

Welcome to woohoo pDNS’ documentation!

Contents:

	Installation
	Timing

	Requirements

	Overview

	Installing

	Using woohoo pDNS
	Command Line Interface (CLI)

	RESTful

	Python API

	woohoo pDNS’ ToDo list or whishlist
	Some things I am considering to add

	Some things I am looking for from the community

	Contributing
	Managing dependencies

	Implementing an Importer

	Support

	woohoo_pdns
	woohoo_pdns package

Indices and tables

	Index

	Module Index

	Search Page

What woohoo pDNS is

woohoo pDNS is a database to store and query passive DNS data. It is written
in Python 3 and aims to support data collected by the SiLK NetSA security
suite [https://tools.netsa.cert.org] although it can work with other source data as well.

In addition, it has a Web GUI component [https://gitlab.com/scherand/woohoo-pdns-gui] that can be installed separately.

If you want to know in more detail what (a) passive DNS (data(base)) is,
the FAQ on the Farsight Security website [https://www.farsightsecurity.com/technical/passive-dns/passive-dns-faq/#q11] is a valid resource to read up on
the topic.

What woohoo pDNS is not

woohoo pDNS is not optimised for speed. It is geared towards small-ish
installations (read: up to a couple of thoundand inserts per minute?).

Benefits

	Uses SQLAlchemy for the database stuff: let the pros handle SQL

	Adheres to the Passive DNS - Common Output Format [http://tools.ietf.org/html/draft-dulaunoy-dnsop-passive-dns-cof-01].

	Provides a RESTful interface

Installation

Timing

A complete installation of woohoo pDNS will require about 45 minutes to
complete for an experienced admin when a relational database server is already
available.

This does not include making the source data available (e.g. copying log files
from one machine to another or similar tasks).

Requirements

woohoo pDNS is a Python 3 project, therefore you need Python 3 to run it.

Also, a relational database is required. I use PostgreSQL but anything that
SQLAlchemy [https://alchemy.org] can handle should do. For testing, sqlite is just fine; do not use
it in production though because of limited support for timezones in datetime
fields [https://stackoverflow.com/q/6991457/254868].

The RESTful API is served by Gunicorn [https://gunicorn.org]. It is strongly suggested to have a
reverse proxy (like Nginx, lighttpd, Apache, …) in front of it.

Overview

The installation will consist of the following steps:

	create a virtual environment (Python 3)

	install woohoo pDNS and dependencies

	configure access to the relational database

	set up the configuration in the reverse proxy

	configure Gunicorn to serve the RESTful API

	[OPTIONAL] configure automatic loading of new pDNS data

Installing

The virtual environment

Any way of virtualising the Python environment can be used to run woohoo pDNS.
For this guide we use Python’s integrated venv method.

In case you are wondering: in production, I use Miniconda [https://docs.conda.io/en/latest/miniconda.html].

Caution

woohoo pDNS has pinned its dependencies! This means that the exact version
is specified in requirements.txt for all dependencies.
This might have undesired side effects when installing in a non-empty
environment where one of the packages woohoo pDNS depends on is already
installed.

So, go ahead and choose a suitable home for your installation of woohoo pDNS.
For Linux/*BSD systems, something under /usr/local might make sense (e.g.
/usr/local/opt/woohoo-pdns).

Once you have decided on the location and created a folder for woohoo pDNS,
create a new virtual environment like this:

$ python -m venv .pdns

This will create a folder named .pdns in the current directory and this
folder will hold your virtual environment of the same name.

Note: on a Mac of mine, creating the virtual environment like this failed
with an error like:

Error: Command '['/Users/<username>/tmp/.pdns/bin/python', '-Im', 'ensurepip', '--upgrade', '--default-pip']' returned non-zero exit status 1.

which can be fixed by following advice found on Stackoverflow [https://stackoverflow.com/a/26314477/254868]:

$ python -m venv --without-pip .pdns
$ source .pdns/bin/activate
$ curl https://bootstrap.pypa.io/get-pip.py | python
$ deactivate
$ source .pdns/bin/activate

Install woohoo pDNS and dependencies

Go ahead and activate the new environment if not already done (your shell
prompt should change):

$ source .pdns/bin/activate

You should now populate this new virtual environment with woohoo pDNS and the
required dependencies:

(.pdns)$ pip install woohoo-pdns

or install it from source:

(.pdns)$ git clone https://gitlab.com/scherand/woohoo-pdns
(.pdns)$ cd woohoo-pdns
(.pdns)$ python setup.py install
(.pdns)$ pip install -r requirements.txt

You should now be able to run the pdns command:

(.pdns)$ pnds -h

Create the configuration file

To properly run the pdns command, you will have to provide a config file with
the following information/format (-f or --config-file CLI switch):

[DB]
conn_str = "sqlite:///demo.db"

[LOAD]
loader_class = "woohoo_pdns.load.SilkFileImporter"
data_timezone = "UTC"

The values shown here are the default values that will be used if you do not
provide a config file.

Configure access to the relational database

This step depends on the database you want to use and the administrative
processes you have in place for managing (relational) databases and access to
them.

woohoo pDNS needs access to a database with permissions to create tables as
well as read and write data.

For PostgreSQL the process is as follows:

[root@database:~]# su - postgres
$ createuser --interactive
Enter name of role to add: pdns
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n
$ createdb pdns
$ psql
postgres=# ALTER USER pdns WITH ENCRYPTED PASSWORD '...';
postgres=# GRANT ALL PRIVILEGES ON DATABASE pdns to pdns;

Set up the configuration in the reverse proxy

Again, the exact steps depend on the reverse proxy software you use and the
administrative processes around it. Assuming you have all the required
permissions and want to use lighttpd, the configuration should look about
as follows:

$HTTP["host"] =~ "^pdns.example.com$" {
 $HTTP["url"] =~ "^/api/" {
 proxy.server = ("" => ((
 "host" => "localhost",
 "port" => 5001
)))
 }
}

Configure Gunicorn to serve the RESTful API

The API is served by a Flask application (WSGI application) that lives in
woohoo_pdns.api and is served by Gunicorn. To fire it up, you can use many
different ways. For example, a startup script.

Consider using a dedicated user for Gunicorn.

You must provide the name of a config file via an environment variable
called WOOHOO_PDNS_API_SETTINGS. That file should contain the following
options. (In the example below, the file is called pdns_api_conf.py.) If
only a filename is specified, the file is expected to be in a folder called
instance in the directory you are starting flask from.

SECRET_KEY = "snakeoil"
DATABASE = "sqlite:///demo.db"
API_KEYS = [
 "IXsA7uRnxR4xek4JDEG5vk2oGjTYDSqaoKLRQLVjV2s3kw0bbv49qrgAT7Bk3g2K",
 "jLHKK0AIk1l6r3W8SAJj4Lh0v2a27JGbSSd406mr0u5FNrJn6RLWQ5m6qPYXT0d5",
]

The options shown above are the default values that are used if the file
referenced in the WOOHOO_PDNS_API_SETTINGS environment variable does not
set them.

You can use whatever you like for the SECRET_KEY; it is a Flask thing, see
woohoo_pdns.api.config.DefaultSettings.SECRET_KEY.

The DATABASE option specifies the connection string to the relational
database (this is forwarded ‘as is’ to SQLAlchemy).

The list of API_KEYS specifies all strings that will be accepted as keys
for API access.

	Note:
	The API keys can be any string, but it is suggested to create a random
character sequence using something like the following command (inspired by
a gist by earthgecko [https://gist.github.com/earthgecko/3089509]):

$ cat /dev/urandom | base64 | tr -dc 'a-zA-Z0-9' | fold -w 64 | head -1

The following outlines the FreeBSD rc.d script (/usr/local/etc/rc.d/pdns-api-gunicorn)
I use for this purpose (inspired by a thread in the FreeBSD forums [https://forums.FreeBSD.org/threads/writing-an-rc-script-for-gunicorn-django.64209/]):

#! /bin/sh

PROVIDE: pdns_api_gunicorn
REQUIRE: DAEMON
KEYWORD: shutdown

#
Add the following lines to /etc/rc.conf to enable the woohoo pDNS API:
#
#pdns_api_gunicorn_enable="YES"

. /etc/rc.subr

name="pdns_api_gunicorn"
rcvar="${name}_enable"
start_cmd="${name}_start"
stop_cmd="${name}_stop"
pidfile="/var/run/${name}.pid"
procname="daemon:"
gip="localhost"
gport="5001"

pdns_api_gunicorn_start(){
 chdir /usr/local/opt/woohoo-pdns
 . /root/.virtualenvs/pdns/bin/activate
 LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8 FLASK_ENV=production WOOHOO_PDNS_API_SETTINGS="pdns_api_conf.py" daemon -r -S -P ${pidfile} -T pdns-api-gunicorn -u root /root/.virtualenvs/pdns/bin/gunicorn --workers 3 --bind ${gip}:${gport} "woohoo_pdns.api:create_app()"
}

pdns_api_gunicorn_stop(){
 if [-f ${pidfile}]; then
 echo -n "Stopping services: ${name}"
 # MUST send TERM signal (not e.g. INT) to work properly with '-P' switch
 # check daemon(8) for details
 kill -s TERM $(cat ${pidfile})
 if [-f ${gsocket}]; then
 rm -f ${gsocket}
 fi
 echo "."
 else
 echo "It appears ${name} is not running."
 fi
}

load_rc_config ${name}
this sets the default 'enable' (to no)
: ${pdns_api_gunicorn_enable:="no"}
run_rc_command "$1"

Automatic loading of additional data

I run the following script every three
minutes via a cron job:

*/3 * * * * /usr/local/bin/woohoo-pdns-load.sh 2>&1 | /usr/bin/logger -t woohoo-pdns

/usr/local/bin/woohoo-pdns-load.sh:

#!/usr/local/bin/bash

. /root/.virtualenvs/pdns/bin/activate
pdns -f /usr/local/etc/woohoo-pdns/pdns.conf load -p "dns.*.txt" /var/spool/silk/dns

exit 0

New files matching the glob pattern dns.*.txt in /var/spool/silk/dns/ will be read into the database like this.
After they are processed, they are renamed by appending .1 to the filename so they are not read again.

I have another ‘cron job’ (it is actually a job for FreeBSD’s periodic) that cleans out old files from
/var/spool/silk/dns/ – well – periodically.

It lives in /usr/local/etc/periodic/daily/405.woohoo-pdns-cleanup and looks as follows:

#!/bin/sh

cleanup_1_files() {
 local rc

 /usr/bin/find /var/spool/silk/dns/ -name "*.1" -type f -maxdepth 1 -mmin +60 -delete

 rc=$?
 return $rc
}

cleanup_1_files

exit $rc

Using woohoo pDNS

There are three ways you can use your installation of woohoo pDNS.

	via the command line interface (CLI)

	via the REST interface

	via the Python API

We well show each of the usage types in turn here.

Command Line Interface (CLI)

The CLI is accessible via the pdns command. It has a help switch
(-h/--help):

$ pdns -h
usage: pdns [-h] [-f CONFIG_FILE] [-q | -v | -d] {load,export,query} ...

CLI for woohoo pDNS.

optional arguments:
 -h, --help show this help message and exit
 -f CONFIG_FILE, --config-file CONFIG_FILE
 The config file to use, must contain the connection
 string for the database, e.g. 'conn_str =
 sqlite:///test.db' in a section called '[DB]'
 -q, --quiet be quiet (only output critical messages)
 -v, --verbose be verbose
 -d, --debug be as verbose as you can

subcommands:
 available subcommands

 {load,export,query} see help for respective sub-command
 load load data into the pDNS database
 export export data to a JSON file
 query query the database (returns JSON)

So you could for example load files created by supermediator using the
following command:

$ pdns -f pdns.conf load -p "dns.*.txt" /var/spool/silk/dns

The contents of pdns.conf is described in the Installation guide under
Create the configuration file.

Or you could query the database as follows:

$ pdns -f pdns.conf query "*example.com"
{
 "hitcount": 2,
 "rdata": "example.com",
 "rrname": "example.com",
 "rrtype": 6,
 "time_first": 1479937407.0,
 "time_last": 1479937407.0
}

RESTful

Note

You cannot add data to the database via the RESTful API.

Once gunicorn sering the RESTful API (and the reverse proxy protecting it)
is up and running, you can query it using curl as follows:

curl -D - -H "Authorization: <your_api_token>" <server_ip>/api/count
curl -D - -H "Authorization: <your_api_token>" <server_ip>/api/recent
curl -D - -H "Authorization: <your_api_token>" <server_ip>/api/q/www.example.com

Python API

Here is a sample Python API session:

import logging
import configparser
logging.basicConfig(level=logging.DEBUG)

from woohoo_pdns.pdns import Database

config_f = configparser.ConfigParser()
config_f.read("my.conf")
conn_str = config_f["DB"]["conn_str"]
d = Database(conn_str)

r = d.add_record(1, "foo", "bar.")
d.find_record(1, "foo")
d.add_record(1, "foo", "bar", num_hits=40)
d.find_record(1, "foo")

d.query("gmail-imap.l.google.com")
d.query("2a00:1450:4001:080b::200a")
d.query("127.0.0.1")
d.query("meteoswiss-app.ch")
d.query("*example.com")

woohoo pDNS’ ToDo list or whishlist

Some things I am considering to add

	log some statistics showing the activity in the DB

	implement a Kafka source (woohoo_pdns.load.Source)

Some things I am looking for from the community

	Init scripts (especially for Linux)

	Reverse proxy configurations for other webservers than lighttpd

	General tips and tricks to run Python web applications (e.g. logging)

Contributing

To build woohoo pDNS (and the documentation), three additional dependencies
exist:

pip-tools
nose
sphinx-rtd-theme

Caution

woohoo pDNS has pinned its dependencies! This means that the exact version
is specified in dev-requirements.txt for all dependencies.
This might have undesired side effects when installing in a non-empty
environment where one of the packages woohoo pDNS depends on is already
installed.

You can easily install them using the following pip command in your development
environment:

$ pip install -r dev-requirements.txt

To build the documentation after cloning the repository, run the following
command in the woohoo_pdns/docs directory:

$ make html

Note: do not run:

$ sphinx-quickstart

To run the tests, issue the following command:

$ python setup.py test

And to see test coverage:

$ pytest [--cov-report html] --cov=woohoo_pdns woohoo_pdns/tests/

Managing dependencies

Following the advice of people with (much) more experience in that field
(namely Vincent Driessen [https://nvie.com/about/] and Hynek Schlawack [https://hynek.me/]) woohoo pDNS pins its
dependencies.

The tool used is pip-tools [https://pypi.org/project/pip-tools/], for the runtime dependencies in
Hash-Checking Mode [https://pip.pypa.io/en/stable/reference/pip_install/#hash-checking-mode], and here’s how.

Runtime dependencies

Dependencies required to run woohoo pDNS are listed in the
install_requires variable in setup.py:

setup(
 <snip>
 install_requires = [
 "alembic",
 "flask",
 <snap>
]
)

If you want to add a new (run time) dependency for woohoo pDNS, this is the
place to do so.

Build dependencies

Dependencies required to develop woohoo pDNS are listed in the
dev-requirements.in file:

pip-tools
...

Using pip-tools for woohoo pDNS

To generate a requirements.txt file (i.e. a requirements.txt file that
listing the runtime dependencies), run the following command (you have
pip-tools installed, right?):

$ pip-compile --generate-hashes

This will overwrite the current requirements.txt file with the most recent
version available on PiPI for every package and will add new dependencies
also.

To check if there are newer versions of dependencies available in PyPI, use the
following command:

$ pip-compile --upgrade --generate-hashes

This will overwrite the current requirements.txt file with the most recent
version available on PiPI for every package. It will not add new dependencies
though.

Note: pip-compile has a dry-run command line switch.

To generate the ``dev-requirements.txt`` file (i.e. a file listing the build
dependencies), run the following command:

$ pip-compile --allow-unsafe --output-file=dev-requirements.txt dev-requirements.in

This will overwrite the current dev-requirements.txt file with the most
recent version available on PiPI for every package and will add new
dependencies also.

To check if there are newer versions of build dependencies available in PyPI,
use the following command:

$ pip-compile --upgrade --allow-unsafe --output-file=dev-requirements.txt dev-requirements.in

This will overwrite the current dev-requirements.txt file with the most
recent version available on PiPI for every package. It will not add new
dependencies though.

References:

	Pin Your Packages [https://nvie.com/posts/pin-your-packages/]

	Better Package Management [https://nvie.com/posts/better-package-management/]

	Python Application Dependency Management in 2018 [https://hynek.me/articles/python-app-deps-2018/]

	pip-tools (GitHub) [https://github.com/jazzband/pip-tools]

Implementing an Importer

I consider the need for a custom woohoo_pdns.load.Importer the most
likely scenario of extending woohoo pDNS. Therefore this process is extensively
documented here.

Overview

While the Importer is the workhorse of the data loading, it relies on another
component called woohoo_pdns.load.Source to provide one record that
should be loaded at a time.

There are currently two types of sources implemented: both read from files, but
one just reads one line after the other (skipping empty lines) while the other
expects to read YAML documents and therefore keeps reading until the YAML
document separator (---) is encountered (or the file ends).

The former is woohoo_pdns.load.SingleLineFileSource while the latter
is woohoo_pdns.load.YamlFileSource. Because both sources do read data
from files on disk, they are both subclasses of
woohoo_pdns.load.FileSource.

Source

A custom/new source is only required if the existing sources do not cover your
needs. Otherwise, just writing an Importer is enough.

Requirements

If a new Source is implemented, it should subclass
woohoo_pdns.load.Source.

Sources must be context managers (i.e. be able to be used with with) and
must have a method called woohoo_pdns.load.Source.get_next_record() that
does not take any argument and returns a string. That string should be
something the Importer can then work with.

In addition, they must implement the woohoo_pdns.load.Source.state
property which allows the Importer to retrieve and restore the source’s state
between batches of data loading.

The Importer subclass

Importers must be subclasses of woohoo_pdns.load.Importer. There are
two important methods that every Importer must provide:

	woohoo_pdns.load.Importer._tokenise_record()

	woohoo_pdns.load.Importer._parse_tokenised_record()

The first one is called for every ‘raw’ record (i.e. whatever is returned by
the Source’s woohoo_pdns.load.Source.get_next_record()) and must return
a list of woohoo_pdns.util.record_data named tuples. This method can
filter the record by returning an empty list.

The return value is a list because (depending on the source) a single ‘raw’
entry can lead to multiple records (e.g. when a query has multiple responses).

The second function is called for every entry in the list returned by
_tokenise_record. It is mainly meant to ‘polish’ the entries, for example
by parsing dates, etc.

Why this complexity?

The main reason for the differentiation between the two steps in loading data
is that the second might depend on information that is only available after at
least one record was read from the source (per batch).

Imagine for example that the exact format of the dates (timestamps) is unknown
but consistent within one batch.

In a situation like this, _tokenise_record would probably not be concerned
with the date format. But _parse_tokenised_record would have to
(re-)determine the format for every single record, which would be inefficient.

That is why there are two more methods that can be implemented in an
Importer:

	woohoo_pdns.load.Importer._inspect_raw_record()

	woohoo_pdns.load.Importer._inspect_tokenised_record()

These methods are called for every first record of a batch. In the
_inspect_tokenised_record method, the Importer could establish the
timestamp format which could then be used for all remaining records of the
batch.

Similar, _inspect_raw_record could be used to do an operation on the first
raw record of a batch, if required .

Support

If you need to get help with woohoo pDNS feel free to open an issue on Gitlab
and I will do my best to help out.

Please understand however that this currently is a private project run in my
free time and that I can only spend as much time on it as I can.

Be assured: I will come back to you; just maybe not right now?

woohoo_pdns

	woohoo_pdns package
	Subpackages
	woohoo_pdns.api package
	Submodules

	woohoo_pdns.api.api module

	woohoo_pdns.api.config module

	woohoo_pdns.api.db module

	Module contents

	Submodules

	woohoo_pdns.load module

	woohoo_pdns.meta module

	woohoo_pdns.pdns module

	woohoo_pdns.util module

	Module contents

woohoo_pdns package

Subpackages

	woohoo_pdns.api package
	Submodules

	woohoo_pdns.api.api module

	woohoo_pdns.api.config module

	woohoo_pdns.api.db module

	Module contents

Submodules

woohoo_pdns.load module

	
class woohoo_pdns.load.DNSLogFileImporter(source_name, **kwargs)

	Bases: woohoo_pdns.load.FileImporter

Importer capable of reading a different source file format (JSON based).

	
__init__(source_name, **kwargs)

	To correctly initialise a file source a config dict must be supplied (see ‘cfg’ argument documentation).

	Parameters

	
	source_name (str) – Either the name of a file to be read or the name of a directory to scan for files to
load.

	cfg (dict) – A config dictionary that contains the following two keys:
* file_pattern (str): The glob pattern to use when reading files from a directory.
* rename (bool): Whether or not files should be renamed (by appending ‘.1’) after they are read.

	
__module__ = 'woohoo_pdns.load'

	

	
_parse_tokenised_record(tokenised_rec)

	Convert unix timestamps into aware datetime objects and convert string-type rrtype into their integer based
pendants.

	Parameters

	tokenised_rec (record_data) – The record_data as tokenised by _tokenise_record()

	Returns

	A single element list of record_data named tuple.

	
_tokenise_record(rec)

	Split a line into tokens:

{"rrclass": "IN", "ttl": 3600, "timestamp": "1562845812", "rrtype": "PTR", "rrname": "24.227.156.213.in-addr.arpa.", "rdata": "mx2.mammut.ch.", "sensor": 37690}

becomes:

tokens[0] = "1562845812" # first_seen
tokens[1] = "1562845812" # last_seen
tokens[2] = "PTR" # DNS type
tokens[3] = "24.227.156.213.in-addr.arpa." # rrname
tokens[4] = "1" # hitcount
tokens[5] = "mx2.mammut.ch." # rdata

respectively:

entry.first_seen
entry.last_seen
entry.rrtype
entry.rrname
entry.hitcount
entry.rdata

	Parameters

	rec (str) – A record returned from the source object.

	Returns

	A single entry list of record_data named tuple.

	
class woohoo_pdns.load.DNSTapFileImporter(source_name, **kwargs)

	Bases: woohoo_pdns.load.FileImporter

An importer capable of reading YAML based dnstap log files.

	
__init__(source_name, **kwargs)

	To correctly initialise a file source a config dict must be supplied (see ‘cfg’ argument documentation).

	Parameters

	
	source_name (str) – Either the name of a file to be read or the name of a directory to scan for files to
load.

	cfg (dict) – A config dictionary that contains the following two keys:
* file_pattern (str): The glob pattern to use when reading files from a directory.
* rename (bool): Whether or not files should be renamed (by appending ‘.1’) after they are read.

	
__module__ = 'woohoo_pdns.load'

	

	
_parse_tokenised_record(tokenised_rec)

	Loop through all answers in the record and turn the datetimes into aware objects (using the default timezone).

	Parameters

	tokenised_rec (record_data) – The record_data as tokenised by _tokenise_record()

	Returns

	A list of record_data named tuple.

	
_tokenise_record(rec)

	Extract from YAML document:

type: MESSAGE
identity: dns.host.example.com
version: BIND 9.11.3-RedHat-9.11.3-6.el7.centos
message:
 type: RESOLVER_RESPONSE
 message_size: 89b
 socket_family: INET6
 socket_protocol: UDP
 query_address: 203.0.113.56
 response_address: 203.0.113.53
 query_port: 49824
 response_port: 53
 response_message_data:
 opcode: QUERY
 status: NOERROR
 id: 44174
 flags: qr aa
 QUESTION: 1
 ANSWER: 2
 AUTHORITY: 0
 ADDITIONAL: 0
 QUESTION_SECTION:
 - clients6.google.com. IN AAAA
 ANSWER_SECTION:
 - clients6.google.com. 300 IN CNAME clients.l.google.com.
 - clients.l.google.com. 300 IN AAAA 2a00:1450:4002:807::200e
 response_message: |
 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44174
 ;; flags: qr aa ; QUESTION: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0
 ;; QUESTION SECTION:
 ;clients6.google.com. IN AAAA

 ;; ANSWER SECTION:
 clients6.google.com. 300 IN CNAME clients.l.google.com.
 clients.l.google.com. 300 IN AAAA 2a00:1450:4002:807::200e

becomes:

tokens[0] = "2018-06-18T19:22:56Z" # first_seen
tokens[1] = "2018-06-18T19:22:56Z" # last_seen
tokens[2] = "CNAME" # DNS type
tokens[3] = "clients6.google.com." # rrname
tokens[4] = "1" # hitcount
tokens[5] = "clients.l.google.com." # rdata

respectively:

entry.first_seen
entry.last_seen
entry.rrtype
entry.rrname
entry.hitcount
entry.rdata

	Parameters

	rec (str) – A record (YAML document as string) returned from the source object.

	Returns

	A list of record_data named tuple.

	
class woohoo_pdns.load.FileImporter(source_name, cfg=None, **kwargs)

	Bases: woohoo_pdns.load.Importer

An abstract class to handle loading data from files.

The ‘source_name’ can be a filename or a directory name on disk. If it is a file name, that file will be read. If it
is a directory, all files matching the glob pattern in cfg[“file_pattern”] will be read.
An exception will be thrown if the file (or directory) does not exist).

Note

Errors will be written to a file called like the source file, but with ‘_err’ in the name (if ‘source_name’ is
a file) or to a file in the parent directory of the directory to load files from, also with an ‘_err’ in the
name, if ‘source_name’ is a directory.

	Throws:
	FileNotFoundException if ‘source_name’ does not exist.

	
__init__(source_name, cfg=None, **kwargs)

	To correctly initialise a file source a config dict must be supplied (see ‘cfg’ argument documentation).

	Parameters

	
	source_name (str) – Either the name of a file to be read or the name of a directory to scan for files to
load.

	cfg (dict) – A config dictionary that contains the following two keys:
* file_pattern (str): The glob pattern to use when reading files from a directory.
* rename (bool): Whether or not files should be renamed (by appending ‘.1’) after they are read.

	
__module__ = 'woohoo_pdns.load'

	

	
_parse_tokenised_record(tokenised_rec)

	After a record was tokenised, it is passed to this method for parsing (e.g. turn a unix timestamp into a
datetime, or similar).

Note

This method must be implemened by the concrete subclasses of Importer.

	Parameters

	tokenised_rec (record_data) – The record as tokenised by _tokenise_record().

	Returns

	A record_data named tuple representing the final record to load. The importer also works if this method or
returns None (i.e. nothing is loaded in to the database and the loading process continues) but the record
is still considered ‘loaded’ by the statistics.

	
_tokenise_record(rec)

	After a raw record is read from the source object, this method is called and passed the raw record to split it
into the parts required for a pDNS record.

Note

This method must be implemened by the concrete subclasses of Importer.

	Parameters

	
	rec (str) – The record as it was returned by the source object. This string must now be splitted into the

	parts of a record_data named tuple. (different) –

	Returns

	A record_data named tuple that represents the record to load or None if the record could not be parsed (or
should be ignored).

	
class woohoo_pdns.load.FileSource(config, **kwargs)

	Bases: woohoo_pdns.load.Source

A source that reads data from files on disk.

This source can either read a single file or scan a directory for files that match a glob pattern and process all
matching files from the given directory. If the filename passed in is a file, this file will be processed. If
filename is a directory, the glob pattern in file_pattern will be used to find files to process in that
directory.

If the optional configuration option rename is set to true (the default), RENAME_APPENDIX will be
appended to the current file name after processing.

Note

The config dictionary (config) must contain the following keys:

	filename

And the following keys are optional in the config dictionary:

	file_pattern

	rename

	
RENAME_APPENDIX = '1'

	If files should be renamed after processing, this is what is appended to the current filename.

	
__enter__()

	

	
__exit__(exc_type, exc_val, exc_tb)

	

	
__init__(config, **kwargs)

	
	Parameters

	
	config (dict) – A dictionary that can hold data the source requires to configure itself.

	kwargs (kwargs) – These are mainly to make this a “cooperative class” according to super() considered
super [https://rhettinger.wordpress.com/2011/05/26/super-considered-super/].

	
__module__ = 'woohoo_pdns.load'

	

	
__str__()

	Return str(self).

	
_open_next_file()

	Try to open the next file to process.

First, the currently open file will be closed and renamed, if requested. After this, the next file in the list
is opened (if any).

	Raises

	IndexError –

	Returns

	Nothing.

	
get_next_record()

	This method is called by the importer whenever it is ready to load the next record. What is returned will be
passed into Importer._tokenise_record().

Note

Subclasses must implement this method as it is not implemented here.

	Returns

	A raw record from the source as string.

	
property state

	Return a dictionary that describes the current state of the source.

The setter of this property expects a dictionary that was created by this getter and then restores the state of
the source to what it was when state was retrieved.

	Returns

	A dictionary containing the current file list file_list (list of all files pending processing, excluding
the current file), the name of the currently being processed file file_name and the offset (index) into
the currently being processed file (as retrieved by tell()).

	
class woohoo_pdns.load.Importer(source_name, data_timezone='UTC', strict=False, **kwargs)

	Bases: object

Importers are used to import new data into the pDNS database.

This is the super class for all importers. Different importers can import data from different sources. If no
importer for a specific source is available, woohoo pDNS tries to make it simple to write a new importer for that
particular source (format).

The main method of an importer is load_batch(). This method reads up to ‘batch_size’ records from the source,
processes them into a list of record_data named tuples, adds some statistics and returns it.

To access the source data it uses a Source object. This object’s job is to provide a single source record
at a time to the importer. This can mean reading one or several lines from a file or a record from a Kafka topic or
whatever produces a source record. The importer then processes this record (possibly into multiple entries, for
example if the source record contained a single query that produced multiple answers).

This base class handles the fetching of records from the source (up to a maximum of batch_size), calling the
respective hooks (_inspect_raw_record(), _inspect_tokenised_record(), _tokenise_record() and
_parse_tokenised_record()) which implement the actual logic for the importer (i.e. these are the methods that
must be overridden in the child classes), minimal cleansing of the data and handling errors (including writing an
error logfile).

	
IGNORE_TYPES = [0]

	DNS types that we want to ignore completely (0 for example does not exist)

	
ILLEGAL_CHARS = ['/', '\\', '&', ':']

	If any of these characters is present in rname the record will not be loaded as these characters are not
expected in rrname (they can, however, be present in rdata, for example in TXT records).

	
__dict__ = mappingproxy({'__module__': 'woohoo_pdns.load', '__doc__': "\n Importers are used to import new data into the pDNS database.\n\n This is the super class for all importers. Different importers can import data from different sources. If no\n importer for a specific source is available, woohoo pDNS tries to make it simple to write a new importer for that\n particular source (format).\n\n The main method of an importer is :meth:`load_batch`. This method reads up to 'batch_size' records from the source,\n processes them into a list of record_data named tuples, adds some statistics and returns it.\n\n To access the source data it uses a :class:`Source` object. This object's job is to provide a single source record\n at a time to the importer. This can mean reading one or several lines from a file or a record from a Kafka topic or\n whatever produces a source record. The importer then processes this record (possibly into multiple entries, for\n example if the source record contained a single query that produced multiple answers).\n\n This base class handles the fetching of records from the source (up to a maximum of batch_size), calling the\n respective hooks (:meth:`_inspect_raw_record`, :meth:`_inspect_tokenised_record`, :meth:`_tokenise_record` and\n :meth:`_parse_tokenised_record`) which implement the actual logic for the importer (i.e. these are the methods that\n must be overridden in the child classes), minimal cleansing of the data and handling errors (including writing an\n error logfile).\n ", 'load_batch_result': <class 'woohoo_pdns.load.load_batch_result'>, 'ILLEGAL_CHARS': ['/', '\\', '&', ':'], 'IGNORE_TYPES': [0], '__init__': <function Importer.__init__>, 'has_more_data': <property object>, 'load_batch': <function Importer.load_batch>, '_is_valid': <function Importer._is_valid>, '_inspect_raw_record': <function Importer._inspect_raw_record>, '_inspect_tokenised_record': <function Importer._inspect_tokenised_record>, '_tokenise_record': <function Importer._tokenise_record>, '_parse_tokenised_record': <function Importer._parse_tokenised_record>, '__dict__': <attribute '__dict__' of 'Importer' objects>, '__weakref__': <attribute '__weakref__' of 'Importer' objects>})

	

	
__init__(source_name, data_timezone='UTC', strict=False, **kwargs)

	Constructor for an importer.

	Parameters

	
	source_name (str) – A name that is passed to the source; can be a file name or directory name for a
FileSource or, for a hypothetical KafkaSource, it could be the name of the Kafka topic to use.

	data_timezone (str) – The name of the timezone that should be used if the source data does not provide the
timezone for the dates and times (first_seen, last_seen).

	strict (bool) – If set to true, the importer will throw an exception if something ‘odd’ is encountered in
in the source data. If it is set to false, the importer will write an entry in the error log and
continue loading data.

	kwargs (kwargs) – These are mainly to make this a “cooperative class” according to super() considered
super [https://rhettinger.wordpress.com/2011/05/26/super-considered-super/].

	
__module__ = 'woohoo_pdns.load'

	

	
__weakref__

	list of weak references to the object (if defined)

	
_inspect_raw_record(raw_record)

	For the first record of every batch this method will be called and the raw record is passed to it. This can be
used if ‘something’ must be determined from source data (e.g. the datetime format).

Note

This is a NOP in Importer and meant to be overridden by subclasses if required.

	Parameters

	raw_record (str) – the record as it was returned from the source object.

	Returns

	Nothing.

	
_inspect_tokenised_record(tokenised_rec)

	For every record that was successfully tokenised (i.e. splitted into the required parts), this method will
be called. Can be used to decide on further processing for example.

Note

This is a NOP in Importer and meant to be overridden by subclasses if required.

	Parameters

	tokenised_rec (record_data) – The record as it was tokenised by _tokenise_record().

	Returns

	Nothing.

	
_is_valid(entry)

	Check if the given entry is considered to be valid.

Entries with an empty rrname or rdata field are considered invalid, for example.

	Parameters

	entry (record_data) – the entry to check for validity.

	Returns

	True if the entry passed validation, False otherwise.

	
_parse_tokenised_record(tokenised_rec)

	After a record was tokenised, it is passed to this method for parsing (e.g. turn a unix timestamp into a
datetime, or similar).

Note

This method must be implemened by the concrete subclasses of Importer.

	Parameters

	tokenised_rec (record_data) – The record as tokenised by _tokenise_record().

	Returns

	A record_data named tuple representing the final record to load. The importer also works if this method or
returns None (i.e. nothing is loaded in to the database and the loading process continues) but the record
is still considered ‘loaded’ by the statistics.

	
_tokenise_record(rec)

	After a raw record is read from the source object, this method is called and passed the raw record to split it
into the parts required for a pDNS record.

Note

This method must be implemened by the concrete subclasses of Importer.

	Parameters

	
	rec (str) – The record as it was returned by the source object. This string must now be splitted into the

	parts of a record_data named tuple. (different) –

	Returns

	A record_data named tuple that represents the record to load or None if the record could not be parsed (or
should be ignored).

	
property has_more_data

	Indicating if the importer is (potentially) able to produce more data. Mainly means that the source can fetch
at least one more record; does not include any validity check(s) of that data though.

	Returns

	True if there is more source data available, false otherwise.

	
load_batch(batch_size, max_failed_inarow=0)

	The workhorse method of Importer.

The source object (self.source) will be initialised with its config (self.src_config) and for subsequent
iterations the source’s state will be restored (to what was returned by Source.state in the last
iteration).
Then, records will be loaded until either no more data is available or ‘batch_size’ records are ready for
loading into the database.

For the first record in every batch, _inspect_raw_record() and _inspect_tokenised_record() will
be called. For every record _tokenise_record() and _parse_tokenised_record() are called.

_tokenise_record() is meant to be the place where filtering of source records can occur (return None).

	Parameters

	
	batch_size (int) – The maximum number of records to process at once.

	max_failed_inarow (int) – The maximum number of records that fail to import in a row before aborting the
processing of this batch.

	Returns

	A load_batch_result named tuple. This contains some statistics and a list of record_data named tuples.

	
class load_batch_result(converted, loaded, ignored, records)

	Bases: tuple

A named tuple that is used to pass back some statistics as well as a list of record_data

	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__module__ = 'woohoo_pdns.load'

	

	
static __new__(_cls, converted, loaded, ignored, records)

	Create new instance of load_batch_result(converted, loaded, ignored, records)

	
__repr__()

	Return a nicely formatted representation string

	
__slots__ = ()

	

	
_asdict()

	Return a new OrderedDict which maps field names to their values.

	
_fields = ('converted', 'loaded', 'ignored', 'records')

	

	
_fields_defaults = {}

	

	
classmethod _make(iterable)

	Make a new load_batch_result object from a sequence or iterable

	
_replace(**kwds)

	Return a new load_batch_result object replacing specified fields with new values

	
property converted

	Alias for field number 0

	
property ignored

	Alias for field number 2

	
property loaded

	Alias for field number 1

	
property records

	Alias for field number 3

	
class woohoo_pdns.load.SilkFileImporter(source_name, **kwargs)

	Bases: woohoo_pdns.load.FileImporter

Importer to read files produced by the SiLK security suite.

Note

This is a subclass of FileImporter as it reads data from files on disk. There are many ways to get
the files, for example with the ‘rwsender’ program [https://tools.netsa.cert.org/silk/rwsender.html] included in the SiLK suite.

	
__init__(source_name, **kwargs)

	To correctly initialise a file source a config dict must be supplied (see ‘cfg’ argument documentation).

	Parameters

	
	source_name (str) – Either the name of a file to be read or the name of a directory to scan for files to
load.

	cfg (dict) – A config dictionary that contains the following two keys:
* file_pattern (str): The glob pattern to use when reading files from a directory.
* rename (bool): Whether or not files should be renamed (by appending ‘.1’) after they are read.

	
__module__ = 'woohoo_pdns.load'

	

	
_inspect_tokenised_record(tokenised_rec)

	Sometimes, the time in the input as millisecond resolution (for the whole source file). If so, adjust the
parsing format to account for this.

	Parameters

	tokenised_rec (record_data) – The record as tokenised by _tokenise_record().

	Returns

	Nothing.

	
_parse_tokenised_record(tokenised_rec)

	Mainly convert the date and time (strings) into aware datetime objects.

	Parameters

	tokenised_rec (record_data) – The record_data as tokenised by _tokenise_record()

	Returns

	A single element list of record_data named tuple.

	
_tokenise_record(rec)

	Split a line into tokens:

2019-05-13 18:12:44.374|2019-05-13 18:12:44.374|28|gateway.fe.apple-dns.net|1|2a01:b740:0a41:0603::0010

becomes:

tokens[0] = "2019-05-13 18:12:44.374" # first_seen
tokens[1] = "2019-05-13 18:12:44.374" # last_seen
tokens[2] = "28" # DNS type
tokens[3] = "gateway.fe.apple-dns.net" # rrname
tokens[4] = "1" # hitcount
tokens[5] = "2a01:b740:0a41:0603::0010" # rdata

respectively:

entry.first_seen
entry.last_seen
entry.rrtype
entry.rrname
entry.hitcount
entry.rdata

	Parameters

	rec (str) – A record returned from the source object.

	Returns

	A single entry list of record_data named tuple.

	
class woohoo_pdns.load.SingleLineFileSource(config, **kwargs)

	Bases: woohoo_pdns.load.FileSource

A file source that reads a single line from a file at a time.

	
__module__ = 'woohoo_pdns.load'

	

	
get_next_record()

	Read a single line from a source file (skipping empty lines).

If no line is left, try to open the next file (if available) and read a line from there.

	Returns

	see FileSource.get_next_record().

	
class woohoo_pdns.load.Source(config, **kwargs)

	Bases: object

Source object(s) abstract the logic of fetching a ‘single record’ from a source.

For files, this can mean reading one or several lines (e.g. a YAML document), for other sources (e.g. an imaginary
Kafka source) this could mean querying a service or calling an API or …

	
__dict__ = mappingproxy({'__module__': 'woohoo_pdns.load', '__doc__': "\n Source object(s) abstract the logic of fetching a 'single record' from a source.\n\n For files, this can mean reading one or several lines (e.g. a YAML document), for other sources (e.g. an imaginary\n Kafka source) this could mean querying a service or calling an API or ...\n ", '__init__': <function Source.__init__>, '__enter__': <function Source.__enter__>, '__exit__': <function Source.__exit__>, 'state': <property object>, 'get_next_record': <function Source.get_next_record>, '__dict__': <attribute '__dict__' of 'Source' objects>, '__weakref__': <attribute '__weakref__' of 'Source' objects>})

	

	
__enter__()

	

	
__exit__(exc_type, exc_val, exc_tb)

	

	
__init__(config, **kwargs)

	
	Parameters

	
	config (dict) – A dictionary that can hold data the source requires to configure itself.

	kwargs (kwargs) – These are mainly to make this a “cooperative class” according to super() considered
super [https://rhettinger.wordpress.com/2011/05/26/super-considered-super/].

	
__module__ = 'woohoo_pdns.load'

	

	
__weakref__

	list of weak references to the object (if defined)

	
get_next_record()

	This method is called by the importer whenever it is ready to load the next record. What is returned will be
passed into Importer._tokenise_record().

Note

Subclasses must implement this method as it is not implemented here.

	Returns

	A raw record from the source as string.

	
property state

	A source can have ‘state’ which allows it to resume at the correct next record after a batch of data was
processed.

Note

Importers will request state from the source when a batch is about to be finished and will pass whatever
the source provided back to the source before starting the next batch.

For a source reading from a file this can for example mean to return the value of tell() and then
seek() to this position when state is passed in again.

	
exception woohoo_pdns.load.WoohooImportError

	Bases: Exception

	
__module__ = 'woohoo_pdns.load'

	

	
__weakref__

	list of weak references to the object (if defined)

	
class woohoo_pdns.load.YamlFileSource(config, **kwargs)

	Bases: woohoo_pdns.load.FileSource

Read a YAML document from a file on disk.

	
__module__ = 'woohoo_pdns.load'

	

	
get_next_record()

	This method is called by the importer whenever it is ready to load the next record. What is returned will be
passed into Importer._tokenise_record().

Note

Subclasses must implement this method as it is not implemented here.

	Returns

	A raw record from the source as string.

woohoo_pdns.meta module

	
class woohoo_pdns.meta.LookupDict(name=None)

	Bases: dict

Dictionary lookup object.

TODO: understand this…
https://github.com/kennethreitz/requests/blob/master/requests/structures.py

	
__dict__ = mappingproxy({'__module__': 'woohoo_pdns.meta', '__doc__': '\n Dictionary lookup object.\n\n TODO: understand this...\n https://github.com/kennethreitz/requests/blob/master/requests/structures.py\n ', '__init__': <function LookupDict.__init__>, '__repr__': <function LookupDict.__repr__>, '__getitem__': <function LookupDict.__getitem__>, 'get': <function LookupDict.get>, '__dict__': <attribute '__dict__' of 'LookupDict' objects>, '__weakref__': <attribute '__weakref__' of 'LookupDict' objects>})

	

	
__getitem__(key)

	x.__getitem__(y) <==> x[y]

	
__init__(name=None)

	Initialize self. See help(type(self)) for accurate signature.

	
__module__ = 'woohoo_pdns.meta'

	

	
__repr__()

	Return repr(self).

	
__weakref__

	list of weak references to the object (if defined)

	
get(key, default=None)

	Return the value for key if key is in the dictionary, else default.

	
woohoo_pdns.meta._init()

	

woohoo_pdns.pdns module

	
class woohoo_pdns.pdns.Database(db_url)

	Bases: object

The Database object is the interface to the database holding pDNS records.

This object is designed as a context manager, it can be used with with.

	
__dict__ = mappingproxy({'__module__': 'woohoo_pdns.pdns', '__doc__': '\n The Database object is the interface to the database holding pDNS records.\n\n This object is designed as a context manager, it can be used with ``with``.\n ', '__init__': <function Database.__init__>, '__enter__': <function Database.__enter__>, '__exit__': <function Database.__exit__>, 'close': <function Database.close>, 'records': <property object>, 'count': <property object>, 'most_recent': <property object>, 'query': <function Database.query>, 'add_record': <function Database.add_record>, 'find_record': <function Database.find_record>, '_query_for_name': <function Database._query_for_name>, '_query_for_ip': <function Database._query_for_ip>, 'load': <function Database.load>, '__dict__': <attribute '__dict__' of 'Database' objects>, '__weakref__': <attribute '__weakref__' of 'Database' objects>})

	

	
__enter__()

	

	
__exit__(exc_type, exc_value, traceback)

	

	
__init__(db_url)

	Initialise the connection to the database.

	Parameters

	db_url (string) – The URL to the database, e.g.
postgresql+psycopg2://user:password@hostname/database_name

	
__module__ = 'woohoo_pdns.pdns'

	

	
__weakref__

	list of weak references to the object (if defined)

	
_query_for_ip(q)

	Query the “rdata” for an IP address.

	Parameters

	q (str) – the IP address (as a string) to search for.

	Returns

	A list of Record objects for records found (can be empty)

	
_query_for_name(q, rdata)

	Query the “rrname” or the “rdata” in the DB.

Note

This is for string queries only (no IP address queries).

	Parameters

	
	q (str) – The search term, can contain “*” as a wildcard.

	rdata (bool) – If True and the query is a text query, search the right hand side instead of the left hand

	side. –

	Returns

	A list of Record objects for records found (can be empty)

	
add_record(rrtype, rrname, rdata, first_seen=None, last_seen=None, num_hits=1)

	Add a (new) record to the database.

If a record with that rrtype, rrname, rdata already exists in the database, the hitcount is increased by
num_hits, first_seen or last_seen are updated if necessary and the existing object is returned. Otherwise a new
object will be created and returned (with hitcount 1, fist_seen = last_seen = sighted_at (or “now” if sighted_at
is not provided)).

	Parameters

	
	rrtype (int) – the id for the DNS record type (e.g. 1 for A, 28 for AAAA, etc. See
https://en.wikipedia.org/wiki/List_of_DNS_record_types)

	rrname (string) – the “left hand side” of the record; a trailing dot will be removed

	rdata (string) – the “right hand side” of the record; a trailing dot will be removed

	first_seen (datetime) – the date and time of the first (oldest) sighting; if omitted and also no last_seen
is provided “now” will be used

	last_seen (datetime) – the date and time of the most recent sighting; if omitted and also no first_seen is
provided “now” will be used

	num_hits (int) – the number of times this record was seen (will be added to an existing records hitcount)

	Returns

	A Record object representing this record.

	
close()

	Close the connection to the database.
It is important to call this method after you are done. Will be called automagically when used with the
context manager.

	
property count

	The total number of pDNS records in the database.

	
find_record(rrtype, rrname, rdata=None)

	Search for a record (by type and left hand side, optionally also right hand side).

	Parameters

	
	rrtype (int) – The id for the DNS record type (e.g. 1 for A, 28 for AAAA, etc. See
https://en.wikipedia.org/wiki/List_of_DNS_record_types).

	rrname (string) – The “left hand side” of the record.

	rdata (string) – The “right hand side” of the record.

	Returns

	The Record object representing the record.

	Raises

	NoResultFound –

	
load(source_name, batch_size=10000, cfg=None, data_timezone='UTC', strict=False, loader='woohoo_pdns.load.SilkFileImporter')

	Load data into the database.

The actual work is done by the class referenced in the “loader” argument.

	Parameters

	
	source_name (str) – The directory or filename or other reference to the source (e.g. a Kafka topic name)
where data should be loaded from.

	batch_size (int) – For more efficient loading into the database, records are inserted/updated in batches;
this defines the maximum number of records to process at once.

	cfg (dict) – A dictionary with config items that will be passed to the constructor of the Importer.

	strict (bool) – If true, abort loading if “errors” are detected in the input. If false, try to “fix” the
error(s) and/or to continue loading remaining data. Default is False.

	data_timezone (timezone string) – If source data without a timezone specification is found, assume the
timezone is this.

	loader (Importer) – Defines what class is used for the actual loading of data.

	
property most_recent

	The most recent record in the database, i.e. the one with the most recent “last_seen” datetime.

	
query(q, rdata=False)

	Issue a query against the database.

When

	Parameters

	
	q (str) – the query, can be an IP address (v4 or v6) or text.

	rdata (bool) – text queries look for matches on the “left hand side” (rrname) unless this option is set which
makes the query search for matches on the “right hand side”. Use it for example to search for domains
that share a common name server (NS record).
For IP address queries, this is ignored; defaults to False.

	Returns

	A list of records that matches the query term.

	Throws:
	MissingEntry if no match is found for the query.

	
property records

	A list of all pDNS records in the database.

	
exception woohoo_pdns.pdns.InvalidEntry

	Bases: ValueError

When SQLAlchemy fails to commit a record to the database, this exception is raised.

The details produced by SQLAlchemy will be included in the exceptions description.

	
__module__ = 'woohoo_pdns.pdns'

	

	
__weakref__

	list of weak references to the object (if defined)

	
exception woohoo_pdns.pdns.MissingEntry

	Bases: ValueError

When a query does not yield any result, this exception is raised.

	
__module__ = 'woohoo_pdns.pdns'

	

	
__weakref__

	list of weak references to the object (if defined)

	
class woohoo_pdns.pdns.Record(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Database representation of a record in the pDNS system.

A record can be of any DNS type (A, AAAA, TXT, PTR, …) and has a “left side” (rrname) and a “right side”
(rdata). More information about “left hand side” and “right hand side” is available on the Farsight [https://www.farsightsecurity.com/txt-record/2015/03/11/stsauver-rrset-rdata/] website
for example.

	
first_seen

	The date and time (incl. timezone) when a record was first seen by this pDNS system.

	Type

	DateTime

	
last_seen

	The date and time (incl. timezone) when a record was last seen by this pDNS system (i.e.
the most recent “sighting”).

	Type

	DateTime

	
rrtype

	The type of the record (A, AAAA, TXT, …) according to the official list of DNS types [https://en.wikipedia.org/wiki/List_of_DNS_record_types].

	Type

	int

	
hitcount

	The number of times this record was “sighted” by this pDNS system.

	Type

	int

	
__init__(**kwargs)

	The init method is just setting up a logger for the class.

The kwargs just make it a “cooperative class” according to super() considered super [https://rhettinger.wordpress.com/2011/05/26/super-considered-super/].

	
__mapper__ = <Mapper at 0x7f40e531c0b8; Record>

	

	
__module__ = 'woohoo_pdns.pdns'

	

	
__repr__()

	Return repr(self).

	
__table__ = Table('record', MetaData(bind=None), Column('first_seen', DateTime(timezone=True), table=<record>, nullable=False), Column('last_seen', DateTime(timezone=True), table=<record>, nullable=False), Column('rrtype', Integer(), table=<record>, primary_key=True, nullable=False), Column('_rrname', String(length=270), table=<record>, primary_key=True, nullable=False), Column('hitcount', Integer(), table=<record>, nullable=False, default=ColumnDefault(1)), Column('_rdata', String(length=300), table=<record>, primary_key=True, nullable=False), schema=None)

	

	
__tablename__ = 'record'

	

	
_rdata

	

	
_rrname

	

	
_sa_class_manager = {'_rdata': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, '_rrname': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'first_seen': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'hitcount': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'last_seen': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'rrtype': <sqlalchemy.orm.attributes.InstrumentedAttribute object>}

	

	
ensure_aware_dt()

	When reconstructing a Record from the database, ensure that the datetimes (first_seen and last_seen)
are “aware” objects (i.e. have a timezone).

This is mainly an issue when using sqlite (e.g. for testing) as sqlite does not store timezone information. In
case the timezone information is missing, UTC is assumed and added.

	
first_seen

	

	
hitcount

	

	
last_seen

	

	
property rdata

	The “rdata”, i.e. the “right hand side” of the record (cf. class attribute documentation).

	
property rrname

	The “rrname”, i.e. the “left hand side” of the record (cf. class attribute documentation).

Note

When setting this property, the value will be sanitized by woohoo_pdns.util.sanitise_input(); this
means that a trailing dot will be removed unless the value is just a dot.

	
rrtype

	

	
to_dict()

	Convert the record object to a dictionary representation that is suitable for SQLAlchemy bulk operations.

	
to_jsonable()

	Convert the record object to a JSON-friendly dictionary representation.

Note

This dict is compatible with the Passive DNS - Common Output Format [http://tools.ietf.org/html/draft-dulaunoy-dnsop-passive-dns-cof-01].

	
update(rec)

	Update a record with (potentially) new information from a different record.

This means updating (adding) the hitcount as well as updating first_seen and/or last_seen if required.

	Parameters

	rec (Record) – The record to take the new information from.

woohoo_pdns.util module

	
class woohoo_pdns.util.LoaderCache

	Bases: object

This class implements the cache used when loading entries into the database.

Because pDNS databases have to ingest high volumes of data with high redundancy (never seen before entries are
comparatively rare) it can be expected that caching substantially improves performance.

The cache internally holds values in dictionaries with a key derived from the actual data. To add records to the
cache the named tuple ‘record_data’ should be used.

Note

When adding a record to the cache, four modes are available: cache_only, new, updated and auto. For a
description of the modes, see the documentation of the “modes” named tuple.

	
MODES = cache_modes(cache_only=1, new=2, updated=4, auto=8)

	

	
__contains__(item)

	Checks if the cache contains the entry represented by the named tuple (or dict) passed in.

	Parameters

	item (record_data) – The record which should be checked for presence in the cache.

	Returns

	True if the item is in the cache, false otherwise.

	
__dict__ = mappingproxy({'__module__': 'woohoo_pdns.util', '__doc__': '\n This class implements the cache used when loading entries into the database.\n\n Because pDNS databases have to ingest high volumes of data with high redundancy (never seen before entries are\n comparatively rare) it can be expected that caching substantially improves performance.\n\n The cache internally holds values in dictionaries with a key derived from the actual data. To add records to the\n cache the named tuple \'record_data\' should be used.\n\n Note:\n When adding a record to the cache, four modes are available: cache_only, new, updated and auto. For a\n description of the modes, see the documentation of the "modes" named tuple.\n ', 'modes': <class 'woohoo_pdns.util.cache_modes'>, 'MODES': cache_modes(cache_only=1, new=2, updated=4, auto=8), '__init__': <function LoaderCache.__init__>, '__contains__': <function LoaderCache.__contains__>, 'get_new_entries': <function LoaderCache.get_new_entries>, 'get_to_update': <function LoaderCache.get_to_update>, 'add': <function LoaderCache.add>, 'rollover': <function LoaderCache.rollover>, 'clear': <function LoaderCache.clear>, '_dictionise': <staticmethod object>, '_tupelise': <staticmethod object>, '_add_to_new': <function LoaderCache._add_to_new>, '_add_to_update': <function LoaderCache._add_to_update>, '_add_to_cache_only': <function LoaderCache._add_to_cache_only>, 'merge': <staticmethod object>, '__dict__': <attribute '__dict__' of 'LoaderCache' objects>, '__weakref__': <attribute '__weakref__' of 'LoaderCache' objects>})

	

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
__module__ = 'woohoo_pdns.util'

	

	
__weakref__

	list of weak references to the object (if defined)

	
_add_to_cache_only(item)

	

	
_add_to_new(item)

	

	
_add_to_update(item)

	

	
static _dictionise(item)

	Convert ‘item’ (named tuple class:record_data) into a dictionary { key: item }

	Parameters

	(class (item) – record_data): the item to ‘convert’ into a dictionary

	Returns

	dict with one key (item.key, if it was set) and item as its value

	
static _tupelise(item_key, item_value)

	Convert ‘item_key, item_value’ (value of type dictionary) into a named tuple class:record_data

	Parameters

	
	item_key (str) – the key that is used for the ‘value dict’

	item_value (dict) – a dictionary that holds the relevant data to create a class:record_data

	Returns

	record_data): the item that results from ‘converting’ the dictionary

	Return type

	item (class

	
add(item, mode=8)

	Add a new item to the cache.

	Parameters

	
	item (record_data) – The representation of the item to add to the cache.

	mode (mode) – What mode to use (see documentation of mode for details) if the record is not yet in the cache.

	Returns

	Nothing.

	
clear()

	Clear the cache (i.e. remove all entries).

	Returns

	Nothing.

	
get_new_entries(for_bulk=False)

	Return the list of items that are considered not to be present in the pDNS database yet.

Note

The main reason for differentiating between new and updated entries (with respect to the pDNS database, not
the cache) is to allow bulk operations in SQLAlchemy; it must be known if ‘INSERT’ or ‘UPDATE’ statements
should be used.

	Parameters

	for_bulk (bool) – If true, a list of dictionaries will be returned (suitable for SQLAlchemy bulk operations),
if false, a list of record_data named tuples will be returned.
For more information about SQLAlchemy bulk operations, see the SQLAlchemy documentation on bulk
operations [https://docs.sqlalchemy.org/en/13/orm/persistence_techniques.html#bulk-operations.].

	Returns

	A list of either named tuples or dictionaries (see ‘for_bulk’ argument).

	
get_to_update(for_bulk=False)

	The same as get_new_entries() but for entries considered to already be present in the pDNS database (not
necessarily the cache).

	Parameters

	for_bulk (bool) – see argument with the same name documented for get_new_entries()

	Returns

	A list of either named tuples or dictionaries (see ‘for_bulk’ argument).

	
static merge(existing, new)

	Merge two cached items by updating the new item’s hitcount (add the existing item’s count to it) and set the
new item’s first_seen and last_seen to the minimum (maximum) of the new and the existing item’s values.

	Parameters

	
	existing (dict) – An item present in the cache

	new (dict) – An item that should be updated with the info already present in the cache.

	Returns

	Nothing, the new item will be updated in place.

	
modes

	The mode is relevant when adding records to the cache that are not already present in the cache. ‘cache_only’ should
only be used to (pre) populate the cache. This is mainly useful if the ‘auto’ mode should be used later on. ‘auto’
assumes that the cache already holds all relevant entries; therefore, when adding an entry it will be cached as
‘new’ if it was not present in the cache before and as ‘updated’ if it already was in the cache.
If the mode is set to ‘new’, the entry will be considered to be new (i.e. returned by get_new_entries())
whereas with the mode set to ‘updated’ it will be considered to already be known by the pDNS database (but not
necessarily the cache, i.e. it will be returned by get_to_update()).

alias of cache_modes

	
rollover()

	Should be called after the pDNS database is updated with the currently cached entries (i.e. after the bulk
operations are done for the lists returned by get_new_entries() and get_to_update()).

This will ‘move’ all cached entries into the ‘cache_only’ status, indicating that they are ‘known’ but not
‘dirty’ (in a cache’s way of using that word).

	Returns

	Nothing.

	
woohoo_pdns.util.record_data

	A named tuple holding the values of a single entry in the pDNS database.

Note

first_seen and last_seen can be both, datetimes or timestamps (integers) but it must be consistent.
The ‘key’ field can be left empty; it will then be auto-populated by the cache in a consistent way. If it is
non-empty the passed in key is kept and it is the caller’s responsibility to guarantee uniqueness of the key(s).

alias of woohoo_pdns.util.pdns_entry_tokens

	
woohoo_pdns.util.record_to_nt(rec)

	Takes a dictionary style cache entry and returns a corresponding named tuple.

Note

The “key” is not set because the other functions in this module do not require it (DRY).

	
woohoo_pdns.util.sanitise_input(str_in)

	DNS entries technically end in a dot but for pDNS purposes the dot is mainly cruft, so we remove it.

Note

If the input string to this function is just a dot, it is kept. While a single dot might be ‘surprising’ it is
still better than an empty string.

Module contents

woohoo_pdns.api package

Submodules

woohoo_pdns.api.api module

	
woohoo_pdns.api.api.count()

	The method supporting the count API endpoint. It just returns the number of records in the database.

	Returns

	The number of entries in the database (as string).

	
woohoo_pdns.api.api.most_recent()

	The method supporting the recent API endpoint. It returns the most recent entry from the database.

For example like this:

{
 "hitcount": 56,
 "time_first": 1559244767.913,
 "time_last": 1559245313.506,
 "rrtype": 1,
 "rrname": "prod-cc-asn-20190411-1321-nlb-19436c10e4427871.elb.us-east-1.amazonaws.com",
 "rdata": "3.208.62.22"
}

	
woohoo_pdns.api.api.query(q)

	The method supporting the query API endpoint.

	Parameters

	q (str) – The term to search for (use ‘*’ as wildcard).

	Returns

	A JSON structure compatible with the Passive DNS - Common Output Format [http://tools.ietf.org/html/draft-dulaunoy-dnsop-passive-dns-cof-01].

An example:

[
 {
 "hitcount": 7,
 "time_first": 1559245077.432,
 "time_last": 1559245077.432,
 "rrtype": 5,
 "rrname": "www.icloud.com.edgekey.net",
 "rdata": "e4478.a.akamaiedge.net."
 }
]

	
woohoo_pdns.api.api.verify_password(username, password)

	Check if a valid API key was provided.

Called by flask_httpauth when authentication is required. As woohoo pDNS is ‘misusing’ flask_httpauth to
avoid reinventing the wheel, username and password will always be empty (we do not use basic
authentication).

The API key must be provided in a header called Authorization and have the following format:

"Authorization: <API key as configured in config file>"

	Parameters

	
	username (str) – Ignored (would be the username for basic authentication).

	password (str) – Ignored (would be the password for basic authentication).

woohoo_pdns.api.config module

	
class woohoo_pdns.api.config.DefaultSettings

	Bases: object

The default configuration of the API just demonstrates the available options.

	
API_KEYS = ['IXsA7uRnxR4xek4JDEG5vk2oGjTYDSqaoKLRQLVjV2s3kw0bbv49qrgAT7Bk3g2K', 'jLHKK0AIk1l6r3W8SAJj4Lh0v2a27JGbSSd406mr0u5FNrJn6RLWQ5m6qPYXT0d5']

	The complete list of available/valid API keys.

	
DATABASE = 'sqlite:///demo.db'

	The connection string to be used by SQLAlchemy.

	
SECRET_KEY = 'snakeoil'

	Flask uses a secret key to encrypt things that sould be tamper proof (for example the Session object).

	
__dict__ = mappingproxy({'__module__': 'woohoo_pdns.api.config', '__doc__': 'The default configuration of the API just demonstrates the available options.', 'SECRET_KEY': 'snakeoil', 'DATABASE': 'sqlite:///demo.db', 'API_KEYS': ['IXsA7uRnxR4xek4JDEG5vk2oGjTYDSqaoKLRQLVjV2s3kw0bbv49qrgAT7Bk3g2K', 'jLHKK0AIk1l6r3W8SAJj4Lh0v2a27JGbSSd406mr0u5FNrJn6RLWQ5m6qPYXT0d5'], '__dict__': <attribute '__dict__' of 'DefaultSettings' objects>, '__weakref__': <attribute '__weakref__' of 'DefaultSettings' objects>})

	

	
__module__ = 'woohoo_pdns.api.config'

	

	
__weakref__

	list of weak references to the object (if defined)

woohoo_pdns.api.db module

	
woohoo_pdns.api.db.close_db(e=None)

	Close the woohoo_pdns.pdns.Database that is present in Flask’s global state.

	
woohoo_pdns.api.db.get_db()

	Provide access to a single woohoo_pdns.pdns.Database for all API endpoints.

	
woohoo_pdns.api.db.init_app(app)

	Called from the Flask app’s create_app() and used to register the teardown method (close_db()).

Module contents

	
woohoo_pdns.api.create_app(test_config=None)

	A Flask specific method that is called automagically.

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 woohoo_pdns	

 	
 	
 woohoo_pdns.api	

 	
 	
 woohoo_pdns.api.api	

 	
 	
 woohoo_pdns.api.config	

 	
 	
 woohoo_pdns.api.db	

 	
 	
 woohoo_pdns.load	

 	
 	
 woohoo_pdns.meta	

 	
 	
 woohoo_pdns.pdns	

 	
 	
 woohoo_pdns.util	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

_

 	
 	__contains__() (woohoo_pdns.util.LoaderCache method)

 	__dict__ (woohoo_pdns.api.config.DefaultSettings attribute)

 	(woohoo_pdns.load.Importer attribute)

 	(woohoo_pdns.load.Source attribute)

 	(woohoo_pdns.meta.LookupDict attribute)

 	(woohoo_pdns.pdns.Database attribute)

 	(woohoo_pdns.util.LoaderCache attribute)

 	__enter__() (woohoo_pdns.load.FileSource method)

 	(woohoo_pdns.load.Source method)

 	(woohoo_pdns.pdns.Database method)

 	__exit__() (woohoo_pdns.load.FileSource method)

 	(woohoo_pdns.load.Source method)

 	(woohoo_pdns.pdns.Database method)

 	__getitem__() (woohoo_pdns.meta.LookupDict method)

 	__getnewargs__() (woohoo_pdns.load.Importer.load_batch_result method)

 	__init__() (woohoo_pdns.load.DNSLogFileImporter method)

 	(woohoo_pdns.load.DNSTapFileImporter method)

 	(woohoo_pdns.load.FileImporter method)

 	(woohoo_pdns.load.FileSource method)

 	(woohoo_pdns.load.Importer method)

 	(woohoo_pdns.load.SilkFileImporter method)

 	(woohoo_pdns.load.Source method)

 	(woohoo_pdns.meta.LookupDict method)

 	(woohoo_pdns.pdns.Database method)

 	(woohoo_pdns.pdns.Record method)

 	(woohoo_pdns.util.LoaderCache method)

 	__mapper__ (woohoo_pdns.pdns.Record attribute)

 	__module__ (woohoo_pdns.api.config.DefaultSettings attribute)

 	(woohoo_pdns.load.DNSLogFileImporter attribute)

 	(woohoo_pdns.load.DNSTapFileImporter attribute)

 	(woohoo_pdns.load.FileImporter attribute)

 	(woohoo_pdns.load.FileSource attribute)

 	(woohoo_pdns.load.Importer attribute)

 	(woohoo_pdns.load.Importer.load_batch_result attribute)

 	(woohoo_pdns.load.SilkFileImporter attribute)

 	(woohoo_pdns.load.SingleLineFileSource attribute)

 	(woohoo_pdns.load.Source attribute)

 	(woohoo_pdns.load.WoohooImportError attribute)

 	(woohoo_pdns.load.YamlFileSource attribute)

 	(woohoo_pdns.meta.LookupDict attribute)

 	(woohoo_pdns.pdns.Database attribute)

 	(woohoo_pdns.pdns.InvalidEntry attribute)

 	(woohoo_pdns.pdns.MissingEntry attribute)

 	(woohoo_pdns.pdns.Record attribute)

 	(woohoo_pdns.util.LoaderCache attribute)

 	__new__() (woohoo_pdns.load.Importer.load_batch_result static method)

 	
 	__repr__() (woohoo_pdns.load.Importer.load_batch_result method)

 	(woohoo_pdns.meta.LookupDict method)

 	(woohoo_pdns.pdns.Record method)

 	__slots__ (woohoo_pdns.load.Importer.load_batch_result attribute)

 	__str__() (woohoo_pdns.load.FileSource method)

 	__table__ (woohoo_pdns.pdns.Record attribute)

 	__tablename__ (woohoo_pdns.pdns.Record attribute)

 	__weakref__ (woohoo_pdns.api.config.DefaultSettings attribute)

 	(woohoo_pdns.load.Importer attribute)

 	(woohoo_pdns.load.Source attribute)

 	(woohoo_pdns.load.WoohooImportError attribute)

 	(woohoo_pdns.meta.LookupDict attribute)

 	(woohoo_pdns.pdns.Database attribute)

 	(woohoo_pdns.pdns.InvalidEntry attribute)

 	(woohoo_pdns.pdns.MissingEntry attribute)

 	(woohoo_pdns.util.LoaderCache attribute)

 	_add_to_cache_only() (woohoo_pdns.util.LoaderCache method)

 	_add_to_new() (woohoo_pdns.util.LoaderCache method)

 	_add_to_update() (woohoo_pdns.util.LoaderCache method)

 	_asdict() (woohoo_pdns.load.Importer.load_batch_result method)

 	_dictionise() (woohoo_pdns.util.LoaderCache static method)

 	_fields (woohoo_pdns.load.Importer.load_batch_result attribute)

 	_fields_defaults (woohoo_pdns.load.Importer.load_batch_result attribute)

 	_init() (in module woohoo_pdns.meta)

 	_inspect_raw_record() (woohoo_pdns.load.Importer method)

 	_inspect_tokenised_record() (woohoo_pdns.load.Importer method)

 	(woohoo_pdns.load.SilkFileImporter method)

 	_is_valid() (woohoo_pdns.load.Importer method)

 	_make() (woohoo_pdns.load.Importer.load_batch_result class method)

 	_open_next_file() (woohoo_pdns.load.FileSource method)

 	_parse_tokenised_record() (woohoo_pdns.load.DNSLogFileImporter method)

 	(woohoo_pdns.load.DNSTapFileImporter method)

 	(woohoo_pdns.load.FileImporter method)

 	(woohoo_pdns.load.Importer method)

 	(woohoo_pdns.load.SilkFileImporter method)

 	_query_for_ip() (woohoo_pdns.pdns.Database method)

 	_query_for_name() (woohoo_pdns.pdns.Database method)

 	_rdata (woohoo_pdns.pdns.Record attribute)

 	_replace() (woohoo_pdns.load.Importer.load_batch_result method)

 	_rrname (woohoo_pdns.pdns.Record attribute)

 	_sa_class_manager (woohoo_pdns.pdns.Record attribute)

 	_tokenise_record() (woohoo_pdns.load.DNSLogFileImporter method)

 	(woohoo_pdns.load.DNSTapFileImporter method)

 	(woohoo_pdns.load.FileImporter method)

 	(woohoo_pdns.load.Importer method)

 	(woohoo_pdns.load.SilkFileImporter method)

 	_tupelise() (woohoo_pdns.util.LoaderCache static method)

A

 	
 	add() (woohoo_pdns.util.LoaderCache method)

 	
 	add_record() (woohoo_pdns.pdns.Database method)

 	API_KEYS (woohoo_pdns.api.config.DefaultSettings attribute)

C

 	
 	clear() (woohoo_pdns.util.LoaderCache method)

 	close() (woohoo_pdns.pdns.Database method)

 	close_db() (in module woohoo_pdns.api.db)

 	
 	converted() (woohoo_pdns.load.Importer.load_batch_result property)

 	count() (in module woohoo_pdns.api.api)

 	(woohoo_pdns.pdns.Database property)

 	create_app() (in module woohoo_pdns.api)

D

 	
 	Database (class in woohoo_pdns.pdns)

 	DATABASE (woohoo_pdns.api.config.DefaultSettings attribute)

 	
 	DefaultSettings (class in woohoo_pdns.api.config)

 	DNSLogFileImporter (class in woohoo_pdns.load)

 	DNSTapFileImporter (class in woohoo_pdns.load)

E

 	
 	ensure_aware_dt() (woohoo_pdns.pdns.Record method)

F

 	
 	FileImporter (class in woohoo_pdns.load)

 	FileSource (class in woohoo_pdns.load)

 	
 	find_record() (woohoo_pdns.pdns.Database method)

 	first_seen (woohoo_pdns.pdns.Record attribute), [1]

G

 	
 	get() (woohoo_pdns.meta.LookupDict method)

 	get_db() (in module woohoo_pdns.api.db)

 	get_new_entries() (woohoo_pdns.util.LoaderCache method)

 	get_next_record() (woohoo_pdns.load.FileSource method)

 	(woohoo_pdns.load.SingleLineFileSource method)

 	(woohoo_pdns.load.Source method)

 	(woohoo_pdns.load.YamlFileSource method)

 	
 	get_to_update() (woohoo_pdns.util.LoaderCache method)

H

 	
 	has_more_data() (woohoo_pdns.load.Importer property)

 	
 	hitcount (woohoo_pdns.pdns.Record attribute), [1]

I

 	
 	IGNORE_TYPES (woohoo_pdns.load.Importer attribute)

 	ignored() (woohoo_pdns.load.Importer.load_batch_result property)

 	ILLEGAL_CHARS (woohoo_pdns.load.Importer attribute)

 	
 	Importer (class in woohoo_pdns.load)

 	Importer.load_batch_result (class in woohoo_pdns.load)

 	init_app() (in module woohoo_pdns.api.db)

 	InvalidEntry

L

 	
 	last_seen (woohoo_pdns.pdns.Record attribute), [1]

 	load() (woohoo_pdns.pdns.Database method)

 	load_batch() (woohoo_pdns.load.Importer method)

 	
 	loaded() (woohoo_pdns.load.Importer.load_batch_result property)

 	LoaderCache (class in woohoo_pdns.util)

 	LookupDict (class in woohoo_pdns.meta)

M

 	
 	merge() (woohoo_pdns.util.LoaderCache static method)

 	MissingEntry

 	MODES (woohoo_pdns.util.LoaderCache attribute)

 	
 	modes (woohoo_pdns.util.LoaderCache attribute)

 	most_recent() (in module woohoo_pdns.api.api)

 	(woohoo_pdns.pdns.Database property)

Q

 	
 	query() (in module woohoo_pdns.api.api)

 	(woohoo_pdns.pdns.Database method)

R

 	
 	rdata() (woohoo_pdns.pdns.Record property)

 	Record (class in woohoo_pdns.pdns)

 	record_data (in module woohoo_pdns.util)

 	record_to_nt() (in module woohoo_pdns.util)

 	records() (woohoo_pdns.load.Importer.load_batch_result property)

 	(woohoo_pdns.pdns.Database property)

 	
 	RENAME_APPENDIX (woohoo_pdns.load.FileSource attribute)

 	rollover() (woohoo_pdns.util.LoaderCache method)

 	rrname() (woohoo_pdns.pdns.Record property)

 	rrtype (woohoo_pdns.pdns.Record attribute), [1]

S

 	
 	sanitise_input() (in module woohoo_pdns.util)

 	SECRET_KEY (woohoo_pdns.api.config.DefaultSettings attribute)

 	SilkFileImporter (class in woohoo_pdns.load)

 	
 	SingleLineFileSource (class in woohoo_pdns.load)

 	Source (class in woohoo_pdns.load)

 	state() (woohoo_pdns.load.FileSource property)

 	(woohoo_pdns.load.Source property)

T

 	
 	to_dict() (woohoo_pdns.pdns.Record method)

 	
 	to_jsonable() (woohoo_pdns.pdns.Record method)

U

 	
 	update() (woohoo_pdns.pdns.Record method)

V

 	
 	verify_password() (in module woohoo_pdns.api.api)

W

 	
 	woohoo_pdns (module)

 	woohoo_pdns.api (module)

 	woohoo_pdns.api.api (module)

 	woohoo_pdns.api.config (module)

 	woohoo_pdns.api.db (module)

 	
 	woohoo_pdns.load (module)

 	woohoo_pdns.meta (module)

 	woohoo_pdns.pdns (module)

 	woohoo_pdns.util (module)

 	WoohooImportError

Y

 	
 	YamlFileSource (class in woohoo_pdns.load)

 nav.xhtml

 Table of Contents

 		
 Welcome to woohoo pDNS’ documentation!

 		
 Installation

 		
 Timing

 		
 Requirements

 		
 Overview

 		
 Installing

 		
 The virtual environment

 		
 Install woohoo pDNS and dependencies

 		
 Configure access to the relational database

 		
 Set up the configuration in the reverse proxy

 		
 Configure Gunicorn to serve the RESTful API

 		
 Automatic loading of additional data

 		
 Using woohoo pDNS

 		
 Command Line Interface (CLI)

 		
 RESTful

 		
 Python API

 		
 woohoo pDNS’ ToDo list or whishlist

 		
 Some things I am considering to add

 		
 Some things I am looking for from the community

 		
 Contributing

 		
 Managing dependencies

 		
 Runtime dependencies

 		
 Build dependencies

 		
 Using pip-tools for woohoo pDNS

 		
 Implementing an Importer

 		
 Overview

 		
 Source

 		
 The Importer subclass

 		
 Support

 		
 woohoo_pdns

 		
 woohoo_pdns package

 		
 Subpackages

 		
 Submodules

 		
 woohoo_pdns.load module

 		
 woohoo_pdns.meta module

 		
 woohoo_pdns.pdns module

 		
 woohoo_pdns.util module

 		
 Module contents

_static/file.png

_static/minus.png

_static/plus.png

