
wltp Documentation
Release 0.0.9-alpha.4

Authors: see ’4.5 Development Team’ section

January 22, 2015

Contents

1 Introduction 3
1.1 Overview . 3
1.2 Quick-start . 3
1.3 Discussion . 5

2 Install 7
2.1 Older versions . 7
2.2 Installing from sources . 8
2.3 Project files and folders . 8
2.4 Discussion . 8

3 Usage 9
3.1 Cmd-line usage . 9
3.2 GUI usage . 9
3.3 Excel usage . 9
3.4 Python usage . 11
3.5 IPython notebook usage . 13
3.6 Discussion . 13

4 Getting Involved 15
4.1 Sources & Dependencies . 15
4.2 Development procedure . 16
4.3 Specs & Algorithm . 17
4.4 Development team . 18
4.5 Discussion . 18

5 Tests, Metrics & Reports 19
5.1 Comparisons with Heinz-tool . 19
5.2 Comparisons with Older versions . 19

6 FAQ 21
6.1 General . 21
6.2 Technical . 21
6.3 Discussion . 22

7 API reference 23
7.1 Module: wltp.experiment . 23
7.2 Module: wltp.model . 23
7.3 Module: wltp.pandel . 23
7.4 Module: wltp.test.samples_db_tests . 23
7.5 Module: wltp.test.wltp_db_tests . 23

8 Changes 25

i

8.1 GTR version matrix . 25
8.2 Known deficiencies . 25
8.3 TODOs . 26
8.4 Changelog . 26

9 Indices 31
9.1 Glossary . 31

10 Glossary 33

ii

wltp Documentation, Release 0.0.9-alpha.4

Release 0.0.9-alpha.4

Documentation https://wltp.readthedocs.org/

Source https://github.com/ankostis/wltp

PyPI repo https://pypi.python.org/pypi/wltp

Keywords UNECE, automotive, car, cars, driving, engine, fuel-consumption, gears, gearshifs, rpm,
simulation, simulator, standard, vehicle, vehicles, wltc

Copyright 2013-2014 European Commission (JRC-IET)

License EUPL 1.1+

The wltp is a python package that calculates the gear-shifts of Light-duty vehicles running the WLTP driving-
cycles, according to UNECE‘s GTR (Global Technical Regulation) draft.

Figure 1: Figure 1: WLTP cycle for class-3b Vehicles

Attention: This wltp python project is still in alpha stage. Its results are not considered “correct”, and no
experimental procedures should rely currently on them.
Some of the known deficiencies are described in these places:

• In the Changes.
• Presented in the diagrams of the Tests, Metrics & Reports section.
• Imprinted in the wltp_db_tests test-case (automatically comparared with a pre-determined set of

vehicles from Heinz-db on each build) Currently, mean rpm differ from Heinz-db < 0.5% and gears diff
< 5% for a 1800-step class-3 cycle.

Contents 1

https://wltp.readthedocs.org/
https://github.com/ankostis/wltp
https://pypi.python.org/pypi/wltp
http://iet.jrc.ec.europa.eu/
https://joinup.ec.europa.eu/software/page/eupl

wltp Documentation, Release 0.0.9-alpha.4

2 Contents

CHAPTER 1

Introduction

1.1 Overview

The calculator accepts as input the vehicle’s technical data, along with parameters for modifying the execution of
the WLTC cycle, and it then spits-out the gear-shifts of the vehicle, the attained speed-profile, and any warnings.
It does not calculate any CO2 emissions.

An “execution” or a “run” of an experiment is depicted in the following diagram:

.---------------------. .----------------------------.
; Input-Model ; ; Output-Model ;

;---------------------; ;----------------------------;
; +--vehicle ; ____________ ; +---... ;

; +--params ; | | ; +--cycle_run: ;
; +--wltc_data ; ==> | Experiment | ==> ; t v_class gear ... ;

; ; |____________| ; -------------------- ;
; ; ; 00 0.0 1 ;

; ; ; 01 1.3 1 ;
; ; ; 02 5.5 1 ;

; ; ; ... ;
’---------------------’ ’----------------------------.

The Input & Output Data are instances of pandas-model, trees of strings and numbers, assembled with:

• sequences,

• dictionaries,

• pandas.DataFrame,

• pandas.Series, and

• URI-references to other model-trees.

1.2 Quick-start

On Windows/OS X, it is recommended to use one of the following “scientific” python-distributions, as they already
include the native libraries and can install without administrative priviledges:

• WinPython (Windows only),

• Anaconda,

• Canopy,

Assuming you have a working python-environment, open a command-shell, (in Windows use cmd.exe BUT ensure
python.exe is in its PATH), you can try the following commands:

Install

3

http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/dev/generated/pandas.Series.html#pandas.Series
http://winpython.github.io/
http://docs.continuum.io/anaconda/
https://www.enthought.com/products/canopy/

wltp Documentation, Release 0.0.9-alpha.4

$ pip install wltp ## Use ‘--pre‘ if version-string has a build-suffix.
$ wltp --winmenus ## Adds StartMenu-items, Windows only.

See: Install

Cmd-line

$ wltp --version
0.0.9-alpha.4

$ wltp --help
...

See: Cmd-line usage

GUI

$ wltp --gui‘ ## For exploring model, but not ready yet.

Excel

$ wltp --excelrun ## Windows & OS X only

See: Excel usage

Python-code

from wltp.experiment import Experiment

input_model = { ... } ## See also "Python Usage" for model contents.
exp = Experiment(input_model)
output_model = exp.run()
print(’Results: \n%s’ % output_model[’cycle_run’])

See: Python usage

Tip: The commands beginning with $, above, imply a Unix like operating system with a POSIX shell (Linux, OS
X). Although the commands are simple and easy to translate in its Windows counterparts, it would be worthwile
to install Cygwin to get the same environment on Windows. If you choose to do that, include also the following
packages in the Cygwin‘s installation wizard:

* git, git-completion

* make, zip, unzip, bzip2

* openssh, curl, wget

But do not install/rely on cygwin’s outdated python environment.

Tip: To install python, you can try the free (as in beer) distribution Anaconda for Windows and OS X, or the
totally free WinPython distribution, but only for Windows:

• For Anaconda you may need to install project’s dependencies manually (see setup.py) using conda.

• The most recent version of WinPython (python-3.4) although it has just changed maintainer, it remains
a higly active project, and it can even compile native libraries using an installations of Visual Studio, if
available (required for instance when upgrading numpy/scipy, pandas or matplotlib with pip).

You must also Register your WinPython installation and add your installation into PATH (see FAQ). To
register it, go to Start menu → All Programs → WinPython → WinPython ControlPanel, and then Options
→ Register Distribution .

See Install for more details

4 Chapter 1. Introduction

https://www.cygwin.com/
http://docs.continuum.io/anaconda/pkg-docs.html
http://winpython.sourceforge.net/
http://sourceforge.net/projects/stonebig.u/files/

wltp Documentation, Release 0.0.9-alpha.4

1.3 Discussion

1.3. Discussion 5

wltp Documentation, Release 0.0.9-alpha.4

6 Chapter 1. Introduction

CHAPTER 2

Install

Current 0.0.9-alpha.4 runs on Python-2.7+ and Python-3.3+ but 3.3+ is the preferred one, i.e, the desktop UI runs
only with it. It is distributed on Wheels.

Before installing it, make sure that there are no older versions left over. So run this command until you cannot
find any project installed:

$ pip uninstall wltp ## Use ‘pip3‘ if both python-2 & 3 are in PATH.

You can install the project directly from the PyPi repo the “standard” way, by typing the pip in the console:

$ pip install wltp ## Use ‘--pre‘ if version-string has a build-suffix.

• If you want to install a pre-release version (the version-string is not plain numbers, but ends with alpha,
beta.2 or something else), use additionally --pre.

• If you want to upgrade an existing instalation along with all its dependencies, add also --upgrade (or -U
equivalently), but then the build might take some considerable time to finish. Also there is the possibility
the upgraded libraries might break existing programs(!) so use it with caution, or from within a virtualenv
(isolated Python environment).

• To install it for different Python environments, repeat the procedure using the appropriate python.exe inter-
preter for each environment.

•
Tip: To debug installation problems, you can export a non-empty DISTUTILS_DEBUG and distutils will
print detailed information about what it is doing and/or print the whole command line when an external
program (like a C compiler) fails.

After installation, it is important that you check which version is visible in your PATH:

$ wltp --version
0.0.9-alpha.4

To install for different Python versions, repeat the procedure for every required version.

2.1 Older versions

An additional purpose of the versioning schema of the project is to track which specific version of the GTR it im-
plements. Given a version number MAJOR.MINOR.PATCH, the MAJOR part tracks the GTR phase implemented.
See the “GTR version matrix” section in Changes for the mapping of MAJOR-numbers to GTR versions.

To install an older version issue the console command:

$ pip install wltp=1.1.1 ## Use ‘--pre‘ if version-string has a build-suffix.

If you have another version already installed, you have to use --ignore-installed (or -I). For using the
specific version, check this (untested) stackoverflow question .

7

https://pypi.python.org/pypi/wheel
https://pypi.python.org/pypi/wltp
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://stackoverflow.com/questions/6445167/force-python-to-use-an-older-version-of-module-than-what-i-have-installed-now

wltp Documentation, Release 0.0.9-alpha.4

Of course it is better to install each version in a separate virtualenv (isolated Python environment) and shy away
from all this.

2.2 Installing from sources

If you download the sources you have more options for installation. There are various methods to get hold of
them:

• Download the source distribution from PyPi repo.

• Download a release-snapshot from github

• Clone the git-repository at github.

Assuming you have a working installation of git you can fetch and install the latest version of the project
with the following series of commands:

$ git clone "https://github.com/ankostis/wltp.git" wltp.git
$ cd wltp.git
$ python setup.py install ## Use ‘python3‘ if both python-2 & 3 installed.

When working with sources, you need to have installed all libraries that the project depends on:

$ pip install -r requirements/execution.txt .

The previous command installs a “snapshot” of the project as it is found in the sources. If you wish to link the
project’s sources with your python environment, install the project in development mode:

$ python setup.py develop

Note: This last command installs any missing dependencies inside the project-folder.

2.3 Project files and folders

The files and folders of the project are listed below:

+--wltp/ ## (package) The python-code of the calculator
| +--cycles/ ## (package) The python-code for the WLTC data
| +--test/ ## (package) Test-cases and the wltp_db
| +--model ## (module) Describes the data and their schema for the calculation
| +--experiment ## (module) The calculator
| +--plots ## (module) Diagram-plotting code and utilities
+--docs/ ## Documentation folder
| +--pyplots/ ## (scripts) Plot the metric diagrams embeded in the README
+--devtools/ ## (scripts) Preprocessing of WLTC data on GTR and the wltp_db
| +--run_tests.sh ## (script) Executes all TestCases
+--wltp ## (script) The cmd-line entry-point script for the calculator
+--setup.py ## (script) The entry point for ‘setuptools‘, installing, testing, etc
+--requirements/ ## (txt-files) Various pip-dependencies for tools.
+--README.rst
+--CHANGES.rst
+--LICENSE.txt

2.4 Discussion

8 Chapter 2. Install

http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://pypi.python.org/pypi/wltp
https://github.com/ankostis/wltp/releases
http://git-scm.com/
http://pythonhosted.org/setuptools/setuptools.html#development-mode

CHAPTER 3

Usage

3.1 Cmd-line usage

Warning: Not implemented in yet.

The command-line usage below requires the Python environment to be installed, and provides for executing an
experiment directly from the OS’s shell (i.e. cmd in windows or bash in POSIX), and in a single command. To
have precise control over the inputs and outputs (i.e. experiments in a “batch” and/or in a design of experiments)
you have to run the experiments using the API python, as explained below.

The entry-point script is called wltp, and it must have been placed in your PATH during installation. This script
can construct a model by reading input-data from multiple files and/or overriding specific single-value items.
Conversely, it can output multiple parts of the resulting-model into files.

To get help for this script, use the following commands:

$ wltp --help ## to get generic help for cmd-line syntax
$ wltcmdp.py -M vehicle/full_load_curve ## to get help for specific model-paths

and then, assuming vehicle.csv is a CSV file with the vehicle parameters for which you want to override the
n_idle only, run the following:

$ wltp -v \
-I vehicle.csv file_frmt=SERIES model_path=params header@=None \
-m vehicle/n_idle:=850 \
-O cycle.csv model_path=cycle_run

3.2 GUI usage

Attention: Desktop UI requires Python 3!

For a quick-‘n-dirty method to explore the structure of the model-tree and run an experiment, just run:

$ wltp --gui

3.3 Excel usage

Attention: Excel-integration requires Python 3 and Windows or OS X!

9

wltp Documentation, Release 0.0.9-alpha.4

In Windows and OS X you may utilize the excellent xlwings library to use Excel files for providing input and
output to the experiment.

To create the necessary template-files in your current-directory you should enter:

$ wltp --excel

You could type instead wltp --excel file_path to specify a different destination path.

In windows/OS X you can type wltp --excelrun and the files will be created in your home-directory and the
excel will open them in one-shot.

All the above commands creates two files:

wltp_excel_runner.xlsm The python-enabled excel-file where input and output data are written, as seen
in the screenshot below:

After opening it the first tie, enable the macros on the workbook, select the python-code at the left and click
the Run Selection as Pyhon button; one sheet per vehicle should be created.

The excel-file contains additionally appropriate VBA modules allowing you to invoke Python code present
in selected cells with a click of a button, and python-functions declared in the python-script, below, using
the mypy namespace.

To add more input-columns, you need to set as column Headers the json-pointers path of the desired model
item (see Python usage below,).

wltp_excel_runner.py Utility python functions used by the above xls-file for running a batch of experi-
ments.

The particular functions included reads multiple vehicles from the input table with various vehicle charac-
teristics and/or experiment parameters, and then it adds a new worksheet containing the cycle-run of each
vehicle . Of course you can edit it to further fit your needs.

Note: You may reverse the procedure described above and run the python-script instead. The script will open the
excel-file, run the experiments and add the new sheets, but in case any errors occur, this time you can debug them,
if you had executed the script through LiClipse, or IPython!

Some general notes regarding the python-code from excel-cells:

• On each invocation, the predefined VBA module pandalon executes a dynamically generated python-
script file in the same folder where the excel-file resides, which, among others, imports the “sister” python-
script file. You can read & modify the sister python-script to import libraries such as ‘numpy’ and ‘pandas’,
or pre-define utility python functions.

• The name of the sister python-script is automatically calculated from the name of the Excel-file, and it must
be valid as a python module-name. Therefore do not use non-alphanumeric characters such as spaces(‘),
dashes(-) and dots(.‘) on the Excel-file.

• On errors, a log-file is written in the same folder where the excel-file resides, for as long as the message-box
is visible, and it is deleted automatically after you click ‘ok’!

• Read http://docs.xlwings.org/quickstart.html

10 Chapter 3. Usage

http://xlwings.org/quickstart/
http://docs.xlwings.org/quickstart.html

wltp Documentation, Release 0.0.9-alpha.4

3.4 Python usage

Example python REPL (Read-Eval-Print Loop) example-commands are given below that setup and run an exper-
iment.

First run python or ipython and try to import the project to check its version:

>>> import wltp

>>> wltp.__version__ ## Check version once more.
’0.0.9-alpha.4’

>>> wltp.__file__ ## To check where it was installed.
/usr/local/lib/site-package/wltp-...

If everything works, create the pandas-model that will hold the input-data (strings and numbers) of the experiment.
You can assemble the model-tree by the use of:

• sequences,

• dictionaries,

• pandas.DataFrame,

• pandas.Series, and

• URI-references to other model-trees.

For instance:

>>> from wltp import model
>>> from wltp.experiment import Experiment
>>> from collections import OrderedDict as odic ## It is handy to preserve keys-order.

>>> mdl = odic(
... vehicle = odic(
... unladen_mass = 1430,
... test_mass = 1500,
... v_max = 195,
... p_rated = 100,
... n_rated = 5450,
... n_idle = 950,
... n_min = None, ## Manufacturers my overridde it
... gear_ratios = [120.5, 75, 50, 43, 37, 32],
... resistance_coeffs = [100, 0.5, 0.04],
...)
...)

For information on the accepted model-data, check its JSON-schema:

>>> model.json_dumps(model.model_schema(), indent=2)
{

"properties": {
"params": {

"properties": {
"f_n_min_gear2": {
"description": "Gear-2 is invalid when N :< f_n_min_gear2 * n_idle.",
"type": [
"number",
"null"

],
"default": 0.9

},
"v_stopped_threshold": {
"description": "Velocity (Km/h) under which (<=) to idle gear-shift (Annex 2-3.3, p71).",

3.4. Python usage 11

http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/dev/generated/pandas.Series.html#pandas.Series

wltp Documentation, Release 0.0.9-alpha.4

"type": [
...

You then have to feed this model-tree to the Experiment constructor. Internally the Pandel resolves URIs,
fills-in default values and validates the data based on the project’s pre-defined JSON-schema:

>>> processor = Experiment(mdl) ## Fills-in defaults and Validates model.

Assuming validation passes without errors, you can now inspect the defaulted-model before running the experi-
ment:

>>> mdl = processor.model ## Returns the validated model with filled-in defaults.
>>> sorted(mdl) ## The "defaulted" model now includes the ‘params‘ branch.
[’params’, ’vehicle’]
>>> ’full_load_curve’ in mdl[’vehicle’] ## A default wot was also provided in the ‘vehicle‘.
True

Now you can run the experiment:

>>> mdl = processor.run() ## Runs experiment and augments the model with results.
>>> sorted(mdl) ## Print the top-branches of the "augmented" model.
[’cycle_run’, ’params’, ’vehicle’]

To access the time-based cycle-results it is better to use a pandas.DataFrame:

>>> import pandas as pd
>>> df = pd.DataFrame(mdl[’cycle_run’]); df.index.name = ’t’
>>> df.shape ## ROWS(time-steps) X COLUMNS.
(1801, 11)
>>> df.columns
Index([’v_class’, ’v_target’, ’clutch’, ’gears_orig’, ’gears’, ’v_real’, ’p_available’, ’p_required’, ’rpm’, ’rpm_norm’, ’driveability’], dtype=’object’)
>>> ’Mean engine_speed: %s’ % df.rpm.mean()
’Mean engine_speed: 1940.72109939’
>>> df.describe()

v_class v_target clutch gears_orig gears \
count 1801.000000 1801.000000 1801 1801.000000 1801.000000
mean 46.506718 46.506718 0.0660744 3.794003 3.683509
std 36.119280 36.119280 0.2484811 2.278959 2.278108
...

v_real p_available p_required rpm rpm_norm
count 1801.000000 1801.000000 1801.000000 1801.000000 1801.000000
mean 50.356222 28.846639 4.991915 1940.721099 0.214898
std 32.336908 15.833262 12.139823 840.959339 0.195142
...

>>> processor.driveability_report()
...

12: (a: X-->0)
13: g1: Revolutions too low!
14: g1: Revolutions too low!

...
30: (b2(2): 5-->4)

...
38: (c1: 4-->3)
39: (c1: 4-->3)
40: Rule e or g missed downshift(40: 4-->3) in acceleration?

...
42: Rule e or g missed downshift(42: 3-->2) in acceleration?

...

You can export the cycle-run results in a CSV-file with the following pandas command:

12 Chapter 3. Usage

http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html#pandas.DataFrame

wltp Documentation, Release 0.0.9-alpha.4

>>> df.to_csv(’cycle_run.csv’)

For more examples, download the sources and check the test-cases found under the /wltp/test/ folder.

3.5 IPython notebook usage

The list of IPython notebooks for wltp is maintained at the wiki of the project.

3.5.1 Requirements

In order to run them interactively, ensure that the following requirements are satisfied:

1. A ipython-notebook server >= v2.x.x is installed for python-3, it is up, and running.

2. The wltp is installed on your system (see Install above).

3.5.2 Instructions

• Visit each notebook from the wiki-list that you wish to run and download it as ipynb file from the menu
(File|Download as...|IPython Notebook(.ipynb)).

• Locate the downloaded file with your file-browser and drag n’ drop it on the landing page of your note-
book’s server (the one with the folder-list).

Enjoy!

3.6 Discussion

3.5. IPython notebook usage 13

https://github.com/ankostis/wltp/wiki
http://ipython.org/notebook.html

wltp Documentation, Release 0.0.9-alpha.4

14 Chapter 3. Usage

CHAPTER 4

Getting Involved

This project is hosted in github. To provide feedback about bugs and errors or questions and requests for enhance-
ments, use github’s Issue-tracker.

4.1 Sources & Dependencies

To get involved with development, you need a POSIX environment to fully build it (Linux, OSX or Cygwin on
Windows).

First you need to download the latest sources:

$ git clone https://github.com/ankostis/wltp.git wltp.git
$ cd wltp.git

Virtualenv
You may choose to work in a virtualenv (isolated Python environment), to install dependency libraries isolated
from system’s ones, and/or without admin-rights (this is recommended for Linux/Mac OS).

Attention: If you decide to reuse stystem-installed packages using --system-site-packages with
virtualenv <= 1.11.6 (to avoid, for instance, having to reinstall numpy and pandas that require native-
libraries) you may be bitten by bug #461 which prevents you from upgrading any of the pre-installed packages
with pip.

Liclipse IDE
Within the sources there are two sample files for the comprehensive LiClipse IDE:

• eclipse.project

• eclipse.pydevproject

Remove the eclipse prefix, (but leave the dot()) and import it as “existing project” from Eclipse’s File menu.

Another issue is caused due to the fact that LiClipse contains its own implementation of Git, EGit, which badly
interacts with unix symbolic-links, such as the docs/docs, and it detects working-directory changes even after
a fresh checkout. To workaround this, Right-click on the above file Properties → Team → Advanced → Assume
Unchanged

Then you can install all project’s dependencies in ‘development mode using the setup.py script:

$ python setup.py --help ## Get help for this script.
Common commands: (see ’--help-commands’ for more)

setup.py build will build the package underneath ’build/’

15

https://github.com/ankostis/wltp/issues
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://github.com/pypa/virtualenv/issues/461
https://brainwy.github.io/liclipse/

wltp Documentation, Release 0.0.9-alpha.4

setup.py install will install the package

Global options:
--verbose (-v) run verbosely (default)
--quiet (-q) run quietly (turns verbosity off)
--dry-run (-n) don’t actually do anything

...

$ python setup.py develop ## Also installs dependencies into project’s folder.
$ python setup.py build ## Check that the project indeed builds ok.

You should now run the test-cases (see Tests, Metrics & Reports) to check that the sources are in good shape:

$ python setup.py test

Note: The above commands installed the dependencies inside the project folder and for the virtual-environment.
That is why all build and testing actions have to go through python setup.py some_cmd.

If you are dealing with installation problems and/or you want to permantly install dependant packages, you have
to deactivate the virtual-environment and start installing them into your base python environment:

$ deactivate
$ python setup.py develop

or even try the more permanent installation-mode:

$ python setup.py install # May require admin-rights

4.2 Development procedure

For submitting code, use UTF-8 everywhere, unix-eol(LF) and set git --config core.autocrlf =
input.

The typical development procedure is like this:

1. Modify the sources in small, isolated and well-defined changes, i.e. adding a single feature, or fixing a
specific bug.

2. Add test-cases “proving” your code.

3. Rerun all test-cases to ensure that you didn’t break anything, and check their coverage remain above 80%:

$ python setup.py nosetests --with-coverage --cover-package wltp.model,wltp.experiment --cover-min-percentage=80

Tip: You can enter just: python setup.py test_all instead of the above cmd-line
since it has been aliased in the setup.cfg file. Check this file for more example commands
to use during development.

4. If you made a rather important modification, update also the Changes file and/or other documents (i.e.
README.rst). To see the rendered results of the documents, issue the following commands and read the
result html at build/sphinx/html/index.html:

$ python setup.py build_sphinx # Builds html docs
$ python setup.py build_sphinx -b doctest # Checks if python-code embeded in comments runs ok.

5. If there are no problems, commit your changes with a descriptive message.

6. Repeat this cycle for other bugs/enhancements.

7. When you are finished, push the changes upstream to github and make a merge_request. You can check
whether your merge-request indeed passed the tests by checking its build-status on the integration-server’s
site (TravisCI).

16 Chapter 4. Getting Involved

wltp Documentation, Release 0.0.9-alpha.4

Hint: Skim through the small IPython developer’s documentantion on the matter: The perfect
pull request

4.3 Specs & Algorithm

This program was implemented from scratch based on this GTR specification (included in the docs/
folder). The latest version of this GTR, along with other related documents can be found at UNECE’s site:

• http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/grpedoc_2013.html

• https://www2.unece.org/wiki/pages/viewpage.action?pageId=2523179

• Probably a more comprehensible but older spec is this one: https://www2.unece.org/wiki/display/trans/DHC+draft+technical+report

The WLTC-profiles for the various classes in the devtools/data/cycles/ folder were generated from the
tables of the specs above using the devtools/csvcolumns8to2.py script, but it still requires an intermedi-
ate manual step involving a spreadsheet to copy the table into ands save them as CSV.

Then use the devtools/buildwltcclass.py to construct the respective python-vars into the
wltp/model.py sources.

Data-files generated from Steven Heinz’s ms-access vehicle info db-table can be processed with the
devtools/preprocheinz.py script.

4.3.1 Cycles

4.3. Specs & Algorithm 17

https://github.com/ipython/ipython/wiki/Dev:-The-perfect-pull-request
https://github.com/ipython/ipython/wiki/Dev:-The-perfect-pull-request
http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/grpedoc_2013.html
https://www2.unece.org/wiki/pages/viewpage.action?pageId=2523179
https://www2.unece.org/wiki/display/trans/DHC+draft+technical+report

wltp Documentation, Release 0.0.9-alpha.4

4.4 Development team

• Author:

– Kostis Anagnostopoulos

• Contributing Authors:

– Heinz Steven (test-data, validation and review)

– Georgios Fontaras (simulation, physics & engineering support)

– Alessandro Marotta (policy support)

4.5 Discussion

18 Chapter 4. Getting Involved

CHAPTER 5

Tests, Metrics & Reports

In order to maintain the algorithm stable, a lot of effort has been put to setup a series of test-case and metrics
to check the sanity of the results and to compare them with the Heinz-db tool or other datasets included in the
project. These tests can be found in the wltp/test/ folders.

Additionally, below are auto-generated representative diagrams with the purpose to track the behavior and the
evolution of this project.

You can reuse the plotting code here for building nice ipython-notebooks reports, and (optionally) link them
in the wiki of the project (see section above). The actual code for generating diagrams for these metrics is in
wltp.plots and it is invoked by scripts in the docs/pyplot/ folder.

5.1 Comparisons with Heinz-tool

This section compares the results of this tool to the Heinz’s Access DB.

5.1.1 Mean Engine-speed vs PMR

First the mean engine-speed of vehicles are compared with access-db tool, grouped by PMRs:

Both tools generate the same rough engine speeds. There is though a trend for this project to produce lower rpm’s
as the PMR of the vehicle increases. But it is difficult to tell what each vehicle does isolated.

The same information is presented again but now each vehicle difference is drawn with an arrow:

It can be seen now that this project’s calculates lower engine-speeds for classes 1 & 3 but the trend is reversed for
class 2.

5.1.2 Mean Engine-speed vs Gears

Below the mean-engine-speeds are drawn against the mean gear used, grouped by classes and class-parts (so that,
for instance, a class3 vehicle corresponds to 3 points on the diagram):

5.2 Comparisons with Older versions

[TBD]

5.2.1 Discussion

19

wltp Documentation, Release 0.0.9-alpha.4

20 Chapter 5. Tests, Metrics & Reports

CHAPTER 6

FAQ

6.1 General

6.1.1 Who is behind this? How to contact the authors?

The immediate involved persons is described in the Development team section. The author is a participating
member in the GS Task-Force on behalf of the EU Commission (JRC).

To contact the authors, use the DISQUS conversation, below, or create an issue.

6.1.2 What is the status of the project? Is it “official”?

It is a work-in-progress. It is aimed to become “official”.

6.1.3 What is the roadmap for this project?

• Short-term plans are described in the TODOs section of Changes.

• In the longer run, it is expected to incorporate more WLTP calculations and reference data so that this
projects acts as repository for diagrams and technical reports on those algorithms.

6.1.4 Can I copy/extend it? What is its License, in practical terms?

In a broad view, the core algorithm of the project is “copylefted” with the EUPL-1.1+ license, and it includes files
from other “non-copyleft” open source licenses like MIT MIT License and Apache License, appropriately marked
as such. So in an nutshell, you can study it, copy it, modify or extend it, and distrbute it, as long as you always
distribute the sources of your changes.

6.2 Technical

6.2.1 I followed the instructions but i still cannot install/run/do X. What now?

If you have no previous experience in python, setting up your environment and installing a new project is a
demanding, but manageable, task. Here is a checklist of things that might go wrong:

• Did you send each command to the appropriate shell/interpreter?

You should enter sample commands starting $ into your shell (cmd or bash), and those starting with >>>
into the python-interpreter (but don’t include the previous symbols and/or the output of the commands).

21

wltp Documentation, Release 0.0.9-alpha.4

• Is python contained in your PATH ?

To check it, type python in your console/command-shell prompt and press [Enter]. If nothing happens,
you have to inspect PATH and modify it accordingly to include your python-installation.

– Under Windows type path in your command-shell prompt. To change it, run regedit.exe and modify
(or add if not already there) the PATH string-value inside the following registry-setting:

HKEY_CURRENT_USER\Environment\

You need to logoff and logon to see the changes.

Note that WinPython does not modify your path! if you have registed it, so you definetely have to
perform the the above procedure yourself.

– Under Unix type echo $PATH$ in your console. To change it, modify your “rc’ files, ie:
~/.bashrc or ~/.profile.

• Is the correct version of python running?

Certain commands such as pip come in 2 different versions python-2 & 3 (pip2 and pip3, respectively).
Most programs report their version-infos with --version. Use --help if this does not work.

• Have you upgraded/downgraded the project into a more recent/older version?

This project is still in development, so the names of data and functions often differ from version to version.
Check the Changes for point that you have to be aware of when upgrading.

• Did you search whether a similar issue has already been reported?

• Did you ask google for an answer??

• If the above suggestions still do not work, feel free to open a new issue and ask for help here. Write
down your platform (Windows, OS X, Linux), your exact python distribution and version, and include the
print-out of the failed command along with its error-message.

This last step will improve the documentation and help others as well.

6.2.2 I do not have python / cannot install it. Is it possible to try a demo?

Create an account into Wakari and post a Disqus-comment below requesting JRC’s shared IPython notebook.

6.3 Discussion

22 Chapter 6. FAQ

https://github.com/ankostis/wltp/issues
https://wakari.io/

CHAPTER 7

API reference

The core of the simulator is composed from the following modules:

pandel
model
experiment
idgears

Among the various tests, those running on ‘sample’ databases for comparing differences with existing tool are the
following:

samples_db_tests
wltp_db_tests

The following scripts in the sources maybe used to preprocess various wltc data:

• devtools/preprocheinz.py

• devtools/printwltcclass.py

• devtools/csvcolumns8to2.py

7.1 Module: wltp.experiment

7.2 Module: wltp.model

7.3 Module: wltp.pandel

7.4 Module: wltp.test.samples_db_tests

7.5 Module: wltp.test.wltp_db_tests

23

wltp Documentation, Release 0.0.9-alpha.4

24 Chapter 7. API reference

CHAPTER 8

Changes

Contents

• Changes
– GTR version matrix
– Known deficiencies
– TODOs
– Changelog

* v0.0.9-alpha.4 (XX-Jan-2015)
* v0.0.9-alpha.3 (1-Dec-2014)

· Noteworthy or incompatilble changes
* v0.0.9-alpha.1 (1-Oct-2014)
* v0.0.8-alpha(04-Aug-2014), v0.0.8.alpha.2(1-Dec-2014)
* v0.0.7-alpha, 31-Jul-2014: 1st internal
* v0.0.6-alpha, 5-Feb-2014
* v0.0.5-alpha, 18-Feb-2014
* v0.0.4.alpha, 18-Jan-2014
* v0.0.3_alpha, 22-Jan-2014
* v0.0.2_alpha, 7-Jan-2014
* v0.0.1, 6-Jan-2014: Alpha release
* v0.0.0, 11-Dec-2013: Inception stage

8.1 GTR version matrix

Given a version number MAJOR.MINOR.PATCH, the MAJOR part tracks the GTR phase implemented. The
following matrix shows these correspondences:

Release train GTR ver
0.0.9 Un-precise GTR phase-1a (diffs explained below)
0.1.x GTR phase-1a (TODO)
1.x.x GTR phase 1b [TDB]

8.2 Known deficiencies

• (!) Driveability-rules not ordered as defined in the latest task-force meeting.

• (!) The driveability-rules when speeding down to a halt is broken, and human-drivers should improvise.

• (!) The n_min_drive is not calculated as defined in the latest task-force meeting, along with other recent
updates.

25

wltp Documentation, Release 0.0.9-alpha.4

• (!) The n_max is calculated for ALL GEARS, resulting in “clipped” velocity-profiles, leading to reduced
rpm’s for low-powered vehicles.

• Clutching-points and therefore engine-speed are very preliminary (ie rpm when starting from stop might be
< n_idle).

8.3 TODOs

• Add cmd-line and UI front-ends.

• Automatically calculate masses from H & L vehicles, and regression-curves from categories.

• wltp_db: Improve test-metrics with group-by classes/phases.

• model: Enhance model-preprocessing by interleaving “octapus” merging stacked-models between valida-
tion stages.

• model: finalize data-schema (renaming columns and adding name fields in major blocks).

• model/core: Accept units on all quantities.

• core: Move calculations as class-methods to provide for overriding certain parts of the algorithm.

• core: Support to provide and override arbitrary model-data, and ask for arbitrary output-ones by topologi-
cally sorting the graphs of the calculation-dependencies.

• build: Separate wltpdb tests as a separate, optional, plugin of this project (~650Mb size).

8.4 Changelog

8.4.1 v0.0.9-alpha.4 (XX-Jan-2015)

Same algo as alpha.3 but with corrected engine-speed for idle. It is used for reports and simulation run by JRC
to build the CO2MPAS model, but still not driveable due to downshifting to 1st-gear when stopping to standstill.

• core, model: Possible to define different n_min_drive & f_safety_margins per gear.

• core: Add function to identify gear-ratios from experimental engine-runs.

• excel, tests: Add ExcelRunner TCs.

8.4.2 v0.0.9-alpha.3 (1-Dec-2014)

This is practically the 1st public releases, reworked in many parts, much better documented, continuously tested
and build using TravisCI, with on-the-fly generated diagrams as metrics, BUT the arithmetic results produced are
still identical to v0.0.7, so that the test-cases and metrics still describe that version, for future comparison.

• Use CONDA for running on TravisCI.

• Improve ExcelRunner.

• docs and metrics improvements.

• ui: Added Excel frontend.

• ui: Added desktop-UI proof-of-concept (wltp.tkui).

• metrics: Add diagrams auto-generated from test-metrics into generated site (at “Getting Involved” section).

26 Chapter 8. Changes

wltp Documentation, Release 0.0.9-alpha.4

Noteworthy or incompatilble changes

• Code:

– package wltc –> wltp

– class Experiment –> Processor

• Model changes:

– /vehicle/mass –> (test_mass and unladen_mass)

– /cycle_run: If present, (some of) its columns override the calculation.

• Added Excel front-end.

• Added Metrics section in documents whith on-the-fly generated diagrams comparing and tracking the be-
havior of the algorithm.

• Now the Eclipse’s PyDev-project files are included only as templates; copy them and remove the eclipse
prefix before importing project into Eclipse/Liclipse.

8.4.3 v0.0.9-alpha.1 (1-Oct-2014)

• Backported also to Python-2.7.

• model, core: Discriminate between Test mass from Unladen mass (optionally auto-calced by
driver_mass = 75(kg)).

• model, core: Calculate default resistance-coefficients from a regression-curve (the one found in Heinz-db).

• model, core: Possible to overide WLTP-Class, Target-V & Slope, Gears if present in the cycle_run table.

• model: Add NEDC cycle data, for facilitating comparisons.

• tests: Include sample-vehicles along with the distribution.

• tests: Speed-up tests by caching files to read and compare.

• docs: Considerable improvements, validate code in comments and docs with doctest.

• docs: Provide a http-link to the list of IPython front-ends in the project’s wiki.

• build: Use TravisCI as integration server, Coveralls.io as test-coverage service-providers.

• build: Stopped .EXE distribution; need a proper python environment.

8.4.4 v0.0.8-alpha(04-Aug-2014), v0.0.8.alpha.2(1-Dec-2014)

• Documentation fixes.

8.4.5 v0.0.7-alpha, 31-Jul-2014: 1st internal

Although it has already been used in various exercises internally in JRC, it never graduated out of Alpha state.

• Rename project to ‘wltp’.

• Switch license from AGPL –> EUPL (the same license assumed retrospectively for older version)

• Add wltp_db files.

• Unify instances & schemas in model.py.

• Possible to Build as standalone exe using cx_freeze.

• Preparations for PyPI/github distribution.

– Rename project to “wltp”.

8.4. Changelog 27

wltp Documentation, Release 0.0.9-alpha.4

– Prepare Sphinx documentation for http://readthedocs.org.

– Update setup.py

– Update project-coordinates (authors, etc)

8.4.6 v0.0.6-alpha, 5-Feb-2014

• Make it build as standalone exe using cx_freeze.

• Possible to transplant base-gears and then apply on them driveability-rules.

• Embed Model –> Experiment to simplify client-code.

• Changes in the data-schema for facilitating conditional runs.

• More reverse-engineered comparisons with heinz’s data.

8.4.7 v0.0.5-alpha, 18-Feb-2014

• Many driveability-improvements found by trial-n-error comparing with Heinz’s.

• Changes in the data-schema for facilitating storing of tabular-data.

• Use Euro6 polynomial full_load_curve from Fontaras.

• Smooth-away INALID-GEARS.

• Make the plottings of comparisons of sample-vehicle with Heinz’results interactively report driveability-
rules.

• Also report GEARS_ORIG, RPM_NORM, P_AVAIL, RPM, GEARS_ORIG, RPM_NORM results.

8.4.8 v0.0.4.alpha, 18-Jan-2014

• Starting to compare with Heinz’s data - FOUND DISCREPANCIES IMPLTYING ERROR IN BASE
CALCS.

• Test-enhancements and code for comparing with older runs to track algo behavior.

• Calc ‘V_real’.

• Also report RPMS, P_REQ, DIRVEABILITY results.

• Make v_max optionally calculated from max_gear / gear_ratios.

• BUGFIX: in P_AVAIL 100% percents were mixed [0, 1] ratios!

• BUGFIX: make goodVehicle a function to avoid mutation side-effects.

• BUGFIX: add forgotten division on p_required Accel/3.6.

• BUGFIX: velocity-profile mistakenly rounded to integers!

• BUGFIX: v_max calculation based on n_rated (not 1.2 * n_rated).

• FIXME: get default_load_curve floats from Heinz-db.

• FIXME: what to to with INVALID-GEARS?

28 Chapter 8. Changes

http://readthedocs.org

wltp Documentation, Release 0.0.9-alpha.4

8.4.9 v0.0.3_alpha, 22-Jan-2014

• -Driveability rules not-implemented:

– missing some conditions for rule-f.

– no test-cases.

– No velocity_real.

– No preparation calculations (eg. vehicle test-mass).

– Still unchecked for correctness of results.

• -Pending Experiment tasks:

– FIXME: Apply rule(e) also for any initial/final gear (not just for i-1).

– FIXME: move V–0 into own gear.

– FIXME: move V–0 into own gear.

– FIXME: NOVATIVE rule: “Clutching gear-2 only when Decelerating.”.

– FIXME: What to do if no gear foudn for the combination of Power/Revs??

– NOTE: “interpratation” of specs for Gear-2

– NOTE: Rule(A) not needed inside x2 loop.

– NOTE: rule(b2): Applying it only on non-flats may leave gear for less than 3sec!

– NOTE: Rule(c) should be the last rule to run, outside x2 loop.

– NOTE: Rule(f): What if extra conditions unsatisfied? Allow shifting for 1 sec only??

– TODO: Construct a matrix of n_min_drive for all gears, including exceptions for gears 1 & 2.

– TODO: Prepend row for idle-gear in N_GEARS

– TODO: Rule(f) implement further constraints.

– TODO: Simplify V_real calc by avoiding multiply all.

8.4.10 v0.0.2_alpha, 7-Jan-2014

• -Still unchecked for correctness of results.

8.4.11 v0.0.1, 6-Jan-2014: Alpha release

• -Unchecked for correctness.

• Runs OK.

• Project with python-packages and test-cases.

• Tidied code.

• Selects appropriate classes.

• Detects and applies downscale.

• Interpreted and implemented the nonsensical specs concerning n_min engine-revolutions for gear-2 (Annex
2-3.2, p71).

• -Not implemented yet driveability rules.

• -Does not output real_velocity yet - inly gears.

8.4. Changelog 29

wltp Documentation, Release 0.0.9-alpha.4

8.4.12 v0.0.0, 11-Dec-2013: Inception stage

• Mostly setup.py work, README and help.

30 Chapter 8. Changes

CHAPTER 9

Indices

9.1 Glossary

WLTP The Worldwide harmonised Light duty vehicles Test Procedure, a GRPE informal working group

UNECE The United Nations Economic Commission for Europe, which has assumed the steering role on the
WLTP.

GRPE UNECE Working party on Pollution and Energy - Transport Programme

GS Task-Force The Gear-shift Task-force of the GRPE. It is the team of automotive experts drafting the gear-
shifting strategy for vehicles running the WLTP cycles.

WLTC The family of pre-defined driving-cycles corresponding to vehicles with different PMR (Power to Mass
Ratio). Classes 1,2, 3a & 3b are split in 2, 4, 4 and 4 parts respectively.

Unladen mass UM or Curb weight, the weight of the vehicle in running order minus the mass of the driver.

Test mass TM, the representative weight of the vehicle used as input for the calculations of the simulation,
derived by interpolating between high and low values for the CO2-family of the vehicle.

Downscaling Reduction of the top-velocity of the original drive trace to be followed, to ensure that the vehicle
is not driven in an unduly high proportion of “full throttle”.

pandas-model The container of data that the gear-shift calculator consumes and produces. It is implemented
by wltp.pandel.Pandel as a mergeable stack of JSON-schema abiding trees of strings and numbers,
formed with sequences, dictionaries, pandas-instances and URI-references.

JSON-schema The JSON schema is an IETF draft that provides a contract for what JSON-data is required for a
given application and how to interact with it. JSON Schema is intended to define validation, documentation,
hyperlink navigation, and interaction control of JSON data. You can learn more about it from this excellent
guide, and experiment with this on-line validator.

JSON-pointer JSON Pointer(RFC 6901) defines a string syntax for identifying a specific value within a
JavaScript Object Notation (JSON) document. It aims to serve the same purpose as XPath from the XML
world, but it is much simpler.

9.1.1 Index

31

https://www2.unece.org/wiki/pages/viewpage.action?pageId=2523179
http://pandas.pydata.org/pandas-docs/dev/index.html#module-pandas
http://json-schema.org/
http://tools.ietf.org/html/draft-zyp-json-schema-03
http://spacetelescope.github.io/understanding-json-schema/
http://spacetelescope.github.io/understanding-json-schema/
http://www.jsonschema.net/
http://tools.ietf.org/html/rfc6901.html

wltp Documentation, Release 0.0.9-alpha.4

32 Chapter 9. Indices

CHAPTER 10

Glossary

WLTP The Worldwide harmonised Light duty vehicles Test Procedure, a GRPE informal working group

UNECE The United Nations Economic Commission for Europe, which has assumed the steering role on the
WLTP.

GRPE UNECE Working party on Pollution and Energy - Transport Programme

GS Task-Force The Gear-shift Task-force of the GRPE. It is the team of automotive experts drafting the gear-
shifting strategy for vehicles running the WLTP cycles.

WLTC The family of pre-defined driving-cycles corresponding to vehicles with different PMR. Classes 1,2, 3a
& 3b are split in 2, 4, 4 and 4 parts respectively.

Unladen mass UM or Curb weight, the weight of the vehicle in running order minus the mass of the driver.

Test mass TM, the representative weight of the vehicle used as input for the calculations of the simulation,
derived by interpolating between high and low values for the CO2-family of the vehicle.

Downscaling Reduction of the top-velocity of the original drive trace to be followed, to ensure that the vehicle
is not driven in an unduly high proportion of “full throttle”.

pandas-model The container of data that the gear-shift calculator consumes and produces. It is implemented
by wltp.pandel.Pandel as a mergeable stack of JSON-schema abiding trees of strings and numbers,
formed with sequences, dictionaries, pandas-instances and URI-references.

JSON-schema The JSON schema is an IETF draft that provides a contract for what JSON-data is required for a
given application and how to interact with it. JSON Schema is intended to define validation, documentation,
hyperlink navigation, and interaction control of JSON data. You can learn more about it from this excellent
guide, and experiment with this on-line validator.

JSON-pointer JSON Pointer(RFC 6901) defines a string syntax for identifying a specific value within a
JavaScript Object Notation (JSON) document. It aims to serve the same purpose as XPath from the XML
world, but it is much simpler.

33

https://www2.unece.org/wiki/pages/viewpage.action?pageId=2523179
http://pandas.pydata.org/pandas-docs/dev/index.html#module-pandas
http://json-schema.org/
http://tools.ietf.org/html/draft-zyp-json-schema-03
http://spacetelescope.github.io/understanding-json-schema/
http://spacetelescope.github.io/understanding-json-schema/
http://www.jsonschema.net/
http://tools.ietf.org/html/rfc6901.html

wltp Documentation, Release 0.0.9-alpha.4

34 Chapter 10. Glossary

Index

D
DISTUTILS_DEBUG, 7
Downscaling, 31, 33

E
environment variable

DISTUTILS_DEBUG, 7
PATH, 3, 4, 7, 9, 22

G
GRPE, 31, 33
GS Task-Force, 31, 33

J
JSON-pointer, 31, 33
JSON-schema, 31, 33

P
pandas-model, 31, 33
PATH, 3, 4, 7, 9, 22

R
RFC

RFC 6901, 31, 33

T
Test mass, 31, 33

U
UNECE, 31, 33
Unladen mass, 31, 33

W
WLTC, 31, 33
WLTP, 31, 33

35

	Introduction
	Overview
	Quick-start
	Discussion

	Install
	Older versions
	Installing from sources
	Project files and folders
	Discussion

	Usage
	Cmd-line usage
	GUI usage
	Excel usage
	Python usage
	IPython notebook usage
	Discussion

	Getting Involved
	Sources & Dependencies
	Development procedure
	Specs & Algorithm
	Development team
	Discussion

	Tests, Metrics & Reports
	Comparisons with Heinz-tool
	Comparisons with Older versions

	FAQ
	General
	Technical
	Discussion

	API reference
	Module: wltp.experiment
	Module: wltp.model
	Module: wltp.pandel
	Module: wltp.test.samples_db_tests
	Module: wltp.test.wltp_db_tests

	Changes
	GTR version matrix
	Known deficiencies
	TODOs
	Changelog

	Indices
	Glossary

	Glossary

