output processors enabled in the config.yaml.

• Disables execution_time instrument, if it is enabled in the config.yaml

An agenda can be created using WA’s create command or in a text editor and saved as a YAML file.

For more options please see the Defining Experiments With an Agenda documentation.

Using the Create Command

The easiest way to create an agenda is to use the ‘create’ command. For more in-depth information please see the
Create Command documentation.

In order to populate the agenda with relevant information you can supply all of the plugins you wish to use as arguments
to the command, for example if we want to create an agenda file for running dhrystone on a generic_android device
and we want to enable the execution_time and trace-cmd instruments and display the metrics using the csv output
processor. We would use the following command:

wa create agenda generic_android dhrystone execution_time trace-cmd csv -o my_agenda.yaml

This will produce a my_agenda.yaml file containing all the relevant configuration for the specified plugins along with
their default values as shown below:

config:
augmentations:
- execution_time
- trace-cmd
- csv
iterations: 1
device: generic_android
device_config:

adb_server: null
big_core: null
core_clusters: null
core_names: null
device: null
disable_selinux: true
executables_directory: null
load_default_modules: true
logcat_poll_period: null
model: null
modules: null
package_data_directory: /data/data
shell_prompt: !<tag:wa:regex> '8:^.*(shell|root)@.*:/\S* [#$] '

(continues on next page)

34 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

(continued from previous page)

working_directory: null
execution_time: {}
trace-cmd:

buffer_size: null
buffer_size_step: 1000
events:
- sched*
- irq*
- power*
- thermal*
functions: null
no_install: false
report: true
report_on_target: false

csv:
extra_columns: null
use_all_classifiers: false

workloads:
- name: dhrystone

params:
cleanup_assets: true
delay: 0
duration: 0
mloops: 0
taskset_mask: 0
threads: 4

Run Command

These examples show some useful options that can be used with WA’s run command.

Once we have created an agenda to use it with WA we can pass it as a argument to the run command e.g.:

wa run <path/to/agenda> (e.g. wa run ~/myagenda.yaml)

By default WA will use the “wa_output” directory to stores its output however to redirect the output to a different
directory we can use:

wa run dhrystone -d my_output_directory

We can also tell WA to use additional config files by supplying it with the -c argument. One use case for passing addi-
tional config files is if you have multiple devices you wish test with WA, you can store the relevant device configuration
in individual config files and then pass the file corresponding to the device you wish to use for that particular test.

Note: As previously mentioned, any more specific configuration present in the agenda file will overwrite the corre-
sponding config parameters specified in the config file(s).

wa run -c myconfig.yaml ~/myagenda.yaml

To use the same output directory but override the existing contents to store new dhrystone results we can specify the
-f argument:

2.1. User Information 35

wa Documentation, Release 3.4.0.dev1

wa run -f dhrystone

To display verbose output while running memcpy:

wa run --verbose memcpy

Output

The output directory will contain subdirectories for each job that was run, which will in turn contain the generated
metrics and artifacts for each job. The directory will also contain a run.log file containing the complete log output
for the run, and a __meta directory with the configuration and metadata for the run. Metrics are serialized inside
result.json files inside each job’s subdirectory. There may also be a __failed directory containing failed attempts
for jobs that have been re-run.

Augmentations may add additional files at the run or job directory level. The default configuration has status and
csv augmentations enabled which generate a status.txt containing status summary for the run and individual jobs,
and a results.csv containing metrics from all jobs in a CSV table, respectively.

See Output Directory Structure for more information.

In order to make it easier to access WA results from scripts, WA provides an API that parses the contents of the output
directory:

>>> from wa import RunOutput
>>> ro = RunOutput('./wa_output')
>>> for job in ro.jobs:
... if job.status != 'OK':
... print('Job "{}" did not complete successfully: {}'.format(job, job.status))
... continue
... print('Job "{}":'.format(job))
... for metric in job.metrics:
... if metric.units:
... print('\t{}: {} {}'.format(metric.name, metric.value, metric.units))
... else:
... print('\t{}: {}'.format(metric.name, metric.value))
...
Job "wk1-dhrystone-1":

thread 0 score: 20833333
thread 0 DMIPS: 11857
thread 1 score: 24509804
thread 1 DMIPS: 13950
thread 2 score: 18011527
thread 2 DMIPS: 10251
thread 3 score: 26371308
thread 3 DMIPS: 15009
time: 1.001251 seconds
total DMIPS: 51067
total score: 89725972
execution_time: 1.4834280014 seconds

See Output for details.

36 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

Uninstall

If you have installed Workload Automation via pip, then run this command to uninstall it:

sudo pip uninstall wa

Note: It will not remove any user configuration (e.g. the ~/.workload_automation directory).

Upgrade

To upgrade Workload Automation to the latest version via pip, run:

sudo pip install --upgrade --no-deps wa

2.1.3 How Tos

Contents

• Defining Experiments With an Agenda

– Specifying which workloads to run

– Multiple iterations

– Configuring Workloads

∗ APK Workloads

– IDs and Labels

– Classifiers

– Sections

– Section Groups

– Augmentations

∗ Configuring augmentations

∗ Disabling augmentations

∗ Workload-specific augmentation

∗ Augmentations Example

– Other Configuration

• Setting Up A Device

– Android

∗ General Device Setup

∗ Configuring Android

– Juno Setup

2.1. User Information 37

wa Documentation, Release 3.4.0.dev1

∗ UEFI

∗ Rebooting

– Linux

∗ General Device Setup

– Chrome OS

∗ General Device Setup

– Related Settings

∗ Reboot Policy

∗ Execution Order

– Adding a new target interface

• Automating GUI Interactions With Revent

– Overview and Usage

∗ Using revent with workloads

∗ Recording

∗ Replaying

– Revent vs UiAutomator

Defining Experiments With an Agenda

An agenda specifies what is to be done during a Workload Automation run, including which workloads will be run,
with what configuration, which augmentations will be enabled, etc. Agenda syntax is designed to be both succinct and
expressive.

Agendas are specified using YAML notation. It is recommended that you familiarize yourself with the linked page.

Specifying which workloads to run

The central purpose of an agenda is to specify what workloads to run. A minimalist agenda contains a single entry at
the top level called “workloads” that maps onto a list of workload names to run:

workloads:
- dhrystone
- memcpy
- rt_app

This specifies a WA run consisting of dhrystone followed by memcpy, followed by rt_app workloads, and using the
augmentations specified in config.yaml (see Configuration section).

Note: If you’re familiar with YAML, you will recognize the above as a single-key associative array mapping onto a
list. YAML has two notations for both associative arrays and lists: block notation (seen above) and also in-line notation.
This means that the above agenda can also be written in a single line as

workloads: [dhrystone, memcpy, rt-app]

38 Chapter 2. User Information

http://en.wikipedia.org/wiki/YAML

wa Documentation, Release 3.4.0.dev1

(with the list in-lined), or

{workloads: [dhrystone, memcpy, rt-app]}

(with both the list and the associative array in-line). WA doesn’t care which of the notations is used as they all get
parsed into the same structure by the YAML parser. You can use whatever format you find easier/clearer.

Note: WA plugin names are case-insensitive, and dashes (-) and underscores (_) are treated identically. So all of the
following entries specify the same workload: rt_app, rt-app, RT-app.

Multiple iterations

There will normally be some variability in workload execution when running on a real device. In order to quantify
it, multiple iterations of the same workload are usually performed. You can specify the number of iterations for each
workload by adding iterations field to the workload specifications (or “specs”):

workloads:
- name: dhrystone
iterations: 5

- name: memcpy
iterations: 5

- name: cyclictest
iterations: 5

Now that we’re specifying both the workload name and the number of iterations in each spec, we have to explicitly
name each field of the spec.

It is often the case that, as in in the example above, you will want to run all workloads for the same number of iterations.
Rather than having to specify it for each and every spec, you can do with a single entry by adding iterations to your
config section in your agenda:

config:
iterations: 5

workloads:
- dhrystone
- memcpy
- cyclictest

If the same field is defined both in config section and in a spec, then the value in the spec will overwrite the value. For
example, suppose we wanted to run all our workloads for five iterations, except cyclictest which we want to run for ten
(e.g. because we know it to be particularly unstable). This can be specified like this:

config:
iterations: 5

workloads:
- dhrystone
- memcpy
- name: cyclictest
iterations: 10

Again, because we are now specifying two fields for cyclictest spec, we have to explicitly name them.

2.1. User Information 39

wa Documentation, Release 3.4.0.dev1

Configuring Workloads

Some workloads accept configuration parameters that modify their behaviour. These parameters are specific to a par-
ticular workload and can alter the workload in any number of ways, e.g. set the duration for which to run, or specify a
media file to be used, etc. The vast majority of workload parameters will have some default value, so it is only necessary
to specify the name of the workload in order for WA to run it. However, sometimes you want more control over how a
workload runs.

For example, by default, dhrystone will execute 10 million loops across four threads. Suppose your device has six cores
available and you want the workload to load them all. You also want to increase the total number of loops accordingly
to 15 million. You can specify this using dhrystone’s parameters:

config:
iterations: 5

workloads:
- name: dhrystone
params:

threads: 6
mloops: 15

- memcpy
- name: cyclictest
iterations: 10

Note: You can find out what parameters a workload accepts by looking it up in the Workloads section or using WA
itself with “show” command:

wa show dhrystone

see the Commands section for details.

In addition to configuring the workload itself, we can also specify configuration for the underlying device which can be
done by setting runtime parameters in the workload spec. Explicit runtime parameters have been exposed for config-
uring cpufreq, hotplug and cpuidle. For more detailed information on Runtime Parameters see the runtime parameters
section. For example, suppose we want to ensure the maximum score for our benchmarks, at the expense of power con-
sumption so we want to set the cpufreq governor to “performance” and enable all of the cpus on the device, (assuming
there are 8 cpus available), which can be done like this:

config:
iterations: 5

workloads:
- name: dhrystone
runtime_params:

governor: performance
num_cores: 8

workload_params:
threads: 6
mloops: 15

- memcpy
- name: cyclictest
iterations: 10

I’ve renamed params to workload_params for clarity, but that wasn’t strictly necessary as params is interpreted as
workload_params inside a workload spec.

40 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

Runtime parameters do not automatically reset at the end of workload spec execution, so all subsequent iterations will
also be affected unless they explicitly change the parameter (in the example above, performance governor will also
be used for memcpy and cyclictest. There are two ways around this: either set reboot_policy WA setting (see
Configuration section) such that the device gets rebooted between job executions, thus being returned to its initial state,
or set the default runtime parameter values in the config section of the agenda so that they get set for every spec that
doesn’t explicitly override them.

If additional configuration of the device is required which are not exposed via the built in runtime parameters, you can
write a value to any file exposed on the device using sysfile_values, for example we could have also performed
the same configuration manually (assuming we have a big.LITTLE system and our cores 0-3 and 4-7 are in 2 separate
DVFS domains and so setting the governor for cpu0 and cpu4 will affect all our cores) e.g.

config:
iterations: 5

workloads:
- name: dhrystone
runtime_params:

sysfile_values:
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor: performance
/sys/devices/system/cpu/cpu4/cpufreq/scaling_governor: performance
/sys/devices/system/cpu/cpu0/online: 1
/sys/devices/system/cpu/cpu1/online: 1
/sys/devices/system/cpu/cpu2/online: 1
/sys/devices/system/cpu/cpu3/online: 1
/sys/devices/system/cpu/cpu4/online: 1
/sys/devices/system/cpu/cpu5/online: 1
/sys/devices/system/cpu/cpu6/online: 1
/sys/devices/system/cpu/cpu7/online: 1

workload_params:
threads: 6
mloops: 15

- memcpy
- name: cyclictest

iterations: 10

Here, we’re specifying a sysfile_values runtime parameter for the device. For more information please see setting
sysfiles.

APK Workloads

WA has various resource getters that can be configured to locate APK files but for most people APK files
should be kept in the $WA_USER_DIRECTORY/dependencies/SOME_WORKLOAD/ directory. (by default ~/.
workload_automation/dependencies/SOME_WORKLOAD/). The WA_USER_DIRECTORY environment variable can
be used to change the location of this directory. The APK files need to be put into the corresponding directories for
the workload they belong to. The name of the file can be anything but as explained below may need to contain certain
pieces of information.

All ApkWorkloads have parameters that affect the way in which APK files are resolved, exact_abi, force_install
and prefer_host_package. Their exact behaviours are outlined below.

exact_abi If this setting is enabled WA’s resource resolvers will look for the devices ABI with any native
code present in the apk. By default this setting is disabled since most apks will work across all
devices. You may wish to enable this feature when working with devices that support multiple ABI’s
(like 64-bit devices that can run 32-bit APK files) and are specifically trying to test one or the other.

2.1. User Information 41

wa Documentation, Release 3.4.0.dev1

force_install If this setting is enabled WA will always use the APK file on the host, and re-install it on
every iteration. If there is no APK on the host that is a suitable version and/or ABI for the workload
WA will error when force_install is enabled.

prefer_host_package This parameter is used to specify a preference over host or target versions of the
app. When set to TrueWA will prefer the host side version of the APK. It will check if the host has the
APK and whether it meets the version requirements of the workload. If so, and the target also already
has same version nothing will be done, otherwise WA will overwrite the targets installed application
with the host version. If the host is missing the APK or it does not meet version requirements WA
will fall back to the app on the target if present and is a suitable version. When this parameter is set
to False WA will prefer to use the version already on the target if it meets the workloads version
requirements. If it does not it will fall back to searching the host for the correct version. In both
modes if neither the host nor target have a suitable version, WA will produce and error and will not
run the workload.

version This parameter is used to specify which version of uiautomation for the workload is used. In some
workloads e.g. geekbench multiple versions with drastically different UI’s are supported. A APKs
version will be automatically extracted therefore it is possible to have multiple apks for different
versions of a workload present on the host and select between which is used for a particular job by
specifying the relevant version in your agenda.

variant_name Some workloads use variants of APK files, this is usually the case with web browser APK
files, these work in exactly the same way as the version.

IDs and Labels

It is possible to list multiple specs with the same workload in an agenda. You may wish to do this if you want to run a
workload with different parameter values or under different runtime configurations of the device. The workload name
therefore does not uniquely identify a spec. To be able to distinguish between different specs (e.g. in reported results),
each spec has an ID which is unique to all specs within an agenda (and therefore with a single WA run). If an ID isn’t
explicitly specified using id field (note that the field name is in lower case), one will be automatically assigned to the
spec at the beginning of the WA run based on the position of the spec within the list. The first spec without an explicit
ID will be assigned ID wk1, the second spec without an explicit ID will be assigned ID wk2, and so forth.

Numerical IDs aren’t particularly easy to deal with, which is why it is recommended that, for non-trivial agendas, you
manually set the ids to something more meaningful (or use labels – see below). An ID can be pretty much anything that
will pass through the YAML parser. The only requirement is that it is unique to the agenda. However, is usually better
to keep them reasonably short (they don’t need to be globally unique), and to stick with alpha-numeric characters and
underscores/dashes. While WA can handle other characters as well, getting too adventurous with your IDs may cause
issues further down the line when processing WA output (e.g. when uploading them to a database that may have its
own restrictions).

In addition to IDs, you can also specify labels for your workload specs. These are similar to IDs but do not have the
uniqueness restriction. If specified, labels will be used by some output processes instead of (or in addition to) the
workload name. For example, the csv output processor will put the label in the “workload” column of the CSV file.

It is up to you how you chose to use IDs and labels. WA itself doesn’t expect any particular format (apart from uniqueness
for IDs). Below is the earlier example updated to specify explicit IDs and label dhrystone spec to reflect parameters
used.

config:
iterations: 5

workloads:
- id: 01_dhry
name: dhrystone

(continues on next page)

42 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

(continued from previous page)

label: dhrystone_15over6
runtime_params:

cpu0_governor: performance
workload_params:

threads: 6
mloops: 15

- id: 02_memc
name: memcpy

- id: 03_cycl
name: cyclictest
iterations: 10

Classifiers

Classifiers can be used in 2 distinct ways, the first use is being supplied in an agenda as a set of key-value pairs which
can be used to help identify sub-tests of a run, for example if you have multiple sections in your agenda running your
workloads at different frequencies you might want to set a classifier specifying which frequencies are being used. These
can then be utilized later, for example with the csv output processor with use_all_classifiers set to True and
this will add additional columns to the output file for each of the classifier keys that have been specified allowing for
quick comparison.

An example agenda is shown here:

config:
augmentations:

- csv
iterations: 1
device: generic_android
csv:

use_all_classifiers: True
sections:

- id: max_speed
runtime_parameters:

frequency: 1700000
classifiers:

freq: 1700000
- id: min_speed
runtime_parameters:

frequency: 200000
classifiers:

freq: 200000
workloads:
- name: recentfling

The other way that they can used is by being automatically added by some workloads to identify their results metrics
and artifacts. For example some workloads perform multiple tests with the same execution run and therefore will use
metrics to differentiate between them, e.g. the recentflingworkload will use classifiers to distinguish between which
loop a particular result is for or whether it is an average across all loops ran.

The output from the agenda above will produce a csv file similar to what is shown below. Some columns have been
omitted for clarity however as can been seen the custom frequency classifier column has been added and populated,
along with the loop classifier added by the workload.

2.1. User Information 43

wa Documentation, Release 3.4.0.dev1

id | workload | metric | freq | loop |␣
→˓value ∥
max_speed-wk1 | recentfling | 90th Percentile | 1700000 | 1 | 8 ␣
→˓ ∥
max_speed-wk1 | recentfling | 95th Percentile | 1700000 | 1 | 9 ␣
→˓ ∥
max_speed-wk1 | recentfling | 99th Percentile | 1700000 | 1 | 16 ␣
→˓ ∥
max_speed-wk1 | recentfling | Jank | 1700000 | 1 | 11 ␣
→˓ ∥
max_speed-wk1 | recentfling | Jank% | 1700000 | 1 | 1 ␣
→˓ ∥
...
max_speed-wk1 | recentfling | Jank | 1700000 | 3 | 1 ␣
→˓ ∥
max_speed-wk1 | recentfling | Jank% | 1700000 | 3 | 0 ␣
→˓ ∥
max_speed-wk1 | recentfling | Average 90th Percentqile | 1700000 | Average | 7 ␣
→˓ ∥
max_speed-wk1 | recentfling | Average 95th Percentile | 1700000 | Average | 8 ␣
→˓ ∥
max_speed-wk1 | recentfling | Average 99th Percentile | 1700000 | Average | 14 ␣
→˓ ∥
max_speed-wk1 | recentfling | Average Jank | 1700000 | Average | 6 ␣
→˓ ∥
max_speed-wk1 | recentfling | Average Jank% | 1700000 | Average | 0 ␣
→˓ ∥
min_speed-wk1 | recentfling | 90th Percentile | 200000 | 1 | 7 ␣
→˓ ∥
min_speed-wk1 | recentfling | 95th Percentile | 200000 | 1 | 8 ␣
→˓ ∥
min_speed-wk1 | recentfling | 99th Percentile | 200000 | 1 | 14 ␣
→˓ ∥
min_speed-wk1 | recentfling | Jank | 200000 | 1 | 5 ␣
→˓ ∥
min_speed-wk1 | recentfling | Jank% | 200000 | 1 | 0 ␣
→˓ ∥
...
min_speed-wk1 | recentfling | Jank | 200000 | 3 | 5 ␣
→˓ ∥
min_speed-wk1 | recentfling | Jank% | 200000 | 3 | 0 ␣
→˓ ∥
min_speed-wk1 | recentfling | Average 90th Percentile | 200000 | Average | 7 ␣
→˓ ∥
min_speed-wk1 | recentfling | Average 95th Percentile | 200000 | Average | 8 ␣
→˓ ∥
min_speed-wk1 | recentfling | Average 99th Percentile | 200000 | Average | 13 ␣
→˓ ∥
min_speed-wk1 | recentfling | Average Jank | 200000 | Average | 4 ␣
→˓ ∥
min_speed-wk1 | recentfling | Average Jank% | 200000 | Average | 0 ␣
→˓ ∥

44 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

Sections

It is a common requirement to be able to run the same set of workloads under different device configurations. E.g. you
may want to investigate the impact of changing a particular setting to different values on the benchmark scores, or to
quantify the impact of enabling a particular feature in the kernel. WA allows this by defining “sections” of configuration
with an agenda.

For example, suppose that we want to measure the impact of using 3 different cpufreq governors on 2 benchmarks. We
could create 6 separate workload specs and set the governor runtime parameter for each entry. However, this introduces
a lot of duplication; and what if we want to change spec configuration? We would have to change it in multiple places,
running the risk of forgetting one.

A better way is to keep the two workload specs and define a section for each governor:

config:
iterations: 5
augmentations:

- ~cpufreq
- csv

sysfs_extractor:
paths: [/proc/meminfo]

csv:
use_all_classifiers: True

sections:
- id: perf
runtime_params:

cpu0_governor: performance
- id: inter
runtime_params:

cpu0_governor: interactive
- id: sched
runtime_params:

cpu0_governor: sched
workloads:

- id: 01_dhry
name: dhrystone
label: dhrystone_15over6
workload_params:

threads: 6
mloops: 15

- id: 02_memc
name: memcpy
augmentations: [sysfs_extractor]

A section, just like an workload spec, needs to have a unique ID. Apart from that, a “section” is similar to the config
section we’ve already seen – everything that goes into a section will be applied to each workload spec. Workload specs
defined under top-level workloads entry will be executed for each of the sections listed under sections.

Note: It is also possible to have a workloads entry within a section, in which case, those workloads will only be
executed for that specific section.

In order to maintain the uniqueness requirement of workload spec IDs, they will be namespaced under each section by
prepending the section ID to the spec ID with a dash. So in the agenda above, we no longer have a workload spec with
ID 01_dhry, instead there are two specs with IDs perf-01-dhry and inter-01_dhry.

2.1. User Information 45

wa Documentation, Release 3.4.0.dev1

Note that the config section still applies to every spec in the agenda. So the precedence order is – spec settings override
section settings, which in turn override global settings.

Section Groups

Section groups are a way of grouping sections together and are used to produce a cross product of each of the different
groups. This can be useful when you want to run a set of experiments with all the available combinations without
having to specify each combination manually.

For example if we want to investigate the differences between running the maximum and minimum frequency with
both the maximum and minimum number of cpus online, we can create an agenda as follows:

sections:
- id: min_freq
runtime_parameters:

freq: min
group: frequency

- id: max_freq
runtime_parameters:

freq: max
group: frequency

- id: min_cpus
runtime_parameters:
cpus: 1

group: cpus
- id: max_cpus
runtime_parameters:
cpus: 8

group: cpus

workloads:
- dhrystone

This will results in 8 jobs being generated for each of the possible combinations.

min_freq-min_cpus-wk1 (dhrystone)
min_freq-max_cpus-wk1 (dhrystone)
max_freq-min_cpus-wk1 (dhrystone)
max_freq-max_cpus-wk1 (dhrystone)
min_freq-min_cpus-wk1 (dhrystone)
min_freq-max_cpus-wk1 (dhrystone)
max_freq-min_cpus-wk1 (dhrystone)
max_freq-max_cpus-wk1 (dhrystone)

Each of the generated jobs will have classifiers for each group and the associated id automatically added.

...
print('Job ID: {}'.format(job.id))
print('Classifiers:')
for k, v in job.classifiers.items():

print(' {}: {}'.format(k, v))

(continues on next page)

46 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

(continued from previous page)

Job ID: min_freq-min_cpus-no_idle-wk1
Classifiers:

frequency: min_freq
cpus: min_cpus

Augmentations

Augmentations are plugins that augment the execution of workload jobs with additional functionality; usually, that takes
the form of generating additional metrics and/or artifacts, such as traces or logs. There are two types of augmentations:

Instruments These “instrument” a WA run in order to change it’s behaviour (e.g. introducing delays between succes-
sive job executions), or collect additional measurements (e.g. energy usage). Some instruments may depend on
particular features being enabled on the target (e.g. cpufreq), or on additional hardware (e.g. energy probes).

Output processors These post-process metrics and artifacts generated by workloads or instruments, as well as target
metadata collected by WA, in order to generate additional metrics and/or artifacts (e.g. generating statistics or
reports). Output processors are also used to export WA output externally (e.g. upload to a database).

The main practical difference between instruments and output processors, is that the former rely on an active connection
to the target to function, where as the latter only operated on previously collected results and metadata. This means
that output processors can run “off-line” using wa process command.

Both instruments and output processors are configured in the same way in the agenda, which is why they are grouped
together into “augmentations”. Augmentations are enabled by listing them under augmentations entry in a config
file or config section of the agenda.

config:
augmentations: [trace-cmd]

The code above illustrates an agenda entry to enabled trace-cmd instrument.

If your have multiple augmentations entries (e.g. both, in your config file and in the agenda), then they will be
combined, so that the final set of augmentations for the run will be their union.

Note: WA2 did not have have augmentationts, and instead supported “instrumentation” and “result_processors” as
distinct configuration enetries. For compantibility, these entries are still supported in WA3, however they should be
considered to be depricated, and their use is discouraged.

Configuring augmentations

Most augmentations will take parameters that modify their behavior. Parameters available for a particular augmentation
can be viewed using wa show <augmentation name> command. This will also show the default values used. Values
for these parameters can be specified by creating an entry with the augmentation’s name, and specifying parameter
values under it.

config:
augmentations: [trace-cmd]
trace-cmd:

events: ['sched*', 'power*', irq]
buffer_size: 100000

2.1. User Information 47

wa Documentation, Release 3.4.0.dev1

The code above specifies values for events and buffer_size parameters for the trace-cmd instrument, as well as
enabling it.

You may specify configuration for the same augmentation in multiple locations (e.g. your config file and the config
section of the agenda). These entries will be combined to form the final configuration for the augmentation used during
the run. If different values for the same parameter are present in multiple entries, the ones “more specific” to a particular
run will be used (e.g. values in the agenda will override those in the config file).

Note: Creating an entry for an augmentation alone does not enable it! You must list it under augmentations in order
for it to be enabed for a run. This makes it easier to quickly enabled and diable augmentations with complex configu-
rations, and also allows defining “static” configuation in top-level config, without actually enabling the augmentation
for all runs.

Disabling augmentations

Sometimes, you may wish to disable an augmentation for a particular run, but you want to keep it enabled in general.
You could modify your config file to temporarily disable it. However, you must then remember to re-enable it after-
wards. This could be inconvenient and error prone, especially if you’re running multiple experiments in parallel and
only want to disable the augmentation for one of them.

Instead, you can explicitly disable augmentation by specifying its name prefixed with a tilde (~) inside
augumentations.

config:
augmentations: [trace-cmd, ~cpufreq]

The code above enables trace-cmd instrument and disables cpufreq instrument (which is enabled in the default
config).

If you want to start configuration for an experiment form a “blank slate” and want to disable all previously-enabled
augmentations, without necessarily knowing what they are, you can use the special ~~ entry.

config:
augmentations: [~~, trace-cmd, csv]

The code above disables all augmentations enabled up to that point, and enabled trace-cmd and csv for this run.

Note: The ~~ only disables augmentations from previously-processed sources. Its ordering in the list does not matter.
For example, specifying augmentations: [trace-cmd, ~~, csv] will have exactly the same effect as above –
i.e. both trace-cmd and csv will be enabled.

Workload-specific augmentation

It is possible to enable or disable (but not configure) augmentations at workload or section level, as well as in the
global config, in which case, the augmentations would only be enabled/disabled for that workload/section. If the same
augmentation is enabled at one level and disabled at another, as with all WA configuration, the more specific settings
will take precedence over the less specific ones (i.e. workloads override sections that, in turn, override global config).

48 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

Augmentations Example

config:
augmentations: [~~, fps]
trace-cmd:

events: ['sched*', 'power*', irq]
buffer_size: 100000

file_poller:
files:

- /sys/class/thermal/thermal_zone0/temp
sections:

- classifers:
type: energy

augmentations: [energy_measurement]
- classifers:

type: trace
augmentations: [trace-cmd, file_poller]

workloads:
- gmail
- geekbench
- googleplaybooks
- name: dhrystone
augmentations: [~fps]

The example above shows an experiment that runs a number of workloads in order to evaluate their thermal impact and
energy usage. All previously-configured augmentations are disabled with ~~, so that only configuration specified in this
agenda is enabled. Since most of the workloads are “productivity” use cases that do not generate their own metrics,
fps instrument is enabled to get some meaningful performance metrics for them; the only exception is dhrystone
which is a benchmark that reports its own metrics and has not GUI, so the instrument is disabled for it using ~fps.

Each workload will be run in two configurations: once, to collect energy measurements, and once to collect thermal
data and kernel trace. Trace can give insight into why a workload is using more or less energy than expected, but it
can be relatively intrusive and might impact absolute energy and performance metrics, which is why it is collected
separately. Classifiers are used to separate metrics from the two configurations in the results.

Other Configuration

As mentioned previously, config section in an agenda can contain anything that can be defined in config.yaml.
Certain configuration (e.g. run_name) makes more sense to define in an agenda than a config file. Refer to the Con-
figuration section for details.

config:
project: governor_comparison
run_name: performance_vs_interactive

device: generic_android
reboot_policy: never

iterations: 5
augmentations:

- ~cpufreq
- csv

(continues on next page)

2.1. User Information 49

wa Documentation, Release 3.4.0.dev1

(continued from previous page)

sysfs_extractor:
paths: [/proc/meminfo]

csv:
use_all_classifiers: True

sections:
- id: perf
runtime_params:

sysfile_values:
cpu0_governor: performance

- id: inter
runtime_params:

cpu0_governor: interactive
workloads:

- id: 01_dhry
name: dhrystone
label: dhrystone_15over6
workload_params:

threads: 6
mloops: 15

- id: 02_memc
name: memcpy
augmentations: [sysfs_extractor]

- id: 03_cycl
name: cyclictest
iterations: 10

Setting Up A Device

WA should work with most Android devices out-of-the box, as long as the device is discoverable by adb (i.e. gets listed
when you run adb devices). For USB-attached devices, that should be the case; for network devices, adb connect
would need to be invoked with the IP address of the device. If there is only one device connected to the host running
WA, then no further configuration should be necessary (though you may want to tweak some Android settings).

If you have multiple devices connected, have a non-standard Android build (e.g. on a development board), or want to
use of the more advanced WA functionality, further configuration will be required.

Android

General Device Setup

You can specify the device interface by setting device setting in a config file or section. Available interfaces can be
viewed by running wa list targets command. If you don’t see your specific platform listed (which is likely unless
you’re using one of the Arm-supplied platforms), then you should use generic_android interface (this is what is used
by the default config).

device: generic_android

The device interface may be configured through device_config setting, who’s value is a dictmapping setting names
to their values. Some of the most common parameters you might want to change are outlined below.

50 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

device If you have multiple Android devices connected to the host machine, you will need to set this to
indicate to WA which device you want it to use. The will be the adb name the is displayed when
running adb devices

working_directory WA needs a “working” directory on the device which it will use for collecting traces,
caching assets it pushes to the device, etc. By default, it will create one under /sdcard which should
be mapped and writable on standard Android builds. If this is not the case for your device, you will
need to specify an alternative working directory (e.g. under /data/local).

load_default_modules A number of “default” modules (e.g. for cpufreq subsystem) are loaded automat-
ically, unless explicitly disabled. If you encounter an issue with one of the modules then this setting
can be set to False and any specific modules that you require can be request via the modules entry.

modules A list of additional modules to be installed for the target. Devlib implements functionality for
particular subsystems as modules. If additional modules need to be loaded, they may be specified
using this parameter.

Please see the devlib documentation for information on the available modules.

core_names core_names should be a list of core names matching the order in which they are exposed in
sysfs. For example, Arm TC2 SoC is a 2x3 big.LITTLE system; its core_names would be ['a7',
'a7', 'a7', 'a15', 'a15'], indicating that cpu0-cpu2 in cpufreq sysfs structure are A7’s and
cpu3 and cpu4 are A15’s.

Note: This should not usually need to be provided as it will be automatically extracted from the
target.

A typical device_config inside config.yaml may look something like

device_config:
device: 0123456789ABCDEF

...

or a more specific config could be:

device_config:
device: 0123456789ABCDEF
working_direcory: '/sdcard/wa-working'
load_default_modules: True
modules: ['hotplug', 'cpufreq']
core_names : ['a7', 'a7', 'a7', 'a15', 'a15']
...

Configuring Android

There are a few additional tasks you may need to perform once you have a device booted into Android (especially if
this is an initial boot of a fresh OS deployment):

• You have gone through FTU (first time usage) on the home screen and in the apps menu.

• You have disabled the screen lock.

• You have set sleep timeout to the highest possible value (30 mins on most devices).

• You have set the locale language to “English” (this is important for some workloads in which UI automation
looks for specific text in UI elements).

2.1. User Information 51

http://devlib.readthedocs.io/en/latest/modules.html

wa Documentation, Release 3.4.0.dev1

Juno Setup

Note: At the time of writing, the Android software stack on Juno was still very immature. Some workloads may not
run, and there maybe stability issues with the device.

The full software stack can be obtained from Linaro:

https://releases.linaro.org/android/images/lcr-reference-juno/latest/

Please follow the instructions on the “Binary Image Installation” tab on that page. More up-to-date firmware and kernel
may also be obtained by registered members from ARM Connected Community: http://www.arm.com/community/
(though this is not guaranteed to work with the Linaro file system).

UEFI

Juno uses UEFI to boot the kernel image. UEFI supports multiple boot configurations, and presents a menu on boot to
select (in default configuration it will automatically boot the first entry in the menu if not interrupted before a timeout).
WA will look for a specific entry in the UEFI menu ('WA' by default, but that may be changed by setting uefi_entry
in the device_config). When following the UEFI instructions on the above Linaro page, please make sure to name
the entry appropriately (or to correctly set the uefi_entry).

There are two supported ways for Juno to discover kernel images through UEFI. It can either load them from NOR
flash on the board, or from the boot partition on the file system. The setup described on the Linaro page uses the boot
partition method.

If WA does not find the UEFI entry it expects, it will create one. However, it will assume that the kernel image resides
in NOR flash, which means it will not work with Linaro file system. So if you’re replicating the Linaro setup exactly,
you will need to create the entry manually, as outline on the above-linked page.

Rebooting

At the time of writing, normal Android reboot did not work properly on Juno Android, causing the device to crash
into an irrecoverable state. Therefore, WA will perform a hard reset to reboot the device. It will attempt to do this by
toggling the DTR line on the serial connection to the device. In order for this to work, you need to make sure that SW1
configuration switch on the back panel of the board (the right-most DIP switch) is toggled down.

Linux

General Device Setup

You can specify the device interface by setting device setting in a config file or section. Available interfaces can be
viewed by running wa list targets command. If you don’t see your specific platform listed (which is likely unless
you’re using one of the Arm-supplied platforms), then you should use generic_linux interface.

device: generic_linux

The device interface may be configured through device_config setting, who’s value is a dictmapping setting names
to their values. Some of the most common parameters you might want to change are outlined below.

host This should be either the the DNS name or IP address of the device.

52 Chapter 2. User Information

https://releases.linaro.org/android/images/lcr-reference-juno/latest/
http://www.arm.com/community/
http://en.wikipedia.org/wiki/UEFI

wa Documentation, Release 3.4.0.dev1

username The login name of the user on the device that WA will use. This user should have a home
directory (unless an alternative working directory is specified using working_directory config
– see below), and, for full functionality, the user should have sudo rights (WA will be able to use
sudo-less acounts but some instruments or workload may not work).

password Password for the account on the device. Either this of a keyfile (see below) must be specified.

keyfile If key-based authentication is used, this may be used to specify the SSH identity file instead of the
password.

property_files This is a list of paths that will be pulled for each WA run into the __meta subdirec-
tory in the results. The intention is to collect meta-data about the device that may aid in repor-
ducing the results later. The paths specified do not have to exist on the device (they will be ig-
nored if they do not). The default list is ['/proc/version', '/etc/debian_version', '/
etc/lsb-release', '/etc/arch-release']

In addition, working_directory, core_names, modules etc. can also be specified and have the same meaning as
for Android devices (see above).

A typical device_config inside config.yaml may look something like

device_config:
host: 192.168.0.7
username: guest
password: guest
...

Chrome OS

General Device Setup

You can specify the device interface by setting device setting in a config file or section. Available interfaces can be
viewed by running wa list targets command. If you don’t see your specific platform listed (which is likely unless
you’re using one of the Arm-supplied platforms), then you should use generic_chromeos interface.

device: generic_chromeos

The device interface may be configured through device_config setting, who’s value is a dictmapping setting names
to their values. The ChromeOS target is essentially the same as a linux device and requires a similar setup, however it
also optionally supports connecting to an android container running on the device which will be automatically detected
if present. If the device supports android applications then the android configuration is also supported. In order to
support this WA will open 2 connections to the device, one via SSH to the main OS and another via ADB to the
android container where a limited subset of functionality can be performed.

In order to distinguish between the two connections some of the android specific configuration has been renamed to
reflect the destination.

android_working_directory WA needs a “working” directory on the device which it will use for collect-
ing traces, caching assets it pushes to the device, etc. By default, it will create one under /sdcard
which should be mapped and writable on standard Android builds. If this is not the case for your
device, you will need to specify an alternative working directory (e.g. under /data/local).

A typical device_config inside config.yaml for a ChromeOS device may look something like

device_config:
host: 192.168.0.7

(continues on next page)

2.1. User Information 53

wa Documentation, Release 3.4.0.dev1

(continued from previous page)

username: root
android_working_direcory: '/sdcard/wa-working'
...

Note: This assumes that your Chromebook is in developer mode and is configured to run an SSH server with the
appropriate ssh keys added to the authorized_keys file on the device.

Related Settings

Reboot Policy

This indicates when during WA execution the device will be rebooted. By default this is set to as_needed, indicat-
ing that WA will only reboot the device if it becomes unresponsive. Please see reboot_policy documentation in
Configuration for more details.

Execution Order

execution_order defines the order in which WA will execute workloads. by_iteration (set by default) will execute
the first iteration of each spec first, followed by the second iteration of each spec (that defines more than one iteration)
and so forth. The alternative will loop through all iterations for the first first spec first, then move on to second spec,
etc. Again, please see Configuration for more details.

Adding a new target interface

If you are working with a particularly unusual device (e.g. a early stage development board) or need to be able to handle
some quirk of your Android build, configuration available in generic_android interface may not be enough for you.
In that case, you may need to write a custom interface for your device. A device interface is an Extension (a plug-in)
type in WA and is implemented similar to other extensions (such as workloads or instruments). Pleaser refer to the
adding a custom target section for information on how this may be done.

Automating GUI Interactions With Revent

Overview and Usage

The revent utility can be used to record and later play back a sequence of user input events, such as key presses and
touch screen taps. This is an alternative to Android UI Automator for providing automation for workloads.

54 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

Using revent with workloads

Some workloads (pretty much all games) rely on recorded revents for their execution. ReventWorkloads require between
1 and 4 revent files to be ran. There is one mandatory recording, run, for performing the actual execution of the
workload and the remaining stages are optional. setup can be used to perform the initial setup (navigating menus,
selecting game modes, etc). extract_results can be used to perform any actions after the main stage of the workload
for example to navigate a results or summary screen of the app. And finally teardown can be used to perform any final
actions for example exiting the app.

Because revents are very device-specific*0, these files would need to be recorded for each device.

The files must be called <device name>.(setup|run|extract_results|teardown).revent, where <device
name> is the name of your device (as defined by the model name of your device which can be retrieved with adb shell
getprop ro.product.model or by the name attribute of your customized device class).

WA will look for these files in two places: <installdir>/wa/workloads/<workload name>/revent_files and
$WA_USER_DIRECTORY/dependencies/<workload name>. The first location is primarily intended for revent files
that come with WA (and if you did a system-wide install, you’ll need sudo to add files there), so it’s probably easier
to use the second location for the files you record. Also, if revent files for a workload exist in both locations, the files
under $WA_USER_DIRECTORY/dependencies will be used in favour of those installed with WA.

Recording

WA features a record command that will automatically deploy and start revent on the target device.

If you want to simply record a single recording on the device then the following command can be used which will save
the recording in the current directory:

wa record

There is one mandatory stage called ‘run’ and 3 optional stages: ‘setup’, ‘extract_results’ and ‘teardown’ which are
used for playback of a workload. The different stages are distinguished by the suffix in the recording file path. In order
to facilitate in creating these recordings you can specify --setup, --extract-results, --teardown or --all to
indicate which stages you would like to create recordings for and the appropriate file name will be generated.

You can also directly specify a workload to create recordings for and WA will walk you through the relevant steps. For
example if we waned to create recordings for the Angrybirds Rio workload we can specify the workload flag with -w.
And in this case WA can be used to automatically deploy and launch the workload and record setup (-s) , run (-r)
and teardown (-t) stages for the workload. In order to do this we would use the following command with an example
output shown below:

wa record -srt -w angrybirds_rio

INFO Setting up target
INFO Deploying angrybirds_rio
INFO Press Enter when you are ready to record SETUP...
[Pressed Enter]
INFO Press Enter when you have finished recording SETUP...
[Pressed Enter]
INFO Pulling '<device_model>setup.revent' from device
INFO Press Enter when you are ready to record RUN...
[Pressed Enter]
INFO Press Enter when you have finished recording RUN...

(continues on next page)

0 It’s not just about screen resolution – the event codes may be different even if devices use the same screen.

2.1. User Information 55

wa Documentation, Release 3.4.0.dev1

(continued from previous page)

[Pressed Enter]
INFO Pulling '<device_model>.run.revent' from device
INFO Press Enter when you are ready to record TEARDOWN...
[Pressed Enter]
INFO Press Enter when you have finished recording TEARDOWN...
[Pressed Enter]
INFO Pulling '<device_model>.teardown.revent' from device
INFO Tearing down angrybirds_rio
INFO Recording(s) are available at: '$WA_USER_DIRECTORY/dependencies/angrybirds_rio/
→˓revent_files'

Once you have made your desired recordings, you can either manually playback individual recordings using the replay
command or, with the recordings in the appropriate dependencies location, simply run the workload using the run
command and then all the available recordings will be played back automatically.

For more information on available arguments please see the Record command.

Note: By default revent recordings are not portable across devices and therefore will require recording
for each new device you wish to use the workload on. Alternatively a “gamepad” recording mode is also
supported. This mode requires a gamepad to be connected to the device when recording but the recordings
produced in this mode should be portable across devices.

Replaying

If you want to replay a single recorded file, you can use wa replay providing it with the file you want to replay. An
example of the command output is shown below:

wa replay my_recording.revent
INFO Setting up target
INFO Pushing file to target
INFO Starting replay
INFO Finished replay

If you are using a device that supports android you can optionally specify a package name to launch before replaying
the recording.

If you have recorded the required files for your workload and have placed the in the appropriate location (or specified
the workload during recording) then you can simply run the relevant workload and your recordings will be replayed at
the appropriate times automatically.

For more information run please read Replay

56 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

Revent vs UiAutomator

In general, Android UI Automator is the preferred way of automating user input for Android workloads because, unlike
revent, UI Automator does not depend on a particular screen resolution, and so is more portable across different devices.
It also gives better control and can potentially be faster for doing UI manipulations, as input events are scripted based
on the available UI elements, rather than generated by human input.

On the other hand, revent can be used to manipulate pretty much any workload, where as UI Automator only works
for Android UI elements (such as text boxes or radio buttons), which makes the latter useless for things like games.
Recording revent sequence is also faster than writing automation code (on the other hand, one would need maintain a
different revent log for each screen resolution).

Note: For ChromeOS targets, UI Automator can only be used with android applications and not the ChomeOS host
applications themselves.

2.1.4 User Reference

Contents

• Configuration

– Agenda

– Run Configuration

– Meta Configuration

– Environment Variables

– Runtime Parameters

– Configuration Merging

– Configuration Includes

• Commands

– Run

– List

– Show

– Create

– Process

– Record

– Replay

• Output Directory Structure

– Overview

– Output Directory Entries

– Configuration and Metadata

2.1. User Information 57

wa Documentation, Release 3.4.0.dev1

Configuration

Agenda

An agenda can be thought of as a way to define an experiment as it specifies what is to be done during a Workload
Automation run. This includes which workloads will be run, with what configuration and which augmentations will
be enabled, etc. Agenda syntax is designed to be both succinct and expressive and is written using YAML notation.

There are three valid top level entries which are: config, workloads, sections.

An example agenda can be seen here:

config: # General configuration for the run
user_directory: ~/.workload_automation/
default_output_directory: 'wa_output'
augmentations: # A list of all augmentations to be enabled and disabled.
- trace-cmd
- csv
- ~dmesg # Disable the dmseg augmentation

iterations: 1 # How many iterations to run each workload by default

device: generic_android
device_config:

device: R32C801B8XY # The adb name of our device we want to run on
disable_selinux: true
load_default_modules: true
package_data_directory: /data/data

trace-cmd: # Provide config for the trace-cmd augmentation.
buffer_size_step: 1000
events:
- sched*
- irq*
- power*
- thermal*
no_install: false
report: true
report_on_target: false

csv: # Provide config for the csv augmentation
use_all_classifiers: true

sections: # Configure what sections we want and their settings
- id: LITTLES # Run workloads just on the LITTLE cores
runtime_parameters: # Supply RT parameters to be used for this section

num_little_cores: 4
num_big_cores: 0

- id: BIGS # Run workloads just on the big cores
runtime_parameters: # Supply RT parameters to be used for this section

num_big_cores: 4
num_little_cores: 0

workloads: # List which workloads should be run
(continues on next page)

58 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

(continued from previous page)

- name: benchmarkpi
augmentations:

- ~trace-cmd # Disable the trace-cmd instrument for this workload
iterations: 2 # Override the global number of iteration for this workload
params: # Specify workload parameters for this workload

cleanup_assets: true
exact_abi: false
force_install: false
install_timeout: 300
markers_enabled: false
prefer_host_package: true
strict: false
uninstall: false

- dhrystone # Run the dhrystone workload with all default config

This agenda will result in a total of 6 jobs being executed on our Android device, 4 of which running the BenchmarkPi
workload with its customized workload parameters and 2 running dhrystone with its default configuration. The first 3
will be running on only the little cores and the latter running on the big cores. For all of the jobs executed the output
will be processed by the csv processor,(plus any additional processors enabled in the default config file), however trace
data will only be collected for the dhrystone jobs.

config

This section is used to provide overall configuration for WA and its run. The config section of an agenda will be
merged with any other configuration files provided (including the default config file) and merged with the most specific
configuration taking precedence (see Config Merging for more information. The only restriction is that run_name can
only be specified in the config section of an agenda as this would not make sense to set as a default.

Within this section there are multiple distinct types of configuration that can be provided. However in addition to the
options listed here all configuration that is available for sections can also be entered here and will be globally applied.

Configuration

The first is to configure the behaviour of WA and how a run as a whole will behave. The most common options that
that you may want to specify are:

device The name of the ‘device’ that you wish to perform the run on. This name is a combi-
nation of a devlib Platform and Target. To see the available options please use wa list
targets.

device_config The is a dict mapping allowing you to configure which target to connect to (e.g.
host for an SSH connection or device to specific an ADB name) as well as configure
other options for the device for example the working_directory or the list of modules
to be loaded onto the device. (For more information please see here)

execution_order Defines the order in which the agenda spec will be executed.

reboot_policy Defines when during execution of a run a Device will be rebooted.

max_retries The maximum number of times failed jobs will be retried before giving up.

allow_phone_home Prevent running any workloads that are marked with ‘phones_home’.

For more information and a full list of these configuration options please see Run Configuration and Meta Configuration.

2.1. User Information 59

http://devlib.readthedocs.io/en/latest/platform.html
http://devlib.readthedocs.io/en/latest/target.html

wa Documentation, Release 3.4.0.dev1

Plugins

augmentations Specify a list of which augmentations should be enabled (or if prefixed with a
~, disabled).

Note: While augmentations can be enabled and disabled on a per workload basis, they
cannot yet be re-configured part way through a run and the configuration provided as part
of an agenda config section or separate config file will be used for all jobs in a WA run.

<plugin_name> You can also use this section to supply configuration for specific plugins, such
as augmentations, workloads, resource getters etc. To do this the plugin name you wish
to configure should be provided as an entry in this section and should contain a mapping
of configuration options to their desired settings. If configuration is supplied for a plugin
that is not currently enabled then it will simply be ignored. This allows for plugins to be
temporarily removed without also having to remove their configuration, or to provide a set
of defaults for a plugin which can then be overridden.

<global_alias> Some plugins provide global aliases which can set one or more configuration
options at once, and these can also be specified here. For example if you specify a value
for the entry remote_assets_url this will set the URL the http resource getter will use
when searching for any missing assets.

workloads

Here you can specify a list of workloads to be run. If you wish to run a workload with all default values then you can
specify the workload name directly as an entry, otherwise a dict mapping should be provided. Any settings provided here
will be the most specific and therefore override any other more generalised configuration for that particular workload
spec. The valid entries are as follows:

workload_name (Mandatory) The name of the workload to be run

iterations Specify how many iterations the workload should be run

label Similar to IDs but do not have the uniqueness restriction. If specified, labels will be used by some
output processors instead of (or in addition to) the workload name. For example, the csv output
processor will put the label in the “workload” column of the CSV file.

augmentations The instruments and output processors to enable (or disabled using a ~) during this work-
load.

classifiers Classifiers allow you to tag metrics from this workload spec which are often used to help iden-
tify what runtime parameters were used when post processing results.

workload_parameters Any parameters to configure that particular workload in a dict form.

Alias: workload_params

Note: You can see available parameters for a given workload with the show command or
look it up in the Plugin Reference.

runtime_parameters A dict mapping of any runtime parameters that should be set for the device for that
particular workload. For available parameters please see runtime parameters.

60 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

Alias: runtime_parms

Note: Unless specified elsewhere these configurations will not be undone once the workload has
finished. I.e. if the frequency of a core is changed it will remain at that frequency until otherwise
changed.

Note: There is also a shorter params alias available, however this alias will be interpreted differently depending on
whether it is used in workload entry, in which case it will be interpreted as workload_params, or at global config or
section (see below) level, in which case it will be interpreted as runtime_params.

sections

Sections are used for for grouping sets of configuration together in order to reduce the need for duplicated configuration
(for more information please see Sections). Each section specified will be applied for each entry in the workloads
section. The valid configuration entries are the same as the "workloads" section as mentioned above, except you can
additionally specify:

workloads An entry which can be provided with the same configuration entries as the workloads top level
entry.

Run Configuration

In addition to specifying run execution parameters through an agenda, the behaviour of WA can be modified through
configuration file(s). The default configuration file is ~/.workload_automation/config.yaml (the location can be
changed by setting WA_USER_DIRECTORY environment variable, see Environment Variables section below). This file
will be created when you first run WA if it does not already exist. This file must always exist and will always be loaded.
You can add to or override the contents of that file on invocation of Workload Automation by specifying an additional
configuration file using --config option. Variables with specific names will be picked up by the framework and used
to modify the behaviour of Workload automation e.g. the iterations variable might be specified to tell WA how
many times to run each workload.

execution_order: type: 'str'

Defines the order in which the agenda spec will be executed. At the moment, the following execution orders are
supported:

"by_iteration" The first iteration of each workload spec is executed one after the other, so all workloads are
executed before proceeding on to the second iteration. E.g. A1 B1 C1 A2 C2 A3. This is the default if no
order is explicitly specified.

In case of multiple sections, this will spread them out, such that specs from the same section are further
part. E.g. given sections X and Y, global specs A and B, and two iterations, this will run

X.A1, Y.A1, X.B1, Y.B1, X.A2, Y.A2, X.B2, Y.B2

"by_section" Same as "by_iteration", however this will group specs from the same section together, so
given sections X and Y, global specs A and B, and two iterations, this will run

2.1. User Information 61

wa Documentation, Release 3.4.0.dev1

X.A1, X.B1, Y.A1, Y.B1, X.A2, X.B2, Y.A2, Y.B2

"by_workload" All iterations of the first spec are executed before moving on to the next spec. E.g:

X.A1, X.A2, Y.A1, Y.A2, X.B1, X.B2, Y.B1, Y.B2

"random" Execution order is entirely random.

allowed values: 'by_iteration', 'by_section', 'by_workload', 'random'

default: 'by_iteration'

reboot_policy: type: 'RebootPolicy'

This defines when during execution of a run the Device will be rebooted. The possible values are:

"as_needed" The device will only be rebooted if the need arises (e.g. if it becomes unresponsive.

"never" The device will never be rebooted.

"initial" The device will be rebooted when the execution first starts, just before executing the first workload
spec.

"each_job" The device will be rebooted before each new job.

"each_spec" The device will be rebooted before running a new workload spec.

Note: This acts the same as each_job when execution order is set to by_iteration

"run_completion" The device will be rebooted after the run has been completed.

allowed values: 'never', 'as_needed', 'initial', 'each_spec', 'each_job', 'run_completion'

default: 'as_needed'

device: type: 'str'

This setting defines what specific Device subclass will be used to interact the connected device. Obviously, this
must match your setup.

default: 'generic_android'

retry_on_status: type: 'list_of_Enums'

This is list of statuses on which a job will be considered to have failed and will be automatically retried up to
max_retries times. This defaults to ["FAILED", "PARTIAL"] if not set. Possible values are:

"OK" This iteration has completed and no errors have been detected

"PARTIAL" One or more instruments have failed (the iteration may still be running).

"FAILED" The workload itself has failed.

"ABORTED" The user interrupted the workload.

allowed values: RUNNING, OK, PARTIAL, FAILED, ABORTED, SKIPPED

default: ['FAILED', 'PARTIAL']

max_retries: type: 'integer'

The maximum number of times failed jobs will be retried before giving up.

62 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

Note: This number does not include the original attempt

default: 2

bail_on_init_failure: type: 'boolean'

When jobs fail during their main setup and run phases, WA will continue attempting to run the remaining jobs.
However, by default, if they fail during their early initialization phase, the entire run will end without continuing
to run jobs. Setting this to False means that WA will instead skip all the jobs from the job spec that failed, but
continue attempting to run others.

default: True

bail_on_job_failure: type: 'boolean'

When a job fails during its run phase, WA will attempt to retry the job, then continue with remaining jobs after.
Setting this to Truemeans WA will skip remaining jobs and end the run if a job has retried the maximum number
of times, and still fails.

default: False

allow_phone_home: type: 'boolean'

Setting this to False prevents running any workloads that are marked with ‘phones_home’, meaning they are at
risk of exposing information about the device to the outside world. For example, some benchmark applications
upload device data to a database owned by the maintainers.

This can be used to minimise the risk of accidentally running such workloads when testing confidential devices.

default: True

Meta Configuration

There are also a couple of settings are used to provide additional metadata for a run. These may get picked up by
instruments or output processors to attach context to results.

user_directory: type: 'expanded_path'

Path to the user directory. This is the location WA will look for user configuration, additional plugins and plugin
dependencies.

default: '~/.workload_automation'

assets_repository: type: 'str'

The local mount point for the filer hosting WA assets.

default: ''

logging: type: 'LoggingConfig'

WA logging configuration. This should be a dict with a subset of the following keys:

:normal_format: Logging format used for console output
:verbose_format: Logging format used for verbose console output
:file_format: Logging format used for run.log
:color: If ``True`` (the default), console logging output will

contain bash color escape codes. Set this to ``False`` if
(continues on next page)

2.1. User Information 63

wa Documentation, Release 3.4.0.dev1

(continued from previous page)

console output will be piped somewhere that does not know
how to handle those.

default:

{
file_format: %(asctime)s %(levelname)-8s %(name)s: %(message)s,
verbose_format: %(asctime)s %(levelname)-8s %(name)s: %(message)s,
regular_format: %(levelname)-8s %(message)s,
color: True

}

verbosity: type: 'integer'

Verbosity of console output.

default: 0

default_output_directory: type: 'str'

The default output directory that will be created if not specified when invoking a run.

default: 'wa_output'

extra_plugin_paths: type: 'list_of_strs'

A list of additional paths to scan for plugins.

Environment Variables

In addition to standard configuration described above, WA behaviour can be altered through environment variables.
These can determine where WA looks for various assets when it starts.

WA_USER_DIRECTORY This is the location WA will look for config.yaml, plugins, dependencies,
and it will also be used for local caches, etc. If this variable is not set, the default location is ~/.
workload_automation (this is created when WA is installed).

Note: This location must be writable by the user who runs WA.

WA_LOG_BUFFER_CAPACITY Specifies the capacity (in log records) for the early log handler which
is used to buffer log records until a log file becomes available. If the is not set, the default value of
1000 will be used. This should sufficient for most scenarios, however this may need to be increased,
e.g. if plugin loader scans a very large number of locations; this may also be set to a lower value to
reduce WA’s memory footprint on memory-constrained hosts.

64 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

Runtime Parameters

Contents

• Example

• HotPlug

• CPUFreq

• CPUIdle

• Android Specific Runtime Parameters

• Setting Sysfiles

Runtime parameters are options that can be specified to automatically configure device at runtime. They can be specified
at the global level in the agenda or for individual workloads.

Example

Say we want to perform an experiment on an Android big.LITTLE devices to compare the power consumption between
the big and LITTLE clusters running the dhrystone and benchmarkpi workloads. Assuming we have additional instru-
mentation active for this device that can measure the power the device is consuming, to reduce external factors we want
to ensure that the device is in airplane mode turned on for all our tests and the screen is off only for our dhrystone run.
We will then run 2 sections will each enable a single cluster on the device, set the cores to their maximum frequency
and disable all available idle states.

config:
runtime_parameters:

airplane_mode: true
#..
workloads:

- name: dhrystone
iterations: 1
runtime_parameters:

screen_on: false
unlock_screen: 'vertical'

- name: benchmarkpi
iterations: 1

sections:
- id: LITTLES
runtime_parameters:

num_little_cores: 4
little_governor: userspace
little_frequency: max
little_idle_states: none
num_big_cores: 0

- id: BIGS
runtime_parameters:

num_big_cores: 4
big_governor: userspace

(continues on next page)

2.1. User Information 65

wa Documentation, Release 3.4.0.dev1

(continued from previous page)

big_frequency: max
big_idle_states: none
num_little_cores: 0

HotPlug

Parameters:

num_cores An int that specifies the total number of cpu cores to be online.

num_<core_name>_cores An int that specifies the total number of that particular core to be online, the
target will be queried and if the core_names can be determine a parameter for each of the unique core
names will be available.

cpu<core_no>_online A boolean that specifies whether that particular cpu, e.g. cpu0 will be online.

If big.LITTLE is detected for the device and additional 2 parameters are available:

num_big_cores An int that specifies the total number of big cpu cores to be online.

num_little_cores An int that specifies the total number of little cpu cores to be online.

Note: Please note that if the device in question is operating its own dynamic hotplugging then WA may be unable to
set the CPU state or will be overridden. Unfortunately the method of disabling dynamic hot plugging will vary from
device to device.

CPUFreq

frequency An int that can be used to specify a frequency for all cores if there are common frequencies
available.

Note: When settings the frequency, if the governor is not set to userspace then WA will attempt to set the maximum
and minimum frequencies to mimic the desired behaviour.

max_frequency An int that can be used to specify a maximum frequency for all cores if there are com-
mon frequencies available.

min_frequency An int that can be used to specify a minimum frequency for all cores if there are common
frequencies available.

governor A string that can be used to specify the governor for all cores if there are common governors
available.

governor A string that can be used to specify the governor for all cores if there are common governors
available.

gov_tunables A dict that can be used to specify governor tunables for all cores, unlike the other common
parameters these are not validated at the beginning of the run therefore incorrect values will cause
an error during runtime.

<core_name>_frequency An int that can be used to specify a frequency for cores of a particular type
e.g. ‘A72’.

66 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

<core_name>_max_frequency An int that can be used to specify a maximum frequency for cores of a
particular type e.g. ‘A72’.

<core_name>_min_frequency An int that can be used to specify a minimum frequency for cores of a
particular type e.g. ‘A72’.

<core_name>_governor A string that can be used to specify the governor for cores of a particular type
e.g. ‘A72’.

<core_name>_governor A string that can be used to specify the governor for cores of a particular type
e.g. ‘A72’.

<core_name>_gov_tunables A dict that can be used to specify governor tunables for cores of a partic-
ular type e.g. ‘A72’, these are not validated at the beginning of the run therefore incorrect values will
cause an error during runtime.

cpu<no>_frequency An int that can be used to specify a frequency for a particular core e.g. ‘cpu0’.

cpu<no>_max_frequency An int that can be used to specify a maximum frequency for a particular core
e.g. ‘cpu0’.

cpu<no>_min_frequency An int that can be used to specify a minimum frequency for a particular core
e.g. ‘cpu0’.

cpu<no>_governor A string that can be used to specify the governor for a particular core e.g. ‘cpu0’.

cpu<no>_governor A string that can be used to specify the governor for a particular core e.g. ‘cpu0’.

cpu<no>_gov_tunables A dict that can be used to specify governor tunables for a particular core e.g.
‘cpu0’, these are not validated at the beginning of the run therefore incorrect values will cause an
error during runtime.

If big.LITTLE is detected for the device an additional set of parameters are available:

big_frequency An int that can be used to specify a frequency for the big cores.

big_max_frequency An int that can be used to specify a maximum frequency for the big cores.

big_min_frequency An int that can be used to specify a minimum frequency for the big cores.

big_governor A string that can be used to specify the governor for the big cores.

big_governor A string that can be used to specify the governor for the big cores.

big_gov_tunables A dict that can be used to specify governor tunables for the big cores, these are not
validated at the beginning of the run therefore incorrect values will cause an error during runtime.

little_frequency An int that can be used to specify a frequency for the little cores.

little_max_frequency An int that can be used to specify a maximum frequency for the little cores.

little_min_frequency An int that can be used to specify a minimum frequency for the little cores.

little_governor A string that can be used to specify the governor for the little cores.

little_governor A string that can be used to specify the governor for the little cores.

little_gov_tunables A dict that can be used to specify governor tunables for the little cores, these are not
validated at the beginning of the run therefore incorrect values will cause an error during runtime.

2.1. User Information 67

wa Documentation, Release 3.4.0.dev1

CPUIdle

idle_states A string or list of strings which can be used to specify what idles states should be enabled
for all cores if there are common idle states available. ‘all’ and ‘none’ are also valid entries as a
shorthand

<core_name>_idle_states A string or list of strings which can be used to specify what idles states
should be enabled for cores of a particular type e.g. ‘A72’. ‘all’ and ‘none’ are also valid entries as
a shorthand

cpu<no>_idle_states A string or list of strings which can be used to specify what idles states should
be enabled for a particular core e.g. ‘cpu0’. ‘all’ and ‘none’ are also valid entries as a shorthand

If big.LITTLE is detected for the device and additional set of parameters are available:

big_idle_states A string or list of strings which can be used to specify what idles states should be
enabled for the big cores. ‘all’ and ‘none’ are also valid entries as a shorthand

little_idle_states A string or list of strings which can be used to specify what idles states should be
enabled for the little cores. ‘all’ and ‘none’ are also valid entries as a shorthand.

Android Specific Runtime Parameters

brightness An int between 0 and 255 (inclusive) to specify the brightness the screen should be set to.
Defaults to 127.

airplane_mode A boolean to specify whether airplane mode should be enabled for the device.

rotation A String to specify the screen orientation for the device. Valid entries are NATURAL, LEFT,
INVERTED, RIGHT.

screen_on A boolean to specify whether the devices screen should be turned on. Defaults to True.

unlock_screen A String to specify how the devices screen should be unlocked. Unlocking screen is
disabled by default. vertical, diagonal and horizontal are the supported values (see devlib.
AndroidTarget.swipe_to_unlock()). Note that unlocking succeeds when no passcode is set.
Since unlocking screen requires turning on the screen, this option overrides value of screen_on
option.

Setting Sysfiles

In order to perform additional configuration of a target the sysfile_values runtime parameter can be used. The
value for this parameter is a mapping (an associative array, in YAML) of file paths onto values that should be written
into those files. sysfile_values is the only runtime parameter that is available for any (Linux) device. Other runtime
parameters will depend on the specifics of the device used (e.g. its CPU cores configuration) as detailed above.

Note: By default WA will attempt to verify that the any sysfile values were written correctly by reading the node back
and comparing the two values. If you do not wish this check to happen, for example the node you are writing to is write
only, you can append an ! to the file path to disable this verification.

For example the following configuration could be used to enable and verify that cpu0 is online, however will not attempt
to check that its governor have been set to userspace:

68 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

- name: dhrystone
runtime_params:

sysfile_values:
/sys/devices/system/cpu/cpu0/online: 1
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor!: userspace

Configuration Merging

WA configuration can come from various sources of increasing priority, as well as being specified in a generic and
specific manner. For example WA’s global config file would be considered the least specific vs the parameters of a
workload in an agenda which would be the most specific. WA has two rules for the priority of configuration:

• Configuration from higher priority sources overrides configuration from lower priority sources.

• More specific configuration overrides less specific configuration.

There is a situation where these two rules come into conflict. When a generic configuration is given in config source of
high priority and a specific configuration is given in a config source of lower priority. In this situation it is not possible
to know the end users intention and WA will error.

This functionality allows for defaults for plugins, targets etc. to be configured at a global level and then seamless
overridden without the need to remove the high level configuration.

Dependent on specificity, configuration parameters from different sources will have different inherent priorities. Within
an agenda, the configuration in “workload” entries will be more specific than “sections” entries, which in turn are more
specific than parameters in the “config” entry.

Configuration Includes

It is possible to include other files in your config files and agendas. This is done by specifying include# (note the
trailing hash) as a key in one of the mappings, with the value being the path to the file to be included. The path must
be either absolute, or relative to the location of the file it is being included from (not to the current working directory).
The path may also include ~ to indicate current user’s home directory.

The include is performed by removing the include# loading the contents of the specified into the mapping that con-
tained it. In cases where the mapping already contains the key to be loaded, values will be merged using the usual
merge method (for overwrites, values in the mapping take precedence over those from the included files).

Below is an example of an agenda that includes other files. The assumption is that all of those files are in one directory

agenda.yaml
config:
augmentations: [trace-cmd]
include#: ./my-config.yaml

sections:
- include#: ./section1.yaml
- include#: ./section2.yaml

include#: ./workloads.yaml

my-config.yaml
augmentations: [cpufreq]

2.1. User Information 69

wa Documentation, Release 3.4.0.dev1

section1.yaml
runtime_parameters:
frequency: max

section2.yaml
runtime_parameters:
frequency: min

workloads.yaml
workloads:

- dhrystone
- memcpy

The above is equivalent to having a single file like this:

agenda.yaml
config:
augmentations: [cpufreq, trace-cmd]

sections:
- runtime_parameters:

frequency: max
- runtime_parameters:

frequency: min
workloads:

- dhrystone
- memcpy

Some additional details about the implementation and its limitations:

• The include# must be a key in a mapping, and the contents of the included file must be a mapping as well; it is
not possible to include a list (e.g. in the examples above workload: part must be in the included file.

• Being a key in a mapping, there can only be one include# entry per block.

• The included file must have a .yaml extension.

• Nested inclusions are allowed. I.e. included files may themselves include files; in such cases the included paths
must be relative to that file, and not the “main” file.

Commands

Installing the wa package will add wa command to your system, which you can run from anywhere. This has a number
of sub-commands, which can be viewed by executing

wa -h

Individual sub-commands are discussed in detail below.

70 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

Run

The most common sub-command you will use is run. This will run the specified workload(s) and process its resulting
output. This takes a single mandatory argument which specifies what you want WA to run. This could be either
a workload name, or a path to an agenda” file that allows to specify multiple workloads as well as a lot additional
configuration (see Defining Experiments With an Agenda section for details). Executing

wa run -h

Will display help for this subcommand that will look something like this:

usage: wa run [-h] [-c CONFIG] [-v] [--version] [-d DIR] [-f] [-i ID]
[--disable INSTRUMENT]
AGENDA

Execute automated workloads on a remote device and process the resulting
output.

positional arguments:
AGENDA Agenda for this workload automation run. This defines

which workloads will be executed, how many times, with
which tunables, etc. See example agendas in
/usr/local/lib/python3.X/dist-packages/wa for an
example of how this file should be structured.

optional arguments:
-h, --help show this help message and exit
-c CONFIG, --config CONFIG

specify an additional config.yaml
-v, --verbose The scripts will produce verbose output.
--version show program's version number and exit
-d DIR, --output-directory DIR

Specify a directory where the output will be
generated. If the directory already exists, the script
will abort unless -f option (see below) is used, in
which case the contents of the directory will be
overwritten. If this option is not specified, then
wa_output will be used instead.

-f, --force Overwrite output directory if it exists. By default,
the script will abort in this situation to prevent
accidental data loss.

-i ID, --id ID Specify a workload spec ID from an agenda to run. If
this is specified, only that particular spec will be
run, and other workloads in the agenda will be
ignored. This option may be used to specify multiple
IDs.

--disable INSTRUMENT Specify an instrument or output processor to disable
from the command line. This equivalent to adding
"~{metavar}" to the instruments list in the
agenda. This can be used to temporarily disable a
troublesome instrument for a particular run without
introducing permanent change to the config (which one
might then forget to revert). This option may be
specified multiple times.

2.1. User Information 71

wa Documentation, Release 3.4.0.dev1

List

This lists all plugins of a particular type. For example

wa list instruments

will list all instruments currently included in WA. The list will consist of plugin names and short descriptions of the
functionality they offer e.g.

#..
cpufreq: Collects dynamic frequency (DVFS) settings before and after

workload execution.
dmesg: Collected dmesg output before and during the run.

energy_measurement: This instrument is designed to be used as an interface to
the various energy measurement instruments located
in devlib.

execution_time: Measure how long it took to execute the run() methods of
a Workload.

file_poller: Polls the given files at a set sample interval. The values
are output in CSV format.

fps: Measures Frames Per Second (FPS) and associated metrics for
a workload.

#..

You can use the same syntax to quickly display information about commands, energy_instrument_backends,
instruments, output_processors, resource_getters, targets and workloads

Show

This will show detailed information about an plugin (workloads, targets, instruments etc.), including a full description
and any relevant parameters/configuration that are available. For example executing

wa show benchmarkpi

will produce something like:

benchmarkpi

Measures the time the target device takes to run and complete the Pi
calculation algorithm.

http://androidbenchmark.com/howitworks.php

from the website:

The whole idea behind this application is to use the same Pi calculation
algorithm on every Android Device and check how fast that process is.
Better calculation times, conclude to faster Android devices. This way you
can also check how lightweight your custom made Android build is. Or not.

As Pi is an irrational number, Benchmark Pi does not calculate the actual Pi
number, but an approximation near the first digits of Pi over the same

(continues on next page)

72 Chapter 2. User Information

wa Documentation, Release 3.4.0.dev1

(continued from previous page)

calculation circles the algorithms needs.

So, the number you are getting in milliseconds is the time your mobile device
takes to run and complete the Pi calculation algorithm resulting in a
approximation of the first Pi digits.

parameters
~~~~~~~~~~

cleanup_assets : boolean
If ``True``, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

default: ``True``

package_name : str
The package name that can be used to specify
the workload apk to use.

install_timeout : integer
Timeout for the installation of the apk.

constraint: ``value > 0``

default: ``300``

version : str
The version of the package to be used.

variant : str
The variant of the package to be used.

strict : boolean
Whether to throw an error if the specified package cannot be found
on host.

force_install : boolean
Always re-install the APK, even if matching version is found already installed
on the device.

uninstall : boolean
If ``True``, will uninstall workload's APK as part of teardown.'

exact_abi : boolean
If ``True``, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

markers_enabled : boolean
If set to ``True``, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload

(continues on next page)

2.1. User Information 73



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

execution.

Note: You can also use this command to view global settings by using wa show settings

Create

This aids in the creation of new WA-related objects for example agendas and workloads. For more detailed information
on creating workloads please see the adding a workload section for more details.

As an example to create an agenda that will run the dhrystone and memcpy workloads that will use the status and
hwmon augmentations, run each test 3 times and save into the file my_agenda.yaml the following command can be
used:

wa create agenda dhrystone memcpy status hwmon -i 3 -o my_agenda.yaml

Which will produce something like:

config:
augmentations:
- status
- hwmon
status: {}
hwmon: {}
iterations: 3

workloads:
- name: dhrystone

params:
cleanup_assets: true
delay: 0
duration: 0
mloops: 0
taskset_mask: 0
threads: 4

- name: memcpy
params:

buffer_size: 5242880
cleanup_assets: true
cpus: null
iterations: 1000

This will be populated with default values which can then be customised for the particular use case.

Additionally the create command can be used to initialize (and update) a Postgres database which can be used by the
postgres output processor.

The most of database connection parameters have a default value however they can be overridden via command line
arguments. When initializing the database WA will also save the supplied parameters into the default user config file
so that they do not need to be specified time the output processor is used.

As an example if we had a database server running on at 10.0.0.2 using the standard port we could use the following
command to initialize a database for use with WA:

74 Chapter 2. User Information



wa Documentation, Release 3.4.0.dev1

wa create database -a 10.0.0.2 -u my_username -p Pa55w0rd

This will log into the database server with the supplied credentials and create a database (defaulting to ‘wa’) and will
save the configuration to the ~/.workload_automation/config.yaml file.

With updates to WA there may be changes to the database schema used. In this case the create command can also be
used with the -U flag to update the database to use the new schema as follows:

wa create database -a 10.0.0.2 -u my_username -p Pa55w0rd -U

This will upgrade the database sequentially until the database schema is using the latest version.

Process

This command allows for output processors to be ran on data that was produced by a previous run.

There are 2 ways of specifying which processors you wish to use, either passing them directly as arguments to the pro-
cess command with the --processor argument or by providing an additional config file with the --config argument.
Please note that by default the process command will not rerun processors that have already been ran during the run,
in order to force a rerun of the processors you can specific the --force argument.

Additionally if you have a directory containing multiple run directories you can specify the --recursive argument
which will cause WA to walk the specified directory processing all the WA output sub-directories individually.

As an example if we had performed multiple experiments and have the various WA output directories in our
my_experiments directory, and we now want to process the outputs with a tool that only supports CSV files. We
can easily generate CSV files for all the runs contained in our directory using the CSV processor by using the following
command:

wa process -r -p csv my_experiments

Record

This command simplifies the process of recording revent files. It will automatically deploy revent and has options to
automatically open apps and record specified stages of a workload. Revent allows you to record raw inputs such as screen
swipes or button presses. This can be useful for recording inputs for workloads such as games that don’t have XML
UI layouts that can be used with UIAutomator. As a drawback from this, revent recordings are specific to the device
type they were recorded on. WA uses two parts to the names of revent recordings in the format, {device_name}.
{suffix}.revent. - device_name can either be specified manually with the -d argument or it can be automatically
determined. On Android device it will be obtained from build.prop, on Linux devices it is obtained from /proc/
device-tree/model. - suffix is used by WA to determine which part of the app execution the recording is for, currently
these are either setup, run, extract_results or teardown. All stages except run are optional for playback and to
specify which stages should be recorded the -s, -r, -e or -t arguments respectively, or optionally -a to indicate all
stages should be recorded.

The full set of options for this command are:

usage: wa record [-h] [-c CONFIG] [-v] [--version] [-d DEVICE] [-o FILE] [-s]
[-r] [-e] [-t] [-a] [-C] [-p PACKAGE | -w WORKLOAD]

optional arguments:
-h, --help show this help message and exit
-c CONFIG, --config CONFIG

(continues on next page)

2.1. User Information 75



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

specify an additional config.yaml
-v, --verbose The scripts will produce verbose output.
--version show program's version number and exit
-d DEVICE, --device DEVICE

Specify the device on which to run. This will take
precedence over the device (if any) specified in
configuration.

-o FILE, --output FILE
Specify the output file

-s, --setup Record a recording for setup stage
-r, --run Record a recording for run stage
-e, --extract_results Record a recording for extract_results stage
-t, --teardown Record a recording for teardown stage
-a, --all Record recordings for available stages
-C, --clear Clear app cache before launching it
-p PACKAGE, --package PACKAGE

Android package to launch before recording
-w WORKLOAD, --workload WORKLOAD

Name of a revent workload (mostly games)

For more information please see Revent Recording.

Replay

Alongside record wa also has a command to playback a single recorded revent file. It behaves similar to the record
command taking a subset of the same options allowing you to automatically launch a package on the device

usage: wa replay [-h] [-c CONFIG] [-v] [--debug] [--version] [-p PACKAGE] [-C]
revent

positional arguments:
revent The name of the file to replay

optional arguments:
-h, --help show this help message and exit
-c CONFIG, --config CONFIG

specify an additional config.py
-v, --verbose The scripts will produce verbose output.
--debug Enable debug mode. Note: this implies --verbose.
--version show program's version number and exit
-p PACKAGE, --package PACKAGE

Package to launch before recording
-C, --clear Clear app cache before launching it

For more information please see Revent Replaying.

76 Chapter 2. User Information



wa Documentation, Release 3.4.0.dev1

Output Directory Structure

This is an overview of WA output directory structure.

Note: In addition to files and subdirectories described here, other content may present in the output directory for a
run, depending on the enabled augmentations.

Overview

The output directory will contain a subdirectory for every job iteration that was run, as well as some additional entries.
The following diagram illustrates the typical structure of WA output directory:

wa_output/
__meta/

config.json
jobs.json
raw_config

cfg0-config.yaml
agenda.yaml

run_info.json
target_info.json

__failed/
wk1-dhrystone-1-attempt1

wk1-dhrystone-1/
result.json

wk1-dhrystone-2/
result.json

wk2-memcpy-1/
result.json

wk2-memcpy-2/
result.json

result.json
run.log

This is the directory structure that would be generated after running two iterations each of dhrystone and memcpy
workloads with no augmentations enabled, and with the first attempt at the first iteration of dhrystone having failed.

You may notice that a number of directories named wk*-x-x were generated in the output directory structure. Each of
these directories represents a job. The name of the output directory is as stated here.

Output Directory Entries

result.json Contains a JSON structure describing the result of the execution, including collected metrics and artifacts.
There will be one for each job execution, and one for the overall run. The run result.json will only contain
metrics/artifacts for the run as a whole, and will not contain results for individual jobs.

You typically would not access result.json files directly. Instead you would either enable augmentations to
format the results in easier to manage form (such as CSV table), or use Output to access the results from scripts.

run.log This is a log of everything that happened during the run, including all interactions with the target, and all the
decisions made by the framework. The output is equivalent to what you would see on the console when running
with --verbose option.

2.1. User Information 77



wa Documentation, Release 3.4.0.dev1

Note: WA source contains a syntax file for Vim that will color the initial part of each log line, in a similar way to
what you see on the console. This may be useful for quickly spotting error and warning messages when scrolling
through the log.

https://github.com/ARM-software/workload-automation/blob/next/extras/walog.vim

__meta This directory contains configuration and run metadata. See Configuration and Metadata below for details.

__failed This directory will only be present if one or more job executions has failed and were re-run. This directory
contains output directories for the failed attempts.

job execution output subdirectory Each subdirectory will be named <job id>_<workload label>_<iteration
number>, and will, at minimum, contain a result.json (see above). Additionally, it may contain raw output
from the workload, and any additional artifacts (e.g. traces) generated by augmentations. Finally, if workload
execution has failed, WA may gather some additional logging (such as the UI state at the time of failure) and
place it here.

Configuration and Metadata

As stated above, the __meta directory contains run configuration and metadata. Typically, you would not access these
files directly, but would use the Output to query the metadata.

For more details about WA configuration see Configuration.

config.json Contains the overall run configuration, such as target interface configuration, and job execution order, and
various “meta-configuration” settings, such as default output path, verbosity level, and logging formatting.

jobs.json Final configuration for all jobs, including enabled augmentations, workload and runtime parameters, etc.

raw_config This directory contains copies of config file(s) and the agenda that were parsed in order to generate con-
figuration for this run. Each config file is prefixed with cfg<N>-, where <N> is the number indicating the order
(with respect to the other other config files) in which it was parsed, e.g. cfg0-config.yaml is always a copy
of $WA_USER_DIRECTORY/config.yaml. The one file without a prefix is the agenda.

run_info.json Run metadata, e.g. duration, start/end timestamps and duration.

target_info.json Extensive information about the target. This includes information about the target’s CPUS configu-
ration, kernel and userspace versions, etc. The exact content will vary depending on the target type (Android vs
Linux) and what could accessed on a particular device (e.g. if /proc/config.gz exists on the target, the kernel
config will be included).

78 Chapter 2. User Information

https://github.com/ARM-software/workload-automation/blob/next/extras/walog.vim


CHAPTER

THREE

DEVELOPER INFORMATION

This section contains more advanced topics, such how to write your own Plugins and detailed descriptions of how WA
functions under the hood.

3.1 Developer Information

Contents

• Developer Guide

– Writing Plugins

∗ Plugin Basics

· Dynamic Resource Resolution

· Deploying executables to a target

∗ Deploying assets

∗ Adding an Instrument

· Prioritization

· Unresponsive Targets

∗ Adding an Output processor

∗ Adding a Resource Getter

· Getter Prioritization

· Example

∗ Adding a Target

∗ Other Plugin Types

∗ Packaging Your Plugins

• How Tos

– Deploying Executables

– Adding a Workload

∗ Adding a Basic Workload

∗ Adding a ApkUiAutomator Workload

79



wa Documentation, Release 3.4.0.dev1

∗ Adding a ReventApk Workload

– Adding an Instrument

– Adding an Output Processor

– Adding a Custom Target

– Processing WA Output

∗ Run Info

∗ Target Info

∗ Jobs Summary

∗ Compare Metrics

∗ Complete Example

• Developer Reference

– Framework Overview

∗ Execution Model

∗ Control Flow

∗ Signal Dispatch

– Plugins

∗ Plugin Basics

· The Context

· Paths

· Parameters

· Logging

· Documenting

· Error Notification

· Metrics

· Artifacts

· Metadata

· Classifiers

· Metadata vs Classifiers

∗ Execution Decorators

· @once_per_instance

· @once_per_class

· @once

∗ Utils

∗ Workloads

· Workload Types

80 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

– Revent Recordings

∗ Convention for Naming revent Files for Revent Workloads

∗ File format of revent recordings

· Format Overview

· Recording Header

· Device Description

· General Recording

· Gamepad Recording

· Event Stream

· Event Structure

· Parser

– Serialization

∗ Overview of Serialization

∗ Implementing Serializable Objects

∗ Serialization API

∗ WA POD Types

∗ Serialization Formats

– Contributing

∗ Code

∗ Documentation

· Headings

· Configuration Listings

· API Style

3.1.1 Developer Guide

• Writing Plugins

– Plugin Basics

∗ Dynamic Resource Resolution

∗ Deploying executables to a target

– Deploying assets

– Adding an Instrument

∗ Prioritization

∗ Unresponsive Targets

3.1. Developer Information 81



wa Documentation, Release 3.4.0.dev1

– Adding an Output processor

– Adding a Resource Getter

∗ Getter Prioritization

∗ Example

– Adding a Target

– Other Plugin Types

– Packaging Your Plugins

Writing Plugins

Workload Automation offers several plugin points (or plugin types). The most interesting of these are

workloads These are the tasks that get executed and measured on the device. These can be benchmarks,
high-level use cases, or pretty much anything else.

targets These are interfaces to the physical devices (development boards or end-user devices, such as
smartphones) that use cases run on. Typically each model of a physical device would require its own
interface class (though some functionality may be reused by subclassing from an existing base).

instruments Instruments allow collecting additional data from workload execution (e.g. system traces).
Instruments are not specific to a particular workload. Instruments can hook into any stage of workload
execution.

output processors These are used to format the results of workload execution once they have been col-
lected. Depending on the callback used, these will run either after each iteration and/or at the end of
the run, after all of the results have been collected.

You can create a plugin by subclassing the appropriate base class, defining appropriate methods and attributes, and
putting the .py file containing the class into the “plugins” subdirectory under ~/.workload_automation (or equiva-
lent) where it will be automatically picked up by WA.

Plugin Basics

This sub-section covers things common to implementing plugins of all types. It is recommended you familiarize
yourself with the information here before proceeding onto guidance for specific plugin types.

Dynamic Resource Resolution

The idea is to decouple resource identification from resource discovery. Workloads/instruments/devices/etc state what
resources they need, and not where to look for them – this instead is left to the resource resolver that is part of the
execution context. The actual discovery of resources is performed by resource getters that are registered with the
resolver.

A resource type is defined by a subclass of wa.framework.resource.Resource. An instance of this class describes
a resource that is to be obtained. At minimum, a Resource instance has an owner (which is typically the object that
is looking for the resource), but specific resource types may define other parameters that describe an instance of that
resource (such as file names, URLs, etc).

An object looking for a resource invokes a resource resolver with an instance of Resource describing the resource it
is after. The resolver goes through the getters registered for that resource type in priority order attempting to obtain the

82 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

resource; once the resource is obtained, it is returned to the calling object. If none of the registered getters could find
the resource, NotFoundError is raised (or None is returned instead, if invoked with strict=False).

The most common kind of object looking for resources is a Workload, and the Workload class defines wa.framework.
workload.Workload.init_resources() method, which may be overridden by subclasses to perform resource res-
olution. For example, a workload looking for an executable file would do so like this:

from wa import Workload
from wa.import Executable

class MyBenchmark(Workload):

# ...

def init_resources(self, resolver):
resource = Executable(self, self.target.abi, 'my_benchmark')
host_exe = resolver.get(resource)

# ...

Currently available resource types are defined in wa.framework.resources.

Deploying executables to a target

Some targets may have certain restrictions on where executable binaries may be placed and how they should be invoked.
To ensure your plugin works with as wide a range of targets as possible, you should use WA APIs for deploying and
invoking executables on a target, as outlined below.

As with other resources, host-side paths to the executable binary to be deployed should be obtained via the resource
resolver. A special resource type, Executable is used to identify a binary to be deployed. This is similar to the regular
File resource, however it takes an additional parameter that specifies the ABI for which the executable was compiled
for.

In order for the binary to be obtained in this way, it must be stored in one of the locations scanned by the resource resolver
in a directory structure <root>/bin/<abi>/<binary> (where root is the base resource location to be searched, e.g.
~/.workload_automation/dependencies/<plugin name>, and <abi> is the ABI for which the executable has
been compiled, as returned by self.target.abi).

Once the path to the host-side binary has been obtained, it may be deployed using one of two methods from a Tar-
get instance – install or install_if_needed. The latter will check a version of that binary has been previously
deployed by WA and will not try to re-install.

from wa import Executable

host_binary = context.get(Executable(self, self.target.abi, 'some_binary'))
target_binary = self.target.install_if_needed(host_binary)

Note: Please also note that the check is done based solely on the binary name. For more information please see the
devlib documentation.

Both of the above methods will return the path to the installed binary on the target. The executable should be invoked
only via that path; do not assume that it will be in PATH on the target (or that the executable with the same name in
PATH is the version deployed by WA.

3.1. Developer Information 83

http://devlib.readthedocs.io/en/latest/target.html
http://devlib.readthedocs.io/en/latest/target.html
http://devlib.readthedocs.io/en/latest/target.html#Target.install_if_needed


wa Documentation, Release 3.4.0.dev1

For more information on how to implement this, please see the how to guide.

Deploying assets

WA provides a generic mechanism for deploying assets during workload initialization. WA will automatically try to
retrieve and deploy each asset to the target’s working directory that is contained in a workloads deployable_assets
attribute stored as a list.

If the parameter cleanup_assets is set then any asset deployed will be removed again and the end of the run.

If the workload requires a custom deployment mechanism the deploy_assets method can be overridden for that
particular workload, in which case, either additional assets should have their on target paths added to the workload’s
deployed_assests attribute or the corresponding remove_assets method should also be implemented.

Adding an Instrument

Instruments can be used to collect additional measurements during workload execution (e.g. collect power readings).
An instrument can hook into almost any stage of workload execution. Any new instrument should be a subclass of
Instrument and it must have a name. When a new instrument is added to Workload Automation, the methods of the
new instrument will be found automatically and hooked up to the supported signals. Once a signal is broadcasted, the
corresponding registered method is invoked.

Each method in Instrument must take two arguments, which are self and context. Supported methods and their
corresponding signals can be found in the Signals Documentation. To make implementations easier and common, the
basic steps to add new instrument is similar to the steps to add new workload and an example can be found in the How
To section.

To implement your own instrument the relevant methods of the interface shown below should be implemented:

name The name of the instrument, this must be unique to WA.

description A description of what the instrument can be used for.

parameters A list of additional Parameters the instrument can take.

initialize(context) This method will only be called once during the workload run therefore
operations that only need to be performed initially should be performed here for example
pushing the files to the target device, installing them.

setup(context) This method is invoked after the workload is setup. All the necessary setup
should go inside this method. Setup, includes operations like clearing logs, additional
configuration etc.

start(context) It is invoked just before the workload start execution. Here is where instrument
measurement start being registered/taken.

stop(context) It is invoked just after the workload execution stops and where the measurements
should stop being taken/registered.

update_output(context) This method is invoked after the workload updated its result and
where the taken measures should be added to the result so it can be processed by WA.

teardown(context) It is invoked after the workload is torn down. It is a good place to clean
any logs generated by the instrument.

finalize(context) This method is the complement to the initialize method and will also only be
called once so should be used to deleting/uninstalling files pushed to the device.

84 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

This is similar to a Workload, except all methods are optional. In addition to the workload-like methods, instruments
can define a number of other methods that will get invoked at various points during run execution. The most useful of
which is perhaps initialize that gets invoked after the device has been initialised for the first time, and can be used
to perform one-time setup (e.g. copying files to the device – there is no point in doing that for each iteration). The full
list of available methods can be found in Signals Documentation.

Prioritization

Callbacks (e.g. setup() methods) for all instruments get executed at the same point during workload execution, one
after another. The order in which the callbacks get invoked should be considered arbitrary and should not be relied
on (e.g. you cannot expect that just because instrument A is listed before instrument B in the config, instrument A’s
callbacks will run first).

In some cases (e.g. in start() and stop() methods), it is important to ensure that a particular instrument’s callbacks
run a closely as possible to the workload’s invocations in order to maintain accuracy of readings; or, conversely, that a
callback is executed after the others, because it takes a long time and may throw off the accuracy of other instruments.
You can do this by using decorators on the appropriate methods. The available decorators are: very_slow, slow,
normal, fast, very_fast, with very_fast running closest to the workload invocation and very_slow running
furtherest away. For example:

from wa import very_fast
# ..

class PreciseInstrument(Instrument)

# ...
@very_fast
def start(self, context):

pass

@very_fast
def stop(self, context):

pass

# ...

PreciseInstrument will be started after all other instruments (i.e. just before the workload runs), and it will stopped
before all other instruments (i.e. just after the workload runs).

If more than one active instrument has specified fast (or slow) callbacks, then their execution order with respect to each
other is not guaranteed. In general, having a lot of instruments enabled is going to negatively affect the readings. The
best way to ensure accuracy of measurements is to minimize the number of active instruments (perhaps doing several
identical runs with different instruments enabled).

3.1. Developer Information 85



wa Documentation, Release 3.4.0.dev1

Example

Below is a simple instrument that measures the execution time of a workload:

class ExecutionTimeInstrument(Instrument):
"""
Measure how long it took to execute the run() methods of a Workload.

"""

name = 'execution_time'

def initialize(self, context):
self.start_time = None
self.end_time = None

@very_fast
def start(self, context):

self.start_time = time.time()

@very_fast
def stop(self, context):

self.end_time = time.time()

def update_output(self, context):
execution_time = self.end_time - self.start_time
context.add_metric('execution_time', execution_time, 'seconds')

Instrumentation Signal-Method Mapping

Instrument methods get automatically hooked up to signals based on their names. Mostly, the method name corresponds
to the name of the signal, however there are a few convenience aliases defined (listed first) to make easier to relate
instrumentation code to the workload execution model. For an overview on when these signals are dispatched during
execution please see the Developer Reference.

86 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

method name signal
initialize run-initialized
setup before-workload-setup
start before-workload-execution
stop after-workload-execution
process_workload_output successful-workload-output-update
update_output after-workload-output-update
teardown after-workload-teardown
finalize run-finalized
on_run_start run-started
on_run_end run-completed
on_job_start job-started
on_job_restart job-restarted
on_job_end job-completed
on_job_failure job-failed
on_job_abort job-aborted
before_job_queue_execution before-job-queue-execution
on_successful_job_queue_exection successful-job-queue-execution
after_job_queue_execution after-job-queue-execution
before_job before-job
on_successful_job successful-job
after_job after-job
before_processing_job_output before-job-output-processed
on_successfully_processing_job successful-job-output-processed
after_processing_job_output after-job-output-processed
before_reboot before-reboot
on_successful_reboot successful-reboot
after_reboot after-reboot
on_error error-logged
on_warning warning-logged

The methods above may be decorated with on the listed decorators to set the priority (a value in the wa.framework.
signal.CallbackPriority enum) of the Instrument method relative to other callbacks registered for the signal
(within the same priority level, callbacks are invoked in the order they were registered). The table below shows the
mapping of the decorator to the corresponding priority name and level:

decorator CallbackPriority name CallbackPriority value
extremely_slow extremely_low -30
very_slow very_low -20
slow low -10
normal normal 0
fast high 10
very_fast very_high 20
extremely_fast extremely_high 30

3.1. Developer Information 87



wa Documentation, Release 3.4.0.dev1

Unresponsive Targets

If a target is believed to be unresponsive, instrument callbacks will be disabled to prevent a cascade of errors and
potential corruptions of state, as it is generally assumed that instrument callbacks will want to do something with the
target.

If your callback only does something with the host, and does not require an active target connection, you can decorate
it with @hostside decorator to ensure it gets invoked even if the target becomes unresponsive.

Adding an Output processor

A output processor is responsible for processing the results. This may involve formatting and writing them to a file,
uploading them to a database, generating plots, etc. WA comes with a few output processors that output results in a
few common formats (such as csv or JSON).

You can add your own output processors by creating a Python file in ~/.workload_automation/plugins with a
class that derives from wa.OutputProcessor, and should implement the relevant methods shown below, for more
information and please see the Adding an Output Processor section.

name The name of the output processor, this must be unique to WA.

description A description of what the output processor can be used for.

parameters A list of additional Parameters the output processor can take.

initialize(context) This method will only be called once during the workload run therefore
operations that only need to be performed initially should be performed here.

process_job_output(output, target_info, run_ouput) This method should be used to per-
form the processing of the output from an individual job output. This is where any ad-
ditional artifacts should be generated if applicable.

export_job_output(output, target_info, run_ouput) This method should be used to perform
the exportation of the existing data collected/generated for an individual job. E.g. upload-
ing them to a database etc.

process_run_output(output, target_info) This method should be used to perform the pro-
cessing of the output from the run as a whole. This is where any additional artifacts should
be generated if applicable.

export_run_output(output, target_info) This method should be used to perform the expor-
tation of the existing data collected/generated for the run as a whole. E.g. uploading them
to a database etc.

finalize(context) This method is the complement to the initialize method and will also only be
called once.

The method names should be fairly self-explanatory. The difference between “process” and “export” methods is that
export methods will be invoked after process methods for all output processors have been generated. Process methods
may generate additional artifacts (metrics, files, etc.), while export methods should not – they should only handle
existing results (upload them to a database, archive on a filer, etc).

The output object passed to job methods is an instance of wa.framework.output.JobOutput, the output object
passed to run methods is an instance of wa.RunOutput.

88 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

Adding a Resource Getter

A resource getter is a plugin that is designed to retrieve a resource (binaries, APK files or additional workload assets).
Resource getters are invoked in priority order until one returns the desired resource.

If you want WA to look for resources somewhere it doesn’t by default (e.g. you have a repository of APK files), you
can implement a getter for the resource and register it with a higher priority than the standard WA getters, so that it gets
invoked first.

Instances of a resource getter should implement the following interface:

class ResourceGetter(Plugin):

name = None

def register(self, resolver):
raise NotImplementedError()

The getter should define a name for itself (as with all plugins), in addition it should implement the register method.
This involves registering a method with the resolver that should used to be called when trying to retrieve a resource
(typically get) along with it’s priority (see Getter Prioritization below. That method should return an instance of the
resource that has been discovered (what “instance” means depends on the resource, e.g. it could be a file path), or None
if this getter was unable to discover that resource.

Getter Prioritization

A priority is an integer with higher numeric values indicating a higher priority. The following standard priority aliases
are defined for getters:

preferred Take this resource in favour of the environment resource.

local Found somewhere under ~/.workload_automation/ or equivalent, or from environment
variables, external configuration files, etc. These will override resource supplied with the
package.

lan Resource will be retrieved from a locally mounted remote location (such as samba share)

remote Resource will be downloaded from a remote location (such as an HTTP server)

package Resource provided with the package.

These priorities are defined as class members of wa.framework.resource.SourcePriority, e.g.
SourcePriority.preferred.

Most getters in WA will be registered with either local or package priorities. So if you want your getter to override
the default, it should typically be registered as preferred.

You don’t have to stick to standard priority levels (though you should, unless there is a good reason). Any integer is a
valid priority. The standard priorities range from 0 to 40 in increments of 10.

3.1. Developer Information 89



wa Documentation, Release 3.4.0.dev1

Example

The following is an implementation of a getter that searches for files in the users dependencies directory, typically
~/.workload_automation/dependencies/<workload_name> It uses the get_from_location method to filter
the available files in the provided directory appropriately:

import sys

from wa import settings,
from wa.framework.resource import ResourceGetter, SourcePriority
from wa.framework.getters import get_from_location
from wa.utils.misc import ensure_directory_exists as _d

class UserDirectory(ResourceGetter):

name = 'user'

def register(self, resolver):
resolver.register(self.get, SourcePriority.local)

def get(self, resource):
basepath = settings.dependencies_directory
directory = _d(os.path.join(basepath, resource.owner.name))
return get_from_location(directory, resource)

Adding a Target

In WA3, a ‘target’ consists of a platform and a devlib target. The implementations of the targets are located in devlib.
WA3 will instantiate a devlib target passing relevant parameters parsed from the configuration. For more information
about devlib targets please see the documentation.

The currently available platforms are:

generic The ‘standard’ platform implementation of the target, this should work for the majority of
use cases.

juno A platform implementation specifically for the juno.

tc2 A platform implementation specifically for the tc2.

gem5 A platform implementation to interact with a gem5 simulation.

The currently available targets from devlib are:

linux A device running a Linux based OS.

android A device running Android OS.

local Used to run locally on a linux based host.

chromeos A device running ChromeOS, supporting an android container if available.

For an example of adding you own customized version of an existing devlib target, please see the how to section Adding
a Custom Target.

90 Chapter 3. Developer Information

http://devlib.readthedocs.io/en/latest/target.html


wa Documentation, Release 3.4.0.dev1

Other Plugin Types

In addition to plugin types covered above, there are few other, more specialized ones. They will not be covered in as
much detail. Most of them expose relatively simple interfaces with only a couple of methods and it is expected that
if the need arises to extend them, the API-level documentation that accompanies them, in addition to what has been
outlined here, should provide enough guidance.

commands This allows extending WA with additional sub-commands (to supplement exiting ones out-
lined in the Commands section).

modules Modules are “plugins for plugins”. They can be loaded by other plugins to expand their func-
tionality (for example, a flashing module maybe loaded by a device in order to support flashing).

Packaging Your Plugins

If your have written a bunch of plugins, and you want to make it easy to deploy them to new systems and/or to update
them on existing systems, you can wrap them in a Python package. You can use wa create package command to
generate appropriate boiler plate. This will create a setup.py and a directory for your package that you can place your
plugins into.

For example, if you have a workload inside my_workload.py and an output processor in my_output_processor.py,
and you want to package them as my_wa_exts package, first run the create command

wa create package my_wa_exts

This will create a my_wa_exts directory which contains a my_wa_exts/setup.py and a subdirectory my_wa_exts/
my_wa_exts which is the package directory for your plugins (you can rename the top-level my_wa_exts directory
to anything you like – it’s just a “container” for the setup.py and the package directory). Once you have that, you
can then copy your plugins into the package directory, creating my_wa_exts/my_wa_exts/my_workload.py and
my_wa_exts/my_wa_exts/my_output_processor.py. If you have a lot of plugins, you might want to organize
them into subpackages, but only the top-level package directory is created by default, and it is OK to have everything
in there.

Note: When discovering plugins through this mechanism, WA traverses the Python module/submodule tree, not the
directory structure, therefore, if you are going to create subdirectories under the top level directory created for you, it is
important that your make sure they are valid Python packages; i.e. each subdirectory must contain a __init__.py (even
if blank) in order for the code in that directory and its subdirectories to be discoverable.

At this stage, you may want to edit params structure near the bottom of the setup.py to add correct author, license
and contact information (see “Writing the Setup Script” section in standard Python documentation for details). You
may also want to add a README and/or a COPYING file at the same level as the setup.py. Once you have the contents
of your package sorted, you can generate the package by running

cd my_wa_exts
python setup.py sdist

This will generate my_wa_exts/dist/my_wa_exts-0.0.1.tar.gz package which can then be deployed on the target
system with standard Python package management tools, e.g.

sudo pip install my_wa_exts-0.0.1.tar.gz

As part of the installation process, the setup.py in the package, will write the package’s name into ~/.
workoad_automation/packages. This will tell WA that the package contains plugin and it will load them next
time it runs.

3.1. Developer Information 91



wa Documentation, Release 3.4.0.dev1

Note: There are no uninstall hooks in setuputils, so if you ever uninstall your WA plugins package, you will have
to manually remove it from ~/.workload_automation/packages otherwise WA will complain about a missing
package next time you try to run it.

3.1.2 How Tos

Contents

• Deploying Executables

• Adding a Workload

– Adding a Basic Workload

– Adding a ApkUiAutomator Workload

– Adding a ReventApk Workload

• Adding an Instrument

• Adding an Output Processor

• Adding a Custom Target

• Processing WA Output

– Run Info

– Target Info

– Jobs Summary

– Compare Metrics

– Complete Example

Deploying Executables

Installing binaries for a particular plugin should generally only be performed once during a run. This should typically
be done in the initialize method, if the only functionality performed in the method is to install the required binaries
then the initialize method should be decorated with the @once decorator otherwise this should be placed into a
dedicated method which is decorated instead. Please note if doing this then any installed paths should be added as class
attributes rather than instance variables. As a general rule if binaries are installed as part of initialize then they
should be uninstalled in the complementary finalize method.

Part of an example workload demonstrating this is shown below:

class MyWorkload(Workload):
#..
@once
def initialize(self, context):

resource = Executable(self, self.target.abi, 'my_executable')
host_binary = context.resolver.get(resource)

(continues on next page)

92 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

MyWorkload.target_binary = self.target.install(host_binary)
#..

def setup(self, context):
self.command = "{} -a -b -c".format(self.target_binary)
self.target.execute(self.command)

#..

@once
def finalize(self, context):

self.target.uninstall('my_executable')

Adding a Workload

The easiest way to create a new workload is to use the create command. wa create workload <args>. This will
use predefined templates to create a workload based on the options that are supplied to be used as a starting point for
the workload. For more information on using the create workload command see wa create workload -h

The first thing to decide is the type of workload you want to create depending on the OS you will be using and the aim
of the workload. The are currently 6 available workload types to choose as detailed in the Developer Reference.

Once you have decided what type of workload you wish to choose this can be specified with -k <workload_kind>
followed by the workload name. This will automatically generate a workload in the your WA_CONFIG_DIR/plugins.
If you wish to specify a custom location this can be provided with -p <path>

A typical invocation of the create command would be in the form:

wa create workload -k <workload_kind> <workload_name>

Adding a Basic Workload

To add a basic workload template for our example workload we can simply use the command:

wa create workload -k basic ziptest

This will generate a very basic workload with dummy methods for the each method in the workload interface and it is
left to the developer to add any required functionality.

Not all the methods from the interface are required to be implemented, this example shows how a subset might be used
to implement a simple workload that times how long it takes to compress a file of a particular size on the device.

Note: This is intended as an example of how to implement the Workload interface. The methodology used to perform
the actual measurement is not necessarily sound, and this Workload should not be used to collect real measurements.

The first step is to subclass our desired workload type depending on the purpose of our workload, in this example we
are implementing a very simple workload and do not require any additional feature so shall inherit directly from the
the base Workload class. We then need to provide a name for our workload which is what will be used to identify
your workload for example in an agenda or via the show command, if you used the create command this will already
be populated for you.

3.1. Developer Information 93



wa Documentation, Release 3.4.0.dev1

import os
from wa import Workload, Parameter

class ZipTest(Workload):

name = 'ziptest'

The description attribute should be a string in the structure of a short summary of the purpose of the workload, and
will be shown when using the list command, followed by a more in- depth explanation separated by a new line.

description = '''
Times how long it takes to gzip a file of a particular size on a device.

This workload was created for illustration purposes only. It should not be
used to collect actual measurements.
'''

In order to allow for additional configuration of the workload from a user a list of parameters can be supplied. These
can be configured in a variety of different ways. For example here we are ensuring that the value of the parameter is
an integer and larger than 0 using the kind and constraint options, also if no value is provided we are providing a
default value of 2000000. These parameters will automatically have their value set as an attribute of the workload
so later on we will be able to use the value provided here as self.file_size.

parameters = [
Parameter('file_size', kind=int, default=2000000,

constraint=lambda x: 0 < x,
description='Size of the file (in bytes) to be gzipped.')

]

Next we will implement our setup method. This is where we do any preparation that is required before the workload
is ran, this is usually things like setting up required files on the device and generating commands from user input. In
this case we will generate our input file on the host system and then push it to a known location on the target for use in
the ‘run’ stage.

def setup(self, context):
super(ZipTestWorkload, self).setup(context)
# Generate a file of the specified size containing random garbage.
host_infile = os.path.join(context.output_directory, 'infile')
command = 'openssl rand -base64 {} > {}'.format(self.file_size, host_infile)
os.system(command)
# Set up on-device paths
devpath = self.target.path # os.path equivalent for the target
self.target_infile = devpath.join(self.target.working_directory, 'infile')
self.target_outfile = devpath.join(self.target.working_directory, 'outfile')
# Push the file to the target
self.target.push(host_infile, self.target_infile)

The runmethod is where the actual ‘work’ of the workload takes place and is what is measured by any instrumentation.
So for this example this is the execution of creating the zip file on the target.

def run(self, context):
cmd = 'cd {} && (time gzip {}) &>> {}'
self.target.execute(cmd.format(self.target.working_directory,

(continues on next page)

94 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

self.target_infile,
self.target_outfile))

The extract_results method is used to extract any results from the target for example we want to pull the file
containing the timing information that we will use to generate metrics for our workload and then we add this file as an
artifact with a ‘raw’ kind, which means once WA has finished processing it will allow it to decide whether to keep the
file or not.

def extract_results(self, context):
super(ZipTestWorkload, self).extract_results(context)
# Pull the results file to the host
self.host_outfile = os.path.join(context.output_directory, 'timing_results')
self.target.pull(self.target_outfile, self.host_outfile)
context.add_artifact('ziptest-results', self.host_outfile, kind='raw')

The update_output method we can do any generation of metrics that we wish to for our workload. In this case we are
going to simply convert the times reported into seconds and add them as ‘metrics’ to WA which can then be displayed
to the user along with any others in a format dependant on which output processors they have enabled for the run.

def update_output(self, context):
super(ZipTestWorkload, self).update_output(context)
# Extract metrics form the file's contents and update the result
# with them.
content = iter(open(self.host_outfile).read().strip().split())
for value, metric in zip(content, content):

mins, secs = map(float, value[:-1].split('m'))
context.add_metric(metric, secs + 60 * mins, 'seconds')

Finally in the teardown method we will perform any required clean up for the workload so we will delete the input
and output files from the device.

def teardown(self, context):
super(ZipTestWorkload, self).teardown(context)
self.target.remove(self.target_infile)
self.target.remove(self.target_outfile)

The full implementation of this workload would look something like:

import os
from wa import Workload, Parameter

class ZipTestWorkload(Workload):

name = 'ziptest'

description = '''
Times how long it takes to gzip a file of a particular size on a␣

→˓device.

This workload was created for illustration purposes only. It should␣
→˓not be

used to collect actual measurements.
'''

(continues on next page)

3.1. Developer Information 95



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

parameters = [
Parameter('file_size', kind=int, default=2000000,

constraint=lambda x: 0 < x,
description='Size of the file (in bytes) to be gzipped.')

]

def setup(self, context):
super(ZipTestWorkload, self).setup(context)
# Generate a file of the specified size containing random garbage.
host_infile = os.path.join(context.output_directory, 'infile')
command = 'openssl rand -base64 {} > {}'.format(self.file_size, host_infile)
os.system(command)
# Set up on-device paths
devpath = self.target.path # os.path equivalent for the target
self.target_infile = devpath.join(self.target.working_directory, 'infile')
self.target_outfile = devpath.join(self.target.working_directory, 'outfile')
# Push the file to the target
self.target.push(host_infile, self.target_infile)

def run(self, context):
cmd = 'cd {} && (time gzip {}) &>> {}'
self.target.execute(cmd.format(self.target.working_directory,

self.target_infile,
self.target_outfile))

def extract_results(self, context):
super(ZipTestWorkload, self).extract_results(context)
# Pull the results file to the host
self.host_outfile = os.path.join(context.output_directory, 'timing_results')
self.target.pull(self.target_outfile, self.host_outfile)
context.add_artifact('ziptest-results', self.host_outfile, kind='raw')

def update_output(self, context):
super(ZipTestWorkload, self).update_output(context)
# Extract metrics form the file's contents and update the result
# with them.
content = iter(open(self.host_outfile).read().strip().split())
for value, metric in zip(content, content):

mins, secs = map(float, value[:-1].split('m'))
context.add_metric(metric, secs + 60 * mins, 'seconds')

def teardown(self, context):
super(ZipTestWorkload, self).teardown(context)
self.target.remove(self.target_infile)
self.target.remove(self.target_outfile)

96 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

Adding a ApkUiAutomator Workload

If we wish to create a workload to automate the testing of the Google Docs android app, we would choose to perform
the automation using UIAutomator and we would want to automatically deploy and install the apk file to the target,
therefore we would choose the ApkUiAutomator workload type with the following command:

$ wa create workload -k apkuiauto google_docs
Workload created in $WA_USER_DIRECTORY/plugins/google_docs

From here you can navigate to the displayed directory and you will find your __init__.py and a uiauto directory.
The former is your python WA workload and will look something like this. For an example of what should be done in
each of the main method please see adding a basic example above.

from wa import Parameter, ApkUiautoWorkload
class GoogleDocs(ApkUiautoWorkload):

name = 'google_docs'
description = "This is an placeholder description"
# Replace with a list of supported package names in the APK file(s).
package_names = ['package_name']

parameters = [
# Workload parameters go here e.g.
Parameter('example_parameter', kind=int, allowed_values=[1,2,3],

default=1, override=True, mandatory=False,
description='This is an example parameter')

]

def __init__(self, target, **kwargs):
super(GoogleDocs, self).__init__(target, **kwargs)
# Define any additional attributes required for the workload

def init_resources(self, resolver):
super(GoogleDocs, self).init_resources(resolver)
# This method may be used to perform early resource discovery and
# initialization. This is invoked during the initial loading stage and
# before the device is ready, so cannot be used for any device-dependent
# initialization. This method is invoked before the workload instance is
# validated.

def initialize(self, context):
super(GoogleDocs, self).initialize(context)
# This method should be used to perform once-per-run initialization of a
# workload instance.

def validate(self):
super(GoogleDocs, self).validate()
# Validate inter-parameter assumptions etc

def setup(self, context):
super(GoogleDocs, self).setup(context)
# Perform any necessary setup before starting the UI automation

def extract_results(self, context):
(continues on next page)

3.1. Developer Information 97



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

super(GoogleDocs, self).extract_results(context)
# Extract results on the target

def update_output(self, context):
super(GoogleDocs, self).update_output(context)
# Update the output within the specified execution context with the
# metrics and artifacts form this workload iteration.

def teardown(self, context):
super(GoogleDocs, self).teardown(context)
# Perform any final clean up for the Workload.

Depending on the purpose of your workload you can choose to implement which methods you require. The main things
that need setting are the list of package_nameswhich must be a list of strings containing the android package name that
will be used during resource resolution to locate the relevant apk file for the workload. Additionally the the workload
parameters will need to updating to any relevant parameters required by the workload as well as the description.

The latter will contain a framework for performing the UI automation on the target, the files you will be most interested
in will be uiauto/app/src/main/java/arm/wa/uiauto/UiAutomation.java which will contain the actual code
of the automation and will look something like:

package com.arm.wa.uiauto.google_docs;

import android.app.Activity;
import android.os.Bundle;
import org.junit.Test;
import org.junit.runner.RunWith;
import android.support.test.runner.AndroidJUnit4;

import android.util.Log;
import android.view.KeyEvent;

// Import the uiautomator libraries
import android.support.test.uiautomator.UiObject;
import android.support.test.uiautomator.UiObjectNotFoundException;
import android.support.test.uiautomator.UiScrollable;
import android.support.test.uiautomator.UiSelector;

import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;

import com.arm.wa.uiauto.BaseUiAutomation;

@RunWith(AndroidJUnit4.class)
public class UiAutomation extends BaseUiAutomation {

protected Bundle parameters;
protected int example_parameter;

public static String TAG = "google_docs";

@Before
(continues on next page)

98 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

public void initilize() throws Exception {
// Perform any parameter initialization here
parameters = getParams(); // Required to decode passed parameters.
packageID = getPackageID(parameters);
example_parameter = parameters.getInt("example_parameter");

}

@Test
public void setup() throws Exception {

// Optional: Perform any setup required before the main workload
// is ran, e.g. dismissing welcome screens

}

@Test
public void runWorkload() throws Exception {

// The main UI Automation code goes here
}

@Test
public void extractResults() throws Exception {

// Optional: Extract any relevant results from the workload,
}

@Test
public void teardown() throws Exception {

// Optional: Perform any clean up for the workload
}

}

A few items to note from the template:

• Each of the stages of execution for example setup, runWorkload etc are decorated with the @Test deco-
rator, this is important to allow these methods to be called at the appropriate time however any additional
methods you may add do not require this decorator.

• The initializemethod has the @Before decorator, this is there to ensure that this method is called before
executing any of the workload stages and therefore is used to decode and initialize any parameters that are
passed in.

• The code currently retrieves the example_parameter that was provided to the python workload as an
Integer, there are similar calls to retrieve parameters of different types e.g. getString, getBoolean,
getDouble etc.

Once you have implemented your java workload you can use the file uiauto/build.sh to compile your automation
into an apk file to perform the automation. The generated apk will be generated with the package name com.arm.wa.
uiauto.<workload_name> which when running your workload will be automatically detected by the resource getters
and deployed to the device.

3.1. Developer Information 99



wa Documentation, Release 3.4.0.dev1

Adding a ReventApk Workload

If we wish to create a workload to automate the testing of a UI based workload that we cannot / do not wish to use
UiAutomator then we can perform the automation using revent. In this example we would want to automatically
deploy and install an apk file to the target, therefore we would choose the ApkRevent workload type with the following
command:

$ wa create workload -k apkrevent my_game
Workload created in $WA_USER_DIRECTORY/plugins/my_game

This will generate a revent based workload you will end up with a very similar python file as to the one outlined in
generating a UiAutomator based workload however without the accompanying java automation files.

The main difference between the two is that this workload will subclass ApkReventWorkload instead of
ApkUiautomatorWorkload as shown below.

from wa import ApkReventWorkload

class MyGame(ApkReventWorkload):

name = 'mygame'
package_names = ['com.mylogo.mygame']

# ..

Adding an Instrument

This is an example of how we would create a instrument which will trace device errors using a custom “trace” binary
file. For more detailed information please see the Instrument Reference. The first thing to do is to create a new file
under $WA_USER_DIRECTORY/plugins/ and subclass Instrument. Make sure to overwrite the variable name with
what we want our instrument to be called and then locate our binary for the instrument.

class TraceErrorsInstrument(Instrument):

name = 'trace-errors'

def __init__(self, target, **kwargs):
super(TraceErrorsInstrument, self).__init__(target, **kwargs)
self.binary_name = 'trace'
self.binary_file = os.path.join(os.path.dirname(__file__), self.binary_name)
self.trace_on_target = None

We then declare and implement the required methods as detailed in the Instrument API . For the initialize method,
we want to install the executable file to the target so we can use the target’s install method which will try to copy the
file to a location on the device that supports execution, change the file mode appropriately and return the file path on
the target.

def initialize(self, context):
self.trace_on_target = self.target.install(self.binary_file)

Then we implemented the start method, which will simply run the file to start tracing. Supposing that the call to
this binary requires some overhead to begin collecting errors we might want to decorate the method with the @slow

100 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

decorator to try and reduce the impact on other running instruments. For more information on prioritization please see
the Developer Reference.

@slow
def start(self, context):

self.target.execute('{} start'.format(self.trace_on_target))

Lastly, we need to stop tracing once the workload stops and this happens in the stop method, assuming stopping the
collection also require some overhead we have again decorated the method.

@slow
def stop(self, context):

self.target.execute('{} stop'.format(self.trace_on_target))

Once we have generated our result data we need to retrieve it from the device for further processing or adding directly
to WA’s output for that job. For example for trace data we will want to pull it to the device and add it as a artifact to
WA’s context. Once we have retrieved the data, we can now do any further processing and add any relevant Metrics to
the context. For this we will use the the add_metric method to add the results to the final output for that workload.
The method can be passed 4 params, which are the metric key, value, unit and lower_is_better.

def update_output(self, context):
# pull the trace file from the target
self.result = os.path.join(self.target.working_directory, 'trace.txt')
self.outfile = os.path.join(context.output_directory, 'trace.txt')
self.target.pull(self.result, self.outfile)
context.add_artifact('error_trace', self.outfile, kind='export')

# parse the file if needs to be parsed, or add result directly to
# context.

metric = # ..
context.add_metric('number_of_errors', metric, lower_is_better=True

At the end of each job we might want to delete any files generated by the instruments and the code to clear these file
goes in teardown method.

def teardown(self, context):
self.target.remove(os.path.join(self.target.working_directory, 'trace.txt'))

At the very end of the run we would want to uninstall the binary we deployed earlier.

def finalize(self, context):
self.target.uninstall(self.binary_name)

So the full example would look something like:

from wa import Instrument

class TraceErrorsInstrument(Instrument):

name = 'trace-errors'

def __init__(self, target, **kwargs):
super(TraceErrorsInstrument, self).__init__(target, **kwargs)

(continues on next page)

3.1. Developer Information 101



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

self.binary_name = 'trace'
self.binary_file = os.path.join(os.path.dirname(__file__), self.binary_name)
self.trace_on_target = None

def initialize(self, context):
self.trace_on_target = self.target.install(self.binary_file)

@slow
def start(self, context):

self.target.execute('{} start'.format(self.trace_on_target))

@slow
def stop(self, context):

self.target.execute('{} stop'.format(self.trace_on_target))

def update_output(self, context):
self.result = os.path.join(self.target.working_directory, 'trace.txt')
self.outfile = os.path.join(context.output_directory, 'trace.txt')
self.target.pull(self.result, self.outfile)
context.add_artifact('error_trace', self.outfile, kind='export')

metric = # ..
context.add_metric('number_of_errors', metric, lower_is_better=True

def teardown(self, context):
self.target.remove(os.path.join(self.target.working_directory, 'trace.txt'))

def finalize(self, context):
self.target.uninstall(self.binary_name)

Adding an Output Processor

This is an example of how we would create an output processor which will format the run metrics as a column-
aligned table. The first thing to do is to create a new file under $WA_USER_DIRECTORY/plugins/ and subclass
OutputProcessor. Make sure to overwrite the variable name with what we want our processor to be called and
provide a short description.

Next we need to implement any relevant methods, (please see adding an output processor for all the available methods).
In this case we only want to implement the export_run_output method as we are not generating any new artifacts
and we only care about the overall output rather than the individual job outputs. The implementation is very simple, it
just loops through all the available metrics for all the available jobs and adds them to a list which is written to file and
then added as an artifact to the context.

import os
from wa import OutputProcessor
from wa.utils.misc import write_table

class Table(OutputProcessor):

name = 'table'
(continues on next page)

102 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

description = 'Generates a text file containing a column-aligned table of run␣
→˓results.'

def export_run_output(self, output, target_info):
rows = []

for job in output.jobs:
for metric in job.metrics:

rows.append([metric.name, str(metric.value), metric.units or '',
metric.lower_is_better and '-' or '+'])

outfile = output.get_path('table.txt')
with open(outfile, 'w') as wfh:

write_table(rows, wfh)
output.add_artifact('results_table', 'table.txt', 'export')

Adding a Custom Target

This is an example of how we would create a customised target, this is typically used where we would need to augment
the existing functionality for example on development boards where we need to perform additional actions to implement
some functionality. In this example we are going to assume that this particular device is running Android and requires
a special “wakeup” command to be sent before it can execute any other command.

To add a new target to WA we will first create a new file in $WA_USER_DIRECTORY/plugins/example_target.py.
In order to facilitate with creating a new target WA provides a helper function to create a description for the specified
target class, and specified components. For components that are not explicitly specified it will attempt to guess sensible
defaults based on the target class’ bases.

# Import our helper function
from wa import add_description_for_target

# Import the Target that our custom implementation will be based on
from devlib import AndroidTarget

class ExampleTarget(AndroidTarget):
# Provide the name that will be used to identify your custom target
name = 'example_target'

# Override our custom method(s)
def execute(self, *args, **kwargs):

super(ExampleTarget, self).execute('wakeup', check_exit_code=False)
return super(ExampleTarget, self).execute(*args, **kwargs)

description = '''An Android target which requires an explicit "wakeup" command
to be sent before accepting any other command'''

# Call the helper function with our newly created function and its description.
add_description_for_target(ExampleTarget, description)

3.1. Developer Information 103



wa Documentation, Release 3.4.0.dev1

Processing WA Output

This section will illustrate the use of WA’s output processing API by creating a simple ASCII report generator. To
make things concrete, this how-to will be processing the output from running the following agenda:

sections:
- runtime_params:

frequency: min
classifiers:

frequency: min
- runtime_params:

frequency: max
classifiers:

frequency: max
workloads:

- sysbench
- deepbench

This runs two workloads under two different configurations each – once with CPU frequency fixed to max, and once
with CPU frequency fixed to min. Classifiers are used to indicate the configuration in the output.

First, create the RunOutput object, which is the main interface for interacting with WA outputs. Or alternatively a
RunDatabaseOutput if storing your results in a postgres database.

import sys

from wa import RunOutput

# Path to the output directory specified in the first argument
ro = RunOutput(sys.argv[1])

Run Info

Next, we’re going to print out an overall summary of the run.

from __future__ import print_function # for Python 2 compat.

from wa.utils.misc import format_duration

print('-'*20)
print('Run ID:', ro.info.uuid)
print('Run status:', ro.status)
print('Run started at:', ro.info.start_time.isoformat())
print('Run completed at:', ro.info.end_time.isoformat())
print('Run duration:', format_duration(ro.info.duration))
print('Ran', len(ro.jobs), 'jobs')
print('-'*20)
print()

RunOutput.info is an instance of RunInfo which encapsulates Overall-run metadata, such as the duration.

104 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

Target Info

Next, some information about the device the results where collected on.

print(' Target Information ')
print(' ------------------- ')
print('hostname:', ro.target_info.hostname)
if ro.target_info.os == 'android':

print('Android ID:', ro.target_info.android_id)
else:

print('host ID:', ro.target_info.hostid)
print('CPUs:', ', '.join(cpu.name for cpu in ro.target_info.cpus))
print()

print('OS:', ro.target_info.os)
print('ABI:', ro.target_info.abi)
print('rooted:', ro.target_info.is_rooted)
print('kernel version:', ro.target_info.kernel_version)
print('os version:')
for k, v in ro.target_info.os_version.items():

print('\t', k+':', v)
print()
print('-'*27)
print()

RunOutput.target_info is an instance of TargetInfo that contains information collected from the target during
the run.

Jobs Summary

Next, show a summary of executed jobs.

from wa.utils.misc import write_table

print(' Jobs ')
print(' ---- ')
print()
rows = []
for job in ro.jobs:

rows.append([job.id, job.label, job.iteration, job.status])
write_table(rows, sys.stdout, align='<<><',

headers=['ID', 'LABEL', 'ITER.', 'STATUS'])
print()
print('-'*27)
print()

RunOutput.jobs is a list of JobOutput objects. These contain information about that particular job, including its
execution status, and Metrics and Artifacts generated by the job.

3.1. Developer Information 105



wa Documentation, Release 3.4.0.dev1

Compare Metrics

Finally, collect metrics, sort them by the “frequency” classifier. Classifiers that are present in the metric but not its job
have been added by the workload. For the purposes of this report, they will be used to augment the metric’s name.

from collections import defaultdict

print()
print(' Metrics Comparison ')
print(' ------------------ ')
print()
scores = defaultdict(lambda: defaultdict(lambda: defaultdict()))
for job in ro.jobs:

for metric in job.metrics:
workload = job.label
name = metric.name
freq = job.classifiers['frequency']
for cname, cval in sorted(metric.classifiers.items()):

if cname not in job.classifiers:
# was not propagated from the job, therefore was
# added by the workload
name += '/{}={}'.format(cname, cval)

scores[workload][name][freq] = metric

Once the metrics have been sorted, generate the report showing the delta between the two configurations (indicated
by the “frequency” classifier) and highlight any unexpected deltas (based on the lower_is_better attribute of the
metric). (In practice, you will want to run multiple iterations of each configuration, calculate averages and standard
deviations, and only highlight statically significant deltas.)

rows = []
for workload in sorted(scores.keys()):

wldata = scores[workload]

for name in sorted(wldata.keys()):
min_score = wldata[name]['min'].value
max_score = wldata[name]['max'].value
delta = max_score - min_score
units = wldata[name]['min'].units or ''
lib = wldata[name]['min'].lower_is_better

warn = ''
if (lib and delta > 0) or (not lib and delta < 0):

warn = '!!!'

rows.append([workload, name,
'{:.3f}'.format(min_score), '{:.3f}'.format(max_score),
'{:.3f}'.format(delta), units, warn])

# separate workloads with a blank row
rows.append(['', '', '', '', '', '', ''])

(continues on next page)

106 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

write_table(rows, sys.stdout, align='<<>>><<',
headers=['WORKLOAD', 'METRIC', 'MIN.', 'MAX', 'DELTA', 'UNITS', ''])

print()
print('-'*27)

This concludes this how-to. For more information, please see output processing API documentation.

Complete Example

Below is the complete example code, and a report it generated for a sample run.

from __future__ import print_function # for Python 2 compat.
import sys
from collections import defaultdict

from wa import RunOutput
from wa.utils.misc import format_duration, write_table

# Path to the output directory specified in the first argument
ro = RunOutput(sys.argv[1])

print('-'*27)
print('Run ID:', ro.info.uuid)
print('Run status:', ro.status)
print('Run started at:', ro.info.start_time.isoformat())
print('Run completed at:', ro.info.end_time.isoformat())
print('Run duration:', format_duration(ro.info.duration))
print('Ran', len(ro.jobs), 'jobs')
print('-'*27)
print()

print(' Target Information ')
print(' ------------------- ')
print('hostname:', ro.target_info.hostname)
if ro.target_info.os == 'android':

print('Android ID:', ro.target_info.android_id)
else:

print('host ID:', ro.target_info.hostid)
print('CPUs:', ', '.join(cpu.name for cpu in ro.target_info.cpus))
print()

print('OS:', ro.target_info.os)
print('ABI:', ro.target_info.abi)
print('rooted:', ro.target_info.is_rooted)
print('kernel version:', ro.target_info.kernel_version)
print('OS version:')
for k, v in ro.target_info.os_version.items():

print('\t', k+':', v)
print()

(continues on next page)

3.1. Developer Information 107



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

print('-'*27)
print()

print(' Jobs ')
print(' ---- ')
print()
rows = []
for job in ro.jobs:

rows.append([job.id, job.label, job.iteration, job.status])
write_table(rows, sys.stdout, align='<<><',

headers=['ID', 'LABEL', 'ITER.', 'STATUS'])
print()
print('-'*27)

print()
print(' Metrics Comparison ')
print(' ------------------ ')
print()
scores = defaultdict(lambda: defaultdict(lambda: defaultdict()))
for job in ro.jobs:

for metric in job.metrics:
workload = job.label
name = metric.name
freq = job.classifiers['frequency']
for cname, cval in sorted(metric.classifiers.items()):

if cname not in job.classifiers:
# was not propagated from the job, therefore was
# added by the workload
name += '/{}={}'.format(cname, cval)

scores[workload][name][freq] = metric

rows = []
for workload in sorted(scores.keys()):

wldata = scores[workload]

for name in sorted(wldata.keys()):
min_score = wldata[name]['min'].value
max_score = wldata[name]['max'].value
delta = max_score - min_score
units = wldata[name]['min'].units or ''
lib = wldata[name]['min'].lower_is_better

warn = ''
if (lib and delta > 0) or (not lib and delta < 0):

warn = '!!!'

rows.append([workload, name,
'{:.3f}'.format(min_score), '{:.3f}'.format(max_score),
'{:.3f}'.format(delta), units, warn])

# separate workloads with a blank row

(continues on next page)

108 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

rows.append(['', '', '', '', '', '', ''])

write_table(rows, sys.stdout, align='<<>>><<',
headers=['WORKLOAD', 'METRIC', 'MIN.', 'MAX', 'DELTA', 'UNITS', ''])

print()
print('-'*27)

Sample output:

---------------------------
Run ID: 78aef931-cd4c-429b-ac9f-61f6893312e6
Run status: OK
Run started at: 2018-06-27T12:55:23.746941
Run completed at: 2018-06-27T13:04:51.067309
Run duration: 9 minutes 27 seconds
Ran 4 jobs
---------------------------

Target Information
-------------------
hostname: localhost
Android ID: b9d1d8b48cfba007
CPUs: A53, A53, A53, A53, A73, A73, A73, A73

OS: android
ABI: arm64
rooted: True
kernel version: 4.9.75-04208-g2c913991a83d-dirty 114 SMP PREEMPT Wed May 9 10:33:36 BST␣
→˓2018
OS version:

all_codenames: O
base_os:
codename: O
incremental: eng.valsch.20170517.180115
preview_sdk: 0
release: O
sdk: 25
security_patch: 2017-04-05

---------------------------

Jobs
----

ID LABEL ITER. STATUS
-- ----- ----- ------
s1-wk1 sysbench 1 OK
s1-wk2 deepbench 1 OK
s2-wk1 sysbench 1 OK
s2-wk2 deepbench 1 OK

(continues on next page)

3.1. Developer Information 109



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

---------------------------

Metrics Comparison
------------------

WORKLOAD METRIC MIN. MAX DELTA UNITS
-------- ------ ---- --- ----- -----
deepbench GOPS/a_t=n/b_t=n/k=1024/m=128/n=1 0.699 0.696 -0.003 ␣
→˓ !!!
deepbench GOPS/a_t=n/b_t=n/k=1024/m=3072/n=1 0.471 0.715 0.244
deepbench GOPS/a_t=n/b_t=n/k=1024/m=3072/n=1500 23.514 36.432 12.918
deepbench GOPS/a_t=n/b_t=n/k=1216/m=64/n=1 0.333 0.333 -0.000 ␣
→˓ !!!
deepbench GOPS/a_t=n/b_t=n/k=128/m=3072/n=1 0.405 1.073 0.668
deepbench GOPS/a_t=n/b_t=n/k=128/m=3072/n=1500 19.914 34.966 15.052
deepbench GOPS/a_t=n/b_t=n/k=128/m=4224/n=1 0.232 0.486 0.255
deepbench GOPS/a_t=n/b_t=n/k=1280/m=128/n=1500 20.721 31.654 10.933
deepbench GOPS/a_t=n/b_t=n/k=1408/m=128/n=1 0.701 0.702 0.001
deepbench GOPS/a_t=n/b_t=n/k=1408/m=176/n=1500 19.902 29.116 9.214
deepbench GOPS/a_t=n/b_t=n/k=176/m=4224/n=1500 26.030 39.550 13.519
deepbench GOPS/a_t=n/b_t=n/k=2048/m=35/n=700 10.884 23.615 12.731
deepbench GOPS/a_t=n/b_t=n/k=2048/m=5124/n=700 26.740 37.334 10.593
deepbench execution_time 318.758 220.629 -98.129␣
→˓seconds !!!
deepbench time (msec)/a_t=n/b_t=n/k=1024/m=128/n=1 0.375 0.377 0.002 ␣
→˓ !!!
deepbench time (msec)/a_t=n/b_t=n/k=1024/m=3072/n=1 13.358 8.793 -4.565
deepbench time (msec)/a_t=n/b_t=n/k=1024/m=3072/n=1500 401.338 259.036 -142.302
deepbench time (msec)/a_t=n/b_t=n/k=1216/m=64/n=1 0.467 0.467 0.000 ␣
→˓ !!!
deepbench time (msec)/a_t=n/b_t=n/k=128/m=3072/n=1 1.943 0.733 -1.210
deepbench time (msec)/a_t=n/b_t=n/k=128/m=3072/n=1500 59.237 33.737 -25.500
deepbench time (msec)/a_t=n/b_t=n/k=128/m=4224/n=1 4.666 2.224 -2.442
deepbench time (msec)/a_t=n/b_t=n/k=1280/m=128/n=1500 23.721 15.528 -8.193
deepbench time (msec)/a_t=n/b_t=n/k=1408/m=128/n=1 0.514 0.513 -0.001
deepbench time (msec)/a_t=n/b_t=n/k=1408/m=176/n=1500 37.354 25.533 -11.821
deepbench time (msec)/a_t=n/b_t=n/k=176/m=4224/n=1500 85.679 56.391 -29.288
deepbench time (msec)/a_t=n/b_t=n/k=2048/m=35/n=700 9.220 4.249 -4.970
deepbench time (msec)/a_t=n/b_t=n/k=2048/m=5124/n=700 549.413 393.517 -155.896

sysbench approx. 95 percentile 3.800 1.450 -2.350 ms
sysbench execution_time 1.790 1.437 -0.353␣
→˓seconds !!!
sysbench response time avg 1.400 1.120 -0.280 ms
sysbench response time max 40.740 42.760 2.020 ms ␣
→˓ !!!
sysbench response time min 0.710 0.710 0.000 ms
sysbench thread fairness events avg 1250.000 1250.000 0.000
sysbench thread fairness events stddev 772.650 213.040 -559.610
sysbench thread fairness execution time avg 1.753 1.401 -0.352 ␣
→˓ !!!
sysbench thread fairness execution time stddev 0.000 0.000 0.000

(continues on next page)

110 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

sysbench total number of events 10000.000 10000.000 0.000
sysbench total time 1.761 1.409 -0.352 s

---------------------------

3.1.3 Developer Reference

• Framework Overview

– Execution Model

– Control Flow

– Signal Dispatch

• Plugins

– Plugin Basics

∗ The Context

∗ Paths

∗ Parameters

∗ Logging

∗ Documenting

∗ Error Notification

∗ Metrics

∗ Artifacts

∗ Metadata

∗ Classifiers

∗ Metadata vs Classifiers

– Execution Decorators

∗ @once_per_instance

∗ @once_per_class

∗ @once

– Utils

– Workloads

∗ Workload Types

• Revent Recordings

– Convention for Naming revent Files for Revent Workloads

– File format of revent recordings

3.1. Developer Information 111



wa Documentation, Release 3.4.0.dev1

∗ Format Overview

∗ Recording Header

∗ Device Description

∗ General Recording

∗ Gamepad Recording

∗ Event Stream

∗ Event Structure

∗ Parser

• Serialization

– Overview of Serialization

– Implementing Serializable Objects

– Serialization API

– WA POD Types

– Serialization Formats

• Contributing

– Code

– Documentation

∗ Headings

∗ Configuration Listings

∗ API Style

Framework Overview

Execution Model

At the high level, the execution model looks as follows:

After some initial setup, the framework initializes the device, loads and initialized instruments and output processors
and begins executing jobs defined by the workload specs in the agenda. Each job executes in basic stages:

initialize Perform any once-per-run initialization of a workload instance, i.e. binary resource resolution.

setup Initial setup for the workload is performed. E.g. required assets are deployed to the devices, required services
or applications are launched, etc. Run time configuration of the device for the workload is also performed at this
time.

setup_rerun (apk based workloads only) For some apk based workloads the application is required to be started
twice. If the requires_rerun attribute of the workload is set to True then after the first setup method is called
the application will be killed and then restarted. This method can then be used to perform any additional setup
required.

run This is when the workload actually runs. This is defined as the part of the workload that is to be measured. Exactly
what happens at this stage depends entirely on the workload.

112 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

extract results Extract any results that have been generated during the execution of the workload from the device and
back to that target. Any files pulled from the devices should be added as artifacts to the run context.

update output Perform any required parsing and processing of any collected results and add any generated metrics to
the run context.

teardown Final clean up is performed, e.g. applications may closed, files generated during execution deleted, etc.

Signals are dispatched (see below) at each stage of workload execution, which installed instruments can hook into
in order to collect measurements, alter workload execution, etc. Instruments implementation usually mirrors that of
workloads, defining initialization, setup, teardown and output processing stages for a particular instrument. Instead of
a run method instruments usually implement start and stop methods instead which triggered just before and just
after a workload run. However, the signal dispatch mechanism gives a high degree of flexibility to instruments allowing
them to hook into almost any stage of a WA run (apart from the very early initialization).

Metrics and artifacts generated by workloads and instruments are accumulated by the framework and are then passed
to active output processors. This happens after each individual workload execution and at the end of the run. A output
processor may chose to act at either or both of these points.

Control Flow

This section goes into more detail explaining the relationship between the major components of the framework and
how control passes between them during a run. It will only go through the major transitions and interactions and will
not attempt to describe every single thing that happens.

Note: This is the control flow for the wa run command which is the main functionality of WA. Other commands are
much simpler and most of what is described below does not apply to them.

1. wa.framework.entrypoint parses the command from the arguments, creates a wa.framework.
configuration.execution.ConfigManager and executes the run command (wa.commands.run.
RunCommand) passing it the ConfigManger.

2. Run command initializes the output directory and creates a wa.framework.configuration.parsers.
AgendaParser and will parser an agenda and populate the ConfigManger based on the command line arguments.
Finally it instantiates a wa.framework.execution.Executor and passes it the completed ConfigManager.

3. The Executor uses the ConfigManager to create a wa.framework.configuration.core.
RunConfiguration and fully defines the configuration for the run (which will be serialised into __meta
subdirectory under the output directory).

4. The Executor proceeds to instantiate a TargetManager, used to handle the device connection and configuration,
and a wa.framework.execution.ExecutionContext which is used to track the current state of the run ex-
ecution and also serves as a means of communication between the core framework and plugins. After this any
required instruments and output processors are initialized and installed.

5. Finally, the Executor instantiates a wa.framework.execution.Runner, initializes its job queue with workload
specs from the RunConfiguration, and kicks it off.

6. The Runner performs the run time configuration of the device and goes through the workload specs (in the order
defined by execution_order setting), running each spec according to the execution model described in the
previous section and sending signals (see below) at appropriate points during execution.

7. At the end of the run, the control is briefly passed back to the Executor, which outputs a summary for the run.

3.1. Developer Information 113



wa Documentation, Release 3.4.0.dev1

Signal Dispatch

WA uses the louie (formerly, pydispatcher) library for signal dispatch. Callbacks can be registered for signals emitted
during the run. WA uses a version of louie that has been modified to introduce priority to registered callbacks (so that
callbacks that are know to be slow can be registered with a lower priority and therefore do not interfere with other
callbacks).

This mechanism is abstracted for instruments. Methods of an wa.framework.Instrument subclass automatically get
hooked to appropriate signals based on their names when the instrument is “installed” for the run. Priority can then be
specified by adding extremely_fast, very_fast, fast , slow, very_slow or extremely_slow decorators to the
method definitions.

The full list of method names and the signals they map to may be seen at the instrument method map.

Signal dispatching mechanism may also be used directly, for example to dynamically register callbacks at runtime or
allow plugins other than Instruments to access stages of the run they are normally not aware of.

Signals can be either paired or non paired signals. Non paired signals are one off signals that are sent to indicate special
events or transitions in execution stages have occurred for example TARGET_CONNECTED. Paired signals are used to
signify the start and end of a particular event. If the start signal has been sent the end signal is guaranteed to also be
sent, whether the operation was a successes or not, however in the case of correct operation an additional success signal
will also be sent. For example in the event of a successful reboot of the the device, the following signals will be sent
BEFORE_REBOOT, SUCCESSFUL_REBOOT and AFTER_REBOOT.

An overview of what signals are sent at which point during execution can be seen below. Most of the paired signals
have been removed from the diagram for clarity and shown as being dispatched from a particular stage of execution,
however in reality these signals will be sent just before and just after these stages are executed. As mentioned above for
each of these signals there will be at least 2 and up to 3 signals sent. If the “BEFORE_X” signal (sent just before the
stage is ran) is sent then the “AFTER_X” (sent just after the stage is ran) signal is guaranteed to also be sent, and under
normal operation a “SUCCESSFUL_X” signal is also sent just after stage has been completed. The diagram also lists
the conditional signals that can be sent at any time during execution if something unexpected happens, for example an
error occurs or the user aborts the run.

For more information see Instrumentation Signal-Method Mapping.

Plugins

Workload Automation offers several plugin points (or plugin types). The most interesting of these are

workloads These are the tasks that get executed and measured on the device. These can be benchmarks,
high-level use cases, or pretty much anything else.

targets These are interfaces to the physical devices (development boards or end-user devices, such as
smartphones) that use cases run on. Typically each model of a physical device would require its own
interface class (though some functionality may be reused by subclassing from an existing base).

instruments Instruments allow collecting additional data from workload execution (e.g. system traces).
Instruments are not specific to a particular workload. Instruments can hook into any stage of workload
execution.

output processors These are used to format the results of workload execution once they have been col-
lected. Depending on the callback used, these will run either after each iteration and/or at the end of
the run, after all of the results have been collected.

114 Chapter 3. Developer Information

https://github.com/11craft/louie/


wa Documentation, Release 3.4.0.dev1

You can create a plugin by subclassing the appropriate base class, defining appropriate methods and attributes, and
putting the .py file containing the class into the “plugins” subdirectory under ~/.workload_automation (or equiva-
lent) where it will be automatically picked up by WA.

Plugin Basics

This section contains reference information common to plugins of all types.

The Context

Note: For clarification on the meaning of “workload specification” “spec”, “job” and “workload” and the distinction
between them, please see the glossary.

The majority of methods in plugins accept a context argument. This is an instance of wa.framework.execution.
ExecutionContext. It contains information about the current state of execution of WA and keeps track of things like
which workload is currently running.

Notable methods of the context are:

context.get_resource(resource, strict=True) This method should be used to retrieve a resource using the
resource getters rather than using the ResourceResolver directly as this method additionally record
any found resources hash in the output metadata.

context.add_artifact(name, host_file_path, kind, description=None, classifier=None) Plugins can
add artifacts of various kinds to the run output directory for WA and associate them with a
description and/or classifier.

context.add_metric(name, value, units=None, lower_is_better=False, classifiers=None) This method
should be used to add metrics that have been generated from a workload, this will allow WA to process
the results accordingly depending on which output processors are enabled.

Notable attributes of the context are:

context.workload wa.framework.workload object that is currently being executed.

context.tm This is the target manager that can be used to access various information about the target
including initialization parameters.

context.current_job This is an instance of wa.framework.job.Job and contains all the information
relevant to the workload job currently being executed.

context.current_job.spec The current workload specification being executed. This is an instance of wa.
framework.configuration.core.JobSpec and defines the workload and the parameters under
which it is being executed.

context.current_job.current_iteration The current iteration of the spec that is being executed. Note that
this is the iteration for that spec, i.e. the number of times that spec has been run, not the total number
of all iterations have been executed so far.

context.job_output This is the output object for the current iteration which is an instance of wa.
framework.output.JobOutput. It contains the status of the iteration as well as the metrics and
artifacts generated by the job.

In addition to these, context also defines a few useful paths (see below).

3.1. Developer Information 115



wa Documentation, Release 3.4.0.dev1

Paths

You should avoid using hard-coded absolute paths in your plugins whenever possible, as they make your code too
dependent on a particular environment and may mean having to make adjustments when moving to new (host and/or
device) platforms. To help avoid hard-coded absolute paths, WA defines a number of standard locations. You should
strive to define your paths relative to one of these.

On the host

Host paths are available through the context object, which is passed to most plugin methods.

context.run_output_directory This is the top-level output directory for all WA results (by default, this will be
“wa_output” in the directory in which WA was invoked.

context.output_directory This is the output directory for the current iteration. This will an iteration-specific subdi-
rectory under the main results location. If there is no current iteration (e.g. when processing overall run results)
this will point to the same location as run_output_directory.

Additionally, the global wa.settings object exposes on other location:

settings.dependency_directory this is the root directory for all plugin dependencies (e.g. media files, assets etc) that
are not included within the plugin itself.

As per Python best practice, it is recommended that methods and values in os.path standard library module are used
for host path manipulation.

On the target

Workloads and instruments have a target attribute, which is an interface to the target used by WA. It defines the
following location:

target.working_directory This is the directory for all WA-related files on the target. All files deployed to the target
should be pushed to somewhere under this location (the only exception being executables installed with target.
install method).

Since there could be a mismatch between path notation used by the host and the target, the os.path modules should
not be used for on-target path manipulation. Instead target has an equipment module exposed through target.path
attribute. This has all the same attributes and behaves the same way as os.path, but is guaranteed to produce valid
paths for the target, irrespective of the host’s path notation. For example:

result_file = self.target.path.join(self.target.working_directory, "result.txt")
self.command = "{} -a -b -c {}".format(target_binary, result_file)

Note: Output processors, unlike workloads and instruments, do not have their own target attribute as they are designed
to be able to be run offline.

116 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

Parameters

All plugins can be parametrized. Parameters are specified using parameters class attribute. This should be a list of
wa.framework.plugin.Parameter instances. The following attributes can be specified on parameter creation:

name This is the only mandatory argument. The name will be used to create a corresponding attribute in
the plugin instance, so it must be a valid Python identifier.

kind This is the type of the value of the parameter. This must be an callable. Normally this should be
a standard Python type, e.g. int or float, or one the types defined in wa.utils.types. If not
explicitly specified, this will default to str.

Note: Irrespective of the kind specified, None is always a valid value for a parameter. If you don’t
want to allow None, then set mandatory (see below) to True.

allowed_values A list of the only allowed values for this parameter.

Note: For composite types, such as list_of_strings or list_of_ints in wa.utils.types,
each element of the value will be checked against allowed_values rather than the composite value
itself.

default The default value to be used for this parameter if one has not been specified by the user. Defaults
to None.

mandatory A bool indicating whether this parameter is mandatory. Setting this to True will make None
an illegal value for the parameter. Defaults to False.

Note: Specifying a default will mean that this parameter will, effectively, be ignored (unless the
user sets the param to None).

Note: Mandatory parameters are bad. If at all possible, you should strive to provide a sensible
default or to make do without the parameter. Only when the param is absolutely necessary, and
there really is no sensible default that could be given (e.g. something like login credentials), should
you consider making it mandatory.

constraint This is an additional constraint to be enforced on the parameter beyond its type or fixed allowed
values set. This should be a predicate (a function that takes a single argument – the user-supplied
value – and returns a bool indicating whether the constraint has been satisfied).

override A parameter name must be unique not only within an plugin but also with that plugin’s class
hierarchy. If you try to declare a parameter with the same name as already exists, you will get an
error. If you do want to override a parameter from further up in the inheritance hierarchy, you can
indicate that by setting override attribute to True.

When overriding, you do not need to specify every other attribute of the parameter, just the ones you
what to override. Values for the rest will be taken from the parameter in the base class.

3.1. Developer Information 117



wa Documentation, Release 3.4.0.dev1

Validation and cross-parameter constraints

A plugin will get validated at some point after construction. When exactly this occurs depends on the plugin type, but
it will be validated before it is used.

You can implement validate method in your plugin (that takes no arguments beyond the self) to perform any addi-
tional internal validation in your plugin. By “internal”, I mean that you cannot make assumptions about the surrounding
environment (e.g. that the device has been initialized).

The contract for validate method is that it should raise an exception (either wa.framework.exception.
ConfigError or plugin-specific exception type – see further on this page) if some validation condition has not, and
cannot, been met. If the method returns without raising an exception, then the plugin is in a valid internal state.

Note that validate can be used not only to verify, but also to impose a valid internal state. In particular, this where
cross-parameter constraints can be resolved. If the default or allowed_values of one parameter depend on another
parameter, there is no way to express that declaratively when specifying the parameters. In that case the dependent
attribute should be left unspecified on creation and should instead be set inside validate.

Logging

Every plugin class has it’s own logger that you can access through self.logger inside the plugin’s methods. Generally,
a Target will log everything it is doing, so you shouldn’t need to add much additional logging for device actions.
However you might what to log additional information, e.g. what settings your plugin is using, what it is doing on the
host, etc. (Operations on the host will not normally be logged, so your plugin should definitely log what it is doing
on the host). One situation in particular where you should add logging is before doing something that might take a
significant amount of time, such as downloading a file.

Documenting

All plugins and their parameter should be documented. For plugins themselves, this is done through description class
attribute. The convention for an plugin description is that the first paragraph should be a short summary description
of what the plugin does and why one would want to use it (among other things, this will get extracted and used by
wa list command). Subsequent paragraphs (separated by blank lines) can then provide a more detailed description,
including any limitations and setup instructions.

For parameters, the description is passed as an argument on creation. Please note that if default, allowed_values, or
constraint, are set in the parameter, they do not need to be explicitly mentioned in the description (wa documentation
utilities will automatically pull those). If the default is set in validate or additional cross-parameter constraints
exist, this should be documented in the parameter description.

Both plugins and their parameters should be documented using reStructureText markup (standard markup for Python
documentation). See:

http://docutils.sourceforge.net/rst.html

Aside from that, it is up to you how you document your plugin. You should try to provide enough information so that
someone unfamiliar with your plugin is able to use it, e.g. you should document all settings and parameters your plugin
expects (including what the valid values are).

118 Chapter 3. Developer Information

http://docutils.sourceforge.net/rst.html


wa Documentation, Release 3.4.0.dev1

Error Notification

When you detect an error condition, you should raise an appropriate exception to notify the
user. The exception would typically be ConfigError or (depending the type of the plugin)
WorkloadError/DeviceError/InstrumentError/OutputProcessorError. All these errors are defined in
wa.framework.exception module.

A ConfigError should be raised where there is a problem in configuration specified by the user (either through the
agenda or config files). These errors are meant to be resolvable by simple adjustments to the configuration (and the
error message should suggest what adjustments need to be made. For all other errors, such as missing dependencies,
mis-configured environment, problems performing operations, etc., the plugin type-specific exceptions should be used.

If the plugin itself is capable of recovering from the error and carrying on, it may make more sense to log an ERROR
or WARNING level message using the plugin’s logger and to continue operation.

Metrics

This is what WA uses to store a single metric collected from executing a workload.

name the name of the metric. Uniquely identifies the metric within the results.

value The numerical value of the metric for this execution of a workload. This can be either
an int or a float.

units Units for the collected value. Can be None if the value has no units (e.g. it’s a count or
a standardised score).

lower_is_better Boolean flag indicating where lower values are better than higher ones. De-
faults to False.

classifiers A set of key-value pairs to further classify this metric beyond current iteration (e.g.
this can be used to identify sub-tests).

Metrics can be added to WA output via the context:

context.add_metric("score", 9001)
context.add_metric("time", 2.35, "seconds", lower_is_better=True)

You only need to specify the name and the value for the metric. Units and classifiers are optional, and, if not specified
otherwise, it will be assumed that higher values are better (lower_is_better=False).

The metric will be added to the result for the current job, if there is one; otherwise, it will be added to the overall run
result.

Artifacts

This is an artifact generated during execution/post-processing of a workload. Unlike metrics, this represents an actual
artifact, such as a file, generated. This may be “output”, such as trace, or it could be “meta data” such as logs. These
are distinguished using the kind attribute, which also helps WA decide how it should be handled. Currently supported
kinds are:

log A log file. Not part of the “output” as such but contains information about the run/workload
execution that be useful for diagnostics/meta analysis.

meta A file containing metadata. This is not part of the “output”, but contains information
that may be necessary to reproduce the results (contrast with log artifacts which are not
necessary).

3.1. Developer Information 119



wa Documentation, Release 3.4.0.dev1

data This file contains new data, not available otherwise and should be considered part of the
“output” generated by WA. Most traces would fall into this category.

export Exported version of results or some other artifact. This signifies that this artifact does
not contain any new data that is not available elsewhere and that it may be safely discarded
without losing information.

raw Signifies that this is a raw dump/log that is normally processed to extract useful informa-
tion and is then discarded. In a sense, it is the opposite of export, but in general may also
be discarded.

Note: whether a file is marked as log/data or raw depends on how important it is to
preserve this file, e.g. when archiving, vs how much space it takes up. Unlike export
artifacts which are (almost) always ignored by other exporters as that would never result
in data loss, raw files may be processed by exporters if they decided that the risk of losing
potentially (though unlikely) useful data is greater than the time/space cost of handling the
artifact (e.g. a database uploader may choose to ignore raw artifacts, whereas a network
filer archiver may choose to archive them).

As with Metrics, artifacts are added via the context:

context.add_artifact("benchmark-output", "bech-out.txt", kind="raw",
description="stdout from running the benchmark")

Note: The file must exist on the host by the point at which the artifact is added, otherwise an error will be raised.

The artifact will be added to the result of the current job, if there is one; otherwise, it will be added to the overall run
result. In some situations, you may wish to add an artifact to the overall run while being inside a job context, this can
be done with add_run_artifact:

context.add_run_artifact("score-summary", "scores.txt", kind="export",
description="""
Summary of the scores so far. Updated after
every job.
""")

In this case, you also need to make sure that the file represented by the artifact is written to the output directory for the
run and not the current job.

Metadata

There may be additional data collected by your plugin that you want to record as part of the result, but that does not
fall under the definition of a “metric”. For example, you may want to record the version of the binary you’re executing.
You can do this by adding a metadata entry:

context.add_metadata("exe-version", 1.3)

Metadata will be added either to the current job result, or to the run result, depending on the current context. Metadata
values can be scalars or nested structures of dicts/sequences; the only constraint is that all constituent objects of the
value must be POD (Plain Old Data) types – see WA POD types.

There is special support for handling metadata entries that are dicts of values. The following call adds a metadata entry
"versions" who’s value is {"my_exe": 1.3}:

120 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

context.add_metadata("versions", "my_exe", 1.3)

If you attempt to add a metadata entry that already exists, an error will be raised, unless force=True is specified, in
which case, it will be overwritten.

Updating an existing entry whose value is a collection can be done with update_metadata:

context.update_metadata("ran_apps", "my_exe")
context.update_metadata("versions", "my_other_exe", "2.3.0")

The first call appends "my_exe" to the list at metadata entry "ran_apps". The second call updates the "versions"
dict in the metadata with an entry for "my_other_exe".

If an entry does not exit, update_metadatawill create it, so it’s recommended to always use that for non-scalar entries,
unless the intention is specifically to ensure that the entry does not exist at the time of the call.

Classifiers

Classifiers are key-value pairs of tags that can be attached to metrics, artifacts, jobs, or the entire run. Run and job
classifiers get propagated to metrics and artifacts. Classifier keys should be strings, and their values should be simple
scalars (i.e. strings, numbers, or bools).

Classifiers can be thought of as “tags” that are used to annotate metrics and artifacts, in order to make it easier to sort
through them later. WA itself does not do anything with them, however output processors will augment the output they
generate with them (for example, csv processor can add additional columns for classifier keys).

Classifiers are typically added by the user to attach some domain-specific information (e.g. experiment configuration
identifier) to the results, see using classifiers. However, plugins can also attach additional classifiers, by specifying
them in add_metric() and add_artifacts() calls.

Metadata vs Classifiers

Both metadata and classifiers are sets of essentially opaque key-value pairs that get included in WA output. While
they may seem somewhat similar and interchangeable, they serve different purposes and are handled differently by the
framework.

Classifiers are used to annotate generated metrics and artifacts in order to assist post-processing tools in sorting through
them. Metadata is used to record additional information that is not necessary for processing the results, but that may
be needed in order to reproduce them or to make sense of them in a grander context.

These are specific differences in how they are handled:

• Classifiers are often provided by the user via the agenda (though can also be added by plugins). Metadata in only
created by the framework and plugins.

• Classifier values must be simple scalars; metadata values can be nested collections, such as lists or dicts.

• Classifiers are used by output processors to augment the output the latter generated; metadata typically isn’t.

• Classifiers are essentially associated with the individual metrics and artifacts (though in the agenda they’re spec-
ified at workload, section, or global run levels); metadata is associated with a particular job or run, and not with
metrics or artifacts.

3.1. Developer Information 121



wa Documentation, Release 3.4.0.dev1

Execution Decorators

The following decorators are available for use in order to control how often a method should be able to be executed.

For example, if we want to ensure that no matter how many iterations of a particular workload are ran, we only execute
the initialize method for that instance once, we would use the decorator as follows:

from wa.utils.exec_control import once

@once
def initialize(self, context):

# Perform one time initialization e.g. installing a binary to target
# ..

@once_per_instance

The specified method will be invoked only once for every bound instance within the environment.

@once_per_class

The specified method will be invoked only once for all instances of a class within the environment.

@once

The specified method will be invoked only once within the environment.

Warning: If a method containing a super call is decorated, this will also cause stop propagation up the hierarchy,
unless this is the desired effect, additional functionality should be implemented in a separate decorated method
which can then be called allowing for normal propagation to be retained.

Utils

Workload Automation defines a number of utilities collected under wa.utils subpackage. These utilities were created
to help with the implementation of the framework itself, but may be also be useful when implementing plugins.

Workloads

All of the type inherit from the same base Workload and its API can be seen in the API section.

Workload methods (except for validate) take a single argument that is a wa.framework.execution.
ExecutionContext instance. This object keeps track of the current execution state (such as the current workload,
iteration number, etc), and contains, among other things, a wa.framework.output.JobOutput instance that should
be populated from the update_output method with the results of the execution. For more information please see the
context documentation.

122 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

# ...

def update_output(self, context):
# ...
context.add_metric('energy', 23.6, 'Joules', lower_is_better=True)

# ...

Workload Types

There are multiple workload types that you can inherit from depending on the purpose of your workload, the different
types along with an output of their intended use cases are outlined below.

Basic (wa.Workload)

This type of the workload is the simplest type of workload and is left the to developer to implement its full functionality.

Apk (wa.ApkWorkload)

This workload will simply deploy and launch an android app in its basic form with no UI interaction.

UiAuto (wa.UiautoWorkload)

This workload is for android targets which will use UiAutomator to interact with UI elements without a specific android
app, for example performing manipulation of android itself. This is the preferred type of automation as the results are
more portable and reproducible due to being able to wait for UI elements to appear rather than having to rely on human
recordings.

ApkUiAuto (wa.ApkUiautoWorkload)

The is the same as the UiAuto workload however it is also associated with an android app e.g. AdobeReader and will
automatically deploy and launch the android app before running the automation.

Revent (wa.ReventWorkload)

Revent workloads are designed primarily for games as these are unable to be automated with UiAutomator due to the
fact that they are rendered within a single UI element. They require a recording to be performed manually and currently
will need re-recording for each different device. For more information on revent workloads been please see Automating
GUI Interactions With Revent

3.1. Developer Information 123



wa Documentation, Release 3.4.0.dev1

APKRevent (wa.ApkReventWorkload)

The is the same as the Revent workload however it is also associated with an android app e.g. AngryBirds and will
automatically deploy and launch the android app before running the automation.

Revent Recordings

Convention for Naming revent Files for Revent Workloads

There is a convention for naming revent files which you should follow if you want to record your own revent files.
Each revent file must be called (case sensitive) <device name>.<stage>.revent, where <device name> is the
name of your device (as defined by the model name of your device which can be retrieved with adb shell getprop
ro.product.model or by the name attribute of your customized device class), and <stage> is one of the following
currently supported stages:

setup This stage is where the application is loaded (if present). It is a good place to record an
revent here to perform any tasks to get ready for the main part of the workload to start.

run This stage is where the main work of the workload should be performed. This will allow
for more accurate results if the revent file for this stage only records the main actions under
test.

extract_results This stage is used after the workload has been completed to retrieve any met-
rics from the workload e.g. a score.

teardown This stage is where any final actions should be performed to clean up the workload.

Only the run stage is mandatory, the remaining stages will be replayed if a recording is present otherwise no actions
will be performed for that particular stage.

All your custom revent files should reside at '$WA_USER_DIRECTORY/dependencies/WORKLOAD NAME/'. So typi-
cally to add a custom revent files for a device named “mydevice” and a workload name “myworkload”, you would need
to add the revent files to the directory ~/.workload_automation/dependencies/myworkload/revent_files
creating the directory structure if necessary.

mydevice.setup.revent
mydevice.run.revent
mydevice.extract_results.revent
mydevice.teardown.revent

Any revent file in the dependencies will always overwrite the revent file in the workload directory. So for example it is
possible to just provide one revent for setup in the dependencies and use the run.revent that is in the workload directory.

File format of revent recordings

You do not need to understand recording format in order to use revent. This section is intended for those looking to
extend revent in some way, or to utilize revent recordings for other purposes.

124 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

Format Overview

Recordings are stored in a binary format. A recording consists of three sections:

+-+-+-+-+-+-+-+-+-+-+-+
| Header |
+-+-+-+-+-+-+-+-+-+-+-+
| |
| Device Description |
| |
+-+-+-+-+-+-+-+-+-+-+-+
| |
| |
| Event Stream |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+

The header contains metadata describing the recording. The device description contains information about input de-
vices involved in this recording. Finally, the event stream contains the recorded input events.

All fields are either fixed size or prefixed with their length or the number of (fixed-sized) elements.

Note: All values below are little endian

Recording Header

An revent recoding header has the following structure

• It starts with the “magic” string REVENT to indicate that this is an revent recording.

• The magic is followed by a 16 bit version number. This indicates the format version of the recording that follows.
Current version is 2.

• The next 16 bits indicate the type of the recording. This dictates the structure of the Device Description section.
Valid values are:

0 This is a general input event recording. The device description contains a list of paths from which
the events where recorded.

1 This a gamepad recording. The device description contains the description of the gamepad used to
create the recording.

• The header is zero-padded to 128 bits.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 'R' | 'E' | 'V' | 'E' |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 'N' | 'T' | Version |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Mode | PADDING |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(continues on next page)

3.1. Developer Information 125



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

| PADDING |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Device Description

This section describes the input devices used in the recording. Its structure is determined by the value of Mode field in
the header.

General Recording

Note: This is the only format supported prior to version 2.

The recording has been made from all available input devices. This section contains the list of /dev/input paths for
the devices, prefixed with total number of the devices recorded.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Number of devices |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Device paths +-+-+-+-+-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Similarly, each device path is a length-prefixed string. Unlike C strings, the path is not NULL-terminated.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length of device path |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Device path |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Gamepad Recording

The recording has been made from a specific gamepad. All events in the stream will be for that device only. The
section describes the device properties that will be used to create a virtual input device using /dev/uinput. Please
see linux/input.h header in the Linux kernel source for more information about the fields in this section.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| bustype | vendor |

(continues on next page)

126 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| product | version |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| name_length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| name |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ev_bits |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| |
| key_bits (96 bytes) |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| |
| rel_bits (96 bytes) |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| |
| abs_bits (96 bytes) |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| num_absinfo |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| |
| |
| |
| absinfo entries |
| |
| |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Each absinfo entry consists of six 32 bit values. The number of entries is determined by the abs_bits field.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| minimum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(continues on next page)

3.1. Developer Information 127



wa Documentation, Release 3.4.0.dev1

(continued from previous page)

| maximum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| fuzz |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| flat |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| resolution |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Event Stream

The majority of an revent recording will be made up of the input events that were recorded. The event stream is prefixed
with the number of events in the stream, and start and end times for the recording.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Number of events |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Number of events (cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Start Time Seconds |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Start Time Seconds (cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Start Time Microseconds |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Start Time Microseconds (cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| End Time Seconds |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| End Time Seconds (cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| End Time Microseconds |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| End Time Microseconds (cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| |
| Events |
| |
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

128 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

Event Structure

Each event entry structured as follows:

• An unsigned short integer representing which device from the list of device paths this event is for (zero indexed).
E.g. Device ID = 3 would be the 4th device in the list of device paths.

• A unsigned long integer representing the number of seconds since “epoch” when the event was recorded.

• A unsigned long integer representing the microseconds part of the timestamp.

• An unsigned integer representing the event type

• An unsigned integer representing the event code

• An unsigned integer representing the event value

For more information about the event type, code and value please read: https://www.kernel.org/doc/Documentation/
input/event-codes.txt

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Device ID | Timestamp Seconds |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp Seconds (cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp Seconds (cont.) | stamp Micoseconds |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp Micoseconds (cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp Micoseconds (cont.) | Event Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Event Code | Event Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Event Value (cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Parser

WA has a parser for revent recordings. This can be used to work with revent recordings in scripts. Here is an example:

from wa.utils.revent import ReventRecording

with ReventRecording('/path/to/recording.revent') as recording:
print("Recording: {}".format(recording.filepath))
print("There are {} input events".format(recording.num_events))
print("Over a total of {} seconds".format(recording.duration))

3.1. Developer Information 129

https://www.kernel.org/doc/Documentation/input/event-codes.txt
https://www.kernel.org/doc/Documentation/input/event-codes.txt


wa Documentation, Release 3.4.0.dev1

Serialization

Overview of Serialization

WA employs a serialization mechanism in order to store some of its internal structures inside the output directory.
Serialization is performed in two stages:

1. A serializable object is converted into a POD (Plain Old Data) structure consisting of primitive Python types,
and a few additional types (see WA POD Types below).

2. The POD structure is serialized into a particular format by a generic parser for that format. Currently, yaml and
json are supported.

Deserialization works in reverse order – first the serialized text is parsed into a POD, which is then converted to the
appropriate object.

Implementing Serializable Objects

In order to be considered serializable, an object must either be a POD, or it must implement the to_pod() method and
from_pod static/class method, which will perform the conversion to/form pod.

As an example, below as a (somewhat trimmed) implementation of the Event class:

class Event(object):

@staticmethod
def from_pod(pod):

instance = Event(pod['message'])
instance.timestamp = pod['timestamp']
return instance

def __init__(self, message):
self.timestamp = datetime.utcnow()
self.message = message

def to_pod(self):
return dict(

timestamp=self.timestamp,
message=self.message,

)

Serialization API

read_pod(source, fmt=None)

write_pod(pod, dest, fmt=None)
These read and write PODs from a file. The format will be inferred, if possible, from the extension of the file,
or it may be specified explicitly with fmt. source and dest can be either strings, in which case they will be
interpreted as paths, or they can be file-like objects.

is_pod(obj)
Returns True if obj is a POD, and False otherwise.

dump(o, wfh, fmt='json', \*args, \*\*kwargs)

130 Chapter 3. Developer Information



wa Documentation, Release 3.4.0.dev1

load(s, fmt='json', \*args, \*\*kwargs)
These implment an altenative serialization interface, which matches the interface exposed by the parsers for the
supported formats.

WA POD Types

POD types are types that can be handled by a serializer directly, without a need for any additional information. These
consist of the build-in python types

list
tuple
dict
set
str
unicode
int
float
bool

. . . the standard library types

OrderedDict
datetime

. . . and the WA-defined types

regex_type
none_type
level
cpu_mask

Any structure consisting entirely of these types is a POD and can be serialized and then deserialized without losing
information. It is important to note that only these specific types are considered POD, their subclasses are not.

Note: dicts get deserialized as OrderedDicts.

Serialization Formats

WA utilizes two serialization formats: YAML and JSON. YAML is used for files intended to be primarily written
and/or read by humans; JSON is used for files intended to be primarily written and/or read by WA and other programs.

The parsers and serializers for these formats used by WA have been modified to handle additional types (e.g. regular
expressions) that are typically not supported by the formats. This was done in such a way that the resulting files are
still valid and can be parsed by any parser for that format.

3.1. Developer Information 131



wa Documentation, Release 3.4.0.dev1

Contributing

Code

We welcome code contributions via GitHub pull requests. To help with maintainability of the code line we ask that the
code uses a coding style consistent with the rest of WA code. Briefly, it is

• PEP8 with line length and block comment rules relaxed (the wrapper for PEP8 checker inside dev_scripts will
run it with appropriate configuration).

• Four-space indentation (no tabs!).

• Title-case for class names, underscore-delimited lower case for functions, methods, and variables.

• Use descriptive variable names. Delimit words with '_' for readability. Avoid shortening words, skipping
vowels, etc (common abbreviations such as “stats” for “statistics”, “config” for “configuration”, etc are OK). Do
not use Hungarian notation (so prefer birth_date over dtBirth).

New extensions should also follow implementation guidelines specified in the Writing Plugins section of the documen-
tation.

We ask that the following checks are performed on the modified code prior to submitting a pull request:

Note: You will need pylint and pep8 static checkers installed:

pip install pep8
pip install pylint

It is recommended that you install via pip rather than through your distribution’s package manager because the latter is
likely to contain out-of-date version of these tools.

• ./dev_scripts/pylint should be run without arguments and should produce no output (any output should
be addressed by making appropriate changes in the code or adding a pylint ignore directive, if there is a good
reason for keeping the code as is).

• ./dev_scripts/pep8 should be run without arguments and should produce no output (any output should be
addressed by making appropriate changes in the code).

• If the modifications touch core framework (anything under wa/framework), unit tests should be run using
nosetests, and they should all pass.

– If significant additions have been made to the framework, unit tests should be added to cover the new
functionality.

• If modifications have been made to the UI Automation source of a workload, the corresponding APK should be
rebuilt and submitted as part of the same pull request. This can be done via the build.sh script in the relevant
uiauto subdirectory.

• If modifications have been made to documentation (this includes description attributes for Parameters and Ex-
tensions), documentation should be built to make sure no errors or warning during build process, and a visual
inspection of new/updated sections in resulting HTML should be performed to ensure everything renders as
expected.

Once you have your contribution is ready, please follow instructions in GitHub documentation to create a pull request.

132 Chapter 3. Developer Information

https://www.python.org/dev/peps/pep-0008/
https://help.github.com/articles/creating-a-pull-request/


wa Documentation, Release 3.4.0.dev1

Documentation

Headings

To allow for consistent headings to be used through out the document the following character sequences should be used
when creating headings

=========
Heading 1
=========

Only used for top level headings which should also have an entry in the
navigational side bar.

*********
Heading 2
*********

Main page heading used for page title, should not have a top level entry in the
side bar.

Heading 3
==========

Regular section heading.

Heading 4
---------

Sub-heading.

Heading 5
~~~~~~~~~

Heading 6
^^^^^^^^^

Heading 7
"""""""""

Configuration Listings

To keep a consistent style for presenting configuration options, the preferred style is to use a Field List.

(See: http://docutils.sourceforge.net/docs/user/rst/quickref.html#field-lists)

Example:

:parameter: My Description

Will render as:

3.1. Developer Information 133

http://docutils.sourceforge.net/docs/user/rst/quickref.html#field-lists

wa Documentation, Release 3.4.0.dev1

parameter My Description

API Style

When documenting an API the currently preferred style is to provide a short description of the class, followed by the
attributes of the class in a Definition List followed by the methods using the method directive.

(See: http://docutils.sourceforge.net/docs/user/rst/quickref.html#definition-lists)

Example:

API
===

:class:`MyClass`

:class:`MyClass` is an example class to demonstrate API documentation.

``attribute1``
The first attribute of the example class.

``attribute2``
Another attribute example.

methods
"""""""

.. method:: MyClass.retrieve_output(name)

Retrieve the output for ``name``.

:param name: The output that should be returned.
:return: An :class:`Output` object for ``name``.
:raises NotFoundError: If no output can be found.

Will render as:

MyClass is an example class to demonstrate API documentation.

attribute1 The first attribute of the example class.

attribute2 Another attribute example.

134 Chapter 3. Developer Information

http://docutils.sourceforge.net/docs/user/rst/quickref.html#definition-lists

wa Documentation, Release 3.4.0.dev1

methods

MyClass.retrieve_output(name)
Retrieve the output for name.

Parameters name – The output that should be returned.

Returns An Output object for name.

Raises NotFoundError – If no output can be found.

3.1. Developer Information 135

wa Documentation, Release 3.4.0.dev1

136 Chapter 3. Developer Information

CHAPTER

FOUR

PLUGIN REFERENCE

4.1 Plugin Reference

This section lists Plugins that currently come with WA3. Each package below represents a particular type of extension
(e.g. a workload); each sub-package of that package is a particular instance of that extension (e.g. the Andebench
workload). Clicking on a link will show what the individual extension does, what configuration parameters it takes,
etc.

For how to implement you own Plugins, please refer to the guides in the writing plugins section.

4.1.1 Workloads

• adobereader

• aitutu

• androbench

• angrybirds_rio

• antutu

• apache

• applaunch

• benchmarkpi

• chrome

• deepbench

• dhrystone

• drarm

• exoplayer

• geekbench

• geekbench-corporate

• gfxbench

• gfxbench-corporate

• glbenchmark

137

wa Documentation, Release 3.4.0.dev1

• gmail

• googlemaps

• googlephotos

• googleplaybooks

• googleslides

• hackbench

• homescreen

• hwuitest

• idle

• jankbench

• lmbench

• manual

• meabo

• memcpy

• mongoperf

• motionmark

• openssl

• pcmark

• recentfling

• rt-app

• schbench

• shellscript

• speedometer

• stress-ng

• sysbench

• templerun2

• thechase

• uibench

• uibenchjanktests

• vellamo

• youtube

• youtube_playback

138 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

adobereader

The Adobe Reader workflow carries out the following typical productivity tasks.

Test description:

1. Open a local file on the device

2. Gestures test: 2.1. Swipe down across the central 50% of the screen in 200 x 5ms steps 2.2. Swipe up across
the central 50% of the screen in 200 x 5ms steps 2.3. Swipe right from the edge of the screen in 50 x 5ms
steps 2.4. Swipe left from the edge of the screen in 50 x 5ms steps 2.5. Pinch out 50% in 100 x 5ms steps
2.6. Pinch In 50% in 100 x 5ms steps

3. Search test: Search document_name for each string in the search_string_list

4. Close the document

Known working APK version: 19.7.1.10709

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

4.1. Plugin Reference 139

wa Documentation, Release 3.4.0.dev1

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

document_name: type: 'str'

The document name to use for the Gesture and Search test.

default: 'uxperf_test_doc.pdf'

search_string_list: type: 'list_of_strs'

For each string in the list, a document search is performed using the string as the search term. At least one must
be provided.

constraint: len(value) > 0

default: ['The quick brown fox jumps over the lazy dog', 'TEST_SEARCH_STRING']

140 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

aitutu

Executes Aitutu Image Speed/Accuracy and Object Speed/Accuracy tests

The Aitutu workflow carries out the following tasks. 1. Open Aitutu application 2. Download the resources for the test
3. Execute the tests

Known working APK version: 1.0.3

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

4.1. Plugin Reference 141

wa Documentation, Release 3.4.0.dev1

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

androbench

Executes storage performance benchmarks

The Androbench workflow carries out the following typical productivity tasks. 1. Open Androbench application 2.
Execute all memory benchmarks

Known working APK version: 5.0.1

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

142 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

4.1. Plugin Reference 143

wa Documentation, Release 3.4.0.dev1

angrybirds_rio

Angry Birds Rio game.

The sequel to the very popular Android 2D game.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

144 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

antutu

Executes Antutu 3D, UX, CPU and Memory tests

Test description: 1. Open Antutu application 2. Execute Antutu benchmark

Known working APK version: 8.0.4

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

Specify the version of Antutu to be run. If not specified, the latest available version will be used.

allowed values: '7.0.4', '7.2.0', '8.0.4', '8.1.9', '9.1.6'

4.1. Plugin Reference 145

wa Documentation, Release 3.4.0.dev1

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

apache

Load-test an apache installation by issueing parallel requests with ab.

Run ab, the Apache benchmark on the host, directed at the target as the server.

Note: It is assumed that Apache is already running on target.

146 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

Note: Current implmentation only supports a very basic use of the benchmark.

aliases

ab

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

port: type: 'integer'

Port on which Apache is running.

default: 80

path: type: 'str'

Path to request.

default: '/'

parallel_requests: type: 'integer'

The number of parallel requests at a time.

default: 350

total_requests: type: 'integer'

The total number of parallel requests.

default: 100000

4.1. Plugin Reference 147

wa Documentation, Release 3.4.0.dev1

applaunch

This workload launches and measures the launch time of applications for supporting workloads.

Currently supported workloads are the ones that implement ApplaunchInterface. For any workload to support this
workload, it should implement the ApplaunchInterface. The corresponding java file of the workload associated
with the application being measured is executed during the run. The application that needs to be measured is passed
as a parameter workload_name. The parameters required for that workload have to be passed as a dictionary which
is captured by the parameter workload_params. This information can be obtained by inspecting the workload details
of the specific workload.

The workload allows to run multiple iterations of an application launch in two modes:

1. Launch from background

2. Launch from long-idle

These modes are captured as a parameter applaunch_type.

launch_from_background Launches an application after the application is sent to background by pressing Home
button.

launch_from_long-idle Launches an application after killing an application process and clearing all the caches.

Test Description:

• During the initialization and setup, the application being launched is launched for the first time. The jar file of the
workload of the application is moved to device at the location workdir which further implements the methods
needed to measure the application launch time.

• Run phase calls the UiAutomator of the applaunch which runs in two subphases.

A. Applaunch Setup Run: During this phase, welcome screens and dialogues during the first launch of
the instrumented application are cleared.

B. Applaunch Metric Run: During this phase, the application is launched multiple times determined by
the iteration number specified by the parameter applaunch_iterations. Each of these iterations
are instrumented to capture the launch time taken and the values are recorded as UXPERF marker
values in logfile.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

148 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

workload_name: type: 'str'

Name of the uxperf workload to launch

default: 'gmail'

4.1. Plugin Reference 149

wa Documentation, Release 3.4.0.dev1

workload_params: type: 'OrderedDict'

parameters of the uxperf workload whose application launch time is measured

default:

{

}

applaunch_type: type: 'str'

Choose launch_from_long-idle for measuring launch time from long-idle. These two types are described in the
workload description.

allowed values: 'launch_from_background', 'launch_from_long-idle'

default: 'launch_from_background'

applaunch_iterations: type: 'integer'

Number of iterations of the application launch

default: 1

benchmarkpi

Measures the time the target device takes to run and complete the Pi calculation algorithm.

http://androidbenchmark.com/howitworks.php

from the website:

The whole idea behind this application is to use the same Pi calculation algorithm on every Android Device and check
how fast that process is. Better calculation times, conclude to faster Android devices. This way you can also check how
lightweight your custom made Android build is. Or not.

As Pi is an irrational number, Benchmark Pi does not calculate the actual Pi number, but an approximation near the
first digits of Pi over the same calculation circles the algorithms needs.

So, the number you are getting in milliseconds is the time your mobile device takes to run and complete the Pi calculation
algorithm resulting in a approximation of the first Pi digits.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

150 Chapter 4. Plugin Reference

http://androidbenchmark.com/howitworks.php

wa Documentation, Release 3.4.0.dev1

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

4.1. Plugin Reference 151

wa Documentation, Release 3.4.0.dev1

chrome

A workload to perform standard Web browsing tasks with Google Chrome. The workload carries out a number of
typical Web-based tasks, navigating through a handful of Wikipedia pages in multiple browser tabs.

To run the workload in offline mode, a pages.tar archive and an OfflinePages.db file are required. For users
wishing to generate these files themselves, Chrome should first be operated from an Internet-connected environment
and the following Wikipedia pages should be downloaded for offline use within Chrome:

• https://en.m.wikipedia.org/wiki/Main_Page

• https://en.m.wikipedia.org/wiki/United_States

• https://en.m.wikipedia.org/wiki/California

Following this, the files of interest for viewing these pages offline can be found in the /data/data/com.android.
chrome/app_chrome/Default/Offline Pages directory. The OfflinePages.db file can be copied from the
‘metadata’ subdirectory, while the *.mhtml files that should make up the pages.tar file can be found in the
‘archives’ subdirectory. These page files can then be archived to produce a tarball using a command such as tar
-cvf pages.tar -C /path/to/archives .. Both this and OfflinePages.db should then be placed in the ~/.
workload_automation/dependencies/chrome/ directory on your local machine, creating this if it does not already
exist.

Known working APK version: 65.0.3325.109

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

152 Chapter 4. Plugin Reference

https://en.m.wikipedia.org/wiki/Main_Page
https://en.m.wikipedia.org/wiki/United_States
https://en.m.wikipedia.org/wiki/California

wa Documentation, Release 3.4.0.dev1

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

offline_mode: type: 'boolean'

If set to True, the workload will execute in offline mode. This mode requires root and makes use of a tarball
of *.mhtml files ‘pages.tar’ and an metadata database ‘OfflinePages.db’. The tarball is extracted directly to the
application’s offline pages ‘archives’ directory, while the database is copied to the offline pages ‘metadata’ direc-
tory.

default: False

4.1. Plugin Reference 153

wa Documentation, Release 3.4.0.dev1

deepbench

Benchmarks operations that are important to deep learning. Including GEMM and convolution.

The benchmark and its documentation are available here:

https://github.com/baidu-research/DeepBench

Note: parameters of matrices used in each sub-test are added as classifiers to the metrics. See the benchmark docu-
mentation for the explanation of the various parameters

Note: at the moment only the “Arm Benchmarks” subset of DeepBench is supported.

aliases

deep-gemm test=``’gemm’``

deep-conv test=``’conv’``

deep-sparse test=``’sparse’``

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

test: type: 'str'

Specifies which of the available benchmarks will be run.

gemm Performs GEneral Matrix Multiplication of dense matrices of varying sizes.

conv Performs convolutions on inputs in NCHW format.

sparse Performs GEneral Matrix Multiplication of sparse matrices of varying sizes, and compares them to cor-
responding dense operations.

allowed values: 'gemm', 'conv', 'sparse'

default: 'gemm'

154 Chapter 4. Plugin Reference

https://github.com/baidu-research/DeepBench

wa Documentation, Release 3.4.0.dev1

dhrystone

Runs the Dhrystone benchmark.

Original source from:

http://classes.soe.ucsc.edu/cmpe202/benchmarks/standard/dhrystone.c

This version has been modified to configure duration and the number of threads used.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

duration: type: 'integer'

The duration, in seconds, for which dhrystone will be executed. Either this or mloops should be specified but
not both.

default: 0

mloops: type: 'integer'

Millions of loops to run. Either this or duration should be specified, but not both. If neither is specified, this
will default ‘ to 100

default: 0

threads: type: 'integer'

The number of separate dhrystone “threads” that will be forked.

default: 4

delay: type: 'integer'

The delay, in seconds, between kicking off of dhrystone threads (if threads > 1).

default: 0

cpus: type: 'cpu_mask'

The processes spawned by dhrystone will be pinned to cores as specified by this parameter. The mask can be
specified directly as a mask, as a list of cpus or a sysfs- style string

aliases: 'taskset_mask'

default: 0

4.1. Plugin Reference 155

wa Documentation, Release 3.4.0.dev1

drarm

Dr. Arm’s Amazing Adventures is a “Souls-Like” Mobile Action Role Playing Game developed at Arm.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

156 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

timeout: type: 'integer'

The amount of time the game should run for

default: 126

auto_demo: type: 'boolean'

Start the demo automatically

default: False

show_fps: type: 'boolean'

Show the FPS count window in-game

default: False

adpf: type: 'boolean'

Enable ADPF

default: True

adpf_auto: type: 'boolean'

Enable automatic ADPF mode

default: True

adpf_logging: type: 'boolean'

Enable ADPF logging

default: False

verbose_log: type: 'boolean'

Emit reported stats as debug logs

default: False

adpf_interventions: type: 'boolean'

Enable ADPF interventions

default: True

target_vsyncs: type: 'integer'

the number of vsyncs to target to a frame (1 = current display rate)

default: 1

target_framerate: type: 'integer'

Target framerate for the application

4.1. Plugin Reference 157

wa Documentation, Release 3.4.0.dev1

fps_report_file: type: 'str'

File name that the ADPF FPS report should use.

fixed_time_step: type: 'float'

Time, in seconds, that should be used in advancing the simulation

exoplayer

Android ExoPlayer

ExoPlayer is the basic video player library that is used by the YouTube android app. The aim of this workload is to test
a proxy for YouTube performance on targets where running the real YouTube app is not possible due its dependencies.

ExoPlayer sources: https://github.com/google/ExoPlayer

The ‘demo’ application is used by this workload. It can easily be built by loading the ExoPlayer sources into Android
Studio.

Version r2.4.0 built from commit d979469 is known to work

Produces a metric ‘exoplayer_dropped_frames’ - this is the count of frames that Exoplayer itself reports as dropped.
This is not the same thing as the dropped frames reported by gfxinfo.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

allowed values: '2.4', '2.5', '2.6'

max_version: type: 'str'

The maximum version of the package to be used.

158 Chapter 4. Plugin Reference

https://github.com/google/ExoPlayer

wa Documentation, Release 3.4.0.dev1

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

duration: type: 'integer'

Playback duration of the video file. This becomes the duration of the workload. If provided must be shorter than
the length of the media.

default: 20

format: type: 'str'

Specifies which format video file to play. Default is mov_720p

allowed values: 'mp4_1080p', 'mov_720p', 'mov_480p', 'ogg_128kbps'

filename: type: 'str'

The name of the video file to play. This can be either a path to the file anywhere on your file system, or it
could be just a name, in which case, the workload will look for it in /home/docs/.workload_automation/
dependencies/exoplayer Note: either format or filename should be specified, but not both!

force_dependency_push: type: 'boolean'

If true, video will always be pushed to device, regardless of whether the file is already on the device. Default is
False.

default: False

4.1. Plugin Reference 159

wa Documentation, Release 3.4.0.dev1

landscape: type: 'boolean'

Configure the screen in landscape mode, otherwise ensure portrait orientation by default. Default is False.

default: False

geekbench

Geekbench provides a comprehensive set of benchmarks engineered to quickly and accurately measure processor and
memory performance.

http://www.primatelabs.com/geekbench/ From the website: Designed to make benchmarks easy to run and easy to
understand, Geekbench takes the guesswork out of producing robust and reliable benchmark results. Geekbench scores
are calibrated against a baseline score of 1,000 (which is the score of a single-processor Power Mac G5 @ 1.6GHz).
Higher scores are better, with double the score indicating double the performance.

The benchmarks fall into one of four categories:

• integer performance.

• floating point performance.

• memory performance.

• stream performance.

Geekbench benchmarks: http://www.primatelabs.com/geekbench/doc/benchmarks.html Geekbench scoring methedo-
logy: http://support.primatelabs.com/kb/geekbench/interpreting-geekbench-scores

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

160 Chapter 4. Plugin Reference

http://www.primatelabs.com/geekbench/
http://www.primatelabs.com/geekbench/doc/benchmarks.html
http://support.primatelabs.com/kb/geekbench/interpreting-geekbench-scores

wa Documentation, Release 3.4.0.dev1

version: type: 'str'

Specifies which version of the workload should be run.

allowed values: '6', '5', '4.4.2', '4.4.0', '4.3.4', '4.3.2', '4.3.1', '4.2.0', '4.0.1', '3.4.1',
'3.0.0', '2'

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

loops: type: 'integer'

Specfies the number of times the benchmark will be run in a “tight loop”, i.e. without performaing setup/teardown
inbetween.

aliases: 'times'

default: 1

4.1. Plugin Reference 161

wa Documentation, Release 3.4.0.dev1

timeout: type: 'integer'

Timeout for a single iteration of the benchmark. This value is multiplied by times to calculate the overall run
timeout.

default: 3600

disable_update_result: type: 'boolean'

If True the results file will not be pulled from the targets /data/data/com.primatelabs.geekbench folder.
This allows the workload to be run on unrooted targets and the results extracted manually later.

default: False

geekbench-corporate

Geekbench provides a comprehensive set of benchmarks engineered to quickly and accurately measure processor and
memory performance.

http://www.primatelabs.com/geekbench/ From the website: Designed to make benchmarks easy to run and easy to
understand, Geekbench takes the guesswork out of producing robust and reliable benchmark results. Geekbench scores
are calibrated against a baseline score of 1,000 (which is the score of a single-processor Power Mac G5 @ 1.6GHz).
Higher scores are better, with double the score indicating double the performance.

The benchmarks fall into one of four categories:

• integer performance.

• floating point performance.

• memory performance.

• stream performance.

Geekbench benchmarks: http://www.primatelabs.com/geekbench/doc/benchmarks.html Geekbench scoring methedo-
logy: http://support.primatelabs.com/kb/geekbench/interpreting-geekbench-scores

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

162 Chapter 4. Plugin Reference

http://www.primatelabs.com/geekbench/
http://www.primatelabs.com/geekbench/doc/benchmarks.html
http://support.primatelabs.com/kb/geekbench/interpreting-geekbench-scores

wa Documentation, Release 3.4.0.dev1

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

Specifies which version of the workload should be run.

allowed values: '5.0.3', '5.0.1', '4.1.0', '4.3.4', '5.0.0'

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

4.1. Plugin Reference 163

wa Documentation, Release 3.4.0.dev1

loops: type: 'integer'

Specfies the number of times the benchmark will be run in a “tight loop”, i.e. without performaing setup/teardown
inbetween.

aliases: 'times'

default: 1

timeout: type: 'integer'

Timeout for a single iteration of the benchmark. This value is multiplied by times to calculate the overall run
timeout.

default: 3600

disable_update_result: type: 'boolean'

If True the results file will not be pulled from the targets /data/data/com.primatelabs.geekbench folder.
This allows the workload to be run on unrooted targets and the results extracted manually later.

default: False

gfxbench

Execute a subset of graphical performance benchmarks

Test description: 1. Open the gfxbench application 2. Execute Car Chase, Manhattan and Tessellation benchmarks

Note: Some of the default tests are unavailable on devices running with a smaller resolution than 1080p.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

164 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

timeout: type: 'integer'

Timeout for an iteration of the benchmark.

default: 3600

tests: type: 'list_or_string'

List of tests to be executed.

default: ['Car Chase', '1080p Car Chase Offscreen', 'Manhattan 3.1', '1080p
Manhattan 3.1 Offscreen', '1440p Manhattan 3.1.1 Offscreen', 'Tessellation', '1080p
Tessellation Offscreen']

4.1. Plugin Reference 165

wa Documentation, Release 3.4.0.dev1

gfxbench-corporate

Execute a subset of graphical performance benchmarks

Test description: 1. Open the gfxbench application 2. Execute Car Chase, Manhattan and Tessellation benchmarks

Note: Some of the default tests are unavailable on devices running with a smaller resolution than 1080p.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

166 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

timeout: type: 'integer'

Timeout for an iteration of the benchmark.

default: 3600

tests: type: 'list_or_string'

List of tests to be executed.

default: ['Car Chase', '1080p Car Chase Offscreen', 'Manhattan 3.1', '1080p
Manhattan 3.1 Offscreen', '1440p Manhattan 3.1.1 Offscreen', 'Tessellation', '1080p
Tessellation Offscreen']

glbenchmark

Measures the graphics performance of Android devices by testing the underlying OpenGL (ES) implementation.

http://gfxbench.com/about-gfxbench.jsp

From the website:

The benchmark includes console-quality high-level 3D animations (T-Rex HD and Egypt HD) and low-
level graphics measurements.

With high vertex count and complex effects such as motion blur, parallax mapping and particle systems,
the engine of GFXBench stresses GPUs in order provide users a realistic feedback on their device.

4.1. Plugin Reference 167

http://gfxbench.com/about-gfxbench.jsp

wa Documentation, Release 3.4.0.dev1

aliases

glbench

egypt use_case=``’egypt’``

t-rex use_case=``’t-rex’``

egypt_onscreen use_case=``’egypt’, type=’onscreen’``

t-rex_onscreen use_case=``’t-rex’, type=’onscreen’``

egypt_offscreen use_case=``’egypt’, type=’offscreen’``

t-rex_offscreen use_case=``’t-rex’, type=’offscreen’``

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

Specifies which version of the benchmark to run (different versions support different use cases).

allowed values: '2.7', '2.5'

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

168 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

use_case: type: 'str'

Specifies which usecase to run, as listed in the benchmark menu; e.g. 'GLBenchmark 2.5 Egypt HD'. For
convenience, two aliases are provided for the most common use cases: 'egypt' and 't-rex'. These could be
use instead of the full use case title. For version '2.7' it defaults to 't-rex', for version '2.5' it defaults to
'egypt-classic'.

type: type: 'str'

Specifies which type of the use case to run, as listed in the benchmarks menu (small text underneath the use case
name); e.g. 'C24Z16 Onscreen Auto'. For convenience, two aliases are provided for the most common types:
'onscreen' and 'offscreen'. These may be used instead of full type names.

default: 'onscreen'

timeout: type: 'integer'

Specifies how long, in seconds, UI automation will wait for results screen to appear before assuming something
went wrong.

default: 200

4.1. Plugin Reference 169

wa Documentation, Release 3.4.0.dev1

gmail

A workload to perform standard productivity tasks within Gmail. The workload carries out various tasks, such as
creating new emails, attaching images and sending them.

Test description: 1. Open Gmail application 2. Click to create New mail 3. Attach an image from the local images
folder to the email 4. Enter recipient details in the To field 5. Enter text in the Subject field 6. Enter text in the Compose
field 7. Click the Send mail button

To run the workload in offline mode, a ‘mailstore.tar’ file is required. In order to generate such a file, Gmail should
first be operated from an Internet-connected environment. After this, the relevant database files can be found in the
‘/data/data/com.google.android.gm/databases’ directory. These files can then be archived to produce a tarball using
a command such as tar -cvf mailstore.tar -C /path/to/databases .. The result should then be placed in
the ‘~/.workload_automation/dependencies/gmail/’ directory on your local machine, creating this if it does not already
exist.

Known working APK version: 2023.04.02.523594694.Release

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

170 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

recipient: type: 'str'

The email address of the recipient. Setting a void address will stop any mesage failures clogging up your device
inbox

default: 'wa-devnull@mailinator.com'

test_image: type: 'str'

An image to be copied onto the device that will be attached to the email

default: 'uxperf_1600x1200.jpg'

offline_mode: type: 'boolean'

If set to True, the workload will execute in offline mode. This mode requires root and makes use of a tarball
of email database files ‘mailstore.tar’ for the email account to be used. This file is extracted directly to the
application’s ‘databases’ directory at ‘/data/data/com.google.android.gm/databases’.

default: False

4.1. Plugin Reference 171

wa Documentation, Release 3.4.0.dev1

googlemaps

A workload to perform standard navigation tasks with Google Maps. This workload searches for known locations, pans
and zooms around the map, and follows driving directions along a route.

To run the workload in offline mode, databases.tar and files.tar archives are required. In order to generate these
files, Google Maps should first be operated from an Internet-connected environment, and a region around Cambridge,
England should be downloaded for offline use. This region must include the landmarks used in the UIAutomator
program, which include Cambridge train station and Corpus Christi college.

Following this, the files of interest can be found in the databases and files subdirectories of the /data/data/com.
google.android.apps.maps/ directory. The contents of these subdirectories can be archived into tarballs using
commands such as tar -cvf databases.tar -C /path/to/databases .. These databases.tar and files.
tar archives should then be placed in the ~/.workload_automation/dependencies/googlemaps directory on
your local machine, creating this if it does not already exist.

Known working APK version: 10.19.1

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

172 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

offline_mode: type: 'boolean'

If set to True, the workload will execute in offline mode. This mode requires root and makes use of a tarball of
database files databases.tar and a tarball of auxiliary files files.tar. These tarballs are extracted directly
to the application’s databases and files directories respectively in /data/data/com.google.android.
apps.maps/.

default: False

googlephotos

A workload to perform standard productivity tasks with Google Photos. The workload carries out various tasks, such
as browsing images, performing zooms, and post-processing the image.

Test description:

1. Four images are copied to the target

2. The application is started in offline access mode

3. Gestures are performed to pinch zoom in and out of the selected image

4.1. Plugin Reference 173

wa Documentation, Release 3.4.0.dev1

4. The colour of a selected image is edited by selecting the colour menu, incrementing the colour, resetting the
colour and decrementing the colour using the seek bar.

5. A crop test is performed on a selected image. UiAutomator does not allow the selection of the crop markers so
the image is tilted positively, reset and then tilted negatively to get a similar cropping effect.

6. A rotate test is performed on a selected image, rotating anticlockwise 90 degrees, 180 degrees and 270 degrees.

Known working APK version: 4.53.0.316914374

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

174 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

test_images: type: 'list_of_strs'

A list of four JPEG and/or PNG files to be pushed to the target. Absolute file paths may be used but tilde expansion
must be escaped.

constraint: len(unique(value)) == 4

default: ['uxperf_1200x1600.png', 'uxperf_1600x1200.jpg', 'uxperf_2448x3264.png',
'uxperf_3264x2448.jpg']

googleplaybooks

A workload to perform standard productivity tasks with googleplaybooks. This workload performs various tasks, such
as searching for a book title online, browsing through a book, adding and removing notes, word searching, and querying
information about the book.

Test description: 1. Open Google Play Books application 2. Dismisses sync operation (if applicable) 3. Searches for
a book title 4. Adds books to library if not already present 5. Opens ‘My Library’ contents 6. Opens selected book
7. Gestures are performed to swipe between pages and pinch zoom in and out of a page 8. Selects a specified chapter
based on page number from the navigation view 9. Selects a word in the centre of screen and adds a test note to the
page 10. Removes the test note from the page (clean up) 11. Searches for the number of occurrences of a common
word throughout the book 12. Switches page styles from ‘Day’ to ‘Night’ to ‘Sepia’ and back to ‘Day’ 13. Uses the
‘About this book’ facility on the currently selected book

NOTE: This workload requires a network connection (ideally, wifi) to run, a Google account to be setup on the
device, and payment details for the account. Free books require payment details to have been setup otherwise it
fails. Tip: Install the ‘Google Opinion Rewards’ app to bypass the need to enter valid card/bank detail.

Known working APK version: 3.15.5

4.1. Plugin Reference 175

wa Documentation, Release 3.4.0.dev1

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

176 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

search_book_title: type: 'str'

The book title to search for within Google Play Books archive. The book must either be already in the account’s
library, or free to purchase.

default: 'Nikola Tesla: Imagination and the Man That Invented the 20th Century'

library_book_title: type: 'str'

The book title to search for within My Library. The Library name can differ (usually shorter) to the Store name.
If left blank, the search_book_title will be used.

default: 'Nikola Tesla'

select_chapter_page_number: type: 'integer'

The Page Number to search for within a selected book’s Chapter list. Note: Accepts integers only.

default: 4

search_word: type: 'str'

The word to search for within a selected book. Note: Accepts single words only.

default: 'the'

account: type: 'str'

If you are running this workload on a device which has more than one Google account setup, then this parameter
is used to select which account to select when prompted. The account requires the book to have already been
purchased or payment details already associated with the account. If omitted, the first account in the list will be
selected if prompted.

googleslides

A workload to perform standard productivity tasks with Google Slides. The workload carries out various tasks, such
as creating a new presentation, adding text, images, and shapes, as well as basic editing and playing a slideshow. This
workload should be able to run without a network connection.

There are two main scenarios:

1. create test: a presentation is created in-app and some editing done on it,

2. load test: a pre-existing PowerPoint file is copied onto the device for testing.

4.1. Plugin Reference 177

wa Documentation, Release 3.4.0.dev1

— create — Create a new file in the application and perform basic editing on it. This test also requires an image file
specified by the param test_image to be copied onto the device.

Test description:

1. Start the app and skip the welcome screen. Dismiss the work offline banner if present.

2. Go to the app settings page and enables PowerPoint compatibility mode. This allows PowerPoint files to be
created inside Google Slides.

3. Create a new PowerPoint presentation in the app (PPT compatibility mode) with a title slide and save it to device
storage.

4. Insert another slide and to it insert the pushed image by picking it from the gallery.

5. Insert a final slide and add a shape to it. Resize and drag the shape to modify it.

6. Finally, navigate back to the documents list.

— load — Copy a PowerPoint presentation onto the device to test slide navigation. The PowerPoint file to be copied is
given by test_file.

Test description:

1. From the documents list (following the create test), open the specified PowerPoint by navigating into device
storage and wait for it to be loaded.

2. A navigation test is performed while the file is in editing mode (i.e. not slideshow). swiping forward to the next
slide until slide_count swipes are performed.

3. While still in editing mode, the same action is done in the reverse direction back to the first slide.

4. Enter presentation mode by selecting to play the slideshow.

5. Swipe forward to play the slideshow, for a maximum number of slide_count swipes.

6. Finally, repeat the previous step in the reverse direction while still in presentation mode, navigating back to the
first slide.

NOTE: There are known issues with the reliability of this workload on some targets. It MAY NOT ALWAYS WORK
on your device. If you do run into problems, it might help to set do_text_entry parameter to False.

Known working APK version: 1.20.442.04.40

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

178 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

test_image: type: 'str'

An image to be copied onto the device that will be embedded in the PowerPoint file as part of the test.

default: 'uxperf_1600x1200.jpg'

4.1. Plugin Reference 179

wa Documentation, Release 3.4.0.dev1

test_file: type: 'str'

If specified, the workload will copy the PowerPoint file to be used for testing onto the device. Otherwise, a file
will be created inside the app.

default: 'uxperf_test_doc.pptx'

slide_count: type: 'integer'

Number of slides in aforementioned local file. Determines number of swipe actions when playing slide show.

default: 5

do_text_entry: type: 'boolean'

If set to True, will attempt to enter text in the first slide as part of the test. Currently seems to be problematic on
some devices, most notably Samsung devices.

default: True

hackbench

Hackbench runs a series of tests for the Linux scheduler.

For details, go to: https://github.com/linux-test-project/ltp/

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

timeout: type: 'integer'

Expected test duration in seconds.

aliases: 'duration'

default: 30

datasize: type: 'integer'

Message size in bytes.

default: 100

groups: type: 'integer'

Number of groups.

default: 10

180 Chapter 4. Plugin Reference

https://github.com/linux-test-project/ltp/

wa Documentation, Release 3.4.0.dev1

loops: type: 'integer'

Number of loops.

default: 100

fds: type: 'integer'

Number of file descriptors.

default: 40

extra_params: type: 'str'

Extra parameters to pass in. See the hackbench man page or type hackbench –help for list of options.

default: ''

homescreen

A workload that goes to the home screen and idles for the the specified duration.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

duration: type: 'integer'

Specifies the duration, in seconds, of this workload.

default: 20

hwuitest

Tests UI rendering latency on Android devices.

The binary for this workload is built as part of AOSP’s frameworks/base/libs/hwui component.

4.1. Plugin Reference 181

wa Documentation, Release 3.4.0.dev1

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

test: type: 'caseless_string'

The test to run:

• 'shadowgrid': creates a grid of rounded rects that cast shadows, high CPU & GPU load

• 'rectgrid': creates a grid of 1x1 rects

• 'oval': draws 1 oval

allowed values: 'shadowgrid', 'rectgrid', 'oval'

default: 'shadowgrid'

loops: type: 'integer'

The number of test iterations.

default: 3

frames: type: 'integer'

The number of frames to run the test over.

default: 150

idle

Do nothing for the specified duration.

On android devices, this may optionally stop the Android run time, if stop_android is set to True.

Note: This workload requires the device to be rooted.

182 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

duration: type: 'integer'

Specifies the duration, in seconds, of this workload.

default: 20

screen_off: type: 'boolean'

Ensure that the screen is off before idling.

Note: Make sure screen lock is disabled on the target!

default: False

stop_android: type: 'boolean'

Specifies whether the Android run time should be stopped. (Can be set only for Android devices).

default: False

jankbench

Internal Google benchmark for evaluating jank on Android.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

4.1. Plugin Reference 183

wa Documentation, Release 3.4.0.dev1

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

test_ids: type: 'list_or_string'

ID of the jankbench test to be run.

allowed values: 'list_view', 'image_list_view', 'shadow_grid', 'low_hitrate_text',
'high_hitrate_text', 'edit_text', 'overdraw_test'

184 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

loops: type: 'integer'

Specifies the number of times the benchmark will be run in a “tight loop”, i.e. without performaing
setup/teardown inbetween.

aliases: 'reps'

constraint: value > 0

default: 1

pull_results_db: type: 'boolean'

Secifies whether an sqlite database with detailed results should be pulled from benchmark app’s data. This
requires the device to be rooted.

This defaults to True for rooted devices and False otherwise.

timeout: type: 'integer'

Time out for workload execution. The workload will be killed if it hasn’t completed within this period.

aliases: 'run_timeout'

default: 600

lmbench

Run a subtest from lmbench, a suite of portable ANSI/C microbenchmarks for UNIX/POSIX. In general, lmbench
measures two key features: latency and bandwidth. This workload supports a subset of lmbench tests. lat_mem_rd
can be used to measure latencies to memory (including caches). bw_mem can be used to measure bandwidth to/from
memory over a range of operations. Further details, and source code are available from:

http://sourceforge.net/projects/lmbench/.

See lmbench/bin/README for license details.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

test: type: 'str'

Specifies an lmbench test to run.

allowed values: 'lat_mem_rd', 'bw_mem'

default: 'lat_mem_rd'

4.1. Plugin Reference 185

http://sourceforge.net/projects/lmbench/

wa Documentation, Release 3.4.0.dev1

stride: type: '<locals'

Stride for lat_mem_rd test. Workload will iterate over one or more integer values.

default: [128]

thrash: type: 'boolean'

Sets -t flag for lat_mem_rd_test

default: True

size: type: 'list_or_string'

Data set size for lat_mem_rd bw_mem tests.

default: '4m'

mem_category: type: 'list_or_string'

List of memory catetories for bw_mem test.

default: ('rd', 'wr', 'cp', 'frd', 'fwr', 'fcp', 'bzero', 'bcopy')

parallelism: type: 'integer'

Parallelism flag for tests that accept it.

warmup: type: 'integer'

Warmup flag for tests that accept it.

repetitions: type: 'integer'

Repetitions flag for tests that accept it.

force_abi: type: 'str'

Override device abi with this value. Can be used to force arm32 on 64-bit devices.

run_timeout: type: 'integer'

Timeout for execution of the test.

default: 900

loops: type: 'integer'

Specifies the number of times the benchmark will be run in a “tight loop”, i.e. without performaing
setup/teardown inbetween. This parameter is distinct from “repetitions”, as the latter takes place within the
benchmark and produces a single result.

constraint: value > 0

default: 1

cpus: type: 'cpu_mask'

Specifies the CPU mask the benchmark process will be pinned to.

aliases: 'taskset_mask'

default: 0

186 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

manual

Yields control to the user, either for a fixed period or based on user input, to perform custom operations on the device,
which workload automation does not know of.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

duration: type: 'integer'

Control of the devices is yielded for the duration (in seconds) specified. If not specified, user_triggered is
assumed.

user_triggered: type: 'boolean'

If True, WA will wait for user input after starting the workload; otherwise fixed duration is expected. Defaults
to True if duration is not specified, and False otherwise.

view: type: 'str'

Specifies the View of the workload. This enables instruments that require a View to be specified, such as the fps
instrument. This is required for using “SurfaceFlinger” to collect FPS statistics and is primarily used on devices
pre API level 23.

default: 'SurfaceView'

package: type: 'str'

Specifies the package name of the workload. This enables instruments that require a Package to be specified,
such as the fps instrument. This allows for “gfxinfo” to be used and is the preferred method of collection for
FPS statistics on devices API level 23+.

meabo

A multi-phased multi-purpose micro-benchmark. The micro-benchmark is composed of 10 phases that perform various
generic calculations (from memory to compute intensive).

It is a highly configurable tool which can be used for energy efficiency studies, ARM big.LITTLE Linux scheduler
analysis and DVFS studies. It can be used for other benchmarking as well.

All floating-point calculations are double-precision.

Phase 1: Floating-point & integer computations with good data locality

4.1. Plugin Reference 187

wa Documentation, Release 3.4.0.dev1

Phase 2: Vector multiplication & addition, 1 level of indirection in 1
source vector

Phase 3: Vector scalar addition and reductions
Phase 4: Vector addition
Phase 5: Vector addition, 1 level of indirection in both source vectors
Phase 6: Sparse matrix-vector multiplication
Phase 7: Linked-list traversal
Phase 8: Electrostatic force calculations
Phase 9: Palindrome calculations
Phase 10: Random memory accesses

For more details and benchmark source, see:

https://github.com/ARM-software/meabo

Note: current implementation of automation relies on the executable to be either statically linked or for all necessary
depencies to be installed on the target.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

array_size: type: 'integer'

Size of arrays used in Phases 1, 2, 3, 4 and 5.

constraint: value > 0

default: 1048576

num_rows: type: 'integer'

Number of rows for the sparse matrix used in Phase 6.

aliases: 'nrow'

constraint: value > 0

default: 16384

num_cols: type: 'integer'

Number of columns for the sparse matrix used in Phase 6.

aliases: 'ncol'

188 Chapter 4. Plugin Reference

https://github.com/ARM-software/meabo

wa Documentation, Release 3.4.0.dev1

constraint: value > 0

default: 16384

loops: type: 'integer'

Number of iterations that core loop is executed.

aliases: 'num_iterations'

constraint: value > 0

default: 1000

block_size: type: 'integer'

Block size used in Phase 1.

constraint: value > 0

default: 8

num_cpus: type: 'integer'

Number of total CPUs that the application can bind threads to.

constraint: value > 0

default: 6

per_phase_cpu_ids: type: 'list_of_ints'

Sets which cores each phase is run on.

constraint: all(v >= -1 for v in value)

default: [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]

num_hwcntrs: type: 'integer'

Only available when using PAPI. Controls how many hardware counters PAPI will get access to.

constraint: value >= 0

default: 7

run_phases: type: 'list_of_ints'

Controls which phases to run.

constraint: all(0 < v <= 10 for v in value)

default: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

threads: type: 'integer'

Controls how many threads the application will be using.

aliases: 'num_threads'

constraint: value >= 0

default: 0

bind_to_cpu_set: type: 'integer'

Controls whether threads will be bound to a core set, or each individual thread will be bound to a specific core
within the core set.

constraint: 0 <= value <= 1

4.1. Plugin Reference 189

wa Documentation, Release 3.4.0.dev1

default: 1

llist_size: type: 'integer'

Size of the linked list available for each thread.

constraint: value > 0

default: 16777216

num_particles: type: 'integer'

Number of particles used in Phase 8.

constraint: value > 0

default: 1048576

num_palindromes: type: 'integer'

Number of palindromes used in Phase 9.

constraint: value > 0

default: 1024

num_randomloc: type: 'integer'

Number of random memory locations accessed in Phase 10.

constraint: value > 0

default: 2097152

timeout: type: 'integer'

Timeout for execution of the test.

aliases: 'run_timeout'

constraint: value > 0

default: 2700

memcpy

Runs memcpy in a loop.

This will run memcpy in a loop for a specified number of times on a buffer of a specified size. Additionally, the affinity
of the test can be set to one or more specific cores.

This workload is single-threaded. It generates no scores or metrics by itself.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

190 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

buffer_size: type: 'integer'

Specifies the size, in bytes, of the buffer to be copied.

default: 5242880

loops: type: 'integer'

Specfies the number of iterations that will be performed.

aliases: 'iterations'

default: 1000

cpus: type: 'cpu_mask'

The cpus for which the affinity of the test process should be set, specified as a mask, as a list of cpus or a sysfs-style
string. If not specified, all available cores will be used.

default: 0

mongoperf

A utility to check disk I/O performance independently of MongoDB.

It times tests of random disk I/O and presents the results. You can use mongoperf for any case apart from MongoDB.
The mmf true mode is completely generic.

Note: mongoperf seems to ramp up threads in powers of two over a period of tens of seconds (there doesn’t appear
to be a way to change that). Bear this in mind when setting the duration.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

duration: type: 'integer'

Duration of of the workload.

default: 300

4.1. Plugin Reference 191

wa Documentation, Release 3.4.0.dev1

threads: type: 'integer'

Defines the number of threads mongoperf will use in the test. To saturate the system storage system you will
need multiple threads.

default: 16

file_size_mb: type: 'integer'

Test file size in MB.

default: 1

sleep_micros: type: 'integer'

mongoperf will pause for this number of microseconds divided by the the number of threads between each
operation.

default: 0

mmf: type: 'boolean'

When True, use memory mapped files for the tests. Generally:

• when mmf is False, mongoperf tests direct, physical, I/O, without caching. Use a large file size to test
heavy random I/O load and to avoid I/O coalescing.

• when mmf is True, mongoperf runs tests of the caching system, and can use normal file system cache. Use
mmf in this mode to test file system cache behavior with memory mapped files.

default: True

read: type: 'boolean'

When True, perform reads as part of the test. Either read or write must be True.

aliases: 'r'

default: True

write: type: 'boolean'

When True, perform writes as part of the test. Either read or write must be True.

aliases: 'w'

default: True

rec_size_kb: type: 'integer'

The size of each write operation

default: 4

sync_delay: type: 'integer'

Seconds between disk flushes. Only use this if mmf is set to True.

default: 0

192 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

motionmark

A workload to execute the motionmark web based benchmark

MotionMark is a graphics benchmark that measures a browser capability to animate complex scenes at a target frame
rate

Test description: 1. Open browser application 2. Navigate to the motionmark website - http://browserbench.org/
MotionMark/ 3. Execute the benchmark

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

openssl

Benchmark Openssl algorithms using Openssl’s speed command.

The command tests how long it takes to perfrom typical SSL operations using a range of supported algorithms and
ciphers.

By defalt, this workload will use openssl installed on the target, however it is possible to provide an alternative binary
as a workload resource.

aliases

ossl-aes-128-cbc algorithm=``’aes-128-cbc’``

ossl-aes-192-cbc algorithm=``’aes-192-cbc’``

ossl-aes-256-cbc algorithm=``’aes-256-cbc’``

ossl-aes-128-gcm algorithm=``’aes-128-gcm’``

ossl-aes-192-gcm algorithm=``’aes-192-gcm’``

ossl-aes-256-gcm algorithm=``’aes-256-gcm’``

4.1. Plugin Reference 193

http://browserbench.org/MotionMark/
http://browserbench.org/MotionMark/

wa Documentation, Release 3.4.0.dev1

ossl-sha1 algorithm=``’sha1’``

ossl-sha256 algorithm=``’sha256’``

ossl-sha384 algorithm=``’sha384’``

ossl-sha512 algorithm=``’sha512’``

ossl-rsa algorithm=``’rsa’``

ossl-dsa algorithm=``’dsa’``

ossl-ecdh algorithm=``’ecdh’``

ossl-ecdsa algorithm=``’ecdsa’``

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

algorithm: type: 'str'

Algorithm to benchmark.

allowed values: 'aes-128-cbc', 'aes-192-cbc', 'aes-256-cbc', 'aes-128-gcm', 'aes-192-gcm',
'aes-256-gcm', 'sha1', 'sha256', 'sha384', 'sha512', 'rsa', 'dsa', 'ecdh', 'ecdsa'

default: 'aes-256-cbc'

threads: type: 'integer'

The number of threads to use

default: 1

use_system_binary: type: 'boolean'

If True, the system Openssl binary will be used. Otherwise, use the binary provided in the workload resources.

default: True

194 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

pcmark

A workload to execute the Work x.0 benchmarks within PCMark - https://www.futuremark.com/benchmarks/
pcmark-android

Test description: 1. Open PCMark application 2. Swipe right to the Benchmarks screen 3. Select the Work x.0
benchmark 4. If needed, install the Work x.0 benchmark (requires an internet connection) 5. Execute the Work x.0
benchmark

Known working APK versions: 3.0.4061, 2.0.3716

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

Specifies which version of the workload should be run.

allowed values: '3', '2'

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

4.1. Plugin Reference 195

https://www.futuremark.com/benchmarks/pcmark-android
https://www.futuremark.com/benchmarks/pcmark-android

wa Documentation, Release 3.4.0.dev1

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

recentfling

Tests UI jank on android devices.

For this workload to work, recentfling.sh and defs.sh must be placed in ~/.workload_automation/
dependencies/recentfling/. These can be found in the AOSP Git repository.

To change the apps that are opened at the start of the workload you will need to modify the defs.sh file. You will need
to add your app to dfltAppList and then add a variable called {app_name}Activity with the name of the activity
to launch (where {add_name} is the name you put into dfltAppList).

You can get a list of activities available on your device by running adb shell pm list packages -f

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

196 Chapter 4. Plugin Reference

https://android.googlesource.com/platform/system/extras/+/master/tests/workloads

wa Documentation, Release 3.4.0.dev1

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

loops: type: 'integer'

The number of test iterations.

default: 3

start_apps: type: 'boolean'

If set to False,no apps will be started before flinging through the recent apps list (in which the assumption is
there are already recently started apps in the list.

default: True

device_name: type: 'str'

If set, recentfling will use the fling parameters for this device instead of automatically guessing the device. This
can also be used if the device is not supported by recentfling, but its screensize is similar to that of one that is
supported.

For possible values, check your recentfling.sh. At the time of writing, valid values are: ‘shamu’, ‘hammerhead’,
‘angler’, ‘ariel’, ‘mtp8996’, ‘bullhead’ or ‘volantis’.

rt-app

A test application that simulates configurable real-time periodic load.

rt-app is a test application that starts multiple periodic threads in order to simulate a real-time periodic load. It supports
SCHED_OTHER, SCHED_FIFO, SCHED_RR as well as the AQuoSA framework and SCHED_DEADLINE.

The load is described using JSON-like config files. Below are a couple of simple examples.

Simple use case which creates a thread that run 1ms then sleep 9ms until the use case is stopped with Ctrl+C:

{
"tasks" : {

"thread0" : {
"loop" : -1,
"run" : 20000,
"sleep" : 80000

}
},
"global" : {

"duration" : 2,
"calibration" : "CPU0",
"default_policy" : "SCHED_OTHER",
"pi_enabled" : false,
"lock_pages" : false,
"logdir" : "./",
"log_basename" : "rt-app1",
"ftrace" : false,
"gnuplot" : true,

}
}

4.1. Plugin Reference 197

wa Documentation, Release 3.4.0.dev1

Simple use case with 2 threads that runs for 10 ms and wake up each other until the use case is stopped with Ctrl+C

{
"tasks" : {

"thread0" : {
"loop" : -1,
"run" : 10000,
"resume" : "thread1",
"suspend" : "thread0"

},
"thread1" : {

"loop" : -1,
"run" : 10000,
"resume" : "thread0",
"suspend" : "thread1"

}
}

}

Please refer to the existing configs in $WA_ROOT/wa/workloads/rt_app/use_case for more examples.

The upstream version of rt-app is hosted here:

https://github.com/scheduler-tools/rt-app

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If set to True, rt-app binary will be uninstalled from the device at the end of the run.

aliases: 'uninstall_on_exit'

default: False

config: type: 'str'

Use case configuration file to run with rt-app. This may be either the name of one of the “standard” configurations
included with the workload. or a path to a custom JSON file provided by the user. Either way, the “.json” extension
is implied and will be added automatically if not specified in the argument.

The following is the list of standard configurations currently included with the workload: camera-long.json,
taskset.json, camera-short.json, browser-short.json, mp3-long.json, spreading-tasks.json, video-short.json, mp3-
short.json, browser-long.json, video-long.json

default: 'taskset'

duration: type: 'integer'

Duration of the workload execution in Seconds. If specified, this will override the corresponding parameter in
the JSON config.

198 Chapter 4. Plugin Reference

https://github.com/scheduler-tools/rt-app

wa Documentation, Release 3.4.0.dev1

cpus: type: 'cpu_mask'

Constrain execution to specific CPUs.

aliases: 'taskset_mask'

default: 0

force_install: type: 'boolean'

If set to True, rt-app binary will always be deployed to the target device at the beginning of the run, regardless
of whether it was already installed there.

default: False

schbench

Benchmark providing detailed latency distribution statistics for scheduler wakeups.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

runtime: type: 'integer'

How long to run before exiting (seconds)

aliases: 'timeout'

default: 30

message_threads: type: 'integer'

number of message threads

default: 2

threads: type: 'integer'

worker threads per message thread

default: 16

sleeptime: type: 'integer'

Message thread latency (usec)

default: 30000

4.1. Plugin Reference 199

wa Documentation, Release 3.4.0.dev1

cputime: type: 'integer'

How long to think during loop

default: 30000

auto: type: 'boolean'

grow thread count until latencies hurt

default: False

pipe: type: 'integer'

transfer size bytes to simulate a pipe test

default: 0

rps: type: 'integer'

requests per second mode (count)

default: 0

intervaltime: type: 'integer'

interval for printing latencies (seconds)

shellscript

Runs an arbitrary shellscript on the target.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

script_file: (mandatory) type: 'str'

The path (on the host) to the shell script file. This must be an absolute path (though it may contain ~).

argstring: type: 'str'

A string that should contain arguments passed to the script.

default: ''

as_root: type: 'boolean'

Specify whether the script should be run as root.

default: False

200 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

timeout: type: 'integer'

Timeout, in seconds, for the script run time.

default: 60

speedometer

A workload to execute the speedometer 2.0 web based benchmark. Requires device to be rooted. This workload will
only with Android 9+ devices if connected via TCP, or Android 5+ if connected via USB.

Test description:

1. Host a local copy of the Speedometer website, and make it visible to the device via ADB.

2. Open chrome via an intent to access the local copy.

3. Execute the benchmark - the copy has been modified to trigger the start of the benchmark.

4. The benchmark will write to the browser’s sandboxed local storage to signal the benchmark has completed. This
local storage is monitored by this workload.

Known working chrome version 83.0.4103.106

To modify the archived speedometer workload:

1. Run ‘git clone https://github.com/WebKit/webkit’

2. Copy PerformanceTests/Speedometer to a directory called document_root, renaming Speedometer to Speedome-
ter2.0

3. Modify document_root/Speedometer2.0/index.html:

3a. Remove the ‘defer’ attribute from the <script> tags within the <head> section. 3b. Add
‘<script>startTest();</script>’ to the very end of the <body> section.

4. Modify document_root/Speedometer2.0/resources/main.js:

4a. Add the listed code after this line:

document.getElementById(‘result-number’).textContent = results.formattedMean;

Code to add:

if (location.search.length > 1) {
var parts = location.search.substring(1).split('&');
for (var i = 0; i < parts.length; i++) {

var keyValue = parts[i].split('=');
var key = keyValue[0];
var value = keyValue[1];
if (key === "reportEndId") {

window.localStorage.setItem('reportEndId', value);
}

}
}

5. Run ‘tar -cpzf speedometer_archive.tgz document_root’

6. Copy the tarball into the workloads/speedometer directory

7. If appropriate, update the commit info in the LICENSE file.

4.1. Plugin Reference 201

https://github.com/WebKit/webkit

wa Documentation, Release 3.4.0.dev1

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

chrome_package: type: 'str'

The app package for the browser that will be launched.

allowed values: 'org.chromium.chrome', 'com.android.chrome', 'org.bromite.chromium'

default: 'com.android.chrome'

stress-ng

Run the stress-ng benchmark.

stress-ng will stress test a computer system in various selectable ways. It was designed to exercise various physical
subsystems of a computer as well as the various operating system kernel interfaces.

stress-ng can also measure test throughput rates; this can be useful to observe performance changes across different
operating system releases or types of hardware. However, it has never been intended to be used as a precise benchmark
test suite, so do NOT use it in this manner.

The official website for stress-ng is at: http://kernel.ubuntu.com/~cking/stress-ng/

Source code are available from: http://kernel.ubuntu.com/git/cking/stress-ng.git/

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

202 Chapter 4. Plugin Reference

http://kernel.ubuntu.com/~cking/stress-ng/
http://kernel.ubuntu.com/git/cking/stress-ng.git/

wa Documentation, Release 3.4.0.dev1

stressor: type: 'str'

Stress test case name. The cases listed in allowed values come from the stable release version 0.01.32. The
binary included here compiled from dev version 0.06.01. Refer to man page for the definition of each stressor.

allowed values: 'cpu', 'io', 'fork', 'switch', 'vm', 'pipe', 'yield', 'hdd', 'cache', 'sock',
'fallocate', 'flock', 'affinity', 'timer', 'dentry', 'urandom', 'sem', 'open', 'sigq', 'poll'

default: 'cpu'

extra_args: type: 'str'

Extra arguments to pass to the workload.

Please note that these are not checked for validity.

default: ''

threads: type: 'integer'

The number of workers to run. Specifying a negative or zero value will select the number of online processors.

default: 0

duration: type: 'integer'

Timeout for test execution in seconds

default: 60

sysbench

A modular, cross-platform and multi-threaded benchmark tool for evaluating OS parameters that are important for a
system running a database under intensive load.

The idea of this benchmark suite is to quickly get an impression about system performance without setting up complex
database benchmarks or even without installing a database at all.

Features of SysBench

• file I/O performance

• scheduler performance

• memory allocation and transfer speed

• POSIX threads implementation performance

• database server performance

See: https://github.com/akopytov/sysbench

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

4.1. Plugin Reference 203

https://github.com/akopytov/sysbench

wa Documentation, Release 3.4.0.dev1

uninstall: type: 'boolean'

If True, executables that are installed to the device as part of the workload will be uninstalled again.

default: True

timeout: type: 'integer'

timeout for workload execution (adjust from default if running on a slow target and/or specifying a large value
for max_requests

default: 300

test: type: 'str'

sysbench test to run

allowed values: 'fileio', 'cpu', 'memory', 'threads', 'mutex'

default: 'cpu'

threads: type: 'integer'

The number of threads sysbench will launch.

aliases: 'num_threads'

default: 8

max_requests: type: 'integer'

The limit for the total number of requests.

max_time: type: 'integer'

The limit for the total execution time. If neither this nor max_requests is specified, this will default to 30
seconds.

file_test_mode: type: 'str'

File test mode to use. This should only be specified if test is "fileio"; if that is the case and file_test_mode
is not specified, it will default to "seqwr" (please see sysbench documentation for explanation of various modes).

allowed values: 'seqwr', 'seqrewr', 'seqrd', 'rndrd', 'rndwr', 'rndrw'

cmd_params: type: 'str'

Additional parameters to be passed to sysbench as a single string.

default: ''

cpus: type: 'cpu_mask'

The processes spawned by sysbench will be pinned to cores as specified by this parameter. Can be provided as
a mask, a list of cpus or a sysfs-style string.

aliases: 'taskset_mask'

default: 0

204 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

templerun2

Temple Run 2 game.

Sequel to Temple Run. 3D on-the-rails racer.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

4.1. Plugin Reference 205

wa Documentation, Release 3.4.0.dev1

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

thechase

The Chase demo showcasing the capabilities of Unity game engine.

This demo, is a static video-like game demo, that demonstrates advanced features of the unity game engine. It loops
continuously until terminated.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

206 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

duration: type: 'integer'

Duration, in seconds, note that the demo loops the same (roughly) 60 second sceene until stopped.

default: 70

uibench

Runs a particular activity of the UIBench workload suite. The suite is provided by Google as a testbench for the Android
UI.

4.1. Plugin Reference 207

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/tests/UiBench/

wa Documentation, Release 3.4.0.dev1

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

208 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

activity: type: 'str'

The UIBench activity to be run. Each activity corresponds to a test. If this parameter is ignored, the application
is launched in its main menu. Please note that the available activities vary between versions of UIBench (which
follow AOSP versioning) and the availability of the services under test may depend on the version of the target
Android. We recommend using the APK of UIBench corresponding to the Android version, enforced through
the version parameter to this workload.

duration: type: 'integer'

As activities do not finish, this workload will terminate UIBench after the given duration.

default: 10

uibenchjanktests

Runs a particular test (or list of tests) of the UIBench JankTests test suite. The suite is provided by Google as an
automated version of the UIBench testbench for the Android UI. The workload supports running the default set of tests
without restarting the app or running an arbitrary set of tests with restarting the app in between each test.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

4.1. Plugin Reference 209

https://android.googlesource.com/platform/platform_testing/+/master/tests/jank/uibench/src/com/android/uibench/janktests

wa Documentation, Release 3.4.0.dev1

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

tests: type: 'list_or_string'

Tests to be run. Defaults to running every available subtest in alphabetical order. The app will be restarted for
each subtest, unlike when using full=True.

aliases: 'test'

full: type: 'boolean'

Runs the full suite of tests that the app defaults to when no subtests are specified. The actual tests and their
order might depend on the version of the app. The subtests will be run back to back without restarting the app
in between.

default: False

wait: type: 'boolean'

Forces am instrument to wait until the instrumentation terminates before terminating itself. The net effect is to
keep the shell open until the tests have finished. This flag is not required, but if you do not use it, you will not
see the results of your tests.

default: True

210 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

raw: type: 'boolean'

Outputs results in raw format. Use this flag when you want to collect performance measurements, so that they
are not formatted as test results. This flag is designed for use with the flag -e perf true.

default: True

instrument_args: type: 'OrderedDict'

Extra arguments for am instrument.

default:

{

}

no_hidden_api_checks: type: 'boolean'

Disables restrictions on the use of hidden APIs.

default: False

vellamo

Android benchmark designed by Qualcomm.

Vellamo began as a mobile web benchmarking tool that today has expanded to include three primary chapters. The
Browser Chapter evaluates mobile web browser performance, the Multicore chapter measures the synergy of multiple
CPU cores, and the Metal Chapter measures the CPU subsystem performance of mobile processors. Through click-
and-go test suites, organized by chapter, Vellamo is designed to evaluate: UX, 3D graphics, and memory read/write
and peak bandwidth performance, and much more!

Note: Vellamo v3.0 fails to run on Juno

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

4.1. Plugin Reference 211

wa Documentation, Release 3.4.0.dev1

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

Specify the version of Vellamo to be run. If not specified, the latest available version will be used.

allowed values: '2.0.3', '3.0', '3.2.4'

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

212 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

benchmarks: type: 'list_of_strs'

Specify which benchmark sections of Vellamo to be run. Only valid on version 3.0 and newer. NOTE: Browser
benchmark can be problematic and seem to hang,just wait and it will progress after ~5 minutes

allowed values: 'Browser', 'Metal', 'Multi'

default: ['Browser', 'Metal', 'Multi']

browser: type: 'integer'

Specify which of the installed browsers will be used for the tests. The number refers to the order in which
browsers are listed by Vellamo. E.g. 1 will select the first browser listed, 2 – the second, etc. Only valid for
version 3.0.

default: 1

youtube

A workload to perform standard productivity tasks within YouTube.

The workload plays a video from the app, determined by the video_source parameter. While the video is playing, a
some common actions are done such as video seeking, pausing playback and navigating the comments section.

Test description: The video_source parameter determines where the video to be played will be found in the app.
Possible values are search, home, my_videos, and trending.

-A. search - Goes to the search view, does a search for the given term, and plays the first video in the results. The
parameter search_term must also be provided in the agenda for this to work. This is the default mode.

-B. home - Scrolls down once on the app’s home page to avoid ads (if present, would be first video), then select
and plays the video that appears at the top of the list.

-C. my_videos - Goes to the ‘My Videos’ section of the user’s account page and plays a video from there. The
user must have at least one uploaded video for this to work.

-D. trending - Goes to the ‘Trending Videos’ section of the app, and plays the first video in the trending videos
list.

For the selected video source, the following test steps are performed:

1. Navigate to the general app settings page to disable autoplay. This improves test stability and predictability by
preventing screen transition to load a new video while in the middle of the test.

2. Select the video from the source specified above, and dismiss any potential embedded advert that may pop-up
before the actual video.

3. Let the video play for a few seconds, pause it, then resume.

4. Expand the info card that shows video metadata, then collapse it again.

5. Scroll down to the end of related videos and comments under the info card, and then back up to the start. A
maximum of 5 swipe actions is performed in either direction.

Known working APK version: 15.45.32

4.1. Plugin Reference 213

wa Documentation, Release 3.4.0.dev1

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

214 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

markers_enabled: type: 'boolean'

If set to True, workloads will insert markers into logs at various points during execution. These markers may
be used by other plugins or post-processing scripts to provide measurements or statistics for specific parts of the
workload execution.

default: False

video_source: type: 'str'

Determines where to play the video from. This can either be from the YouTube home, my videos section, trending
videos or found in search.

allowed values: 'home', 'my_videos', 'search', 'trending'

default: 'search'

search_term: type: 'str'

The search term to use when video_source is set to search. Ignored otherwise.

default: 'Big Buck Bunny 60fps 4K - Official Blender Foundation Short Film'

youtube_playback

Simple Youtube video playback

This triggers a video streaming playback on Youtube. Unlike the more featureful “youtube” workload, this performs
no other action that starting the video via an intent and then waiting for a certain amount of playback time. This is
therefore only useful when you are confident that the content on the end of the provided URL is stable - that means the
video should have no advertisements attached.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

uninstall: type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

default: False

package_name: type: 'str'

The package name that can be used to specify the workload apk to use.

4.1. Plugin Reference 215

wa Documentation, Release 3.4.0.dev1

install_timeout: type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

version: type: 'str'

The version of the package to be used.

max_version: type: 'str'

The maximum version of the package to be used.

min_version: type: 'str'

The minimum version of the package to be used.

variant: type: 'str'

The variant of the package to be used.

strict: type: 'boolean'

Whether to throw an error if the specified package cannot be found on host.

default: False

force_install: type: 'boolean'

Always re-install the APK, even if matching version is found already installed on the device.

default: False

exact_abi: type: 'boolean'

If True, workload will check that the APK matches the target device ABI, otherwise any suitable APK found
will be used.

default: False

prefer_host_package: type: 'boolean'

If True then a package found on the host will be preferred if it is a valid version and ABI, if not it will fall back
to the version on the target if available. If False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

view: type: 'str'

Manually override the ‘View’ of the workload for use with instruments such as the fps instrument. If not speci-
fied, a workload dependant ‘View’ will be automatically generated.

video_url: type: 'str'

URL of video to play

default: 'https://www.youtube.com/watch?v=YE7VzlLtp-4'

duration: type: 'integer'

Number of seconds of video to play

default: 20

216 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

4.1.2 Instruments

• apk_version

• cpufreq

• delay

• dmesg

• energy_measurement

• execution_time

• file_poller

• fps

• hwmon

• interrupts

• perf

• perfetto

• proc_stat

• screen_capture

• serialmon

• sysfs_extractor

• trace-cmd

apk_version

Extracts APK versions for workloads that have them.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

4.1. Plugin Reference 217

wa Documentation, Release 3.4.0.dev1

cpufreq

Collects dynamic frequency (DVFS) settings before and after workload execution.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

paths: type: 'list_of_strs'

A list of paths to be pulled from the device. These could be directories as well as files.

global alias: 'sysfs_extract_dirs'

use_tmpfs: type: 'boolean'

Specifies whether tmpfs should be used to cache sysfile trees and then pull them down as a tarball. This is
significantly faster then just copying the directory trees from the device directly, but requires root and may not
work on all devices. Defaults to True if the device is rooted and False if it is not.

tmpfs_mount_point: type: 'str'

Mount point for tmpfs partition used to store snapshots of paths.

tmpfs_size: type: 'str'

Size of the tempfs partition.

default: '32m'

delay

This instrument introduces a delay before beginning a new spec, a new job or before the main execution of a workload.

The delay may be specified as either a fixed period or a temperature threshold that must be reached.

Optionally, if an active cooling solution is available on the device to speed up temperature drop between runs, it may
be controlled using this instrument.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

218 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

temperature_file: type: 'str'

Full path to the sysfile on the target that contains the target’s temperature.

global alias: 'thermal_temp_file'

default: '/sys/devices/virtual/thermal/thermal_zone0/temp'

temperature_timeout: type: 'integer'

The timeout after which the instrument will stop waiting even if the specified threshold temperature is not reached.
If this timeout is hit, then a warning will be logged stating the actual temperature at which the timeout has ended.

global alias: 'thermal_timeout'

default: 600

temperature_poll_period: type: 'integer'

How long to sleep (in seconds) between polling current target temperature.

global alias: 'thermal_sleep_time'

default: 5

temperature_between_specs: type: 'integer'

Temperature (in target-specific units) the target must cool down to before the iteration spec will be run.

If this is set to 0 then the devices initial temperature will used as the threshold.

Note: This cannot be specified at the same time as fixed_between_specs

global alias: 'thermal_threshold_between_specs'

fixed_between_specs: type: 'integer'

How long to sleep (in seconds) before starting a new workload spec.

Note: This cannot be specified at the same time as temperature_between_specs

global alias: 'fixed_delay_between_specs'

temperature_between_jobs: type: 'integer'

Temperature (in target-specific units) the target must cool down to before the next job will be run.

If this is set to 0 then the devices initial temperature will used as the threshold.

Note: This cannot be specified at the same time as fixed_between_jobs

aliases: 'temperature_between_iterations'

global alias: 'thermal_threshold_between_jobs'

fixed_between_jobs: type: 'integer'

How long to sleep (in seconds) before starting each new job.

Note: This cannot be specified at the same time as temperature_between_jobs

4.1. Plugin Reference 219

wa Documentation, Release 3.4.0.dev1

aliases: 'fixed_between_iterations'

global alias: 'fixed_delay_between_jobs'

fixed_before_start: type: 'integer'

How long to sleep (in seconds) after setup for an iteration has been performed but before running the workload.

Note: This cannot be specified at the same time as temperature_before_start

global alias: 'fixed_delay_before_start'

temperature_before_start: type: 'integer'

Temperature (in device-specific units) the device must cool down to just before the actual workload execution
(after setup has been performed).

Note: This cannot be specified at the same time as fixed_between_jobs

global alias: 'thermal_threshold_before_start'

active_cooling: type: 'boolean'

This instrument supports an active cooling solution while waiting for the device temperature to drop to the
threshold. If you wish to use this feature please ensure the relevant module is installed on the device.

default: False

dmesg

Collected dmesg output before and during the run.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

loglevel: type: 'integer'

Set loglevel for console output.

allowed values: 0, 1, 2, 3, 4, 5, 6, 7

220 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

energy_measurement

This instrument is designed to be used as an interface to the various energy measurement instruments located in devlib.

This instrument should be used to provide configuration for any of the Energy Instrument Backends rather than speci-
fying configuration directly.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

instrument: (mandatory) type: 'str'

Specify the energy instruments to be enabled.

allowed values: 'daq', 'energy_probe', 'acme_cape', 'monsoon', 'juno_readenergy',
'arm_energy_probe'

instrument_parameters: type: 'OrderedDict'

Specify the parameters used to initialize the desired instruments. To see parameters available for a particular
instrument, run

wa show <instrument name>

See help for instrument parameter to see available options for <instrument name>.

default:

{

}

sites: type: 'list_or_string'

Specify which sites measurements should be collected from, if not specified the measurements will be collected
for all available sites.

kinds: type: 'list_or_string'

Specify the kinds of measurements should be collected, if not specified measurements will be collected for all
available kinds.

channels: type: 'list_or_string'

Specify the channels to be collected, if not specified the measurements will be collected for all available channels.

4.1. Plugin Reference 221

wa Documentation, Release 3.4.0.dev1

execution_time

Measure how long it took to execute the run() methods of a Workload.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

file_poller

Polls the given files at a set sample interval. The values are output in CSV format.

This instrument places a file called poller.csv in each iterations result directory. This file will contain a timestamp
column which will be in uS, the rest of the columns will be the contents of the polled files at that time.

This instrument will strip any commas or new lines for the files’ values before writing them.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

sample_interval: type: 'integer'

The interval between samples in mS.

default: 1000

files: (mandatory) type: 'list_or_string'

A list of paths to the files to be polled

labels: type: 'list_or_string'

A list of lables to be used in the CSV output for the corresponding files. This cannot be used if a * wildcard is
used in a path.

align_with_ftrace: type: 'boolean'

Insert a marker into ftrace that aligns with the first timestamp. During output processing, extract the marker and
use it’s timestamp to adjust the timestamps in the collected csv so that they align with ftrace.

default: False

222 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

as_root: type: 'boolean'

Whether or not the poller will be run as root. This should be used when the file you need to poll can only be
accessed by root.

default: False

fps

Measures Frames Per Second (FPS) and associated metrics for a workload.

Note: This instrument depends on pandas Python library (which is not part of standard WA dependencies), so you
will need to install that first, before you can use it.

Android L and below use SurfaceFlinger to calculate the FPS data. Android M and above use gfxinfo to calculate the
FPS data.

SurfaceFlinger: The view is specified by the workload as view attribute. This defaults to 'SurfaceView' for game
workloads, and None for non-game workloads (as for them FPS mesurement usually doesn’t make sense). Individual
workloads may override this.

gfxinfo: The view is specified by the workload as package attribute. This is because gfxinfo already processes for all
views in a package.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

drop_threshold: type: 'numeric'

Data points below this FPS will be dropped as they do not constitute “real” gameplay. The assumption being that
while actually running, the FPS in the game will not drop below X frames per second, except on loading screens,
menus, etc, which should not contribute to FPS calculation.

default: 5

keep_raw: type: 'boolean'

If set to True, this will keep the raw dumpsys output in the results directory (this is maily used for debugging)
Note: frames.csv with collected frames data will always be generated regardless of this setting.

default: False

crash_threshold: type: 'float'

Specifies the threshold used to decided whether a measured/expected frames ration indicates a content crash.
E.g. a value of 0.75 means the number of actual frames counted is a quarter lower than expected, it will treated
as a content crash.

If set to zero, no crash check will be performed.

4.1. Plugin Reference 223

wa Documentation, Release 3.4.0.dev1

default: 0.7

period: type: 'float'

Specifies the time period between polling frame data in seconds when collecting frame data. Using a lower value
improves the granularity of timings when recording actions that take a short time to complete. Note, this will
produce duplicate frame data in the raw dumpsys output, however, this is filtered out in frames.csv. It may also
affect the overall load on the system.

The default value of 2 seconds corresponds with the NUM_FRAME_RECORDS in an-
droid/services/surfaceflinger/FrameTracker.h (as of the time of writing currently 128) and a frame rate of
60 fps that is applicable to most devices.

constraint: value > 0

default: 2

force_surfaceflinger: type: 'boolean'

By default, the method to capture fps data is based on Android version. If this is set to true, force the instrument
to use the SurfaceFlinger method regardless of its Android version.

default: False

hwmon

Hardware Monitor (hwmon) is a generic Linux kernel subsystem, providing access to hardware monitoring components
like temperature or voltage/current sensors.

Data from hwmon that are a snapshot of a fluctuating value, such as temperature and voltage, are reported once at the
beginning and once at the end of the workload run. Data that are a cumulative total of a quantity, such as energy (which
is the cumulative total of power consumption), are reported as the difference between the values at the beginning and
at the end of the workload run.

There is currently no functionality to filter sensors: all of the available hwmon data will be reported.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

224 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

interrupts

Pulls the /proc/interrupts file before and after workload execution and diffs them to show what interrupts occurred
during that time.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

perf

Perf is a Linux profiling with performance counters. Simpleperf is an Android profiling tool with performance counters.

It is highly recomended to use perf_type = simpleperf when using this instrument on android devices since it recognises
android symbols in record mode and is much more stable when reporting record .data files. For more information
see simpleperf documentation at: https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/
README.md

Performance counters are CPU hardware registers that count hardware events such as instructions executed, cache-
misses suffered, or branches mispredicted. They form a basis for profiling applications to trace dynamic control flow
and identify hotspots.

perf accepts options and events. If no option is given the default ‘-a’ is used. For events, the default events for perf
are migrations and cs. The default events for simpleperf are raw-cpu-cycles, raw-l1-dcache, raw-l1-dcache-refill, raw-
instructions-retired. They both can be specified in the config file.

Events must be provided as a list that contains them and they will look like this

(for perf_type = perf) perf_events = ['migrations', 'cs']
(for perf_type = simpleperf) perf_events = ['raw-cpu-cycles', 'raw-l1-dcache']

Events can be obtained by typing the following in the command line on the device

perf list
simpleperf list

Whereas options, they can be provided as a single string as following

perf_options = '-a -i'
perf_options = '--app com.adobe.reader'

Options can be obtained by running the following in the command line

man perf-stat

4.1. Plugin Reference 225

https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md

wa Documentation, Release 3.4.0.dev1

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

perf_type: type: 'str'

Specifies which type of perf binaries to install. Use simpleperf for collecting perf data on android systems.

global alias: 'perf_type'

allowed values: 'perf', 'simpleperf'

default: 'perf'

command: type: 'str'

Specifies which perf command to use. If in record mode report command will also be executed and results pulled
from target along with raw data file

global alias: 'perf_command'

allowed values: 'stat', 'record'

default: 'stat'

events: type: 'list_of_strs'

Specifies the events to be counted.

global alias: 'perf_events'

optionstring: type: 'list_or_string'

Specifies options to be used for the perf command. This may be a list of option strings, in which case, multiple
instances of perf will be kicked off – one for each option string. This may be used to e.g. collected different
events from different big.LITTLE clusters. In order to profile a particular application process for android with
simpleperf use the –app option e.g. –app com.adobe.reader

global alias: 'perf_options'

default: '-a'

report_option_string: type: 'str'

Specifies options to be used to gather report when record command is used. It’s highly recommended to use
perf_type simpleperf when running on android devices as reporting options are unstable with perf

global alias: 'perf_report_options'

run_report_sample: type: 'boolean'

If true, run ‘perf/simpleperf report-sample’. It only works with the record command.

default: False

report_sample_options: type: 'str'

Specifies options to pass to report-samples when run_report_sample is true.

226 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

labels: type: 'list_of_strs'

Provides labels for perf/simpleperf output for each optionstring. If specified, the number of labels must match
the number of optionstrings.

global alias: 'perf_labels'

force_install: type: 'boolean'

always install perf binary even if perf is already present on the device.

default: False

perfetto

perfetto is an instrument that interacts with Google’s Perfetto tracing infrastructure.

From Perfetto’s website: Perfetto is a production-grade open-source stack for performance instrumentation and trace
analysis. It offers services and libraries for recording system-level and app-level traces, native + java heap profiling, a
library for analyzing traces using SQL and a web-based UI to visualize and explore multi-GB traces.

The instrument either requires Perfetto to be present on the target device or the standalone tracebox binary to be built
from source and included in devlib’s Package Bin directory. For more information, consult the PerfettoCollector doc-
umentation in devlib.

More information can be found on https://perfetto.dev/

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

config: (mandatory) type: 'str'

Path to the Perfetto trace config file.

All the Perfetto-specific tracing configuration should be done inside that file. This config option should just take
a full filesystem path to where the config can be found.

force_tracebox: type: 'boolean'

Install tracebox even if traced is already running on the target device. If set to true, the tracebox binary needs to
be placed in devlib’s Package Bin directory.

default: False

4.1. Plugin Reference 227

https://perfetto.dev/

wa Documentation, Release 3.4.0.dev1

proc_stat

Collect CPU load information from /proc/stat.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

period: type: 'integer'

Time (in seconds) between collections.

constraint: value > 0

default: 5

screen_capture

A simple instrument which captures the screen on the target devices with a user-specified period.

Please note that if a too short period is specified, then this instrument will capture the screen as fast as possible, rather
than at the specified periodicity.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

period: type: 'integer'

Period (in seconds) at which to capture the screen on the target.

default: 10

228 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

serialmon

Records the traffic on a serial connection

The traffic on a serial connection is monitored and logged to a file. In the event that the device is reset, the instrument
will stop monitoring during the reset, and will reconnect once the reset has completed. This is to account for devices
(i.e., the Juno) which utilise the serial connection to reset the board.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

serial_port: type: 'str'

The serial device to monitor.

default: '/dev/ttyS0'

baudrate: type: 'integer'

The baud-rate to use when connecting to the serial connection.

default: 115200

sysfs_extractor

Collects the contest of a set of directories, before and after workload execution and diffs the result.

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

paths: (mandatory) type: 'list_of_strs'

A list of paths to be pulled from the device. These could be directories as well as files.

global alias: 'sysfs_extract_dirs'

use_tmpfs: type: 'boolean'

Specifies whether tmpfs should be used to cache sysfile trees and then pull them down as a tarball. This is
significantly faster then just copying the directory trees from the device directly, but requires root and may not
work on all devices. Defaults to True if the device is rooted and False if it is not.

4.1. Plugin Reference 229

wa Documentation, Release 3.4.0.dev1

tmpfs_mount_point: type: 'str'

Mount point for tmpfs partition used to store snapshots of paths.

tmpfs_size: type: 'str'

Size of the tempfs partition.

default: '32m'

trace-cmd

trace-cmd is an instrument which interacts with ftrace Linux kernel internal tracer

From trace-cmd man page:

trace-cmd command interacts with the ftrace tracer that is built inside the Linux kernel. It interfaces with the ftrace
specific files found in the debugfs file system under the tracing directory.

trace-cmd reads a list of events it will trace, which can be specified in the config file as follows

trace_events = ['irq*', 'power*']

If no event is specified, a default set of events that are generally considered useful for debugging/profiling purposes
will be enabled.

The list of available events can be obtained by rooting and running the following command line on the device

trace-cmd list

You may also specify trace_buffer_size setting which must be an integer that will be used to set the ftrace buffer
size. It will be interpreted as KB:

trace_cmd_buffer_size = 8000

The maximum buffer size varies from device to device, but there is a maximum and trying to set buffer size beyond that
will fail. If you plan on collecting a lot of trace over long periods of time, the buffer size will not be enough and you
will only get trace for the last portion of your run. To deal with this you can set the trace_mode setting to 'record'
(the default is 'start'):

trace_cmd_mode = 'record'

This will cause trace-cmd to trace into file(s) on disk, rather than the buffer, and so the limit for the max size of the
trace is set by the storage available on device. Bear in mind that 'record' mode is more intrusive than the default, so
if you do not plan on generating a lot of trace, it is best to use the default 'start' mode.

Note: Mode names correspond to the underlying trace-cmd executable’s command used to implement them. You can
find out more about what is happening in each case from trace-cmd documentation: https://lwn.net/Articles/341902/.

This instrument comes with an trace-cmd binary that will be copied and used on the device, however post-processing
will be, by default, done on-host and you must have trace-cmd installed and in your path. On Ubuntu systems, this may
be done with:

sudo apt-get install trace-cmd

230 Chapter 4. Plugin Reference

https://lwn.net/Articles/341902/

wa Documentation, Release 3.4.0.dev1

Alternatively, you may set report_on_target parameter to True to enable on-target processing (this is useful when
running on non-Linux hosts, but is likely to take longer and may fail on particularly resource-constrained targets).

parameters

cleanup_assets: type: 'boolean'

If True, assets that are deployed or created by the plugin will be removed again from the device.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

events: type: 'list_of_strs'

Specifies the list of events to be traced. Each event in the list will be passed to trace-cmd with -e parameter and
must be in the format accepted by trace-cmd.

global alias: 'trace_events'

default: ['sched*', 'irq*', 'power*', 'thermal*']

functions: type: 'list_of_strs'

Specifies the list of functions to be traced.

global alias: 'trace_functions'

buffer_size: type: 'integer'

Attempt to set ftrace buffer size to the specified value (in KB). Default buffer size may need to be increased for
long-running workloads, or if a large number of events have been enabled. Note: there is a maximum size that
the buffer can be set, and that varies from device to device. Attempting to set buffer size higher than this will
fail. In that case, this instrument will set the size to the highest possible value by going down from the specified
size in buffer_size_step intervals.

global alias: 'trace_buffer_size'

top_buffer_size: type: 'integer'

The same as buffer_size except it sets the size of the top-level buffer instead of the devlib one. If left unset, it
will default to the same as the devlib buffer size.

global alias: 'trace_top_buffer_size'

buffer_size_step: type: 'integer'

Defines the decremental step used if the specified buffer_size could not be set. This will be subtracted form
the buffer size until set succeeds or size is reduced to 1MB.

global alias: 'trace_buffer_size_step'

default: 1000

report: type: 'boolean'

Specifies whether reporting should be performed once the binary trace has been generated.

default: True

no_install: type: 'boolean'

Do not install the bundled trace-cmd and use the one on the device instead. If there is not already a trace-cmd
on the device, an error is raised.

4.1. Plugin Reference 231

wa Documentation, Release 3.4.0.dev1

default: False

report_on_target: type: 'boolean'

When enabled generation of reports will be done host-side because the generated file is very large. If trace-cmd is
not available on the host device this setting can be disabled and the report will be generated on the target device.

Note: This requires the latest version of trace-cmd to be installed on the host (the one in your distribution’s
repos may be too old).

default: False

4.1.3 Energy Instrument Backends

• acme_cape

• arm_energy_probe

• daq

• energy_probe

• juno_readenergy

• monsoon

acme_cape

BayLibre ACME cape

This backend relies on iio-capture utility:

https://github.com/BayLibre/iio-capture

For more information about ACME cape please see:

https://baylibre.com/acme/

parameters

iio_capture: type: 'str'

Path to the iio-capture binary will be taken from the environment, if not specfied.

host: type: 'str'

Host name (or IP address) of the ACME cape board.

default: 'baylibre-acme.local'

iio_devices: type: 'list_or_string'

default: 'iio:device0'

232 Chapter 4. Plugin Reference

https://github.com/BayLibre/iio-capture
https://baylibre.com/acme/

wa Documentation, Release 3.4.0.dev1

buffer_size: type: 'integer'

Size of the capture buffer (in KB).

default: 256

keep_raw: type: 'boolean'

If set to True, this will prevent the raw files obtained from the device before processing from being deleted (this
is maily used for debugging).

default: False

arm_energy_probe

Arm Energy Probe arm-probe version

An alternative Arm Energy Probe backend that relies on arm-probe utility:

https://git.linaro.org/tools/arm-probe.git

For more information about Arm Energy Probe please see

https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline/
arm-energy-probe

parameters

config_file: type: 'str'

Path to config file of the AEP

keep_raw: type: 'boolean'

If set to True, this will prevent the raw files obtained from the device before processing from being deleted (this
is maily used for debugging).

default: False

daq

National Instruments Data Acquisition device

For more information about the device, please see the NI website:

http://www.ni.com/data-acquisition/

This backend has been used with USB-62xx and USB-63xx devices, though other models (e.g. the PCIe variants will
most likely also work).

This backend relies on the daq-server running on a machinge connected to a DAQ device:

https://github.com/ARM-software/daq-server

The server is necessary because DAQ devices have drivers only for Windows and very specific (old) Linux kernels, so
the machine interfacing with the DAQ is most likely going to be different from the machinge running WA.

4.1. Plugin Reference 233

https://git.linaro.org/tools/arm-probe.git
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline/arm-energy-probe
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline/arm-energy-probe
http://www.ni.com/data-acquisition/
https://github.com/ARM-software/daq-server

wa Documentation, Release 3.4.0.dev1

parameters

resistor_values: type: 'list_of_numbers'

The values of resistors (in Ohms) across which the voltages are measured on.

global alias: 'daq_resistor_values'

labels: type: 'list_of_strs'

‘List of port labels. If specified, the length of the list must match the length of resistor_values.

global alias: 'daq_labels'

host: type: 'str'

The host address of the machine that runs the daq Server which the instrument communicates with.

global alias: 'daq_server_host'

default: 'localhost'

port: type: 'integer'

The port number for daq Server in which daq instrument communicates with.

global alias: 'daq_server_port'

default: 45677

device_id: type: 'str'

The ID under which the DAQ is registered with the driver.

global alias: 'daq_device_id'

default: 'Dev1'

v_range: type: 'str'

Specifies the voltage range for the SOC voltage channel on the DAQ (please refer to daq-server package doc-
umentation for details).

global alias: 'daq_v_range'

default: 2.5

dv_range: type: 'str'

Specifies the voltage range for the resistor voltage channel on the DAQ (please refer to daq-server package
documentation for details).

global alias: 'daq_dv_range'

default: 0.2

sample_rate_hz: type: 'integer'

Specify the sample rate in Hz.

global alias: 'daq_sampling_rate'

default: 10000

channel_map: type: 'list_of_ints'

Represents mapping from logical AI channel number to physical connector on the DAQ (varies between DAQ
models). The default assumes DAQ 6363 and similar with AI channels on connectors 0-7 and 16-23.

global alias: 'daq_channel_map'

234 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

default: (0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23)

keep_raw: type: 'boolean'

If set to True, this will prevent the raw files obtained from the device before processing from being deleted (this
is maily used for debugging).

default: False

energy_probe

Arm Energy Probe caiman version

This backend relies on caiman utility:

https://github.com/ARM-software/caiman

For more information about Arm Energy Probe please see

https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline/
arm-energy-probe

parameters

resistor_values: type: 'list_of_ints'

The values of resistors (in Ohms) across which the voltages are measured on.

labels: type: 'list_of_strs'

‘List of port labels. If specified, the length of the list must match the length of resistor_values.

device_entry: type: 'str'

Path to /dev entry for the energy probe (it should be /dev/ttyACMx)

default: '/dev/ttyACM0'

keep_raw: type: 'boolean'

If set to True, this will prevent the raw files obtained from the device before processing from being deleted (this
is maily used for debugging).

default: False

juno_readenergy

Arm Juno development board on-board energy meters

For more information about Arm Juno board see:

https://developer.arm.com/products/system-design/development-boards/juno-development-board

4.1. Plugin Reference 235

https://github.com/ARM-software/caiman
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline/arm-energy-probe
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline/arm-energy-probe
https://developer.arm.com/products/system-design/development-boards/juno-development-board

wa Documentation, Release 3.4.0.dev1

monsoon

Monsoon Solutions power monitor

To use this instrument, you need to install the monsoon.py script available from the Android Open Source Project. As
of May 2017 this is under the CTS repository:

https://android.googlesource.com/platform/cts/+/master/tools/utils/monsoon.py

Collects power measurements only, from a selection of two channels, the USB passthrough channel and the main output
channel.

parameters

monsoon_bin: type: 'str'

Path to monsoon.py executable. If not provided, PATH is searched.

tty_device: type: 'str'

TTY device to use to communicate with the Power Monitor. If not provided, /dev/ttyACM0 is used.

default: '/dev/ttyACM0'

4.1.4 Output Processors

• cpustates

• csv

• postgres

• sqlite

• status

• targz

• uxperf

cpustates

Process trace-cmd output to generate timelines and statistics of CPU power state (a.k.a P- and C-state) transitions in
the trace.

The results will be written into a subdirectory called “power-stats” under the specified output_basedir.

The output directory will contain the following files:

power-state-stats.csv Power state residency statistics for each CPU. Shows the percentage of time a CPU has spent in
each of its available power states.

parallel-stats.csv Parallel execution stats for each CPU cluster, and combined stats for the whole system.

power-state-timeline.csv Timeline of CPU power states. Shows which power state each CPU is in at a point in time.

state-transitions-timeline.csv Timeline of CPU power state transitions. Each entry shows a CPU’s transition from
one power state to another.

236 Chapter 4. Plugin Reference

https://android.googlesource.com/platform/cts/+/master/tools/utils/monsoon.py

wa Documentation, Release 3.4.0.dev1

utilzation-timeline.csv Timeline of CPU utilizations.

Note: Timeline entries aren’t at regular intervals, but at times of power transition events.

Stats are generated by assembling a pipeline consisting of the following stages:

1. Parse trace into trace events

2. Filter trace events into power state transition events

3. Record power state transitions

4. Convert transitions into a power states.

5. Collapse the power states into timestamped (C state, P state) tuples for each cpu.

6. Update reporters/stats generators with cpu states.

parameters

use_ratios: type: 'boolean'

By default proportional values will be reported as percentages, if this flag is enabled, they will be reported as
ratios instead.

default: False

no_idle: type: 'boolean'

Indicate that there will be no idle transitions in the trace. By default, a core will be reported as being in an
“unknown” state until the first idle transtion for that core. Normally, this is not an issue, as cores are “nudged”
as part of the setup to ensure that there is an idle transtion before the meassured region. However, if all idle
states for the core have been disabled, or if the kernel does not have cpuidle, the nudge will not result in an idle
transition, which would cause the cores to be reported to be in “unknown” state for the entire execution.

If this parameter is set to True, the processor will assume that cores are running prior to the begining of the
issue, and they will leave unknown state on the first frequency transition.

default: False

split_wfi_states: type: 'boolean'

WFI is a very shallow idle state. The core remains powered on when in this state, which means the power usage
while in this state will depend on the current voltage, and therefore current frequency.

Setting this to True will track time spent in WFI at each frequency separately, allowing to gain the most accurate
picture of energy usage.

default: False

4.1. Plugin Reference 237

wa Documentation, Release 3.4.0.dev1

csv

Creates a results.csv in the output directory containing results for all iterations in CSV format, each line containing
a single metric.

parameters

use_all_classifiers: type: 'boolean'

If set to True, this will add a column for every classifier that features in at least one collected metric.

Note: This cannot be True if extra_columns is set.

global alias: 'use_all_classifiers'

default: False

extra_columns: type: 'list_of_strs'

List of classifiers to use as columns.

Note: This cannot be set if use_all_classifiers is True.

postgres

Stores results in a Postgresql database.

The structure of this database can easily be understood by examining the postgres_schema.sql
file (the schema used to generate it): /home/docs/checkouts/readthedocs.org/user_builds/workload-
automation/checkouts/latest/doc/source/../../wa/utils/../commands/postgres_schemas/postgres_schema.sql

parameters

username: type: 'str'

This is the username that will be used to connect to the Postgresql database. Note that depending on whether
the user has privileges to modify the database (normally only possible on localhost), the user may only be able
to append entries.

default: 'postgres'

password: type: 'str'

The password to be used to connect to the specified database with the specified username.

dbname: type: 'str'

Name of the database that will be created or added to. Note, to override this, you can specify a value in your user
wa configuration file.

default: 'wa'

238 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

host: type: 'str'

The host where the Postgresql server is running. The default is localhost (i.e. the machine that wa is running
on). This is useful for complex systems where multiple machines may be executing workloads and uploading
their results to a remote, centralised database.

default: 'localhost'

port: type: 'str'

The port the Postgresql server is running on, on the host. The default is Postgresql’s default, so do not change
this unless you have modified the default port for Postgresql.

default: '5432'

sqlite

Stores results in an sqlite database.

This may be used to accumulate results of multiple runs in a single file.

parameters

database: type: 'str'

Full path to the sqlite database to be used. If this is not specified then a new database file will be created in the
output directory. This setting can be used to accumulate results from multiple runs in a single database. If the
specified file does not exist, it will be created, however the directory of the file must exist.

Note: The value must resolve to an absolute path, relative paths are not allowed; however the value may contain
environment variables and/or the home reference “~”.

global alias: 'sqlite_database'

overwrite: type: 'boolean'

If True, this will overwrite the database file if it already exists. If False (the default) data will be added to the
existing file (provided schema versions match – otherwise an error will be raised).

global alias: 'sqlite_overwrite'

default: False

status

Outputs a txt file containing general status information about which runs failed and which were successful

4.1. Plugin Reference 239

wa Documentation, Release 3.4.0.dev1

targz

Create a tarball of the output directory.

This will create a gzip-compressed tarball of the output directory. By default, it will be created at the same level and
will have the same name as the output directory but with a .tar.gz extensions.

parameters

outfile: type: 'str'

The name of the output file to be used. If this is not an absolute path, the file will be created realtive to the
directory in which WA was invoked. If this contains subdirectories, they must already exist.

The name may contain named format specifiers. Any of the RunInfo fields can be named, resulting in the value
of that filed (e.g. 'start_time') being formatted into the tarball name.

By default, the output file will be created at the same level, share the name of the WA output directory (but with
.tar.gz extension).

delete_output: type: 'boolean'

if set to True, WA output directory will be deleted after the tarball is created.

default: False

uxperf

Parse logcat for UX_PERF markers to produce performance metrics for workload actions using specified instrumen-
tation. An action represents a series of UI interactions to capture. NOTE: The UX_PERF markers are turned off by
default and must be enabled in a agenda file by setting markers_enabled for the workload to True.

4.1.5 Common Targets

This is a list of commonly used targets and their device parameters, to see a complete for a complete reference please
use the WA list command.

generic_android

Device Parameters:

device: type: 'str'

ADB device name

aliases: 'adb_name'

adb_server: type: 'str'

ADB server to connect to.

poll_transfers: type: 'boolean'

File transfers will be polled for activity. Inactive file transfers are cancelled.

default: True

240 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

start_transfer_poll_delay: type: 'integer'

How long to wait (s) for a transfer to complete before polling transfer activity. Requires poll_transfers to be
set.

default: 30

total_transfer_timeout: type: 'integer'

The total time to elapse before a transfer is cancelled, regardless of its activity. Requires poll_transfers to
be set.

default: 3600

transfer_poll_period: type: 'integer'

The period at which transfer activity is sampled. Requires poll_transfers to be set. Too small values may
cause the destination size to appear the same over one or more sample periods, causing improper transfer can-
cellation.

default: 30

adb_as_root: type: 'boolean'

Specify whether the adb server should be started in root mode.

default: False

core_names: type: 'list_of_strs'

List of names of CPU cores in the order that they appear to the kernel. If not specified, it will be inferred from
the platform.

core_clusters: type: 'list_of_ints'

Cluster mapping corresponding to the cores in core_names. Cluster indexing starts at 0. If not specified, this
will be inferred from core_names – consecutive cores with the same name will be assumed to share a cluster.

big_core: type: 'str'

The name of the big cores in a big.LITTLE system. If not specified, this will be inferred, either from the name
(if one of the names in core_names matches known big cores), or by assuming that the last cluster is big.

model: type: 'str'

Hardware model of the platform. If not specified, an attempt will be made to read it from target.

modules: type: 'list'

An additional list of modules to be loaded into the target.

working_directory: type: 'str'

On-target working directory that will be used by WA. This directory must be writable by the user WA logs in as
without the need for privilege elevation.

executables_directory: type: 'str'

On-target directory where WA will install its executable binaries. This location must allow execution. This
location does not need to be writable by unprivileged users or rooted devices (WA will install with elevated
privileges as necessary).

modules: type: 'list'

A list of additional modules to be installed for the target.

4.1. Plugin Reference 241

wa Documentation, Release 3.4.0.dev1

devlib implements functionality for particular subsystems as modules. A number of “default” modules (e.g. for
cpufreq subsystem) are loaded automatically, unless explicitly disabled. If additional modules need to be loaded,
they may be specified using this parameter.

Please see devlib documentation for information on the available modules.

load_default_modules: type: 'boolean'

A number of modules (e.g. for working with the cpufreq subsystem) are loaded by default when a Target is
instantiated. Setting this to True would suppress that, ensuring that only the base Target interface is initialized.

You may want to set this to False if there is a problem with one or more default modules on your platform (e.g.
your device is unrooted and cpufreq is not accessible to unprivileged users), or if Target initialization is taking
too long for your platform.

default: True

shell_prompt: type: 'regex'

A regex that matches the shell prompt on the target.

default: r'^.*(shell|root|juno)@?.*:[/~]\S* *[#$] '

max_async: type: 'integer'

The maximum number of concurent asynchronous connections to the target maintained at any time.

default: 50

package_data_directory: type: 'str'

Directory containing Android data

default: '/data/data'

disable_selinux: type: 'boolean'

If True, the default, and the target is rooted, an attempt will be made to disable SELinux by running setenforce
0 on the target at the beginning of the run.

default: True

logcat_poll_period: type: 'integer'

Polling period for logcat in seconds. If not specified, no polling will be used.

Logcat buffer on android is of limited size and it cannot be adjusted at run time. Depending on the amount of
logging activity, the buffer may not be enought to capture comlete trace for a workload execution. For those
situations, logcat may be polled periodically during the course of the run and stored in a temporary locaiton on
the host. Setting the value of the poll period enables this behavior.

constraint: value > 0

stay_on_mode: type: 'integer'

Specify whether the screen should stay on while the device is charging:

0: never stay on 1: with AC charger 2: with USB charger 4: with wireless charger

Values can be OR-ed together to produce combinations, for instance 7 will cause the screen to stay on when
charging under any method.

constraint: 0 <= value <= 7

242 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

generic_chromeos

Device Parameters:

device: type: 'str'

ADB device name

aliases: 'adb_name'

adb_server: type: 'str'

ADB server to connect to.

poll_transfers: type: 'boolean'

File transfers will be polled for activity. Inactive file transfers are cancelled.

default: True

start_transfer_poll_delay: type: 'integer'

How long to wait (s) for a transfer to complete before polling transfer activity. Requires poll_transfers to be
set.

default: 30

total_transfer_timeout: type: 'integer'

The total time to elapse before a transfer is cancelled, regardless of its activity. Requires poll_transfers to
be set.

default: 3600

transfer_poll_period: type: 'integer'

The period at which transfer activity is sampled. Requires poll_transfers to be set. Too small values may
cause the destination size to appear the same over one or more sample periods, causing improper transfer can-
cellation.

default: 30

adb_as_root: type: 'boolean'

Specify whether the adb server should be started in root mode.

default: False

host: (mandatory) type: 'str'

Host name or IP address of the target.

username: (mandatory) type: 'str'

User name to connect with

password: type: 'str'

Password to use. (When connecting to a passwordless machine set to an empty string to prevent attempting ssh
key authentication.)

keyfile: type: 'str'

Key file to use

4.1. Plugin Reference 243

wa Documentation, Release 3.4.0.dev1

port: type: 'integer'

The port SSH server is listening on on the target.

default: 22

strict_host_check: type: 'boolean'

Specify whether devices should be connected to if their host key does not match the systems known host keys.

default: False

sudo_cmd: type: 'str'

Sudo command to use. Must have {} specified somewhere in the string it indicate where the command to be run
via sudo is to go.

default: 'sudo -k -p ' ' -S -- sh -c {}'

use_scp: type: 'boolean'

Allow using SCP as method of file transfer instead of the default SFTP.

default: False

poll_transfers: type: 'boolean'

File transfers will be polled for activity. Inactive file transfers are cancelled.

default: True

start_transfer_poll_delay: type: 'integer'

How long to wait (s) for a transfer to complete before polling transfer activity. Requires poll_transfers to be
set.

default: 30

total_transfer_timeout: type: 'integer'

The total time to elapse before a transfer is cancelled, regardless of its activity. Requires poll_transfers to
be set.

default: 3600

transfer_poll_period: type: 'integer'

The period at which transfer activity is sampled. Requires poll_transfers to be set. Too small values may
cause the destination size to appear the same over one or more sample periods, causing improper transfer can-
cellation.

default: 30

telnet: type: 'str'

Original shell prompt to expect.

password_prompt: type: 'str'

Password prompt to expect

original_prompt: type: 'str'

Original shell prompt to expect.

core_names: type: 'list_of_strs'

List of names of CPU cores in the order that they appear to the kernel. If not specified, it will be inferred from
the platform.

244 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

core_clusters: type: 'list_of_ints'

Cluster mapping corresponding to the cores in core_names. Cluster indexing starts at 0. If not specified, this
will be inferred from core_names – consecutive cores with the same name will be assumed to share a cluster.

big_core: type: 'str'

The name of the big cores in a big.LITTLE system. If not specified, this will be inferred, either from the name
(if one of the names in core_names matches known big cores), or by assuming that the last cluster is big.

model: type: 'str'

Hardware model of the platform. If not specified, an attempt will be made to read it from target.

modules: type: 'list'

An additional list of modules to be loaded into the target.

working_directory: type: 'str'

On-target working directory that will be used by WA. This directory must be writable by the user WA logs in as
without the need for privilege elevation.

executables_directory: type: 'str'

On-target directory where WA will install its executable binaries. This location must allow execution. This
location does not need to be writable by unprivileged users or rooted devices (WA will install with elevated
privileges as necessary).

modules: type: 'list'

A list of additional modules to be installed for the target.

devlib implements functionality for particular subsystems as modules. A number of “default” modules (e.g. for
cpufreq subsystem) are loaded automatically, unless explicitly disabled. If additional modules need to be loaded,
they may be specified using this parameter.

Please see devlib documentation for information on the available modules.

load_default_modules: type: 'boolean'

A number of modules (e.g. for working with the cpufreq subsystem) are loaded by default when a Target is
instantiated. Setting this to True would suppress that, ensuring that only the base Target interface is initialized.

You may want to set this to False if there is a problem with one or more default modules on your platform (e.g.
your device is unrooted and cpufreq is not accessible to unprivileged users), or if Target initialization is taking
too long for your platform.

default: True

shell_prompt: type: 'regex'

A regex that matches the shell prompt on the target.

default: r'^.*(shell|root|juno)@?.*:[/~]\S* *[#$] '

max_async: type: 'integer'

The maximum number of concurent asynchronous connections to the target maintained at any time.

default: 50

package_data_directory: type: 'str'

Directory containing Android data

default: '/data/data'

4.1. Plugin Reference 245

wa Documentation, Release 3.4.0.dev1

android_working_directory: type: 'str'

On-target working directory that will be used by WA for the android container. This directory must be writable
by the user WA logs in as without the need for privilege elevation.

android_executables_directory: type: 'str'

On-target directory where WA will install its executable binaries for the android container. This location must
allow execution. This location does not need to be writable by unprivileged users or rooted devices (WA will
install with elevated privileges as necessary). directory must be writable by the user WA logs in as without the
need for privilege elevation.

disable_selinux: type: 'boolean'

If True, the default, and the target is rooted, an attempt will be made to disable SELinux by running setenforce
0 on the target at the beginning of the run.

default: True

logcat_poll_period: type: 'integer'

Polling period for logcat in seconds. If not specified, no polling will be used.

Logcat buffer on android is of limited size and it cannot be adjusted at run time. Depending on the amount of
logging activity, the buffer may not be enought to capture comlete trace for a workload execution. For those
situations, logcat may be polled periodically during the course of the run and stored in a temporary locaiton on
the host. Setting the value of the poll period enables this behavior.

constraint: value > 0

stay_on_mode: type: 'integer'

Specify whether the screen should stay on while the device is charging:

0: never stay on 1: with AC charger 2: with USB charger 4: with wireless charger

Values can be OR-ed together to produce combinations, for instance 7 will cause the screen to stay on when
charging under any method.

constraint: 0 <= value <= 7

generic_linux

Device Parameters:

host: (mandatory) type: 'str'

Host name or IP address of the target.

username: (mandatory) type: 'str'

User name to connect with

password: type: 'str'

Password to use. (When connecting to a passwordless machine set to an empty string to prevent attempting ssh
key authentication.)

keyfile: type: 'str'

Key file to use

246 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

port: type: 'integer'

The port SSH server is listening on on the target.

default: 22

strict_host_check: type: 'boolean'

Specify whether devices should be connected to if their host key does not match the systems known host keys.

default: False

sudo_cmd: type: 'str'

Sudo command to use. Must have {} specified somewhere in the string it indicate where the command to be run
via sudo is to go.

default: 'sudo -k -p ' ' -S -- sh -c {}'

use_scp: type: 'boolean'

Allow using SCP as method of file transfer instead of the default SFTP.

default: False

poll_transfers: type: 'boolean'

File transfers will be polled for activity. Inactive file transfers are cancelled.

default: True

start_transfer_poll_delay: type: 'integer'

How long to wait (s) for a transfer to complete before polling transfer activity. Requires poll_transfers to be
set.

default: 30

total_transfer_timeout: type: 'integer'

The total time to elapse before a transfer is cancelled, regardless of its activity. Requires poll_transfers to
be set.

default: 3600

transfer_poll_period: type: 'integer'

The period at which transfer activity is sampled. Requires poll_transfers to be set. Too small values may
cause the destination size to appear the same over one or more sample periods, causing improper transfer can-
cellation.

default: 30

telnet: type: 'str'

Original shell prompt to expect.

password_prompt: type: 'str'

Password prompt to expect

original_prompt: type: 'str'

Original shell prompt to expect.

core_names: type: 'list_of_strs'

List of names of CPU cores in the order that they appear to the kernel. If not specified, it will be inferred from
the platform.

4.1. Plugin Reference 247

wa Documentation, Release 3.4.0.dev1

core_clusters: type: 'list_of_ints'

Cluster mapping corresponding to the cores in core_names. Cluster indexing starts at 0. If not specified, this
will be inferred from core_names – consecutive cores with the same name will be assumed to share a cluster.

big_core: type: 'str'

The name of the big cores in a big.LITTLE system. If not specified, this will be inferred, either from the name
(if one of the names in core_names matches known big cores), or by assuming that the last cluster is big.

model: type: 'str'

Hardware model of the platform. If not specified, an attempt will be made to read it from target.

modules: type: 'list'

An additional list of modules to be loaded into the target.

working_directory: type: 'str'

On-target working directory that will be used by WA. This directory must be writable by the user WA logs in as
without the need for privilege elevation.

executables_directory: type: 'str'

On-target directory where WA will install its executable binaries. This location must allow execution. This
location does not need to be writable by unprivileged users or rooted devices (WA will install with elevated
privileges as necessary).

modules: type: 'list'

A list of additional modules to be installed for the target.

devlib implements functionality for particular subsystems as modules. A number of “default” modules (e.g. for
cpufreq subsystem) are loaded automatically, unless explicitly disabled. If additional modules need to be loaded,
they may be specified using this parameter.

Please see devlib documentation for information on the available modules.

load_default_modules: type: 'boolean'

A number of modules (e.g. for working with the cpufreq subsystem) are loaded by default when a Target is
instantiated. Setting this to True would suppress that, ensuring that only the base Target interface is initialized.

You may want to set this to False if there is a problem with one or more default modules on your platform (e.g.
your device is unrooted and cpufreq is not accessible to unprivileged users), or if Target initialization is taking
too long for your platform.

default: True

shell_prompt: type: 'regex'

A regex that matches the shell prompt on the target.

default: r'^.*(shell|root|juno)@?.*:[/~]\S* *[#$] '

max_async: type: 'integer'

The maximum number of concurent asynchronous connections to the target maintained at any time.

default: 50

248 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

generic_local

Device Parameters:

password: type: 'str'

Password to use for sudo. if not specified, the user will be prompted during intialization.

keep_password: type: 'boolean'

If True (the default), the password will be cached in memory after it is first obtained from the user, so that the
user would not be prompted for it again.

default: True

unrooted: type: 'boolean'

Indicate that the target should be considered unrooted; do not attempt sudo or ask the user for their password.

default: False

core_names: type: 'list_of_strs'

List of names of CPU cores in the order that they appear to the kernel. If not specified, it will be inferred from
the platform.

core_clusters: type: 'list_of_ints'

Cluster mapping corresponding to the cores in core_names. Cluster indexing starts at 0. If not specified, this
will be inferred from core_names – consecutive cores with the same name will be assumed to share a cluster.

big_core: type: 'str'

The name of the big cores in a big.LITTLE system. If not specified, this will be inferred, either from the name
(if one of the names in core_names matches known big cores), or by assuming that the last cluster is big.

model: type: 'str'

Hardware model of the platform. If not specified, an attempt will be made to read it from target.

modules: type: 'list'

An additional list of modules to be loaded into the target.

working_directory: type: 'str'

On-target working directory that will be used by WA. This directory must be writable by the user WA logs in as
without the need for privilege elevation.

executables_directory: type: 'str'

On-target directory where WA will install its executable binaries. This location must allow execution. This
location does not need to be writable by unprivileged users or rooted devices (WA will install with elevated
privileges as necessary).

modules: type: 'list'

A list of additional modules to be installed for the target.

devlib implements functionality for particular subsystems as modules. A number of “default” modules (e.g. for
cpufreq subsystem) are loaded automatically, unless explicitly disabled. If additional modules need to be loaded,
they may be specified using this parameter.

Please see devlib documentation for information on the available modules.

4.1. Plugin Reference 249

wa Documentation, Release 3.4.0.dev1

load_default_modules: type: 'boolean'

A number of modules (e.g. for working with the cpufreq subsystem) are loaded by default when a Target is
instantiated. Setting this to True would suppress that, ensuring that only the base Target interface is initialized.

You may want to set this to False if there is a problem with one or more default modules on your platform (e.g.
your device is unrooted and cpufreq is not accessible to unprivileged users), or if Target initialization is taking
too long for your platform.

default: True

shell_prompt: type: 'regex'

A regex that matches the shell prompt on the target.

default: r'^.*(shell|root|juno)@?.*:[/~]\S* *[#$] '

max_async: type: 'integer'

The maximum number of concurent asynchronous connections to the target maintained at any time.

default: 50

juno_android

Device Parameters:

device: type: 'str'

ADB device name

aliases: 'adb_name'

adb_server: type: 'str'

ADB server to connect to.

poll_transfers: type: 'boolean'

File transfers will be polled for activity. Inactive file transfers are cancelled.

default: True

start_transfer_poll_delay: type: 'integer'

How long to wait (s) for a transfer to complete before polling transfer activity. Requires poll_transfers to be
set.

default: 30

total_transfer_timeout: type: 'integer'

The total time to elapse before a transfer is cancelled, regardless of its activity. Requires poll_transfers to
be set.

default: 3600

transfer_poll_period: type: 'integer'

The period at which transfer activity is sampled. Requires poll_transfers to be set. Too small values may
cause the destination size to appear the same over one or more sample periods, causing improper transfer can-
cellation.

default: 30

250 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

adb_as_root: type: 'boolean'

Specify whether the adb server should be started in root mode.

default: False

core_names: type: 'list_of_strs'

List of names of CPU cores in the order that they appear to the kernel. If not specified, it will be inferred from
the platform.

core_clusters: type: 'list_of_ints'

Cluster mapping corresponding to the cores in core_names. Cluster indexing starts at 0. If not specified, this
will be inferred from core_names – consecutive cores with the same name will be assumed to share a cluster.

big_core: type: 'str'

The name of the big cores in a big.LITTLE system. If not specified, this will be inferred, either from the name
(if one of the names in core_names matches known big cores), or by assuming that the last cluster is big.

model: type: 'str'

Hardware model of the platform. If not specified, an attempt will be made to read it from target.

modules: type: 'list'

An additional list of modules to be loaded into the target.

serial_port: type: 'str'

The serial device/port on the host for the initial connection to the target (used for early boot, flashing, etc).

baudrate: type: 'integer'

Baud rate for the serial connection.

default: 115200

vemsd_mount: type: 'str'

VExpress MicroSD card mount location. This is a MicroSD card in the VExpress device that is mounted on
the host via USB. The card contains configuration files for the platform and firmware and kernel images to be
flashed.

default: '/media/JUNO'

bootloader: type: 'str'

Selects the bootloader mechanism used by the board. Depending on firmware version, a number of possible boot
mechanisms may be use.

Please see devlib documentation for descriptions.

allowed values: 'uefi', 'uefi-shell', 'u-boot', 'bootmon'

default: 'u-boot'

hard_reset_method: type: 'str'

There are a couple of ways to reset VersatileExpress board if the software running on the board becomes unre-
sponsive. Both require configuration to be enabled (please see devlib documentation).

dtr: toggle the DTR line on the serial connection reboottxt: create reboot.txt in the root of the VEMSD
mount.

allowed values: 'dtr', 'reboottxt'

default: 'dtr'

4.1. Plugin Reference 251

wa Documentation, Release 3.4.0.dev1

working_directory: type: 'str'

On-target working directory that will be used by WA. This directory must be writable by the user WA logs in as
without the need for privilege elevation.

executables_directory: type: 'str'

On-target directory where WA will install its executable binaries. This location must allow execution. This
location does not need to be writable by unprivileged users or rooted devices (WA will install with elevated
privileges as necessary).

modules: type: 'list'

A list of additional modules to be installed for the target.

devlib implements functionality for particular subsystems as modules. A number of “default” modules (e.g. for
cpufreq subsystem) are loaded automatically, unless explicitly disabled. If additional modules need to be loaded,
they may be specified using this parameter.

Please see devlib documentation for information on the available modules.

load_default_modules: type: 'boolean'

A number of modules (e.g. for working with the cpufreq subsystem) are loaded by default when a Target is
instantiated. Setting this to True would suppress that, ensuring that only the base Target interface is initialized.

You may want to set this to False if there is a problem with one or more default modules on your platform (e.g.
your device is unrooted and cpufreq is not accessible to unprivileged users), or if Target initialization is taking
too long for your platform.

default: True

shell_prompt: type: 'regex'

A regex that matches the shell prompt on the target.

default: r'^.*(shell|root|juno)@?.*:[/~]\S* *[#$] '

max_async: type: 'integer'

The maximum number of concurent asynchronous connections to the target maintained at any time.

default: 50

package_data_directory: type: 'str'

Directory containing Android data

default: '/data/data'

disable_selinux: type: 'boolean'

If True, the default, and the target is rooted, an attempt will be made to disable SELinux by running setenforce
0 on the target at the beginning of the run.

default: True

logcat_poll_period: type: 'integer'

Polling period for logcat in seconds. If not specified, no polling will be used.

Logcat buffer on android is of limited size and it cannot be adjusted at run time. Depending on the amount of
logging activity, the buffer may not be enought to capture comlete trace for a workload execution. For those
situations, logcat may be polled periodically during the course of the run and stored in a temporary locaiton on
the host. Setting the value of the poll period enables this behavior.

constraint: value > 0

252 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

stay_on_mode: type: 'integer'

Specify whether the screen should stay on while the device is charging:

0: never stay on 1: with AC charger 2: with USB charger 4: with wireless charger

Values can be OR-ed together to produce combinations, for instance 7 will cause the screen to stay on when
charging under any method.

constraint: 0 <= value <= 7

juno_linux

Device Parameters:

host: type: 'str'

Host name or IP address of the target.

username: (mandatory) type: 'str'

User name to connect with

password: type: 'str'

Password to use. (When connecting to a passwordless machine set to an empty string to prevent attempting ssh
key authentication.)

keyfile: type: 'str'

Key file to use

port: type: 'integer'

The port SSH server is listening on on the target.

default: 22

strict_host_check: type: 'boolean'

Specify whether devices should be connected to if their host key does not match the systems known host keys.

default: False

sudo_cmd: type: 'str'

Sudo command to use. Must have {} specified somewhere in the string it indicate where the command to be run
via sudo is to go.

default: 'sudo -k -p ' ' -S -- sh -c {}'

use_scp: type: 'boolean'

Allow using SCP as method of file transfer instead of the default SFTP.

default: False

poll_transfers: type: 'boolean'

File transfers will be polled for activity. Inactive file transfers are cancelled.

default: True

start_transfer_poll_delay: type: 'integer'

How long to wait (s) for a transfer to complete before polling transfer activity. Requires poll_transfers to be
set.

4.1. Plugin Reference 253

wa Documentation, Release 3.4.0.dev1

default: 30

total_transfer_timeout: type: 'integer'

The total time to elapse before a transfer is cancelled, regardless of its activity. Requires poll_transfers to
be set.

default: 3600

transfer_poll_period: type: 'integer'

The period at which transfer activity is sampled. Requires poll_transfers to be set. Too small values may
cause the destination size to appear the same over one or more sample periods, causing improper transfer can-
cellation.

default: 30

telnet: type: 'str'

Original shell prompt to expect.

password_prompt: type: 'str'

Password prompt to expect

original_prompt: type: 'str'

Original shell prompt to expect.

core_names: type: 'list_of_strs'

List of names of CPU cores in the order that they appear to the kernel. If not specified, it will be inferred from
the platform.

core_clusters: type: 'list_of_ints'

Cluster mapping corresponding to the cores in core_names. Cluster indexing starts at 0. If not specified, this
will be inferred from core_names – consecutive cores with the same name will be assumed to share a cluster.

big_core: type: 'str'

The name of the big cores in a big.LITTLE system. If not specified, this will be inferred, either from the name
(if one of the names in core_names matches known big cores), or by assuming that the last cluster is big.

model: type: 'str'

Hardware model of the platform. If not specified, an attempt will be made to read it from target.

modules: type: 'list'

An additional list of modules to be loaded into the target.

serial_port: type: 'str'

The serial device/port on the host for the initial connection to the target (used for early boot, flashing, etc).

baudrate: type: 'integer'

Baud rate for the serial connection.

default: 115200

vemsd_mount: type: 'str'

VExpress MicroSD card mount location. This is a MicroSD card in the VExpress device that is mounted on
the host via USB. The card contains configuration files for the platform and firmware and kernel images to be
flashed.

default: '/media/JUNO'

254 Chapter 4. Plugin Reference

wa Documentation, Release 3.4.0.dev1

bootloader: type: 'str'

Selects the bootloader mechanism used by the board. Depending on firmware version, a number of possible boot
mechanisms may be use.

Please see devlib documentation for descriptions.

allowed values: 'uefi', 'uefi-shell', 'u-boot', 'bootmon'

default: 'u-boot'

hard_reset_method: type: 'str'

There are a couple of ways to reset VersatileExpress board if the software running on the board becomes unre-
sponsive. Both require configuration to be enabled (please see devlib documentation).

dtr: toggle the DTR line on the serial connection reboottxt: create reboot.txt in the root of the VEMSD
mount.

allowed values: 'dtr', 'reboottxt'

default: 'dtr'

working_directory: type: 'str'

On-target working directory that will be used by WA. This directory must be writable by the user WA logs in as
without the need for privilege elevation.

executables_directory: type: 'str'

On-target directory where WA will install its executable binaries. This location must allow execution. This
location does not need to be writable by unprivileged users or rooted devices (WA will install with elevated
privileges as necessary).

modules: type: 'list'

A list of additional modules to be installed for the target.

devlib implements functionality for particular subsystems as modules. A number of “default” modules (e.g. for
cpufreq subsystem) are loaded automatically, unless explicitly disabled. If additional modules need to be loaded,
they may be specified using this parameter.

Please see devlib documentation for information on the available modules.

load_default_modules: type: 'boolean'

A number of modules (e.g. for working with the cpufreq subsystem) are loaded by default when a Target is
instantiated. Setting this to True would suppress that, ensuring that only the base Target interface is initialized.

You may want to set this to False if there is a problem with one or more default modules on your platform (e.g.
your device is unrooted and cpufreq is not accessible to unprivileged users), or if Target initialization is taking
too long for your platform.

default: True

shell_prompt: type: 'regex'

A regex that matches the shell prompt on the target.

default: r'^.*(shell|root|juno)@?.*:[/~]\S* *[#$] '

max_async: type: 'integer'

The maximum number of concurent asynchronous connections to the target maintained at any time.

default: 50

4.1. Plugin Reference 255

wa Documentation, Release 3.4.0.dev1

256 Chapter 4. Plugin Reference

CHAPTER

FIVE

API

5.1 Workload Automation API

5.1.1 Output

A WA output directory can be accessed via a RunOutput object. There are two ways of getting one – either instantiate
it with a path to a WA output directory, or use discover_wa_outputs() to traverse a directory tree iterating over all
WA output directories found.

discover_wa_outputs(path)
Recursively traverse path looking for WA output directories. Return an iterator over RunOutput objects for
each discovered output.

Parameters path – The directory to scan for WA output

class RunOutput(path)
The main interface into a WA output directory.

Parameters path – must be the path to the top-level output directory (the one containing __meta
subdirectory and run.log).

WA output stored in a Postgres database by the Postgres output processor can be accessed via a RunDatabaseOutput
which can be initialized as follows:

class RunDatabaseOutput(password, host='localhost', user='postgres', port='5432', dbname='wa',
run_uuid=None, list_runs=False)

The main interface into Postgres database containing WA results.

Parameters

• password – The password used to authenticate with

• host – The database host address. Defaults to 'localhost'

• user – The user name used to authenticate with. Defaults to 'postgres'

• port – The database connection port number. Defaults to '5432'

• dbname – The database name. Defaults to 'wa'

• run_uuid – The run_uuid to identify the selected run

• list_runs – Will connect to the database and will print out the available runs with their
corresponding run_uuids. Defaults to False

257

wa Documentation, Release 3.4.0.dev1

Example

See also:

Processing WA Output

To demonstrate how we can use the output API if we have an existing WA output called wa_output in the current
working directory we can initialize a RunOutput as follows:

In [1]: from wa import RunOutput
...:
...: output_directory = 'wa_output'
...: run_output = RunOutput(output_directory)

Alternatively if the results have been stored in a Postgres database we can initialize a RunDatabaseOutput as follows:

In [1]: from wa import RunDatabaseOutput
...:
...: db_settings = {
...: host: 'localhost',
...: port: '5432',
...: dbname: 'wa'
...: user: 'postgres',
...: password: 'wa'
...: }
...:
...: RunDatabaseOutput(list_runs=True, **db_settings)

Available runs are:
========= ============ ============= =================== ===================␣
→˓====================================
Run Name Project Project Stage Start Time End Time ␣
→˓ run_uuid
========= ============ ============= =================== ===================␣
→˓====================================
Test Run my_project None 2018-11-29 14:53:08 2018-11-29 14:53:24 aa3077eb-
→˓241a-41d3-9610-245fd4e552a9
run_1 my_project None 2018-11-29 14:53:34 2018-11-29 14:53:37 4c2885c9-
→˓2f4a-49a1-bbc5-b010f8d6b12a
========= ============ ============= =================== ===================␣
→˓====================================

In [2]: run_uuid = '4c2885c9-2f4a-49a1-bbc5-b010f8d6b12a'
...: run_output = RunDatabaseOutput(run_uuid=run_uuid, **db_settings)

From here we can retrieve various information about the run. For example if we want to see what the overall status of
the run was, along with the runtime parameters and the metrics recorded from the first job was we can do the following:

In [2]: run_output.status
Out[2]: OK(7)

List all of the jobs for the run
In [3]: run_output.jobs
Out[3]:
[<wa.framework.output.JobOutput at 0x7f70358a1f10>,
<wa.framework.output.JobOutput at 0x7f70358a1150>,

(continues on next page)

258 Chapter 5. API

wa Documentation, Release 3.4.0.dev1

(continued from previous page)

<wa.framework.output.JobOutput at 0x7f7035862810>,
<wa.framework.output.JobOutput at 0x7f7035875090>]

Examine the first job that was ran
In [4]: job_1 = run_output.jobs[0]

In [5]: job_1.label
Out[5]: u'dhrystone'

Print out all the runtime parameters and their values for this job
In [6]: for k, v in job_1.spec.runtime_parameters.items():

...: print (k, v)
(u'airplane_mode': False)
(u'brightness': 100)
(u'governor': 'userspace')
(u'big_frequency': 1700000)
(u'little_frequency': 1400000)

Print out all the metrics available for this job
In [7]: job_1.metrics
Out[7]:
[<thread 0 score: 14423105 (+)>,
<thread 0 DMIPS: 8209 (+)>,
<thread 1 score: 14423105 (+)>,
<thread 1 DMIPS: 8209 (+)>,
<thread 2 score: 14423105 (+)>,
<thread 2 DMIPS: 8209 (+)>,
<thread 3 score: 18292638 (+)>,
<thread 3 DMIPS: 10411 (+)>,
<thread 4 score: 17045532 (+)>,
<thread 4 DMIPS: 9701 (+)>,
<thread 5 score: 14150917 (+)>,
<thread 5 DMIPS: 8054 (+)>,
<time: 0.184497 seconds (-)>,
<total DMIPS: 52793 (+)>,
<total score: 92758402 (+)>]

Load the run results csv file into pandas
In [7]: pd.read_csv(run_output.get_artifact_path('run_result_csv'))
Out[7]:

id workload iteration metric value units
0 450000-wk1 dhrystone 1 thread 0 score 1.442310e+07 NaN
1 450000-wk1 dhrystone 1 thread 0 DMIPS 8.209700e+04 NaN
2 450000-wk1 dhrystone 1 thread 1 score 1.442310e+07 NaN
3 450000-wk1 dhrystone 1 thread 1 DMIPS 8.720900e+04 NaN
...

We can also retrieve information about the target that the run was performed on for example:

Print out the target's abi:
In [9]: run_output.target_info.abi
Out[9]: u'arm64'

(continues on next page)

5.1. Workload Automation API 259

wa Documentation, Release 3.4.0.dev1

(continued from previous page)

The os the target was running
In [9]: run_output.target_info.os
Out[9]: u'android'

And other information about the os version
In [10]: run_output.target_info.os_version
Out[10]:
OrderedDict([(u'all_codenames', u'REL'),

(u'incremental', u'3687331'),
(u'preview_sdk', u'0'),
(u'base_os', u''),
(u'release', u'7.1.1'),
(u'codename', u'REL'),
(u'security_patch', u'2017-03-05'),
(u'sdk', u'25')])

RunOutput

RunOutput provides access to the output of a WA run, including metrics, artifacts, metadata, and configuration. It has
the following attributes:

jobs A list of JobOutput objects for each job that was executed during the run.

status Run status. This indicates whether the run has completed without problems (Status.OK) or if there were
issues.

metrics A list of Metrics for the run.

Note: these are overall run metrics only. Metrics for individual jobs are contained within the corresponding
JobOutputs.

artifacts A list of Artifacts for the run. These are usually backed by a file and can contain traces, raw data, logs,
etc.

Note: these are overall run artifacts only. Artifacts for individual jobs are contained within the corresponding
JobOutputs.

info A RunInfo object that contains information about the run itself for example it’s duration, name, uuid etc.

target_info A TargetInfo object which can be used to access various information about the target that was used
during the run for example it’s abi, hostname, os etc.

run_config A RunConfiguration object that can be used to access all the configuration of the run itself, for example
the reboot_policy, execution_order, device_config etc.

classifiers classifiers defined for the entire run.

metadata metadata associated with the run.

events A list of any events logged during the run, that are not associated with a particular job.

event_summary A condensed summary of any events that occurred during the run.

260 Chapter 5. API

wa Documentation, Release 3.4.0.dev1

augmentations A list of the augmentations that were enabled during the run (these augmentations may or may not
have been active for a particular job).

basepath A (relative) path to the WA output directory backing this object.

methods

RunOutput.get_artifact(name)
Return the Artifact specified by name. This will only look at the run artifacts; this will not search the artifacts
of the individual jobs.

Parameters name – The name of the artifact who’s path to retrieve.

Returns The Artifact with that name

Raises HostError – If the artifact with the specified name does not exist.

RunOutput.get_artifact_path(name)
Return the path to the file backing the artifact specified by name. This will only look at the run artifacts; this will
not search the artifacts of the individual jobs.

Parameters name – The name of the artifact who’s path to retrieve.

Returns The path to the artifact

Raises HostError – If the artifact with the specified name does not exist.

RunOutput.get_metric(name)
Return the Metric associated with the run (not the individual jobs) with the specified name.

Returns The Metric object for the metric with the specified name.

RunOutput.get_job_spec(spec_id)
Return the JobSpec with the specified spec_id. A spec describes the job to be executed. Each Job has an
associated JobSpec, though a single spec can be associated with multiple jobs (If the spec specifies multiple
iterations).

RunOutput.list_workloads()
List unique workload labels that featured in this run. The labels will be in the order in which they first ran.

Returns A list of str labels of workloads that were part of this run.

RunOutput.add_classifier(name, value, overwrite=False)
Add a classifier to the run as a whole. If a classifier with the specified name already exists, a``ValueError`` will
be raised, unless overwrite=True is specified.

RunDatabaseOutput

RunDatabaseOutput provides access to the output of a WA run, including metrics,artifacts, metadata, and config-
uration stored in a postgres database. The majority of attributes and methods are the same RunOutput however the
noticeable differences are:

jobs A list of JobDatabaseOutput objects for each job that was executed during the run.

basepath A representation of the current database and host information backing this object.

5.1. Workload Automation API 261

wa Documentation, Release 3.4.0.dev1

methods

RunDatabaseOutput.get_artifact(name)
Return the Artifact specified by name. This will only look at the run artifacts; this will not search the artifacts
of the individual jobs. The path attribute of the Artifact will be set to the Database OID of the object.

Parameters name – The name of the artifact who’s path to retrieve.

Returns The Artifact with that name

Raises HostError – If the artifact with the specified name does not exist.

RunDatabaseOutput.get_artifact_path(name)
If the artifcat is a file this method returns a StringIO object containing the contents of the artifact specified by
name. If the aritifcat is a directory, the method returns a path to a locally extracted version of the directory which
is left to the user to remove after use. This will only look at the run artifacts; this will not search the artifacts of
the individual jobs.

Parameters name – The name of the artifact who’s path to retrieve.

Returns A StringIO object with the contents of the artifact

Raises HostError – If the artifact with the specified name does not exist.

JobOutput

JobOutput provides access to the output of a single job executed during a WA run, including metrics, artifacts, meta-
data, and configuration. It has the following attributes:

status Job status. This indicates whether the job has completed without problems (Status.OK) or if there were
issues.

Note: Under typical configuration, WA will make a number of attempts to re-run a job in case of issue. This
status (and the rest of the output) will represent the the latest attempt. I.e. a Status.OK indicates that the latest
attempt was successful, but it does mean that there weren’t prior failures. You can check the retry attribute (see
below) to whether this was the first attempt or not.

retry Retry number for this job. If a problem is detected during job execution, the job will be re-run up to
max_retries times. This indicates the final retry number for the output. A value of 0 indicates that the job
succeeded on the first attempt, and no retries were necessary.

Note: Outputs for previous attempts are moved into __failed subdirectory of WA output. These are currently
not exposed via the API.

id The ID of the spec associated with with job. This ID is unique to the spec, but not necessary to the job – jobs
representing multiple iterations of the same spec will share the ID.

iteration The iteration number of this job. Together with the id (above), this uniquely identifies a job with a run.

label The workload label associated with this job. Usually, this will be the name or alias of the workload, however
maybe overwritten by the user in the agenda.

metrics A list of Metrics for the job.

artifacts A list of Artifacts for the job These are usually backed by a file and can contain traces, raw data, logs,
etc.

262 Chapter 5. API

wa Documentation, Release 3.4.0.dev1

classifiers classifiers defined for the job.

metadata metadata associated with the job.

events A list of any events logged during the execution of the job.

event_summary A condensed summary of any events that occurred during the execution of the job.

augmentations A list of the augmentations that were enabled for this job. This may be different from overall aug-
mentations specified for the run, as they may be enabled/disabled on per-job basis.

basepath A (relative) path to the WA output directory backing this object.

methods

JobOutput.get_artifact(name)
Return the Artifact specified by name associated with this job.

Parameters name – The name of the artifact to retrieve.

Returns The Artifact with that name

Raises HostError – If the artifact with the specified name does not exist.

JobOutput.get_artifact_path(name)
Return the path to the file backing the artifact specified by name, associated with this job.

Parameters name – The name of the artifact who’s path to retrieve.

Returns The path to the artifact

Raises HostError – If the artifact with the specified name does not exist.

JobOutput.get_metric(name)
Return the Metric associated with this job with the specified name.

Returns The Metric object for the metric with the specified name.

JobOutput.add_classifier(name, value, overwrite=False)
Add a classifier to the job. The classifier will be propagated to all existing artifacts and metrics, as well as those
added afterwards. If a classifier with the specified name already exists, a ValueError will be raised, unless
overwrite=True is specified.

JobDatabaseOutput

JobOutput provides access to the output of a single job executed during a WA run, including metrics, artifacts, meta-
data, and configuration stored in a postgres database. The majority of attributes and methods are the same JobOutput
however the noticeable differences are:

basepath A representation of the current database and host information backing this object.

5.1. Workload Automation API 263

wa Documentation, Release 3.4.0.dev1

methods

JobDatabaseOutput.get_artifact(name)
Return the Artifact specified by name associated with this job. The path attribute of the Artifact will be set
to the Database OID of the object.

Parameters name – The name of the artifact to retrieve.

Returns The Artifact with that name

Raises HostError – If the artifact with the specified name does not exist.

JobDatabaseOutput.get_artifact_path(name)
If the artifcat is a file this method returns a StringIO object containing the contents of the artifact specified by
name associated with this job. If the aritifcat is a directory, the method returns a path to a locally extracted version
of the directory which is left to the user to remove after use.

Parameters name – The name of the artifact who’s path to retrieve.

Returns A StringIO object with the contents of the artifact

Raises HostError – If the artifact with the specified name does not exist.

Metric

A metric represent a single numerical measurement/score collected as a result of running the workload. It would be
generated either by the workload or by one of the augmentations active during the execution of the workload.

A Metric has the following attributes:

name The name of the metric.

Note: A name of the metric is not necessarily unique, even for the same job. Some workloads internally run
multiple sub-tests, each generating a metric with the same name. In such cases, classifiers are used to distinguish
between them.

value The value of the metrics collected.

units The units of the metrics. This maybe None if the metric has no units.

lower_is_better The default assumption is that higher metric values are better. This may be overridden by setting
this to True, e.g. if metrics such as “run time” or “latency”. WA does not use this internally (at the moment) but
this may be used by external parties to sensibly process WA results in a generic way.

classifiers These can be user-defined classifiers propagated from the job/run, or they may have been added by the
workload to help distinguish between otherwise identical metrics.

label This is a string constructed from the name and classifiers, to provide a more unique identifier, e.g. for grouping
values across iterations. The format is in the form name/cassifier1=value1/classifier2=value2/....

264 Chapter 5. API

wa Documentation, Release 3.4.0.dev1

Artifact

An artifact is a file that is created on the host as part of executing a workload. This could be trace, logging, raw output,
or pretty much anything else. Pretty much every file under WA output directory that is not already represented by some
other framework object will have an Artifact associated with it.

An Artifact has the following attributes:

name The name of this artifact. This will be unique for the job/run (unlike metric names). This is intended as a
consistent “handle” for this artifact. The actual file name for the artifact may vary from job to job (e.g. some
benchmarks that create files with results include timestamps in the file names), however the name will always be
the same.

path Partial path to the file associated with this artifact. Often, this is just the file name. To get the complete path that
maybe used to access the file, use get_artifact_path() of the corresponding output object.

kind Describes the nature of this artifact to facilitate generic processing. Possible kinds are:

log A log file. Not part of the “output” as such but contains information about the run/workload
execution that be useful for diagnostics/meta analysis.

meta A file containing metadata. This is not part of the “output”, but contains information that may
be necessary to reproduce the results (contrast with log artifacts which are not necessary).

data This file contains new data, not available otherwise and should be considered part of the “output”
generated by WA. Most traces would fall into this category.

export Exported version of results or some other artifact. This signifies that this artifact does not
contain any new data that is not available elsewhere and that it may be safely discarded without
losing information.

raw Signifies that this is a raw dump/log that is normally processed to extract useful information and
is then discarded. In a sense, it is the opposite of export, but in general may also be discarded.

Note: Whether a file is marked as log/data or raw depends on how important it is to preserve
this file, e.g. when archiving, vs how much space it takes up. Unlike export artifacts which are
(almost) always ignored by other exporters as that would never result in data loss, raw files may be
processed by exporters if they decided that the risk of losing potentially (though unlikely) useful
data is greater than the time/space cost of handling the artifact (e.g. a database uploader may
choose to ignore raw artifacts, where as a network filer archiver may choose to archive them).

Note: The kind parameter is intended to represent the logical function of a particular artifact, not it’s intended
means of processing – this is left entirely up to the output processors.

description This may be used by the artifact’s creator to provide additional free-form information about the artifact.
In practice, this is often None

classifiers Job- and run-level classifiers will be propagated to the artifact.

5.1. Workload Automation API 265

wa Documentation, Release 3.4.0.dev1

Additional run info

RunOutput object has target_info and run_info attributes that contain structures that provide additional informa-
tion about the run and device.

TargetInfo

The TargetInfo class presents various pieces of information about the target device. An instance of this class will be
instantiated and populated automatically from the devlib target created during a WA run and serialized to a json file as
part of the metadata exported by WA at the end of a run.

The available attributes of the class are as follows:

target The name of the target class that was uised ot interact with the device during the run E.g. "AndroidTarget",
"LinuxTarget" etc.

modules A list of names of modules that have been loaded by the target. Modules provide additional functionality,
such as access to cpufreq and which modules are installed may impact how much of the TargetInfo has been
populated.

cpus A list of CpuInfo objects describing the capabilities of each CPU.

os A generic name of the OS the target was running (e.g. "android").

os_version A dict that contains a mapping of OS version elements to their values. This mapping is OS-specific.

abi The ABI of the target device.

hostname The hostname of the the device the run was executed on.

is_rooted A boolean value specifying whether root was detected on the device.

kernel_version The version of the kernel on the target device. This returns a KernelVersion instance that has
separate version and release fields.

kernel_config A KernelConfig instance that contains parsed kernel config from the target device. This may be
None if the kernel config could not be extracted.

sched_features A list of the available tweaks to the scheduler, if available from the device.

hostid The unique identifier of the particular device the WA run was executed on.

RunInfo

The RunInfo provides general run information. It has the following attributes:

uuid A unique identifier for that particular run.

run_name The name of the run (if provided)

project The name of the project the run belongs to (if provided)

project_stage The project stage the run is associated with (if provided)

duration The length of time the run took to complete.

start_time The time the run was stared.

end_time The time at which the run finished.

266 Chapter 5. API

http://devlib.readthedocs.io/en/latest/target.html

wa Documentation, Release 3.4.0.dev1

5.1.2 Workloads

Workload

The base Workload interface is as follows, and is the base class for all workload types. For more information about to
implement your own workload please see the Developer How Tos.

All instances of a workload will have the following attributes:

name This identifies the workload (e.g. it is used to specify the workload in the agenda).

phones_home This can be set to True to mark that this workload poses a risk of exposing information to the outside
world about the device it runs on. For example a benchmark application that sends scores and device data to a
database owned by the maintainer.

requires_network Set this to True to mark the the workload will fail without a network connection, this enables it
to fail early with a clear message.

asset_directory Set this to specify a custom directory for assets to be pushed to, if unset the working directory will
be used.

asset_files This can be used to automatically deploy additional assets to the device. If required the attribute should
contain a list of file names that are required by the workload which will be attempted to be found by the resource
getters

methods

Workload.init_resources(context)
This method may be optionally overridden to implement dynamic resource discovery for the workload. This
method executes early on, before the device has been initialized, so it should only be used to initialize resources
that do not depend on the device to resolve. This method is executed once per run for each workload instance.

Parameters context – The Context for the current run.

Workload.validate(context)
This method can be used to validate any assumptions your workload makes about the environment (e.g. that
required files are present, environment variables are set, etc) and should raise a wa.WorkloadError if that is
not the case. The base class implementation only makes sure sure that the name attribute has been set.

Parameters context – The Context for the current run.

Workload.initialize(context)
This method is decorated with the @once_per_instance decorator, (for more information please see Execution
Decorators) therefore it will be executed exactly once per run (no matter how many instances of the workload
there are). It will run after the device has been initialized, so it may be used to perform device-dependent
initialization that does not need to be repeated on each iteration (e.g. as installing executables required by the
workload on the device).

Parameters context – The Context for the current run.

Workload.setup(context)
Everything that needs to be in place for workload execution should be done in this method. This includes copying
files to the device, starting up an application, configuring communications channels, etc.

Parameters context – The Context for the current run.

Workload.setup_rerun(context)
Everything that needs to be in place for workload execution should be done in this method. This includes copying
files to the device, starting up an application, configuring communications channels, etc.

5.1. Workload Automation API 267

wa Documentation, Release 3.4.0.dev1

Parameters context – The Context for the current run.

Workload.run(context)
This method should perform the actual task that is being measured. When this method exits, the task is assumed
to be complete.

Parameters context – The Context for the current run.

Note: Instruments are kicked off just before calling this method and disabled right after, so everything in this
method is being measured. Therefore this method should contain the least code possible to perform the operations
you are interested in measuring. Specifically, things like installing or starting applications, processing results, or
copying files to/from the device should be done elsewhere if possible.

Workload.extract_results(context)
This method gets invoked after the task execution has finished and should be used to extract metrics from the
target.

Parameters context – The Context for the current run.

Workload.update_output(context)
This method should be used to update the output within the specified execution context with the metrics and
artifacts from this workload iteration.

Parameters context – The Context for the current run.

Workload.teardown(context)
This could be used to perform any cleanup you may wish to do, e.g. Uninstalling applications, deleting file on
the device, etc.

Parameters context – The Context for the current run.

Workload.finalize(context)
This is the complement to initialize. This will be executed exactly once at the end of the run. This should
be used to perform any final clean up (e.g. uninstalling binaries installed in the initialize)

Parameters context – The Context for the current run.

ApkWorkload

The ApkWorkload derives from the base Workload class however this associates the workload with a package allowing
for an apk to be found for the workload, setup and ran on the device before running the workload.

In addition to the attributes mentioned above ApkWorloads this class also features the following attributes however this
class does not present any new methods.

loading_time This is the time in seconds that WA will wait for the application to load before continuing with the
run. By default this will wait 10 second however if your application under test requires additional time this values
should be increased.

package_names This attribute should be a list of Apk packages names that are suitable for this workload. Both the
host (in the relevant resource locations) and device will be searched for an application with a matching package
name.

supported_versions This attribute should be a list of apk versions that are suitable for this workload, if a specific
apk version is not specified then any available supported version may be chosen.

activity This attribute can be optionally set to override the default activity that will be extracted from the selected
APK file which will be used when launching the APK.

268 Chapter 5. API

wa Documentation, Release 3.4.0.dev1

view This is the “view” associated with the application. This is used by instruments like fps to monitor the current
framerate being generated by the application.

apk The is a PackageHandler` which is what is used to store information about the apk and manage the applica-
tion itself, the handler is used to call the associated methods to manipulate the application itself for example to
launch/close it etc.

package This is a more convenient way to access the package name of the Apk that was found and being used for the
run.

ApkUiautoWorkload

The ApkUiautoWorkload derives from ApkUIWorkload which is an intermediate class which in turn inherits from
ApkWorkload, however in addition to associating an apk with the workload this class allows for automating the appli-
cation with UiAutomator.

This class define these additional attributes:

gui This attribute will be an instance of a UiAutmatorGUI which is used to control the automation, and is what is
used to pass parameters to the java class for example gui.uiauto_params.

ApkReventWorkload

The ApkReventWorkload derives from ApkUIWorkload which is an intermediate class which in turn inherits from
ApkWorkload, however in addition to associating an apk with the workload this class allows for automating the appli-
cation with Revent.

This class define these additional attributes:

gui This attribute will be an instance of a ReventGUI which is used to control the automation

setup_timeout This is the time allowed for replaying a recording for the setup stage.

run_timeout This is the time allowed for replaying a recording for the run stage.

extract_results_timeout This is the time allowed for replaying a recording for the extract results stage.

teardown_timeout This is the time allowed for replaying a recording for the teardown stage.

UiautoWorkload

The UiautoWorkload derives from UIWorkloadwhich is an intermediate class which in turn inherits from Workload,
however this allows for providing generic automation using UiAutomator without associating a particular application
with the workload.

This class define these additional attributes:

gui This attribute will be an instance of a UiAutmatorGUI which is used to control the automation, and is what is
used to pass parameters to the java class for example gui.uiauto_params.

5.1. Workload Automation API 269

wa Documentation, Release 3.4.0.dev1

ReventWorkload

The ReventWorkload derives from UIWorkloadwhich is an intermediate class which in turn inherits from Workload,
however this allows for providing generic automation using Revent without associating with the workload.

This class define these additional attributes:

gui This attribute will be an instance of a ReventGUI which is used to control the automation

setup_timeout This is the time allowed for replaying a recording for the setup stage.

run_timeout This is the time allowed for replaying a recording for the run stage.

extract_results_timeout This is the time allowed for replaying a recording for the extract results stage.

teardown_timeout This is the time allowed for replaying a recording for the teardown stage.

270 Chapter 5. API

CHAPTER

SIX

GLOSSARY

6.1 Glossary

Agenda An agenda specifies what is to be done during a Workload Automation run. This includes which workloads
will be run, with what configuration and which augmentations will be enabled, etc. (For more information please
see the Agenda Reference.)

Alias An alias associated with a workload or a parameter. In case of parameters, this is simply an alternative name for
a parameter; Usually these are employed to provide backward compatibility for renamed parameters, or in cases
where a there are several commonly used terms, each equally valid, for something.

In case of Workloads, aliases can also be merely alternatives to the workload name, however they can also alter
the default values for the parameters the Workload is instantiated with. A common scenario is when a single
workload can be run under several distinct configurations (e.g. has several alternative tests that might be run)
that are configurable via a parameter. An alias may be added for each such configuration. In order to see the
available aliases for a workload, one can use show command.

See also:

Global Alias

Artifact An artifact is something that was been generated as part of the run for example a file containing output or
meta data in the form of log files. WA supports multiple “kinds” of artifacts and will handle them accordingly,
for more information please see the Developer Reference.

Augmentation Augmentations are plugins that augment the execution of workload jobs with additional functionality;
usually, that takes the form of generating additional metrics and/or artifacts, such as traces or logs. For more
information please see augmentations.

Classifier An arbitrary key-value pair that may associated with a job, a metric, or an artifact. The key must be a string.
The value can be any simple scalar type (string, integer, boolean, etc). These have no pre-defined meaning but
may be used to aid filtering/grouping of metrics and artifacts during output processing.

See also:

Classifiers.

Global Alias Typically, values for plugin parameters are specified name spaced under the plugin’s name in the con-
figuration. A global alias is an alias that may be specified at the top level in configuration.

There two common reasons for this. First, several plugins might specify the same global alias for the same
parameter, thus allowing all of them to be configured with one settings. Second, a plugin may not be exposed
directly to the user (e.g. resource getters) so it makes more sense to treat its parameters as global configuration
values.

See also:

Alias

271

wa Documentation, Release 3.4.0.dev1

Instrument A WA “Instrument” can be quite diverse in its functionality, but the majority of those available in are there
to collect some kind of additional data (such as trace, energy readings etc.) from the device during workload
execution. To see available instruments please use the list command or see the Plugin Reference.

Job An single execution of a workload. A job is defined by an associated spec. However, multiple jobs can share the
same spec; E.g. Even if you only have 1 workload to run but wanted 5 iterations then 5 individual jobs will be
generated to be run.

Metric A single numeric measurement or score collected during job execution.

Output Processor An “Output Processor” is what is used to process the output generated by a workload. They can
simply store the results in a presentable format or use the information collected to generate additional metrics.
To see available output processors please use the list command or see the Plugin Reference.

Run A single execution of wa run command. A run consists of one or more jobs, and results in a single output directory
structure containing job results and metadata.

Section A set of configurations for how jobs should be run. The settings in them take less precedence than workload-
specific settings. For every section, all jobs will be run again, with the changes specified in the section’s agenda
entry. Sections are useful for several runs in which global settings change.

Spec A specification of a workload. For example you can have a single workload specification that is then executed
multiple times if you desire multiple iterations but the configuration for the workload will remain the same. In
WA2 the term “iteration” used to refer to the same underlying idea as spec now does. It should be noted however,
that this is no longer the case and an iteration is merely a configuration point in WA3. Spec is to blueprint as job
is to product.

WA Workload Automation. The full name of this framework.

Workload A workload is the lowest level specification for tasks that need to be run on a target. A workload can have
multiple iterations, and be run additional multiples of times dependent on the number of sections.

272 Chapter 6. Glossary

CHAPTER

SEVEN

FAQ

7.1 FAQ

• Q: I receive the error: "<<Workload> file <file_name> file> could not be found."

• Q: I receive the error: "No matching package found for workload <workload>"

• Q: I am trying to set a valid runtime parameters however I still receive the error "Unknown runtime
parameter"

• Q: I have a big.LITTLE device but am unable to set parameters corresponding to the big or little core and
receive the error "Unknown runtime parameter"

• Q: I receive the error Could not find plugin or alias "standard"

• Q: My Juno board keeps resetting upon starting WA even if it hasn’t crashed.

• Q: I’m using the FPS instrument but I do not get any/correct results for my workload

• Q: I am getting an error which looks similar to 'CONFIG_SND_BT87X is not exposed in kernel
config'...

• Q: I get an error which looks similar to UnicodeDecodeError('ascii' codec can't decode byte...

• Q: I get the error Module "X" failed to install on target

7.1.1 Q: I receive the error: "<<Workload> file <file_name> file> could not be
found."

A: Some workload e.g. AdobeReader, GooglePhotos etc require external asset files. We host some additional work-
load dependencies in the WA Assets Repo. To allow WA to try and automatically download required assets from the
repository please add the following to your configuration:

remote_assets_url: https://raw.githubusercontent.com/ARM-software/workload-automation-
→˓assets/master/dependencies

273

https://github.com/ARM-software/workload-automation-assets

wa Documentation, Release 3.4.0.dev1

7.1.2 Q: I receive the error: "No matching package found for workload
<workload>"

A: WA cannot locate the application required for the workload. Please either install the application onto the device or
source the apk and place into $WA_USER_DIRECTORY/dependencies/<workload>

7.1.3 Q: I am trying to set a valid runtime parameters however I still receive the error
"Unknown runtime parameter"

A: Please ensure you have the corresponding module loaded on the device. See Runtime Parameters for the list of
runtime parameters and their containing modules, and the appropriate section in setting up a device for ensuring it is
installed.

7.1.4 Q: I have a big.LITTLE device but am unable to set parameters corresponding
to the big or little core and receive the error "Unknown runtime parameter"

A: Please ensure you have the hot plugging module enabled for your device (Please see question above).

A: This can occur if the device uses dynamic hot-plugging and although WA will try to online all cores to perform
discovery sometimes this can fail causing to WA to incorrectly assume that only one cluster is present. To workaround
this please set the core_names parameter in the configuration for your device.

7.1.5 Q: I receive the error Could not find plugin or alias "standard"

A: Upon first use of WA3, your WA2 config file typically located at $USER_HOME/config.pywill have been converted
to a WA3 config file located at $USER_HOME/config.yaml. The “standard” output processor, present in WA2, has
been merged into the core framework and therefore no longer exists. To fix this error please remove the “standard”
entry from the “augmentations” list in the WA3 config file.

7.1.6 Q: My Juno board keeps resetting upon starting WA even if it hasn’t crashed.

A Please ensure that you do not have any other terminals (e.g. screen sessions) connected to the board’s UART. When
WA attempts to open the connection for its own use this can cause the board to reset if a connection is already present.

7.1.7 Q: I’m using the FPS instrument but I do not get any/correct results for my
workload

A: If your device is running with Android 6.0 + then the default utility for collecting fps metrics will be gfxinfo
however this does not seem to be able to extract any meaningful information for some workloads. In this case please
try setting the force_surfaceflinger parameter for the fps augmentation to True. This will attempt to guess the
“View” for the workload automatically however this is device specific and therefore may need customizing. If this is
required please open the application and execute dumpsys SurfaceFlinger --list on the device via adb. This
will provide a list of all views available for measuring.

As an example, when trying to find the view for the AngryBirds Rio workload you may get something like:

274 Chapter 7. FAQ

wa Documentation, Release 3.4.0.dev1

...
AppWindowToken{41dfe54 token=Token{77819a7 ActivityRecord{a151266 u0 com.rovio.
→˓angrybirdsrio/com.rovio.fusion.App t506}}}#0
a3d001c com.rovio.angrybirdsrio/com.rovio.fusion.App#0
Background for -SurfaceView - com.rovio.angrybirdsrio/com.rovio.fusion.App#0
SurfaceView - com.rovio.angrybirdsrio/com.rovio.fusion.App#0
com.rovio.angrybirdsrio/com.rovio.fusion.App#0
boostedAnimationLayer#0
mAboveAppWindowsContainers#0
...

From these "SurfaceView - com.rovio.angrybirdsrio/com.rovio.fusion.App#0" is the mostly likely the
View that needs to be set as the view workload parameter and will be picked up be the fps augmentation.

7.1.8 Q: I am getting an error which looks similar to 'CONFIG_SND_BT87X is not
exposed in kernel config'...

A: If you are receiving this under normal operation this can be caused by a mismatch of your WA and devlib versions.
Please update both to their latest versions and delete your $USER_HOME/.workload_automation/cache/targets.
json (or equivalent) file.

7.1.9 Q: I get an error which looks similar to UnicodeDecodeError('ascii' codec
can't decode byte...

A: If you receive this error or a similar warning about your environment, please ensure that you configure your environ-
ment to use a locale which supports UTF-8. Otherwise this can cause issues when attempting to parse files containing
none ascii characters.

7.1.10 Q: I get the error Module "X" failed to install on target

A: By default a set of devlib modules will be automatically loaded onto the target designed to add additional func-
tionality. If the functionality provided by the module is not required then the module can be safely disabled by setting
load_default_modules to False in the device_config entry of the agenda and then re-enabling any specific
modules that are still required. An example agenda snippet is shown below:

config:
device: generic_android
device_config:

load_default_modules: False
modules: ['list', 'of', 'modules', 'to', 'enable']

7.1. FAQ 275

wa Documentation, Release 3.4.0.dev1

276 Chapter 7. FAQ

PYTHON MODULE INDEX

w
wa, 22

277

wa Documentation, Release 3.4.0.dev1

278 Python Module Index

INDEX

A
add_classifier() (JobOutput method), 263
add_classifier() (RunOutput method), 261
Agenda, 271
Alias, 271
Artifact, 271
Augmentation, 271

B
built-in function

discover_wa_outputs(), 257
dump(), 130
is_pod(), 130
load(), 130
read_pod(), 130
write_pod(), 130

C
Classifier, 271

D
discover_wa_outputs()

built-in function, 257
dump()

built-in function, 130

E
extract_results() (Workload method), 268

F
finalize() (Workload method), 268

G
get_artifact() (JobDatabaseOutput method), 264
get_artifact() (JobOutput method), 263
get_artifact() (RunDatabaseOutput method), 262
get_artifact() (RunOutput method), 261
get_artifact_path() (JobDatabaseOutput method),

264
get_artifact_path() (JobOutput method), 263

get_artifact_path() (RunDatabaseOutput method),
262

get_artifact_path() (RunOutput method), 261
get_job_spec() (RunOutput method), 261
get_metric() (JobOutput method), 263
get_metric() (RunOutput method), 261
Global Alias, 271

I
init_resources() (Workload method), 267
initialize() (Workload method), 267
Instrument, 272
is_pod()

built-in function, 130

J
Job, 272

L
list_workloads() (RunOutput method), 261
load()

built-in function, 130

M
Metric, 272
module

wa, 22

O
Output Processor, 272

R
read_pod()

built-in function, 130
retrieve_output() (MyClass method), 135
Run, 272
run() (Workload method), 268
RunDatabaseOutput (built-in class), 257
RunOutput (built-in class), 257

S
Section, 272

279

wa Documentation, Release 3.4.0.dev1

setup() (Workload method), 267
setup_rerun() (Workload method), 267
Spec, 272

T
teardown() (Workload method), 268

U
update_output() (Workload method), 268

V
validate() (Workload method), 267

W
WA, 272
wa

module, 22
Workload, 272
write_pod()

built-in function, 130

280 Index

	What’s New
	What’s New in Workload Automation
	Version 3.3.1
	New Features:
	Commands:
	Instruments:
	Workloads:

	Fixes/Improvements
	Framework:
	Dockerfile:
	Instruments:
	Output Processors:
	Workloads:
	Other:

	Version 3.3
	New Features:
	Commands:
	Instruments:
	Framework:
	Android Devices:
	Output Processors:

	Fixes/Improvements
	Framework:
	Dockerfile:
	Instruments:
	Output Processors:
	Workloads:
	Other:

	Version 3.2
	Fixes/Improvements
	Framework:
	Instruments:
	Output Processors:
	Workloads:
	Other:

	Version 3.1.4
	New Features:
	Framework:
	Workloads:
	Other:

	Fixes/Improvements
	Framework:
	Output Processors:
	Workloads:
	Other:

	Version 3.1.3
	Fixes/Improvements
	Other:

	Version 3.1.2
	Fixes/Improvements
	Framework:
	Output Processors:
	Other

	Version 3.1.1
	Fixes/Improvements
	Other

	Version 3.1.0
	New Features:
	Commands
	Output Processors:
	Configuration:
	Framework:
	Workloads:

	Fixes/Improvements
	Framework:
	Commands:
	Workloads:
	Other:

	Version 3.0.0
	New Features
	Changes

	Migration Guide
	Users
	Configuration
	Default configuration file change
	Plugin Changes

	Agendas
	Global Section
	Instrumentation and Results Processors merged
	Per workload enabling of augmentations
	Setting Runtime Parameters
	Parameter Changes
	Output
	Output Directory
	Output API

	Developers
	Framework
	Imports
	Asset Deployment

	Workloads
	Python Workload Structure
	APK Functionality
	UiAutomator Java Structure
	GUI Functionality
	Attributes

	User Information
	User Information
	Installation
	Prerequisites
	Operating System
	Android SDK
	Python
	pip
	Python Packages
	Optional Python Packages

	Installing
	Dockerfile
	(Optional) Post Installation
	APK Files
	Gaming Workloads
	Maintaining Centralized Assets Repository

	(Optional) Uninstalling
	(Optional) Upgrading

	User Guide
	Install
	(Optional) Verify installation
	(Optional) APK files

	List Command
	Show Command
	Configure Your Device
	Android
	Linux
	Enabling and Disabling Augmentations

	Running Your First Workload
	Create an Agenda
	Using the Create Command

	Run Command
	Output
	Uninstall
	Upgrade

	How Tos
	Defining Experiments With an Agenda
	Specifying which workloads to run
	Multiple iterations
	Configuring Workloads
	APK Workloads

	IDs and Labels
	Classifiers
	Sections
	Section Groups
	Augmentations
	Configuring augmentations
	Disabling augmentations
	Workload-specific augmentation
	Augmentations Example

	Other Configuration

	Setting Up A Device
	Android
	General Device Setup
	Configuring Android

	Juno Setup
	UEFI
	Rebooting

	Linux
	General Device Setup

	Chrome OS
	General Device Setup

	Related Settings
	Reboot Policy
	Execution Order

	Adding a new target interface

	Automating GUI Interactions With Revent
	Overview and Usage
	Using revent with workloads
	Recording
	Replaying

	Revent vs UiAutomator

	User Reference
	Configuration
	Agenda
	config
	Configuration
	Plugins
	workloads
	sections

	Run Configuration
	Meta Configuration
	Environment Variables
	Runtime Parameters
	Example
	HotPlug
	CPUFreq
	CPUIdle
	Android Specific Runtime Parameters
	Setting Sysfiles

	Configuration Merging
	Configuration Includes

	Commands
	Run
	List
	Show
	Create
	Process
	Record
	Replay

	Output Directory Structure
	Overview
	Output Directory Entries
	Configuration and Metadata

	Developer Information
	Developer Information
	Developer Guide
	Writing Plugins
	Plugin Basics
	Dynamic Resource Resolution
	Deploying executables to a target

	Deploying assets
	Adding an Instrument
	Prioritization
	Example
	Instrumentation Signal-Method Mapping
	Unresponsive Targets

	Adding an Output processor
	Adding a Resource Getter
	Getter Prioritization
	Example

	Adding a Target
	Other Plugin Types
	Packaging Your Plugins

	How Tos
	Deploying Executables
	Adding a Workload
	Adding a Basic Workload
	Adding a ApkUiAutomator Workload
	Adding a ReventApk Workload

	Adding an Instrument
	Adding an Output Processor
	Adding a Custom Target
	Processing WA Output
	Run Info
	Target Info
	Jobs Summary
	Compare Metrics
	Complete Example

	Developer Reference
	Framework Overview
	Execution Model
	Control Flow
	Signal Dispatch

	Plugins
	Plugin Basics
	The Context
	Paths
	On the host
	On the target
	Parameters
	Validation and cross-parameter constraints
	Logging
	Documenting
	Error Notification
	Metrics
	Artifacts
	Metadata
	Classifiers
	Metadata vs Classifiers

	Execution Decorators
	@once_per_instance
	@once_per_class
	@once

	Utils
	Workloads
	Workload Types
	Basic (wa.Workload)
	Apk (wa.ApkWorkload)
	UiAuto (wa.UiautoWorkload)
	ApkUiAuto (wa.ApkUiautoWorkload)
	Revent (wa.ReventWorkload)
	APKRevent (wa.ApkReventWorkload)

	Revent Recordings
	Convention for Naming revent Files for Revent Workloads
	File format of revent recordings
	Format Overview
	Recording Header
	Device Description
	General Recording
	Gamepad Recording
	Event Stream
	Event Structure
	Parser

	Serialization
	Overview of Serialization
	Implementing Serializable Objects
	Serialization API
	WA POD Types
	Serialization Formats

	Contributing
	Code
	Documentation
	Headings
	Configuration Listings
	API Style
	methods

	Plugin Reference
	Plugin Reference
	Workloads
	adobereader
	parameters

	aitutu
	parameters

	androbench
	parameters

	angrybirds_rio
	parameters

	antutu
	parameters

	apache
	aliases
	parameters

	applaunch
	parameters

	benchmarkpi
	parameters

	chrome
	parameters

	deepbench
	aliases
	parameters

	dhrystone
	parameters

	drarm
	parameters

	exoplayer
	parameters

	geekbench
	parameters

	geekbench-corporate
	parameters

	gfxbench
	parameters

	gfxbench-corporate
	parameters

	glbenchmark
	aliases
	parameters

	gmail
	parameters

	googlemaps
	parameters

	googlephotos
	parameters

	googleplaybooks
	parameters

	googleslides
	parameters

	hackbench
	parameters

	homescreen
	parameters

	hwuitest
	parameters

	idle
	parameters

	jankbench
	parameters

	lmbench
	parameters

	manual
	parameters

	meabo
	parameters

	memcpy
	parameters

	mongoperf
	parameters

	motionmark
	parameters

	openssl
	aliases
	parameters

	pcmark
	parameters

	recentfling
	parameters

	rt-app
	parameters

	schbench
	parameters

	shellscript
	parameters

	speedometer
	parameters

	stress-ng
	parameters

	sysbench
	parameters

	templerun2
	parameters

	thechase
	parameters

	uibench
	parameters

	uibenchjanktests
	parameters

	vellamo
	parameters

	youtube
	parameters

	youtube_playback
	parameters

	Instruments
	apk_version
	parameters

	cpufreq
	parameters

	delay
	parameters

	dmesg
	parameters

	energy_measurement
	parameters

	execution_time
	parameters

	file_poller
	parameters

	fps
	parameters

	hwmon
	parameters

	interrupts
	parameters

	perf
	parameters

	perfetto
	parameters

	proc_stat
	parameters

	screen_capture
	parameters

	serialmon
	parameters

	sysfs_extractor
	parameters

	trace-cmd
	parameters

	Energy Instrument Backends
	acme_cape
	parameters

	arm_energy_probe
	parameters

	daq
	parameters

	energy_probe
	parameters

	juno_readenergy
	monsoon
	parameters

	Output Processors
	cpustates
	parameters

	csv
	parameters

	postgres
	parameters

	sqlite
	parameters

	status
	targz
	parameters

	uxperf

	Common Targets
	generic_android
	Device Parameters:

	generic_chromeos
	Device Parameters:

	generic_linux
	Device Parameters:

	generic_local
	Device Parameters:

	juno_android
	Device Parameters:

	juno_linux
	Device Parameters:

	API
	Workload Automation API
	Output
	Example
	RunOutput
	methods

	RunDatabaseOutput
	methods

	JobOutput
	methods

	JobDatabaseOutput
	methods

	Metric
	Artifact
	Additional run info
	TargetInfo
	RunInfo

	Workloads
	Workload
	methods

	ApkWorkload
	ApkUiautoWorkload
	ApkReventWorkload
	UiautoWorkload
	ReventWorkload

	Glossary
	Glossary

	FAQ
	FAQ
	Q: I receive the error: "<<Workload> file <file_name> file> could not be found."
	Q: I receive the error: "No matching package found for workload <workload>"
	Q: I am trying to set a valid runtime parameters however I still receive the error "Unknown runtime parameter"
	Q: I have a big.LITTLE device but am unable to set parameters corresponding to the big or little core and receive the error "Unknown runtime parameter"
	Q: I receive the error Could not find plugin or alias "standard"
	Q: My Juno board keeps resetting upon starting WA even if it hasn’t crashed.
	Q: I’m using the FPS instrument but I do not get any/correct results for my workload
	Q: I am getting an error which looks similar to 'CONFIG_SND_BT87X is not exposed in kernel config'...
	Q: I get an error which looks similar to UnicodeDecodeError('ascii' codec can't decode byte...
	Q: I get the error Module "X" failed to install on target

	Python Module Index
	Index

