
winternitz Documentation
Release unknown

Harald Heckmann

Mar 11, 2019

Contents

1 Contents 3
1.1 License . 3
1.2 Contributors . 3
1.3 Changelog . 3
1.4 Introduction . 4
1.5 Setup . 4
1.6 Usage . 5
1.7 winternitz . 7
1.8 Contribution . 12

2 Indices and tables 13

Python Module Index 15

i

ii

winternitz Documentation, Release unknown

This is the documentation of winternitz.

Note: Welcome to the documentation of the python winternitz package. The package contains one-time-signature
schemes, which are most likely post-quantum secure.

Contents 1

winternitz Documentation, Release unknown

2 Contents

CHAPTER 1

Contents

1.1 License

The MIT License (MIT)

Copyright (c) 2019 Harald Heckmann

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.2 Contributors

• Harald Heckmann <harald.heckmann93@web.de>

1.3 Changelog

1.3.1 Pre Version 1.0

• Setup project (structure, travis, tox, coverage, sphinx, git-prehooks)

3

mailto:harald.heckmann93@web.de

winternitz Documentation, Release unknown

1.3.2 Version 1.0

• First fully tested and documented release of the winternitz package.

• Contains AbstractOTS base class for OTS implementations in this package

• Contains fully configurable Winternitz One-Time-Signature scheme

• Contains fully configurable Winternitz One-Time-Signature+ scheme

1.4 Introduction

Lamport invented an algorithm in 1979 which allowed one to create one-time-signatures using a cryptographically se-
cure one-way function. It is the basis for the Winternitz one-time-signature algorithm. Winternitz added the possibility
to adjust the tradeoff between time- and space-complexity.

1.4.1 Lamport one-time-signature scheme

Lamport suggested to create two secret keys for each bit of a message which will be signed. One for each value the bit
can take. To derive the verification key, each secret key is hashed once. Now you have a secret key and a verification
key, which consists of 𝑚 2-tuples of values, where 𝑚 is the number of bits of the message. The verification key
is published. The signature consists of 𝑚 values. For each bit of the message you release a secret key from the
corresponding secret keys, depending on which value the bit has. All those secret keys form the signature for the
message. The verifier hashes each of your secret keys once and compares it to one verification key for this position,
depending on the value of the bit. The signature is valid, if and only if all derived verification keys match with your
published verification key at the correct position of the 2-tuple, which is determined by the value of the bit. This
algorithm is quite fast (comparing it to existing PQC-algorithms), but the signature sizes are huge.

1.4.2 Winternitz extension

Winternitz extended lamports algorithm by offering the possiblity to decide how many bits will be signed together.
The amount of numbers those bits can represent is called the Winternitz parameter (𝑤 = 2𝑏𝑖𝑡𝑠). This method offers
the huge advantage that the user of this algorithm can choose the time and space tradeoff (whether speed or storage
capacity is more relevant). A fingerprint of the message which will be signed is split into groups of 𝑐𝑒𝑖𝑙(𝑙𝑜𝑔2(𝑤)) bits.
Each of these groups gets one secret key. Each verification key is derived by hashing the secret key for each group 2𝑤−1

times. All verification keys will be published and represent one unified verification key. When signing a message, the
fingerprint of the message is split into groups of 𝑐𝑒𝑖𝑙(𝑙𝑜𝑔2(𝑤)) bits. To create the signature, the private key for each
bit group is hashed 𝑏𝑖𝑡𝑔𝑟𝑜𝑢𝑝_𝑣𝑎𝑙𝑢𝑒 times, where 𝑏𝑖𝑡𝑔𝑟𝑜𝑢𝑝_𝑣𝑎𝑙𝑢𝑒 is the value of the bitgroup. Additionally a (inverse
sum) checksum is appended, which denies man-in-the-middle attacks. The checksum is calculated from the signature,
split into bit groups of 𝑐𝑒𝑖𝑙(𝑙𝑜𝑔2(𝑤)) bits, and signed. To verify the signature, the fingerprint of the message is first
split into bit groups of 𝑐𝑒𝑖𝑙(𝑙𝑜𝑔2(𝑤) bits each. The basic idea is to take the signature of each bit group, calculate
the verification key from it and finally compare it to the published verification key. Since the signature was hashed
𝑏𝑖𝑡𝑔𝑟𝑜𝑢𝑝_𝑣𝑎𝑙𝑢𝑒 times, all you have to do to calculate the verification key from the signature is to hash the signature
2𝑤−1 − 𝑏𝑖𝑡𝑔𝑟𝑜𝑢𝑝_𝑣𝑎𝑙𝑢𝑒 − 1 times. Besides verifing the message, the verifier must also calculate the checksum and
verify it.

1.5 Setup

Requires: Python >= 3.4

4 Chapter 1. Contents

winternitz Documentation, Release unknown

Install package: pip install winternitz

Install test tools: pip install winternitz[TEST]

Install linter (for tox tests): pip install winternitz[LINT]

Install documentation tools: pip install winternitz[DOCS]

Install everything: pip install winternitz[ALL]

1.5.1 Test

Without tox (no linter checks): python setup.py test

With tox: python -m tox

1.5.2 Generate documentation

python setup.py docs

1.6 Usage

The package winternitz contains a module called signatures. Within this package you can find the classes WOTS and
WOTSPLUS. Those classes can be used out of the box to sign or verify messages

1.6.1 WOTS

import winternitz.signatures
Create signature and verify it with the same object
wots = winternitz.signatures.WOTS()
message = "My message in bytes format".encode("utf-8")
sig = wots.sign(message)
success = wots.verify(message=message, signature=sig["signature"])
print("Verification success: " + str(success))
Output: Verification success: True

If you don’t specify any values in the constructor of WOTS, it will use the winternitz parameter 16 and the hash
function sha512 as default parameters. The private key will be generated from entropy. After you received the public
key, either through wots.pubkey or inside the dict that is returned by the wots.sign(message) function call,
you publish it. Verify that it was not modified. In the best case a man-in-the-middle attack to modify your public key is
impossible by the design of the application. The last step is to publish your message and every information in the dict
that is returned by wots.sign(message), except the public key (since it was already published). Publishing the
fingerprint is optional, since it is not essential for the signature verification. The signature dict contains the following
values:

{
"w": winternitz parameter (Type: int),
"fingerprint": message hash (Type: bytes),
"hashalgo": hash algorithm (Type: str),
"digestsize": hash byte count (Type: int),
"pubkey": public key (Type: List[bytes]),
"signature": signature (Type: List[bytes])

}

With that data, another person can verify the authenticity of your message:

1.6. Usage 5

winternitz Documentation, Release unknown

Another person or machine wants to verify your signature:
get required hash function by comparing the name
published with local implementaitons
if sig["hashalgo"] == "openssl_sha512":

hashfunc = winternitz.signatures.openssl_sha512
elif sig["hashalgo"] == "openssl_sha256":

hashfunc = winternitz.signautres.openssl_sha256
else:

raise NotImplementedError("Hash function not implemented")

wots_other = winternitz.signatures.WOTS(w=sig["w"], hashfunction=hashfunc,
digestsize=sig["digestsize"], pubkey=sig[

→˓"pubkey"])
success = wots_other.verify(message=message, signature=sig["signature"])
print("Verification success: " + str(success))
Output: Verification success: True

1.6.2 WOTSPLUS

import winternitz.signatures
wotsplus = winternitz.signatures.WOTSPLUS()
message = "My message in bytes format".encode("utf-8")
sig = wotsplus.sign(message)
success = wotsplus.verify(message=message, signature=sig["signature"])
print("Verification success: " + str(success))
Output: Verification success: True

If you don’t specify any values in the constructor of WOTSPLUS, it will use the winternitz parameter 16 and the hash
function defaults to sha256. It further requires a pseudo random function, which defaults to HMAC-sha256, as well as
a seed which is also generated from entropy. For further informations about functions and their parameters, visit the
module reference in this documentation. Since WOTS+ uses a pseudo random function and a seed to derive signatures
and public keys, they have to be published as well. In addition to the signature of WOTS, the returned dict contains
the following values:

{
...
"prf": pseudo random function (Type: str),
"seed": Seed used in prf (Type: bytes)

}

Those arguments have to be specified in the constructor of WOTSPLUS in addition to those parameters specified in
WOTS.

1.6.3 Misc

The WOTS classes come with some features that will be explained in the following sections.

Fully configurable

The WOTS classes are fully parameterizable. You can specify anything that is specified in the papers describing the
algorithm, including the Winternitz parameter, the hash function, the pseudo random function (WOTSPLUS), the seed
(WOTSPLUS), the private key and the public key. specifing both a private key and public key results in the public key
beeing discarded.

6 Chapter 1. Contents

winternitz Documentation, Release unknown

On-demand generation of keys

If no private key or no public key is specified, they will be set to None. The same goes for the seed in wots+. Only
when they are required, they will be generated or derived. This means that as long as you don’t execute repr(obj),
str(obj), obj1 == obj2, obj1 != obj2, obj.pubkey, obj.privkey, obj.sign(...) or obj.
verify(...), where obj is a WOTS object, the keys will stay None.

Code representation of WOTS objects

You can call repr(obj), where obj is a WOTS object, to get a line of code which contains all information to
initialize another object so that it is equal to obj. Executing obj2 = eval(repr(obj)) executes that code which
is returned by repr(obj) and ultimately stores a copy of it in obj2.

Human readable string representation

You can call str(obj) to get a string which contains a human readable representation of that object.

Comparison of objects

You can compare two objects from this class obj1 == obj2 and obj1 != obj2

Optimizations

The code was carefully written to reduce execution times. It surely is not perfect and can still be optimized, further
time-critical sections could be coded as C extensions, but nevertheless in the current state it should offer quite an
efficient implementation. It defines __slots__ to reduce execution times and storage requirements within the class.
Implementation of parallelization is planned, but it is only usefull when using huge winternitz parameters, since python
can only execute code in parallel if you spawn a new process and the overhead of forking a new python interpreter is
not negliable.

1.7 winternitz

1.7.1 winternitz package

Submodules

winternitz.signatures module

class winternitz.signatures.AbstractOTS
Bases: object

OTS base class

Every class implementing OTS schemes in this package should implement the functions defined in this base
class

sign()→ dict
Sign a message

This function will create a valid signature for a message on success

1.7. winternitz 7

https://docs.python.org/3.7/library/functions.html#object

winternitz Documentation, Release unknown

Parameters message – Encoded message to sign

Returns

A dictionary containing the fingerprint of the message, which was created using the hash
function that was specified during initialization of this object, the signature and a public key
to verify the signature. Structure:

{
"w": winternitz parameter (Type: int),
"fingerprint": message hash (Type: bytes),
"hashalgo": hash algorithm (Type: str),
"digestsize": hash byte count (Type: int),
"pubkey": public key (Type: List[bytes]),
"signature": signature (Type: List[bytes])

}

verify(signature: List[bytes])→ bool
Verify a message

Verify whether a signature is valid for a message

Parameters

• message – Encoded message to verify

• signature – Signature that will be used to verify the message

Returns Whether the verification succeded

class winternitz.signatures.WOTS(w: int = 16, hashfunction: Callable = <function
openssl_sha512>, digestsize: int = 512, privkey: Op-
tional[List[bytes]] = None, pubkey: Optional[List[bytes]] =
None)

Bases: winternitz.signatures.AbstractOTS

Winternitz One-Time-Signature

Fully configurable class in regards to Winternitz paramter, hash function, private key and public key

__init__(w: int = 16, hashfunction: Callable = <function openssl_sha512>, digestsize: int = 512,
privkey: Optional[List[bytes]] = None, pubkey: Optional[List[bytes]] = None)→ None

Initialize WOTS object

Define the parameters required to sign and verify a message

Parameters

• w – The Winternitz parameter. A higher value reduces the space complexity, but increases
the time complexity. It must be greater than 1 but less or equal than 2𝑑𝑖𝑔𝑒𝑠𝑡𝑠𝑖𝑧𝑒. To get the
best space to time complexity ratio, choose a value that is a power of two.

• hashfunction – The hashfunction which will be used to derive signatures and public
keys. Specify a function which takes bytes as an argument and returns bytes that represent
the hash.

• digestsize – The number of bits that will be emitted by the specified hash function.

• privkey – The private key to be used for signing operations. Leave None if it should be
generated. In this case it will be generated when it is required.

• pubkey – The public key to be used for verifying signatures. Do not specify it if a private
key was specified or if it should be derived. It will be derived when it is required.

8 Chapter 1. Contents

winternitz Documentation, Release unknown

digestsize
Digest size getter

Get the digest size of the hash function

Returns Digest size of the hash function

hashfunction
Hash function getter

Get a reference to the current hash function

Returns Reference to hash function

privkey
Private key getter

Get a copy of the private key

Returns Copy of the private key

pubkey
Public key getter

Get a copy of the public key

Returns Copy of the public key

sign(message: bytes)→ dict
Sign a message

This function will create a valid signature for a message on success

Parameters message – Encoded message to sign

Returns

A dictionary containing the fingerprint of the message, which was created using the hash
function that was specified during initialization of this object, the signature and a public key
to verify the signature. Structure:

{
"w": winternitz parameter (Type: int),
"fingerprint": message hash (Type: bytes),
"hashalgo": hash algorithm (Type: str),
"digestsize": hash byte count (Type: int),
"pubkey": public key (Type: List[bytes]),
"signature": signature (Type: List[bytes])

}

slots = ['__weakref__', '__w', '__hashfunction', '__digestsize', '__privkey', '__pubkey', '__msg_key_count', '__cs_key_count', '__key_count']

verify(message: bytes, signature: List[bytes])→ bool
Verify a message

Verify whether a signature is valid for a message

Parameters

• message – Encoded message to verify

• signature – Signature that will be used to verify the message

Returns Whether the verification succeded

1.7. winternitz 9

winternitz Documentation, Release unknown

w
Winternitz parameter getter

Get the Winternitz parameter

Returns Winternitz parameter

class winternitz.signatures.WOTSPLUS(w: int = 16, hashfunction: Callable = <func-
tion openssl_sha256>, prf: Callable = <function
hmac_openssl_sha256>, digestsize: int = 256, seed:
Optional[bytes] = None, privkey: Optional[List[bytes]]
= None, pubkey: Optional[List[bytes]] = None)

Bases: winternitz.signatures.WOTS

Winternitz One-Time-Signature Plus

Fully configurable class in regards to Winternitz paramter, hash function, pseudo random function, seed, private
key and public key

__init__(w: int = 16, hashfunction: Callable = <function openssl_sha256>, prf: Callable = <func-
tion hmac_openssl_sha256>, digestsize: int = 256, seed: Optional[bytes] = None, privkey:
Optional[List[bytes]] = None, pubkey: Optional[List[bytes]] = None)

Initialize WOTS object

Define under which circumstances a message should be signed or verified

Parameters

• w – The Winternitz parameter. A higher value reduces the space complexity, but increases
the time complexity. It must be greater than 1 but less than :math: 2^{digestsize}. To get
the best space to time complexity ratio, choose a value that is a power of two.

• hashfunction – The hashfunction which will be used to derive signatures and public
keys. Specify a function which takes bytes as an argument and returns bytes that represent
the hash.

• digestsize – The number of bits that will be emitted by the specified hash function.

• privkey – The private key to be used for signing operations. Leave None if it should be
generated. In this case it will be generated when it is required.

• pubkey – The public key to be used for verifying signatures. Do not specify it if a private
key was specified or if it should be derived. It will be derived when it is required.

• seed – Seed which is used in the pseudo random function to generate bitmasks.

• prf – Pseudo random function which is used to generate the bitmasks.

prf
Pseudo random function getter

Get the pseudo random function. It is used to generate the bitmasks.

Returns Reference to the pseudo random function

seed
Seed getter

Get the seed which is used in the pseudo random function to generate the bitmasks.

Returns Seed for pseudo random function

sign(message: bytes)→ dict
Sign a message

This function will create a valid signature for a message on success

10 Chapter 1. Contents

winternitz Documentation, Release unknown

Parameters message – Encoded message to sign

Returns

A dictionary containing the fingerprint of the message, which was created using the hash
function that was specified during initialization of this object, the signature and a public key
to verify the signature. Structure:

{
"w": winternitz parameter (Type: int),
"fingerprint": message hash (Type: bytes),
"hashalgo": hash algorithm (Type: str),
"digestsize": hash byte count (Type: int),
"pubkey": public key (Type: List[bytes]),
"prf": pseudo random function (Type: str),
"seed": Seed used in prf (Type: bytes),
"signature": signature (Type: List[bytes])

}

slots = ['__weakref__', '__seed', '__prf']

verify(message: bytes, signature: List[bytes])→ bool
Verify a message

Verify whether a signature is valid for a message

Parameters

• message – Encoded message to verify

• signature – Signature that will be used to verify the message

Returns Whether the verification succeded

winternitz.signatures.hmac_openssl_sha256(message: bytes, key: bytes)→ bytes
Peudo random function for key and bitmask generation

This functions wraps a pseudo random function in a way that it takes a byte-sequence as an argument and returns
a value which can be used for further generation of keys.

Parameters

• message – Byte-sequence to be hashed

• key – key to be used

Returns HMAC-sha256 hash

winternitz.signatures.openssl_sha256(message: bytes)→ bytes
Hash function for signature and public key generation

This functions wraps a hashfunction in a way that it takes a byte-sequence as an argument and returns the hash
of that byte-sequence

Parameters message – Byte-sequence to be hashed

Returns Sha256 hash

winternitz.signatures.openssl_sha512(message: bytes)→ bytes
Hash function for signature and public key generation

This functions wraps a hashfunction in a way that it takes a byte-sequence as an argument and returns the hash
of that byte-sequence

Parameters message – Byte-sequence to be hashed

1.7. winternitz 11

winternitz Documentation, Release unknown

Returns Sha512 hash

Module contents

1.8 Contribution

This is an open-source project which was created to learn and to have fast and easy access to winternitz sig-
nature schemes as a python developer. This project can be optimized and extended, but alone this is quite a
difficult task. If you want to contribute, feel free to create an issue or a pull request. If you plan to put
more than a couple of hours into extending this package, contact me please before you begin to work on it har-
ald.heckmann93@web.de. In case of implementing new signature schemes, make sure that your OTS class does
inherit from winternitz.signatures.AbstractOTS.

12 Chapter 1. Contents

mailto:harald.heckmann93@web.de
mailto:harald.heckmann93@web.de

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

13

winternitz Documentation, Release unknown

14 Chapter 2. Indices and tables

Python Module Index

w
winternitz, 12
winternitz.signatures, 7

15

winternitz Documentation, Release unknown

16 Python Module Index

Index

Symbols
__init__() (winternitz.signatures.WOTS method), 8
__init__() (winternitz.signatures.WOTSPLUS method),

10

A
AbstractOTS (class in winternitz.signatures), 7

D
digestsize (winternitz.signatures.WOTS attribute), 8

H
hashfunction (winternitz.signatures.WOTS attribute), 9
hmac_openssl_sha256() (in module winter-

nitz.signatures), 11

O
openssl_sha256() (in module winternitz.signatures), 11
openssl_sha512() (in module winternitz.signatures), 11

P
prf (winternitz.signatures.WOTSPLUS attribute), 10
privkey (winternitz.signatures.WOTS attribute), 9
pubkey (winternitz.signatures.WOTS attribute), 9

S
seed (winternitz.signatures.WOTSPLUS attribute), 10
sign() (winternitz.signatures.AbstractOTS method), 7
sign() (winternitz.signatures.WOTS method), 9
sign() (winternitz.signatures.WOTSPLUS method), 10
slots (winternitz.signatures.WOTS attribute), 9
slots (winternitz.signatures.WOTSPLUS attribute), 11

V
verify() (winternitz.signatures.AbstractOTS method), 8
verify() (winternitz.signatures.WOTS method), 9
verify() (winternitz.signatures.WOTSPLUS method), 11

W
w (winternitz.signatures.WOTS attribute), 9
winternitz (module), 12
winternitz.signatures (module), 7
WOTS (class in winternitz.signatures), 8
WOTSPLUS (class in winternitz.signatures), 10

17

	Contents
	License
	Contributors
	Changelog
	Introduction
	Setup
	Usage
	winternitz
	Contribution

	Indices and tables
	Python Module Index

