WireXfers Documentation
Release 2014.06-dev

Priit Laes

June 21, 2016

Contents

1 User Guide 3
1.1 Introduction e e e e e 3
1.2 Using WIireXfers o o o e e e e e e e e e e e e 4
1.3 Supported Payment Providers e 6
1.4 Generating private-public keypair oL 6
2 Integrating with frameworks 7
3 API Documentation 9
3.1 APL L 9
Python Module Index 15

WireXfers Documentation, Release 2014.06-dev

Release v2014.06-dev.

WireTransfers is an ISC Licensed online payments library, written in Python, supporting various online payment
protocols (IPizza, Solo/TUPAS) using a simple APIL.

Contents 1

WireXfers Documentation, Release 2014.06-dev

2 Contents

CHAPTER 1

User Guide

This part of documentation begins with some background information, then focuses on step-by-step instructions for
making online payments using WireTransfers library.

1.1 Introduction

1.1.1 Philosophy

WireTransfers is being developed while keeping a few PEP 20 idioms in mind:
1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
5. Readability counts.

Therefore all contributions to WireTransfers should keep these important words in mind.

1.1.2 ISC License

WireTransfers is released under the terms of The ISC License.

“Why the ISC license?”, you may ask? That’s because this license allows software to be used freely in proprietary,
closed-source software.

1.1.3 WireTransfers License

Copyright (c) 2012-2014 Priit Laes.

Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is
hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHAT-
SOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF

https://www.python.org/dev/peps/pep-0020
http://www.opensource.org/licenses/isc-license

WireXfers Documentation, Release 2014.06-dev

CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNEC-
TION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

1.2 Using WireXfers

This section should give you an introduction on how to integreate WireXfers with various applications and web frame-
works.

Note: Code snippets below use pseudocode and will not work when using them in real application. Consult
framework-specific examples for real working code.

Basic flow of the payment process is following:
1. Initialize provider-specific keychain
2. Initialize provider
3. Create payment information
4. Show user the payment form which takes him to provider page

5. Process the return results

1.2.1 Setting up the provider

Each provider has to be initialized by provider-specific keychain. Depending on keychain, its arguments are either
simple strings (Solo/TUPAS) or consists of private/public key pair objects (IPizza).

from wirexfers.providers import PseudoProvider

Create and initialize provider-specific keychain
keychain = PseudoProvider.KeyChain(...)

Create and initialize the provider

#: user — user id used at provider's side

#: endpoint - endpoint address where to send payment request
provider = PseudoProvider (user, keychain, endpoint)

1.2.2 Creating the payment and initializing the payment request

In order to make a payment, we first need to set up a payment information by filling out relevant fields of
PaymentInfo.

from wirexfers import PaymentInfo, utils
info = PaymentInfo('1.00'"', 'Test transfer', utils.ref_731('123"))

Now that we have the Paymentlnfo, in order to create a payment request, we have to create a dictionary containing
return urls to views where our application handles the payment response.

Note: Return url support varies with providers. Please consult each providers documentation to see which return urls
are supported. By default we need at least the return URL.

4 Chapter 1. User Guide

WireXfers Documentation, Release 2014.06-dev

Note: Return urls should be absolute!

’urls = {'return': 'http://example.com'}

With that, everything we need to create a payment request (PaymentRequest) has been done:

’payment = provider (info, urls)

All we need now is to pass the payment info into template and create a HTML form visible to the user:

This is all from application side, we just have to pass the payment to the template in order to show the payment form
to the user. Lets assume that payment request has been passed into template context as payment variable, so can
use form iterator to create form fields, info to display the payment information and various provider fields to

initialize a simple HTML form.

Basic Jinja2 template should look like this:

<form method="POST" action="{{ payment.provider.endpoint }}" accept-charset="{{ payment
{% for item in payment.form -%}

item —-%

}}n

% set lue =
<input name="{{ name
{% endfor -%}
<dl>
<dt>Amount :</dt>
<dd>{{ payment.info.amount }j}</dd>
<dt>Message:</dt>

name,

va

<dd>{{ payment.info.message }}</dd>
</dl>
<input type="submit">
</form>

value="{{ value

}}" type="hidden">

1.2.3 Handling the Payment response

Note: Depending on the provider, we need either handle single or multiple return urls.

Note: Depending on the provider we need to either handle GET or POST request data.

Note: Depending on the provider we also need to handle responses in non-utf8 charsets.

In order to verify payment status, we just need to parse the request data using parse response (). This create a
PaymentResponse which contains is_valid and various other data related to payment.

from wirexfers.exc import InvalidResponseError
data contains either POST or GET request data

try:

payment = provider.parser_response (data)

except InvalidResponseError
Signature failure,
pass

if payment.is_valid:

we should redirect to proper error page

1.2. Using WireXfers

provider. forr

WireXfers Documentation, Release 2014.06-dev

Show "Successful order page!"
else:
Show "Order failure page"

And that’s basically how it works! :)

1.3 Supported Payment Providers

List of currently supported protocols:
e [Pizza

* Solo/TUPAS

1.3.1 Providers supporting IPizza protocol

* Supported Estonian banks:

Danske Bank Estonia - wirexfers.providers. ipizza.EEDanskeProvider

Krediidipank - wirexfers.providers. ipizza.EEKrediidipankProvider

LHV Bank Estonia - wirexfers.providers.ipizza.EELHVProvider

SEB Bank Estonia - wirexfers.providers.ipizza.EESEBProvider

Swedbank Estonia - wirexfers.providers.ipizza.EESwedBankProvider

1.3.2 Providers supporting Solo/TUPAS protocol

* Supported Estonian banks:

— Nordea Estonia - wirexfers.providers.tupas.EENordeaProvider

1.4 Generating private-public keypair

Generating the private RSA key with 4096-bit keysize:

‘$ openssl genrsa —-out privkey.pem 4096

Generate the Certificate Request:

’$ openssl req -new -—-key privkey.pem -out certificate-request.csr

6 Chapter 1

. User Guide

https://danskebank.ee
http://krediidipank.ee
https://lhv.ee
https://seb.ee
https://swedbank.ee
https://nordea.ee

CHAPTER 2

Integrating with frameworks

Integration examples with various frameworks:

* Flask - https://github.com/plaes/wirexfers-flask-demo

https://github.com/plaes/wirexfers-flask-demo
https://github.com/plaes/wirexfers-flask-demo

WireXfers Documentation, Release 2014.06-dev

8 Chapter 2. Integrating with frameworks

CHAPTER 3

API Documentation

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

3.1 API

This part of the documentation covers all the interfaces of WireXfers.

3.1.1 Payment Providers

IPizza

class wirexfers.providers.ipizza.IPizzaProviderBase (user, keychain, endpoint, ex-

tra_info={})

Base class for IPizza protocol provider.
Protocol IPizza
KeyChain IPizzaKeyChain
Supported return urls:

e return
Supported protocol version:

* 008

parse_response (form, success=True)
Parse and return payment response.

IPizza Providers

class wirexfers.providers.ipizza.EEDanskeProvider (user, keychain, endpoint, ex-

tra_info={})

Danske Bank A/S Eesti filiaal
http://www.danskebank.ee

Protocol IPizza

KeyChain KeyChain

http://www.danskebank.ee

WireXfers Documentation, Release 2014.06-dev

Supported return urls:
* return
Supported protocol version:
* 008
parse_response (form, success=True)
Parse and return payment response.

class wirexfers.providers.ipizza.EEKrediidipankProvider (user, keychain, endpoint, ex-
tra_info={})

AS Eesti Krediidipank
http://krediidipank.ee/
Protocol IPizza
KeyChain KeyChain
Supported return urls:
* return
Supported protocol version:
* 008
parse_response (form, success=True)
Parse and return payment response.

class wirexfers.providers.ipizza.EELHVProvider (user, keychain, endpoint, extra_info={})

AS LHV Pank
https://www.lhv.ee
Protocol IPizza
KeyChain KeyChain
Supported return urls:
* return
Supported protocol version:
* 008
parse_response (form, success=True)
Parse and return payment response.

class wirexfers.providers.ipizza.EESEBProvider (user, keychain, endpoint, extra_info={})

AS SEB Pank
http://www.seb.ee

Protocol IPizza
KeyChain KeyChain

Supported return urls:

10 Chapter 3. API Documentation

http://krediidipank.ee/
https://www.lhv.ee
http://www.seb.ee

WireXfers Documentation, Release 2014.06-dev

* return
Supported protocol version:
* 008
parse_response (form, success=True)
Parse and return payment response.

classwirexfers.providers.ipizza.EESwedBankProvider (user, keychain, endpoint, ex-

tra_info={})

SWEDBANK AS
https://www.swedbank.ee

Protocol IPizza
KeyChain KeyChain
Supported return urls:
* return
Supported protocol version:
* 008

parse_response (form, success=True)
Parse and return payment response.

Solo/TUPAS

Solo/TUPAS providers

class wirexfers.providers.tupas.EENordeaProvider (user, keychain, endpoint, extra_info={})

Nordea Bank Finland Plc Eesti / AS Nordea Finance Estonia
https://www.nordea.ee
Protocol Solo/TUPAS
KeyChain KeyChain
Supported return urls:
e cancel - user cancels payment
* reject - bank rejects payment (due to insufficient funds, ...)
e return - payment is successful
Supported protocol version:
* 0003

parse_response (form, success=True)
Parse and return payment response.

3.1. API 11

https://www.swedbank.ee
https://www.nordea.ee

WireXfers Documentation, Release 2014.06-dev

3.1.2 Base Classes
class wirexfers.providers.KeyChainBase
Base class for protocol-specific key handling.

class wirexfers.providers.ProviderBase (user, keychain, endpoint, extra_info={})
Base class for all payment providers.

endpoint = None
Endpoint address used to initiate payment requests.

extra_ info = None
Dictionary containing extra user-supplied information. Can be used for supplying provider url, etc.

keychain = None
Protocol-specific keychain implementation - wirexfers.providers.KeyChainBase

parse_response (data)
Parse the payment request.

Parameters form — Raw payment response data.

user = None
User id for payment processor.

ProviderBase.__call__ (payment, return_urls)
Create and return a payment request.

Parameters payment (Payment Info)— payment information
Return type PaymentRequest

class wirexfers.PaymentRequest (provider, info, return_urls)
PaymentRequest class.

Parameters
* provider (ProviderBase.) — Payment provider
* info (Payment Info.) — Payment information

* return_urls (Dict) — Dictionary of return URLs. Depends on the specific provider,
but generally {’ return’: ... } isrequired.

Raises ValueError when invalid configuration is detected.

form = None
List containing (name, value) tuples for HTML-form setup.

info =None
Payment Info containing various payment information (sum, etc..)

provider = None
ProviderBase that handles the payment request.

class wirexfers.PaymentResponse (provider, data, successful=False)
PaymentResponse class.

data = None
Dictionary containing payment-related data, specific to provider

provider = None
ProviderBase that handles the payment request.

12 Chapter 3. API Documentation

WireXfers Documentation, Release 2014.06-dev

successful = None
Whether payment response is successful (some providers don’t provide this status, therefore allow setting
it from the view)

3.1.3 Exceptions

wirexfers.exc

Exceptions used with WireXfers.
The base exception class is WireXfersError
copyright
3. 2012-2014 Priit Laes
license ISC, see LICENSE for more details.

exception wirexfers.exc.InvalidResponseError
Bases: wirexfers.exc.WireXfersError

Raised when an invalid payment response data is supplied to the response parser.

exception wirexfers.exc.WireXfersError
Bases: exceptions.Exception

Generic error class.

3.1.4 Utility Classes
class wirexfers.PaymentInfo (amount, message, refnum)
Payment information required for PaymentRequest.

amount = None
Payment amount as string, uses . as decimal point separator.

message = None
Message used for payment description.

refnum = None
Reference number.

3.1.5 Utility Functions

wirexfers.utils

This module provides utility functions that are used within WireXfers, but might be also useful externally.
copyright
3. 2012-2014 Priit Laes
license ISC, see LICENSE for more details.

wirexfers.utils.load_key (path, password=None)
Import an RSA key (private or public half).

Parameters

3.1. API 13

WireXfers Documentation, Release 2014.06-dev

* path (string) — path to key half.
* password (string or None) - password for private key.
Return type Crypto.PublicKey.RSA._RSAob]

wirexfers.utils.ref 731 (n)
Reference number calculator. Returns reference number calculated using 7-3-1 algorithm used in Estonian
banks.

Parameters n (string)— base number (client id, etc)

Return type string

14 Chapter 3. API Documentation

Python Module Index

w

wirexfers.exc, 13
wirexfers.utils, 13

15

WireXfers Documentation, Release 2014.06-dev

16 Python Module Index

Index

Symbols

_call__() (wirexfers.providers.ProviderBase method),
12

A

amount (wirexfers.PaymentInfo attribute), 13

D

data (wirexfers.PaymentResponse attribute), 12

E

EEDanskeProvider (class in wirexfers.providers.ipizza), 9

EEKTrediidipankProvider (class in
wirexfers.providers.ipizza), 10

EELHVProvider (class in wirexfers.providers.ipizza), 10

EENordeaProvider (class in wirexfers.providers.tupas),
11

EESEBProvider (class in wirexfers.providers.ipizza), 10

EESwedBankProvider (class in
wirexfers.providers.ipizza), 1 1

endpoint (wirexfers.providers.ProviderBase attribute), 12

extra_info (wirexfers.providers.ProviderBase attribute),
12

F

form (wirexfers.PaymentRequest attribute), 12

info (wirexfers.PaymentRequest attribute), 12

InvalidResponseError, 13

IPizzaProviderBase (class in wirexfers.providers.ipizza),
9

K

keychain (wirexfers.providers.ProviderBase attribute), 12
KeyChainBase (class in wirexfers.providers), 12

L

load_key() (in module wirexfers.utils), 13

M

message (wirexfers.PaymentInfo attribute), 13

P

parse_response() (wirexfers.providers.ipizza. EEDanskeProvider
method), 10

parse_response() (wirexfers.providers.ipizza. EEKrediidipankProvider
method), 10

parse_response() (wirexfers.providers.ipizza. EELHVProvider
method), 10

parse_response() (wirexfers.providers.ipizza. EESEBProvider
method), 11

parse_response() (wirexfers.providers.ipizza. EESwedBankProvider
method), 11

parse_response() (wirexfers.providers.ipizza.IPizzaProviderBase
method), 9

parse_response()
method), 12

parse_response() (wirexfers.providers.tupas.EENordeaProvider
method), 11

PaymentInfo (class in wirexfers), 13

PaymentRequest (class in wirexfers), 12

PaymentResponse (class in wirexfers), 12

provider (wirexfers.PaymentRequest attribute), 12

provider (wirexfers.PaymentResponse attribute), 12

ProviderBase (class in wirexfers.providers), 12

Python Enhancement Proposals

PEP 20, 3

(wirexfers.providers.ProviderBase

R

ref_731() (in module wirexfers.utils), 14
refnum (wirexfers.Paymentlnfo attribute), 13

S

successful (wirexfers.PaymentResponse attribute), 12

U

user (wirexfers.providers.ProviderBase attribute), 12

W

wirexfers.exc (module), 13

17

WireXfers Documentation, Release 2014.06-dev

wirexfers.utils (module), 13
WireXfersError, 13

18 Index

	User Guide
	Introduction
	Using WireXfers
	Supported Payment Providers
	Generating private-public keypair

	Integrating with frameworks
	API Documentation
	API

	Python Module Index

