

Welcome to the WordWeaver documentation!

Note

WordWeaver is UNDER CONSTRUCTION and should not be expected to be fully documented or even work as expected! Check back soon for more information.

WordWeaver is a tool for visualizing and interacting with computational linguistic models.

Contents:

	Getting Started
	Overview

	Installation

	CLI
	wordweaver

	WordWeaver
	Build Tools

	FST

	Resources

	WordWeaver UI

	Guides
	Running your instance

	Adding/editing a verb

	Adding/editing a pronoun

	Adding/editing an new temporal option

	Adding an affix

	Configuration
	Build Configuration

	Environment Configuration

	Interface Configuration

	Language Configuration

	Data
	JSON data

	Foma Binary

	Swagger

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Overview

What is WordWeaver?

WordWeaver is a Python library for turning an FST made with Foma [https://fomafst.github.io/] into a RESTful API. It combines with the WordWeaver GUI to create an interactive web application for the data as well.
WordWeaver was initially built for Kanyen’kéha [https://www.aclweb.org/anthology/W18-4806] but with all Iroquoian languages in mind. It will likely work for similar polysynthetic languages and Foma FSTs that model inflectional verbal morphology, but
non-Iroquoian languages will likely have to modify the source in order to work.

Who made this?

WordWeaver is the outcome of collaborative research between the Onkwawenna Kenyohkwa Mohawk Immersion school [https://onkwawenna.info/] and the Indigenous Language Technology research group [https://nrc.canada.ca/en/node/1378] at the National Research Council of Canada.

How do I make this for another language?

While we have made deliberate efforts to make WordWeaver simple to use, it will likely still require somebody with some experience with Natural Language Processing (NLP [https://en.wikipedia.org/wiki/Natural_language_processing]) in order to implement.
The basic gist of it is that you will need to create or have the following:

	An FST [https://en.wikipedia.org/wiki/Finite-state_transducer]-based model of your language’s inflectional verbal morphology (i.e. a model of how to make “conjugations”). Currently this must be a .fomabin file. Please contact us if you need other formats supported. (see Data)

	Four configuration files for setting up your WordWeaver instance (see Configuration.)

	JSON files containing all the verbs, pronouns and other affixes in your model (see Data.)

	A Swagger Specification for your API (see Data)

For steps on what to do next, please visit the Guides.

Installation

You can either install wordweaver with pip from PyPi:

pip install wordweaver

Or by cloning and installing from source:

git clone https://github.com/nrc-cnrc/wordweaver.git

cd wordweaver

pip install -e .

CLI

wordweaver

Management script for WordWeaver

wordweaver [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	Show the flask version

	
--version

	Show the version and exit.

foma

Interact with foma through command line

wordweaver foma [OPTIONS] [up|down|lower-words] [INP]

Options

	
--plain, --no-plain

	

	
--txt, --no-txt

	

	
--pkl, --no-pkl

	

Arguments

	
COMMAND

	Required argument

	
INP

	Optional argument

routes

Show all registered routes with endpoints and methods.

wordweaver routes [OPTIONS]

Options

	
-s, --sort <sort>

	Method to sort routes by. “match” is the order that Flask will match routes when dispatching a request.

	Options

	endpoint|methods|rule|match

	
--all-methods

	Show HEAD and OPTIONS methods.

run

Run a local development server.

This server is for development purposes only. It does not provide
the stability, security, or performance of production WSGI servers.

The reloader and debugger are enabled by default if
FLASK_ENV=development or FLASK_DEBUG=1.

wordweaver run [OPTIONS]

Options

	
-h, --host <host>

	The interface to bind to.

	
-p, --port <port>

	The port to bind to.

	
--cert <cert>

	Specify a certificate file to use HTTPS.

	
--key <key>

	The key file to use when specifying a certificate.

	
--reload, --no-reload

	Enable or disable the reloader. By default the reloader is active if debug is enabled.

	
--debugger, --no-debugger

	Enable or disable the debugger. By default the debugger is active if debug is enabled.

	
--eager-loading, --lazy-loader

	Enable or disable eager loading. By default eager loading is enabled if the reloader is disabled.

	
--with-threads, --without-threads

	Enable or disable multithreading.

	
--extra-files <extra_files>

	Extra files that trigger a reload on change. Multiple paths are separated by ‘:’.

shell

Run an interactive Python shell in the context of a given
Flask application. The application will populate the default
namespace of this shell according to it’s configuration.

This is useful for executing small snippets of management code
without having to manually configure the application.

wordweaver shell [OPTIONS]

spec

Update Swagger Specification

wordweaver spec [OPTIONS]

WordWeaver

Build Tools

These are tools that build and compile various files needed by WordWeaver.

The FileMaker class is used to create both docx and latex outputs of conjugations.

	
class wordweaver.buildtools.file_maker.FileMaker(conjugations=[])

	Takes conjugations and creates files (docx, latex or pdf)

	
class wordweaver.buildtools.file_maker.DocxMaker(conjugations)

	

	
class wordweaver.buildtools.file_maker.LatexMaker(conjugations)

	

FST

This folder deals with interactions between the API and the fomabin language model.

Requests must be encoded into tags for the FST:

	
class wordweaver.fst.encoder.FstEncoder(args)

	A class for batch creating upper-side sequence of morphological tags to be submitted to the FST
with
down fst_tag
Template follows spec from FST_CONFIG[‘template’]

The output of the FST must be decoded into a response that the API returns:

	
class wordweaver.fst.decoder.FstDecoder(fst_output)

	Turn FST Output like ^PP-^seni^R-^khonni^R^ into values for HTTP response

Translations into English are done through the EnglishGenerator class:

	
class wordweaver.fst.english_generator.EnglishGenerator

	Generate basic plain English based on tag from FstTagMaker

Resources

This folder contains all resources for the RESTful WordWeaver API.

WordWeaver UI

The WordWeaver User Interface is one way to visualize the data that
WordWeaver makes accessible through its API.

The interface is an Angular web application and is available here at https://github.com/roedoejet/wordweaver-GUI.

Edits to the interface for your particular instance of WordWeaver
should be purely stylistic, most of the other changes should be able to be done through the Configuration files.

Guides

Here are some guides to help do some of the basic tasks required for creating a WordWeaver instance.

Running your instance

	Make sure you have all the required data and configuration files described in Data and Configuration

	Copy the sample directory [https://github.com/nrc-cnrc/wordweaver/tree/master/wordweaver/sample] and replace all of the data and configuration files with your own.

	Set the environment variable WW_CONFIG_DIR equal to the absolute path to the folder called configs from step 2.

	Set the environment variable WW_DATA_DIR equal to the absolute path to the folder called data from step 2.

	Run the following python code, either from the interpreter or in a script:

from wordweaver.app import app
app.run()

If you have gunicorn installed on your machine, you can also run it from the command line:

Adding/editing a verb

	Add/edit the verb in your verbs.json file. (see Data)

{
"display": "wake'nahsan\u00e9n:taks",
"eng-3": "is tongue tied; gets tongue tied",
"eng-inf": "be tongue tied; get tongue tied",
"eng-past": "was tongue tied; got tongue tied",
"eng-perf": "been tongue tied; gotten tongue tied",
"eng-prog": "being tongue tied; getting tongue tied",
"gloss": "be tongue tied; get tongue tied",
"root": "'nahsanentak",
"state_type": "hab",
"stative-perf-trans": "",
"stative-pres-trans": "",
"tag": "7nahsanentak-b",
"thematic_relation": "blue"
}

	Update your Swagger Spec with wordweaver spec (see Data)

That’s it! Next time you run your WordWeaver instance, the verb will be there.

Adding/editing a pronoun

	Add/edit the pronoun in your pronouns.json file. (see Data)

{
"person": "1",
"number": "SG",
"gender": "",
"inclusivity": "",
"role": "",
"value": "ke",
"gloss": "I",
"obj_gloss": "Me",
"tag": "1-sg"
}

	Update your Swagger Spec with wordweaver spec (see Data)

	Update the pronoun key in your interface configuration file. (see Configuration)

That’s it! Next time you run your WordWeaver instance, the pronoun will be there.

Adding/editing an new temporal option

This step is for adding/editing a new aspect (or tense) to your model.

	Ensure that you have added the affixes needed by your new aspect.

	Add/edit your aspect/tense to affix_options in your language configuration file. (see Configuration)

affix_options:
 - tag: habpres
 gloss: Habitual (present)
 affixes:
 - habitual
 - pres
 public: true

	Update your Swagger Spec with wordweaver spec (see Data)

That’s it! Next time you run your WordWeaver instance, the tense/aspect will be there.

Adding an affix

Adding/editing an optional affix

This step is for adding/editing affixes that must be selected through ‘affix options’.

	Add/edit the affix to affixes.json. (see Data)

{
"gloss": "perfective",
"type": "aspect",
"morphemes": [],
"tag": "perf"
}

	Add/edit the affix to under the proper type beneath the affixes key in your language configuration file. (see Configuration)

affixes:
 aspect:
 perf:
 tag: "+Perf"
 marker: "R"

	Add/edit it for any tense/aspect affix options that require it.

	Update your Swagger Spec with wordweaver spec (see Data)

That’s it! Next time you run your WordWeaver instance, the affix will be there.

Adding an affix required by certain verbs

This step is for adding affixes that are required by verbs but cannot be optionally added through affix options.

	Add/edit the affix to affixes.json. (see Data)

{
"gloss": "duplicative",
"type": "prepronominal_prefix",
"morphemes": [],
"tag": "dup"
}

	Add/edit the affix to under the proper type beneath the decoding and bundled_affixes keys in your interface configuration file. (see Configuration)

decoding:
 bundled_affixes:
 dup: TE

	Add/edit it for any verbs that require it.

{
 "display": "tekonia'ni\u00e1nawenks",
 "eng-3": "puts gloves on someone",
 "eng-inf": "put gloves on someone",
 "eng-past": "put gloves on someone",
 "eng-perf": "put gloves on someone",
 "eng-prog": "putting gloves on someone",
 "gloss": "put gloves on someone",
 "required_affixes": [
 "dup"
],
 "root": "a'nyanawenk",
 "state_type": "hab",
 "stative-perf-trans": "",
 "stative-pres-trans": "",
 "tag": "a7nyanawenk-p",
 "thematic_relation": "purple"
}

	Update your Swagger Spec with wordweaver spec (see Data)

That’s it! Next time you run your WordWeaver instance, the affix will be there.

Configuration

There are four configuration files (yaml) that inform WordWeaver.

	A build configuration file that informs the Build Tools

	An environment configuration file that specifies certain run-time variables and security policies

	An interface configuration file that specifies the way that WordWeaver interacts with the language model

	A language configuration file that specifies variables about the language.

Below is an in-depth description of each configuration file. However, we recommend just altering
the sample configuration files [https://github.com/nrc-cnrc/wordweaver/tree/master/wordweaver/sample/configs]
instead of writing yours from scratch.

For help on how to change specific things about your WordWeaver instance, check out the Guides section.

Build Configuration

Environment Configuration

Interface Configuration

Language Configuration

Data

You must provide some static data for WordWeaver
including the fomabin of your language model, a swagger template and flat files (json)
containing data about your language’s pronouns, verbs and affixes.

JSON data

Affixes

Pronouns

Verbs

Foma Binary

You must have a valid Foma [https://fomafst.github.io/morphtut.html] binary.

Swagger

WordWeaver uses Swagger to document its API. We recommend using the default swagger spec [https://github.com/nrc-cnrc/wordweaver/tree/master/wordweaver/sample/data/swagger/swagger-pre.json]
instead of writing your own. In order to update your swagger spec, run the following code:

gen = SwaggerSpecGenerator()
gen.writeNewData()

You can also run the above code in the command line as follows:

wordweaver spec

We recommend integrating this into a CI/CD pipeline for your WordWeaver instance.

Note

This will only edit your swagger spec at $WW_DATA_DIR/swagger/swagger-pre.json

Index

 Symbols
 | C
 | D
 | E
 | F
 | I
 | L
 | W

Symbols

 	
 	
 --all-methods

 	wordweaver-routes command line option

 	
 --cert <cert>

 	wordweaver-run command line option

 	
 --debugger, --no-debugger

 	wordweaver-run command line option

 	
 --eager-loading, --lazy-loader

 	wordweaver-run command line option

 	
 --extra-files <extra_files>

 	wordweaver-run command line option

 	
 --key <key>

 	wordweaver-run command line option

 	
 --pkl, --no-pkl

 	wordweaver-foma command line option

 	
 --plain, --no-plain

 	wordweaver-foma command line option

 	
 	
 --reload, --no-reload

 	wordweaver-run command line option

 	
 --txt, --no-txt

 	wordweaver-foma command line option

 	
 --version

 	wordweaver command line option, [1]

 	
 --with-threads, --without-threads

 	wordweaver-run command line option

 	
 -h, --host <host>

 	wordweaver-run command line option

 	
 -p, --port <port>

 	wordweaver-run command line option

 	
 -s, --sort <sort>

 	wordweaver-routes command line option

C

 	
 	
 COMMAND

 	wordweaver-foma command line option

D

 	
 	DocxMaker (class in wordweaver.buildtools.file_maker)

E

 	
 	EnglishGenerator (class in wordweaver.fst.english_generator)

F

 	
 	FileMaker (class in wordweaver.buildtools.file_maker)

 	
 	FstDecoder (class in wordweaver.fst.decoder)

 	FstEncoder (class in wordweaver.fst.encoder)

I

 	
 	
 INP

 	wordweaver-foma command line option

L

 	
 	LatexMaker (class in wordweaver.buildtools.file_maker)

W

 	
 	
 wordweaver command line option

 	--version, [1]

 	
 wordweaver-foma command line option

 	--pkl, --no-pkl

 	--plain, --no-plain

 	--txt, --no-txt

 	COMMAND

 	INP

 	
 wordweaver-routes command line option

 	--all-methods

 	-s, --sort <sort>

 	
 	
 wordweaver-run command line option

 	--cert <cert>

 	--debugger, --no-debugger

 	--eager-loading, --lazy-loader

 	--extra-files <extra_files>

 	--key <key>

 	--reload, --no-reload

 	--with-threads, --without-threads

 	-h, --host <host>

 	-p, --port <port>

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to the WordWeaver documentation!

 		
 Getting Started

 		
 Overview

 		
 What is WordWeaver?

 		
 Who made this?

 		
 How do I make this for another language?

 		
 Installation

 		
 CLI

 		
 wordweaver

 		
 foma

 		
 routes

 		
 run

 		
 shell

 		
 spec

 		
 WordWeaver

 		
 Build Tools

 		
 FST

 		
 Resources

 		
 WordWeaver UI

 		
 Guides

 		
 Running your instance

 		
 Adding/editing a verb

 		
 Adding/editing a pronoun

 		
 Adding/editing an new temporal option

 		
 Adding an affix

 		
 Adding/editing an optional affix

 		
 Adding an affix required by certain verbs

 		
 Configuration

 		
 Build Configuration

 		
 Environment Configuration

 		
 Interface Configuration

 		
 Language Configuration

 		
 Data

 		
 JSON data

 		
 Affixes

 		
 Pronouns

 		
 Verbs

 		
 Foma Binary

 		
 Swagger

_static/up.png

_static/up-pressed.png

