
Whoosh Documentation
Release 2.7.4

Matt Chaput

Oct 09, 2017

Contents

1 Contents 3
1.1 Release notes . 3
1.2 Quick start . 15
1.3 Introduction to Whoosh . 19
1.4 Glossary . 19
1.5 Designing a schema . 20
1.6 How to index documents . 25
1.7 How to search . 32
1.8 Parsing user queries . 38
1.9 The default query language . 44
1.10 Indexing and parsing dates/times . 47
1.11 Query objects . 50
1.12 About analyzers . 50
1.13 Stemming, variations, and accent folding . 55
1.14 Indexing and searching N-grams . 57
1.15 Sorting and faceting . 58
1.16 How to create highlighted search result excerpts . 69
1.17 Query expansion and Key word extraction . 75
1.18 “Did you mean... ?” Correcting errors in user queries . 77
1.19 Field caches . 79
1.20 Tips for speeding up batch indexing . 79
1.21 Concurrency, locking, and versioning . 81
1.22 Indexing and searching document hierarchies . 82
1.23 Whoosh recipes . 85
1.24 Whoosh API . 89
1.25 Technical notes . 190

2 Indices and tables 195

Python Module Index 197

i

ii

Whoosh Documentation, Release 2.7.4

Whoosh was created by Matt Chaput. You can view outstanding issues on the Whoosh Bitbucket page and get help on
the Whoosh mailing list.

Contents 1

mailto:matt@whoosh.ca
http://bitbucket.org/mchaput/whoosh
http://groups.google.com/group/whoosh

Whoosh Documentation, Release 2.7.4

2 Contents

CHAPTER 1

Contents

Release notes

Whoosh 2.x release notes

Whoosh 2.7

• Removed on-disk word graph implementation of spell checking in favor of much simpler and faster FSA imple-
mentation over the term file.

• Many bug fixes.

• Removed backwards compatibility with indexes created by versions prior to 2.5. You may need to re-index if
you are using an old index that hasn’t been updated.

• This is the last 2.x release before a major overhaul that will break backwards compatibility.

Whoosh 2.5

• Whoosh 2.5 will read existing indexes, but segments created by 2.5 will not be readable by older versions of
Whoosh.

• As a replacement for field caches to speed up sorting, Whoosh now supports adding a sortable=True key-
word argument to fields. This makes Whoosh store a sortable representation of the field’s values in a “column”
format (which associates a “key” value with each document). This is more robust, efficient, and customizable
than the old behavior. You should now specify sortable=True on fields that you plan on using to sort or
group search results.

(You can still sort/group on fields that don’t have sortable=True, however it will use more RAM and be
slower as Whoosh caches the field values in memory.)

Fields that use sortable=True can avoid specifying stored=True. The field’s value will still be available
on Hit objects (the value will be retrieved from the column instead of from the stored fields). This may actually
be faster for certain types of values.

3

Whoosh Documentation, Release 2.7.4

• Whoosh will now detect common types of OR queries and use optimized read-ahead matchers to speed them up
by several times.

• Whoosh now includes pure-Python implementations of the Snowball stemmers and stop word lists for various
languages adapted from NLTK. These are available through the whoosh.analysis.LanguageAnalyzer
analyzer or through the lang= keyword argument to the TEXT field.

• You can now use the whoosh.filedb.filestore.Storage.create() and whoosh.filedb.
filestore.Storage.destory() methods as a consistent API to set up and tear down different types
of storage.

• Many bug fixes and speed improvements.

• Switched unit tests to use py.test instead of nose.

• Removed obsolete SpellChecker class.

Whoosh 2.4

• By default, Whoosh now assembles the individual files of a segment into a single file when committing. This
has a small performance penalty but solves a problem where Whoosh can keep too many files open. Whoosh is
also now smarter about using mmap.

• Added functionality to index and search hierarchical documents. See Indexing and searching document hierar-
chies.

• Rewrote the Directed Acyclic Word Graph implementation (used in spell checking) to be faster and more space-
efficient. Word graph files created by previous versions will be ignored, meaning that spell checking may
become slower unless/until you replace the old segments (for example, by optimizing).

• Rewrote multiprocessing indexing to be faster and simpler. You can now do myindex.writer(procs=n)
to get a multiprocessing writer, or myindex.writer(procs=n, multisegment=True) to get
a multiprocessing writer that leaves behind multiple segments, like the old MultiSegmentWriter.
(MultiSegmentWriter is still available as a function that returns the new class.)

• When creating Term query objects for special fields (e.g. NUMERIC or BOOLEAN), you can now use
the field’s literal type instead of a string as the second argument, for example Term("num", 20) or
Term("bool", True). (This change may cause problems interacting with functions that expect query
objects to be pure textual, such as spell checking.)

• All writing to and reading from on-disk indexes is now done through “codec” objects. This architecture should
make it easier to add optional or experimental features, and maintain backwards compatibility.

• Fixes issues #75, #137, #206, #213, #215, #219, #223, #226, #230, #233, #238, #239, #240, #241, #243, #244,
#245, #252, #253, and other bugs. Thanks to Thomas Waldmann and Alexei Gousev for the help!

Whoosh 2.3.2

• Fixes bug in BM25F scoring function, leading to increased precision in search results.

• Fixes issues #203, #205, #206, #208, #209, #212.

Whoosh 2.3.1

• Fixes issue #200.

4 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Whoosh 2.3

• Added a whoosh.query.Regex term query type, similar to whoosh.query.Wildcard. The parser
does not allow regex term queries by default. You need to add the whoosh.qparser.RegexPlugin plugin.
After you add the plugin, you can use r"expression" query syntax for regular expression term queries. For
example, r"foo.*bar".

• Added the whoosh.qparser.PseudoFieldPlugin parser plugin. This plugin lets you create “pseudo-
fields” that run a transform function on whatever query syntax the user applies the field to. This is fairly advanced
functionality right now; I’m trying to think of ways to make its power easier to access.

• The documents in the lists in the dictionary returned by Results.groups() by default are now in the same
relative order as in the results. This makes it much easier to display the “top N” results in each category, for
example.

• The groupids keyword argument to Searcher.search has been removed. Instead you can now pass a
whoosh.sorting.FacetMap object to the Searcher.search method’s maptype argument to control
how faceted documents are grouped, and/or set the maptype argument on individual whoosh.sorting.
FacetType` objects to set custom grouping per facet. See Sorting and faceting for more information.

• Calling Searcher.documents() or Searcher.document_numbers() with no arguments now
yields all documents/numbers.

• Calling Writer.update_document() with no unique fields is now equivalent to calling Writer.
add_document() with the same arguments.

• Fixed a problem with keyword expansion where the code was building a cache that was fast on small indexes,
but unacceptably slow on large indexes.

• Added the hyphen (-) to the list of characters that match a “wildcard” token, to make parsing slightly more
predictable. A true fix will have to wait for another parser rewrite.

• Fixed an unused __future__ import and use of float("nan") which were breaking under Python 2.5.

• Fixed a bug where vectored fields with only one term stored an empty term vector.

• Various other bug fixes.

Whoosh 2.2

• Fixes several bugs, including a bad bug in BM25F scoring.

• Added allow_overlap option to whoosh.sorting.StoredFieldFacet.

• In add_document(), You can now pass query-like strings for BOOLEAN and DATETIME fields
(e.g boolfield="true" and dtfield="20101131-16:01") as an alternative to actual bool or
datetime objects. The implementation of this is incomplete: it only works in the default filedb back-
end, and if the field is stored, the stored value will be the string, not the parsed object.

• Added whoosh.analysis.CompoundWordFilter and whoosh.analysis.TeeFilter.

Whoosh 2.1

This release fixes several bugs, and contains speed improvments to highlighting. See How to create highlighted search
result excerpts for more information.

1.1. Release notes 5

Whoosh Documentation, Release 2.7.4

Whoosh 2.0

Improvements

• Whoosh is now compatible with Python 3 (tested with Python 3.2). Special thanks to Vinay Sajip who did the
work, and also Jordan Sherer who helped fix later issues.

• Sorting and grouping (faceting) now use a new system of “facet” objects which are much more flexible than the
previous field-based system.

For example, to sort by first name and then score:

from whoosh import sorting

mf = sorting.MultiFacet([sorting.FieldFacet("firstname"),
sorting.ScoreFacet()])

results = searcher.search(myquery, sortedby=mf)

In addition to the previously supported sorting/grouping by field contents and/or query results, you can now use
numeric ranges, date ranges, score, and more. The new faceting system also supports overlapping groups.

(The old “Sorter” API still works but is deprecated and may be removed in a future version.)

See Sorting and faceting for more information.

• Completely revamped spell-checking to make it much faster, easier, and more flexible. You can enable genera-
tion of the graph files use by spell checking using the spelling=True argument to a field type:

schema = fields.Schema(text=fields.TEXT(spelling=True))

(Spelling suggestion methods will work on fields without spelling=True but will slower.) The spelling
graph will be updated automatically as new documents are added – it is no longer necessary to maintain a
separate “spelling index”.

You can get suggestions for individual words using whoosh.searching.Searcher.suggest():

suglist = searcher.suggest("content", "werd", limit=3)

Whoosh now includes convenience methods to spell-check and correct user queries, with optional highlighting
of corrections using the whoosh.highlight module:

from whoosh import highlight, qparser

User query string
qstring = request.get("q")

Parse into query object
parser = qparser.QueryParser("content", myindex.schema)
qobject = parser.parse(qstring)

results = searcher.search(qobject)

if not results:
correction = searcher.correct_query(gobject, gstring)
correction.query = corrected query object
correction.string = corrected query string

Format the corrected query string with HTML highlighting
cstring = correction.format_string(highlight.HtmlFormatter())

6 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Spelling suggestions can come from field contents and/or lists of words. For stemmed fields the spelling sug-
gestions automatically use the unstemmed forms of the words.

There are APIs for spelling suggestions and query correction, so highly motivated users could conceivably
replace the defaults with more sophisticated behaviors (for example, to take context into account).

See “Did you mean... ?” Correcting errors in user queries for more information.

• whoosh.query.FuzzyTerm now uses the new word graph feature as well and so is much faster.

• You can now set a boost factor for individual documents as you index them, to increase the score of terms in
those documents in searches. See the documentation for the add_document() for more information.

• Added built-in recording of which terms matched in which documents. Use the terms=True
argument to whoosh.searching.Searcher.search() and use whoosh.searching.Hit.
matched_terms() and whoosh.searching.Hit.contains_term() to check matched terms.

• Whoosh now supports whole-term quality optimizations, so for example if the system knows that a Union-
Matcher cannot possibly contribute to the “top N” results unless both sub-matchers match, it will replace the
UnionMatcher with an IntersectionMatcher which is faster to compute. The performance improvement is not as
dramatic as from block quality optimizations, but it can be noticeable.

• Fixed a bug that prevented block quality optimizations in queries with words not in the index, which could
severely degrade performance.

• Block quality optimizations now use the actual scoring algorithm to calculate block quality instead of an ap-
proximation, which fixes issues where ordering of results could be different for searches with and without the
optimizations.

• the BOOLEAN field type now supports field boosts.

• Re-architected the query parser to make the code easier to understand. Custom parser plugins from previous
versions will probably break in Whoosh 2.0.

• Various bug-fixes and performance improvements.

• Removed the “read lock”, which caused more problems than it solved. Now when opening a reader, if segments
are deleted out from under the reader as it is opened, the code simply retries.

Compatibility

• The term quality optimizations required changes to the on-disk formats. Whoosh 2.0 if backwards-compatible
with the old format. As you rewrite an index using Whoosh 2.0, by default it will use the new formats for new
segments, making the index incompatible with older versions.

To upgrade an existing index to use the new formats immediately, use Index.optimize().

• Removed the experimental TermTrackingCollector since it is replaced by the new built-in term recording
functionality.

• Removed the experimental Searcher.define_facets feature until a future release when it will be re-
placed by a more robust and useful feature.

• Reader iteration methods (__iter__, iter_from, iter_field, etc.) now yield whoosh.reading.
TermInfo objects.

• The arguments to whoosh.query.FuzzyTerm changed.

1.1. Release notes 7

Whoosh Documentation, Release 2.7.4

Whoosh 1.x release notes

Whoosh 1.8.3

Whoosh 1.8.3 contains important bugfixes and new functionality. Thanks to all the mailing list and BitBucket users
who helped with the fixes!

Fixed a bad Collector bug where the docset of a Results object did not match the actual results.

You can now pass a sequence of objects to a keyword argument in add_document and update_document
(currently this will not work for unique fields in update_document). This is useful for non-text fields such as
DATETIME and NUMERIC, allowing you to index multiple dates/numbers for a document:

writer.add_document(shoe=u"Saucony Kinvara", sizes=[10.0, 9.5, 12])

This version reverts to using the CDB hash function for hash files instead of Python’s hash() because the latter is
not meant to be stored externally. This change maintains backwards compatibility with old files.

The Searcher.search method now takes a mask keyword argument. This is the opposite of the filter argu-
ment. Where the filter specifies the set of documents that can appear in the results, the mask specifies a set of
documents that must not appear in the results.

Fixed performance problems in Searcher.more_like. This method now also takes a filter keyword argument
like Searcher.search.

Improved documentation.

Whoosh 1.8.2

Whoosh 1.8.2 fixes some bugs, including a mistyped signature in Searcher.more_like and a bad bug in Collector that
could screw up the ordering of results given certain parameters.

Whoosh 1.8.1

Whoosh 1.8.1 includes a few recent bugfixes/improvements:

• ListMatcher.skip_to_quality() wasn’t returning an integer, resulting in a “None + int” error.

• Fixed locking and memcache sync bugs in the Google App Engine storage object.

• MultifieldPlugin wasn’t working correctly with groups.

– The binary matcher trees of Or and And are now generated using a Huffman-like algorithm instead per-
fectly balanced. This gives a noticeable speed improvement because less information has to be passed
up/down the tree.

Whoosh 1.8

This release relicensed the Whoosh source code under the Simplified BSD (A.K.A. “two-clause” or “FreeBSD”)
license. See LICENSE.txt for more information.

Whoosh 1.7.7

Setting a TEXT field to store term vectors is now much easier. Instead of having to pass an instantiated
whoosh.formats.Format object to the vector= keyword argument, you can pass True to automatically use the same

8 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

format and analyzer as the inverted index. Alternatively, you can pass a Format subclass and Whoosh will instantiate
it for you.

For example, to store term vectors using the same settings as the inverted index (Positions format and StandardAna-
lyzer):

from whoosh.fields import Schema, TEXT

schema = Schema(content=TEXT(vector=True))

To store term vectors that use the same analyzer as the inverted index (StandardAnalyzer by default) but only store
term frequency:

from whoosh.formats import Frequency

schema = Schema(content=TEXT(vector=Frequency))

Note that currently the only place term vectors are used in Whoosh is keyword extraction/more like this, but they can
be useful for expert users with custom code.

Added whoosh.searching.Searcher.more_like() and whoosh.searching.Hit.
more_like_this() methods, as shortcuts for doing keyword extraction yourself. Return a Results object.

“python setup.py test” works again, as long as you have nose installed.

The whoosh.searching.Searcher.sort_query_using() method lets you sort documents matching a
given query using an arbitrary function. Note that like “complex” searching with the Sorter object, this can be slow on
large multi-segment indexes.

Whoosh 1.7

You can once again perform complex sorting of search results (that is, a sort with some fields ascending and some
fields descending).

You can still use the sortedby keyword argument to whoosh.searching.Searcher.search() to do a
simple sort (where all fields are sorted in the same direction), or you can use the new Sorter class to do a simple or
complex sort:

searcher = myindex.searcher()
sorter = searcher.sorter()
Sort first by the group field, ascending
sorter.add_field("group")
Then by the price field, descending
sorter.add_field("price", reverse=True)
Get the Results
results = sorter.sort_query(myquery)

See the documentation for the Sorter class for more information. Bear in mind that complex sorts will be much
slower on large indexes because they can’t use the per-segment field caches.

You can now get highlighted snippets for a hit automatically using whoosh.searching.Hit.highlights():

results = searcher.search(myquery, limit=20)
for hit in results:

print hit["title"]
print hit.highlights("content")

See whoosh.searching.Hit.highlights() for more information.

1.1. Release notes 9

Whoosh Documentation, Release 2.7.4

Added the ability to filter search results so that only hits in a Results set, a set of docnums, or matching a query are
returned. The filter is cached on the searcher.

Search within previous results newresults = searcher.search(newquery, filter=oldresults)

Search within the “basics” chapter results = searcher.search(userquery, filter=query.Term(“chapter”,
“basics”))

You can now specify a time limit for a search. If the search does not finish in the given time, a whoosh.searching.
TimeLimit exception is raised, but you can still retrieve the partial results from the collector. See the timelimit
and greedy arguments in the whoosh.searching.Collector documentation.

Added back the ability to set whoosh.analysis.StemFilter to use an unlimited cache. This is useful for
one-shot batch indexing (see Tips for speeding up batch indexing).

The normalize() method of the And and Or queries now merges overlapping range queries for more efficient
queries.

Query objects now have __hash__ methods allowing them to be used as dictionary keys.

The API of the highlight module has changed slightly. Most of the functions in the module have been converted to
classes. However, most old code should still work. The NullFragmeter is now called WholeFragmenter, but
the old name is still available as an alias.

Fixed MultiPool so it won’t fill up the temp directory with job files.

Fixed a bug where Phrase query objects did not use their boost factor.

Fixed a bug where a fieldname after an open parenthesis wasn’t parsed correctly. The change alters the semantics of
certain parsing “corner cases” (such as a:b:c:d).

Whoosh 1.6

The whoosh.writing.BatchWriter class is now called whoosh.writing.BufferedWriter. It is sim-
ilar to the old BatchWriter class but allows you to search and update the buffered documents as well as the
documents that have been flushed to disk:

writer = writing.BufferedWriter(myindex)

You can update (replace) documents in RAM without having to commit them
to disk
writer.add_document(path="/a", text="Hi there")
writer.update_document(path="/a", text="Hello there")

Search committed and uncommited documents by getting a searcher from the
writer instead of the index
searcher = writer.searcher()

(BatchWriter is still available as an alias for backwards compatibility.)

The whoosh.qparser.QueryParser initialization method now requires a schema as the second argument. Pre-
viously the default was to create a QueryParser without a schema, which was confusing:

qp = qparser.QueryParser("content", myindex.schema)

The whoosh.searching.Searcher.search() method now takes a scored keyword. If you search with
scored=False, the results will be in “natural” order (the order the documents were added to the index). This is
useful when you don’t need scored results but want the convenience of the Results object.

Added the whoosh.qparser.GtLtPlugin parser plugin to allow greater than/less as an alternative syntax for
ranges:

10 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

count:>100 tag:<=zebra date:>='29 march 2001'

Added the ability to define schemas declaratively, similar to Django models:

from whoosh import index
from whoosh.fields import SchemaClass, ID, KEYWORD, STORED, TEXT

class MySchema(SchemaClass):
uuid = ID(stored=True, unique=True)
path = STORED
tags = KEYWORD(stored=True)
content = TEXT

index.create_in("indexdir", MySchema)

Whoosh 1.6.2: Added whoosh.searching.TermTrackingCollector which tracks which part of the query
matched which documents in the final results.

Replaced the unbounded cache in whoosh.analysis.StemFilter with a bounded LRU (least recently used)
cache. This will make stemming analysis slightly slower but prevent it from eating up too much memory over time.

Added a simple whoosh.analysis.PyStemmerFilter that works when the py-stemmer library is installed:

ana = RegexTokenizer() | PyStemmerFilter("spanish")

The estimation of memory usage for the limitmb keyword argument to FileIndex.writer() is more accurate,
which should help keep memory usage memory usage by the sorting pool closer to the limit.

The whoosh.ramdb package was removed and replaced with a single whoosh.ramindex module.

Miscellaneous bug fixes.

Whoosh 1.5

Note: Whoosh 1.5 is incompatible with previous indexes. You must recreate existing indexes with Whoosh 1.5.

Fixed a bug where postings were not portable across different endian platforms.

New generalized field cache system, using per-reader caches, for much faster sorting and faceting of search results, as
well as much faster multi-term (e.g. prefix and wildcard) and range queries, especially for large indexes and/or indexes
with multiple segments.

Changed the faceting API. See Sorting and faceting.

Faster storage and retrieval of posting values.

Added per-field multitoken_query attribute to control how the query parser deals with a “term” that when ana-
lyzed generates multiple tokens. The default value is “first” which throws away all but the first token (the previous
behavior). Other possible values are “and”, “or”, or “phrase”.

Added whoosh.analysis.DoubleMetaphoneFilter, whoosh.analysis.SubstitutionFilter,
and whoosh.analysis.ShingleFilter.

Added whoosh.qparser.CopyFieldPlugin.

Added whoosh.query.Otherwise.

Generalized parsing of operators (such as OR, AND, NOT, etc.) in the query parser to make it easier to add new
operators. In intend to add a better API for this in a future release.

1.1. Release notes 11

Whoosh Documentation, Release 2.7.4

Switched NUMERIC and DATETIME fields to use more compact on-disk representations of numbers.

Fixed a bug in the porter2 stemmer when stemming the string “y”.

Added methods to whoosh.searching.Hit to make it more like a dict.

Short posting lists (by default, single postings) are inline in the term file instead of written to the posting file for faster
retrieval and a small saving in disk space.

Whoosh 1.3

Whoosh 1.3 adds a more efficient DATETIME field based on the new tiered NUMERIC field, and the DateParserPlu-
gin. See Indexing and parsing dates/times.

Whoosh 1.2

Whoosh 1.2 adds tiered indexing for NUMERIC fields, resulting in much faster range queries on numeric fields.

Whoosh 1.0

Whoosh 1.0 is a major milestone release with vastly improved performance and several useful new features.

The index format of this version is not compatibile with indexes created by previous versions of Whoosh. You will
need to reindex your data to use this version.

Orders of magnitude faster searches for common terms. Whoosh now uses optimizations similar to those in Xapian to
skip reading low-scoring postings.

Faster indexing and ability to use multiple processors (via multiprocessing module) to speed up indexing.

Flexible Schema: you can now add and remove fields in an index with the whoosh.writing.IndexWriter.
add_field() and whoosh.writing.IndexWriter.remove_field() methods.

New hand-written query parser based on plug-ins. Less brittle, more robust, more flexible, and easier to fix/improve
than the old pyparsing-based parser.

On-disk formats now use 64-bit disk pointers allowing files larger than 4 GB.

New whoosh.searching.Facets class efficiently sorts results into facets based on any criteria that can be
expressed as queries, for example tags or price ranges.

New whoosh.writing.BatchWriter class automatically batches up individual add_document and/or
delete_document calls until a certain number of calls or a certain amount of time passes, then commits them
all at once.

New whoosh.analysis.BiWordFilter lets you create bi-word indexed fields a possible alternative to phrase
searching.

Fixed bug where files could be deleted before a reader could open them in threaded situations.

New whoosh.analysis.NgramFilter filter, whoosh.analysis.NgramWordAnalyzer analyzer, and
whoosh.fields.NGRAMWORDS field type allow producing n-grams from tokenized text.

Errors in query parsing now raise a specific whoosh.qparse.QueryParserError exception instead of a
generic exception.

Previously, the query string * was optimized to a whoosh.query.Every query which matched every document.
Now the Every query only matches documents that actually have an indexed term from the given field, to better
match the intuitive sense of what a query string like tag:* should do.

12 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

New whoosh.searching.Searcher.key_terms_from_text() method lets you extract key words from
arbitrary text instead of documents in the index.

Previously the whoosh.searching.Searcher.key_terms() and whoosh.searching.Results.
key_terms() methods required that the given field store term vectors. They now also work if the given field is
stored instead. They will analyze the stored string into a term vector on-the-fly. The field must still be indexed.

User API changes

The default for the limit keyword argument to whoosh.searching.Searcher.search() is now 10. To
return all results in a single Results object, use limit=None.

The Index object no longer represents a snapshot of the index at the time the object was instantiated. Instead it
always represents the index in the abstract. Searcher and IndexReader objects obtained from the Index object
still represent the index as it was at the time they were created.

Because the Index object no longer represents the index at a specific version, several methods such as
up_to_date and refresh were removed from its interface. The Searcher object now has last_modified(),
up_to_date(), and refresh() methods similar to those that used to be on Index.

The document deletion and field add/remove methods on the Index object now create a writer behind the scenes
to accomplish each call. This means they write to the index immediately, so you don’t need to call commit on the
Index. Also, it will be much faster if you need to call them multiple times to create your own writer instead:

Don't do this
for id in my_list_of_ids_to_delete:

myindex.delete_by_term("id", id)
myindex.commit()

Instead do this
writer = myindex.writer()
for id in my_list_of_ids_to_delete:

writer.delete_by_term("id", id)
writer.commit()

The postlimit argument to Index.writer() has been changed to postlimitmb and is now expressed in
megabytes instead of bytes:

writer = myindex.writer(postlimitmb=128)

Instead of having to import whoosh.filedb.filewriting.NO_MERGE or whoosh.filedb.
filewriting.OPTIMIZE to use as arguments to commit(), you can now simply do the following:

Do not merge segments
writer.commit(merge=False)

or

Merge all segments
writer.commit(optimize=True)

The whoosh.postings module is gone. The whoosh.matching module contains classes for posting list read-
ers.

Whoosh no longer maps field names to numbers for internal use or writing to disk. Any low-level method that accepted
field numbers now accept field names instead.

Custom Weighting implementations that use the final() method must now set the use_final attribute to True:

1.1. Release notes 13

Whoosh Documentation, Release 2.7.4

from whoosh.scoring import BM25F

class MyWeighting(BM25F):
use_final = True

def final(searcher, docnum, score):
return score + docnum * 10

This disables the new optimizations, forcing Whoosh to score every matching document.

whoosh.writing.AsyncWriter now takes an whoosh.index.Index object as its first argument, not a
callable. Also, the keyword arguments to pass to the index’s writer() method should now be passed as a dictionary
using the writerargs keyword argument.

Whoosh now stores per-document field length using an approximation rather than exactly. For low numbers the
approximation is perfectly accurate, while high numbers will be approximated less accurately.

The doc_field_length method on searchers and readers now takes a second argument representing the default
to return if the given document and field do not have a length (i.e. the field is not scored or the field was not provided
for the given document).

The whoosh.analysis.StopFilter now has a maxsize argument as well as a minsize argument to its
initializer. Analyzers that use the StopFilter have the maxsize argument in their initializers now also.

The interface of whoosh.writing.AsyncWriter has changed.

Misc

• Because the file backend now writes 64-bit disk pointers and field names instead of numbers, the size of an
index on disk will grow compared to previous versions.

• Unit tests should no longer leave directories and files behind.

Whoosh 0.3 release notes

• Major improvements to reading/writing of postings and query performance.

• Changed default post limit (run size) from 4 MB to 32 MB.

• Finished migrating backend-specific code into whoosh.filedb package.

• Moved formats from whoosh.fields module into new whoosh.formats module.

• DocReader and TermReader classes combined into new IndexReader interface. You can get an IndexReader
implementation by calling Index.reader(). Searcher is now a wrapper around an IndexReader.

• Range query object changed, with new signature and new syntax in the default query parser. Now you can
use [start TO end] in the query parser for an inclusive range, and {start TO end} for an exclusive
range. You can also mix the delimiters, for example [start TO end} for a range with an inclusive start but
exclusive end term.

• Added experimental DATETIME field type lets you pass a datetime.datetime object as a field value to
add_document:

from whoosh.fields import Schema, ID, DATETIME
from whoosh.filedb.filestore import RamStorage
from datetime import datetime

schema = Schema(id=ID, date=DATETIME)

14 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

storage = RamStorage()
ix = storage.create_index(schema)
w = ix.writer()
w.add_document(id=u"A", date=datetime.now())
w.close()

Internally, the DATETIME field indexes the datetime object as text using the format (4 digit year + 2 digit
month + 2 digit day + ‘T’ + 2 digit hour + 2 digit minute + 2 digit second + 6 digit microsecond), for example
20090817T160203109000.

• The default query parser now lets you use quoted strings in prefix and range queries, e.g. ["2009-05" TO
"2009-12"], "alfa/bravo"*, making it easier to work with terms containing special characters.

• DocReader.vector_as(docnum, fieldid, astype) is now IndexReader.
vector_as(astype, docnum, fieldid) (i.e. the astype argument has moved from the last to
the first argument), e.g. v = ixreader.vector_as("frequency", 102, "content").

• Added whoosh.support.charset for translating Sphinx charset table files.

• Added whoosh.analysis.CharsetTokenizer and CharsetFilter to enable case and accent folding.

• Added experimental whoosh.ramdb in-memory backend.

• Added experimental whoosh.query.FuzzyTerm query type.

• Added whoosh.lang.wordnet module containing Thesaurus object for using WordNet synonym
database.

Quick start

Whoosh is a library of classes and functions for indexing text and then searching the index. It allows you to develop
custom search engines for your content. For example, if you were creating blogging software, you could use Whoosh
to add a search function to allow users to search blog entries.

A quick introduction

>>> from whoosh.index import create_in
>>> from whoosh.fields import *
>>> schema = Schema(title=TEXT(stored=True), path=ID(stored=True), content=TEXT)
>>> ix = create_in("indexdir", schema)
>>> writer = ix.writer()
>>> writer.add_document(title=u"First document", path=u"/a",
... content=u"This is the first document we've added!")
>>> writer.add_document(title=u"Second document", path=u"/b",
... content=u"The second one is even more interesting!")
>>> writer.commit()
>>> from whoosh.qparser import QueryParser
>>> with ix.searcher() as searcher:
... query = QueryParser("content", ix.schema).parse("first")
... results = searcher.search(query)
... results[0]
...
{"title": u"First document", "path": u"/a"}

1.2. Quick start 15

Whoosh Documentation, Release 2.7.4

The Index and Schema objects

To begin using Whoosh, you need an index object. The first time you create an index, you must define the index’s
schema. The schema lists the fields in the index. A field is a piece of information for each document in the index, such
as its title or text content. A field can be indexed (meaning it can be searched) and/or stored (meaning the value that
gets indexed is returned with the results; this is useful for fields such as the title).

This schema has two fields, “title” and “content”:

from whoosh.fields import Schema, TEXT

schema = Schema(title=TEXT, content=TEXT)

You only need to do create the schema once, when you create the index. The schema is pickled and stored with the
index.

When you create the Schema object, you use keyword arguments to map field names to field types. The list of fields
and their types defines what you are indexing and what’s searchable. Whoosh comes with some very useful predefined
field types, and you can easily create your own.

whoosh.fields.ID This type simply indexes (and optionally stores) the entire value of the field as a single unit
(that is, it doesn’t break it up into individual words). This is useful for fields such as a file path, URL, date,
category, etc.

whoosh.fields.STORED This field is stored with the document, but not indexed. This field type is not indexed
and not searchable. This is useful for document information you want to display to the user in the search results.

whoosh.fields.KEYWORD This type is designed for space- or comma-separated keywords. This type is indexed
and searchable (and optionally stored). To save space, it does not support phrase searching.

whoosh.fields.TEXT This type is for body text. It indexes (and optionally stores) the text and stores term
positions to allow phrase searching.

whoosh.fields.NUMERIC This type is for numbers. You can store integers or floating point numbers.

whoosh.fields.BOOLEAN This type is for boolean (true/false) values.

whoosh.fields.DATETIME This type is for datetime objects. See Indexing and parsing dates/times for more
information.

whoosh.fields.NGRAM and whoosh.fields.NGRAMWORDS These types break the field text or individual
terms into N-grams. See Indexing and searching N-grams for more information.

(As a shortcut, if you don’t need to pass any arguments to the field type, you can just give the class name and Whoosh
will instantiate the object for you.)

from whoosh.fields import Schema, STORED, ID, KEYWORD, TEXT

schema = Schema(title=TEXT(stored=True), content=TEXT,
path=ID(stored=True), tags=KEYWORD, icon=STORED)

See Designing a schema for more information.

Once you have the schema, you can create an index using the create_in function:

import os.path
from whoosh.index import create_in

if not os.path.exists("index"):
os.mkdir("index")

ix = create_in("index", schema)

16 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

(At a low level, this creates a Storage object to contain the index. A Storage object represents that medium in which
the index will be stored. Usually this will be FileStorage, which stores the index as a set of files in a directory.)

After you’ve created an index, you can open it using the open_dir convenience function:

from whoosh.index import open_dir

ix = open_dir("index")

The IndexWriter object

OK, so we’ve got an Index object, now we can start adding documents. The writer() method of the
Index object returns an IndexWriter object that lets you add documents to the index. The IndexWriter’s
add_document(**kwargs) method accepts keyword arguments where the field name is mapped to a value:

writer = ix.writer()
writer.add_document(title=u"My document", content=u"This is my document!",

path=u"/a", tags=u"first short", icon=u"/icons/star.png")
writer.add_document(title=u"Second try", content=u"This is the second example.",

path=u"/b", tags=u"second short", icon=u"/icons/sheep.png")
writer.add_document(title=u"Third time's the charm", content=u"Examples are many.",

path=u"/c", tags=u"short", icon=u"/icons/book.png")
writer.commit()

Two important notes:

• You don’t have to fill in a value for every field. Whoosh doesn’t care if you leave out a field from a document.

• Indexed text fields must be passed a unicode value. Fields that are stored but not indexed (STORED field type)
can be passed any pickle-able object.

If you have a text field that is both indexed and stored, you can index a unicode value but store a different object if
necessary (it’s usually not, but sometimes this is really useful) using this trick:

writer.add_document(title=u"Title to be indexed", _stored_title=u"Stored title")

Calling commit() on the IndexWriter saves the added documents to the index:

writer.commit()

See How to index documents for more information.

Once your documents are committed to the index, you can search for them.

The Searcher object

To begin searching the index, we’ll need a Searcher object:

searcher = ix.searcher()

You’ll usually want to open the searcher using a with statement so the searcher is automatically closed when you’re
done with it (searcher objects represent a number of open files, so if you don’t explicitly close them and the system is
slow to collect them, you can run out of file handles):

with ix.searcher() as searcher:
...

1.2. Quick start 17

Whoosh Documentation, Release 2.7.4

This is of course equivalent to:

try:
searcher = ix.searcher()
...

finally:
searcher.close()

The Searcher’s search() method takes a Query object. You can construct query objects directly or use a query
parser to parse a query string.

For example, this query would match documents that contain both “apple” and “bear” in the “content” field:

Construct query objects directly

from whoosh.query import *
myquery = And([Term("content", u"apple"), Term("content", "bear")])

To parse a query string, you can use the default query parser in the qparser module. The first argument to the
QueryParser constructor is the default field to search. This is usually the “body text” field. The second optional
argument is a schema to use to understand how to parse the fields:

Parse a query string

from whoosh.qparser import QueryParser
parser = QueryParser("content", ix.schema)
myquery = parser.parse(querystring)

Once you have a Searcher and a query object, you can use the Searcher‘s search() method to run the query
and get a Results object:

>>> results = searcher.search(myquery)
>>> print(len(results))
1
>>> print(results[0])
{"title": "Second try", "path": "/b", "icon": "/icons/sheep.png"}

The default QueryParser implements a query language very similar to Lucene’s. It lets you connect terms with
AND or OR, eleminate terms with NOT, group terms together into clauses with parentheses, do range, prefix, and
wilcard queries, and specify different fields to search. By default it joins clauses together with AND (so by default, all
terms you specify must be in the document for the document to match):

>>> print(parser.parse(u"render shade animate"))
And([Term("content", "render"), Term("content", "shade"), Term("content", "animate")])

>>> print(parser.parse(u"render OR (title:shade keyword:animate)"))
Or([Term("content", "render"), And([Term("title", "shade"), Term("keyword", "animate
→˓")])])

>>> print(parser.parse(u"rend*"))
Prefix("content", "rend")

Whoosh includes extra features for dealing with search results, such as

• Sorting results by the value of an indexed field, instead of by relelvance.

• Highlighting the search terms in excerpts from the original documents.

• Expanding the query terms based on the top few documents found.

18 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

• Paginating the results (e.g. “Showing results 1-20, page 1 of 4”).

See How to search for more information.

Introduction to Whoosh

About Whoosh

Whoosh was created by Matt Chaput. It started as a quick and dirty search server for the online documentation of the
Houdini 3D animation software package. Side Effects Software generously allowed Matt to open source the code in
case it might be useful to anyone else who needs a very flexible or pure-Python search engine (or both!).

• Whoosh is fast, but uses only pure Python, so it will run anywhere Python runs, without requiring a compiler.

• By default, Whoosh uses the Okapi BM25F ranking function, but like most things the ranking function can be
easily customized.

• Whoosh creates fairly small indexes compared to many other search libraries.

• All indexed text in Whoosh must be unicode.

• Whoosh lets you store arbitrary Python objects with indexed documents.

What is Whoosh?

Whoosh is a fast, pure Python search engine library.

The primary design impetus of Whoosh is that it is pure Python. You should be able to use Whoosh anywhere you can
use Python, no compiler or Java required.

Like one of its ancestors, Lucene, Whoosh is not really a search engine, it’s a programmer library for creating a search
engine1.

Practically no important behavior of Whoosh is hard-coded. Indexing of text, the level of information stored for each
term in each field, parsing of search queries, the types of queries allowed, scoring algorithms, etc. are all customizable,
replaceable, and extensible.

What can Whoosh do for you?

Whoosh lets you index free-form or structured text and then quickly find matching documents based on simple or
complex search criteria.

Getting help with Whoosh

You can view outstanding issues on the Whoosh Bitbucket page and get help on the Whoosh mailing list.

Glossary

Analysis The process of breaking the text of a field into individual terms to be indexed. This consists of tokenizing
the text into terms, and then optionally filtering the tokenized terms (for example, lowercasing and removing
stop words). Whoosh includes several different analyzers.

1 It would of course be possible to build a turnkey search engine on top of Whoosh, like Nutch and Solr use Lucene.

1.3. Introduction to Whoosh 19

mailto:matt@whoosh.ca
http://www.sidefx.com/
http://en.wikipedia.com/wiki/Okapi_BM25
http://bitbucket.org/mchaput/whoosh
http://groups.google.com/group/whoosh

Whoosh Documentation, Release 2.7.4

Corpus The set of documents you are indexing.

Documents The individual pieces of content you want to make searchable. The word “documents” might imply
files, but the data source could really be anything – articles in a content management system, blog posts in a
blogging system, chunks of a very large file, rows returned from an SQL query, individual email messages from
a mailbox file, or whatever. When you get search results from Whoosh, the results are a list of documents,
whatever “documents” means in your search engine.

Fields Each document contains a set of fields. Typical fields might be “title”, “content”, “url”, “keywords”, “status”,
“date”, etc. Fields can be indexed (so they’re searchable) and/or stored with the document. Storing the field
makes it available in search results. For example, you typically want to store the “title” field so your search
results can display it.

Forward index A table listing every document and the words that appear in the document. Whoosh lets you store
term vectors that are a kind of forward index.

Indexing The process of examining documents in the corpus and adding them to the reverse index.

Postings The reverse index lists every word in the corpus, and for each word, a list of documents in which that word
appears, along with some optional information (such as the number of times the word appears in that document).
These items in the list, containing a document number and any extra information, are called postings. In Whoosh
the information stored in postings is customizable for each field.

Reverse index Basically a table listing every word in the corpus, and for each word, the list of documents in which it
appears. It can be more complicated (the index can also list how many times the word appears in each document,
the positions at which it appears, etc.) but that’s how it basically works.

Schema Whoosh requires that you specify the fields of the index before you begin indexing. The Schema associates
field names with metadata about the field, such as the format of the postings and whether the contents of the
field are stored in the index.

Term vector A forward index for a certain field in a certain document. You can specify in the Schema that a given
field should store term vectors.

Designing a schema

About schemas and fields

The schema specifies the fields of documents in an index.

Each document can have multiple fields, such as title, content, url, date, etc.

Some fields can be indexed, and some fields can be stored with the document so the field value is available in search
results. Some fields will be both indexed and stored.

The schema is the set of all possible fields in a document. Each individual document might only use a subset of the
available fields in the schema.

For example, a simple schema for indexing emails might have fields like from_addr, to_addr, subject, body,
and attachments, where the attachments field lists the names of attachments to the email. For emails without
attachments, you would omit the attachments field.

Built-in field types

Whoosh provides some useful predefined field types:

20 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

whoosh.fields.TEXT This type is for body text. It indexes (and optionally stores) the text and stores term
positions to allow phrase searching.

TEXT fields use StandardAnalyzer by default. To specify a different analyzer, use the analyzer key-
word argument to the constructor, e.g. TEXT(analyzer=analysis.StemmingAnalyzer()). See
About analyzers.

By default, TEXT fields store position information for each indexed term, to allow you to search for phrases.
If you don’t need to be able to search for phrases in a text field, you can turn off storing term positions to save
space. Use TEXT(phrase=False).

By default, TEXT fields are not stored. Usually you will not want to store the body text in the search index.
Usually you have the indexed documents themselves available to read or link to based on the search results, so
you don’t need to store their text in the search index. However, in some circumstances it can be useful (see How
to create highlighted search result excerpts). Use TEXT(stored=True) to specify that the text should be
stored in the index.

whoosh.fields.KEYWORD This field type is designed for space- or comma-separated keywords. This type is
indexed and searchable (and optionally stored). To save space, it does not support phrase searching.

To store the value of the field in the index, use stored=True in the constructor. To automatically lowercase
the keywords before indexing them, use lowercase=True.

By default, the keywords are space separated. To separate the keywords by commas instead (to allow keywords
containing spaces), use commas=True.

If your users will use the keyword field for searching, use scorable=True.

whoosh.fields.ID The ID field type simply indexes (and optionally stores) the entire value of the field as a
single unit (that is, it doesn’t break it up into individual terms). This type of field does not store frequency
information, so it’s quite compact, but not very useful for scoring.

Use ID for fields like url or path (the URL or file path of a document), date, category – fields where the value
must be treated as a whole, and each document only has one value for the field.

By default, ID fields are not stored. Use ID(stored=True) to specify that the value of the field should be
stored with the document for use in the search results. For example, you would want to store the value of a url
field so you could provide links to the original in your search results.

whoosh.fields.STORED This field is stored with the document, but not indexed and not searchable. This is
useful for document information you want to display to the user in the search results, but don’t need to be able
to search for.

whoosh.fields.NUMERIC This field stores int, long, or floating point numbers in a compact, sortable format.

whoosh.fields.DATETIME This field stores datetime objects in a compact, sortable format.

whoosh.fields.BOOLEAN This simple filed indexes boolean values and allows users to search for yes, no,
true, false, 1, 0, t or f.

whoosh.fields.NGRAM TBD.

Expert users can create their own field types.

Creating a Schema

To create a schema:

from whoosh.fields import Schema, TEXT, KEYWORD, ID, STORED
from whoosh.analysis import StemmingAnalyzer

1.5. Designing a schema 21

Whoosh Documentation, Release 2.7.4

schema = Schema(from_addr=ID(stored=True),
to_addr=ID(stored=True),
subject=TEXT(stored=True),
body=TEXT(analyzer=StemmingAnalyzer()),
tags=KEYWORD)

If you aren’t specifying any constructor keyword arguments to one of the predefined fields, you can leave off the
brackets (e.g. fieldname=TEXT instead of fieldname=TEXT()). Whoosh will instantiate the class for you.

Alternatively you can create a schema declaratively using the SchemaClass base class:

from whoosh.fields import SchemaClass, TEXT, KEYWORD, ID, STORED

class MySchema(SchemaClass):
path = ID(stored=True)
title = TEXT(stored=True)
content = TEXT
tags = KEYWORD

You can pass a declarative class to create_in() or create_index() instead of a Schema instance.

Modifying the schema after indexing

After you have created an index, you can add or remove fields to the schema using the add_field() and
remove_field() methods. These methods are on the Writer object:

writer = ix.writer()
writer.add_field("fieldname", fields.TEXT(stored=True))
writer.remove_field("content")
writer.commit()

(If you’re going to modify the schema and add documents using the same writer, you must call add_field() and/or
remove_field before you add any documents.)

These methods are also on the Index object as a convenience, but when you call them on an Index, the Index object
simply creates the writer, calls the corresponding method on it, and commits, so if you want to add or remove more
than one field, it’s much more efficient to create the writer yourself:

ix.add_field("fieldname", fields.KEYWORD)

In the filedb backend, removing a field simply removes that field from the schema – the index will not get smaller,
data about that field will remain in the index until you optimize. Optimizing will compact the index, removing
references to the deleted field as it goes:

writer = ix.writer()
writer.add_field("uuid", fields.ID(stored=True))
writer.remove_field("path")
writer.commit(optimize=True)

Because data is stored on disk with the field name, do not add a new field with the same name as a deleted field without
optimizing the index in between:

writer = ix.writer()
writer.delete_field("path")
Don't do this!!!
writer.add_field("path", fields.KEYWORD)

22 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

(A future version of Whoosh may automatically prevent this error.)

Dynamic fields

Dynamic fields let you associate a field type with any field name that matches a given “glob” (a name pattern containing
*, ?, and/or [abc] wildcards).

You can add dynamic fields to a new schema using the add() method with the glob keyword set to True:

schema = fields.Schema(...)
Any name ending in "_d" will be treated as a stored
DATETIME field
schema.add("*_d", fields.DATETIME(stored=True), glob=True)

To set up a dynamic field on an existing index, use the same IndexWriter.add_field method as if you were
adding a regular field, but with the glob keyword argument set to True:

writer = ix.writer()
writer.add_field("*_d", fields.DATETIME(stored=True), glob=True)
writer.commit()

To remove a dynamic field, use the IndexWriter.remove_field() method with the glob as the name:

writer = ix.writer()
writer.remove_field("*_d")
writer.commit()

For example, to allow documents to contain any field name that ends in _id and associate it with the ID field type:

schema = fields.Schema(path=fields.ID)
schema.add("*_id", fields.ID, glob=True)

ix = index.create_in("myindex", schema)

w = ix.writer()
w.add_document(path=u"/a", test_id=u"alfa")
w.add_document(path=u"/b", class_id=u"MyClass")
...
w.commit()

qp = qparser.QueryParser("path", schema=schema)
q = qp.parse(u"test_id:alfa")
with ix.searcher() as s:

results = s.search(q)

Advanced schema setup

Field boosts

You can specify a field boost for a field. This is a multiplier applied to the score of any term found in the field. For
example, to make terms found in the title field score twice as high as terms in the body field:

schema = Schema(title=TEXT(field_boost=2.0), body=TEXT)

1.5. Designing a schema 23

Whoosh Documentation, Release 2.7.4

Field types

The predefined field types listed above are subclasses of fields.FieldType. FieldType is a pretty simple
class. Its attributes contain information that define the behavior of a field.

At-
tribute

Type Description

for-
mat

fields.FormatDefines what kind of information a field records about each term, and how the information is
stored on disk.

vec-
tor

fields.FormatOptional: if defined, the format in which to store per-document forward-index information for
this field.

scorablebool If True, the length of (number of terms in) the field in each document is stored in the index.
Slightly misnamed, since field lengths are not required for all scoring. However, field lengths
are required to get proper results from BM25F.

stored bool If True, the value of this field is stored in the index.
unique bool If True, the value of this field may be used to replace documents with the same value when the

user calls document_update() on an IndexWriter.

The constructors for most of the predefined field types have parameters that let you customize these parts. For example:

• Most of the predefined field types take a stored keyword argument that sets FieldType.stored.

• The TEXT() constructor takes an analyzer keyword argument that is passed on to the format object.

Formats

A Format object defines what kind of information a field records about each term, and how the information is stored
on disk.

For example, the Existence format would store postings like this:

Doc
10
20
30

Whereas the Positions format would store postings like this:

Doc Positions
10 [1,5,23]
20 [45]
30 [7,12]

The indexing code passes the unicode string for a field to the field’s Format object. The Format object calls its
analyzer (see text analysis) to break the string into tokens, then encodes information about each token.

Whoosh ships with the following pre-defined formats.

Class
name

Description

Stored A “null” format for fields that are stored but not indexed.
Exis-
tence

Records only whether a term is in a document or not, i.e. it does not store term frequency. Useful for
identifier fields (e.g. path or id) and “tag”-type fields, where the frequency is expected to always be 0
or 1.

Fre-
quency

Stores the number of times each term appears in each document.

Posi-
tions

Stores the number of times each term appears in each document, and at what positions.

24 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

The STORED field type uses the Stored format (which does nothing, so STORED fields are not indexed). The ID
type uses the Existence format. The KEYWORD type uses the Frequency format. The TEXT type uses the
Positions format if it is instantiated with phrase=True (the default), or Frequency if phrase=False.

In addition, the following formats are implemented for the possible convenience of expert users, but are not currently
used in Whoosh:

Class name Description
DocBoosts Like Existence, but also stores per-document boosts
Characters Like Positions, but also stores the start and end character indices of each term
PositionBoosts Like Positions, but also stores per-position boosts
Character-
Boosts

Like Positions, but also stores the start and end character indices of each term and per-position
boosts

Vectors

The main index is an inverted index. It maps terms to the documents they appear in. It is also sometimes useful to
store a forward index, also known as a term vector, that maps documents to the terms that appear in them.

For example, imagine an inverted index like this for a field:

Term Postings
apple [(doc=1, freq=2), (doc=2, freq=5), (doc=3, freq=1)]
bear [(doc=2, freq=7)]

The corresponding forward index, or term vector, would be:

Doc Postings
1 [(text=apple, freq=2)]
2 [(text=apple, freq=5), (text='bear', freq=7)]
3 [(text=apple, freq=1)]

If you set FieldType.vector to a Format object, the indexing code will use the Format object to store infor-
mation about the terms in each document. Currently by default Whoosh does not make use of term vectors at all, but
they are available to expert users who want to implement their own field types.

How to index documents

Creating an Index object

To create an index in a directory, use index.create_in:

import os, os.path
from whoosh import index

if not os.path.exists("indexdir"):
os.mkdir("indexdir")

ix = index.create_in("indexdir", schema)

To open an existing index in a directory, use index.open_dir:

import whoosh.index as index

ix = index.open_dir("indexdir")

1.6. How to index documents 25

Whoosh Documentation, Release 2.7.4

These are convenience methods for:

from whoosh.filedb.filestore import FileStorage
storage = FileStorage("indexdir")

Create an index
ix = storage.create_index(schema)

Open an existing index
storage.open_index()

The schema you created the index with is pickled and stored with the index.

You can keep multiple indexes in the same directory using the indexname keyword argument:

Using the convenience functions
ix = index.create_in("indexdir", schema=schema, indexname="usages")
ix = index.open_dir("indexdir", indexname="usages")

Using the Storage object
ix = storage.create_index(schema, indexname="usages")
ix = storage.open_index(indexname="usages")

Clearing the index

Calling index.create_in on a directory with an existing index will clear the current contents of the index.

To test whether a directory currently contains a valid index, use index.exists_in:

exists = index.exists_in("indexdir")
usages_exists = index.exists_in("indexdir", indexname="usages")

(Alternatively you can simply delete the index’s files from the directory, e.g. if you only have one index in the directory,
use shutil.rmtree to remove the directory and then recreate it.)

Indexing documents

Once you’ve created an Index object, you can add documents to the index with an IndexWriter object. The
easiest way to get the IndexWriter is to call Index.writer():

ix = index.open_dir("index")
writer = ix.writer()

Creating a writer locks the index for writing, so only one thread/process at a time can have a writer open.

Note: Because opening a writer locks the index for writing, in a multi-threaded or multi-process environment your
code needs to be aware that opening a writer may raise an exception (whoosh.store.LockError) if a writer
is already open. Whoosh includes a couple of example implementations (whoosh.writing.AsyncWriter and
whoosh.writing.BufferedWriter) of ways to work around the write lock.

Note: While the writer is open and during the commit, the index is still available for reading. Existing readers
are unaffected and new readers can open the current index normally. Once the commit is finished, existing readers

26 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

continue to see the previous version of the index (that is, they do not automatically see the newly committed changes).
New readers will see the updated index.

The IndexWriter’s add_document(**kwargs) method accepts keyword arguments where the field name is
mapped to a value:

writer = ix.writer()
writer.add_document(title=u"My document", content=u"This is my document!",

path=u"/a", tags=u"first short", icon=u"/icons/star.png")
writer.add_document(title=u"Second try", content=u"This is the second example.",

path=u"/b", tags=u"second short", icon=u"/icons/sheep.png")
writer.add_document(title=u"Third time's the charm", content=u"Examples are many.",

path=u"/c", tags=u"short", icon=u"/icons/book.png")
writer.commit()

You don’t have to fill in a value for every field. Whoosh doesn’t care if you leave out a field from a document.

Indexed fields must be passed a unicode value. Fields that are stored but not indexed (i.e. the STORED field type) can
be passed any pickle-able object.

Whoosh will happily allow you to add documents with identical values, which can be useful or annoying depending
on what you’re using the library for:

writer.add_document(path=u"/a", title=u"A", content=u"Hello there")
writer.add_document(path=u"/a", title=u"A", content=u"Deja vu!")

This adds two documents to the index with identical path and title fields. See “updating documents” below for informa-
tion on the update_document method, which uses “unique” fields to replace old documents instead of appending.

Indexing and storing different values for the same field

If you have a field that is both indexed and stored, you can index a unicode value but store a different object if necessary
(it’s usually not, but sometimes this is really useful) using a “special” keyword argument _stored_<fieldname>.
The normal value will be analyzed and indexed, but the “stored” value will show up in the results:

writer.add_document(title=u"Title to be indexed", _stored_title=u"Stored title")

Finishing adding documents

An IndexWriter object is kind of like a database transaction. You specify a bunch of changes to the index, and
then “commit” them all at once.

Calling commit() on the IndexWriter saves the added documents to the index:

writer.commit()

Once your documents are in the index, you can search for them.

If you want to close the writer without committing the changes, call cancel() instead of commit():

writer.cancel()

Keep in mind that while you have a writer open (including a writer you opened and is still in scope), no other thread or
process can get a writer or modify the index. A writer also keeps several open files. So you should always remember
to call either commit() or cancel() when you’re done with a writer object.

1.6. How to index documents 27

Whoosh Documentation, Release 2.7.4

Merging segments

A Whoosh filedb index is really a container for one or more “sub-indexes” called segments. When you add doc-
uments to an index, instead of integrating the new documents with the existing documents (which could potentially
be very expensive, since it involves resorting all the indexed terms on disk), Whoosh creates a new segment next to
the existing segment. Then when you search the index, Whoosh searches both segments individually and merges the
results so the segments appear to be one unified index. (This smart design is copied from Lucene.)

So, having a few segments is more efficient than rewriting the entire index every time you add some documents. But
searching multiple segments does slow down searching somewhat, and the more segments you have, the slower it gets.
So Whoosh has an algorithm that runs when you call commit() that looks for small segments it can merge together
to make fewer, bigger segments.

To prevent Whoosh from merging segments during a commit, use the merge keyword argument:

writer.commit(merge=False)

To merge all segments together, optimizing the index into a single segment, use the optimize keyword argument:

writer.commit(optimize=True)

Since optimizing rewrites all the information in the index, it can be slow on a large index. It’s generally better to rely
on Whoosh’s merging algorithm than to optimize all the time.

(The Index object also has an optimize() method that lets you optimize the index (merge all the segments
together). It simply creates a writer and calls commit(optimize=True) on it.)

For more control over segment merging, you can write your own merge policy function and use it as an argument to
the commit() method. See the implementation of the NO_MERGE, MERGE_SMALL, and OPTIMIZE functions in
the whoosh.writing module.

Deleting documents

You can delete documents using the following methods on an IndexWriter object. You then need to call
commit() on the writer to save the deletions to disk.

delete_document(docnum)

Low-level method to delete a document by its internal document number.

is_deleted(docnum)

Low-level method, returns True if the document with the given internal number is deleted.

delete_by_term(fieldname, termtext)

Deletes any documents where the given (indexed) field contains the given term. This is mostly useful for
ID or KEYWORD fields.

delete_by_query(query)

Deletes any documents that match the given query.

Delete document by its path -- this field must be indexed
ix.delete_by_term('path', u'/a/b/c')
Save the deletion to disk
ix.commit()

In the filedb backend, “deleting” a document simply adds the document number to a list of deleted documents
stored with the index. When you search the index, it knows not to return deleted documents in the results. However,

28 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

the document’s contents are still stored in the index, and certain statistics (such as term document frequencies) are not
updated, until you merge the segments containing deleted documents (see merging above). (This is because removing
the information immediately from the index would essentially involving rewriting the entire index on disk, which
would be very inefficient.)

Updating documents

If you want to “replace” (re-index) a document, you can delete the old document using one of the delete_* methods
on Index or IndexWriter, then use IndexWriter.add_document to add the new version. Or, you can use
IndexWriter.update_document to do this in one step.

For update_document to work, you must have marked at least one of the fields in the schema as “unique”. Whoosh
will then use the contents of the “unique” field(s) to search for documents to delete:

from whoosh.fields import Schema, ID, TEXT

schema = Schema(path = ID(unique=True), content=TEXT)

ix = index.create_in("index")
writer = ix.writer()
writer.add_document(path=u"/a", content=u"The first document")
writer.add_document(path=u"/b", content=u"The second document")
writer.commit()

writer = ix.writer()
Because "path" is marked as unique, calling update_document with path="/a"
will delete any existing documents where the "path" field contains "/a".
writer.update_document(path=u"/a", content="Replacement for the first document")
writer.commit()

The “unique” field(s) must be indexed.

If no existing document matches the unique fields of the document you’re updating, update_document acts just
like add_document.

“Unique” fields and update_document are simply convenient shortcuts for deleting and adding. Whoosh has no
inherent concept of a unique identifier, and in no way enforces uniqueness when you use add_document.

Incremental indexing

When you’re indexing a collection of documents, you’ll often want two code paths: one to index all the documents
from scratch, and one to only update the documents that have changed (leaving aside web applications where you need
to add/update documents according to user actions).

Indexing everything from scratch is pretty easy. Here’s a simple example:

import os.path
from whoosh import index
from whoosh.fields import Schema, ID, TEXT

def clean_index(dirname):
Always create the index from scratch
ix = index.create_in(dirname, schema=get_schema())
writer = ix.writer()

Assume we have a function that gathers the filenames of the
documents to be indexed

1.6. How to index documents 29

Whoosh Documentation, Release 2.7.4

for path in my_docs():
add_doc(writer, path)

writer.commit()

def get_schema()
return Schema(path=ID(unique=True, stored=True), content=TEXT)

def add_doc(writer, path):
fileobj = open(path, "rb")
content = fileobj.read()
fileobj.close()
writer.add_document(path=path, content=content)

Now, for a small collection of documents, indexing from scratch every time might actually be fast enough. But for
large collections, you’ll want to have the script only re-index the documents that have changed.

To start we’ll need to store each document’s last-modified time, so we can check if the file has changed. In this
example, we’ll just use the mtime for simplicity:

def get_schema()
return Schema(path=ID(unique=True, stored=True), time=STORED, content=TEXT)

def add_doc(writer, path):
fileobj = open(path, "rb")
content = fileobj.read()
fileobj.close()
modtime = os.path.getmtime(path)
writer.add_document(path=path, content=content, time=modtime)

Now we can modify the script to allow either “clean” (from scratch) or incremental indexing:

def index_my_docs(dirname, clean=False):
if clean:
clean_index(dirname)

else:
incremental_index(dirname)

def incremental_index(dirname)
ix = index.open_dir(dirname)

The set of all paths in the index
indexed_paths = set()
The set of all paths we need to re-index
to_index = set()

with ix.searcher() as searcher:
writer = ix.writer()

Loop over the stored fields in the index
for fields in searcher.all_stored_fields():

indexed_path = fields['path']
indexed_paths.add(indexed_path)

if not os.path.exists(indexed_path):

30 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

This file was deleted since it was indexed
writer.delete_by_term('path', indexed_path)

else:
Check if this file was changed since it
was indexed
indexed_time = fields['time']
mtime = os.path.getmtime(indexed_path)
if mtime > indexed_time:
The file has changed, delete it and add it to the list of
files to reindex
writer.delete_by_term('path', indexed_path)
to_index.add(indexed_path)

Loop over the files in the filesystem
Assume we have a function that gathers the filenames of the
documents to be indexed
for path in my_docs():
if path in to_index or path not in indexed_paths:
This is either a file that's changed, or a new file
that wasn't indexed before. So index it!
add_doc(writer, path)

writer.commit()

The incremental_index function:

• Loops through all the paths that are currently indexed.

– If any of the files no longer exist, delete the corresponding document from the index.

– If the file still exists, but has been modified, add it to the list of paths to be re-indexed.

– If the file exists, whether it’s been modified or not, add it to the list of all indexed paths.

• Loops through all the paths of the files on disk.

– If a path is not in the set of all indexed paths, the file is new and we need to index it.

– If a path is in the set of paths to re-index, we need to index it.

– Otherwise, we can skip indexing the file.

Clearing the index

In some cases you may want to re-index from scratch. To clear the index without disrupting any existing readers:

from whoosh import writing

with myindex.writer() as mywriter:
You can optionally add documents to the writer here
e.g. mywriter.add_document(...)

Using mergetype=CLEAR clears all existing segments so the index will
only have any documents you've added to this writer
mywriter.mergetype = writing.CLEAR

Or, if you don’t use the writer as a context manager and call commit() directly, do it like this:

1.6. How to index documents 31

Whoosh Documentation, Release 2.7.4

mywriter = myindex.writer()
...
mywriter.commit(mergetype=writing.CLEAR)

Note: If you don’t need to worry about existing readers, a more efficient method is to simply delete the contents of
the index directory and start over.

How to search

Once you’ve created an index and added documents to it, you can search for those documents.

The Searcher object

To get a whoosh.searching.Searcher object, call searcher() on your Index object:

searcher = myindex.searcher()

You’ll usually want to open the searcher using a with statement so the searcher is automatically closed when you’re
done with it (searcher objects represent a number of open files, so if you don’t explicitly close them and the system is
slow to collect them, you can run out of file handles):

with ix.searcher() as searcher:
...

This is of course equivalent to:

try:
searcher = ix.searcher()
...

finally:
searcher.close()

The Searcher object is the main high-level interface for reading the index. It has lots of useful methods for getting
information about the index, such as lexicon(fieldname).

>>> list(searcher.lexicon("content"))
[u"document", u"index", u"whoosh"]

However, the most important method on the Searcher object is search(), which takes a whoosh.query.
Query object and returns a Results object:

from whoosh.qparser import QueryParser

qp = QueryParser("content", schema=myindex.schema)
q = qp.parse(u"hello world")

with myindex.searcher() as s:
results = s.search(q)

By default the results contains at most the first 10 matching documents. To get more results, use the limit keyword:

32 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

results = s.search(q, limit=20)

If you want all results, use limit=None. However, setting the limit whenever possible makes searches faster because
Whoosh doesn’t need to examine and score every document.

Since displaying a page of results at a time is a common pattern, the search_page method lets you conveniently
retrieve only the results on a given page:

results = s.search_page(q, 1)

The default page length is 10 hits. You can use the pagelen keyword argument to set a different page length:

results = s.search_page(q, 5, pagelen=20)

Results object

The Results object acts like a list of the matched documents. You can use it to access the stored fields of each hit
document, to display to the user.

>>> # Show the best hit's stored fields
>>> results[0]
{"title": u"Hello World in Python", "path": u"/a/b/c"}
>>> results[0:2]
[{"title": u"Hello World in Python", "path": u"/a/b/c"},
{"title": u"Foo", "path": u"/bar"}]

By default, Searcher.search(myquery) limits the number of hits to 20, So the number of scored hits in the
Results object may be less than the number of matching documents in the index.

>>> # How many documents in the entire index would have matched?
>>> len(results)
27
>>> # How many scored and sorted documents in this Results object?
>>> # This will often be less than len() if the number of hits was limited
>>> # (the default).
>>> results.scored_length()
10

Calling len(Results) runs a fast (unscored) version of the query again to figure out the total number of match-
ing documents. This is usually very fast but for large indexes it can cause a noticeable delay. If you want to
avoid this delay on very large indexes, you can use the has_exact_length(), estimated_length(), and
estimated_min_length() methods to estimate the number of matching documents without calling len():

found = results.scored_length()
if results.has_exact_length():

print("Scored", found, "of exactly", len(results), "documents")
else:

low = results.estimated_min_length()
high = results.estimated_length()

print("Scored", found, "of between", low, "and", high, "documents")

Scoring and sorting

1.7. How to search 33

Whoosh Documentation, Release 2.7.4

Scoring

Normally the list of result documents is sorted by score. The whoosh.scoring module contains implementations
of various scoring algorithms. The default is BM25F.

You can set the scoring object to use when you create the searcher using the weighting keyword argument:

from whoosh import scoring

with myindex.searcher(weighting=scoring.TF_IDF()) as s:
...

A weighting model is a WeightingModel subclass with a scorer() method that produces a “scorer” instance.
This instance has a method that takes the current matcher and returns a floating point score.

Sorting

See Sorting and faceting.

Highlighting snippets and More Like This

See How to create highlighted search result excerpts and Query expansion and Key word extraction for information
on these topics.

Filtering results

You can use the filter keyword argument to search() to specify a set of documents to permit in the results.
The argument can be a whoosh.query.Query object, a whoosh.searching.Results object, or a set-like
object containing document numbers. The searcher caches filters so if for example you use the same query filter with
a searcher multiple times, the additional searches will be faster because the searcher will cache the results of running
the filter query

You can also specify a mask keyword argument to specify a set of documents that are not permitted in the results.

with myindex.searcher() as s:
qp = qparser.QueryParser("content", myindex.schema)
user_q = qp.parse(query_string)

Only show documents in the "rendering" chapter
allow_q = query.Term("chapter", "rendering")
Don't show any documents where the "tag" field contains "todo"
restrict_q = query.Term("tag", "todo")

results = s.search(user_q, filter=allow_q, mask=restrict_q)

(If you specify both a filter and a mask, and a matching document appears in both, the mask “wins” and the
document is not permitted.)

To find out how many results were filtered out of the results, use results.filtered_count (or
resultspage.results.filtered_count):

with myindex.searcher() as s:
qp = qparser.QueryParser("content", myindex.schema)
user_q = qp.parse(query_string)

34 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Filter documents older than 7 days
old_q = query.DateRange("created", None, datetime.now() - timedelta(days=7))
results = s.search(user_q, mask=old_q)

print("Filtered out %d older documents" % results.filtered_count)

Which terms from my query matched?

You can use the terms=True keyword argument to search() to have the search record which terms in the query
matched which documents:

with myindex.searcher() as s:
results = s.seach(myquery, terms=True)

You can then get information about which terms matched from the whoosh.searching.Results and whoosh.
searching.Hit objects:

Was this results object created with terms=True?
if results.has_matched_terms():

What terms matched in the results?
print(results.matched_terms())

What terms matched in each hit?
for hit in results:

print(hit.matched_terms())

Collapsing results

Whoosh lets you eliminate all but the top N documents with the same facet key from the results. This can be useful in
a few situations:

• Eliminating duplicates at search time.

• Restricting the number of matches per source. For example, in a web search application, you might want to
show at most three matches from any website.

Whether a document should be collapsed is determined by the value of a “collapse facet”. If a document has an empty
collapse key, it will never be collapsed, but otherwise only the top N documents with the same collapse key will appear
in the results.

See Sorting and faceting for information on facets.

with myindex.searcher() as s:
Set the facet to collapse on and the maximum number of documents per
facet value (default is 1)
results = s.collector(collapse="hostname", collapse_limit=3)

Dictionary mapping collapse keys to the number of documents that
were filtered out by collapsing on that key
print(results.collapsed_counts)

Collapsing works with both scored and sorted results. You can use any of the facet types available in the whoosh.
sorting module.

1.7. How to search 35

Whoosh Documentation, Release 2.7.4

By default, Whoosh uses the results order (score or sort key) to determine the documents to collapse. For example, in
scored results, the best scoring documents would be kept. You can optionally specify a collapse_order facet to
control which documents to keep when collapsing.

For example, in a product search you could display results sorted by decreasing price, and eliminate all but the highest
rated item of each product type:

from whoosh import sorting

with myindex.searcher() as s:
price_facet = sorting.FieldFacet("price", reverse=True)
type_facet = sorting.FieldFacet("type")
rating_facet = sorting.FieldFacet("rating", reverse=True)

results = s.collector(sortedby=price_facet, # Sort by reverse price
collapse=type_facet, # Collapse on product type
collapse_order=rating_facet # Collapse to highest rated
)

The collapsing happens during the search, so it is usually more efficient than finding everything and post-processing
the results. However, if the collapsing eliminates a large number of documents, collapsed search can take longer
because the search has to consider more documents and remove many already-collected documents.

Since this collector must sometimes go back and remove already-collected documents, if you use it in combination
with TermsCollector and/or FacetCollector, those collectors may contain information about documents
that were filtered out of the final results by collapsing.

Time limited searches

To limit the amount of time a search can take:

from whoosh.collectors import TimeLimitCollector, TimeLimit

with myindex.searcher() as s:
Get a collector object
c = s.collector(limit=None, sortedby="title_exact")
Wrap it in a TimeLimitedCollector and set the time limit to 10 seconds
tlc = TimeLimitedCollector(c, timelimit=10.0)

Try searching
try:

s.search_with_collector(myquery, tlc)
except TimeLimit:

print("Search took too long, aborting!")

You can still get partial results from the collector
results = tlc.results()

Convenience methods

The document() and documents() methods on the Searcher object let you retrieve the stored fields of docu-
ments matching terms you pass in keyword arguments.

This is especially useful for fields such as dates/times, identifiers, paths, and so on.

36 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

>>> list(searcher.documents(indexeddate=u"20051225"))
[{"title": u"Christmas presents"}, {"title": u"Turkey dinner report"}]
>>> print searcher.document(path=u"/a/b/c")
{"title": "Document C"}

These methods have some limitations:

• The results are not scored.

• Multiple keywords are always AND-ed together.

• The entire value of each keyword argument is considered a single term; you can’t search for multiple terms in
the same field.

Combining Results objects

It is sometimes useful to use the results of another query to influence the order of a whoosh.searching.Results
object.

For example, you might have a “best bet” field. This field contains hand-picked keywords for documents. When the
user searches for those keywords, you want those documents to be placed at the top of the results list. You could try
to do this by boosting the “bestbet” field tremendously, but that can have unpredictable effects on scoring. It’s much
easier to simply run the query twice and combine the results:

Parse the user query
userquery = queryparser.parse(querystring)

Get the terms searched for
termset = set()
userquery.existing_terms(termset)

Formulate a "best bet" query for the terms the user
searched for in the "content" field
bbq = Or([Term("bestbet", text) for fieldname, text

in termset if fieldname == "content"])

Find documents matching the searched for terms
results = s.search(bbq, limit=5)

Find documents that match the original query
allresults = s.search(userquery, limit=10)

Add the user query results on to the end of the "best bet"
results. If documents appear in both result sets, push them
to the top of the combined results.
results.upgrade_and_extend(allresults)

The Results object supports the following methods:

Results.extend(results) Adds the documents in ‘results’ on to the end of the list of result documents.

Results.filter(results) Removes the documents in ‘results’ from the list of result documents.

Results.upgrade(results) Any result documents that also appear in ‘results’ are moved to the top of the list
of result documents.

Results.upgrade_and_extend(results) Any result documents that also appear in ‘results’ are moved to
the top of the list of result documents. Then any other documents in ‘results’ are added on to the list of result
documents.

1.7. How to search 37

Whoosh Documentation, Release 2.7.4

Parsing user queries

Overview

The job of a query parser is to convert a query string submitted by a user into query objects (objects from the whoosh.
query module).

For example, the user query:

rendering shading

might be parsed into query objects like this:

And([Term("content", u"rendering"), Term("content", u"shading")])

Whoosh includes a powerful, modular parser for user queries in the whoosh.qparser module. The default parser
implements a query language similar to the one that ships with Lucene. However, by changing plugins or us-
ing functions such as whoosh.qparser.MultifieldParser(), whoosh.qparser.SimpleParser()
or whoosh.qparser.DisMaxParser(), you can change how the parser works, get a simpler parser or change
the query language syntax.

(In previous versions of Whoosh, the query parser was based on pyparsing. The new hand-written parser is less
brittle and more flexible.)

Note: Remember that you can directly create query objects programmatically using the objects in the whoosh.
query module. If you are not processing actual user queries, this is preferable to building a query string just to parse
it.

Using the default parser

To create a whoosh.qparser.QueryParser object, pass it the name of the default field to search and the schema
of the index you’ll be searching.

from whoosh.qparser import QueryParser

parser = QueryParser("content", schema=myindex.schema)

Tip: You can instantiate a QueryParser object without specifying a schema, however the parser will not process
the text of the user query. This is useful for debugging, when you want to see how QueryParser will build a query, but
don’t want to make up a schema just for testing.

Once you have a QueryParser object, you can call parse() on it to parse a query string into a query object:

>>> parser.parse(u"alpha OR beta gamma")
And([Or([Term('content', u'alpha'), Term('content', u'beta')]), Term('content', u
→˓'gamma')])

See the query language reference for the features and syntax of the default parser’s query language.

38 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Common customizations

Searching for any terms instead of all terms by default

If the user doesn’t explicitly specify AND or OR clauses:

physically based rendering

...by default, the parser treats the words as if they were connected by AND, meaning all the terms must be present for
a document to match:

physically AND based AND rendering

To change the parser to use OR instead, so that any of the terms may be present for a document to match, i.e.:

physically OR based OR rendering

...configure the QueryParser using the group keyword argument like this:

from whoosh import qparser

parser = qparser.QueryParser(fieldname, schema=myindex.schema,
group=qparser.OrGroup)

The Or query lets you specify that documents that contain more of the query terms score higher. For example, if
the user searches for foo bar, a document with four occurances of foo would normally outscore a document that
contained one occurance each of foo and bar. However, users usually expect documents that contain more of the
words they searched for to score higher. To configure the parser to produce Or groups with this behavior, use the
factory() class method of OrGroup:

og = qparser.OrGroup.factory(0.9)
parser = qparser.QueryParser(fieldname, schema, group=og)

where the argument to factory() is a scaling factor on the bonus (between 0 and 1).

Letting the user search multiple fields by default

The default QueryParser configuration takes terms without explicit fields and assigns them to the default field you
specified when you created the object, so for example if you created the object with:

parser = QueryParser("content", schema=myschema)

And the user entered the query:

three blind mice

The parser would treat it as:

content:three content:blind content:mice

However, you might want to let the user search multiple fields by default. For example, you might want “unfielded”
terms to search both the title and content fields.

In that case, you can use a whoosh.qparser.MultifieldParser. This is just like the normal QueryParser,
but instead of a default field name string, it takes a sequence of field names:

1.8. Parsing user queries 39

Whoosh Documentation, Release 2.7.4

from whoosh.qparser import MultifieldParser

mparser = MultifieldParser(["title", "content"], schema=myschema)

When this MultifieldParser instance parses three blind mice, it treats it as:

(title:three OR content:three) (title:blind OR content:blind) (title:mice OR
→˓content:mice)

Simplifying the query language

Once you have a parser:

parser = qparser.QueryParser("content", schema=myschema)

you can remove features from it using the remove_plugin_class() method.

For example, to remove the ability of the user to specify fields to search:

parser.remove_plugin_class(qparser.FieldsPlugin)

To remove the ability to search for wildcards, which can be harmful to query performance:

parser.remove_plugin_class(qparser.WildcardPlugin)

See qparser module for information about the plugins included with Whoosh’s query parser.

Changing the AND, OR, ANDNOT, ANDMAYBE, and NOT syntax

The default parser uses English keywords for the AND, OR, ANDNOT, ANDMAYBE, and NOT functions:

parser = qparser.QueryParser("content", schema=myschema)

You can replace the default OperatorsPlugin object to replace the default English tokens with your own regular
expressions.

The whoosh.qparser.OperatorsPlugin implements the ability to use AND, OR, NOT, ANDNOT, and AND-
MAYBE clauses in queries. You can instantiate a new OperatorsPlugin and use the And, Or, Not, AndNot,
and AndMaybe keyword arguments to change the token patterns:

Use Spanish equivalents instead of AND and OR
op = qparser.OperatorsPlugin(And=" Y ", Or=" O ")
parser.replace_plugin(op)

Further, you may change the syntax of the NOT operator:

np = qparser.OperatorsPlugin(Not=' NO ')
parser.replace_plugin(np)

The arguments can be pattern strings or precompiled regular expression objects.

For example, to change the default parser to use typographic symbols instead of words for the AND, OR, ANDNOT,
ANDMAYBE, and NOT functions:

40 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

parser = qparser.QueryParser("content", schema=myschema)
These are regular expressions, so we have to escape the vertical bar
op = qparser.OperatorsPlugin(And="&", Or="\\|", AndNot="&!", AndMaybe="&~", Not="\\-")
parser.replace_plugin(op)

Adding less-than, greater-than, etc.

Normally, the way you match all terms in a field greater than “apple” is with an open ended range:

field:{apple to]

The whoosh.qparser.GtLtPlugin lets you specify the same search like this:

field:>apple

The plugin lets you use >, <, >=, <=, =>, or =< after a field specifier, and translates the expression into the equivalent
range:

date:>='31 march 2001'

date:[31 march 2001 to]

Adding fuzzy term queries

Fuzzy queries are good for catching misspellings and similar words. The whoosh.qparser.FuzzyTermPlugin
lets you search for “fuzzy” terms, that is, terms that don’t have to match exactly. The fuzzy term will match any
similar term within a certain number of “edits” (character insertions, deletions, and/or transpositions – this is called
the “Damerau-Levenshtein edit distance”).

To add the fuzzy plugin:

parser = qparser.QueryParser("fieldname", my_index.schema)
parser.add_plugin(qparser.FuzzyTermPlugin())

Once you add the fuzzy plugin to the parser, you can specify a fuzzy term by adding a ~ followed by an optional
maximum edit distance. If you don’t specify an edit distance, the default is 1.

For example, the following “fuzzy” term query:

cat~

would match cat and all terms in the index within one “edit” of cat, for example cast (insert s), at (delete c), and
act (transpose c and a).

If you wanted cat to match bat, it requires two edits (delete c and insert b) so you would need to set the maximum
edit distance to 2:

cat~2

Because each additional edit you allow increases the number of possibilities that must be checked, edit distances
greater than 2 can be very slow.

It is often useful to require that the first few characters of a fuzzy term match exactly. This is called a prefix. You can
set the length of the prefix by adding a slash and a number after the edit distance. For example, to use a maximum edit
distance of 2 and a prefix length of 3:

1.8. Parsing user queries 41

Whoosh Documentation, Release 2.7.4

johannson~2/3

You can specify a prefix without specifying an edit distance:

johannson~/3

The default prefix distance is 0.

Allowing complex phrase queries

The default parser setup allows phrase (proximity) queries such as:

"whoosh search library"

The default phrase query tokenizes the text between the quotes and creates a search for those terms in proximity.

If you want to do more complex proximity searches, you can replace the phrase plugin with the whoosh.qparser.
SequencePlugin, which allows any query between the quotes. For example:

"(john OR jon OR jonathan~) peters*"

The sequence syntax lets you add a “slop” factor just like the regular phrase:

"(john OR jon OR jonathan~) peters*"~2

To replace the default phrase plugin with the sequence plugin:

parser = qparser.QueryParser("fieldname", my_index.schema)
parser.remove_plugin_class(qparser.PhrasePlugin)
parser.add_plugin(qparser.SequencePlugin())

Alternatively, you could keep the default phrase plugin and give the sequence plugin different syntax by specifying a
regular expression for the start/end marker when you create the sequence plugin. The regular expression should have
a named group slop for the slop factor. For example:

parser = qparser.QueryParser("fieldname", my_index.schema)
parser.add_plugin(qparser.SequencePlugin("!(~(?P<slop>[1-9][0-9]*))?"))

This would allow you to use regular phrase queries and sequence queries at the same time:

"regular phrase" AND !sequence query~2!

Advanced customization

QueryParser arguments

QueryParser supports two extra keyword arguments:

group The query class to use to join sub-queries when the user doesn’t explicitly specify a boolean operator, such as
AND or OR. This lets you change the default operator from AND to OR.

This will be the whoosh.qparser.AndGroup or whoosh.qparser.OrGroup class (not an instantiated
object) unless you’ve written your own custom grouping syntax you want to use.

42 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

termclass The query class to use to wrap single terms.

This must be a whoosh.query.Query subclass (not an instantiated object) that accepts a fieldname string
and term text unicode string in its __init__ method. The default is whoosh.query.Term.

This is useful if you want to change the default term class to whoosh.query.Variations, or if you’ve
written a custom term class you want the parser to use instead of the ones shipped with Whoosh.

>>> from whoosh.qparser import QueryParser, OrGroup
>>> orparser = QueryParser("content", schema=myschema, group=OrGroup)

Configuring plugins

The query parser’s functionality is provided by a set of plugins. You can remove plugins to remove functionality, add
plugins to add functionality, or replace default plugins with re-configured or rewritten versions.

The whoosh.qparser.QueryParser.add_plugin(), whoosh.qparser.QueryParser.
remove_plugin_class(), and whoosh.qparser.QueryParser.replace_plugin() methods
let you manipulate the plugins in a QueryParser object.

See qparser module for information about the available plugins.

Creating custom operators

• Decide whether you want a PrefixOperator, PostfixOperator, or InfixOperator.

• Create a new whoosh.qparser.syntax.GroupNode subclass to hold nodes affected by your operator.
This object is responsible for generating a whoosh.query.Query object corresponding to the syntax.

• Create a regular expression pattern for the operator’s query syntax.

• Create an OperatorsPlugin.OpTagger object from the above information.

• Create a new OperatorsPlugin instance configured with your custom operator(s).

• Replace the default OperatorsPlugin in your parser with your new instance.

For example, if you were creating a BEFORE operator:

from whoosh import qparser, query

optype = qparser.InfixOperator
pattern = " BEFORE "

class BeforeGroup(qparser.GroupNode):
merging = True
qclass = query.Ordered

Create an OpTagger for your operator:

btagger = qparser.OperatorPlugin.OpTagger(pattern, BeforeGroup,
qparser.InfixOperator)

By default, infix operators are left-associative. To make a right-associative infix operator, do this:

btagger = qparser.OperatorPlugin.OpTagger(pattern, BeforeGroup,
qparser.InfixOperator,
leftassoc=False)

1.8. Parsing user queries 43

Whoosh Documentation, Release 2.7.4

Create an OperatorsPlugin instance with your new operator, and replace the default operators plugin in your
query parser:

qp = qparser.QueryParser("text", myschema)
my_op_plugin = qparser.OperatorsPlugin([(btagger, 0)])
qp.replace_plugin(my_op_plugin)

Note that the list of operators you specify with the first argument is IN ADDITION TO the default operators (AND,
OR, etc.). To turn off one of the default operators, you can pass None to the corresponding keyword argument:

cp = qparser.OperatorsPlugin([(optagger, 0)], And=None)

If you want ONLY your list of operators and none of the default operators, use the clean keyword argument:

cp = qparser.OperatorsPlugin([(optagger, 0)], clean=True)

Operators earlier in the list bind more closely than operators later in the list.

The default query language

Overview

A query consists of terms and operators. There are two types of terms: single terms and phrases. Multiple terms can
be combined with operators such as AND and OR.

Whoosh supports indexing text in different fields. You must specify the default field when you create the whoosh.
qparser.QueryParser object. This is the field in which any terms the user does not explicitly specify a field for
will be searched.

Whoosh’s query parser is capable of parsing different and/or additional syntax through the use of plug-ins. See Parsing
user queries.

Individual terms and phrases

Find documents containing the term render:

render

Find documents containing the phrase all was well:

"all was well"

Note that a field must store Position information for phrase searching to work in that field.

Normally when you specify a phrase, the maximum difference in position between each word in the phrase is 1 (that
is, the words must be right next to each other in the document). For example, the following matches if a document has
library within 5 words after whoosh:

"whoosh library"~5

Boolean operators

Find documents containing render and shading:

44 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

render AND shading

Note that AND is the default relation between terms, so this is the same as:

render shading

Find documents containing render, and also either shading or modeling:

render AND shading OR modeling

Find documents containing render but not modeling:

render NOT modeling

Find documents containing alpha but not either beta or gamma:

alpha NOT (beta OR gamma)

Note that when no boolean operator is specified between terms, the parser will insert one, by default AND. So this
query:

render shading modeling

is equivalent (by default) to:

render AND shading AND modeling

See customizing the default parser for information on how to change the default operator to OR.

Group operators together with parentheses. For example to find documents that contain both render and shading,
or contain modeling:

(render AND shading) OR modeling

Fields

Find the term ivan in the name field:

name:ivan

The field: prefix only sets the field for the term it directly precedes, so the query:

title:open sesame

Will search for open in the title field and sesame in the default field.

To apply a field prefix to multiple terms, group them with parentheses:

title:(open sesame)

This is the same as:

title:open title:sesame

Of course you can specify a field for phrases too:

1.9. The default query language 45

Whoosh Documentation, Release 2.7.4

title:"open sesame"

Inexact terms

Use “globs” (wildcard expressions using ? to represent a single character and * to represent any number of characters)
to match terms:

te?t test* *b?g*

Note that a wildcard starting with ? or * is very slow. Note also that these wildcards only match individual terms. For
example, the query:

my*life

will not match an indexed phrase like:

my so called life

because those are four separate terms.

Ranges

You can match a range of terms. For example, the following query will match documents containing terms in the
lexical range from apple to bear inclusive. For example, it will match documents containing azores and be but
not blur:

[apple TO bear]

This is very useful when you’ve stored, for example, dates in a lexically sorted format (i.e. YYYYMMDD):

date:[20050101 TO 20090715]

The range is normally inclusive (that is, the range will match all terms between the start and end term, as well as the
start and end terms themselves). You can specify that one or both ends of the range are exclusive by using the { and/or
} characters:

[0000 TO 0025}
{prefix TO suffix}

You can also specify open-ended ranges by leaving out the start or end term:

[0025 TO]
{TO suffix}

Boosting query elements

You can specify that certain parts of a query are more important for calculating the score of a matched document than
others. For example, to specify that ninja is twice as important as other words, and bear is half as important:

ninja^2 cowboy bear^0.5

You can apply a boost to several terms using grouping parentheses:

46 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

(open sesame)^2.5 roc

Making a term from literal text

If you need to include characters in a term that are normally treated specially by the parser, such as spaces, colons, or
brackets, you can enclose the term in single quotes:

path:'MacHD:My Documents'
'term with spaces'
title:'function()'

Indexing and parsing dates/times

Indexing dates

Whoosh lets you index and search dates/times using the whoosh.fields.DATETIME field type. Instead of passing
text for the field in add_document(), you use a Python datetime.datetime object:

from datetime import datetime, timedelta
from whoosh import fields, index

schema = fields.Schema(title=fields.TEXT, content=fields.TEXT,
date=fields.DATETIME)

ix = index.create_in("indexdir", schema)

w = ix.writer()
w.add_document(title="Document 1", content="Rendering images from the command line",

date=datetime.utcnow())
w.add_document(title="Document 2", content="Creating shaders using a node network",

date=datetime.utcnow() + timedelta(days=1))
w.commit()

Parsing date queries

Once you’ve have an indexed DATETIME field, you can search it using a rich date parser contained in the whoosh.
qparser.dateparse.DateParserPlugin:

from whoosh import index
from whoosh.qparser import QueryParser
from whoosh.qparser.dateparse import DateParserPlugin

ix = index.open_dir("indexdir")

Instatiate a query parser
qp = QueryParser("content", ix.schema)

Add the DateParserPlugin to the parser
qp.add_plugin(DateParserPlugin())

With the DateParserPlugin, users can use date queries such as:

1.10. Indexing and parsing dates/times 47

Whoosh Documentation, Release 2.7.4

20050912
2005 sept 12th
june 23 1978
23 mar 2005
july 1985
sep 12
today
yesterday
tomorrow
now
next friday
last tuesday
5am
10:25:54
23:12
8 PM
4:46 am oct 31 2010
last tuesday to today
today to next friday
jan 2005 to feb 2008
-1 week to now
now to +2h
-1y6mo to +2 yrs 23d

Normally, as with other types of queries containing spaces, the users need to quote date queries containing spaces
using single quotes:

render date:'last tuesday' command
date:['last tuesday' to 'next friday']

If you use the free argument to the DateParserPlugin, the plugin will try to parse dates from unquoted text
following a date field prefix:

qp.add_plugin(DateParserPlugin(free=True))

This allows the user to type a date query with spaces and special characters following the name of date field and a
colon. The date query can be mixed with other types of queries without quotes:

date:last tuesday
render date:oct 15th 2001 5:20am command

If you don’t use the DateParserPlugin, users can still search DATETIME fields using a simple numeric form
YYYY[MM[DD[hh[mm[ss]]]]] that is built into the DATETIME field:

from whoosh import index
from whoosh.qparser import QueryParser

ix = index.open_dir("indexdir")
qp = QueryParser("content", schema=ix.schema)

Find all datetimes in 2005
q = qp.parse(u"date:2005")

Find all datetimes on June 24, 2005
q = qp.parse(u"date:20050624")

Find all datetimes from 1am-2am on June 24, 2005
q = qp.parse(u"date:2005062401")

48 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Find all datetimes from Jan 1, 2005 to June 2, 2010
q = qp.parse(u"date:[20050101 to 20100602]")

About time zones and basetime

The best way to deal with time zones is to always index datetimes in native UTC form. Any tzinfo attribute on
the datetime object is ignored by the indexer. If you are working with local datetimes, you should convert them to
native UTC datetimes before indexing.

Date parser notes

Please note that the date parser is still somewhat experimental.

Setting the base datetime

When you create the DateParserPlugin you can pass a datetime object to the basedate argument to set
the datetime against which relative queries (such as last tuesday and -2 hours) are measured. By default, the
basedate is datetime.utcnow() at the moment the plugin is instantiated:

qp.add_plugin(DateParserPlugin(basedate=my_datetime))

Registering an error callback

To avoid user queries causing exceptions in your application, the date parser attempts to fail silently when it can’t
parse a date query. However, you can register a callback function to be notified of parsing failures so you can display
feedback to the user. The argument to the callback function is the date text that could not be parsed (this is an
experimental feature and may change in future versions):

errors = []
def add_error(msg):

errors.append(msg)
qp.add_plugin(DateParserPlug(callback=add_error))

q = qp.parse(u"date:blarg")
errors == [u"blarg"]

Using free parsing

While the free option is easier for users, it may result in ambiguities. As one example, if you want to find documents
containing reference to a march and the number 2 in documents from the year 2005, you might type:

date:2005 march 2

This query would be interpreted correctly as a date query and two term queries when free=False, but as a single
date query when free=True. In this case the user could limit the scope of the date parser with single quotes:

date:'2005' march 2

1.10. Indexing and parsing dates/times 49

Whoosh Documentation, Release 2.7.4

Parsable formats

The date parser supports a wide array of date and time formats, however it is not my intention to try to support all
types of human-readable dates (for example ten to five the friday after next). The best idea might
be to pick a date format that works and try to train users on it, and if they use one of the other formats that also works
consider it a happy accident.

Limitations

• Since it’s based on Python’s datetime.datetime object, the DATETIME field shares all the limitations
of that class, such as no support for dates before year 1 on the proleptic Gregorian calendar. The DATETIME
field supports practically unlimited dates, so if the datetime object is every improved it could support it. An
alternative possibility might be to add support for mxDateTime objects someday.

• The DateParserPlugin currently only has support for English dates. The architecture supports creation of
parsers for other languages, and I hope to add examples for other languages soon.

• DATETIME fields do not currently support open-ended ranges. You can simulate an open ended range by using
an endpoint far in the past or future.

Query objects

The classes in the whoosh.query module implement queries you can run against the index.

TBD.

See How to search for how to search the index using query objects.

About analyzers

Overview

An analyzer is a function or callable class (a class with a __call__ method) that takes a unicode string and returns a
generator of tokens. Usually a “token” is a word, for example the string “Mary had a little lamb” might yield the tokens
“Mary”, “had”, “a”, “little”, and “lamb”. However, tokens do not necessarily correspond to words. For example, you
might tokenize Chinese text into individual characters or bi-grams. Tokens are the units of indexing, that is, they are
what you are able to look up in the index.

An analyzer is basically just a wrapper for a tokenizer and zero or more filters. The analyzer’s __call__ method
will pass its parameters to a tokenizer, and the tokenizer will usually be wrapped in a few filters.

A tokenizer is a callable that takes a unicode string and yields a series of analysis.Token objects.

For example, the provided whoosh.analysis.RegexTokenizer class implements a customizable, regular-
expression-based tokenizer that extracts words and ignores whitespace and punctuation.

>>> from whoosh.analysis import RegexTokenizer
>>> tokenizer = RegexTokenizer()
>>> for token in tokenizer(u"Hello there my friend!"):
... print repr(token.text)
u'Hello'
u'there'
u'my'
u'friend'

50 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

A filter is a callable that takes a generator of Tokens (either a tokenizer or another filter) and in turn yields a series of
Tokens.

For example, the provided whoosh.analysis.LowercaseFilter() filters tokens by converting their text to
lowercase. The implementation is very simple:

def LowercaseFilter(tokens):
"""Uses lower() to lowercase token text. For example, tokens
"This","is","a","TEST" become "this","is","a","test".
"""

for t in tokens:
t.text = t.text.lower()
yield t

You can wrap the filter around a tokenizer to see it in operation:

>>> from whoosh.analysis import LowercaseFilter
>>> for token in LowercaseFilter(tokenizer(u"These ARE the things I want!")):
... print repr(token.text)
u'these'
u'are'
u'the'
u'things'
u'i'
u'want'

An analyzer is just a means of combining a tokenizer and some filters into a single package.

You can implement an analyzer as a custom class or function, or compose tokenizers and filters together using the |
character:

my_analyzer = RegexTokenizer() | LowercaseFilter() | StopFilter()

The first item must be a tokenizer and the rest must be filters (you can’t put a filter first or a tokenizer after the first
item). Note that this only works if at least the tokenizer is a subclass of whoosh.analysis.Composable, as all
the tokenizers and filters that ship with Whoosh are.

See the whoosh.analysis module for information on the available analyzers, tokenizers, and filters shipped with
Whoosh.

Using analyzers

When you create a field in a schema, you can specify your analyzer as a keyword argument to the field object:

schema = Schema(content=TEXT(analyzer=StemmingAnalyzer()))

Advanced Analysis

Token objects

The Token class has no methods. It is merely a place to record certain attributes. A Token object actually has
two kinds of attributes: settings that record what kind of information the Token object does or should contain, and
information about the current token.

1.12. About analyzers 51

Whoosh Documentation, Release 2.7.4

Token setting attributes

A Token object should always have the following attributes. A tokenizer or filter can check these attributes to see
what kind of information is available and/or what kind of information they should be setting on the Token object.

These attributes are set by the tokenizer when it creates the Token(s), based on the parameters passed to it from the
Analyzer.

Filters should not change the values of these attributes.

Type Attribute
name

Description De-
fault

str mode The mode in which the analyzer is being called, e.g. ‘index’ during indexing or
‘query’ during query parsing

‘’

bool positions Whether term positions are recorded in the token False
bool chars Whether term start and end character indices are recorded in the token False
bool boosts Whether per-term boosts are recorded in the token False
bool re-

movestops
Whether stop-words should be removed from the token stream True

Token information attributes

A Token object may have any of the following attributes. The text attribute should always be present. The original
attribute may be set by a tokenizer. All other attributes should only be accessed or set based on the values of the
“settings” attributes above.

Type Name Description
uni-
code

text The text of the token (this should always be present)

uni-
code

origi-
nal

The original (pre-filtered) text of the token. The tokenizer may record this, and filters are
expected not to modify it.

int pos The position of the token in the stream, starting at 0 (only set if positions is True)
int startchar The character index of the start of the token in the original string (only set if chars is True)
int end-

char
The character index of the end of the token in the original string (only set if chars is True)

float boost The boost for this token (only set if boosts is True)
bool stopped Whether this token is a “stop” word (only set if removestops is False)

So why are most of the information attributes optional? Different field formats require different levels of information
about each token. For example, the Frequency format only needs the token text. The Positions format records
term positions, so it needs them on the Token. The Characters format records term positions and the start and
end character indices of each term, so it needs them on the token, and so on.

The Format object that represents the format of each field calls the analyzer for the field, and passes it parameters
corresponding to the types of information it needs, e.g.:

analyzer(unicode_string, positions=True)

The analyzer can then pass that information to a tokenizer so the tokenizer initializes the required attributes on the
Token object(s) it produces.

Performing different analysis for indexing and query parsing

Whoosh sets the mode setting attribute to indicate whether the analyzer is being called by the indexer
(mode='index') or the query parser (mode='query'). This is useful if there’s a transformation that you only

52 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

want to apply at indexing or query parsing:

class MyFilter(Filter):
def __call__(self, tokens):

for t in tokens:
if t.mode == 'query':

...
else:

...

The whoosh.analysis.MultiFilter filter class lets you specify different filters to use based on the mode
setting:

intraword = MultiFilter(index=IntraWordFilter(mergewords=True, mergenums=True),
query=IntraWordFilter(mergewords=False, mergenums=False))

Stop words

“Stop” words are words that are so common it’s often counter-productive to index them, such as “and”, “or”, “if”, etc.
The provided analysis.StopFilter lets you filter out stop words, and includes a default list of common stop
words.

>>> from whoosh.analysis import StopFilter
>>> stopper = StopFilter()
>>> for token in stopper(LowercaseFilter(tokenizer(u"These ARE the things I want!"))):
... print repr(token.text)
u'these'
u'things'
u'want'

However, this seemingly simple filter idea raises a couple of minor but slightly thorny issues: renumbering term
positions and keeping or removing stopped words.

Renumbering term positions

Remember that analyzers are sometimes asked to record the position of each token in the token stream:

Token.text u’Mary’ u’had’ u’a’ u’lamb’
Token.pos 0 1 2 3

So what happens to the pos attribute of the tokens if StopFilter removes the words had and a from the stream?
Should it renumber the positions to pretend the “stopped” words never existed? I.e.:

Token.text u’Mary’ u’lamb’
Token.pos 0 1

or should it preserve the original positions of the words? I.e:

Token.text u’Mary’ u’lamb’
Token.pos 0 3

It turns out that different situations call for different solutions, so the provided StopFilter class supports both of
the above behaviors. Renumbering is the default, since that is usually the most useful and is necessary to support
phrase searching. However, you can set a parameter in StopFilter’s constructor to tell it not to renumber positions:

stopper = StopFilter(renumber=False)

1.12. About analyzers 53

Whoosh Documentation, Release 2.7.4

Removing or leaving stop words

The point of using StopFilter is to remove stop words, right? Well, there are actually some situations where you
might want to mark tokens as “stopped” but not remove them from the token stream.

For example, if you were writing your own query parser, you could run the user’s query through a field’s analyzer to
break it into tokens. In that case, you might want to know which words were “stopped” so you can provide helpful
feedback to the end user (e.g. “The following words are too common to search for:”).

In other cases, you might want to leave stopped words in the stream for certain filtering steps (for example, you might
have a step that looks at previous tokens, and want the stopped tokens to be part of the process), but then remove them
later.

The analysis module provides a couple of tools for keeping and removing stop-words in the stream.

The removestops parameter passed to the analyzer’s __call__ method (and copied to the Token object as an
attribute) specifies whether stop words should be removed from the stream or left in.

>>> from whoosh.analysis import StandardAnalyzer
>>> analyzer = StandardAnalyzer()
>>> [(t.text, t.stopped) for t in analyzer(u"This is a test")]
[(u'test', False)]
>>> [(t.text, t.stopped) for t in analyzer(u"This is a test", removestops=False)]
[(u'this', True), (u'is', True), (u'a', True), (u'test', False)]

The analysis.unstopped() filter function takes a token generator and yields only the tokens whose stopped
attribute is False.

Note: Even if you leave stopped words in the stream in an analyzer you use for indexing, the indexer will ignore any
tokens where the stopped attribute is True.

Implementation notes

Because object creation is slow in Python, the stock tokenizers do not create a new analysis.Token object for
each token. Instead, they create one Token object and yield it over and over. This is a nice performance shortcut but
can lead to strange behavior if your code tries to remember tokens between loops of the generator.

Because the analyzer only has one Token object, of which it keeps changing the attributes, if you keep a copy of the
Token you get from a loop of the generator, it will be changed from under you. For example:

>>> list(tokenizer(u"Hello there my friend"))
[Token(u"friend"), Token(u"friend"), Token(u"friend"), Token(u"friend")]

Instead, do this:

>>> [t.text for t in tokenizer(u"Hello there my friend")]

That is, save the attributes, not the token object itself.

If you implement your own tokenizer, filter, or analyzer as a class, you should implement an __eq__ method. This is
important to allow comparison of Schema objects.

The mixing of persistent “setting” and transient “information” attributes on the Token object is not especially elegant.
If I ever have a better idea I might change it. ;) Nothing requires that an Analyzer be implemented by calling a tokenizer
and filters. Tokenizers and filters are simply a convenient way to structure the code. You’re free to write an analyzer
any way you want, as long as it implements __call__.

54 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Stemming, variations, and accent folding

The problem

The indexed text will often contain words in different form than the one the user searches for. For example, if the
user searches for render, we would like the search to match not only documents that contain the render, but also
renders, rendering, rendered, etc.

A related problem is one of accents. Names and loan words may contain accents in the original text but not in the
user’s query, or vice versa. For example, we want the user to be able to search for cafe and find documents containing
café.

The default analyzer for the whoosh.fields.TEXT field does not do stemming or accent folding.

Stemming

Stemming is a heuristic process of removing suffixes (and sometimes prefixes) from words to arrive (hopefully, most
of the time) at the base word. Whoosh includes several stemming algorithms such as Porter and Porter2, Paice Husk,
and Lovins.

>>> from whoosh.lang.porter import stem
>>> stem("rendering")
'render'

The stemming filter applies the stemming function to the terms it indexes, and to words in user queries. So in theory all
variations of a root word (“render”, “rendered”, “renders”, “rendering”, etc.) are reduced to a single term in the index,
saving space. And all possible variations users might use in a query are reduced to the root, so stemming enhances
“recall”.

The whoosh.analysis.StemFilter lets you add a stemming filter to an analyzer chain.

>>> rext = RegexTokenizer()
>>> stream = rext(u"fundamentally willows")
>>> stemmer = StemFilter()
>>> [token.text for token in stemmer(stream)]
[u"fundament", u"willow"]

The whoosh.analysis.StemmingAnalyzer() is a pre-packaged analyzer that combines a tokenizer, lower-
case filter, optional stop filter, and stem filter:

from whoosh import fields
from whoosh.analysis import StemmingAnalyzer

stem_ana = StemmingAnalyzer()
schema = fields.Schema(title=TEXT(analyzer=stem_ana, stored=True),

content=TEXT(analyzer=stem_ana))

Stemming has pros and cons.

• It allows the user to find documents without worrying about word forms.

• It reduces the size of the index, since it reduces the number of separate terms indexed by “collapsing” multiple
word forms into a single base word.

• It’s faster than using variations (see below)

• The stemming algorithm can sometimes incorrectly conflate words or change the meaning of a word by remov-
ing suffixes.

1.13. Stemming, variations, and accent folding 55

Whoosh Documentation, Release 2.7.4

• The stemmed forms are often not proper words, so the terms in the field are not useful for things like creating a
spelling dictionary.

Variations

Whereas stemming encodes the words in the index in a base form, when you use variations you instead index words “as
is” and at query time expand words in the user query using a heuristic algorithm to generate morphological variations
of the word.

>>> from whoosh.lang.morph_en import variations
>>> variations("rendered")
set(['rendered', 'rendernesses', 'render', 'renderless', 'rendering',
'renderness', 'renderes', 'renderer', 'renderements', 'rendereless',
'renderenesses', 'rendere', 'renderment', 'renderest', 'renderement',
'rendereful', 'renderers', 'renderful', 'renderings', 'renders', 'renderly',
'renderely', 'rendereness', 'renderments'])

Many of the generated variations for a given word will not be valid words, but it’s fairly fast for Whoosh to check
which variations are actually in the index and only search for those.

The whoosh.query.Variations query object lets you search for variations of a word. Whereas the normal
whoosh.query.Term object only searches for the given term, the Variations query acts like an Or query for
the variations of the given word in the index. For example, the query:

query.Variations("content", "rendered")

...might act like this (depending on what words are in the index):

query.Or([query.Term("content", "render"), query.Term("content", "rendered"),
query.Term("content", "renders"), query.Term("content", "rendering")])

To have the query parser use whoosh.query.Variations instead of whoosh.query.Term for individual
terms, use the termclass keyword argument to the parser initialization method:

from whoosh import qparser, query

qp = qparser.QueryParser("content", termclass=query.Variations)

Variations has pros and cons.

• It allows the user to find documents without worrying about word forms.

• The terms in the field are actual words, not stems, so you can use the field’s contents for other purposes such as
spell checking queries.

• It increases the size of the index relative to stemming, because different word forms are indexed separately.

• It acts like an Or search for all the variations, which is slower than searching for a single term.

Lemmatization

Whereas stemming is a somewhat “brute force”, mechanical attempt at reducing words to their base form using simple
rules, lemmatization usually refers to more sophisticated methods of finding the base form (“lemma”) of a word using
language models, often involving analysis of the surrounding context and part-of-speech tagging.

Whoosh does not include any lemmatization functions, but if you have separate lemmatizing code you could write a
custom whoosh.analysis.Filter to integrate it into a Whoosh analyzer.

56 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Character folding

You can set up an analyzer to treat, for example, á, a, å, and â as equivalent to improve recall. This is often very
useful, allowing the user to, for example, type cafe or resume and find documents containing café and resumé.

Character folding is especially useful for unicode characters that may appear in Asian language texts that should be
treated as equivalent to their ASCII equivalent, such as “half-width” characters.

Character folding is not always a panacea. See this article for caveats on where accent folding can break down.

http://www.alistapart.com/articles/accent-folding-for-auto-complete/

Whoosh includes several mechanisms for adding character folding to an analyzer.

The whoosh.analysis.CharsetFilter applies a character map to token text. For example, it will filter the
tokens u'café', u'resumé', ... to u'cafe', u'resume', This is usually the method you’ll
want to use unless you need to use a charset to tokenize terms:

from whoosh.analysis import CharsetFilter, StemmingAnalyzer
from whoosh import fields
from whoosh.support.charset import accent_map

For example, to add an accent-folding filter to a stemming analyzer:
my_analyzer = StemmingAnalyzer() | CharsetFilter(accent_map)

To use this analyzer in your schema:
my_schema = fields.Schema(content=fields.TEXT(analyzer=my_analyzer))

The whoosh.analysis.CharsetTokenizer uses a Sphinx charset table to both separate terms and perform
character folding. This tokenizer is slower than the whoosh.analysis.RegexTokenizer because it loops over
each character in Python. If the language(s) you’re indexing can be tokenized using regular expressions, it will be much
faster to use RegexTokenizer and CharsetFilter in combination instead of using CharsetTokenizer.

The whoosh.support.charset module contains an accent folding map useful for most Western languages, as
well as a much more extensive Sphinx charset table and a function to convert Sphinx charset tables into the character
maps required by CharsetTokenizer and CharsetFilter:

To create a filter using an enourmous character map for most languages
generated from a Sphinx charset table
from whoosh.analysis import CharsetFilter
from whoosh.support.charset import default_charset, charset_table_to_dict
charmap = charset_table_to_dict(default_charset)
my_analyzer = StemmingAnalyzer() | CharsetFilter(charmap)

(The Sphinx charset table format is described at http://www.sphinxsearch.com/docs/current.html#conf-charset-table)

Indexing and searching N-grams

Overview

N-gram indexing is a powerful method for getting fast, “search as you type” functionality like iTunes. It is also useful
for quick and effective indexing of languages such as Chinese and Japanese without word breaks.

N-grams refers to groups of N characters... bigrams are groups of two characters, trigrams are groups of three charac-
ters, and so on.

Whoosh includes two methods for analyzing N-gram fields: an N-gram tokenizer, and a filter that breaks tokens into
N-grams.

1.14. Indexing and searching N-grams 57

http://www.alistapart.com/articles/accent-folding-for-auto-complete/
http://www.sphinxsearch.com/docs/current.html#conf-charset-table

Whoosh Documentation, Release 2.7.4

whoosh.analysis.NgramTokenizer tokenizes the entire field into N-grams. This is more useful for Chi-
nese/Japanese/Korean languages, where it’s useful to index bigrams of characters rather than individual characters.
Using this tokenizer with roman languages leads to spaces in the tokens.

>>> ngt = NgramTokenizer(minsize=2, maxsize=4)
>>> [token.text for token in ngt(u"hi there")]
[u'hi', u'hi ', u'hi t',u'i ', u'i t', u'i th', u' t', u' th', u' the', u'th',
u'the', u'ther', u'he', u'her', u'here', u'er', u'ere', u're']

whoosh.analysis.NgramFilter breaks individual tokens into N-grams as part of an analysis pipeline. This is
more useful for languages with word separation.

>>> my_analyzer = StandardAnalyzer() | NgramFilter(minsize=2, maxsize=4)
>>> [token.text for token in my_analyzer(u"rendering shaders")]
[u'ren', u'rend', u'end', u'ende', u'nde', u'nder', u'der', u'deri', u'eri',
u'erin', u'rin', u'ring', u'ing', u'sha', u'shad', u'had', u'hade', u'ade',
u'ader', u'der', u'ders', u'ers']

Whoosh includes two pre-configured field types for N-grams: whoosh.fields.NGRAM and whoosh.fields.
NGRAMWORDS. The only difference is that NGRAM runs all text through the N-gram filter, including whitespace and
punctuation, while NGRAMWORDS extracts words from the text using a tokenizer, then runs each word through the
N-gram filter.

TBD.

Sorting and faceting

Note: The API for sorting and faceting changed in Whoosh 3.0.

Overview

Sorting and faceting search results in Whoosh is based on facets. Each facet associates a value with each document in
the search results, allowing you to sort by the keys or use them to group the documents. Whoosh includes a variety of
facet types you can use for sorting and grouping (see below).

Sorting

By default, the results of a search are sorted with the highest-scoring documents first. You can use the sortedby
keyword argument to order the results by some other criteria instead, such as the value of a field.

Making fields sortable

In order to sort on a field, you should create the field using the sortable=True keyword argument:

schema = fields.Schema(title=fields.TEXT(sortable=True),
content=fields.TEXT,
modified=fields.DATETIME(sortable=True)
)

It’s possible to sort on a field that doesn’t have sortable=True, but this requires Whoosh to load the unique terms
in the field into memory. Using sortable is much more efficient.

58 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

About column types

When you create a field using sortable=True, you are telling Whoosh to store per-document values for that field
in a column. A column object specifies the format to use to store the per-document values on disk.

The whoosh.columnsmodule contains several different column object implementations. Each field type specifies a
reasonable default column type (for example, the default for text fields is whoosh.columns.VarBytesColumn,
the default for numeric fields is whoosh.columns.NumericColumn). However, if you want maximum efficiency
you may want to use a different column type for a field.

For example, if all document values in a field are a fixed length, you can use a whoosh.columns.
FixedBytesColumn. If you have a field where many documents share a relatively small number of possible
values (an example might be a “category” field, or “month” or other enumeration type fields), you might want to
use whoosh.columns.RefBytesColumn (which can handle both variable and fixed-length values). There are
column types for storing per-document bit values, structs, pickled objects, and compressed byte values.

To specify a custom column object for a field, pass it as the sortable keyword argument instead of True:

from whoosh import columns, fields

category_col = columns.RefBytesColumn()
schema = fields.Schema(title=fields.TEXT(sortable=True),

category=fields.KEYWORD(sortable=category_col)

Using a COLUMN field for custom sort keys

When you add a document with a sortable field, Whoosh uses the value you pass for the field as the sortable value.
For example, if “title” is a sortable field, and you add this document:

writer.add_document(title="Mr. Palomar")

...then Mr. Palomar is stored in the field column as the sorting key for the document.

This is usually good, but sometimes you need to “massage” the sortable key so it’s different from the value the user
searches and/or sees in the interface. For example, if you allow the user to sort by title, you might want to use different
values for the visible title and the value used for sorting:

Visible title
title = "The Unbearable Lightness of Being"

Sortable title: converted to lowercase (to prevent different ordering
depending on uppercase/lowercase), with initial article moved to the end
sort_title = "unbearable lightness of being, the"

The best way to do this is to use an additional field just for sorting. You can use the whoosh.fields.COLUMN
field type to create a field that is not indexed or stored, it only holds per-document column values:

schema = fields.Schema(title=fields.TEXT(stored=True),
sort_title=fields.COLUMN(columns.VarBytesColumn())
)

The single argument to the whoosh.fields.COLUMN initializer is a whoosh.columns.ColumnType object.
You can use any of the various column types in the whoosh.columns module.

As another example, say you are indexing documents that have a custom sorting order associated with each document,
such as a “priority” number:

1.15. Sorting and faceting 59

Whoosh Documentation, Release 2.7.4

name=Big Wheel
price=100
priority=1

name=Toss Across
price=40
priority=3

name=Slinky
price=25
priority=2
...

You can use a column field with a numeric column object to hold the “priority” and use it for sorting:

schema = fields.Schema(name=fields.TEXT(stored=True),
price=fields.NUMERIC(stored=True),
priority=fields.COLUMN(columns.NumericColumn("i"),
)

(Note that columns.NumericColumn takes a type code character like the codes used by Python’s struct and
array modules.)

Making existing fields sortable

If you have an existing index from before the sortable argument was added in Whoosh 3.0, or you didn’t think you
needed a field to be sortable but now you find that you need to sort it, you can add “sortability” to an existing index
using the whoosh.sorting.add_sortable() utility function:

from whoosh import columns, fields, index, sorting

Say we have an existing index with this schema
schema = fields.Schema(title=fields.TEXT,

price=fields.NUMERIC)

To use add_sortable, first open a writer for the index
ix = index.open_dir("indexdir")
with ix.writer() as w:

Add sortable=True to the "price" field using field terms as the
sortable values
sorting.add_sortable(w, "price", sorting.FieldFacet("price"))

Add sortable=True to the "title" field using the
stored field values as the sortable value
sorting.add_sortable(w, "title", sorting.StoredFieldFacet("title"))

You can specify a custom column type when you call add_sortable using the column keyword argument:

add_sortable(w, "chapter", sorting.FieldFacet("chapter"),
column=columns.RefBytesColumn())

See the documentation for add_sortable() for more information.

60 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Sorting search results

When you tell Whoosh to sort by a field (or fields), it uses the per-document values in the field’s column as sorting
keys for the documents.

Normally search results are sorted by descending relevance score. You can tell Whoosh to use a different ordering by
passing the sortedby keyword argument to the search() method:

from whoosh import fields, index, qparser

schema = fields.Schema(title=fields.TEXT(stored=True),
price=fields.NUMERIC(sortable=True))

ix = index.create_in("indexdir", schema)

with ix.writer() as w:
w.add_document(title="Big Deal", price=20)
w.add_document(title="Mr. Big", price=10)
w.add_document(title="Big Top", price=15)

with ix.searcher() as s:
qp = qparser.QueryParser("big", ix.schema)
q = qp.parse(user_query_string)

Sort search results from lowest to highest price
results = s.search(q, sortedby="price")
for hit in results:

print(hit["title"])

You can use any of the following objects as sortedby values:

A FacetType object Uses this object to sort the documents. See below for the available facet types.

A field name string Converts the field name into a FieldFacet (see below) and uses it to sort the documents.

A list of FacetType objects and/or field name strings Bundles the facets together into a MultiFacet so you
can sort by multiple keys. Note that this shortcut does not allow you to reverse the sort direction of individual
facets. To do that, you need to construct the MultiFacet object yourself.

Note: You can use the reverse=True keyword argument to the Searcher.search() method to reverse the
overall sort direction. This is more efficient than reversing each individual facet.

Examples

Sort by the value of the size field:

results = searcher.search(myquery, sortedby="size")

Sort by the reverse (highest-to-lowest) order of the “price” field:

facet = sorting.FieldFacet("price", reverse=True)
results = searcher.search(myquery, sortedby=facet)

Sort by ascending size and then descending price:

mf = sorting.MultiFacet()
mf.add_field("size")

1.15. Sorting and faceting 61

Whoosh Documentation, Release 2.7.4

mf.add_field("price", reverse=True)
results = searcher.search(myquery, sortedby=mf)

or...
sizes = sorting.FieldFacet("size")
prices = sorting.FieldFacet("price", reverse=True)
results = searcher.search(myquery, sortedby=[sizes, prices])

Sort by the “category” field, then by the document’s score:

cats = sorting.FieldFacet("category")
scores = sorting.ScoreFacet()
results = searcher.search(myquery, sortedby=[cats, scores])

Accessing column values

Per-document column values are available in Hit objects just like stored field values:

schema = fields.Schema(title=fields.TEXT(stored=True),
price=fields.NUMERIC(sortable=True))

...

results = searcher.search(myquery)
for hit in results:

print(hit["title"], hit["price"])

ADVANCED: if you want to access abitrary per-document values quickly you can get a column reader object:

with ix.searcher() as s:
reader = s.reader()

colreader = s.reader().column_reader("price")
for docnum in reader.all_doc_ids():

print(colreader[docnum])

Grouping

It is often very useful to present “faceted” search results to the user. Faceting is dynamic grouping of search results
into categories. The categories let users view a slice of the total results based on the categories they’re interested in.

For example, if you are programming a shopping website, you might want to display categories with the search results
such as the manufacturers and price ranges.

Manufacturer Price
Apple (5) $0 - $100 (2)
Sanyo (1) $101 - $500 (10)
Sony (2) $501 - $1000 (1)
Toshiba (5)

You can let your users click the different facet values to only show results in the given categories.

Another useful UI pattern is to show, say, the top 5 results for different types of found documents, and let the user click
to see more results from a category they’re interested in, similarly to how the Spotlight quick results work on Mac OS
X.

62 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

The groupedby keyword argument

You can use the following objects as groupedby values:

A FacetType object Uses this object to group the documents. See below for the available facet types.

A field name string Converts the field name into a FieldFacet (see below) and uses it to sort the documents. The
name of the field is used as the facet name.

A list or tuple of field name strings Sets up multiple field grouping criteria.

A dictionary mapping facet names to FacetType objects Sets up multiple grouping criteria.

A Facets object This object is a lot like using a dictionary, but has some convenience methods to make setting up
multiple groupings a little easier.

Examples

Group by the value of the “category” field:

results = searcher.search(myquery, groupedby="category")

Group by the value of the “category” field and also by the value of the “tags” field and a date range:

cats = sorting.FieldFacet("category")
tags = sorting.FieldFacet("tags", allow_overlap=True)
results = searcher.search(myquery, groupedby={"category": cats, "tags": tags})

...or, using a Facets object has a little less duplication
facets = sorting.Facets()
facets.add_field("category")
facets.add_field("tags", allow_overlap=True)
results = searcher.search(myquery, groupedby=facets)

To group results by the intersected values of multiple fields, use a MultiFacet object (see below). For example,
if you have two fields named tag and size, you could group the results by all combinations of the tag and size
field, such as ('tag1', 'small'), ('tag2', 'small'), ('tag1', 'medium'), and so on:

Generate a grouping from the combination of the "tag" and "size" fields
mf = MultiFacet("tag", "size")
results = searcher.search(myquery, groupedby={"tag/size": mf})

Getting the faceted groups

The Results.groups("facetname") method returns a dictionary mapping category names to lists of docu-
ment IDs:

myfacets = sorting.Facets().add_field("size").add_field("tag")
results = mysearcher.search(myquery, groupedby=myfacets)
results.groups("size")
{"small": [8, 5, 1, 2, 4], "medium": [3, 0, 6], "large": [7, 9]}

If there is only one facet, you can just use Results.groups() with no argument to access its groups:

results = mysearcher.search(myquery, groupedby=myfunctionfacet)
results.groups()

1.15. Sorting and faceting 63

Whoosh Documentation, Release 2.7.4

By default, the values in the dictionary returned by groups() are lists of document numbers in the same relative
order as in the results. You can use the Searcher object’s stored_fields() method to take a document number
and return the document’s stored fields as a dictionary:

for category_name in categories:
print "Top 5 documents in the %s category" % category_name
doclist = categories[category_name]
for docnum, score in doclist[:5]:

print " ", searcher.stored_fields(docnum)
if len(doclist) > 5:

print " (%s more)" % (len(doclist) - 5)

If you want different information about the groups, for example just the count of documents in each group, or you
don’t need the groups to be ordered, you can specify a whoosh.sorting.FacetMap type or instance with the
maptype keyword argument when creating the FacetType:

This is the same as the default
myfacet = FieldFacet("size", maptype=sorting.OrderedList)
results = mysearcher.search(myquery, groupedby=myfacet)
results.groups()
{"small": [8, 5, 1, 2, 4], "medium": [3, 0, 6], "large": [7, 9]}

Don't sort the groups to match the order of documents in the results
(faster)
myfacet = FieldFacet("size", maptype=sorting.UnorderedList)
results = mysearcher.search(myquery, groupedby=myfacet)
results.groups()
{"small": [1, 2, 4, 5, 8], "medium": [0, 3, 6], "large": [7, 9]}

Only count the documents in each group
myfacet = FieldFacet("size", maptype=sorting.Count)
results = mysearcher.search(myquery, groupedby=myfacet)
results.groups()
{"small": 5, "medium": 3, "large": 2}

Only remember the "best" document in each group
myfacet = FieldFacet("size", maptype=sorting.Best)
results = mysearcher.search(myquery, groupedby=myfacet)
results.groups()
{"small": 8, "medium": 3, "large": 7}

Alternatively you can specify a maptype argument in the Searcher.search() method call which applies to all
facets:

results = mysearcher.search(myquery, groupedby=["size", "tag"],
maptype=sorting.Count)

(You can override this overall maptype argument on individual facets by specifying the maptype argument for
them as well.)

Facet types

FieldFacet

This is the most common facet type. It sorts or groups based on the value in a certain field in each document. This
generally works best (or at all) if each document has only one term in the field (e.g. an ID field):

64 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Sort search results by the value of the "path" field
facet = sorting.FieldFacet("path")
results = searcher.search(myquery, sortedby=facet)

Group search results by the value of the "parent" field
facet = sorting.FieldFacet("parent")
results = searcher.search(myquery, groupedby=facet)
parent_groups = results.groups("parent")

By default, FieldFacet only supports non-overlapping grouping, where a document cannot belong to multiple
facets at the same time (each document will be sorted into one category arbitrarily.) To get overlapping groups with
multi-valued fields, use the allow_overlap=True keyword argument:

facet = sorting.FieldFacet(fieldname, allow_overlap=True)

This supports overlapping group membership where documents have more than one term in a field (e.g. KEYWORD
fields). If you don’t need overlapping, don’t use allow_overlap because it’s much slower and uses more memory
(see the secion on allow_overlap below).

QueryFacet

You can set up categories defined by arbitrary queries. For example, you can group names using prefix queries:

Use queries to define each category
(Here I'll assume "price" is a NUMERIC field, so I'll use
NumericRange)
qdict = {}
qdict["A-D"] = query.TermRange("name", "a", "d")
qdict["E-H"] = query.TermRange("name", "e", "h")
qdict["I-L"] = query.TermRange("name", "i", "l")
...

qfacet = sorting.QueryFacet(qdict)
r = searcher.search(myquery, groupedby={"firstltr": qfacet})

By default, QueryFacet only supports non-overlapping grouping, where a document cannot belong to multiple
facets at the same time (each document will be sorted into one category arbitrarily). To get overlapping groups with
multi-valued fields, use the allow_overlap=True keyword argument:

facet = sorting.QueryFacet(querydict, allow_overlap=True)

RangeFacet

The RangeFacet is for NUMERIC field types. It divides a range of possible values into groups. For example, to
group documents based on price into buckets $100 “wide”:

pricefacet = sorting.RangeFacet("price", 0, 1000, 100)

The first argument is the name of the field. The next two arguments are the full range to be divided. Value outside this
range (in this example, values below 0 and above 1000) will be sorted into the “missing” (None) group. The fourth
argument is the “gap size”, the size of the divisions in the range.

The “gap” can be a list instead of a single value. In that case, the values in the list will be used to set the size of the
initial divisions, with the last value in the list being the size for all subsequent divisions. For example:

1.15. Sorting and faceting 65

Whoosh Documentation, Release 2.7.4

pricefacet = sorting.RangeFacet("price", 0, 1000, [5, 10, 35, 50])

...will set up divisions of 0-5, 5-15, 15-50, 50-100, and then use 50 as the size for all subsequent divisions (i.e. 100-150,
150-200, and so on).

The hardend keyword argument controls whether the last division is clamped to the end of the range or allowed to
go past the end of the range. For example, this:

facet = sorting.RangeFacet("num", 0, 10, 4, hardend=False)

...gives divisions 0-4, 4-8, and 8-12, while this:

facet = sorting.RangeFacet("num", 0, 10, 4, hardend=True)

...gives divisions 0-4, 4-8, and 8-10. (The default is hardend=False.)

Note: The ranges/buckets are always inclusive at the start and exclusive at the end.

DateRangeFacet

This is like RangeFacet but for DATETIME fields. The start and end values must be datetime.datetime
objects, and the gap(s) is/are datetime.timedelta objects.

For example:

from datetime import datetime, timedelta

start = datetime(2000, 1, 1)
end = datetime.now()
gap = timedelta(days=365)
bdayfacet = sorting.DateRangeFacet("birthday", start, end, gap)

As with RangeFacet, you can use a list of gaps and the hardend keyword argument.

ScoreFacet

This facet is sometimes useful for sorting.

For example, to sort by the “category” field, then for documents with the same category, sort by the document’s score:

cats = sorting.FieldFacet("category")
scores = sorting.ScoreFacet()
results = searcher.search(myquery, sortedby=[cats, scores])

The ScoreFacet always sorts higher scores before lower scores.

Note: While using sortedby=ScoreFacet() should give the same results as using the default scored ordering
(sortedby=None), using the facet will be slower because Whoosh automatically turns off many optimizations when
sorting.

66 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

FunctionFacet

This facet lets you pass a custom function to compute the sorting/grouping key for documents. (Using this facet type
may be easier than subclassing FacetType and Categorizer to set up some custom behavior.)

The function will be called with the index searcher and index document ID as arguments. For example, if you have an
index with term vectors:

schema = fields.Schema(id=fields.STORED,
text=fields.TEXT(stored=True, vector=True))

ix = RamStorage().create_index(schema)

...you could use a function to sort documents higher the closer they are to having equal occurances of two terms:

def fn(searcher, docnum):
v = dict(searcher.vector_as("frequency", docnum, "text"))
Sort documents that have equal number of "alfa" and "bravo" first
return 0 - (1.0 / (abs(v.get("alfa", 0) - v.get("bravo", 0)) + 1.0))

facet = sorting.FunctionFacet(fn)
results = searcher.search(myquery, sortedby=facet)

StoredFieldFacet

This facet lets you use stored field values as the sorting/grouping key for documents. This is usually slower than using
an indexed field, but when using allow_overlap it can actually be faster for large indexes just because it avoids
the overhead of reading posting lists.

StoredFieldFacet supports allow_overlap by splitting the stored value into separate keys. By default it
calls the value’s split() method (since most stored values are strings), but you can supply a custom split function.
See the section on allow_overlap below.

MultiFacet

This facet type returns a composite of the keys returned by two or more sub-facets, allowing you to sort/group by the
intersected values of multiple facets.

MultiFacet has methods for adding facets:

myfacet = sorting.RangeFacet(0, 1000, 10)

mf = sorting.MultiFacet()
mf.add_field("category")
mf.add_field("price", reverse=True)
mf.add_facet(myfacet)
mf.add_score()

You can also pass a list of field names and/or FacetType objects to the initializer:

prices = sorting.FieldFacet("price", reverse=True)
scores = sorting.ScoreFacet()
mf = sorting.MultiFacet("category", prices, myfacet, scores)

1.15. Sorting and faceting 67

Whoosh Documentation, Release 2.7.4

Missing values

• When sorting, documents without any terms in a given field, or whatever else constitutes “missing” for different
facet types, will always sort to the end.

• When grouping, “missing” documents will appear in a group with the key None.

Using overlapping groups

The common supported workflow for grouping and sorting is where the given field has one value for document, for
example a path field containing the file path of the original document. By default, facets are set up to support this
single-value approach.

Of course, there are situations where you want documents to be sorted into multiple groups based on a field with
multiple terms per document. The most common example would be a tags field. The allow_overlap keyword
argument to the FieldFacet, QueryFacet, and StoredFieldFacet allows this multi-value approach.

However, there is an important caveat: using allow_overlap=True is slower than the default, potentially much
slower for very large result sets. This is because Whoosh must read every posting of every term in the field to create a
temporary “forward index” mapping documents to terms.

If a field is indexed with term vectors, FieldFacet will use them to speed up allow_overlap faceting for small
result sets, but for large result sets, where Whoosh has to open the vector list for every matched document, this can
still be very slow.

For very large indexes and result sets, if a field is stored, you can get faster overlapped faceting using
StoredFieldFacet instead of FieldFacet. While reading stored values is usually slower than using the index,
in this case avoiding the overhead of opening large numbers of posting readers can make it worthwhile.

StoredFieldFacet supports allow_overlap by loading the stored value for the given field and splitting it
into multiple values. The default is to call the value’s split() method.

For example, if you’ve stored the tags field as a string like "tag1 tag2 tag3":

schema = fields.Schema(name=fields.TEXT(stored=True),
tags=fields.KEYWORD(stored=True))

ix = index.create_in("indexdir")
with ix.writer() as w:

w.add_document(name="A Midsummer Night's Dream", tags="comedy fairies")
w.add_document(name="Hamlet", tags="tragedy denmark")
etc.

...Then you can use a StoredFieldFacet like this:

ix = index.open_dir("indexdir")
with ix.searcher() as s:

sff = sorting.StoredFieldFacet("tags", allow_overlap=True)
results = s.search(myquery, groupedby={"tags": sff})

For stored Python objects other than strings, you can supply a split function (using the split_fn keyword argument
to StoredFieldFacet). The function should accept a single argument (the stored value) and return a list or tuple
of grouping keys.

Using a custom sort order

It is sometimes useful to have a custom sort order per-search. For example, different languages use different sort
orders. If you have a function to return the sorting order you want for a given field value, such as an implementation

68 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

of the Unicode Collation Algorithm (UCA), you can customize the sort order for the user’s language.

The whoosh.sorting.TranslateFacet lets you apply a function to the value of another facet. This lets you
“translate” a field value into an arbitrary sort key, such as with UCA:

from pyuca import Collator

The Collator object has a sort_key() method which takes a unicode
string and returns a sort key
c = Collator("allkeys.txt")

Make a facet object for the field you want to sort on
nf = sorting.FieldFacet("name")

Wrap the facet in a TranslateFacet with the translation function
(the Collator object's sort_key method)
tf = sorting.TranslateFacet(facet, c.sort_key)

Use the facet to sort the search results
results = searcher.search(myquery, sortedby=tf)

(You can pass multiple “wrapped” facets to the TranslateFacet, and it will call the function with the values of
the facets as multiple arguments.)

The TranslateFacet can also be very useful with numeric fields to sort on the output of some formula:

Sort based on the average of two numeric fields
def average(a, b):

return (a + b) / 2.0

Create two facets for the fields and pass them with the function to
TranslateFacet
af = sorting.FieldFacet("age")
wf = sorting.FieldFacet("weight")
facet = sorting.TranslateFacet(average, af, wf)

results = searcher.search(myquery. sortedby=facet)

Remember that you can still sort by multiple facets. For example, you could sort by a numeric value transformed by a
quantizing function first, and then if that is equal sort by the value of another field:

Sort by a quantized size first, then by name
tf = sorting.TranslateFacet(quantize, sorting.FieldFacet("size"))
results = searcher.search(myquery, sortedby=[tf, "name"])

Expert: writing your own facet

TBD.

How to create highlighted search result excerpts

Overview

The highlighting system works as a pipeline, with four component types.

1.16. How to create highlighted search result excerpts 69

Whoosh Documentation, Release 2.7.4

• Fragmenters chop up the original text into __fragments__, based on the locations of matched terms in the text.

• Scorers assign a score to each fragment, allowing the system to rank the best fragments by whatever criterion.

• Order functions control in what order the top-scoring fragments are presented to the user. For example, you
can show the fragments in the order they appear in the document (FIRST) or show higher-scoring fragments
first (SCORE)

• Formatters turn the fragment objects into human-readable output, such as an HTML string.

Requirements

Highlighting requires that you have the text of the indexed document available. You can keep the text in a stored field,
or if the original text is available in a file, database column, etc, just reload it on the fly. Note that you might need to
process the text to remove e.g. HTML tags, wiki markup, etc.

How to

Get search results:

results = mysearcher.search(myquery)
for hit in results:

print(hit["title"])

You can use the highlights() method on the whoosh.searching.Hit object to get highlighted snippets
from the document containing the search terms.

The first argument is the name of the field to highlight. If the field is stored, this is the only argument you need to
supply:

results = mysearcher.search(myquery)
for hit in results:

print(hit["title"])
Assume "content" field is stored
print(hit.highlights("content"))

If the field is not stored, you need to retrieve the text of the field some other way. For example, reading it from the
original file or a database. Then you can supply the text to highlight with the text argument:

results = mysearcher.search(myquery)
for hit in results:

print(hit["title"])

Assume the "path" stored field contains a path to the original file
with open(hit["path"]) as fileobj:

filecontents = fileobj.read()

print(hit.highlights("content", text=filecontents))

The character limit

By default, Whoosh only pulls fragments from the first 32K characters of the text. This prevents very long texts from
bogging down the highlighting process too much, and is usually justified since important/summary information is
usually at the start of a document. However, if you find the highlights are missing information (for example, very long
encyclopedia articles where the terms appear in a later section), you can increase the fragmenter’s character limit.

70 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

You can change the character limit on the results object like this:

results = mysearcher.search(myquery)
results.fragmenter.charlimit = 100000

To turn off the character limit:

results.fragmenter.charlimit = None

If you instantiate a custom fragmenter, you can set the character limit on it directly:

sf = highlight.SentenceFragmenter(charlimit=100000)
results.fragmenter = sf

See below for information on customizing the highlights.

If you increase or disable the character limit to highlight long documents, you may need to use the tips in the “speeding
up highlighting” section below to make highlighting faster.

Customizing the highlights

Number of fragments

You can use the top keyword argument to control the number of fragments returned in each snippet:

Show a maximum of 5 fragments from the document
print hit.highlights("content", top=5)

Fragment size

The default fragmenter has a maxchars attribute (default 200) controlling the maximum length of a fragment, and
a surround attribute (default 20) controlling the maximum number of characters of context to add at the beginning
and end of a fragment:

Allow larger fragments
results.fragmenter.maxchars = 300

Show more context before and after
results.fragmenter.surround = 50

Fragmenter

A fragmenter controls how to extract excerpts from the original text.

The highlight module has the following pre-made fragmenters:

whoosh.highlight.ContextFragmenter (the default) This is a “smart” fragmenter that finds matched
terms and then pulls in surround text to form fragments. This fragmenter only yields fragments that contain
matched terms.

whoosh.highlight.SentenceFragmenter Tries to break the text into fragments based on sentence punctu-
ation (”.”, ”!”, and ”?”). This object works by looking in the original text for a sentence end as the next character
after each token’s ‘endchar’. Can be fooled by e.g. source code, decimals, etc.

1.16. How to create highlighted search result excerpts 71

Whoosh Documentation, Release 2.7.4

whoosh.highlight.WholeFragmenter Returns the entire text as one “fragment”. This can be useful if you
are highlighting a short bit of text and don’t need to fragment it.

The different fragmenters have different options. For example, the default ContextFragmenter lets you set the
maximum fragment size and the size of the context to add on either side:

my_cf = highlight.ContextFragmenter(maxchars=100, surround=30)

See the whoosh.highlight docs for more information.

To use a different fragmenter:

results.fragmenter = my_cf

Scorer

A scorer is a callable that takes a whoosh.highlight.Fragment object and returns a sortable value (where
higher values represent better fragments). The default scorer adds up the number of matched terms in the fragment,
and adds a “bonus” for the number of __different__ matched terms. The highlighting system uses this score to select
the best fragments to show to the user.

As an example of a custom scorer, to rank fragments by lowest standard deviation of the positions of matched terms
in the fragment:

def StandardDeviationScorer(fragment):
"""Gives higher scores to fragments where the matched terms are close
together.
"""

Since lower values are better in this case, we need to negate the
value
return 0 - stddev([t.pos for t in fragment.matched])

To use a different scorer:

results.scorer = StandardDeviationScorer

Order

The order is a function that takes a fragment and returns a sortable value used to sort the highest-scoring fragments
before presenting them to the user (where fragments with lower values appear before fragments with higher values).

The highlight module has the following order functions.

FIRST (the default) Show fragments in the order they appear in the document.

SCORE Show highest scoring fragments first.

The highlight module also includes LONGER (longer fragments first) and SHORTER (shorter fragments first), but
they probably aren’t as generally useful.

To use a different order:

results.order = highlight.SCORE

72 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Formatter

A formatter contols how the highest scoring fragments are turned into a formatted bit of text for display to the user. It
can return anything (e.g. plain text, HTML, a Genshi event stream, a SAX event generator, or anything else useful to
the calling system).

The highlight module contains the following pre-made formatters.

whoosh.highlight.HtmlFormatter Outputs a string containing HTML tags (with a class attribute) around
the matched terms.

whoosh.highlight.UppercaseFormatter Converts the matched terms to UPPERCASE.

whoosh.highlight.GenshiFormatter Outputs a Genshi event stream, with the matched terms wrapped in
a configurable element.

The easiest way to create a custom formatter is to subclass highlight.Formatter and override the
format_token method:

class BracketFormatter(highlight.Formatter):
"""Puts square brackets around the matched terms.
"""

def format_token(self, text, token, replace=False):
Use the get_text function to get the text corresponding to the
token
tokentext = highlight.get_text(text, token, replace)

Return the text as you want it to appear in the highlighted
string
return "[%s]" % tokentext

To use a different formatter:

brf = BracketFormatter()
results.formatter = brf

If you need more control over the formatting (or want to output something other than strings), you will need to override
other methods. See the documentation for the whoosh.highlight.Formatter class.

Highlighter object

Rather than setting attributes on the results object, you can create a reusable whoosh.highlight.Highlighter
object. Keyword arguments let you change the fragmenter, scorer, order, and/or formatter:

hi = highlight.Highlighter(fragmenter=my_cf, scorer=sds)

You can then use the whoosh.highlight.Highlighter.highlight_hit() method to get highlights for a
Hit object:

for hit in results:
print(hit["title"])
print(hi.highlight_hit(hit))

(When you assign to a Results object’s fragmenter, scorer, order, or formatter attributes, you’re actu-
ally changing the values on the results object’s default Highlighter object.)

1.16. How to create highlighted search result excerpts 73

Whoosh Documentation, Release 2.7.4

Speeding up highlighting

Recording which terms matched in which documents during the search may make highlighting faster, since it will skip
documents it knows don’t contain any matching terms in the given field:

Record per-document term matches
results = searcher.search(myquery, terms=True)

PinpointFragmenter

Usually the highlighting system uses the field’s analyzer to re-tokenize the document’s text to find the matching terms
in context. If you have long documents and have increased/disabled the character limit, and/or if the field has a very
complex analyzer, re-tokenizing may be slow.

Instead of retokenizing, Whoosh can look up the character positions of the matched terms in the index. Looking up
the character positions is not instantaneous, but is usually faster than analyzing large amounts of text.

To use whoosh.highlight.PinpointFragmenter and avoid re-tokenizing the document text, you must do
all of the following:

Index the field with character information (this will require re-indexing an existing index):

Index the start and end chars of each term
schema = fields.Schema(content=fields.TEXT(stored=True, chars=True))

Record per-document term matches in the results:

Record per-document term matches
results = searcher.search(myquery, terms=True)

Set a whoosh.highlight.PinpointFragmenter as the fragmenter:

results.fragmenter = highlight.PinpointFragmenter()

PinpointFragmenter limitations

When the highlighting system does not re-tokenize the text, it doesn’t know where any other words are in the text
except the matched terms it looked up in the index. Therefore when the fragmenter adds surrounding context, it just
adds or a certain number of characters blindly, and so doesn’t distinguish between content and whitespace, or break
on word boundaries, for example:

>>> hit.highlights("content")
're when the fragmenter\n ad'

(This can be embarassing when the word fragments form dirty words!)

One way to avoid this is to not show any surrounding context, but then fragments containing one matched term will
contain ONLY that matched term:

>>> hit.highlights("content")
'fragmenter'

Alternatively, you can normalize whitespace in the text before passing it to the highlighting system:

74 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

>>> text = searcher.stored_
>>> re.sub("[\t\r\n]+", " ", text)
>>> hit.highlights("content", text=text)

...and use the autotrim option of PinpointFragmenter to automatically strip text before the first space and
after the last space in the fragments:

>>> results.fragmenter = highlight.PinpointFragmenter(autotrim=True)
>>> hit.highlights("content")
'when the fragmenter'

Using the low-level API

Usage

The following function lets you retokenize and highlight a piece of text using an analyzer:

from whoosh.highlight import highlight

excerpts = highlight(text, terms, analyzer, fragmenter, formatter, top=3,
scorer=BasicFragmentScorer, minscore=1, order=FIRST)

text The original text of the document.

terms A sequence or set containing the query words to match, e.g. (“render”, “shader”).

analyzer The analyzer to use to break the document text into tokens for matching against the query terms. This is
usually the analyzer for the field the query terms are in.

fragmenter A whoosh.highlight.Fragmenter object, see below.

formatter A whoosh.highlight.Formatter object, see below.

top The number of fragments to include in the output.

scorer A whoosh.highlight.FragmentScorer object. The only scorer currently included with Whoosh
is BasicFragmentScorer, the default.

minscore The minimum score a fragment must have to be considered for inclusion.

order An ordering function that determines the order of the “top” fragments in the output text.

Query expansion and Key word extraction

Overview

Whoosh provides methods for computing the “key terms” of a set of documents. For these methods, “key terms”
basically means terms that are frequent in the given documents, but relatively infrequent in the indexed collection as a
whole.

Because this is a purely statistical operation, not a natural language processing or AI function, the quality of the results
will vary based on the content, the size of the document collection, and the number of documents for which you extract
keywords.

These methods can be useful for providing the following features to users:

1.17. Query expansion and Key word extraction 75

Whoosh Documentation, Release 2.7.4

• Search term expansion. You can extract key terms for the top N results from a query and suggest them to the
user as additional/alternate query terms to try.

• Tag suggestion. Extracting the key terms for a single document may yield useful suggestions for tagging the
document.

• “More like this”. You can extract key terms for the top ten or so results from a query (and removing the original
query terms), and use those key words as the basis for another query that may find more documents using terms
the user didn’t think of.

Usage

• Get more documents like a certain search hit. This requires that the field you want to match on is vectored or
stored, or that you have access to the original text (such as from a database).

Use more_like_this():

results = mysearcher.search(myquery)
first_hit = results[0]
more_results = first_hit.more_like_this("content")

• Extract keywords for the top N documents in a whoosh.searching.Results object. This requires that
the field is either vectored or stored.

Use the key_terms() method of the whoosh.searching.Results object to extract keywords from the
top N documents of the result set.

For example, to extract five key terms from the content field of the top ten documents of a results object:

keywords = [keyword for keyword, score
in results.key_terms("content", docs=10, numterms=5)

• Extract keywords for an arbitrary set of documents. This requires that the field is either vectored or stored.

Use the document_number() or document_numbers() methods of the whoosh.searching.
Searcher object to get the document numbers for the document(s) you want to extract keywords from.

Use the key_terms() method of a whoosh.searching.Searcher to extract the keywords, given the
list of document numbers.

For example, let’s say you have an index of emails. To extract key terms from the content field of emails
whose emailto field contains matt@whoosh.ca:

with email_index.searcher() as s:
docnums = s.document_numbers(emailto=u"matt@whoosh.ca")
keywords = [keyword for keyword, score

in s.key_terms(docnums, "body")]

• Extract keywords from arbitrary text not in the index.

Use the key_terms_from_text() method of a whoosh.searching.Searcher to extract the key-
words, given the text:

with email_index.searcher() as s:
keywords = [keyword for keyword, score

in s.key_terms_from_text("body", mytext)]

76 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Expansion models

The ExpansionModel subclasses in the whoosh.classify module implement different weighting functions
for key words. These models are translated into Python from original Java implementations in Terrier.

“Did you mean... ?” Correcting errors in user queries

Overview

Whoosh can quickly suggest replacements for mis-typed words by returning a list of words from the index (or a
dictionary) that are close to the mis-typed word:

with ix.searcher() as s:
corrector = s.corrector("text")
for mistyped_word in mistyped_words:

print corrector.suggest(mistyped_word, limit=3)

See the whoosh.spelling.Corrector.suggest()method documentation for information on the arguments.

Currently the suggestion engine is more like a “typo corrector” than a real “spell checker” since it doesn’t do the kind
of sophisticated phonetic matching or semantic/contextual analysis a good spell checker might. However, it is still
very useful.

There are two main strategies for correcting words:

• Use the terms from an index field.

• Use words from a word list.

Pulling suggestions from an indexed field

In Whoosh 2.7 and later, spelling suggestions are available on all fields. However, if you have an analyzer that modifies
the indexed words (such as stemming), you can add spelling=True to a field to have it store separate unmodified
versions of the terms for spelling suggestions:

ana = analysis.StemmingAnalyzer()
schema = fields.Schema(text=TEXT(analyzer=ana, spelling=True))

You can then use the whoosh.searching.Searcher.corrector() method to get a corrector for a field:

corrector = searcher.corrector("content")

The advantage of using the contents of an index field is that when you are spell checking queries on that index, the
suggestions are tailored to the contents of the index. The disadvantage is that if the indexed documents contain spelling
errors, then the spelling suggestions will also be erroneous.

Pulling suggestions from a word list

There are plenty of word lists available on the internet you can use to populate the spelling dictionary.

(In the following examples, word_list can be a list of unicode strings, or a file object with one word on each line.)

To create a whoosh.spelling.Corrector object from a sorted word list:

1.18. “Did you mean... ?” Correcting errors in user queries 77

Whoosh Documentation, Release 2.7.4

from whoosh.spelling import ListCorrector

word_list must be a sorted list of unicocde strings
corrector = ListCorrector(word_list)

Merging two or more correctors

You can combine suggestions from two sources (for example, the contents of an index field and a word list) using a
whoosh.spelling.MultiCorrector:

c1 = searcher.corrector("content")
c2 = spelling.ListCorrector(word_list)
corrector = MultiCorrector([c1, c2])

Correcting user queries

You can spell-check a user query using the whoosh.searching.Searcher.correct_query() method:

from whoosh import qparser

Parse the user query string
qp = qparser.QueryParser("content", myindex.schema)
q = qp.parse(qstring)

Try correcting the query
with myindex.searcher() as s:

corrected = s.correct_query(q, qstring)
if corrected.query != q:

print("Did you mean:", corrected.string)

The correct_query method returns an object with the following attributes:

query A corrected whoosh.query.Query tree. You can test whether this is equal (==) to the original parsed
query to check if the corrector actually changed anything.

string A corrected version of the user’s query string.

tokens A list of corrected token objects representing the corrected terms. You can use this to reformat the user
query (see below).

You can use a whoosh.highlight.Formatter object to format the corrected query string. For example, use
the HtmlFormatter to format the corrected string as HTML:

from whoosh import highlight

hf = highlight.HtmlFormatter()
corrected = s.correct_query(q, qstring, formatter=hf)

See the documentation for whoosh.searching.Searcher.correct_query() for information on the de-
faults and arguments.

78 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Field caches

The default (filedb) backend uses field caches in certain circumstances. The field cache basically pre-computes the
order of documents in the index to speed up sorting and faceting.

Generating field caches can take time the first time you sort/facet on a large index. The field cache is kept in memory
(and by default written to disk when it is generated) so subsequent sorted/faceted searches should be faster.

The default caching policy never expires field caches, so reused searchers and/or sorting a lot of different fields could
use up quite a bit of memory with large indexes.

Customizing cache behaviour

(The following API examples refer to the default filedb backend.)

By default, Whoosh saves field caches to disk. To prevent a reader or searcher from writing out field caches, do this
before you start using it:

searcher.set_caching_policy(save=False)

By default, if caches are written to disk they are saved in the index directory. To tell a reader or searcher to save cache
files to a different location, create a storage object and pass it to the storage keyword argument:

from whoosh.filedb.filestore import FileStorage

mystorage = FileStorage("path/to/cachedir")
reader.set_caching_policy(storage=mystorage)

Creating a custom caching policy

Expert users who want to implement a custom caching policy (for example, to add cache expiration) should subclass
whoosh.filedb.fieldcache.FieldCachingPolicy. Then you can pass an instance of your policy object
to the set_caching_policy method:

searcher.set_caching_policy(MyPolicy())

Tips for speeding up batch indexing

Overview

Indexing documents tends to fall into two general patterns: adding documents one at a time as they are created (as in
a web application), and adding a bunch of documents at once (batch indexing).

The following settings and alternate workflows can make batch indexing faster.

StemmingAnalyzer cache

The stemming analyzer by default uses a least-recently-used (LRU) cache to limit the amount of memory it uses, to
prevent the cache from growing very large if the analyzer is reused for a long period of time. However, the LRU cache
can slow down indexing by almost 200% compared to a stemming analyzer with an “unbounded” cache.

1.19. Field caches 79

Whoosh Documentation, Release 2.7.4

When you’re indexing in large batches with a one-shot instance of the analyzer, consider using an unbounded cache:

w = myindex.writer()
Get the analyzer object from a text field
stem_ana = w.schema["content"].format.analyzer
Set the cachesize to -1 to indicate unbounded caching
stem_ana.cachesize = -1
Reset the analyzer to pick up the changed attribute
stem_ana.clear()

Use the writer to index documents...

The limitmb parameter

The limitmb parameter to whoosh.index.Index.writer() controls the maximum memory (in megabytes)
the writer will use for the indexing pool. The higher the number, the faster indexing will be.

The default value of 128 is actually somewhat low, considering many people have multiple gigabytes of RAM these
days. Setting it higher can speed up indexing considerably:

from whoosh import index

ix = index.open_dir("indexdir")
writer = ix.writer(limitmb=256)

Note: The actual memory used will be higher than this value because of interpreter overhead (up to twice as much!).
It is very useful as a tuning parameter, but not for trying to exactly control the memory usage of Whoosh.

The procs parameter

The procs parameter to whoosh.index.Index.writer() controls the number of processors the writer will
use for indexing (via the multiprocessing module):

from whoosh import index

ix = index.open_dir("indexdir")
writer = ix.writer(procs=4)

Note that when you use multiprocessing, the limitmb parameter controls the amount of memory used by each
process, so the actual memory used will be limitmb * procs:

Each process will use a limit of 128, for a total of 512
writer = ix.writer(procs=4, limitmb=128)

The multisegment parameter

The procs parameter causes the default writer to use multiple processors to do much of the indexing, but then still
uses a single process to merge the pool of each sub-writer into a single segment.

You can get much better indexing speed by also using the multisegment=True keyword argument, which instead
of merging the results of each sub-writer, simply has them each just write out a new segment:

80 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

from whoosh import index

ix = index.open_dir("indexdir")
writer = ix.writer(procs=4, multisegment=True)

The drawback is that instead of creating a single new segment, this option creates a number of new segments at least
equal to the number of processes you use.

For example, if you use procs=4, the writer will create four new segments. (If you merge old segments or call
add_reader on the parent writer, the parent writer will also write a segment, meaning you’ll get five new segments.)

So, while multisegment=True is much faster than a normal writer, you should only use it for large batch indexing
jobs (or perhaps only for indexing from scratch). It should not be the only method you use for indexing, because
otherwise the number of segments will tend to increase forever!

Concurrency, locking, and versioning

Concurrency

The FileIndex object is “stateless” and should be share-able between threads.

A Reader object (which underlies the Searcher object) wraps open files and often individual methods rely on
consistent file cursor positions (e.g. they do two file.read()s in a row, so if another thread moves the cursor
between the two read calls Bad Things would happen). You should use one Reader/Searcher per thread in your code.

Readers/Searchers tend to cache information (such as field caches for sorting), so if you can share one across multiple
search requests, it’s a big performance win.

Locking

Only one thread/process can write to an index at a time. When you open a writer, it locks the index. If you try to open
a writer on the same index in another thread/process, it will raise whoosh.store.LockError.

In a multi-threaded or multi-process environment your code needs to be aware that opening a writer may raise this
exception if a writer is already open. Whoosh includes a couple of example implementations (whoosh.writing.
AsyncWriter and whoosh.writing.BufferedWriter) of ways to work around the write lock.

While the writer is open and during the commit, the index is still available for reading. Existing readers are unaf-
fected and new readers can open the current index normally.

Lock files

Locking the index is accomplished by acquiring an exclusive file lock on the <indexname>_WRITELOCK file in
the index directory. The file is not deleted after the file lock is released, so the fact that the file exists does not mean
the index is locked.

Versioning

When you open a reader/searcher, the reader represents a view of the current version of the index. If someone writes
changes to the index, any readers that are already open will not pick up the changes automatically. A reader always
sees the index as it existed when the reader was opened.

1.21. Concurrency, locking, and versioning 81

Whoosh Documentation, Release 2.7.4

If you are re-using a Searcher across multiple search requests, you can check whether the Searcher is a view of the
latest version of the index using whoosh.searching.Searcher.up_to_date(). If the searcher is not up to
date, you can get an up-to-date copy of the searcher using whoosh.searching.Searcher.refresh():

If 'searcher' is not up-to-date, replace it
searcher = searcher.refresh()

(If the searcher has the latest version of the index, refresh() simply returns it.)

Calling Searcher.refresh() is more efficient that closing the searcher and opening a new one, since it will
re-use any underlying readers and caches that haven’t changed.

Indexing and searching document hierarchies

Overview

Whoosh’s full-text index is essentially a flat database of documents. However, Whoosh supports two techniques for
simulating the indexing and querying of hierarchical documents, that is, sets of documents that form a parent-child
hierarchy, such as “Chapter - Section - Paragraph” or “Module - Class - Method”.

You can specify parent-child relationships at indexing time, by grouping documents in the same hierarchy, and then
use the whoosh.query.NestedParent and/or whoosh.query.NestedChildren to find parents based on
their children or vice-versa.

Alternatively, you can use query time joins, essentially like external key joins in a database, where you perform one
search to find a relevant document, then use a stored value on that document (for example, a parent field) to look up
another document.

Both methods have pros and cons.

Using nested document indexing

Indexing

This method works by indexing a “parent” document and all its “child” documents as a “group” so they are guaranteed
to end up in the same segment. You can use the context manager returned by IndexWriter.group() to group
documents:

with ix.writer() as w:
with w.group():

w.add_document(kind="class", name="Index")
w.add_document(kind="method", name="add document")
w.add_document(kind="method", name="add reader")
w.add_document(kind="method", name="close")

with w.group():
w.add_document(kind="class", name="Accumulator")
w.add_document(kind="method", name="add")
w.add_document(kind="method", name="get result")

with w.group():
w.add_document(kind="class", name="Calculator")
w.add_document(kind="method", name="add")
w.add_document(kind="method", name="add all")
w.add_document(kind="method", name="add some")
w.add_document(kind="method", name="multiply")
w.add_document(kind="method", name="close")

82 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

with w.group():
w.add_document(kind="class", name="Deleter")
w.add_document(kind="method", name="add")
w.add_document(kind="method", name="delete")

Alternatively you can use the start_group() and end_group() methods:

with ix.writer() as w:
w.start_group()
w.add_document(kind="class", name="Index")
w.add_document(kind="method", name="add document")
w.add_document(kind="method", name="add reader")
w.add_document(kind="method", name="close")
w.end_group()

Each level of the hierarchy should have a query that distinguishes it from other levels (for example, in the above index,
you can use kind:class or kind:method to match different levels of the hierarchy).

Once you’ve indexed the hierarchy of documents, you can use two query types to find parents based on children or
vice-versa.

(There is currently no support in the default query parser for nested queries.)

NestedParent query

The whoosh.query.NestedParent query type lets you specify a query for child documents, but have the query
return an “ancestor” document from higher in the hierarchy:

First, we need a query that matches all the documents in the "parent"
level we want of the hierarchy
all_parents = query.Term("kind", "class")

Then, we need a query that matches the children we want to find
wanted_kids = query.Term("name", "close")

Now we can make a query that will match documents where "name" is
"close", but the query will return the "parent" documents of the matching
children
q = query.NestedParent(all_parents, wanted_kids)
results = Index, Calculator

Note that in a hierarchy with more than two levels, you can specify a “parents” query that matches any level of the
hierarchy, so you can return the top-level ancestors of the matching children, or the second level, third level, etc.

The query works by first building a bit vector representing which documents are “parents”:

Index
| Calculator
| |
1000100100000100

| |
| Deleter
Accumulator

Then for each match of the “child” query, it calculates the previous parent from the bit vector and returns it as a match
(it only returns each parent once no matter how many children match). This parent lookup is very efficient:

1.22. Indexing and searching document hierarchies 83

Whoosh Documentation, Release 2.7.4

1000100100000100
|

|<-+ close

NestedChildren query

The opposite of NestedParent is whoosh.query.NestedChildren. This query lets you match parents but
return their children. This is useful, for example, to search for an album title and return the songs in the album:

Query that matches all documents in the "parent" level we want to match
at
all_parents = query.Term("kind", "album")

Parent documents we want to match
wanted_parents = query.Term("album_title", "heaven")

Now we can make a query that will match parent documents where "album_title"
contains "heaven", but the query will return the "child" documents of the
matching parents
q1 = query.NestedChildren(all_parents, wanted_parents)

You can then combine that query with an AND clause, for example to find songs with “hell” in the song title that occur
on albums with “heaven” in the album title:

q2 = query.And([q1, query.Term("song_title", "hell")])

Deleting and updating hierarchical documents

The drawback of the index-time method is updating and deleting. Because the implementation of the queries depends
on the parent and child documents being contiguous in the segment, you can’t update/delete just one child document.
You can only update/delete an entire top-level document at once (for example, if your hierarchy is “Chapter - Section -
Paragraph”, you can only update or delete entire chapters, not a section or paragraph). If the top-level of the hierarchy
represents very large blocks of text, this can involve a lot of deleting and reindexing.

Currently Writer.update_document() does not automatically work with nested documents. You must manu-
ally delete and re-add document groups to update them.

To delete nested document groups, use the Writer.delete_by_query() method with a NestedParent
query:

Delete the "Accumulator" class
all_parents = query.Term("kind", "class")
to_delete = query.Term("name", "Accumulator")
q = query.NestedParent(all_parents, to_delete)
with myindex.writer() as w:

w.delete_by_query(q)

Using query-time joins

A second technique for simulating hierarchical documents in Whoosh involves using a stored field on each document
to point to its parent, and then using the value of that field at query time to find parents and children.

For example, if we index a hierarchy of classes and methods using pointers to parents instead of nesting:

84 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Store a pointer to the parent on each "method" document
with ix.writer() as w:

w.add_document(kind="class", c_name="Index", docstring="...")
w.add_document(kind="method", m_name="add document", parent="Index")
w.add_document(kind="method", m_name="add reader", parent="Index")
w.add_document(kind="method", m_name="close", parent="Index")

w.add_document(kind="class", c_name="Accumulator", docstring="...")
w.add_document(kind="method", m_name="add", parent="Accumulator")
w.add_document(kind="method", m_name="get result", parent="Accumulator")

w.add_document(kind="class", c_name="Calculator", docstring="...")
w.add_document(kind="method", m_name="add", parent="Calculator")
w.add_document(kind="method", m_name="add all", parent="Calculator")
w.add_document(kind="method", m_name="add some", parent="Calculator")
w.add_document(kind="method", m_name="multiply", parent="Calculator")
w.add_document(kind="method", m_name="close", parent="Calculator")

w.add_document(kind="class", c_name="Deleter", docstring="...")
w.add_document(kind="method", m_name="add", parent="Deleter")
w.add_document(kind="method", m_name="delete", parent="Deleter")

Now do manual joins at query time
with ix.searcher() as s:

Tip: Searcher.document() and Searcher.documents() let you look up
documents by field values more easily than using Searcher.search()

Children to parents:
Print the docstrings of classes on which "close" methods occur
for child_doc in s.documents(m_name="close"):

Use the stored value of the "parent" field to look up the parent
document
parent_doc = s.document(c_name=child_doc["parent"])
Print the parent document's stored docstring field
print(parent_doc["docstring"])

Parents to children:
Find classes with "big" in the docstring and print their methods
q = query.Term("kind", "class") & query.Term("docstring", "big")
for hit in s.search(q, limit=None):

print("Class name=", hit["c_name"], "methods:")
for child_doc in s.documents(parent=hit["c_name"]):

print(" Method name=", child_doc["m_name"])

This technique is more flexible than index-time nesting in that you can delete/update individual documents in the
hierarchy piece by piece, although it doesn’t support finding different parent levels as easily. It is also slower than
index-time nesting (potentially much slower), since you must perform additional searches for each found document.

Future versions of Whoosh may include “join” queries to make this process more efficient (or at least more automatic).

Whoosh recipes

General

1.23. Whoosh recipes 85

Whoosh Documentation, Release 2.7.4

Get the stored fields for a document from the document number

stored_fields = searcher.stored_fields(docnum)

Analysis

Eliminate words shorter/longer than N

Use a StopFilter and the minsize and maxsize keyword arguments. If you just want to filter based on size
and not common words, set the stoplist to None:

sf = analysis.StopFilter(stoplist=None, minsize=2, maxsize=40)

Allow optional case-sensitive searches

A quick and easy way to do this is to index both the original and lowercased versions of each word. If the user
searches for an all-lowercase word, it acts as a case-insensitive search, but if they search for a word with any uppercase
characters, it acts as a case-sensitive search:

class CaseSensitivizer(analysis.Filter):
def __call__(self, tokens):

for t in tokens:
yield t
if t.mode == "index":

low = t.text.lower()
if low != t.text:

t.text = low
yield t

ana = analysis.RegexTokenizer() | CaseSensitivizer()
[t.text for t in ana("The new SuperTurbo 5000", mode="index")]
["The", "the", "new", "SuperTurbo", "superturbo", "5000"]

Searching

Find every document

myquery = query.Every()

iTunes-style search-as-you-type

Use the whoosh.analysis.NgramWordAnalyzer as the analyzer for the field you want to search as the user
types. You can save space in the index by turning off positions in the field using phrase=False, since phrase
searching on N-gram fields usually doesn’t make much sense:

For example, to search the "title" field as the user types
analyzer = analysis.NgramWordAnalyzer()
title_field = fields.TEXT(analyzer=analyzer, phrase=False)
schema = fields.Schema(title=title_field)

See the documentation for the NgramWordAnalyzer class for information on the available options.

86 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Shortcuts

Look up documents by a field value

Single document (unique field value)
stored_fields = searcher.document(id="bacon")

Multiple documents
for stored_fields in searcher.documents(tag="cake"):

...

Sorting and scoring

See Sorting and faceting.

Score results based on the position of the matched term

The following scoring function uses the position of the first occurance of a term in each document to calculate the
score, so documents with the given term earlier in the document will score higher:

from whoosh import scoring

def pos_score_fn(searcher, fieldname, text, matcher):
poses = matcher.value_as("positions")
return 1.0 / (poses[0] + 1)

pos_weighting = scoring.FunctionWeighting(pos_score_fn)
with myindex.searcher(weighting=pos_weighting) as s:

...

Results

How many hits were there?

The number of scored hits:

found = results.scored_length()

Depending on the arguments to the search, the exact total number of hits may be known:

if results.has_exact_length():
print("Scored", found, "of exactly", len(results), "documents")

Usually, however, the exact number of documents that match the query is not known, because the searcher can skip
over blocks of documents it knows won’t show up in the “top N” list. If you call len(results) on a query where
the exact length is unknown, Whoosh will run an unscored version of the original query to get the exact number. This
is faster than the scored search, but may still be noticeably slow on very large indexes or complex queries.

As an alternative, you might display the estimated total hits:

1.23. Whoosh recipes 87

Whoosh Documentation, Release 2.7.4

found = results.scored_length()
if results.has_exact_length():

print("Scored", found, "of exactly", len(results), "documents")
else:

low = results.estimated_min_length()
high = results.estimated_length()

print("Scored", found, "of between", low, "and", high, "documents")

Which terms matched in each hit?

Use terms=True to record term matches for each hit
results = searcher.search(myquery, terms=True)

for hit in results:
Which terms matched in this hit?
print("Matched:", hit.matched_terms())

Which terms from the query didn't match in this hit?
print("Didn't match:", myquery.all_terms() - hit.matched_terms())

Global information

How many documents are in the index?

Including documents that are deleted but not yet optimized away
numdocs = searcher.doc_count_all()

Not including deleted documents
numdocs = searcher.doc_count()

What fields are in the index?

return myindex.schema.names()

Is term X in the index?

return ("content", "wobble") in searcher

How many times does term X occur in the index?

Number of times content:wobble appears in all documents
freq = searcher.frequency("content", "wobble")

Number of documents containing content:wobble
docfreq = searcher.doc_frequency("content", "wobble")

88 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Is term X in document Y?

Check if the "content" field of document 500 contains the term "wobble"

Without term vectors, skipping through list...
postings = searcher.postings("content", "wobble")
postings.skip_to(500)
return postings.id() == 500

...or the slower but easier way
docset = set(searcher.postings("content", "wobble").all_ids())
return 500 in docset

If field has term vectors, skipping through list...
vector = searcher.vector(500, "content")
vector.skip_to("wobble")
return vector.id() == "wobble"

...or the slower but easier way
wordset = set(searcher.vector(500, "content").all_ids())
return "wobble" in wordset

Whoosh API

analysis module

Classes and functions for turning a piece of text into an indexable stream of “tokens” (usually equivalent to words).
There are three general classes involved in analysis:

• Tokenizers are always at the start of the text processing pipeline. They take a string and yield Token objects
(actually, the same token object over and over, for performance reasons) corresponding to the tokens (words) in
the text.

Every tokenizer is a callable that takes a string and returns an iterator of tokens.

• Filters take the tokens from the tokenizer and perform various transformations on them. For example, the
LowercaseFilter converts all tokens to lowercase, which is usually necessary when indexing regular English
text.

Every filter is a callable that takes a token generator and returns a token generator.

• Analyzers are convenience functions/classes that “package up” a tokenizer and zero or more filters into a single
unit. For example, the StandardAnalyzer combines a RegexTokenizer, LowercaseFilter, and StopFilter.

Every analyzer is a callable that takes a string and returns a token iterator. (So Tokenizers can be used as
Analyzers if you don’t need any filtering).

You can compose tokenizers and filters together using the | character:

my_analyzer = RegexTokenizer() | LowercaseFilter() | StopFilter()

The first item must be a tokenizer and the rest must be filters (you can’t put a filter first or a tokenizer after the first
item).

1.24. Whoosh API 89

Whoosh Documentation, Release 2.7.4

Analyzers

whoosh.analysis.IDAnalyzer(lowercase=False)
Deprecated, just use an IDTokenizer directly, with a LowercaseFilter if desired.

whoosh.analysis.KeywordAnalyzer(lowercase=False, commas=False)
Parses whitespace- or comma-separated tokens.

>>> ana = KeywordAnalyzer()
>>> [token.text for token in ana("Hello there, this is a TEST")]
["Hello", "there,", "this", "is", "a", "TEST"]

Parameters

• lowercase – whether to lowercase the tokens.

• commas – if True, items are separated by commas rather than whitespace.

whoosh.analysis.RegexAnalyzer(expression=’\\w+(\\.?\\w+)*’, gaps=False)
Deprecated, just use a RegexTokenizer directly.

whoosh.analysis.SimpleAnalyzer(expression=<_sre.SRE_Pattern object>, gaps=False)
Composes a RegexTokenizer with a LowercaseFilter.

>>> ana = SimpleAnalyzer()
>>> [token.text for token in ana("Hello there, this is a TEST")]
["hello", "there", "this", "is", "a", "test"]

Parameters

• expression – The regular expression pattern to use to extract tokens.

• gaps – If True, the tokenizer splits on the expression, rather than matching on the expres-
sion.

whoosh.analysis.StandardAnalyzer(expression=<_sre.SRE_Pattern object>, sto-
plist=frozenset([’and’, ‘is’, ‘it’, ‘an’, ‘as’, ‘at’, ‘have’,
‘in’, ‘yet’, ‘if’, ‘from’, ‘for’, ‘when’, ‘by’, ‘to’, ‘you’, ‘be’,
‘we’, ‘that’, ‘may’, ‘not’, ‘with’, ‘tbd’, ‘a’, ‘on’, ‘your’,
‘this’, ‘of’, ‘us’, ‘will’, ‘can’, ‘the’, ‘or’, ‘are’]), minsize=2,
maxsize=None, gaps=False)

Composes a RegexTokenizer with a LowercaseFilter and optional StopFilter.

>>> ana = StandardAnalyzer()
>>> [token.text for token in ana("Testing is testing and testing")]
["testing", "testing", "testing"]

Parameters

• expression – The regular expression pattern to use to extract tokens.

• stoplist – A list of stop words. Set this to None to disable the stop word filter.

• minsize – Words smaller than this are removed from the stream.

• maxsize – Words longer that this are removed from the stream.

• gaps – If True, the tokenizer splits on the expression, rather than matching on the expres-
sion.

90 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

whoosh.analysis.StemmingAnalyzer(expression=<_sre.SRE_Pattern object>, sto-
plist=frozenset([’and’, ‘is’, ‘it’, ‘an’, ‘as’, ‘at’, ‘have’,
‘in’, ‘yet’, ‘if’, ‘from’, ‘for’, ‘when’, ‘by’, ‘to’, ‘you’, ‘be’,
‘we’, ‘that’, ‘may’, ‘not’, ‘with’, ‘tbd’, ‘a’, ‘on’, ‘your’,
‘this’, ‘of’, ‘us’, ‘will’, ‘can’, ‘the’, ‘or’, ‘are’]), minsize=2,
maxsize=None, gaps=False, stemfn=<function stem>,
ignore=None, cachesize=50000)

Composes a RegexTokenizer with a lower case filter, an optional stop filter, and a stemming filter.

>>> ana = StemmingAnalyzer()
>>> [token.text for token in ana("Testing is testing and testing")]
["test", "test", "test"]

Parameters

• expression – The regular expression pattern to use to extract tokens.

• stoplist – A list of stop words. Set this to None to disable the stop word filter.

• minsize – Words smaller than this are removed from the stream.

• maxsize – Words longer that this are removed from the stream.

• gaps – If True, the tokenizer splits on the expression, rather than matching on the expres-
sion.

• ignore – a set of words to not stem.

• cachesize – the maximum number of stemmed words to cache. The larger this number,
the faster stemming will be but the more memory it will use. Use None for no cache, or -1
for an unbounded cache.

whoosh.analysis.FancyAnalyzer(expression=’\\s+’, stoplist=frozenset([’and’, ‘is’, ‘it’, ‘an’, ‘as’,
‘at’, ‘have’, ‘in’, ‘yet’, ‘if’, ‘from’, ‘for’, ‘when’, ‘by’, ‘to’, ‘you’,
‘be’, ‘we’, ‘that’, ‘may’, ‘not’, ‘with’, ‘tbd’, ‘a’, ‘on’, ‘your’,
‘this’, ‘of’, ‘us’, ‘will’, ‘can’, ‘the’, ‘or’, ‘are’]), minsize=2, max-
size=None, gaps=True, splitwords=True, splitnums=True, merge-
words=False, mergenums=False)

Composes a RegexTokenizer with an IntraWordFilter, LowercaseFilter, and StopFilter.

>>> ana = FancyAnalyzer()
>>> [token.text for token in ana("Should I call getInt or get_real?")]
["should", "call", "getInt", "get", "int", "get_real", "get", "real"]

Parameters

• expression – The regular expression pattern to use to extract tokens.

• stoplist – A list of stop words. Set this to None to disable the stop word filter.

• minsize – Words smaller than this are removed from the stream.

• maxsize – Words longer that this are removed from the stream.

• gaps – If True, the tokenizer splits on the expression, rather than matching on the expres-
sion.

whoosh.analysis.NgramAnalyzer(minsize, maxsize=None)
Composes an NgramTokenizer and a LowercaseFilter.

1.24. Whoosh API 91

Whoosh Documentation, Release 2.7.4

>>> ana = NgramAnalyzer(4)
>>> [token.text for token in ana("hi there")]
["hi t", "i th", " the", "ther", "here"]

whoosh.analysis.NgramWordAnalyzer(minsize, maxsize=None, tokenizer=None, at=None)

whoosh.analysis.LanguageAnalyzer(lang, expression=<_sre.SRE_Pattern object>, gaps=False,
cachesize=50000)

Configures a simple analyzer for the given language, with a LowercaseFilter, StopFilter, and StemFilter.

>>> ana = LanguageAnalyzer("es")
>>> [token.text for token in ana("Por el mar corren las liebres")]
['mar', 'corr', 'liebr']

The list of available languages is in whoosh.lang.languages. You can use whoosh.lang.has_stemmer()
and whoosh.lang.has_stopwords() to check if a given language has a stemming function and/or stop
word list available.

Parameters

• expression – The regular expression pattern to use to extract tokens.

• gaps – If True, the tokenizer splits on the expression, rather than matching on the expres-
sion.

• cachesize – the maximum number of stemmed words to cache. The larger this number,
the faster stemming will be but the more memory it will use.

Tokenizers

class whoosh.analysis.IDTokenizer
Yields the entire input string as a single token. For use in indexed but untokenized fields, such as a document’s
path.

>>> idt = IDTokenizer()
>>> [token.text for token in idt("/a/b 123 alpha")]
["/a/b 123 alpha"]

class whoosh.analysis.RegexTokenizer(expression=<_sre.SRE_Pattern object>, gaps=False)
Uses a regular expression to extract tokens from text.

>>> rex = RegexTokenizer()
>>> [token.text for token in rex(u("hi there 3.141 big-time under_score"))]
["hi", "there", "3.141", "big", "time", "under_score"]

Parameters

• expression – A regular expression object or string. Each match of the expression equals
a token. Group 0 (the entire matched text) is used as the text of the token. If you require
more complicated handling of the expression match, simply write your own tokenizer.

• gaps – If True, the tokenizer splits on the expression, rather than matching on the expres-
sion.

class whoosh.analysis.CharsetTokenizer(charmap)
Tokenizes and translates text according to a character mapping object. Characters that map to None are consid-
ered token break characters. For all other characters the map is used to translate the character. This is useful for
case and accent folding.

92 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

This tokenizer loops character-by-character and so will likely be much slower than RegexTokenizer.

One way to get a character mapping object is to convert a Sphinx charset table file using whoosh.support.
charset.charset_table_to_dict().

>>> from whoosh.support.charset import charset_table_to_dict
>>> from whoosh.support.charset import default_charset
>>> charmap = charset_table_to_dict(default_charset)
>>> chtokenizer = CharsetTokenizer(charmap)
>>> [t.text for t in chtokenizer(u'Stra\xdfe ABC')]
[u'strase', u'abc']

The Sphinx charset table format is described at http://www.sphinxsearch.com/docs/current.html#
conf-charset-table.

Parameters charmap – a mapping from integer character numbers to unicode characters, as used
by the unicode.translate() method.

whoosh.analysis.SpaceSeparatedTokenizer()
Returns a RegexTokenizer that splits tokens by whitespace.

>>> sst = SpaceSeparatedTokenizer()
>>> [token.text for token in sst("hi there big-time, what's up")]
["hi", "there", "big-time,", "what's", "up"]

whoosh.analysis.CommaSeparatedTokenizer()
Splits tokens by commas.

Note that the tokenizer calls unicode.strip() on each match of the regular expression.

>>> cst = CommaSeparatedTokenizer()
>>> [token.text for token in cst("hi there, what's , up")]
["hi there", "what's", "up"]

class whoosh.analysis.NgramTokenizer(minsize, maxsize=None)
Splits input text into N-grams instead of words.

>>> ngt = NgramTokenizer(4)
>>> [token.text for token in ngt("hi there")]
["hi t", "i th", " the", "ther", "here"]

Note that this tokenizer does NOT use a regular expression to extract words, so the grams emitted by it will
contain whitespace, punctuation, etc. You may want to massage the input or add a custom filter to this tokenizer’s
output.

Alternatively, if you only want sub-word grams without whitespace, you could combine a RegexTokenizer with
NgramFilter instead.

Parameters

• minsize – The minimum size of the N-grams.

• maxsize – The maximum size of the N-grams. If you omit this parameter, maxsize ==
minsize.

class whoosh.analysis.PathTokenizer(expression=’[^/]+’)
A simple tokenizer that given a string "/a/b/c" yields tokens ["/a", "/a/b", "/a/b/c"].

1.24. Whoosh API 93

http://www.sphinxsearch.com/docs/current.html#conf-charset-table
http://www.sphinxsearch.com/docs/current.html#conf-charset-table

Whoosh Documentation, Release 2.7.4

Filters

class whoosh.analysis.PassFilter
An identity filter: passes the tokens through untouched.

class whoosh.analysis.LoggingFilter(logger=None)
Prints the contents of every filter that passes through as a debug log entry.

Parameters target – the logger to use. If omitted, the “whoosh.analysis” logger is used.

class whoosh.analysis.MultiFilter(**kwargs)
Chooses one of two or more sub-filters based on the ‘mode’ attribute of the token stream.

Use keyword arguments to associate mode attribute values with instantiated filters.

>>> iwf_for_index = IntraWordFilter(mergewords=True, mergenums=False)
>>> iwf_for_query = IntraWordFilter(mergewords=False, mergenums=False)
>>> mf = MultiFilter(index=iwf_for_index, query=iwf_for_query)

This class expects that the value of the mode attribute is consistent among all tokens in a token stream.

class whoosh.analysis.TeeFilter(*filters)
Interleaves the results of two or more filters (or filter chains).

NOTE: because it needs to create copies of each token for each sub-filter, this filter is quite slow.

>>> target = "ALFA BRAVO CHARLIE"
>>> # In one branch, we'll lower-case the tokens
>>> f1 = LowercaseFilter()
>>> # In the other branch, we'll reverse the tokens
>>> f2 = ReverseTextFilter()
>>> ana = RegexTokenizer(r"\S+") | TeeFilter(f1, f2)
>>> [token.text for token in ana(target)]
["alfa", "AFLA", "bravo", "OVARB", "charlie", "EILRAHC"]

To combine the incoming token stream with the output of a filter chain, use TeeFilter and make one of the
filters a PassFilter.

>>> f1 = PassFilter()
>>> f2 = BiWordFilter()
>>> ana = RegexTokenizer(r"\S+") | TeeFilter(f1, f2) | LowercaseFilter()
>>> [token.text for token in ana(target)]
["alfa", "alfa-bravo", "bravo", "bravo-charlie", "charlie"]

class whoosh.analysis.ReverseTextFilter
Reverses the text of each token.

>>> ana = RegexTokenizer() | ReverseTextFilter()
>>> [token.text for token in ana("hello there")]
["olleh", "ereht"]

class whoosh.analysis.LowercaseFilter
Uses unicode.lower() to lowercase token text.

>>> rext = RegexTokenizer()
>>> stream = rext("This is a TEST")
>>> [token.text for token in LowercaseFilter(stream)]
["this", "is", "a", "test"]

94 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

class whoosh.analysis.StripFilter
Calls unicode.strip() on the token text.

class whoosh.analysis.StopFilter(stoplist=frozenset([’and’, ‘is’, ‘it’, ‘an’, ‘as’, ‘at’, ‘have’, ‘in’,
‘yet’, ‘if’, ‘from’, ‘for’, ‘when’, ‘by’, ‘to’, ‘you’, ‘be’, ‘we’,
‘that’, ‘may’, ‘not’, ‘with’, ‘tbd’, ‘a’, ‘on’, ‘your’, ‘this’, ‘of’,
‘us’, ‘will’, ‘can’, ‘the’, ‘or’, ‘are’]), minsize=2, maxsize=None,
renumber=True, lang=None)

Marks “stop” words (words too common to index) in the stream (and by default removes them).

Make sure you precede this filter with a LowercaseFilter.

>>> stopper = RegexTokenizer() | StopFilter()
>>> [token.text for token in stopper(u"this is a test")]
["test"]
>>> es_stopper = RegexTokenizer() | StopFilter(lang="es")
>>> [token.text for token in es_stopper(u"el lapiz es en la mesa")]
["lapiz", "mesa"]

The list of available languages is in whoosh.lang.languages. You can use whoosh.lang.
has_stopwords() to check if a given language has a stop word list available.

Parameters

• stoplist – A collection of words to remove from the stream. This is converted to a
frozenset. The default is a list of common English stop words.

• minsize – The minimum length of token texts. Tokens with text smaller than this will be
stopped. The default is 2.

• maxsize – The maximum length of token texts. Tokens with text larger than this will be
stopped. Use None to allow any length.

• renumber – Change the ‘pos’ attribute of unstopped tokens to reflect their position with
the stopped words removed.

• lang – Automatically get a list of stop words for the given language

class whoosh.analysis.StemFilter(stemfn=<function stem>, lang=None, ignore=None, cache-
size=50000)

Stems (removes suffixes from) the text of tokens using the Porter stemming algorithm. Stemming attempts to
reduce multiple forms of the same root word (for example, “rendering”, “renders”, “rendered”, etc.) to a single
word in the index.

>>> stemmer = RegexTokenizer() | StemFilter()
>>> [token.text for token in stemmer("fundamentally willows")]
["fundament", "willow"]

You can pass your own stemming function to the StemFilter. The default is the Porter stemming algorithm for
English.

>>> stemfilter = StemFilter(stem_function)

You can also use one of the Snowball stemming functions by passing the lang keyword argument.

>>> stemfilter = StemFilter(lang="ru")

The list of available languages is in whoosh.lang.languages. You can use whoosh.lang.has_stemmer()
to check if a given language has a stemming function available.

1.24. Whoosh API 95

Whoosh Documentation, Release 2.7.4

By default, this class wraps an LRU cache around the stemming function. The cachesize keyword argument
sets the size of the cache. To make the cache unbounded (the class caches every input), use cachesize=-1.
To disable caching, use cachesize=None.

If you compile and install the py-stemmer library, the PyStemmerFilter provides slightly easier access to
the language stemmers in that library.

Parameters

• stemfn – the function to use for stemming.

• lang – if not None, overrides the stemfn with a language stemmer from the whoosh.
lang.snowball package.

• ignore – a set/list of words that should not be stemmed. This is converted into a frozenset.
If you omit this argument, all tokens are stemmed.

• cachesize – the maximum number of words to cache. Use -1 for an unbounded cache,
or None for no caching.

class whoosh.analysis.CharsetFilter(charmap)
Translates the text of tokens by calling unicode.translate() using the supplied character mapping object. This is
useful for case and accent folding.

The whoosh.support.charset module has a useful map for accent folding.

>>> from whoosh.support.charset import accent_map
>>> retokenizer = RegexTokenizer()
>>> chfilter = CharsetFilter(accent_map)
>>> [t.text for t in chfilter(retokenizer(u'café'))]
[u'cafe']

Another way to get a character mapping object is to convert a Sphinx charset table file using whoosh.
support.charset.charset_table_to_dict().

>>> from whoosh.support.charset import charset_table_to_dict
>>> from whoosh.support.charset import default_charset
>>> retokenizer = RegexTokenizer()
>>> charmap = charset_table_to_dict(default_charset)
>>> chfilter = CharsetFilter(charmap)
>>> [t.text for t in chfilter(retokenizer(u'Stra\xdfe'))]
[u'strase']

The Sphinx charset table format is described at http://www.sphinxsearch.com/docs/current.html#
conf-charset-table.

Parameters charmap – a dictionary mapping from integer character numbers to unicode charac-
ters, as required by the unicode.translate() method.

class whoosh.analysis.NgramFilter(minsize, maxsize=None, at=None)
Splits token text into N-grams.

>>> rext = RegexTokenizer()
>>> stream = rext("hello there")
>>> ngf = NgramFilter(4)
>>> [token.text for token in ngf(stream)]
["hell", "ello", "ther", "here"]

Parameters

• minsize – The minimum size of the N-grams.

96 Chapter 1. Contents

http://www.sphinxsearch.com/docs/current.html#conf-charset-table
http://www.sphinxsearch.com/docs/current.html#conf-charset-table

Whoosh Documentation, Release 2.7.4

• maxsize – The maximum size of the N-grams. If you omit this parameter, maxsize ==
minsize.

• at – If ‘start’, only take N-grams from the start of each word. if ‘end’, only take N-grams
from the end of each word. Otherwise, take all N-grams from the word (the default).

class whoosh.analysis.IntraWordFilter(delims=u’-_”’()!@#$%^&*[]{}<>\|;:, ./?‘~=+’, split-
words=True, splitnums=True, mergewords=False, mer-
genums=False)

Splits words into subwords and performs optional transformations on subword groups. This filter is funtionally
based on yonik’s WordDelimiterFilter in Solr, but shares no code with it.

•Split on intra-word delimiters, e.g. Wi-Fi -> Wi, Fi.

•When splitwords=True, split on case transitions, e.g. PowerShot -> Power, Shot.

•When splitnums=True, split on letter-number transitions, e.g. SD500 -> SD, 500.

•Leading and trailing delimiter characters are ignored.

•Trailing possesive “‘s” removed from subwords, e.g. O’Neil’s -> O, Neil.

The mergewords and mergenums arguments turn on merging of subwords.

When the merge arguments are false, subwords are not merged.

•PowerShot -> 0:Power, 1:Shot (where 0 and 1 are token positions).

When one or both of the merge arguments are true, consecutive runs of alphabetic and/or numeric subwords are
merged into an additional token with the same position as the last sub-word.

•PowerShot -> 0:Power, 1:Shot, 1:PowerShot

•A’s+B’s&C’s -> 0:A, 1:B, 2:C, 2:ABC

•Super-Duper-XL500-42-AutoCoder! -> 0:Super, 1:Duper, 2:XL, 2:SuperDuperXL, 3:500, 4:42, 4:50042,
5:Auto, 6:Coder, 6:AutoCoder

When using this filter you should use a tokenizer that only splits on whitespace, so the tokenizer does not remove
intra-word delimiters before this filter can see them, and put this filter before any use of LowercaseFilter.

>>> rt = RegexTokenizer(r"\S+")
>>> iwf = IntraWordFilter()
>>> lcf = LowercaseFilter()
>>> analyzer = rt | iwf | lcf

One use for this filter is to help match different written representations of a concept. For example, if the
source text contained wi-fi, you probably want wifi, WiFi, wi-fi, etc. to match. One way of doing this is to
specify mergewords=True and/or mergenums=True in the analyzer used for indexing, and mergewords=False /
mergenums=False in the analyzer used for querying.

>>> iwf_i = IntraWordFilter(mergewords=True, mergenums=True)
>>> iwf_q = IntraWordFilter(mergewords=False, mergenums=False)
>>> iwf = MultiFilter(index=iwf_i, query=iwf_q)
>>> analyzer = RegexTokenizer(r"\S+") | iwf | LowercaseFilter()

(See MultiFilter.)

Parameters

• delims – a string of delimiter characters.

• splitwords – if True, split at case transitions, e.g. PowerShot -> Power, Shot

1.24. Whoosh API 97

Whoosh Documentation, Release 2.7.4

• splitnums – if True, split at letter-number transitions, e.g. SD500 -> SD, 500

• mergewords – merge consecutive runs of alphabetic subwords into an additional token
with the same position as the last subword.

• mergenums – merge consecutive runs of numeric subwords into an additional token with
the same position as the last subword.

class whoosh.analysis.CompoundWordFilter(wordset, keep_compound=True)
Given a set of words (or any object with a __contains__ method), break any tokens in the stream that are
composites of words in the word set into their individual parts.

Given the correct set of words, this filter can break apart run-together words and trademarks (e.g. “turbosquid”,
“applescript”). It can also be useful for agglutinative languages such as German.

The keep_compound argument lets you decide whether to keep the compound word in the token stream along
with the word segments.

>>> cwf = CompoundWordFilter(wordset, keep_compound=True)
>>> analyzer = RegexTokenizer(r"\S+") | cwf
>>> [t.text for t in analyzer("I do not like greeneggs and ham")
["I", "do", "not", "like", "greeneggs", "green", "eggs", "and", "ham"]
>>> cwf.keep_compound = False
>>> [t.text for t in analyzer("I do not like greeneggs and ham")
["I", "do", "not", "like", "green", "eggs", "and", "ham"]

Parameters

• wordset – an object with a __contains__ method, such as a set, containing strings to
look for inside the tokens.

• keep_compound – if True (the default), the original compound token will be retained in
the stream before the subwords.

class whoosh.analysis.BiWordFilter(sep=’-‘)
Merges adjacent tokens into “bi-word” tokens, so that for example:

"the", "sign", "of", "four"

becomes:

"the-sign", "sign-of", "of-four"

This can be used to create fields for pseudo-phrase searching, where if all the terms match the document probably
contains the phrase, but the searching is faster than actually doing a phrase search on individual word terms.

The BiWordFilter is much faster than using the otherwise equivalent ShingleFilter(2).

class whoosh.analysis.ShingleFilter(size=2, sep=’-‘)
Merges a certain number of adjacent tokens into multi-word tokens, so that for example:

"better", "a", "witty", "fool", "than", "a", "foolish", "wit"

with ShingleFilter(3, ' ') becomes:

'better a witty', 'a witty fool', 'witty fool than', 'fool than a',
'than a foolish', 'a foolish wit'

This can be used to create fields for pseudo-phrase searching, where if all the terms match the document probably
contains the phrase, but the searching is faster than actually doing a phrase search on individual word terms.

98 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

If you’re using two-word shingles, you should use the functionally equivalent BiWordFilter instead because
it’s faster than ShingleFilter.

class whoosh.analysis.DelimitedAttributeFilter(delimiter=’^’, attribute=’boost’, de-
fault=1.0, type=<type ‘float’>)

Looks for delimiter characters in the text of each token and stores the data after the delimiter in a named attribute
on the token.

The defaults are set up to use the ^ character as a delimiter and store the value after the ^ as the boost for the
token.

>>> daf = DelimitedAttributeFilter(delimiter="^", attribute="boost")
>>> ana = RegexTokenizer("\\S+") | DelimitedAttributeFilter()
>>> for t in ana(u("image render^2 file^0.5"))
... print("%r %f" % (t.text, t.boost))
'image' 1.0
'render' 2.0
'file' 0.5

Note that you need to make sure your tokenizer includes the delimiter and data as part of the token!

Parameters

• delimiter – a string that, when present in a token’s text, separates the actual text from
the “data” payload.

• attribute – the name of the attribute in which to store the data on the token.

• default – the value to use for the attribute for tokens that don’t have delimited data.

• type – the type of the data, for example str or float. This is used to convert the string
value of the data before storing it in the attribute.

class whoosh.analysis.DoubleMetaphoneFilter(primary_boost=1.0, secondary_boost=0.5, com-
bine=False)

Transforms the text of the tokens using Lawrence Philips’s Double Metaphone algorithm. This algorithm at-
tempts to encode words in such a way that similar-sounding words reduce to the same code. This may be useful
for fields containing the names of people and places, and other uses where tolerance of spelling differences is
desireable.

Parameters

• primary_boost – the boost to apply to the token containing the primary code.

• secondary_boost – the boost to apply to the token containing the secondary code, if
any.

• combine – if True, the original unencoded tokens are kept in the stream, preceding the
encoded tokens.

class whoosh.analysis.SubstitutionFilter(pattern, replacement)
Performs a regular expression substitution on the token text.

This is especially useful for removing text from tokens, for example hyphens:

ana = RegexTokenizer(r"\S+") | SubstitutionFilter("-", "")

Because it has the full power of the re.sub() method behind it, this filter can perform some fairly complex
transformations. For example, to take tokens like 'a=b', 'c=d', 'e=f' and change them to 'b=a',
'd=c', 'f=e':

1.24. Whoosh API 99

Whoosh Documentation, Release 2.7.4

Analyzer that swaps the text on either side of an equal sign
rt = RegexTokenizer(r"\S+")
sf = SubstitutionFilter("([^/]*)/(./*)", r"\2/\1")
ana = rt | sf

Parameters

• pattern – a pattern string or compiled regular expression object describing the text to
replace.

• replacement – the substitution text.

Token classes and functions

class whoosh.analysis.Token(positions=False, chars=False, removestops=True, mode=’‘, **kwargs)
Represents a “token” (usually a word) extracted from the source text being indexed.

See “Advanced analysis” in the user guide for more information.

Because object instantiation in Python is slow, tokenizers should create ONE SINGLE Token object and YIELD
IT OVER AND OVER, changing the attributes each time.

This trick means that consumers of tokens (i.e. filters) must never try to hold onto the token object between
loop iterations, or convert the token generator into a list. Instead, save the attributes between iterations, not the
object:

def RemoveDuplicatesFilter(self, stream):
Removes duplicate words.
lasttext = None
for token in stream:

Only yield the token if its text doesn't
match the previous token.
if lasttext != token.text:

yield token
lasttext = token.text

...or, call token.copy() to get a copy of the token object.

Parameters

• positions – Whether tokens should have the token position in the ‘pos’ attribute.

• chars – Whether tokens should have character offsets in the ‘startchar’ and ‘endchar’
attributes.

• removestops – whether to remove stop words from the stream (if the tokens pass through
a stop filter).

• mode – contains a string describing the purpose for which the analyzer is being called, i.e.
‘index’ or ‘query’.

whoosh.analysis.unstopped(tokenstream)
Removes tokens from a token stream where token.stopped = True.

codec.base module

This module contains base classes/interfaces for “codec” objects.

100 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Classes

class whoosh.codec.base.Codec

class whoosh.codec.base.PerDocumentWriter

class whoosh.codec.base.FieldWriter

class whoosh.codec.base.PostingsWriter

written()
Returns True if this object has already written to disk.

class whoosh.codec.base.TermsReader

class whoosh.codec.base.PerDocumentReader

all_doc_ids()
Returns an iterator of all (undeleted) document IDs in the reader.

class whoosh.codec.base.Segment(indexname)
Do not instantiate this object directly. It is used by the Index object to hold information about a segment. A list
of objects of this class are pickled as part of the TOC file.

The TOC file stores a minimal amount of information – mostly a list of Segment objects. Segments are the real
reverse indexes. Having multiple segments allows quick incremental indexing: just create a new segment for the
new documents, and have the index overlay the new segment over previous ones for purposes of reading/search.
“Optimizing” the index combines the contents of existing segments into one (removing any deleted documents
along the way).

create_file(storage, ext, **kwargs)
Convenience method to create a new file in the given storage named with this segment’s ID and the given
extension. Any keyword arguments are passed to the storage’s create_file method.

delete_document(docnum, delete=True)
Deletes the given document number. The document is not actually removed from the index until it is
optimized.

Parameters

• docnum – The document number to delete.

• delete – If False, this undeletes a deleted document.

deleted_count()
Returns the total number of deleted documents in this segment.

doc_count()
Returns the number of (undeleted) documents in this segment.

doc_count_all()
Returns the total number of documents, DELETED OR UNDELETED, in this segment.

has_deletions()
Returns True if any documents in this segment are deleted.

is_deleted(docnum)
Returns True if the given document number is deleted.

open_file(storage, ext, **kwargs)
Convenience method to open a file in the given storage named with this segment’s ID and the given exten-
sion. Any keyword arguments are passed to the storage’s open_file method.

1.24. Whoosh API 101

Whoosh Documentation, Release 2.7.4

collectors module

This module contains “collector” objects. Collectors provide a way to gather “raw” results from a whoosh.
matching.Matcher object, implement sorting, filtering, collation, etc., and produce a whoosh.searching.
Results object.

The basic collectors are:

TopCollector Returns the top N matching results sorted by score, using block-quality optimizations to skip blocks
of documents that can’t contribute to the top N. The whoosh.searching.Searcher.search() method
uses this type of collector by default or when you specify a limit.

UnlimitedCollector Returns all matching results sorted by score. The whoosh.searching.Searcher.
search() method uses this type of collector when you specify limit=None or you specify a limit equal to
or greater than the number of documents in the searcher.

SortingCollector Returns all matching results sorted by a whoosh.sorting.Facet object. The whoosh.
searching.Searcher.search() method uses this type of collector when you use the sortedby pa-
rameter.

Here’s an example of a simple collector that instead of remembering the matched documents just counts up the number
of matches:

class CountingCollector(Collector):
def prepare(self, top_searcher, q, context):

Always call super method in prepare
Collector.prepare(self, top_searcher, q, context)

self.count = 0

def collect(self, sub_docnum):
self.count += 1

c = CountingCollector()
mysearcher.search_with_collector(myquery, c)
print(c.count)

There are also several wrapping collectors that extend or modify the functionality of other collectors. The
meth:whoosh.searching.Searcher.search method uses many of these when you specify various parameters.

NOTE: collectors are not designed to be reentrant or thread-safe. It is generally a good idea to create a new collector
for each search.

Base classes

class whoosh.collectors.Collector
Base class for collectors.

all_ids()
Returns a sequence of docnums matched in this collector. (Only valid after the collector is run.)

The default implementation is based on the docset. If a collector does not maintain the docset, it will need
to override this method.

collect(sub_docnum)
This method is called for every matched document. It should do the work of adding a matched document
to the results, and it should return an object to use as a “sorting key” for the given document (such as the
document’s score, a key generated by a facet, or just None). Subclasses must implement this method.

102 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

If you want the score for the current document, use self.matcher.score().

Overriding methods should add the current document offset (self.offset) to the sub_docnum to get
the top-level document number for the matching document to add to results.

Parameters sub_docnum – the document number of the current match within the current sub-
searcher. You must add self.offset to this number to get the document’s top-level
document number.

collect_matches()
This method calls Collector.matches() and then for each matched document calls Collector.
collect(). Sub-classes that want to intervene between finding matches and adding them to the collec-
tion (for example, to filter out certain documents) can override this method.

computes_count()
Returns True if the collector naturally computes the exact number of matching documents. Collectors that
use block optimizations will return False since they might skip blocks containing matching documents.

Note that if this method returns False you can still call count(), but it means that method might have to
do more work to calculate the number of matching documents.

count()
Returns the total number of documents matched in this collector. (Only valid after the collector is run.)

The default implementation is based on the docset. If a collector does not maintain the docset, it will need
to override this method.

finish()
This method is called after a search.

Subclasses can override this to perform set-up work, but they should still call the superclass’s method
because it sets several necessary attributes on the collector object:

self.runtime The time (in seconds) the search took.

matches()
Yields a series of relative document numbers for matches in the current subsearcher.

prepare(top_searcher, q, context)
This method is called before a search.

Subclasses can override this to perform set-up work, but they should still call the superclass’s method
because it sets several necessary attributes on the collector object:

self.top_searcher The top-level searcher.

self.q The query object

self.context context.needs_current controls whether a wrapping collector requires that this col-
lector’s matcher be in a valid state at every call to collect(). If this is False, the collector
is free to use faster methods that don’t necessarily keep the matcher updated, such as matcher.
all_ids().

Parameters

• top_searcher – the top-level whoosh.searching.Searcher object.

• q – the whoosh.query.Query object being searched for.

• context – a whoosh.searching.SearchContext object containing information
about the search.

1.24. Whoosh API 103

Whoosh Documentation, Release 2.7.4

remove(global_docnum)
Removes a document from the collector. Not that this method uses the global document number as opposed
to Collector.collect() which takes a segment-relative docnum.

results()
Returns a Results object containing the results of the search. Subclasses must implement this method

set_subsearcher(subsearcher, offset)
This method is called each time the collector starts on a new sub-searcher.

Subclasses can override this to perform set-up work, but they should still call the superclass’s method
because it sets several necessary attributes on the collector object:

self.subsearcher The current sub-searcher. If the top-level searcher is atomic, this is the same as the
top-level searcher.

self.offset The document number offset of the current searcher. You must add this number to the document
number passed to Collector.collect() to get the top-level document number for use in results.

self.matcher A whoosh.matching.Matcher object representing the matches for the query in the
current sub-searcher.

sort_key(sub_docnum)
Returns a sorting key for the current match. This should return the same value returned by Collector.
collect(), but without the side effect of adding the current document to the results.

If the collector has been prepared with context.needs_current=True, this method can use
self.matcher to get information, for example the score. Otherwise, it should only use the provided
sub_docnum, since the matcher may be in an inconsistent state.

Subclasses must implement this method.

class whoosh.collectors.ScoredCollector(replace=10)
Base class for collectors that sort the results based on document score.

Parameters replace – Number of matches between attempts to replace the matcher with a more
efficient version.

class whoosh.collectors.WrappingCollector(child)
Base class for collectors that wrap other collectors.

Basic collectors

class whoosh.collectors.TopCollector(limit=10, usequality=True, **kwargs)
A collector that only returns the top “N” scored results.

Parameters

• limit – the maximum number of results to return.

• usequality – whether to use block-quality optimizations. This may be useful for debug-
ging.

class whoosh.collectors.UnlimitedCollector(reverse=False)
A collector that returns all scored results.

class whoosh.collectors.SortingCollector(sortedby, limit=10, reverse=False)
A collector that returns results sorted by a given whoosh.sorting.Facet object. See Sorting and faceting
for more information.

Parameters

• sortedby – see Sorting and faceting.

104 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

• reverse – If True, reverse the overall results. Note that you can reverse individual facets
in a multi-facet sort key as well.

Wrappers

class whoosh.collectors.FilterCollector(child, allow=None, restrict=None)
A collector that lets you allow and/or restrict certain document numbers in the results:

uc = collectors.UnlimitedCollector()

ins = query.Term("chapter", "rendering")
outs = query.Term("status", "restricted")
fc = FilterCollector(uc, allow=ins, restrict=outs)

mysearcher.search_with_collector(myquery, fc)
print(fc.results())

This collector discards a document if:

•The allowed set is not None and a document number is not in the set, or

•The restrict set is not None and a document number is in the set.

(So, if the same document number is in both sets, that document will be discarded.)

If you have a reference to the collector, you can use FilterCollector.filtered_count to get the
number of matching documents filtered out of the results by the collector.

Parameters

• child – the collector to wrap.

• allow – a query, Results object, or set-like object containing docnument numbers that are
allowed in the results, or None (meaning everything is allowed).

• restrict – a query, Results object, or set-like object containing document numbers to
disallow from the results, or None (meaning nothing is disallowed).

class whoosh.collectors.FacetCollector(child, groupedby, maptype=None)
A collector that creates groups of documents based on whoosh.sorting.Facet objects. See Sorting and
faceting for more information.

This collector is used if you specify a groupedby parameter in the whoosh.searching.Searcher.
search() method. You can use the whoosh.searching.Results.groups() method to access the
facet groups.

If you have a reference to the collector can also use FacetedCollector.facetmaps to access the groups
directly:

uc = collectors.UnlimitedCollector()
fc = FacetedCollector(uc, sorting.FieldFacet("category"))
mysearcher.search_with_collector(myquery, fc)
print(fc.facetmaps)

Parameters

• groupedby – see Sorting and faceting.

• maptype – a whoosh.sorting.FacetMap type to use for any facets that don’t specify
their own.

1.24. Whoosh API 105

Whoosh Documentation, Release 2.7.4

class whoosh.collectors.CollapseCollector(child, keyfacet, limit=1, order=None)
A collector that collapses results based on a facet. That is, it eliminates all but the top N results that share the
same facet key. Documents with an empty key for the facet are never eliminated.

The “top” results within each group is determined by the result ordering (e.g. highest score in a scored search)
or an optional second “ordering” facet.

If you have a reference to the collector you can use CollapseCollector.collapsed_counts to access
the number of documents eliminated based on each key:

tc = TopCollector(limit=20)
cc = CollapseCollector(tc, "group", limit=3)
mysearcher.search_with_collector(myquery, cc)
print(cc.collapsed_counts)

See Collapsing results for more information.

Parameters

• child – the collector to wrap.

• keyfacet – a whoosh.sorting.Facet to use for collapsing. All but the top N doc-
uments that share a key will be eliminated from the results.

• limit – the maximum number of documents to keep for each key.

• order – an optional whoosh.sorting.Facet to use to determine the “top” docu-
ment(s) to keep when collapsing. The default (orderfaceet=None) uses the results
order (e.g. the highest score in a scored search).

class whoosh.collectors.TimeLimitCollector(child, timelimit, greedy=False, use_alarm=True)
A collector that raises a TimeLimit exception if the search does not complete within a certain number of
seconds:

uc = collectors.UnlimitedCollector()
tlc = TimeLimitedCollector(uc, timelimit=5.8)
try:

mysearcher.search_with_collector(myquery, tlc)
except collectors.TimeLimit:

print("The search ran out of time!")

We can still get partial results from the collector
print(tlc.results())

IMPORTANT: On Unix systems (systems where signal.SIGALRM is defined), the code uses signals to stop
searching immediately when the time limit is reached. On Windows, the OS does not support this functionality,
so the search only checks the time between each found document, so if a matcher is slow the search could exceed
the time limit.

Parameters

• child – the collector to wrap.

• timelimit – the maximum amount of time (in seconds) to allow for searching. If the
search takes longer than this, it will raise a TimeLimit exception.

• greedy – if True, the collector will finish adding the most recent hit before raising the
TimeLimit exception.

• use_alarm – if True (the default), the collector will try to use signal.SIGALRM (on
UNIX).

106 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

class whoosh.collectors.TermsCollector(child, settype=<type ‘set’>)
A collector that remembers which terms appeared in which terms appeared in each matched document.

This collector is used if you specify terms=True in the whoosh.searching.Searcher.search()
method.

If you have a reference to the collector can also use TermsCollector.termslist to access the term lists
directly:

uc = collectors.UnlimitedCollector()
tc = TermsCollector(uc)
mysearcher.search_with_collector(myquery, tc)
tc.termdocs is a dictionary mapping (fieldname, text) tuples to
sets of document numbers
print(tc.termdocs)
tc.docterms is a dictionary mapping docnums to lists of
(fieldname, text) tuples
print(tc.docterms)

columns module

The API and implementation of columns may change in the next version of Whoosh!

This module contains “Column” objects which you can use as the argument to a Field object’s sortable= keyword
argument. Each field defines a default column type for when the user specifies sortable=True (the object returned
by the field’s default_column() method).

The default column type for most fields is VarBytesColumn, although numeric and date fields use
NumericColumn. Expert users may use other field types that may be faster or more storage efficient based
on the field contents. For example, if a field always contains one of a limited number of possible values, a
RefBytesColumn will save space by only storing the values once. If a field’s values are always a fixed length,
the FixedBytesColumn saves space by not storing the length of each value.

A Column object basically exists to store configuration information and provides two important methods: writer()
to return a ColumnWriter object and reader() to return a ColumnReader object.

Base classes

class whoosh.columns.Column
Represents a “column” of rows mapping docnums to document values.

The interface requires that you store the start offset of the column, the length of the column data, and the number
of documents (rows) separately, and pass them to the reader object.

default_value(reverse=False)
Returns the default value for this column type.

reader(dbfile, basepos, length, doccount)
Returns a ColumnReader object you can use to read a column of this type from disk.

Parameters

• dbfile – the StructFile to read from.

• basepos – the offset within the file at which the column starts.

• length – the length in bytes of the column occupies in the file.

• doccount – the number of rows (documents) in the column.

1.24. Whoosh API 107

Whoosh Documentation, Release 2.7.4

stores_lists()
Returns True if the column stores a list of values for each document instead of a single value.

writer(dbfile)
Returns a ColumnWriter object you can use to use to create a column of this type on disk.

Parameters dbfile – the StructFile to write to.

class whoosh.columns.ColumnWriter(dbfile)

class whoosh.columns.ColumnReader(dbfile, basepos, length, doccount)

Basic columns

class whoosh.columns.VarBytesColumn(allow_offsets=True, write_offsets_cutoff=32768)
Stores variable length byte strings. See also RefBytesColumn.

The current implementation limits the total length of all document values a segment to 2 GB.

The default value (the value returned for a document that didn’t have a value assigned to it at indexing time) is
an empty bytestring (b'').

Parameters

• allow_offsets – Whether the column should write offsets when there are many rows
in the column (this makes opening the column much faster). This argument is mostly for
testing.

• write_offsets_cutoff – Write offsets (for speed) when there are more than this
many rows in the column. This argument is mostly for testing.

class whoosh.columns.FixedBytesColumn(fixedlen, default=None)
Stores fixed-length byte strings.

Parameters

• fixedlen – the fixed length of byte strings in this column.

• default – the default value to use for documents that don’t specify a value. If you don’t
specify a default, the column will use b'\x00' * fixedlen.

class whoosh.columns.RefBytesColumn(fixedlen=0, default=None)
Stores variable-length or fixed-length byte strings, similar to VarBytesColumn and FixedBytesColumn.
However, where those columns stores a value for each document, this column keeps a list of all the unique
values in the field, and for each document stores a short pointer into the unique list. For fields where the number
of possible values is smaller than the number of documents (for example, “category” or “chapter”), this saves
significant space.

This column type supports a maximum of 65535 unique values across all documents in a segment. You should
generally use this column type where the number of unique values is in no danger of approaching that number
(for example, a “tags” field). If you try to index too many unique values, the column will convert additional
unique values to the default value and issue a warning using the warnings module (this will usually be
preferable to crashing the indexer and potentially losing indexed documents).

Parameters

• fixedlen – an optional fixed length for the values. If you specify a number other than 0,
the column will require all values to be the specified length.

• default – a default value to use for documents that don’t specify one. If you don’t specify
a default, the column will use an empty bytestring (b''), or if you specify a fixed length,
b'\x00' * fixedlen.

108 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

class whoosh.columns.NumericColumn(typecode, default=0)
Stores numbers (integers and floats) as compact binary.

Parameters

• typecode – a typecode character (as used by the struct module) specifying the number
type. For example, "i" for signed integers.

• default – the default value to use for documents that don’t specify one.

Technical columns

class whoosh.columns.BitColumn(compress_at=2048)
Stores a column of True/False values compactly.

Parameters compress_at – columns with this number of values or fewer will be saved com-
pressed on disk, and loaded into RAM for reading. Set this to 0 to disable compression.

class whoosh.columns.CompressedBytesColumn(level=3, module=’zlib’)
Stores variable-length byte strings compressed using deflate (by default).

Parameters

• level – the compression level to use.

• module – a string containing the name of the compression module to use. The default is
“zlib”. The module should export “compress” and “decompress” functions.

class whoosh.columns.StructColumn(spec, default)

class whoosh.columns.PickleColumn(child)
Converts arbitrary objects to pickled bytestrings and stores them using the wrapped column (usually a
VarBytesColumn or CompressedBytesColumn).

If you can express the value you want to store as a number or bytestring, you should use the appropriate column
type to avoid the time and size overhead of pickling and unpickling.

Experimental columns

class whoosh.columns.ClampedNumericColumn(child)
An experimental wrapper type for NumericColumn that clamps out-of-range values instead of raising an excep-
tion.

fields module

Contains functions and classes related to fields.

Schema class

class whoosh.fields.Schema(**fields)
Represents the collection of fields in an index. Maps field names to FieldType objects which define the behavior
of each field.

Low-level parts of the index use field numbers instead of field names for compactness. This class has several
methods for converting between the field name, field number, and field object itself.

1.24. Whoosh API 109

Whoosh Documentation, Release 2.7.4

All keyword arguments to the constructor are treated as fieldname = fieldtype pairs. The fieldtype can be an
instantiated FieldType object, or a FieldType sub-class (in which case the Schema will instantiate it with the
default constructor before adding it).

For example:

s = Schema(content = TEXT,
title = TEXT(stored = True),
tags = KEYWORD(stored = True))

add(name, fieldtype, glob=False)
Adds a field to this schema.

Parameters

• name – The name of the field.

• fieldtype – An instantiated fields.FieldType object, or a FieldType subclass. If you
pass an instantiated object, the schema will use that as the field configuration for this field.
If you pass a FieldType subclass, the schema will automatically instantiate it with the
default constructor.

copy()
Returns a shallow copy of the schema. The field instances are not deep copied, so they are shared between
schema copies.

items()
Returns a list of (“fieldname”, field_object) pairs for the fields in this schema.

names(check_names=None)
Returns a list of the names of the fields in this schema.

Parameters check_names – (optional) sequence of field names to check whether the schema
accepts them as (dynamic) field names - acceptable names will also be in the result list.
Note: You may also have static field names in check_names, that won’t create duplicates in
the result list. Unsupported names will not be in the result list.

scorable_names()
Returns a list of the names of fields that store field lengths.

stored_names()
Returns a list of the names of fields that are stored.

class whoosh.fields.SchemaClass(**fields)
Allows you to define a schema using declarative syntax, similar to Django models:

class MySchema(SchemaClass):
path = ID
date = DATETIME
content = TEXT

You can use inheritance to share common fields between schemas:

class Parent(SchemaClass):
path = ID(stored=True)
date = DATETIME

class Child1(Parent):
content = TEXT(positions=False)

110 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

class Child2(Parent):
tags = KEYWORD

This class overrides __new__ so instantiating your sub-class always results in an instance of Schema.

>>> class MySchema(SchemaClass):
... title = TEXT(stored=True)
... content = TEXT
...
>>> s = MySchema()
>>> type(s)
<class 'whoosh.fields.Schema'>

All keyword arguments to the constructor are treated as fieldname = fieldtype pairs. The fieldtype can be an
instantiated FieldType object, or a FieldType sub-class (in which case the Schema will instantiate it with the
default constructor before adding it).

For example:

s = Schema(content = TEXT,
title = TEXT(stored = True),
tags = KEYWORD(stored = True))

FieldType base class

class whoosh.fields.FieldType(format, analyzer, scorable=False, stored=False, unique=False, mul-
titoken_query=’default’, sortable=False, vector=None)

Represents a field configuration.

The FieldType object supports the following attributes:

•format (formats.Format): the storage format for posting blocks.

•analyzer (analysis.Analyzer): the analyzer to use to turn text into terms.

•scorable (boolean): whether searches against this field may be scored. This controls whether the index
stores per-document field lengths for this field.

•stored (boolean): whether the content of this field is stored for each document. For example, in addition
to indexing the title of a document, you usually want to store the title so it can be presented as part of the
search results.

•unique (boolean): whether this field’s value is unique to each document. For example, ‘path’ or ‘ID’. In-
dexWriter.update_document() will use fields marked as ‘unique’ to find the previous version of a document
being updated.

•multitoken_query is a string indicating what kind of query to use when a “word” in a user query parses into
multiple tokens. The string is interpreted by the query parser. The strings understood by the default query
parser are “first” (use first token only), “and” (join the tokens with an AND query), “or” (join the tokens
with OR), “phrase” (join the tokens with a phrase query), and “default” (use the query parser’s default join
type).

•vector (formats.Format or boolean): the format to use to store term vectors. If not a Format object,
any true value means to use the index format as the term vector format. Any flase value means don’t
store term vectors for this field.

The constructor for the base field type simply lets you supply your own attribute values. Subclasses may con-
figure some or all of this for you.

1.24. Whoosh API 111

Whoosh Documentation, Release 2.7.4

clean()
Clears any cached information in the field and any child objects.

index(value, **kwargs)
Returns an iterator of (btext, frequency, weight, encoded_value) tuples for each unique word in the input
value.

The default implementation uses the analyzer attribute to tokenize the value into strings, then encodes
them into bytes using UTF-8.

parse_query(fieldname, qstring, boost=1.0)
When self_parsing() returns True, the query parser will call this method to parse basic query text.

parse_range(fieldname, start, end, startexcl, endexcl, boost=1.0)
When self_parsing() returns True, the query parser will call this method to parse range query text.
If this method returns None instead of a query object, the parser will fall back to parsing the start and end
terms using process_text().

process_text(qstring, mode=’‘, **kwargs)
Analyzes the given string and returns an iterator of token texts.

>>> field = fields.TEXT()
>>> list(field.process_text("The ides of March"))
["ides", "march"]

self_parsing()
Subclasses should override this method to return True if they want the query parser to call the field’s
parse_query() method instead of running the analyzer on text in this field. This is useful where the
field needs full control over how queries are interpreted, such as in the numeric field type.

separate_spelling()
Returns True if the field stores unstemmed words in a separate field for spelling suggestions.

sortable_terms(ixreader, fieldname)
Returns an iterator of the “sortable” tokens in the given reader and field. These values can be used for
sorting. The default implementation simply returns all tokens in the field.

This can be overridden by field types such as NUMERIC where some values in a field are not useful for
sorting.

spellable_words(value)
Returns an iterator of each unique word (in sorted order) in the input value, suitable for inclusion in the
field’s word graph.

The default behavior is to call the field analyzer with the keyword argument no_morph=True, which
should make the analyzer skip any morphological transformation filters (e.g. stemming) to preserve the
original form of the words. Exotic field types may need to override this behavior.

spelling_fieldname(fieldname)
Returns the name of a field to use for spelling suggestions instead of this field.

Parameters fieldname – the name of this field.

subfields()
Returns an iterator of (name_prefix, fieldobject) pairs for the fields that need to be indexed
when content is put in this field. The default implementation simply yields ("", self).

supports(name)
Returns True if the underlying format supports the given posting value type.

112 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

>>> field = TEXT()
>>> field.supports("positions")
True
>>> field.supports("chars")
False

to_bytes(value)
Returns a bytes representation of the given value, appropriate to be written to disk. The default implemen-
tation assumes a unicode value and encodes it using UTF-8.

to_column_value(value)
Returns an object suitable to be inserted into the document values column for this field. The default
implementation simply calls self.to_bytes(value).

tokenize(value, **kwargs)
Analyzes the given string and returns an iterator of Token objects (note: for performance reasons, actually
the same token yielded over and over with different attributes).

Pre-made field types

class whoosh.fields.ID(stored=False, unique=False, field_boost=1.0, sortable=False, analyzer=None)
Configured field type that indexes the entire value of the field as one token. This is useful for data you don’t
want to tokenize, such as the path of a file.

Parameters stored – Whether the value of this field is stored with the document.

class whoosh.fields.IDLIST(stored=False, unique=False, expression=None, field_boost=1.0)
Configured field type for fields containing IDs separated by whitespace and/or punctuation (or anything else,
using the expression param).

Parameters

• stored – Whether the value of this field is stored with the document.

• unique – Whether the value of this field is unique per-document.

• expression – The regular expression object to use to extract tokens. The default expres-
sion breaks tokens on CRs, LFs, tabs, spaces, commas, and semicolons.

class whoosh.fields.STORED
Configured field type for fields you want to store but not index.

class whoosh.fields.KEYWORD(stored=False, lowercase=False, commas=False, scorable=False,
unique=False, field_boost=1.0, sortable=False, vector=None, ana-
lyzer=None)

Configured field type for fields containing space-separated or comma-separated keyword-like data (such as tags).
The default is to not store positional information (so phrase searching is not allowed in this field) and to not make
the field scorable.

Parameters

• stored – Whether to store the value of the field with the document.

• commas – Whether this is a comma-separated field. If this is False (the default), it is treated
as a space-separated field.

• scorable – Whether this field is scorable.

1.24. Whoosh API 113

Whoosh Documentation, Release 2.7.4

class whoosh.fields.TEXT(analyzer=None, phrase=True, chars=False, stored=False, field_boost=1.0,
multitoken_query=’default’, spelling=False, sortable=False, lang=None,
vector=None, spelling_prefix=’spell_’)

Configured field type for text fields (for example, the body text of an article). The default is to store positional
information to allow phrase searching. This field type is always scorable.

Parameters

• analyzer – The analysis.Analyzer to use to index the field contents. See the anal-
ysis module for more information. If you omit this argument, the field uses analy-
sis.StandardAnalyzer.

• phrase – Whether the store positional information to allow phrase searching.

• chars – Whether to store character ranges along with positions. If this is True, “phrase” is
also implied.

• stored – Whether to store the value of this field with the document. Since this field type
generally contains a lot of text, you should avoid storing it with the document unless you
need to, for example to allow fast excerpts in the search results.

• spelling – if True, and if the field’s analyzer changes the form of term text (such as a
stemming analyzer), this field will store extra information in a separate field (named us-
ing the spelling_prefix keyword argument) to allow spelling suggestions to use the
unchanged word forms as spelling suggestions.

• sortable – If True, make this field sortable using the default column type. If you pass a
whoosh.columns.Column instance instead of True, the field will use the given column
type.

• lang – automaticaly configure a whoosh.analysis.LanguageAnalyzer for the
given language. This is ignored if you also specify an analyzer.

• vector – if this value evaluates to true, store a list of the terms in this field in each doc-
ument. If the value is an instance of whoosh.formats.Format, the index will use the
object to store the term vector. Any other true value (e.g. vector=True) will use the
field’s index format to store the term vector as well.

class whoosh.fields.NUMERIC(numtype=<type ‘int’>, bits=32, stored=False, unique=False,
field_boost=1.0, decimal_places=0, shift_step=4, signed=True,
sortable=False, default=None)

Special field type that lets you index integer or floating point numbers in relatively short fixed-width terms. The
field converts numbers to sortable bytes for you before indexing.

You specify the numeric type of the field (int or float) when you create the NUMERIC object. The default is
int. For int, you can specify a size in bits (32 or 64). For both int and float you can specify a signed
keyword argument (default is True).

>>> schema = Schema(path=STORED, position=NUMERIC(int, 64, signed=False))
>>> ix = storage.create_index(schema)
>>> with ix.writer() as w:
... w.add_document(path="/a", position=5820402204)
...

You can also use the NUMERIC field to store Decimal instances by specifying a type of int or
long and the decimal_places keyword argument. This simply multiplies each number by (10 **
decimal_places) before storing it as an integer. Of course this may throw away decimal prcesision (by
truncating, not rounding) and imposes the same maximum value limits as int/long, but these may be accept-
able for certain applications.

114 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

>>> from decimal import Decimal
>>> schema = Schema(path=STORED, position=NUMERIC(int, decimal_places=4))
>>> ix = storage.create_index(schema)
>>> with ix.writer() as w:
... w.add_document(path="/a", position=Decimal("123.45")
...

Parameters

• numtype – the type of numbers that can be stored in this field, either int, float. If you
use Decimal, use the decimal_places argument to control how many decimal places
the field will store.

• bits – When numtype is int, the number of bits to use to store the number: 8, 16, 32,
or 64.

• stored – Whether the value of this field is stored with the document.

• unique – Whether the value of this field is unique per-document.

• decimal_places – specifies the number of decimal places to save when storing Decimal
instances. If you set this, you will always get Decimal instances back from the field.

• shift_steps – The number of bits of precision to shift away at each tiered indexing
level. Values should generally be 1-8. Lower values yield faster searches but take up more
space. A value of 0 means no tiered indexing.

• signed – Whether the numbers stored in this field may be negative.

class whoosh.fields.DATETIME(stored=False, unique=False, sortable=False)
Special field type that lets you index datetime objects. The field converts the datetime objects to sortable text
for you before indexing.

Since this field is based on Python’s datetime module it shares all the limitations of that module, such as the
inability to represent dates before year 1 in the proleptic Gregorian calendar. However, since this field stores
datetimes as an integer number of microseconds, it could easily represent a much wider range of dates if the
Python datetime implementation ever supports them.

>>> schema = Schema(path=STORED, date=DATETIME)
>>> ix = storage.create_index(schema)
>>> w = ix.writer()
>>> w.add_document(path="/a", date=datetime.now())
>>> w.commit()

Parameters

• stored – Whether the value of this field is stored with the document.

• unique – Whether the value of this field is unique per-document.

class whoosh.fields.BOOLEAN(stored=False, field_boost=1.0)
Special field type that lets you index boolean values (True and False). The field converts the boolean values to
text for you before indexing.

>>> schema = Schema(path=STORED, done=BOOLEAN)
>>> ix = storage.create_index(schema)
>>> w = ix.writer()
>>> w.add_document(path="/a", done=False)
>>> w.commit()

1.24. Whoosh API 115

Whoosh Documentation, Release 2.7.4

Parameters stored – Whether the value of this field is stored with the document.

class whoosh.fields.NGRAM(minsize=2, maxsize=4, stored=False, field_boost=1.0, queryor=False,
phrase=False, sortable=False)

Configured field that indexes text as N-grams. For example, with a field type NGRAM(3,4), the value “hello”
will be indexed as tokens “hel”, “hell”, “ell”, “ello”, “llo”. This field type chops the entire text into N-grams,
including whitespace and punctuation. See NGRAMWORDS for a field type that breaks the text into words first
before chopping the words into N-grams.

Parameters

• minsize – The minimum length of the N-grams.

• maxsize – The maximum length of the N-grams.

• stored – Whether to store the value of this field with the document. Since this field type
generally contains a lot of text, you should avoid storing it with the document unless you
need to, for example to allow fast excerpts in the search results.

• queryor – if True, combine the N-grams with an Or query. The default is to combine
N-grams with an And query.

• phrase – store positions on the N-grams to allow exact phrase searching. The default is
off.

class whoosh.fields.NGRAMWORDS(minsize=2, maxsize=4, stored=False, field_boost=1.0, tok-
enizer=None, at=None, queryor=False, sortable=False)

Configured field that chops text into words using a tokenizer, lowercases the words, and then chops the words
into N-grams.

Parameters

• minsize – The minimum length of the N-grams.

• maxsize – The maximum length of the N-grams.

• stored – Whether to store the value of this field with the document. Since this field type
generally contains a lot of text, you should avoid storing it with the document unless you
need to, for example to allow fast excerpts in the search results.

• tokenizer – an instance of whoosh.analysis.Tokenizer used to break the text
into words.

• at – if ‘start’, only takes N-grams from the start of the word. If ‘end’, only takes N-grams
from the end. Otherwise the default is to take all N-grams from each word.

• queryor – if True, combine the N-grams with an Or query. The default is to combine
N-grams with an And query.

Exceptions

exception whoosh.fields.FieldConfigurationError

exception whoosh.fields.UnknownFieldError

filedb.filestore module

116 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Base class

class whoosh.filedb.filestore.Storage
Abstract base class for storage objects.

A storage object is a virtual flat filesystem, allowing the creation and retrieval of file-like objects (StructFile
objects). The default implementation (FileStorage) uses actual files in a directory.

All access to files in Whoosh goes through this object. This allows more different forms of storage (for example,
in RAM, in a database, in a single file) to be used transparently.

For example, to create a FileStorage object:

Create a storage object
st = FileStorage("indexdir")
Create the directory if it doesn't already exist
st.create()

The Storage.create() method makes it slightly easier to swap storage implementations. The create()
method handles set-up of the storage object. For example, FileStorage.create() creates the directory. A
database implementation might create tables. This is designed to let you avoid putting implementation-specific
setup code in your application.

close()
Closes any resources opened by this storage object. For some storage implementations this will be a no-op,
but for others it is necessary to release locks and/or prevent leaks, so it’s a good idea to call it when you’re
done with a storage object.

create()
Creates any required implementation-specific resources. For example, a filesystem-based implementation
might create a directory, while a database implementation might create tables. For example:

from whoosh.filedb.filestore import FileStorage
Create a storage object
st = FileStorage("indexdir")
Create any necessary resources
st.create()

This method returns self so you can also say:

st = FileStorage("indexdir").create()

Storage implementations should be written so that calling create() a second time on the same storage

Returns a Storage instance.

create_file(name)
Creates a file with the given name in this storage.

Parameters name – the name for the new file.

Returns a whoosh.filedb.structfile.StructFile instance.

create_index(schema, indexname=’MAIN’, indexclass=None)
Creates a new index in this storage.

>>> from whoosh import fields
>>> from whoosh.filedb.filestore import FileStorage
>>> schema = fields.Schema(content=fields.TEXT)
>>> # Create the storage directory
>>> st = FileStorage.create("indexdir")

1.24. Whoosh API 117

Whoosh Documentation, Release 2.7.4

>>> # Create an index in the storage
>>> ix = st.create_index(schema)

Parameters

• schema – the whoosh.fields.Schema object to use for the new index.

• indexname – the name of the index within the storage object. You can use this option to
store multiple indexes in the same storage.

• indexclass – an optional custom Index sub-class to use to create the index files.
The default is whoosh.index.FileIndex. This method will call the create class
method on the given class to create the index.

Returns a whoosh.index.Index instance.

delete_file(name)
Removes the given file from this storage.

Parameters name – the name to delete.

destroy(*args, **kwargs)
Removes any implementation-specific resources related to this storage object. For example, a filesystem-
based implementation might delete a directory, and a database implementation might drop tables.

The arguments are implementation-specific.

file_exists(name)
Returns True if the given file exists in this storage.

Parameters name – the name to check.

Return type bool

file_length(name)
Returns the size (in bytes) of the given file in this storage.

Parameters name – the name to check.

Return type int

file_modified(name)
Returns the last-modified time of the given file in this storage (as a “ctime” UNIX timestamp).

Parameters name – the name to check.

Returns a “ctime” number.

index_exists(indexname=None)
Returns True if a non-empty index exists in this storage.

Parameters indexname – the name of the index within the storage object. You can use this
option to store multiple indexes in the same storage.

Return type bool

list()
Returns a list of file names in this storage.

Returns a list of strings

lock(name)
Return a named lock object (implementing .acquire() and .release() methods). Different storage
implementations may use different lock types with different guarantees. For example, the RamStorage

118 Chapter 1. Contents

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool

Whoosh Documentation, Release 2.7.4

object uses Python thread locks, while the FileStorage object uses filesystem-based locks that are valid
across different processes.

Parameters name – a name for the lock.

Returns a lock-like object.

open_file(name, *args, **kwargs)
Opens a file with the given name in this storage.

Parameters name – the name for the new file.

Returns a whoosh.filedb.structfile.StructFile instance.

open_index(indexname=’MAIN’, schema=None, indexclass=None)
Opens an existing index (created using create_index()) in this storage.

>>> from whoosh.filedb.filestore import FileStorage
>>> st = FileStorage("indexdir")
>>> # Open an index in the storage
>>> ix = st.open_index()

Parameters

• indexname – the name of the index within the storage object. You can use this option to
store multiple indexes in the same storage.

• schema – if you pass in a whoosh.fields.Schema object using this argument, it
will override the schema that was stored with the index.

• indexclass – an optional custom Index sub-class to use to open the index files. The
default is whoosh.index.FileIndex. This method will instantiate the class with
this storage object.

Returns a whoosh.index.Index instance.

optimize()
Optimizes the storage object. The meaning and cost of “optimizing” will vary by implementation. For
example, a database implementation might run a garbage collection procedure on the underlying database.

rename_file(frm, to, safe=False)
Renames a file in this storage.

Parameters

• frm – The current name of the file.

• to – The new name for the file.

• safe – if True, raise an exception if a file with the new name already exists.

temp_storage(name=None)
Creates a new storage object for temporary files. You can call Storage.destroy() on the new storage
when you’re finished with it.

Parameters name – a name for the new storage. This may be optional or required depending
on the storage implementation.

Return type Storage

1.24. Whoosh API 119

Whoosh Documentation, Release 2.7.4

Implementation classes

class whoosh.filedb.filestore.FileStorage(path, supports_mmap=True, readonly=False, de-
bug=False)

Storage object that stores the index as files in a directory on disk.

Prior to version 3, the initializer would raise an IOError if the directory did not exist. As of version 3, the object
does not check if the directory exists at initialization. This change is to support using the FileStorage.
create() method.

Parameters

• path – a path to a directory.

• supports_mmap – if True (the default), use the mmap module to open memory mapped
files. You can open the storage object with supports_mmap=False to force Whoosh to
open files normally instead of with mmap.

• readonly – If True, the object will raise an exception if you attempt to create or rename
a file.

class whoosh.filedb.filestore.RamStorage
Storage object that keeps the index in memory.

Helper functions

whoosh.filedb.filestore.copy_storage(sourcestore, deststore)
Copies the files from the source storage object to the destination storage object using shutil.copyfileobj.

whoosh.filedb.filestore.copy_to_ram(storage)
Copies the given FileStorage object into a new RamStorage object.

Return type RamStorage

Exceptions

exception whoosh.filedb.filestore.ReadOnlyError

filedb.filetables module

This module defines writer and reader classes for a fast, immutable on-disk key-value database format. The current
format is based heavily on D. J. Bernstein’s CDB format (http://cr.yp.to/cdb.html).

Hash file

class whoosh.filedb.filetables.HashWriter(dbfile, magic=’HSH3’, hashtype=0)
Implements a fast on-disk key-value store. This hash uses a two-level hashing scheme, where a key is hashed,
the low eight bits of the hash value are used to index into one of 256 hash tables. This is basically the CDB
algorithm, but unlike CDB this object writes all data serially (it doesn’t seek backwards to overwrite information
at the end).

Also unlike CDB, this format uses 64-bit file pointers, so the file length is essentially unlimited. However, each
key and value must be less than 2 GB in length.

Parameters

• dbfile – a StructFile object to write to.

120 Chapter 1. Contents

http://cr.yp.to/cdb.html

Whoosh Documentation, Release 2.7.4

• magic – the format tag bytes to write at the start of the file.

• hashtype – an integer indicating which hashing algorithm to use. Possible values are 0
(MD5), 1 (CRC32), or 2 (CDB hash).

add(key, value)
Adds a key/value pair to the file. Note that keys DO NOT need to be unique. You can store multiple values
under the same key and retrieve them using HashReader.all().

add_all(items)
Convenience method to add a sequence of (key, value) pairs. This is the same as calling
HashWriter.add() on each pair in the sequence.

class whoosh.filedb.filetables.HashReader(dbfile, length=None, magic=’HSH3’, startoff-
set=0)

Reader for the fast on-disk key-value files created by HashWriter.

Parameters

• dbfile – a StructFile object to read from.

• length – the length of the file data. This is necessary since the hashing information is
written at the end of the file.

• magic – the format tag bytes to look for at the start of the file. If the file’s format tag does
not match these bytes, the object raises a FileFormatError exception.

• startoffset – the starting point of the file data.

all(key)
Yields a sequence of values associated with the given key.

classmethod open(storage, name)
Convenience method to open a hash file given a whoosh.filedb.filestore.Storage object and
a name. This takes care of opening the file and passing its length to the initializer.

ranges_for_key(key)
Yields a sequence of (datapos, datalength) tuples associated with the given key.

Ordered Hash file

class whoosh.filedb.filetables.OrderedHashWriter(dbfile)
Implements an on-disk hash, but requires that keys be added in order. An OrderedHashReader can then
look up “nearest keys” based on the ordering.

class whoosh.filedb.filetables.OrderedHashReader(dbfile, length=None, magic=’HSH3’,
startoffset=0)

Parameters

• dbfile – a StructFile object to read from.

• length – the length of the file data. This is necessary since the hashing information is
written at the end of the file.

• magic – the format tag bytes to look for at the start of the file. If the file’s format tag does
not match these bytes, the object raises a FileFormatError exception.

• startoffset – the starting point of the file data.

1.24. Whoosh API 121

Whoosh Documentation, Release 2.7.4

filedb.structfile module

Classes

class whoosh.filedb.structfile.StructFile(fileobj, name=None, onclose=None)
Returns a “structured file” object that wraps the given file object and provides numerous additional methods for
writing structured data, such as “write_varint” and “write_long”.

close()
Closes the wrapped file.

flush()
Flushes the buffer of the wrapped file. This is a no-op if the wrapped file does not have a flush method.

read_pickle()
Reads a pickled object from the wrapped file.

read_string()
Reads a string from the wrapped file.

read_svarint()
Reads a variable-length encoded signed integer from the wrapped file.

read_tagint()
Reads a sometimes-compressed unsigned integer from the wrapped file. This is similar to the varint meth-
ods but uses a less compressed but faster format.

read_varint()
Reads a variable-length encoded unsigned integer from the wrapped file.

write_byte(n)
Writes a single byte to the wrapped file, shortcut for file.write(chr(n)).

write_pickle(obj, protocol=-1)
Writes a pickled representation of obj to the wrapped file.

write_string(s)
Writes a string to the wrapped file. This method writes the length of the string first, so you can read the
string back without having to know how long it was.

write_svarint(i)
Writes a variable-length signed integer to the wrapped file.

write_tagint(i)
Writes a sometimes-compressed unsigned integer to the wrapped file. This is similar to the varint methods
but uses a less compressed but faster format.

write_varint(i)
Writes a variable-length unsigned integer to the wrapped file.

class whoosh.filedb.structfile.BufferFile(buf, name=None, onclose=None)

class whoosh.filedb.structfile.ChecksumFile(*args, **kwargs)

formats module

The classes in this module encode and decode posting information for a field. The field format essentially determines
what information is stored about each occurance of a term.

122 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Base class

class whoosh.formats.Format(field_boost=1.0, **options)
Abstract base class representing a storage format for a field or vector. Format objects are responsible for writing
and reading the low-level representation of a field. It controls what kind/level of information to store about the
indexed fields.

Parameters field_boost – A constant boost factor to scale to the score of all queries matching
terms in this field.

decode_as(astype, valuestring)
Interprets the encoded value string as ‘astype’, where ‘astype’ is for example “frequency” or “positions”.
This object must have a corresponding decode_<astype>() method.

decoder(name)
Returns the bound method for interpreting value as ‘name’, where ‘name’ is for example “frequency” or
“positions”. This object must have a corresponding Format.decode_<name>() method.

supports(name)
Returns True if this format supports interpreting its posting value as ‘name’ (e.g. “frequency” or “posi-
tions”).

word_values(value, analyzer, **kwargs)
Takes the text value to be indexed and yields a series of (“tokentext”, frequency, weight, valuestring)
tuples, where frequency is the number of times “tokentext” appeared in the value, weight is the weight
(a float usually equal to frequency in the absence of per-term boosts) and valuestring is encoded field-
specific posting value for the token. For example, in a Frequency format, the value string would be the
same as frequency; in a Positions format, the value string would encode a list of token positions at which
“tokentext” occured.

Parameters

• value – The unicode text to index.

• analyzer – The analyzer to use to process the text.

Formats

class whoosh.formats.Existence(field_boost=1.0, **options)
Only indexes whether a given term occurred in a given document; it does not store frequencies or positions.
This is useful for fields that should be searchable but not scorable, such as file path.

Supports: frequency, weight (always reports frequency = 1).

class whoosh.formats.Frequency(field_boost=1.0, boost_as_freq=False, **options)
Stores frequency information for each posting.

Supports: frequency, weight.

Parameters field_boost – A constant boost factor to scale to the score of all queries matching
terms in this field.

class whoosh.formats.Positions(field_boost=1.0, **options)
Stores position information in each posting, to allow phrase searching and “near” queries.

Supports: frequency, weight, positions, position_boosts (always reports position boost = 1.0).

Parameters field_boost – A constant boost factor to scale to the score of all queries matching
terms in this field.

1.24. Whoosh API 123

Whoosh Documentation, Release 2.7.4

class whoosh.formats.Characters(field_boost=1.0, **options)
Stores token position and character start and end information for each posting.

Supports: frequency, weight, positions, position_boosts (always reports position boost = 1.0), characters.

Parameters field_boost – A constant boost factor to scale to the score of all queries matching
terms in this field.

class whoosh.formats.PositionBoosts(field_boost=1.0, **options)
A format that stores positions and per-position boost information in each posting.

Supports: frequency, weight, positions, position_boosts.

Parameters field_boost – A constant boost factor to scale to the score of all queries matching
terms in this field.

class whoosh.formats.CharacterBoosts(field_boost=1.0, **options)
A format that stores positions, character start and end, and per-position boost information in each posting.

Supports: frequency, weight, positions, position_boosts, characters, character_boosts.

Parameters field_boost – A constant boost factor to scale to the score of all queries matching
terms in this field.

highlight module

The highlight module contains classes and functions for displaying short excerpts from hit documents in the search
results you present to the user, with query terms highlighted.

The highlighting system has four main elements.

• Fragmenters chop up the original text into __fragments__, based on the locations of matched terms in the text.

• Scorers assign a score to each fragment, allowing the system to rank the best fragments by whatever criterion.

• Order functions control in what order the top-scoring fragments are presented to the user. For example, you
can show the fragments in the order they appear in the document (FIRST) or show higher-scoring fragments
first (SCORE)

• Formatters turn the fragment objects into human-readable output, such as an HTML string.

See How to create highlighted search result excerpts for more information.

See how to highlight terms in search results.

Manual highlighting

class whoosh.highlight.Highlighter(fragmenter=None, scorer=None, formatter=None, al-
ways_retokenize=False, order=<function FIRST>)

whoosh.highlight.highlight(text, terms, analyzer, fragmenter, formatter, top=3, scorer=None, min-
score=1, order=<function FIRST>, mode=’query’)

Fragmenters

class whoosh.highlight.Fragmenter

fragment_matches(text, matched_tokens)
Yields Fragment objects based on the text and the matched terms.

124 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Parameters

• text – the string being highlighted.

• matched_tokens – a list of analysis.Token objects representing the term matches
in the string.

fragment_tokens(text, all_tokens)
Yields Fragment objects based on the tokenized text.

Parameters

• text – the string being highlighted.

• all_tokens – an iterator of analysis.Token objects from the string.

must_retokenize()
Returns True if this fragmenter requires retokenized text.

If this method returns True, the fragmenter’s fragment_tokens method will be called with an iterator
of ALL tokens from the text, with the tokens for matched terms having the matched attribute set to True.

If this method returns False, the fragmenter’s fragment_matches method will be called with a LIST
of matching tokens.

class whoosh.highlight.WholeFragmenter(charlimit=32768)
Doesn’t fragment the token stream. This object just returns the entire entire stream as one “fragment”. This is
useful if you want to highlight the entire text.

Note that even if you use the WholeFragmenter, the highlight code will return no fragment if no terms matched
in the given field. To return the whole fragment even in that case, call highlights() with minscore=0:

Query where no terms match in the "text" field
q = query.Term("tag", "new")

r = mysearcher.search(q)
r.fragmenter = highlight.WholeFragmenter()
r.formatter = highlight.UppercaseFormatter()
Since no terms in the "text" field matched, we get no fragments back
assert r[0].highlights("text") == ""

If we lower the minimum score to 0, we get a fragment even though it
has no matching terms
assert r[0].highlights("text", minscore=0) == "This is the text field."

class whoosh.highlight.SentenceFragmenter(maxchars=200, sentencechars=’.!?’, char-
limit=32768)

Breaks the text up on sentence end punctuation characters (”.”, ”!”, or ”?”). This object works by looking in the
original text for a sentence end as the next character after each token’s ‘endchar’.

When highlighting with this fragmenter, you should use an analyzer that does NOT remove stop words, for
example:

sa = StandardAnalyzer(stoplist=None)

Parameters maxchars – The maximum number of characters allowed in a fragment.

class whoosh.highlight.ContextFragmenter(maxchars=200, surround=20, charlimit=32768)
Looks for matched terms and aggregates them with their surrounding context.

Parameters

1.24. Whoosh API 125

Whoosh Documentation, Release 2.7.4

• maxchars – The maximum number of characters allowed in a fragment.

• surround – The number of extra characters of context to add both before the first matched
term and after the last matched term.

class whoosh.highlight.PinpointFragmenter(maxchars=200, surround=20, autotrim=False,
charlimit=32768)

This is a NON-RETOKENIZING fragmenter. It builds fragments from the positions of the matched terms.

Parameters

• maxchars – The maximum number of characters allowed in a fragment.

• surround – The number of extra characters of context to add both before the first matched
term and after the last matched term.

• autotrim – automatically trims text before the first space and after the last space in the
fragments, to try to avoid truncated words at the start and end. For short fragments or
fragments with long runs between spaces this may give strange results.

Scorers

class whoosh.highlight.FragmentScorer

class whoosh.highlight.BasicFragmentScorer

Formatters

class whoosh.highlight.UppercaseFormatter(between=’...’)
Returns a string in which the matched terms are in UPPERCASE.

Parameters between – the text to add between fragments.

class whoosh.highlight.HtmlFormatter(tagname=’strong’, between=’...’, classname=’match’,
termclass=’term’, maxclasses=5, attrquote=””)

Returns a string containing HTML formatting around the matched terms.

This formatter wraps matched terms in an HTML element with two class names. The first class name (set
with the constructor argument classname) is the same for each match. The second class name (set with the
constructor argument termclass is different depending on which term matched. This allows you to give
different formatting (for example, different background colors) to the different terms in the excerpt.

>>> hf = HtmlFormatter(tagname="span", classname="match", termclass="term")
>>> hf(mytext, myfragments)
"The template geometry
→˓ is..."

This object maintains a dictionary mapping terms to HTML class names (e.g. term0 and term1 above), so
that multiple excerpts will use the same class for the same term. If you want to re-use the same HtmlFormatter
object with different searches, you should call HtmlFormatter.clear() between searches to clear the mapping.

Parameters

• tagname – the tag to wrap around matching terms.

• between – the text to add between fragments.

• classname – the class name to add to the elements wrapped around matching terms.

• termclass – the class name prefix for the second class which is different for each matched
term.

126 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

• maxclasses – the maximum number of term classes to produce. This limits the number
of classes you have to define in CSS by recycling term class names. For example, if you
set maxclasses to 3 and have 5 terms, the 5 terms will use the CSS classes term0, term1,
term2, term0, term1.

class whoosh.highlight.GenshiFormatter(qname=’strong’, between=’...’)
Returns a Genshi event stream containing HTML formatting around the matched terms.

Parameters

• qname – the QName for the tag to wrap around matched terms.

• between – the text to add between fragments.

Utility classes

class whoosh.highlight.Fragment(text, matches, startchar=0, endchar=-1)
Represents a fragment (extract) from a hit document. This object is mainly used to keep track of the start and
end points of the fragment and the “matched” character ranges inside; it does not contain the text of the fragment
or do much else.

The useful attributes are:

Fragment.text The entire original text from which this fragment is taken.

Fragment.matches An ordered list of objects representing the matched terms in the fragment. These ob-
jects have startchar and endchar attributes.

Fragment.startchar The index of the first character in the fragment.

Fragment.endchar The index of the last character in the fragment.

Fragment.matched_terms A set of the text of the matched terms in the fragment (if available).

Parameters

• text – the source text of the fragment.

• matches – a list of objects which have startchar and endchar attributes, and option-
ally a text attribute.

• startchar – the index into text at which the fragment starts. The default is 0.

• endchar – the index into text at which the fragment ends. The default is -1, which is
interpreted as the length of text.

support.bitvector module

An implementation of an object that acts like a collection of on/off bits.

Base classes

class whoosh.idsets.DocIdSet
Base class for a set of positive integers, implementing a subset of the built-in set type’s interface with extra
docid-related methods.

This is a superclass for alternative set implementations to the built-in set which are more memory-efficient and
specialized toward storing sorted lists of positive integers, though they will inevitably be slower than set for
most operations since they’re pure Python.

1.24. Whoosh API 127

Whoosh Documentation, Release 2.7.4

after(i)
Returns the next integer in the set after i, or None.

before(i)
Returns the previous integer in the set before i, or None.

first()
Returns the first (lowest) integer in the set.

invert_update(size)
Updates the set in-place to contain numbers in the range [0 - size) except numbers that are in this
set.

last()
Returns the last (highest) integer in the set.

class whoosh.idsets.BaseBitSet

Implementation classes

class whoosh.idsets.BitSet(source=None, size=0)
A DocIdSet backed by an array of bits. This can also be useful as a bit array (e.g. for a Bloom filter). It is much
more memory efficient than a large built-in set of integers, but wastes memory for sparse sets.

Parameters

• maxsize – the maximum size of the bit array.

• source – an iterable of positive integers to add to this set.

• bits – an array of unsigned bytes (“B”) to use as the underlying bit array. This is used by
some of the object’s methods.

class whoosh.idsets.OnDiskBitSet(dbfile, basepos, bytecount)
A DocIdSet backed by an array of bits on disk.

>>> st = RamStorage()
>>> f = st.create_file("test.bin")
>>> bs = BitSet([1, 10, 15, 7, 2])
>>> bytecount = bs.to_disk(f)
>>> f.close()
>>> # ...
>>> f = st.open_file("test.bin")
>>> odbs = OnDiskBitSet(f, bytecount)
>>> list(odbs)
[1, 2, 7, 10, 15]

Parameters

• dbfile – a StructFile object to read from.

• basepos – the base position of the bytes in the given file.

• bytecount – the number of bytes to use for the bit array.

class whoosh.idsets.SortedIntSet(source=None, typecode=’I’)
A DocIdSet backed by a sorted array of integers.

class whoosh.idsets.MultiIdSet(idsets, offsets)
Wraps multiple SERIAL sub-DocIdSet objects and presents them as an aggregated, read-only set.

128 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Parameters

• idsets – a list of DocIdSet objects.

• offsets – a list of offsets corresponding to the DocIdSet objects in idsets.

index module

Contains the main functions/classes for creating, maintaining, and using an index.

Functions

whoosh.index.create_in(dirname, schema, indexname=None)
Convenience function to create an index in a directory. Takes care of creating a FileStorage object for you.

Parameters

• dirname – the path string of the directory in which to create the index.

• schema – a whoosh.fields.Schema object describing the index’s fields.

• indexname – the name of the index to create; you only need to specify this if you are
creating multiple indexes within the same storage object.

Returns Index

whoosh.index.open_dir(dirname, indexname=None, readonly=False, schema=None)
Convenience function for opening an index in a directory. Takes care of creating a FileStorage object for you.
dirname is the filename of the directory in containing the index. indexname is the name of the index to create;
you only need to specify this if you have multiple indexes within the same storage object.

Parameters

• dirname – the path string of the directory in which to create the index.

• indexname – the name of the index to create; you only need to specify this if you have
multiple indexes within the same storage object.

whoosh.index.exists_in(dirname, indexname=None)
Returns True if dirname contains a Whoosh index.

Parameters

• dirname – the file path of a directory.

• indexname – the name of the index. If None, the default index name is used.

whoosh.index.exists(storage, indexname=None)
Deprecated; use storage.index_exists().

Parameters

• storage – a store.Storage object.

• indexname – the name of the index. If None, the default index name is used.

whoosh.index.version_in(dirname, indexname=None)
Returns a tuple of (release_version, format_version), where release_version is the release version number of the
Whoosh code that created the index – e.g. (0, 1, 24) – and format_version is the version number of the on-disk
format used for the index – e.g. -102.

You should avoid attaching significance to the second number (the index version). This is simply a version
number for the TOC file and probably should not have been exposed in a public interface. The best way to

1.24. Whoosh API 129

Whoosh Documentation, Release 2.7.4

check if the current version of Whoosh can open an index is to actually try to open it and see if it raises a
whoosh.index.IndexVersionError exception.

Note that the release and format version are available as attributes on the Index object in Index.release and
Index.version.

Parameters

• dirname – the file path of a directory containing an index.

• indexname – the name of the index. If None, the default index name is used.

Returns ((major_ver, minor_ver, build_ver), format_ver)

whoosh.index.version(storage, indexname=None)
Returns a tuple of (release_version, format_version), where release_version is the release version number of the
Whoosh code that created the index – e.g. (0, 1, 24) – and format_version is the version number of the on-disk
format used for the index – e.g. -102.

You should avoid attaching significance to the second number (the index version). This is simply a version
number for the TOC file and probably should not have been exposed in a public interface. The best way to
check if the current version of Whoosh can open an index is to actually try to open it and see if it raises a
whoosh.index.IndexVersionError exception.

Note that the release and format version are available as attributes on the Index object in Index.release and
Index.version.

Parameters

• storage – a store.Storage object.

• indexname – the name of the index. If None, the default index name is used.

Returns ((major_ver, minor_ver, build_ver), format_ver)

Base class

class whoosh.index.Index
Represents an indexed collection of documents.

add_field(fieldname, fieldspec)
Adds a field to the index’s schema.

Parameters

• fieldname – the name of the field to add.

• fieldspec – an instantiated whoosh.fields.FieldType object.

close()
Closes any open resources held by the Index object itself. This may not close all resources being used
everywhere, for example by a Searcher object.

doc_count()
Returns the total number of UNDELETED documents in this index.

doc_count_all()
Returns the total number of documents, DELETED OR UNDELETED, in this index.

field_length(fieldname)
Returns the total length of the field across all documents.

is_empty()
Returns True if this index is empty (that is, it has never had any documents successfully written to it.

130 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

last_modified()
Returns the last modified time of the index, or -1 if the backend doesn’t support last-modified times.

latest_generation()
Returns the generation number of the latest generation of this index, or -1 if the backend doesn’t support
versioning.

max_field_length(fieldname)
Returns the maximum length of the field across all documents.

optimize()
Optimizes this index, if necessary.

reader(reuse=None)
Returns an IndexReader object for this index.

Parameters reuse – an existing reader. Some implementations may recycle resources from
this existing reader to create the new reader. Note that any resources in the “recycled” reader
that are not used by the new reader will be CLOSED, so you CANNOT use it afterward.

Return type whoosh.reading.IndexReader

refresh()
Returns a new Index object representing the latest generation of this index (if this object is the latest
generation, or the backend doesn’t support versioning, returns self).

Returns Index

remove_field(fieldname)
Removes the named field from the index’s schema. Depending on the backend implementation, this may
or may not actually remove existing data for the field from the index. Optimizing the index should always
clear out existing data for a removed field.

searcher(**kwargs)
Returns a Searcher object for this index. Keyword arguments are passed to the Searcher object’s construc-
tor.

Return type whoosh.searching.Searcher

up_to_date()
Returns True if this object represents the latest generation of this index. Returns False if this object is not
the latest generation (that is, someone else has updated the index since you opened this object).

writer(**kwargs)
Returns an IndexWriter object for this index.

Return type whoosh.writing.IndexWriter

Implementation

class whoosh.index.FileIndex(storage, schema=None, indexname=’MAIN’)

Exceptions

exception whoosh.index.LockError

exception whoosh.index.IndexError
Generic index error.

1.24. Whoosh API 131

Whoosh Documentation, Release 2.7.4

exception whoosh.index.IndexVersionError(msg, version, release=None)
Raised when you try to open an index using a format that the current version of Whoosh cannot read. That is,
when the index you’re trying to open is either not backward or forward compatible with this version of Whoosh.

exception whoosh.index.OutOfDateError
Raised when you try to commit changes to an index which is not the latest generation.

exception whoosh.index.EmptyIndexError
Raised when you try to work with an index that has no indexed terms.

lang.morph_en module

Contains the variations() function for expanding an English word into multiple variations by programatically adding
and removing suffixes.

Translated to Python from the com.sun.labs.minion.lexmorph.LiteMorph_en class of Sun’s Minion
search engine.

whoosh.lang.morph_en.variations(word)
Given an English word, returns a collection of morphological variations on the word by algorithmically adding
and removing suffixes. The variation list may contain non-words (e.g. render -> renderment).

>>> variations("pull")
set(['pull', 'pullings', 'pullnesses', 'pullful', 'pullment', 'puller', ...])

lang.porter module

Reimplementation of the Porter stemming algorithm in Python.

In my quick tests, this implementation about 3.5 times faster than the seriously weird Python linked from the official
page.

whoosh.lang.porter.stem(w)
Uses the Porter stemming algorithm to remove suffixes from English words.

>>> stem("fundamentally")
"fundament"

lang.wordnet module

This module contains low-level functions and a high-level class for parsing the prolog file “wn_s.pl” from the WordNet
prolog download into an object suitable for looking up synonyms and performing query expansion.

http://wordnetcode.princeton.edu/3.0/WNprolog-3.0.tar.gz

Thesaurus

class whoosh.lang.wordnet.Thesaurus
Represents the WordNet synonym database, either loaded into memory from the wn_s.pl Prolog file, or stored
on disk in a Whoosh index.

This class allows you to parse the prolog file “wn_s.pl” from the WordNet prolog download into an object
suitable for looking up synonyms and performing query expansion.

http://wordnetcode.princeton.edu/3.0/WNprolog-3.0.tar.gz

132 Chapter 1. Contents

https://minion.dev.java.net/
https://minion.dev.java.net/
http://tartarus.org/~martin/PorterStemmer/
http://wordnetcode.princeton.edu/3.0/WNprolog-3.0.tar.gz
http://wordnetcode.princeton.edu/3.0/WNprolog-3.0.tar.gz

Whoosh Documentation, Release 2.7.4

To load a Thesaurus object from the wn_s.pl file...

>>> t = Thesaurus.from_filename("wn_s.pl")

To save the in-memory Thesaurus to a Whoosh index...

>>> from whoosh.filedb.filestore import FileStorage
>>> fs = FileStorage("index")
>>> t.to_storage(fs)

To load a Thesaurus object from a Whoosh index...

>>> t = Thesaurus.from_storage(fs)

The Thesaurus object is thus usable in two ways:

•Parse the wn_s.pl file into memory (Thesaurus.from_*) and then look up synonyms in memory. This has
a startup cost for parsing the file, and uses quite a bit of memory to store two large dictionaries, however
synonym look-ups are very fast.

•Parse the wn_s.pl file into memory (Thesaurus.from_filename) then save it to an index (to_storage). From
then on, open the thesaurus from the saved index (Thesaurus.from_storage). This has a large cost for
storing the index, but after that it is faster to open the Thesaurus (than re-parsing the file) but slightly
slower to look up synonyms.

Here are timings for various tasks on my (fast) Windows machine, which might give an idea of relative costs for
in-memory vs. on-disk.

Task Approx. time (s)
Parsing the wn_s.pl file 1.045
Saving to an on-disk index 13.084
Loading from an on-disk index 0.082
Look up synonyms for “light” (in memory) 0.0011
Look up synonyms for “light” (loaded from disk) 0.0028

Basically, if you can afford spending the memory necessary to parse the Thesaurus and then cache it, it’s faster.
Otherwise, use an on-disk index.

classmethod from_file(fileobj)
Creates a Thesaurus object from the given file-like object, which should contain the WordNet wn_s.pl file.

>>> f = open("wn_s.pl")
>>> t = Thesaurus.from_file(f)
>>> t.synonyms("hail")
['acclaim', 'come', 'herald']

classmethod from_filename(filename)
Creates a Thesaurus object from the given filename, which should contain the WordNet wn_s.pl file.

>>> t = Thesaurus.from_filename("wn_s.pl")
>>> t.synonyms("hail")
['acclaim', 'come', 'herald']

classmethod from_storage(storage, indexname=’THES’)
Creates a Thesaurus object from the given storage object, which should contain an index created by The-
saurus.to_storage().

>>> from whoosh.filedb.filestore import FileStorage
>>> fs = FileStorage("index")

1.24. Whoosh API 133

Whoosh Documentation, Release 2.7.4

>>> t = Thesaurus.from_storage(fs)
>>> t.synonyms("hail")
['acclaim', 'come', 'herald']

Parameters

• storage – A whoosh.store.Storage object from which to load the index.

• indexname – A name for the index. This allows you to store multiple indexes in the
same storage object.

synonyms(word)
Returns a list of synonyms for the given word.

>>> thesaurus.synonyms("hail")
['acclaim', 'come', 'herald']

to_storage(storage, indexname=’THES’)
Creates am index in the given storage object from the synonyms loaded from a WordNet file.

>>> from whoosh.filedb.filestore import FileStorage
>>> fs = FileStorage("index")
>>> t = Thesaurus.from_filename("wn_s.pl")
>>> t.to_storage(fs)

Parameters

• storage – A whoosh.store.Storage object in which to save the index.

• indexname – A name for the index. This allows you to store multiple indexes in the
same storage object.

Low-level functions

whoosh.lang.wordnet.parse_file(f)
Parses the WordNet wn_s.pl prolog file and returns two dictionaries: word2nums and num2words.

whoosh.lang.wordnet.synonyms(word2nums, num2words, word)
Uses the word2nums and num2words dicts to look up synonyms for the given word. Returns a list of synonym
strings.

whoosh.lang.wordnet.make_index(storage, indexname, word2nums, num2words)
Creates a Whoosh index in the given storage object containing synonyms taken from word2nums and
num2words. Returns the Index object.

matching module

Matchers

class whoosh.matching.Matcher
Base class for all matchers.

all_ids()
Returns a generator of all IDs in the matcher.

134 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

What this method returns for a matcher that has already read some postings (whether it only yields the
remaining postings or all postings from the beginning) is undefined, so it’s best to only use this method on
fresh matchers.

all_items()
Returns a generator of all (ID, encoded value) pairs in the matcher.

What this method returns for a matcher that has already read some postings (whether it only yields the
remaining postings or all postings from the beginning) is undefined, so it’s best to only use this method on
fresh matchers.

block_quality()
Returns a quality measurement of the current block of postings, according to the current weighting algo-
rithm. Raises NoQualityAvailable if the matcher or weighting do not support quality measurements.

children()
Returns an (possibly empty) list of the submatchers of this matcher.

copy()
Returns a copy of this matcher.

depth()
Returns the depth of the tree under this matcher, or 0 if this matcher does not have any children.

id()
Returns the ID of the current posting.

is_active()
Returns True if this matcher is still “active”, that is, it has not yet reached the end of the posting list.

items_as(astype)
Returns a generator of all (ID, decoded value) pairs in the matcher.

What this method returns for a matcher that has already read some postings (whether it only yields the
remaining postings or all postings from the beginning) is undefined, so it’s best to only use this method on
fresh matchers.

matching_terms(id=None)
Returns an iterator of ("fieldname", "termtext") tuples for the currently matching term match-
ers in this tree.

max_quality()
Returns the maximum possible quality measurement for this matcher, according to the current weighting
algorithm. Raises NoQualityAvailable if the matcher or weighting do not support quality measure-
ments.

next()
Moves this matcher to the next posting.

replace(minquality=0)
Returns a possibly-simplified version of this matcher. For example, if one of the children of a Union-
Matcher is no longer active, calling this method on the UnionMatcher will return the other child.

reset()
Returns to the start of the posting list.

Note that reset() may not do what you expect after you call Matcher.replace(), since this can mean
calling reset() not on the original matcher, but on an optimized replacement.

score()
Returns the score of the current posting.

1.24. Whoosh API 135

Whoosh Documentation, Release 2.7.4

skip_to(id)
Moves this matcher to the first posting with an ID equal to or greater than the given ID.

skip_to_quality(minquality)
Moves this matcher to the next block with greater than the given minimum quality value.

spans()
Returns a list of Span objects for the matches in this document. Raises an exception if the field being
searched does not store positions.

supports(astype)
Returns True if the field’s format supports the named data type, for example ‘frequency’ or ‘characters’.

supports_block_quality()
Returns True if this matcher supports the use of quality and block_quality.

term()
Returns a ("fieldname", "termtext") tuple for the term this matcher matches, or None if this
matcher is not a term matcher.

term_matchers()
Returns an iterator of term matchers in this tree.

value()
Returns the encoded value of the current posting.

value_as(astype)
Returns the value(s) of the current posting as the given type.

weight()
Returns the weight of the current posting.

whoosh.matching.NullMatcher

class whoosh.matching.ListMatcher(ids, weights=None, values=None, format=None, scorer=None,
position=0, all_weights=None, term=None, terminfo=None)

Synthetic matcher backed by a list of IDs.

Parameters

• ids – a list of doc IDs.

• weights – a list of weights corresponding to the list of IDs. If this argument is not sup-
plied, a list of 1.0 values is used.

• values – a list of encoded values corresponding to the list of IDs.

• format – a whoosh.formats.Format object representing the format of the field.

• scorer – a whoosh.scoring.BaseScorer object for scoring the postings.

• term – a ("fieldname", "text") tuple, or None if this is not a term matcher.

class whoosh.matching.WrappingMatcher(child, boost=1.0)
Base class for matchers that wrap sub-matchers.

class whoosh.matching.MultiMatcher(matchers, idoffsets, scorer=None, current=0)
Serializes the results of a list of sub-matchers.

Parameters

• matchers – a list of Matcher objects.

• idoffsets – a list of offsets corresponding to items in the matchers list.

136 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

class whoosh.matching.FilterMatcher(child, ids, exclude=False, boost=1.0)
Filters the postings from the wrapped based on whether the IDs are present in or absent from a set.

Parameters

• child – the child matcher.

• ids – a set of IDs to filter by.

• exclude – by default, only IDs from the wrapped matcher that are in the set are used. If
this argument is True, only IDs from the wrapped matcher that are not in the set are used.

class whoosh.matching.BiMatcher(a, b)
Base class for matchers that combine the results of two sub-matchers in some way.

class whoosh.matching.AdditiveBiMatcher(a, b)
Base class for binary matchers where the scores of the sub-matchers are added together.

class whoosh.matching.UnionMatcher(a, b)
Matches the union (OR) of the postings in the two sub-matchers.

class whoosh.matching.DisjunctionMaxMatcher(a, b, tiebreak=0.0)
Matches the union (OR) of two sub-matchers. Where both sub-matchers match the same posting, returns the
weight/score of the higher-scoring posting.

class whoosh.matching.IntersectionMatcher(a, b)
Matches the intersection (AND) of the postings in the two sub-matchers.

class whoosh.matching.AndNotMatcher(a, b)
Matches the postings in the first sub-matcher that are NOT present in the second sub-matcher.

class whoosh.matching.InverseMatcher(child, limit, missing=None, weight=1.0, id=0)
Synthetic matcher, generates postings that are NOT present in the wrapped matcher.

class whoosh.matching.RequireMatcher(a, b)
Matches postings that are in both sub-matchers, but only uses scores from the first.

class whoosh.matching.AndMaybeMatcher(a, b)
Matches postings in the first sub-matcher, and if the same posting is in the second sub-matcher, adds their scores.

class whoosh.matching.ConstantScoreMatcher(score=1.0)

Exceptions

exception whoosh.matching.ReadTooFar
Raised when next() or skip_to() are called on an inactive matcher.

exception whoosh.matching.NoQualityAvailable
Raised when quality methods are called on a matcher that does not support block quality optimizations.

qparser module

Parser object

class whoosh.qparser.QueryParser(fieldname, schema, plugins=None, termclass=<class
‘whoosh.query.terms.Term’>, phraseclass=<class
‘whoosh.query.positional.Phrase’>, group=<class
‘whoosh.qparser.syntax.AndGroup’>)

A hand-written query parser built on modular plug-ins. The default configuration implements a powerful fielded
query language similar to Lucene’s.

1.24. Whoosh API 137

Whoosh Documentation, Release 2.7.4

You can use the plugins argument when creating the object to override the default list of plug-ins, and/or use
add_plugin() and/or remove_plugin_class() to change the plug-ins included in the parser.

>>> from whoosh import qparser
>>> parser = qparser.QueryParser("content", schema)
>>> parser.remove_plugin_class(qparser.WildcardPlugin)
>>> parser.add_plugin(qparser.PrefixPlugin())
>>> parser.parse(u"hello there")
And([Term("content", u"hello"), Term("content", u"there")])

Parameters

• fieldname – the default field – the parser uses this as the field for any terms without an
explicit field.

• schema – a whoosh.fields.Schema object to use when parsing. The appropriate
fields in the schema will be used to tokenize terms/phrases before they are turned into query
objects. You can specify None for the schema to create a parser that does not analyze the
text of the query, usually for testing purposes.

• plugins – a list of plugins to use. WhitespacePlugin is automatically included, do not put
it in this list. This overrides the default list of plugins. Classes in the list will be automati-
cally instantiated.

• termclass – the query class to use for individual search terms. The default is whoosh.
query.Term.

• phraseclass – the query class to use for phrases. The default is whoosh.query.
Phrase.

• group – the default grouping. AndGroup makes terms required by default. OrGroup
makes terms optional by default.

add_plugin(pin)
Adds the given plugin to the list of plugins in this parser.

add_plugins(pins)
Adds the given list of plugins to the list of plugins in this parser.

default_set()
Returns the default list of plugins to use.

filterize(nodes, debug=False)
Takes a group of nodes and runs the filters provided by the parser’s plugins.

filters()
Returns a priorized list of filter functions provided by the parser’s currently configured plugins.

multitoken_query(spec, texts, fieldname, termclass, boost)
Returns a query for multiple texts. This method implements the intention specified in the field’s
multitoken_query attribute, which specifies what to do when strings that look like single terms to
the parser turn out to yield multiple tokens when analyzed.

Parameters

• spec – a string describing how to join the text strings into a query. This is usually the
value of the field’s multitoken_query attribute.

• texts – a list of token strings.

• fieldname – the name of the field.

138 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

• termclass – the query class to use for single terms.

• boost – the original term’s boost in the query string, should be applied to the returned
query object.

parse(text, normalize=True, debug=False)
Parses the input string and returns a whoosh.query.Query object/tree.

Parameters

• text – the unicode string to parse.

• normalize – whether to call normalize() on the query object/tree before returning it.
This should be left on unless you’re trying to debug the parser output.

Return type whoosh.query.Query

process(text, pos=0, debug=False)
Returns a group of syntax nodes corresponding to the given text, tagged by the plugin Taggers and filtered
by the plugin filters.

Parameters

• text – the text to tag.

• pos – the position in the text to start tagging at.

remove_plugin(pi)
Removes the given plugin object from the list of plugins in this parser.

remove_plugin_class(cls)
Removes any plugins of the given class from this parser.

replace_plugin(plugin)
Removes any plugins of the class of the given plugin and then adds it. This is a convenience method to
keep from having to call remove_plugin_class followed by add_plugin each time you want to
reconfigure a default plugin.

>>> qp = qparser.QueryParser("content", schema)
>>> qp.replace_plugin(qparser.NotPlugin("(^|)-"))

tag(text, pos=0, debug=False)
Returns a group of syntax nodes corresponding to the given text, created by matching the Taggers provided
by the parser’s plugins.

Parameters

• text – the text to tag.

• pos – the position in the text to start tagging at.

taggers()
Returns a priorized list of tagger objects provided by the parser’s currently configured plugins.

term_query(fieldname, text, termclass, boost=1.0, tokenize=True, removestops=True)
Returns the appropriate query object for a single term in the query string.

Pre-made configurations

The following functions return pre-configured QueryParser objects.

1.24. Whoosh API 139

Whoosh Documentation, Release 2.7.4

whoosh.qparser.MultifieldParser(fieldnames, schema, fieldboosts=None, **kwargs)
Returns a QueryParser configured to search in multiple fields.

Instead of assigning unfielded clauses to a default field, this parser transforms them into an OR clause that
searches a list of fields. For example, if the list of multi-fields is “f1”, “f2” and the query string is “hello there”,
the class will parse “(f1:hello OR f2:hello) (f1:there OR f2:there)”. This is very useful when you have two
textual fields (e.g. “title” and “content”) you want to search by default.

Parameters

• fieldnames – a list of field names to search.

• fieldboosts – an optional dictionary mapping field names to boosts.

whoosh.qparser.SimpleParser(fieldname, schema, **kwargs)
Returns a QueryParser configured to support only +, -, and phrase syntax.

whoosh.qparser.DisMaxParser(fieldboosts, schema, tiebreak=0.0, **kwargs)
Returns a QueryParser configured to support only +, -, and phrase syntax, and which converts individual terms
into DisjunctionMax queries across a set of fields.

Parameters fieldboosts – a dictionary mapping field names to boosts.

Plug-ins

class whoosh.qparser.Plugin
Base class for parser plugins.

filters(parser)
Should return a list of (filter_function, priority) tuples to add to parser. Lower priority
numbers run first.

Filter functions will be called with (parser, groupnode) and should return a group node.

taggers(parser)
Should return a list of (Tagger, priority) tuples to add to the syntax the parser understands. Lower
priorities run first.

class whoosh.qparser.SingleQuotePlugin(expr=None)
Adds the ability to specify single “terms” containing spaces by enclosing them in single quotes.

class whoosh.qparser.PrefixPlugin(expr=None)
Adds the ability to specify prefix queries by ending a term with an asterisk.

This plugin is useful if you want the user to be able to create prefix but not wildcard queries (for performance
reasons). If you are including the wildcard plugin, you should not include this plugin as well.

>>> qp = qparser.QueryParser("content", myschema)
>>> qp.remove_plugin_class(qparser.WildcardPlugin)
>>> qp.add_plugin(qparser.PrefixPlugin())
>>> q = qp.parse("pre*")

class whoosh.qparser.WildcardPlugin(expr=None)

class whoosh.qparser.RegexPlugin(expr=None)
Adds the ability to specify regular expression term queries.

The default syntax for a regular expression term is r"termexpr".

>>> qp = qparser.QueryParser("content", myschema)
>>> qp.add_plugin(qparser.RegexPlugin())
>>> q = qp.parse('foo title:r"bar+"')

140 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

class whoosh.qparser.BoostPlugin(expr=None)
Adds the ability to boost clauses of the query using the circumflex.

>>> qp = qparser.QueryParser("content", myschema)
>>> q = qp.parse("hello there^2")

class whoosh.qparser.GroupPlugin(openexpr=’[(]’, closeexpr=’[)]’)
Adds the ability to group clauses using parentheses.

class whoosh.qparser.EveryPlugin(expr=None)

class whoosh.qparser.FieldsPlugin(expr=’(?P<text>\w+|[*]):’, remove_unknown=True)
Adds the ability to specify the field of a clause.

Parameters

• expr – the regular expression to use for tagging fields.

• remove_unknown – if True, converts field specifications for fields that aren’t in the
schema into regular text.

class whoosh.qparser.PhrasePlugin(expr=”’(?P<text>.*?)”(~(?P<slop>[1-9][0-9]*))?’)
Adds the ability to specify phrase queries inside double quotes.

class whoosh.qparser.RangePlugin(expr=None, excl_start=’{‘, excl_end=’}’)
Adds the ability to specify term ranges.

class whoosh.qparser.OperatorsPlugin(ops=None, clean=False, And=’(?<=\s)AND(?=\s)’,
Or=’(?<=\s)OR(?=\s)’, And-
Not=’(?<=\s)ANDNOT(?=\s)’, And-
Maybe=’(?<=\s)ANDMAYBE(?=\s)’,
Not=’(^|(?<=(\s|[()])))NOT(?=\s)’, Re-
quire=’(^|(?<=\s))REQUIRE(?=\s)’)

By default, adds the AND, OR, ANDNOT, ANDMAYBE, and NOT operators to the parser syntax. This plugin
scans the token stream for subclasses of Operator and calls their Operator.make_group() methods to
allow them to manipulate the stream.

There are two levels of configuration available.

The first level is to change the regular expressions of the default operators, using the And, Or, AndNot,
AndMaybe, and/or Not keyword arguments. The keyword value can be a pattern string or a compiled ex-
pression, or None to remove the operator:

qp = qparser.QueryParser("content", schema)
cp = qparser.OperatorsPlugin(And="&", Or="\|", AndNot="&!",

AndMaybe="&~", Not=None)
qp.replace_plugin(cp)

You can also specify a list of (OpTagger, priority) pairs as the first argument to the initializer to use
custom operators. See Creating custom operators for more information on this.

class whoosh.qparser.PlusMinusPlugin(plusexpr=’\+’, minusexpr=’-‘)
Adds the ability to use + and - in a flat OR query to specify required and prohibited terms.

This is the basis for the parser configuration returned by SimpleParser().

class whoosh.qparser.GtLtPlugin(expr=None)
Allows the user to use greater than/less than symbols to create range queries:

1.24. Whoosh API 141

Whoosh Documentation, Release 2.7.4

a:>100 b:<=z c:>=-1.4 d:<mz

This is the equivalent of:

a:{100 to] b:[to z] c:[-1.4 to] d:[to mz}

The plugin recognizes >, <, >=, <=, =>, and =< after a field specifier. The field specifier is required. You cannot
do the following:

>100

This plugin requires the FieldsPlugin and RangePlugin to work.

class whoosh.qparser.MultifieldPlugin(fieldnames, fieldboosts=None, group=<class
‘whoosh.qparser.syntax.OrGroup’>)

Converts any unfielded terms into OR clauses that search for the term in a specified list of fields.

>>> qp = qparser.QueryParser(None, myschema)
>>> qp.add_plugin(qparser.MultifieldPlugin(["a", "b"])
>>> qp.parse("alfa c:bravo")
And([Or([Term("a", "alfa"), Term("b", "alfa")]), Term("c", "bravo")])

This plugin is the basis for the MultifieldParser.

Parameters

• fieldnames – a list of fields to search.

• fieldboosts – an optional dictionary mapping field names to a boost to use for that field.

• group – the group to use to relate the fielded terms to each other.

class whoosh.qparser.FieldAliasPlugin(fieldmap)
Adds the ability to use “aliases” of fields in the query string.

This plugin is useful for allowing users of languages that can’t be represented in ASCII to use field names in
their own language, and translate them into the “real” field names, which must be valid Python identifiers.

>>> # Allow users to use 'body' or 'text' to refer to the 'content' field
>>> parser.add_plugin(FieldAliasPlugin({"content": ["body", "text"]}))
>>> parser.parse("text:hello")
Term("content", "hello")

class whoosh.qparser.CopyFieldPlugin(map, group=<class ‘whoosh.qparser.syntax.OrGroup’>,
mirror=False)

Looks for basic syntax nodes (terms, prefixes, wildcards, phrases, etc.) occurring in a certain field and replaces
it with a group (by default OR) containing the original token and the token copied to a new field.

For example, the query:

hello name:matt

could be automatically converted by CopyFieldPlugin({"name", "author"}) to:

hello (name:matt OR author:matt)

This is useful where one field was indexed with a differently-analyzed copy of another, and you want the query
to search both fields.

You can specify a different group type with the group keyword. You can also specify group=None, in which
case the copied node is inserted “inline” next to the original, instead of in a new group:

142 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

hello name:matt author:matt

Parameters

• map – a dictionary mapping names of fields to copy to the names of the destination fields.

• group – the type of group to create in place of the original token. You can specify
group=None to put the copied node “inline” next to the original node instead of in a
new group.

• two_way – if True, the plugin copies both ways, so if the user specifies a query in the
‘toname’ field, it will be copied to the ‘fromname’ field.

Syntax node objects

Base nodes

class whoosh.qparser.SyntaxNode
Base class for nodes that make up the abstract syntax tree (AST) of a parsed user query string. The AST is
an intermediate step, generated from the query string, then converted into a whoosh.query.Query tree by
calling the query() method on the nodes.

Instances have the following required attributes:

has_fieldname True if this node has a fieldname attribute.

has_text True if this node has a text attribute

has_boost True if this node has a boost attribute.

startchar The character position in the original text at which this node started.

endchar The character position in the original text at which this node ended.

is_ws()
Returns True if this node is ignorable whitespace.

query(parser)
Returns a whoosh.query.Query instance corresponding to this syntax tree node.

r()
Returns a basic representation of this node. The base class’s __repr__ method calls this, then does the
extra busy work of adding fieldname and boost where appropriate.

set_boost(boost)
Sets the boost associated with this node.

For nodes that don’t have a boost, this is a no-op.

set_fieldname(name, override=False)
Sets the fieldname associated with this node. If override is False (the default), the fieldname will only
be replaced if this node does not already have a fieldname set.

For nodes that don’t have a fieldname, this is a no-op.

set_range(startchar, endchar)
Sets the character range associated with this node.

1.24. Whoosh API 143

Whoosh Documentation, Release 2.7.4

Nodes

class whoosh.qparser.FieldnameNode(fieldname, original)
Abstract syntax tree node for field name assignments.

class whoosh.qparser.TextNode(text)
Intermediate base class for basic nodes that search for text, such as term queries, wildcards, prefixes, etc.

Instances have the following attributes:

qclass If a subclass does not override query(), the base class will use this class to construct the query.

tokenize If True and the subclass does not override query(), the node’s text will be tokenized before
constructing the query

removestops If True and the subclass does not override query(), and the field’s analyzer has a stop word
filter, stop words will be removed from the text before constructing the query.

class whoosh.qparser.WordNode(text)
Syntax node for term queries.

class whoosh.qparser.RangeNode(start, end, startexcl, endexcl)
Syntax node for range queries.

class whoosh.qparser.MarkerNode
Base class for nodes that only exist to mark places in the tree.

Group nodes

class whoosh.qparser.GroupNode(nodes=None, boost=1.0, **kwargs)
Base class for abstract syntax tree node types that group together sub-nodes.

Instances have the following attributes:

merging True if side-by-side instances of this group can be merged into a single group.

qclass If a subclass doesn’t override query(), the base class will simply wrap this class around the queries
returned by the subnodes.

This class implements a number of list methods for operating on the subnodes.

class whoosh.qparser.BinaryGroup(nodes=None, boost=1.0, **kwargs)
Intermediate base class for group nodes that have two subnodes and whose qclass initializer takes two argu-
ments instead of a list.

class whoosh.qparser.ErrorNode(message, node=None)

class whoosh.qparser.AndGroup(nodes=None, boost=1.0, **kwargs)

class whoosh.qparser.OrGroup(nodes=None, boost=1.0, **kwargs)

class whoosh.qparser.AndNotGroup(nodes=None, boost=1.0, **kwargs)

class whoosh.qparser.AndMaybeGroup(nodes=None, boost=1.0, **kwargs)

class whoosh.qparser.DisMaxGroup(nodes=None, boost=1.0, **kwargs)

class whoosh.qparser.RequireGroup(nodes=None, boost=1.0, **kwargs)

class whoosh.qparser.NotGroup(nodes=None, boost=1.0, **kwargs)

144 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Operators

class whoosh.qparser.Operator(text, grouptype, leftassoc=True)
Base class for PrefixOperator, PostfixOperator, and InfixOperator.

Operators work by moving the nodes they apply to (e.g. for prefix operator, the previous node, for infix operator,
the nodes on either side, etc.) into a group node. The group provides the code for what to do with the nodes.

Parameters

• text – the text of the operator in the query string.

• grouptype – the type of group to create in place of the operator and the node(s) it operates
on.

• leftassoc – for infix opeators, whether the operator is left associative. use
leftassoc=False for right-associative infix operators.

class whoosh.qparser.PrefixOperator(text, grouptype, leftassoc=True)

Parameters

• text – the text of the operator in the query string.

• grouptype – the type of group to create in place of the operator and the node(s) it operates
on.

• leftassoc – for infix opeators, whether the operator is left associative. use
leftassoc=False for right-associative infix operators.

class whoosh.qparser.PostfixOperator(text, grouptype, leftassoc=True)

Parameters

• text – the text of the operator in the query string.

• grouptype – the type of group to create in place of the operator and the node(s) it operates
on.

• leftassoc – for infix opeators, whether the operator is left associative. use
leftassoc=False for right-associative infix operators.

class whoosh.qparser.InfixOperator(text, grouptype, leftassoc=True)

Parameters

• text – the text of the operator in the query string.

• grouptype – the type of group to create in place of the operator and the node(s) it operates
on.

• leftassoc – for infix opeators, whether the operator is left associative. use
leftassoc=False for right-associative infix operators.

query module

See also whoosh.qparser which contains code for parsing user queries into query objects.

Base classes

The following abstract base classes are subclassed to create the “real” query operations.

1.24. Whoosh API 145

Whoosh Documentation, Release 2.7.4

class whoosh.query.Query
Abstract base class for all queries.

Note that this base class implements __or__, __and__, and __sub__ to allow slightly more convenient compo-
sition of query objects:

>>> Term("content", u"a") | Term("content", u"b")
Or([Term("content", u"a"), Term("content", u"b")])

>>> Term("content", u"a") & Term("content", u"b")
And([Term("content", u"a"), Term("content", u"b")])

>>> Term("content", u"a") - Term("content", u"b")
And([Term("content", u"a"), Not(Term("content", u"b"))])

accept(fn)
Applies the given function to this query’s subqueries (if any) and then to this query itself:

def boost_phrases(q):
if isintance(q, Phrase):

q.boost *= 2.0
return q

myquery = myquery.accept(boost_phrases)

This method automatically creates copies of the nodes in the original tree before passing them to your
function, so your function can change attributes on nodes without altering the original tree.

This method is less flexible than using Query.apply() (in fact it’s implemented using that method) but
is often more straightforward.

all_terms(phrases=True)
Returns a set of all terms in this query tree.

This method exists for backwards-compatibility. Use iter_all_terms() instead.

Parameters phrases – Whether to add words found in Phrase queries.

Return type set

all_tokens(boost=1.0)
Returns an iterator of analysis.Token objects corresponding to all terms in this query tree. The Token
objects will have the fieldname, text, and boost attributes set. If the query was built by the query
parser, they Token objects will also have startchar and endchar attributes indexing into the original
user query.

apply(fn)
If this query has children, calls the given function on each child and returns a new copy of this node with
the new children returned by the function. If this is a leaf node, simply returns this object.

This is useful for writing functions that transform a query tree. For example, this function changes all
Term objects in a query tree into Variations objects:

def term2var(q):
if isinstance(q, Term):

return Variations(q.fieldname, q.text)
else:

return q.apply(term2var)

q = And([Term("f", "alfa"),
Or([Term("f", "bravo"),

146 Chapter 1. Contents

https://docs.python.org/2/library/stdtypes.html#set

Whoosh Documentation, Release 2.7.4

Not(Term("f", "charlie"))])])
q = term2var(q)

Note that this method does not automatically create copies of nodes. To avoid modifying the original tree,
your function should call the Query.copy() method on nodes before changing their attributes.

children()
Returns an iterator of the subqueries of this object.

copy()
Deprecated, just use copy.deepcopy.

deletion_docs(searcher)
Returns an iterator of docnums matching this query for the purpose of deletion. The
delete_by_query() method will use this method when deciding what documents to delete, allowing
special queries (e.g. nested queries) to override what documents are deleted. The default implementation
just forwards to Query.docs().

docs(searcher)
Returns an iterator of docnums matching this query.

>>> with my_index.searcher() as searcher:
... list(my_query.docs(searcher))
[10, 34, 78, 103]

Parameters searcher – A whoosh.searching.Searcher object.

estimate_min_size(ixreader)
Returns an estimate of the minimum number of documents this query could potentially match.

estimate_size(ixreader)
Returns an estimate of how many documents this query could potentially match (for example, the estimated
size of a simple term query is the document frequency of the term). It is permissible to overestimate, but
not to underestimate.

existing_terms(ixreader, phrases=True, expand=False, fieldname=None)
Returns a set of all byteterms in this query tree that exist in the given ixreader.

Parameters

• ixreader – A whoosh.reading.IndexReader object.

• phrases – Whether to add words found in Phrase queries.

• expand – If True, queries that match multiple terms will return all matching expansions.

Return type set

field()
Returns the field this query matches in, or None if this query does not match in a single field.

has_terms()
Returns True if this specific object represents a search for a specific term (as opposed to a pattern, as in
Wildcard and Prefix) or terms (i.e., whether the replace() method does something meaningful on this
instance).

is_leaf()
Returns True if this is a leaf node in the query tree, or False if this query has sub-queries.

is_range()
Returns True if this object searches for values within a range.

1.24. Whoosh API 147

https://docs.python.org/2/library/stdtypes.html#set

Whoosh Documentation, Release 2.7.4

iter_all_terms(phrases=True)
Returns an iterator of (fieldname, text) pairs for all terms in this query tree.

>>> qp = qparser.QueryParser("text", myindex.schema)
>>> q = myparser.parse("alfa bravo title:charlie")
>>> # List the terms in a query
>>> list(q.iter_all_terms())
[("text", "alfa"), ("text", "bravo"), ("title", "charlie")]
>>> # Get a set of all terms in the query that don't exist in the index
>>> r = myindex.reader()
>>> missing = set(t for t in q.iter_all_terms() if t not in r)
set([("text", "alfa"), ("title", "charlie")])
>>> # All terms in the query that occur in fewer than 5 documents in
>>> # the index
>>> [t for t in q.iter_all_terms() if r.doc_frequency(t[0], t[1]) < 5]
[("title", "charlie")]

Parameters phrases – Whether to add words found in Phrase queries.

leaves()
Returns an iterator of all the leaf queries in this query tree as a flat series.

matcher(searcher, context=None)
Returns a Matcher object you can use to retrieve documents and scores matching this query.

Return type whoosh.matching.Matcher

normalize()
Returns a recursively “normalized” form of this query. The normalized form removes redundancy and
empty queries. This is called automatically on query trees created by the query parser, but you may want
to call it yourself if you’re writing your own parser or building your own queries.

>>> q = And([And([Term("f", u"a"),
... Term("f", u"b")]),
... Term("f", u"c"), Or([])])
>>> q.normalize()
And([Term("f", u"a"), Term("f", u"b"), Term("f", u"c")])

Note that this returns a new, normalized query. It does not modify the original query “in place”.

replace(fieldname, oldtext, newtext)
Returns a copy of this query with oldtext replaced by newtext (if oldtext was anywhere in this query).

Note that this returns a new query with the given text replaced. It does not modify the original query “in
place”.

requires()
Returns a set of queries that are known to be required to match for the entire query to match. Note that
other queries might also turn out to be required but not be determinable by examining the static query.

>>> a = Term("f", u"a")
>>> b = Term("f", u"b")
>>> And([a, b]).requires()
set([Term("f", u"a"), Term("f", u"b")])
>>> Or([a, b]).requires()
set([])
>>> AndMaybe(a, b).requires()
set([Term("f", u"a")])

148 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

>>> a.requires()
set([Term("f", u"a")])

simplify(ixreader)
Returns a recursively simplified form of this query, where “second-order” queries (such as Prefix and
Variations) are re-written into lower-level queries (such as Term and Or).

terms(phrases=False)
Yields zero or more (fieldname, text) pairs queried by this object. You can check whether a query object
targets specific terms before you call this method using Query.has_terms().

To get all terms in a query tree, use Query.iter_all_terms().

tokens(boost=1.0, exreader=None)
Yields zero or more analysis.Token objects corresponding to the terms searched for by this query
object. You can check whether a query object targets specific terms before you call this method using
Query.has_terms().

The Token objects will have the fieldname, text, and boost attributes set. If the query was built by
the query parser, they Token objects will also have startchar and endchar attributes indexing into
the original user query.

To get all tokens for a query tree, use Query.all_tokens().

Parameters exreader – a reader to use to expand multiterm queries such as prefixes and
wildcards. The default is None meaning do not expand.

with_boost(boost)
Returns a COPY of this query with the boost set to the given value.

If a query type does not accept a boost itself, it will try to pass the boost on to its children, if any.

class whoosh.query.CompoundQuery(subqueries, boost=1.0)
Abstract base class for queries that combine or manipulate the results of multiple sub-queries .

class whoosh.query.MultiTerm
Abstract base class for queries that operate on multiple terms in the same field.

class whoosh.query.ExpandingTerm
Intermediate base class for queries such as FuzzyTerm and Variations that expand into multiple queries, but
come from a single term.

class whoosh.query.WrappingQuery(child)

Query classes

class whoosh.query.Term(fieldname, text, boost=1.0, minquality=None)
Matches documents containing the given term (fieldname+text pair).

>>> Term("content", u"render")

class whoosh.query.Variations(fieldname, text, boost=1.0)
Query that automatically searches for morphological variations of the given word in the same field.

class whoosh.query.FuzzyTerm(fieldname, text, boost=1.0, maxdist=1, prefixlength=1, con-
stantscore=True)

Matches documents containing words similar to the given term.

Parameters

• fieldname – The name of the field to search.

1.24. Whoosh API 149

Whoosh Documentation, Release 2.7.4

• text – The text to search for.

• boost – A boost factor to apply to scores of documents matching this query.

• maxdist – The maximum edit distance from the given text.

• prefixlength – The matched terms must share this many initial characters with ‘text’.
For example, if text is “light” and prefixlength is 2, then only terms starting with “li” are
checked for similarity.

class whoosh.query.Phrase(fieldname, words, slop=1, boost=1.0, char_ranges=None)
Matches documents containing a given phrase.

Parameters

• fieldname – the field to search.

• words – a list of words (unicode strings) in the phrase.

• slop – the number of words allowed between each “word” in the phrase; the default of 1
means the phrase must match exactly.

• boost – a boost factor that to apply to the raw score of documents matched by this query.

• char_ranges – if a Phrase object is created by the query parser, it will set this attribute
to a list of (startchar, endchar) pairs corresponding to the words in the phrase

class whoosh.query.And(subqueries, boost=1.0)
Matches documents that match ALL of the subqueries.

>>> And([Term("content", u"render"),
... Term("content", u"shade"),
... Not(Term("content", u"texture"))])
>>> # You can also do this
>>> Term("content", u"render") & Term("content", u"shade")

class whoosh.query.Or(subqueries, boost=1.0, minmatch=0, scale=None)
Matches documents that match ANY of the subqueries.

>>> Or([Term("content", u"render"),
... And([Term("content", u"shade"), Term("content", u"texture")]),
... Not(Term("content", u"network"))])
>>> # You can also do this
>>> Term("content", u"render") | Term("content", u"shade")

Parameters

• subqueries – a list of Query objects to search for.

• boost – a boost factor to apply to the scores of all matching documents.

• minmatch – not yet implemented.

• scale – a scaling factor for a “coordination bonus”. If this value is not None, it should be a
floating point number greater than 0 and less than 1. The scores of the matching documents
are boosted/penalized based on the number of query terms that matched in the document.
This number scales the effect of the bonuses.

class whoosh.query.DisjunctionMax(subqueries, boost=1.0, tiebreak=0.0)
Matches all documents that match any of the subqueries, but scores each document using the maximum score
from the subqueries.

150 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

class whoosh.query.Not(query, boost=1.0)
Excludes any documents that match the subquery.

>>> # Match documents that contain 'render' but not 'texture'
>>> And([Term("content", u"render"),
... Not(Term("content", u"texture"))])
>>> # You can also do this
>>> Term("content", u"render") - Term("content", u"texture")

Parameters

• query – A Query object. The results of this query are excluded from the parent query.

• boost – Boost is meaningless for excluded documents but this keyword argument is ac-
cepted for the sake of a consistent interface.

class whoosh.query.Prefix(fieldname, text, boost=1.0, constantscore=True)
Matches documents that contain any terms that start with the given text.

>>> # Match documents containing words starting with 'comp'
>>> Prefix("content", u"comp")

class whoosh.query.Wildcard(fieldname, text, boost=1.0, constantscore=True)
Matches documents that contain any terms that match a “glob” pattern. See the Python fnmatch module for
information about globs.

>>> Wildcard("content", u"in*f?x")

class whoosh.query.Regex(fieldname, text, boost=1.0, constantscore=True)
Matches documents that contain any terms that match a regular expression. See the Python re module for
information about regular expressions.

class whoosh.query.TermRange(fieldname, start, end, startexcl=False, endexcl=False, boost=1.0, con-
stantscore=True)

Matches documents containing any terms in a given range.

>>> # Match documents where the indexed "id" field is greater than or equal
>>> # to 'apple' and less than or equal to 'pear'.
>>> TermRange("id", u"apple", u"pear")

Parameters

• fieldname – The name of the field to search.

• start – Match terms equal to or greater than this.

• end – Match terms equal to or less than this.

• startexcl – If True, the range start is exclusive. If False, the range start is inclusive.

• endexcl – If True, the range end is exclusive. If False, the range end is inclusive.

• boost – Boost factor that should be applied to the raw score of results matched by this
query.

class whoosh.query.NumericRange(fieldname, start, end, startexcl=False, endexcl=False, boost=1.0,
constantscore=True)

A range query for NUMERIC fields. Takes advantage of tiered indexing to speed up large ranges by matching
at a high resolution at the edges of the range and a low resolution in the middle.

1.24. Whoosh API 151

Whoosh Documentation, Release 2.7.4

>>> # Match numbers from 10 to 5925 in the "number" field.
>>> nr = NumericRange("number", 10, 5925)

Parameters

• fieldname – The name of the field to search.

• start – Match terms equal to or greater than this number. This should be a number type,
not a string.

• end – Match terms equal to or less than this number. This should be a number type, not a
string.

• startexcl – If True, the range start is exclusive. If False, the range start is inclusive.

• endexcl – If True, the range end is exclusive. If False, the range end is inclusive.

• boost – Boost factor that should be applied to the raw score of results matched by this
query.

• constantscore – If True, the compiled query returns a constant score (the value of the
boost keyword argument) instead of actually scoring the matched terms. This gives a nice
speed boost and won’t affect the results in most cases since numeric ranges will almost
always be used as a filter.

class whoosh.query.DateRange(fieldname, start, end, startexcl=False, endexcl=False, boost=1.0, con-
stantscore=True)

This is a very thin subclass of NumericRange that only overrides the initializer and __repr__() methods
to work with datetime objects instead of numbers. Internally this object converts the datetime objects it’s created
with to numbers and otherwise acts like a NumericRange query.

>>> DateRange("date", datetime(2010, 11, 3, 3, 0),
... datetime(2010, 11, 3, 17, 59))

class whoosh.query.Every(fieldname=None, boost=1.0)
A query that matches every document containing any term in a given field. If you don’t specify a field, the query
matches every document.

>>> # Match any documents with something in the "path" field
>>> q = Every("path")
>>> # Matcher every document
>>> q = Every()

The unfielded form (matching every document) is efficient.

The fielded is more efficient than a prefix query with an empty prefix or a ‘*’ wildcard, but it can still be very
slow on large indexes. It requires the searcher to read the full posting list of every term in the given field.

Instead of using this query it is much more efficient when you create the index to include a single term that
appears in all documents that have the field you want to match.

For example, instead of this:

Match all documents that have something in the "path" field
q = Every("path")

Do this when indexing:

152 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Add an extra field that indicates whether a document has a path
schema = fields.Schema(path=fields.ID, has_path=fields.ID)

When indexing, set the "has_path" field based on whether the document
has anything in the "path" field
writer.add_document(text=text_value1)
writer.add_document(text=text_value2, path=path_value2, has_path="t")

Then to find all documents with a path:

q = Term("has_path", "t")

Parameters fieldname – the name of the field to match, or None or * to match all documents.

whoosh.query.NullQuery

Binary queries

class whoosh.query.Require(a, b)
Binary query returns results from the first query that also appear in the second query, but only uses the scores
from the first query. This lets you filter results without affecting scores.

class whoosh.query.AndMaybe(a, b)
Binary query takes results from the first query. If and only if the same document also appears in the results from
the second query, the score from the second query will be added to the score from the first query.

class whoosh.query.AndNot(a, b)
Binary boolean query of the form ‘a ANDNOT b’, where documents that match b are removed from the matches
for a.

class whoosh.query.Otherwise(a, b)
A binary query that only matches the second clause if the first clause doesn’t match any documents.

Span queries

class whoosh.query.Span(start, end=None, startchar=None, endchar=None, boost=1.0)

classmethod merge(spans)
Merges overlapping and touches spans in the given list of spans.

Note that this modifies the original list.

>>> spans = [Span(1,2), Span(3)]
>>> Span.merge(spans)
>>> spans
[<1-3>]

class whoosh.query.SpanQuery
Abstract base class for span-based queries. Each span query type wraps a “regular” query that implements the
basic document-matching functionality (for example, SpanNear wraps an And query, because SpanNear requires
that the two sub-queries occur in the same documents. The wrapped query is stored in the q attribute.

Subclasses usually only need to implement the initializer to set the wrapped query, and matcher() to return a
span-aware matcher object.

1.24. Whoosh API 153

Whoosh Documentation, Release 2.7.4

class whoosh.query.SpanFirst(q, limit=0)
Matches spans that end within the first N positions. This lets you for example only match terms near the
beginning of the document.

Parameters

• q – the query to match.

• limit – the query must match within this position at the start of a document. The default
is 0, which means the query must match at the first position.

class whoosh.query.SpanNear(a, b, slop=1, ordered=True, mindist=1)
Note: for new code, use SpanNear2 instead of this class. SpanNear2 takes a list of sub-queries instead of
requiring you to create a binary tree of query objects.

Matches queries that occur near each other. By default, only matches queries that occur right next to each other
(slop=1) and in order (ordered=True).

For example, to find documents where “whoosh” occurs next to “library” in the “text” field:

from whoosh import query, spans
t1 = query.Term("text", "whoosh")
t2 = query.Term("text", "library")
q = spans.SpanNear(t1, t2)

To find documents where “whoosh” occurs at most 5 positions before “library”:

q = spans.SpanNear(t1, t2, slop=5)

To find documents where “whoosh” occurs at most 5 positions before or after “library”:

q = spans.SpanNear(t1, t2, slop=5, ordered=False)

You can use the phrase() class method to create a tree of SpanNear queries to match a list of terms:

q = spans.SpanNear.phrase("text", ["whoosh", "search", "library"],
slop=2)

Parameters

• a – the first query to match.

• b – the second query that must occur within “slop” positions of the first query.

• slop – the number of positions within which the queries must occur. Default is 1, meaning
the queries must occur right next to each other.

• ordered – whether a must occur before b. Default is True.

Pram mindist the minimum distance allowed between the queries.

class whoosh.query.SpanNear2(qs, slop=1, ordered=True, mindist=1)
Matches queries that occur near each other. By default, only matches queries that occur right next to each other
(slop=1) and in order (ordered=True).

New code should use this query type instead of SpanNear.

(Unlike SpanNear, this query takes a list of subqueries instead of requiring you to build a binary tree of query
objects. This query should also be slightly faster due to less overhead.)

For example, to find documents where “whoosh” occurs next to “library” in the “text” field:

154 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

from whoosh import query, spans
t1 = query.Term("text", "whoosh")
t2 = query.Term("text", "library")
q = spans.SpanNear2([t1, t2])

To find documents where “whoosh” occurs at most 5 positions before “library”:

q = spans.SpanNear2([t1, t2], slop=5)

To find documents where “whoosh” occurs at most 5 positions before or after “library”:

q = spans.SpanNear2(t1, t2, slop=5, ordered=False)

Parameters

• qs – a sequence of sub-queries to match.

• slop – the number of positions within which the queries must occur. Default is 1, meaning
the queries must occur right next to each other.

• ordered – whether a must occur before b. Default is True.

Pram mindist the minimum distance allowed between the queries.

class whoosh.query.SpanNot(a, b)
Matches spans from the first query only if they don’t overlap with spans from the second query. If there are no
non-overlapping spans, the document does not match.

For example, to match documents that contain “bear” at most 2 places after “apple” in the “text” field but don’t
have “cute” between them:

from whoosh import query, spans
t1 = query.Term("text", "apple")
t2 = query.Term("text", "bear")
near = spans.SpanNear(t1, t2, slop=2)
q = spans.SpanNot(near, query.Term("text", "cute"))

Parameters

• a – the query to match.

• b – do not match any spans that overlap with spans from this query.

class whoosh.query.SpanOr(subqs)
Matches documents that match any of a list of sub-queries. Unlike query.Or, this class merges together matching
spans from the different sub-queries when they overlap.

Parameters subqs – a list of queries to match.

class whoosh.query.SpanContains(a, b)
Matches documents where the spans of the first query contain any spans of the second query.

For example, to match documents where “apple” occurs at most 10 places before “bear” in the “text” field and
“cute” is between them:

from whoosh import query, spans
t1 = query.Term("text", "apple")
t2 = query.Term("text", "bear")

1.24. Whoosh API 155

Whoosh Documentation, Release 2.7.4

near = spans.SpanNear(t1, t2, slop=10)
q = spans.SpanContains(near, query.Term("text", "cute"))

Parameters

• a – the query to match.

• b – the query whose spans must occur within the matching spans of the first query.

class whoosh.query.SpanBefore(a, b)
Matches documents where the spans of the first query occur before any spans of the second query.

For example, to match documents where “apple” occurs anywhere before “bear”:

from whoosh import query, spans
t1 = query.Term("text", "apple")
t2 = query.Term("text", "bear")
q = spans.SpanBefore(t1, t2)

Parameters

• a – the query that must occur before the second.

• b – the query that must occur after the first.

class whoosh.query.SpanCondition(a, b)
Matches documents that satisfy both subqueries, but only uses the spans from the first subquery.

This is useful when you want to place conditions on matches but not have those conditions affect the spans
returned.

For example, to get spans for the term alfa in documents that also must contain the term bravo:

SpanCondition(Term("text", u"alfa"), Term("text", u"bravo"))

Special queries

class whoosh.query.NestedParent(parents, subq, per_parent_limit=None, score_fn=<built-in func-
tion sum>)

A query that allows you to search for “nested” documents, where you can index (possibly multiple levels
of) “parent” and “child” documents using the group() and/or start_group() methods of a whoosh.
writing.IndexWriter to indicate that hierarchically related documents should be kept together:

schema = fields.Schema(type=fields.ID, text=fields.TEXT(stored=True))

with ix.writer() as w:
Say we're indexing chapters (type=chap) and each chapter has a
number of paragraphs (type=p)
with w.group():

w.add_document(type="chap", text="Chapter 1")
w.add_document(type="p", text="Able baker")
w.add_document(type="p", text="Bright morning")

with w.group():
w.add_document(type="chap", text="Chapter 2")
w.add_document(type="p", text="Car trip")
w.add_document(type="p", text="Dog eared")
w.add_document(type="p", text="Every day")

156 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

with w.group():
w.add_document(type="chap", text="Chapter 3")
w.add_document(type="p", text="Fine day")

The NestedParent query wraps two sub-queries: the “parent query” matches a class of “parent documents”.
The “sub query” matches nested documents you want to find. For each “sub document” the “sub query” finds,
this query acts as if it found the corresponding “parent document”.

>>> with ix.searcher() as s:
... r = s.search(query.Term("text", "day"))
... for hit in r:
... print(hit["text"])
...
Chapter 2
Chapter 3

Parameters

• parents – a query, DocIdSet object, or Results object representing the documents you
want to use as the “parent” documents. Where the sub-query matches, the corresponding
document in these results will be returned as the match.

• subq – a query matching the information you want to find.

• per_parent_limit – a maximum number of “sub documents” to search per parent.
The default is None, meaning no limit.

• score_fn – a function to use to combine the scores of matching sub-documents to cal-
culate the score returned for the parent document. The default is sum, that is, add up the
scores of the sub-documents.

class whoosh.query.NestedChildren(parents, subq, boost=1.0)
This is the reverse of a NestedParent query: instead of taking a query that matches children but returns the
parent, this query matches parents but returns the children.

This is useful, for example, to search for an album title and return the songs in the album:

schema = fields.Schema(type=fields.ID(stored=True),
album_name=fields.TEXT(stored=True),
track_num=fields.NUMERIC(stored=True),
track_name=fields.TEXT(stored=True),
lyrics=fields.TEXT)

ix = RamStorage().create_index(schema)

Indexing
with ix.writer() as w:

For each album, index a "group" of a parent "album" document and
multiple child "track" documents.
with w.group():

w.add_document(type="album",
artist="The Cure", album_name="Disintegration")

w.add_document(type="track", track_num=1,
track_name="Plainsong")

w.add_document(type="track", track_num=2,
track_name="Pictures of You")

...
...

1.24. Whoosh API 157

Whoosh Documentation, Release 2.7.4

Find songs where the song name has "heaven" in the title and the
album the song is on has "hell" in the title
qp = QueryParser("lyrics", ix.schema)
with ix.searcher() as s:

A query that matches all parents
all_albums = qp.parse("type:album")

A query that matches the parents we want
albums_with_hell = qp.parse("album_name:hell")

A query that matches the desired albums but returns the tracks
songs_on_hell_albums = NestedChildren(all_albums, albums_with_hell)

A query that matches tracks with heaven in the title
songs_with_heaven = qp.parse("track_name:heaven")

A query that finds tracks with heaven in the title on albums
with hell in the title
q = query.And([songs_on_hell_albums, songs_with_heaven])

class whoosh.query.ConstantScoreQuery(child, score=1.0)
Wraps a query and uses a matcher that always gives a constant score to all matching documents. This is a useful
optimization when you don’t care about scores from a certain branch of the query tree because it is simply acting
as a filter. See also the AndMaybe query.

Exceptions

exception whoosh.query.QueryError
Error encountered while running a query.

reading module

This module contains classes that allow reading from an index.

Classes

class whoosh.reading.IndexReader
Do not instantiate this object directly. Instead use Index.reader().

all_doc_ids()
Returns an iterator of all (undeleted) document IDs in the reader.

all_stored_fields()
Yields the stored fields for all non-deleted documents.

all_terms()
Yields (fieldname, text) tuples for every term in the index.

close()
Closes the open files associated with this reader.

codec()
Returns the whoosh.codec.base.Codec object used to read this reader’s segment. If this reader is
not atomic (reader.is_atomic() == True), returns None.

158 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

column_reader(fieldname, column=None, reverse=False, translate=False)

Parameters

• fieldname – the name of the field for which to get a reader.

• column – if passed, use this Column object instead of the one associated with the field in
the Schema.

• reverse – if passed, reverses the order of keys returned by the reader’s sort_key()
method. If the column type is not reversible, this will raise a NotImplementedError.

• translate – if True, wrap the reader to call the field’s from_bytes() method on the
returned values.

Returns a whoosh.columns.ColumnReader object.

corrector(fieldname)
Returns a whoosh.spelling.Corrector object that suggests corrections based on the terms in the
given field.

doc_count()
Returns the total number of UNDELETED documents in this reader.

doc_count_all()
Returns the total number of documents, DELETED OR UNDELETED, in this reader.

doc_field_length(docnum, fieldname, default=0)
Returns the number of terms in the given field in the given document. This is used by some scoring
algorithms.

doc_frequency(fieldname, text)
Returns how many documents the given term appears in.

expand_prefix(fieldname, prefix)
Yields terms in the given field that start with the given prefix.

field_length(fieldname)
Returns the total number of terms in the given field. This is used by some scoring algorithms.

field_terms(fieldname)
Yields all term values (converted from on-disk bytes) in the given field.

first_id(fieldname, text)
Returns the first ID in the posting list for the given term. This may be optimized in certain backends.

frequency(fieldname, text)
Returns the total number of instances of the given term in the collection.

generation()
Returns the generation of the index being read, or -1 if the backend is not versioned.

has_deletions()
Returns True if the underlying index/segment has deleted documents.

has_vector(docnum, fieldname)
Returns True if the given document has a term vector for the given field.

indexed_field_names()
Returns an iterable of strings representing the names of the indexed fields. This may include additional
names not explicitly listed in the Schema if you use “glob” fields.

is_deleted(docnum)
Returns True if the given document number is marked deleted.

1.24. Whoosh API 159

Whoosh Documentation, Release 2.7.4

iter_docs()
Yields a series of (docnum, stored_fields_dict) tuples for the undeleted documents in the
reader.

iter_field(fieldname, prefix=’‘)
Yields (text, terminfo) tuples for all terms in the given field.

iter_from(fieldname, text)
Yields ((fieldname, text), terminfo) tuples for all terms in the reader, starting at the given term.

iter_postings()
Low-level method, yields all postings in the reader as (fieldname, text, docnum, weight,
valuestring) tuples.

iter_prefix(fieldname, prefix)
Yields (text, terminfo) tuples for all terms in the given field with a certain prefix.

leaf_readers()
Returns a list of (IndexReader, docbase) pairs for the child readers of this reader if it is a composite reader.
If this is not a composite reader, it returns [(self, 0)].

lexicon(fieldname)
Yields all bytestrings in the given field.

max_field_length(fieldname)
Returns the minimum length of the field across all documents. This is used by some scoring algorithms.

min_field_length(fieldname)
Returns the minimum length of the field across all documents. This is used by some scoring algorithms.

most_distinctive_terms(fieldname, number=5, prefix=’‘)
Returns the top ‘number’ terms with the highest tf*idf scores as a list of (score, text) tuples.

most_frequent_terms(fieldname, number=5, prefix=’‘)
Returns the top ‘number’ most frequent terms in the given field as a list of (frequency, text) tuples.

postings(fieldname, text)
Returns a Matcher for the postings of the given term.

>>> pr = reader.postings("content", "render")
>>> pr.skip_to(10)
>>> pr.id
12

Parameters

• fieldname – the field name or field number of the term.

• text – the text of the term.

Return type whoosh.matching.Matcher

segment()
Returns the whoosh.index.Segment object used by this reader. If this reader is not atomic
(reader.is_atomic() == True), returns None.

storage()
Returns the whoosh.filedb.filestore.Storage object used by this reader to read its files. If
the reader is not atomic, (reader.is_atomic() == True), returns None.

stored_fields(docnum)
Returns the stored fields for the given document number.

160 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Parameters numerickeys – use field numbers as the dictionary keys instead of field names.

term_info(fieldname, text)
Returns a TermInfo object allowing access to various statistics about the given term.

terms_from(fieldname, prefix)
Yields (fieldname, text) tuples for every term in the index starting at the given prefix.

terms_within(fieldname, text, maxdist, prefix=0)
Returns a generator of words in the given field within maxdist Damerau-Levenshtein edit distance of
the given text.

Important: the terms are returned in no particular order. The only criterion is that they are within
maxdist edits of text. You may want to run this method multiple times with increasing maxdist
values to ensure you get the closest matches first. You may also have additional information (such as term
frequency or an acoustic matching algorithm) you can use to rank terms with the same edit distance.

Parameters

• maxdist – the maximum edit distance.

• prefix – require suggestions to share a prefix of this length with the given word. This is
often justifiable since most misspellings do not involve the first letter of the word. Using a
prefix dramatically decreases the time it takes to generate the list of words.

• seen – an optional set object. Words that appear in the set will not be yielded.

vector(docnum, fieldname, format_=None)
Returns a Matcher object for the given term vector.

>>> docnum = searcher.document_number(path=u'/a/b/c')
>>> v = searcher.vector(docnum, "content")
>>> v.all_as("frequency")
[(u"apple", 3), (u"bear", 2), (u"cab", 2)]

Parameters

• docnum – the document number of the document for which you want the term vector.

• fieldname – the field name or field number of the field for which you want the term
vector.

Return type whoosh.matching.Matcher

vector_as(astype, docnum, fieldname)
Returns an iterator of (termtext, value) pairs for the terms in the given term vector. This is a convenient
shortcut to calling vector() and using the Matcher object when all you want are the terms and/or values.

>>> docnum = searcher.document_number(path=u'/a/b/c')
>>> searcher.vector_as("frequency", docnum, "content")
[(u"apple", 3), (u"bear", 2), (u"cab", 2)]

Parameters

• docnum – the document number of the document for which you want the term vector.

• fieldname – the field name or field number of the field for which you want the term
vector.

• astype – a string containing the name of the format you want the term vector’s data in,
for example “weights”.

1.24. Whoosh API 161

Whoosh Documentation, Release 2.7.4

class whoosh.reading.MultiReader(readers, generation=None)
Do not instantiate this object directly. Instead use Index.reader().

class whoosh.reading.TermInfo(weight=0, df=0, minlength=None, maxlength=0, maxweight=0,
minid=None, maxid=0)

Represents a set of statistics about a term. This object is returned by IndexReader.term_info(). These
statistics may be useful for optimizations and scoring algorithms.

doc_frequency()
Returns the number of documents the term appears in.

max_id()
Returns the highest document ID this term appears in.

max_length()
Returns the length of the longest field value the term appears in.

max_weight()
Returns the number of times the term appears in the document in which it appears the most.

min_id()
Returns the lowest document ID this term appears in.

min_length()
Returns the length of the shortest field value the term appears in.

weight()
Returns the total frequency of the term across all documents.

Exceptions

exception whoosh.reading.TermNotFound

scoring module

This module contains classes for scoring (and sorting) search results.

Base classes

class whoosh.scoring.WeightingModel
Abstract base class for scoring models. A WeightingModel object provides a method, scorer, which returns
an instance of whoosh.scoring.Scorer.

Basically, WeightingModel objects store the configuration information for the model (for example, the values
of B and K1 in the BM25F model), and then creates a scorer instance based on additional run-time information
(the searcher, the fieldname, and term text) to do the actual scoring.

final(searcher, docnum, score)
Returns a final score for each document. You can use this method in subclasses to apply document-level
adjustments to the score, for example using the value of stored field to influence the score (although that
would be slow).

WeightingModel sub-classes that use final() should have the attribute use_final set to True.

Parameters

• searcher – whoosh.searching.Searcher for the index.

• docnum – the doc number of the document being scored.

162 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

• score – the document’s accumulated term score.

Return type float

idf(searcher, fieldname, text)
Returns the inverse document frequency of the given term.

scorer(searcher, fieldname, text, qf=1)
Returns an instance of whoosh.scoring.Scorer configured for the given searcher, fieldname, and
term text.

class whoosh.scoring.BaseScorer
Base class for “scorer” implementations. A scorer provides a method for scoring a document, and sometimes
methods for rating the “quality” of a document and a matcher’s current “block”, to implement quality-based
optimizations.

Scorer objects are created by WeightingModel objects. Basically, WeightingModel objects store the configura-
tion information for the model (for example, the values of B and K1 in the BM25F model), and then creates a
scorer instance.

block_quality(matcher)
Returns the maximum limit on the possible score the matcher can give in its current “block” (whatever
concept of “block” the backend might use). This can be an estimate and not necessarily the actual maxi-
mum score possible, but it must never be less than the actual maximum score.

If this score is less than the minimum score required to make the “top N” results, then we can tell the
matcher to skip ahead to another block with better “quality”.

max_quality()
Returns the maximum limit on the possible score the matcher can give. This can be an estimate and not
necessarily the actual maximum score possible, but it must never be less than the actual maximum score.

score(matcher)
Returns a score for the current document of the matcher.

supports_block_quality()
Returns True if this class supports quality optimizations.

class whoosh.scoring.WeightScorer(maxweight)
A scorer that simply returns the weight as the score. This is useful for more complex weighting models to return
when they are asked for a scorer for fields that aren’t scorable (don’t store field lengths).

class whoosh.scoring.WeightLengthScorer
Base class for scorers where the only per-document variables are term weight and field length.

Subclasses should override the _score(weight, length) method to return the score for a document with
the given weight and length, and call the setup() method at the end of the initializer to set up common
attributes.

Scoring algorithm classes

class whoosh.scoring.BM25F(B=0.75, K1=1.2, **kwargs)
Implements the BM25F scoring algorithm.

>>> from whoosh import scoring
>>> # Set a custom B value for the "content" field
>>> w = scoring.BM25F(B=0.75, content_B=1.0, K1=1.5)

Parameters

1.24. Whoosh API 163

https://docs.python.org/2/library/functions.html#float

Whoosh Documentation, Release 2.7.4

• B – free parameter, see the BM25 literature. Keyword arguments of the form
fieldname_B (for example, body_B) set field- specific values for B.

• K1 – free parameter, see the BM25 literature.

class whoosh.scoring.TF_IDF

class whoosh.scoring.Frequency

Scoring utility classes

class whoosh.scoring.FunctionWeighting(fn)
Uses a supplied function to do the scoring. For simple scoring functions and experiments this may be simpler to
use than writing a full weighting model class and scorer class.

The function should accept the arguments searcher, fieldname, text, matcher.

For example, the following function will score documents based on the earliest position of the query term in the
document:

def pos_score_fn(searcher, fieldname, text, matcher):
poses = matcher.value_as("positions")
return 1.0 / (poses[0] + 1)

pos_weighting = scoring.FunctionWeighting(pos_score_fn)
with myindex.searcher(weighting=pos_weighting) as s:

results = s.search(q)

Note that the searcher passed to the function may be a per-segment searcher for performance reasons. If you
want to get global statistics inside the function, you should use searcher.get_parent() to get the top-
level searcher. (However, if you are using global statistics, you should probably write a real model/scorer combo
so you can cache them on the object.)

class whoosh.scoring.MultiWeighting(default, **weightings)
Chooses from multiple scoring algorithms based on the field.

The only non-keyword argument specifies the default Weighting instance to use. Keyword arguments specify
Weighting instances for specific fields.

For example, to use BM25 for most fields, but Frequency for the id field and TF_IDF for the keys field:

mw = MultiWeighting(BM25(), id=Frequency(), keys=TF_IDF())

Parameters default – the Weighting instance to use for fields not specified in the keyword argu-
ments.

class whoosh.scoring.ReverseWeighting(weighting)
Wraps a weighting object and subtracts the wrapped model’s scores from 0, essentially reversing the weighting
model.

searching module

This module contains classes and functions related to searching the index.

164 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Searching classes

class whoosh.searching.Searcher(reader, weighting=<class ‘whoosh.scoring.BM25F’>,
closereader=True, fromindex=None, parent=None)

Wraps an IndexReader object and provides methods for searching the index.

Parameters

• reader – An IndexReader object for the index to search.

• weighting – A whoosh.scoring.Weighting object to use to score found docu-
ments.

• closereader – Whether the underlying reader will be closed when the searcher is closed.

• fromindex – An optional reference to the index of the underlying reader. This is required
for Searcher.up_to_date() and Searcher.refresh() to work.

boolean_context()
Shortcut returns a SearchContext set for unscored (boolean) searching.

collector(limit=10, sortedby=None, reverse=False, groupedby=None, collapse=None, col-
lapse_limit=1, collapse_order=None, optimize=True, filter=None, mask=None,
terms=False, maptype=None, scored=True)

Low-level method: returns a configured whoosh.collectors.Collector object based on the given
arguments. You can use this object with Searcher.search_with_collector() to search.

See the documentation for the Searcher.search() method for a description of the parameters.

This method may be useful to get a basic collector object and then wrap it with another collector from
whoosh.collectors or with a custom collector of your own:

Equivalent of
results = mysearcher.search(myquery, limit=10)
but with a time limt...

Create a TopCollector
c = mysearcher.collector(limit=10)

Wrap it with a TimeLimitedCollector with a time limit of
10.5 seconds
from whoosh.collectors import TimeLimitedCollector
c = TimeLimitCollector(c, 10.5)

Search using the custom collector
results = mysearcher.search_with_collector(myquery, c)

context(**kwargs)
Generates a SearchContext for this searcher.

correct_query(q, qstring, correctors=None, terms=None, maxdist=2, prefix=0, aliases=None)
Returns a corrected version of the given user query using a default whoosh.spelling.
ReaderCorrector.

The default:

•Corrects any words that don’t appear in the index.

•Takes suggestions from the words in the index. To make certain fields use custom correctors, use
the correctors argument to pass a dictionary mapping field names to whoosh.spelling.
Corrector objects.

1.24. Whoosh API 165

Whoosh Documentation, Release 2.7.4

Expert users who want more sophisticated correction behavior can create a custom whoosh.spelling.
QueryCorrector and use that instead of this method.

Returns a whoosh.spelling.Correction object with a query attribute containing the corrected
whoosh.query.Query object and a string attributes containing the corrected query string.

>>> from whoosh import qparser, highlight
>>> qtext = 'mary "litle lamb"'
>>> q = qparser.QueryParser("text", myindex.schema)
>>> mysearcher = myindex.searcher()
>>> correction = mysearcher().correct_query(q, qtext)
>>> correction.query
<query.And ...>
>>> correction.string
'mary "little lamb"'
>>> mysearcher.close()

You can use the Correction object’s format_string method to format the corrected query string
using a whoosh.highlight.Formatter object. For example, you can format the corrected string
as HTML, emphasizing the changed words.

>>> hf = highlight.HtmlFormatter(classname="change")
>>> correction.format_string(hf)
'mary "<strong class="change term0">little lamb"'

Parameters

• q – the whoosh.query.Query object to correct.

• qstring – the original user query from which the query object was created. You can
pass None instead of a string, in which the second item in the returned tuple will also be
None.

• correctors – an optional dictionary mapping fieldnames to whoosh.spelling.
Corrector objects. By default, this method uses the contents of the index to spell
check the terms in the query. You can use this argument to “override” some fields with a
different correct, for example a whoosh.spelling.GraphCorrector.

• terms – a sequence of ("fieldname", "text") tuples to correct in the query. By
default, this method corrects terms that don’t appear in the index. You can use this argu-
ment to override that behavior and explicitly specify the terms that should be corrected.

• maxdist – the maximum number of “edits” (insertions, deletions, subsitutions, or trans-
positions of letters) allowed between the original word and any suggestion. Values higher
than 2 may be slow.

• prefix – suggested replacement words must share this number of initial characters with
the original word. Increasing this even to just 1 can dramatically speed up suggestions,
and may be justifiable since spellling mistakes rarely involve the first letter of a word.

• aliases – an optional dictionary mapping field names in the query to different field
names to use as the source of spelling suggestions. The mappings in correctors are
applied after this.

Return type whoosh.spelling.Correction

doc_count()
Returns the number of UNDELETED documents in the index.

166 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

doc_count_all()
Returns the total number of documents, DELETED OR UNDELETED, in the index.

docs_for_query(q, for_deletion=False)
Returns an iterator of document numbers for documents matching the given whoosh.query.Query
object.

document(**kw)
Convenience method returns the stored fields of a document matching the given keyword arguments, where
the keyword keys are field names and the values are terms that must appear in the field.

This method is equivalent to:

searcher.stored_fields(searcher.document_number(<keyword args>))

Where Searcher.documents() returns a generator, this function returns either a dictionary or None. Use it
when you assume the given keyword arguments either match zero or one documents (i.e. at least one of
the fields is a unique key).

>>> stored_fields = searcher.document(path=u"/a/b")
>>> if stored_fields:
... print(stored_fields['title'])
... else:
... print("There is no document with the path /a/b")

document_number(**kw)
Returns the document number of the document matching the given keyword arguments, where the keyword
keys are field names and the values are terms that must appear in the field.

>>> docnum = searcher.document_number(path=u"/a/b")

Where Searcher.document_numbers() returns a generator, this function returns either an int or None. Use
it when you assume the given keyword arguments either match zero or one documents (i.e. at least one of
the fields is a unique key).

Return type int

document_numbers(**kw)
Returns a generator of the document numbers for documents matching the given keyword arguments,
where the keyword keys are field names and the values are terms that must appear in the field. If you do
not specify any arguments (Searcher.document_numbers()), this method will yield all document
numbers.

>>> docnums = list(searcher.document_numbers(emailto="matt@whoosh.ca"))

documents(**kw)
Convenience method returns the stored fields of a document matching the given keyword arguments, where
the keyword keys are field names and the values are terms that must appear in the field.

Returns a generator of dictionaries containing the stored fields of any documents matching the keyword
arguments. If you do not specify any arguments (Searcher.documents()), this method will yield all
documents.

>>> for stored_fields in searcher.documents(emailto=u"matt@whoosh.ca"):
... print("Email subject:", stored_fields['subject'])

get_parent()
Returns the parent of this searcher (if has_parent() is True), or else self.

1.24. Whoosh API 167

https://docs.python.org/2/library/functions.html#int

Whoosh Documentation, Release 2.7.4

idf(fieldname, text)
Calculates the Inverse Document Frequency of the current term (calls idf() on the searcher’s Weighting
object).

key_terms(docnums, fieldname, numterms=5, model=<class ‘whoosh.classify.Bo1Model’>, normal-
ize=True)

Returns the ‘numterms’ most important terms from the documents listed (by number) in ‘docnums’. You
can get document numbers for the documents your interested in with the document_number() and docu-
ment_numbers() methods.

“Most important” is generally defined as terms that occur frequently in the top hits but relatively infre-
quently in the collection as a whole.

>>> docnum = searcher.document_number(path=u"/a/b")
>>> keywords_and_scores = searcher.key_terms([docnum], "content")

This method returns a list of (“term”, score) tuples. The score may be useful if you want to know the
“strength” of the key terms, however to just get the terms themselves you can just do this:

>>> kws = [kw for kw, score in searcher.key_terms([docnum], "content")]

Parameters

• fieldname – Look at the terms in this field. This field must store vectors.

• docnums – A sequence of document numbers specifying which documents to extract key
terms from.

• numterms – Return this number of important terms.

• model – The classify.ExpansionModel to use. See the classify module.

• normalize – normalize the scores.

Returns a list of (“term”, score) tuples.

key_terms_from_text(fieldname, text, numterms=5, model=<class ‘whoosh.classify.Bo1Model’>,
normalize=True)

Return the ‘numterms’ most important terms from the given text.

Parameters

• numterms – Return this number of important terms.

• model – The classify.ExpansionModel to use. See the classify module.

more_like(docnum, fieldname, text=None, top=10, numterms=5, model=<class
‘whoosh.classify.Bo1Model’>, normalize=False, filter=None)

Returns a Results object containing documents similar to the given document, based on “key terms” in
the given field:

Get the ID for the document you're interested in
docnum = search.document_number(path=u"/a/b/c")

r = searcher.more_like(docnum)

print("Documents like", searcher.stored_fields(docnum)["title"])
for hit in r:

print(hit["title"])

Parameters

168 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

• fieldname – the name of the field to use to test similarity.

• text – by default, the method will attempt to load the contents of the field from the stored
fields for the document, or from a term vector. If the field isn’t stored or vectored in the
index, but you have access to the text another way (for example, loading from a file or a
database), you can supply it using the text parameter.

• top – the number of results to return.

• numterms – the number of “key terms” to extract from the hit and search for. Using
more terms is slower but gives potentially more and more accurate results.

• model – (expert) a whoosh.classify.ExpansionModel to use to compute “key
terms”.

• normalize – whether to normalize term weights.

• filter – a query, Results object, or set of docnums. The results will only contain docu-
ments that are also in the filter object.

postings(fieldname, text, weighting=None, qf=1)
Returns a whoosh.matching.Matcher for the postings of the given term. Unlike the whoosh.
reading.IndexReader.postings() method, this method automatically sets the scoring functions
on the matcher from the searcher’s weighting object.

reader()
Returns the underlying IndexReader.

refresh()
Returns a fresh searcher for the latest version of the index:

my_searcher = my_searcher.refresh()

If the index has not changed since this searcher was created, this searcher is simply returned.

This method may CLOSE underlying resources that are no longer needed by the refreshed searcher, so you
CANNOT continue to use the original searcher after calling refresh() on it.

search(q, **kwargs)
Runs a whoosh.query.Query object on this searcher and returns a Results object. See How to
search for more information.

This method takes many keyword arguments (documented below).

See Sorting and faceting for information on using sortedby and/or groupedby. See Collapsing results
for more information on using collapse, collapse_limit, and collapse_order.

Parameters

• query – a whoosh.query.Query object to use to match documents.

• limit – the maximum number of documents to score. If you’re only interested in the top
N documents, you can set limit=N to limit the scoring for a faster search. Default is 10.

• scored – whether to score the results. Overriden by sortedby. If both
scored=False and sortedby=None, the results will be in arbitrary order, but will
usually be computed faster than scored or sorted results.

• sortedby – see Sorting and faceting.

• reverse – Reverses the direction of the sort. Default is False.

• groupedby – see Sorting and faceting.

1.24. Whoosh API 169

Whoosh Documentation, Release 2.7.4

• optimize – use optimizations to get faster results when possible. Default is True.

• filter – a query, Results object, or set of docnums. The results will only contain docu-
ments that are also in the filter object.

• mask – a query, Results object, or set of docnums. The results will not contain any
documents that are in the mask object.

• terms – if True, record which terms were found in each matching document. See How
to search for more information. Default is False.

• maptype – by default, the results of faceting with groupedby is a dictionary mapping
group names to ordered lists of document numbers in the group. You can pass a whoosh.
sorting.FacetMap subclass to this keyword argument to specify a different (usually
faster) method for grouping. For example, maptype=sorting.Count would store
only the count of documents in each group, instead of the full list of document IDs.

• collapse – a facet to use to collapse the results. See Collapsing results for more infor-
mation.

• collapse_limit – the maximum number of documents to allow with the same col-
lapse key. See Collapsing results for more information.

• collapse_order – an optional ordering facet to control which documents are kept
when collapsing. The default (collapse_order=None) uses the results order (e.g.
the highest scoring documents in a scored search).

Return type Results

search_page(query, pagenum, pagelen=10, **kwargs)
This method is Like the Searcher.search() method, but returns a ResultsPage object. This is a
convenience function for getting a certain “page” of the results for the given query, which is often useful
in web search interfaces.

For example:

querystring = request.get("q")
query = queryparser.parse("content", querystring)

pagenum = int(request.get("page", 1))
pagelen = int(request.get("perpage", 10))

results = searcher.search_page(query, pagenum, pagelen=pagelen)
print("Page %d of %d" % (results.pagenum, results.pagecount))
print("Showing results %d-%d of %d"

% (results.offset + 1, results.offset + results.pagelen + 1,
len(results)))

for hit in results:
print("%d: %s" % (hit.rank + 1, hit["title"]))

(Note that results.pagelen might be less than the pagelen argument if there aren’t enough results to fill a
page.)

Any additional keyword arguments you supply are passed through to Searcher.search(). For ex-
ample, you can get paged results of a sorted search:

results = searcher.search_page(q, 2, sortedby="date", reverse=True)

Currently, searching for page 100 with pagelen of 10 takes the same amount of time as using Searcher.
search() to find the first 1000 results. That is, this method does not have any special optimizations or

170 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

efficiencies for getting a page from the middle of the full results list. (A future enhancement may allow
using previous page results to improve the efficiency of finding the next page.)

This method will raise a ValueError if you ask for a page number higher than the number of pages in
the resulting query.

Parameters

• query – the whoosh.query.Query object to match.

• pagenum – the page number to retrieve, starting at 1 for the first page.

• pagelen – the number of results per page.

Returns ResultsPage

search_with_collector(q, collector, context=None)
Low-level method: runs a whoosh.query.Query object on this searcher using the given whoosh.
collectors.Collector object to collect the results:

myquery = query.Term("content", "cabbage")

uc = collectors.UnlimitedCollector()
tc = TermsCollector(uc)

mysearcher.search_with_collector(myquery, tc)
print(tc.docterms)
print(tc.results())

Note that this method does not return a Results object. You need to access the collector to get a results
object or other information the collector might hold after the search.

Parameters

• q – a whoosh.query.Query object to use to match documents.

• collector – a whoosh.collectors.Collector object to feed the results into.

suggest(fieldname, text, limit=5, maxdist=2, prefix=0)
Returns a sorted list of suggested corrections for the given mis-typed word text based on the contents of
the given field:

>>> searcher.suggest("content", "specail")
["special"]

This is a convenience method. If you are planning to get suggestions for multiple words in the same field,
it is more efficient to get a Corrector object and use it directly:

corrector = searcher.corrector("fieldname")
for word in words:

print(corrector.suggest(word))

Parameters

• limit – only return up to this many suggestions. If there are not enough terms in the field
within maxdist of the given word, the returned list will be shorter than this number.

• maxdist – the largest edit distance from the given word to look at. Numbers higher than
2 are not very effective or efficient.

1.24. Whoosh API 171

Whoosh Documentation, Release 2.7.4

• prefix – require suggestions to share a prefix of this length with the given word. This is
often justifiable since most misspellings do not involve the first letter of the word. Using a
prefix dramatically decreases the time it takes to generate the list of words.

up_to_date()
Returns True if this Searcher represents the latest version of the index, for backends that support versioning.

Results classes

class whoosh.searching.Results(searcher, q, top_n, docset=None, facetmaps=None, runtime=0,
highlighter=None)

This object is returned by a Searcher. This object represents the results of a search query. You can mostly use it
as if it was a list of dictionaries, where each dictionary is the stored fields of the document at that position in the
results.

Note that a Results object keeps a reference to the Searcher that created it, so keeping a reference to a Results
object keeps the Searcher alive and so keeps all files used by it open.

Parameters

• searcher – the Searcher object that produced these results.

• query – the original query that created these results.

• top_n – a list of (score, docnum) tuples representing the top N search results.

copy()
Returns a deep copy of this results object.

docnum(n)
Returns the document number of the result at position n in the list of ranked documents.

docs()
Returns a set-like object containing the document numbers that matched the query.

estimated_length()
The estimated maximum number of matching documents, or the exact number of matching documents if
it’s known.

estimated_min_length()
The estimated minimum number of matching documents, or the exact number of matching documents if
it’s known.

extend(results)
Appends hits from ‘results’ (that are not already in this results object) to the end of these results.

Parameters results – another results object.

facet_names()
Returns the available facet names, for use with the groups() method.

fields(n)
Returns the stored fields for the document at the n th position in the results. Use Results.docnum()
if you want the raw document number instead of the stored fields.

filter(results)
Removes any hits that are not also in the other results object.

groups(name=None)
If you generated facet groupings for the results using the groupedby keyword argument to the search()

172 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

method, you can use this method to retrieve the groups. You can use the facet_names() method to get
the list of available facet names.

>>> results = searcher.search(my_query, groupedby=["tag", "price"])
>>> results.facet_names()
["tag", "price"]
>>> results.groups("tag")
{"new": [12, 1, 4], "apple": [3, 10, 5], "search": [11]}

If you only used one facet, you can call the method without a facet name to get the groups for the facet.

>>> results = searcher.search(my_query, groupedby="tag")
>>> results.groups()
{"new": [12, 1, 4], "apple": [3, 10, 5, 0], "search": [11]}

By default, this returns a dictionary mapping category names to a list of document numbers, in the same
relative order as they appear in the results.

>>> results = mysearcher.search(myquery, groupedby="tag")
>>> docnums = results.groups()
>>> docnums['new']
[12, 1, 4]

You can then use Searcher.stored_fields() to get the stored fields associated with a document
ID.

If you specified a different maptype for the facet when you searched, the values in the dictionary depend
on the whoosh.sorting.FacetMap.

>>> myfacet = sorting.FieldFacet("tag", maptype=sorting.Count)
>>> results = mysearcher.search(myquery, groupedby=myfacet)
>>> counts = results.groups()
{"new": 3, "apple": 4, "search": 1}

has_exact_length()
Returns True if this results object already knows the exact number of matching documents.

has_matched_terms()
Returns True if the search recorded which terms matched in which documents.

>>> r = searcher.search(myquery)
>>> r.has_matched_terms()
False
>>>

is_empty()
Returns True if not documents matched the query.

items()
Returns an iterator of (docnum, score) pairs for the scored documents in the results.

key_terms(fieldname, docs=10, numterms=5, model=<class ‘whoosh.classify.Bo1Model’>, normal-
ize=True)

Returns the ‘numterms’ most important terms from the top ‘docs’ documents in these results. “Most
important” is generally defined as terms that occur frequently in the top hits but relatively infrequently in
the collection as a whole.

Parameters

• fieldname – Look at the terms in this field. This field must store vectors.

1.24. Whoosh API 173

Whoosh Documentation, Release 2.7.4

• docs – Look at this many of the top documents of the results.

• numterms – Return this number of important terms.

• model – The classify.ExpansionModel to use. See the classify module.

Returns list of unicode strings.

matched_terms()
Returns the set of ("fieldname", "text") tuples representing terms from the query that matched
one or more of the TOP N documents (this does not report terms for documents that match the query but
did not score high enough to make the top N results). You can compare this set to the terms from the
original query to find terms which didn’t occur in any matching documents.

This is only valid if you used terms=True in the search call to record matching terms. Otherwise it will
raise an exception.

>>> q = myparser.parse("alfa OR bravo OR charlie")
>>> results = searcher.search(q, terms=True)
>>> results.terms()
set([("content", "alfa"), ("content", "charlie")])
>>> q.all_terms() - results.terms()
set([("content", "bravo")])

score(n)
Returns the score for the document at the Nth position in the list of ranked documents. If the search was
not scored, this may return None.

scored_length()
Returns the number of scored documents in the results, equal to or less than the limit keyword argument
to the search.

>>> r = mysearcher.search(myquery, limit=20)
>>> len(r)
1246
>>> r.scored_length()
20

This may be fewer than the total number of documents that match the query, which is what
len(Results) returns.

upgrade(results, reverse=False)
Re-sorts the results so any hits that are also in ‘results’ appear before hits not in ‘results’, otherwise keeping
their current relative positions. This does not add the documents in the other results object to this one.

Parameters

• results – another results object.

• reverse – if True, lower the position of hits in the other results object instead of raising
them.

upgrade_and_extend(results)
Combines the effects of extend() and upgrade(): hits that are also in ‘results’ are raised. Then any hits
from the other results object that are not in this results object are appended to the end.

Parameters results – another results object.

class whoosh.searching.Hit(results, docnum, pos=None, score=None)
Represents a single search result (“hit”) in a Results object.

174 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

This object acts like a dictionary of the matching document’s stored fields. If for some reason you need an actual
dict object, use Hit.fields() to get one.

>>> r = searcher.search(query.Term("content", "render"))
>>> r[0]
< Hit {title = u"Rendering the scene"} >
>>> r[0].rank
0
>>> r[0].docnum == 4592
True
>>> r[0].score
2.52045682
>>> r[0]["title"]
"Rendering the scene"
>>> r[0].keys()
["title"]

Parameters

• results – the Results object this hit belongs to.

• pos – the position in the results list of this hit, for example pos = 0 means this is the first
(highest scoring) hit.

• docnum – the document number of this hit.

• score – the score of this hit.

fields()
Returns a dictionary of the stored fields of the document this object represents.

highlights(fieldname, text=None, top=3, minscore=1)
Returns highlighted snippets from the given field:

r = searcher.search(myquery)
for hit in r:

print(hit["title"])
print(hit.highlights("content"))

See How to create highlighted search result excerpts.

To change the fragmeter, formatter, order, or scorer used in highlighting, you can set attributes on the
results object:

from whoosh import highlight

results = searcher.search(myquery, terms=True)
results.fragmenter = highlight.SentenceFragmenter()

...or use a custom whoosh.highlight.Highlighter object:

hl = highlight.Highlighter(fragmenter=sf)
results.highlighter = hl

Parameters

• fieldname – the name of the field you want to highlight.

• text – by default, the method will attempt to load the contents of the field from the stored
fields for the document. If the field you want to highlight isn’t stored in the index, but you

1.24. Whoosh API 175

Whoosh Documentation, Release 2.7.4

have access to the text another way (for example, loading from a file or a database), you
can supply it using the text parameter.

• top – the maximum number of fragments to return.

• minscore – the minimum score for fragments to appear in the highlights.

matched_terms()
Returns the set of ("fieldname", "text") tuples representing terms from the query that matched
in this document. You can compare this set to the terms from the original query to find terms which didn’t
occur in this document.

This is only valid if you used terms=True in the search call to record matching terms. Otherwise it will
raise an exception.

>>> q = myparser.parse("alfa OR bravo OR charlie")
>>> results = searcher.search(q, terms=True)
>>> for hit in results:
... print(hit["title"])
... print("Contains:", hit.matched_terms())
... print("Doesn't contain:", q.all_terms() - hit.matched_terms())

more_like_this(fieldname, text=None, top=10, numterms=5, model=<class
‘whoosh.classify.Bo1Model’>, normalize=True, filter=None)

Returns a new Results object containing documents similar to this hit, based on “key terms” in the given
field:

r = searcher.search(myquery)
for hit in r:

print(hit["title"])
print("Top 3 similar documents:")
for subhit in hit.more_like_this("content", top=3):
print(" ", subhit["title"])

Parameters

• fieldname – the name of the field to use to test similarity.

• text – by default, the method will attempt to load the contents of the field from the stored
fields for the document, or from a term vector. If the field isn’t stored or vectored in the
index, but you have access to the text another way (for example, loading from a file or a
database), you can supply it using the text parameter.

• top – the number of results to return.

• numterms – the number of “key terms” to extract from the hit and search for. Using
more terms is slower but gives potentially more and more accurate results.

• model – (expert) a whoosh.classify.ExpansionModel to use to compute “key
terms”.

• normalize – whether to normalize term weights.

class whoosh.searching.ResultsPage(results, pagenum, pagelen=10)
Represents a single page out of a longer list of results, as returned by whoosh.searching.Searcher.
search_page(). Supports a subset of the interface of the Results object, namely getting stored fields
with __getitem__ (square brackets), iterating, and the score() and docnum() methods.

The offset attribute contains the results number this page starts at (numbered from 0). For example, if the
page length is 10, the offset attribute on the second page will be 10.

176 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

The pagecount attribute contains the number of pages available.

The pagenum attribute contains the page number. This may be less than the page you requested if the results
had too few pages. For example, if you do:

ResultsPage(results, 5)

but the results object only contains 3 pages worth of hits, pagenum will be 3.

The pagelen attribute contains the number of results on this page (which may be less than the page length you
requested if this is the last page of the results).

The total attribute contains the total number of hits in the results.

>>> mysearcher = myindex.searcher()
>>> pagenum = 2
>>> page = mysearcher.find_page(pagenum, myquery)
>>> print("Page %s of %s, results %s to %s of %s" %
... (pagenum, page.pagecount, page.offset+1,
... page.offset+page.pagelen, page.total))
>>> for i, fields in enumerate(page):
... print("%s. %r" % (page.offset + i + 1, fields))
>>> mysearcher.close()

To set highlighter attributes (for example formatter), access the underlying Results object:

page.results.formatter = highlight.UppercaseFormatter()

Parameters

• results – a Results object.

• pagenum – which page of the results to use, numbered from 1.

• pagelen – the number of hits per page.

docnum(n)
Returns the document number of the hit at the nth position on this page.

is_last_page()
Returns True if this object represents the last page of results.

score(n)
Returns the score of the hit at the nth position on this page.

Exceptions

exception whoosh.searching.NoTermsException
Exception raised you try to access matched terms on a Results object was created without them. To
record which terms matched in which document, you need to call the Searcher.search() method with
terms=True.

exception whoosh.searching.TimeLimit
Raised by TimeLimitedCollector if the time limit is reached before the search finishes. If you have a
reference to the collector, you can get partial results by calling TimeLimitedCollector.results().

1.24. Whoosh API 177

Whoosh Documentation, Release 2.7.4

sorting module

Base types

class whoosh.sorting.FacetType
Base class for “facets”, aspects that can be sorted/faceted.

categorizer(global_searcher)
Returns a Categorizer corresponding to this facet.

Parameters global_searcher – A parent searcher. You can use this searcher if you need
global document ID references.

class whoosh.sorting.Categorizer
Base class for categorizer objects which compute a key value for a document based on certain criteria, for use
in sorting/faceting.

Categorizers are created by FacetType objects through the FacetType.categorizer() method. The
whoosh.searching.Searcher object passed to the categorizermethod may be a composite searcher
(that is, wrapping a multi-reader), but categorizers are always run per-segment, with segment-relative document
numbers.

The collector will call a categorizer’s set_searcher method as it searches each segment to let the cateogo-
rizer set up whatever segment- specific data it needs.

Collector.allow_overlap should be True if the caller can use the keys_for method instead of
key_for to group documents into potentially overlapping groups. The default is False.

If a categorizer subclass can categorize the document using only the document number, it should set
Collector.needs_current to False (this is the default) and NOT USE the given matcher in the
key_for or keys_for methods, since in that case segment_docnum is not guaranteed to be consistent
with the given matcher. If a categorizer subclass needs to access information on the matcher, it should set
needs_current to True. This will prevent the caller from using optimizations that might leave the matcher
in an inconsistent state.

key_for(matcher, segment_docnum)
Returns a key for the current match.

Parameters

• matcher – a whoosh.matching.Matcher object. If self.needs_current
is False, DO NOT use this object, since it may be inconsistent. Use the given
segment_docnum instead.

• segment_docnum – the segment-relative document number of the current match.

key_to_name(key)
Returns a representation of the key to be used as a dictionary key in faceting. For example, the sorting key
for date fields is a large integer; this method translates it into a datetime object to make the groupings
clearer.

keys_for(matcher, segment_docnum)
Yields a series of keys for the current match.

This method will be called instead of key_for if self.allow_overlap is True.

Parameters

• matcher – a whoosh.matching.Matcher object. If self.needs_current
is False, DO NOT use this object, since it may be inconsistent. Use the given
segment_docnum instead.

178 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

• segment_docnum – the segment-relative document number of the current match.

set_searcher(segment_searcher, docoffset)
Called by the collector when the collector moves to a new segment. The segment_searcher will be
atomic. The docoffset is the offset of the segment’s document numbers relative to the entire index.
You can use the offset to get absolute index docnums by adding the offset to segment-relative docnums.

Facet types

class whoosh.sorting.FieldFacet(fieldname, reverse=False, allow_overlap=False, maptype=None)
Sorts/facets by the contents of a field.

For example, to sort by the contents of the “path” field in reverse order, and facet by the contents of the “tag”
field:

paths = FieldFacet("path", reverse=True)
tags = FieldFacet("tag")
results = searcher.search(myquery, sortedby=paths, groupedby=tags)

This facet returns different categorizers based on the field type.

Parameters

• fieldname – the name of the field to sort/facet on.

• reverse – if True, when sorting, reverse the sort order of this facet.

• allow_overlap – if True, when grouping, allow documents to appear in multiple groups
when they have multiple terms in the field.

class whoosh.sorting.QueryFacet(querydict, other=None, allow_overlap=False, maptype=None)
Sorts/facets based on the results of a series of queries.

Parameters

• querydict – a dictionary mapping keys to whoosh.query.Query objects.

• other – the key to use for documents that don’t match any of the queries.

class whoosh.sorting.RangeFacet(fieldname, start, end, gap, hardend=False, maptype=None)
Sorts/facets based on numeric ranges. For textual ranges, use QueryFacet.

For example, to facet the “price” field into $100 buckets, up to $1000:

prices = RangeFacet("price", 0, 1000, 100)
results = searcher.search(myquery, groupedby=prices)

The ranges/buckets are always inclusive at the start and exclusive at the end.

Parameters

• fieldname – the numeric field to sort/facet on.

• start – the start of the entire range.

• end – the end of the entire range.

• gap – the size of each “bucket” in the range. This can be a sequence of sizes. For example,
gap=[1,5,10] will use 1 as the size of the first bucket, 5 as the size of the second bucket,
and 10 as the size of all subsequent buckets.

1.24. Whoosh API 179

Whoosh Documentation, Release 2.7.4

• hardend – if True, the end of the last bucket is clamped to the value of end. If False (the
default), the last bucket is always gap sized, even if that means the end of the last bucket is
after end.

class whoosh.sorting.DateRangeFacet(fieldname, start, end, gap, hardend=False, maptype=None)
Sorts/facets based on date ranges. This is the same as RangeFacet except you are expected to use daterange
objects as the start and end of the range, and timedelta or relativedelta objects as the gap(s), and it
generates DateRange queries instead of TermRange queries.

For example, to facet a “birthday” range into 5 year buckets:

from datetime import datetime
from whoosh.support.relativedelta import relativedelta

startdate = datetime(1920, 0, 0)
enddate = datetime.now()
gap = relativedelta(years=5)
bdays = DateRangeFacet("birthday", startdate, enddate, gap)
results = searcher.search(myquery, groupedby=bdays)

The ranges/buckets are always inclusive at the start and exclusive at the end.

Parameters

• fieldname – the numeric field to sort/facet on.

• start – the start of the entire range.

• end – the end of the entire range.

• gap – the size of each “bucket” in the range. This can be a sequence of sizes. For example,
gap=[1,5,10] will use 1 as the size of the first bucket, 5 as the size of the second bucket,
and 10 as the size of all subsequent buckets.

• hardend – if True, the end of the last bucket is clamped to the value of end. If False (the
default), the last bucket is always gap sized, even if that means the end of the last bucket is
after end.

class whoosh.sorting.ScoreFacet
Uses a document’s score as a sorting criterion.

For example, to sort by the tag field, and then within that by relative score:

tag_score = MultiFacet(["tag", ScoreFacet()])
results = searcher.search(myquery, sortedby=tag_score)

class whoosh.sorting.FunctionFacet(fn, maptype=None)
This facet type is low-level. In most cases you should use TranslateFacet instead.

This facet type ets you pass an arbitrary function that will compute the key. This may be easier than subclassing
FacetType and Categorizer to set up the desired behavior.

The function is called with the arguments (searcher, docid), where the searcher may be a composite
searcher, and the docid is an absolute index document number (not segment-relative).

For example, to use the number of words in the document’s “content” field as the sorting/faceting key:

fn = lambda s, docid: s.doc_field_length(docid, "content")
lengths = FunctionFacet(fn)

class whoosh.sorting.MultiFacet(items=None, maptype=None)
Sorts/facets by the combination of multiple “sub-facets”.

180 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

For example, to sort by the value of the “tag” field, and then (for documents where the tag is the same) by the
value of the “path” field:

facet = MultiFacet(FieldFacet("tag"), FieldFacet("path")
results = searcher.search(myquery, sortedby=facet)

As a shortcut, you can use strings to refer to field names, and they will be assumed to be field names and turned
into FieldFacet objects:

facet = MultiFacet("tag", "path")

You can also use the add_* methods to add criteria to the multifacet:

facet = MultiFacet()
facet.add_field("tag")
facet.add_field("path", reverse=True)
facet.add_query({"a-m": TermRange("name", "a", "m"),

"n-z": TermRange("name", "n", "z")})

class whoosh.sorting.StoredFieldFacet(fieldname, allow_overlap=False, split_fn=None, map-
type=None)

Lets you sort/group using the value in an unindexed, stored field (e.g. whoosh.fields.STORED). This is
usually slower than using an indexed field.

For fields where the stored value is a space-separated list of keywords, (e.g. "tag1 tag2 tag3"), you
can use the allow_overlap keyword argument to allow overlapped faceting on the result of calling the
split() method on the field value (or calling a custom split function if one is supplied).

Parameters

• fieldname – the name of the stored field.

• allow_overlap – if True, when grouping, allow documents to appear in multiple groups
when they have multiple terms in the field. The categorizer uses string.split() or the
custom split_fn to convert the stored value into a list of facet values.

• split_fn – a custom function to split a stored field value into multiple facet values
when allow_overlap is True. If not supplied, the categorizer simply calls the value’s
split() method.

Facets object

class whoosh.sorting.Facets(x=None)
Maps facet names to FacetType objects, for creating multiple groupings of documents.

For example, to group by tag, and also group by price range:

facets = Facets()
facets.add_field("tag")
facets.add_facet("price", RangeFacet("price", 0, 1000, 100))
results = searcher.search(myquery, groupedby=facets)

tag_groups = results.groups("tag")
price_groups = results.groups("price")

(To group by the combination of multiple facets, use MultiFacet.)

add_facet(name, facet)
Adds a FacetType object under the given name.

1.24. Whoosh API 181

Whoosh Documentation, Release 2.7.4

add_facets(facets, replace=True)
Adds the contents of the given Facets or dict object to this object.

add_field(fieldname, **kwargs)
Adds a FieldFacet for the given field name (the field name is automatically used as the facet name).

add_query(name, querydict, **kwargs)
Adds a QueryFacet under the given name.

Parameters

• name – a name for the facet.

• querydict – a dictionary mapping keys to whoosh.query.Query objects.

items()
Returns a list of (facetname, facetobject) tuples for the facets in this object.

names()
Returns an iterator of the facet names in this object.

FacetType objects

class whoosh.sorting.FacetMap
Base class for objects holding the results of grouping search results by a Facet. Use an object’s as_dict()
method to access the results.

You can pass a subclass of this to the maptype keyword argument when creating a FacetType object to
specify what information the facet should record about the group. For example:

Record each document in each group in its sorted order
myfacet = FieldFacet("size", maptype=OrderedList)

Record only the count of documents in each group
myfacet = FieldFacet("size", maptype=Count)

add(groupname, docid, sortkey)
Adds a document to the facet results.

Parameters

• groupname – the name of the group to add this document to.

• docid – the document number of the document to add.

• sortkey – a value representing the sort position of the document in the full results.

as_dict()
Returns a dictionary object mapping group names to implementation-specific values. For example, the
value might be a list of document numbers, or a integer representing the number of documents in the
group.

class whoosh.sorting.OrderedList
Stores a list of document numbers for each group, in the same order as they appear in the search results.

The as_dict method returns a dictionary mapping group names to lists of document numbers.

class whoosh.sorting.UnorderedList
Stores a list of document numbers for each group, in arbitrary order. This is slightly faster and uses less memory
than OrderedListResult if you don’t care about the ordering of the documents within groups.

The as_dict method returns a dictionary mapping group names to lists of document numbers.

182 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

class whoosh.sorting.Count
Stores the number of documents in each group.

The as_dict method returns a dictionary mapping group names to integers.

class whoosh.sorting.Best
Stores the “best” document in each group (that is, the one with the highest sort key).

The as_dict method returns a dictionary mapping group names to docnument numbers.

spelling module

See correcting errors in user queries. This module contains helper functions for correcting typos in user queries.

Corrector objects

class whoosh.spelling.Corrector
Base class for spelling correction objects. Concrete sub-classes should implement the _suggestionsmethod.

suggest(text, limit=5, maxdist=2, prefix=0)

Parameters

• text – the text to check. This word will not be added to the suggestions, even if it appears
in the word graph.

• limit – only return up to this many suggestions. If there are not enough terms in the field
within maxdist of the given word, the returned list will be shorter than this number.

• maxdist – the largest edit distance from the given word to look at. Values higher than 2
are not very effective or efficient.

• prefix – require suggestions to share a prefix of this length with the given word. This is
often justifiable since most misspellings do not involve the first letter of the word. Using a
prefix dramatically decreases the time it takes to generate the list of words.

class whoosh.spelling.ReaderCorrector(reader, fieldname, fieldobj)
Suggests corrections based on the content of a field in a reader.

Ranks suggestions by the edit distance, then by highest to lowest frequency.

class whoosh.spelling.MultiCorrector(correctors, op)
Merges suggestions from a list of sub-correctors.

QueryCorrector objects

class whoosh.spelling.QueryCorrector(fieldname)
Base class for objects that correct words in a user query.

correct_query(q, qstring)
Returns a Correction object representing the corrected form of the given query.

Parameters

• q – the original whoosh.query.Query tree to be corrected.

• qstring – the original user query. This may be None if the original query string is not
available, in which case the Correction.string attribute will also be None.

1.24. Whoosh API 183

Whoosh Documentation, Release 2.7.4

Return type Correction

class whoosh.spelling.SimpleQueryCorrector(correctors, terms, aliases=None, prefix=0,
maxdist=2)

A simple query corrector based on a mapping of field names to Corrector objects, and a list of
("fieldname", "text") tuples to correct. And terms in the query that appear in list of term tuples
are corrected using the appropriate corrector.

Parameters

• correctors – a dictionary mapping field names to Corrector objects.

• terms – a sequence of ("fieldname", "text") tuples representing terms to be cor-
rected.

• aliases – a dictionary mapping field names in the query to field names for spelling sug-
gestions.

• prefix – suggested replacement words must share this number of initial characters with
the original word. Increasing this even to just 1 can dramatically speed up suggestions, and
may be justifiable since spellling mistakes rarely involve the first letter of a word.

• maxdist – the maximum number of “edits” (insertions, deletions, subsitutions, or trans-
positions of letters) allowed between the original word and any suggestion. Values higher
than 2 may be slow.

class whoosh.spelling.Correction(q, qstring, corr_q, tokens)
Represents the corrected version of a user query string. Has the following attributes:

query The corrected whoosh.query.Query object.

string The corrected user query string.

original_query The original whoosh.query.Query object that was corrected.

original_string The original user query string.

tokens A list of token objects representing the corrected words.

You can also use the Correction.format_string() method to reformat the corrected query string using
a whoosh.highlight.Formatter class. For example, to display the corrected query string as HTML with
the changed words emphasized:

from whoosh import highlight

correction = mysearcher.correct_query(q, qstring)

hf = highlight.HtmlFormatter(classname="change")
html = correction.format_string(hf)

support.charset module

This module contains tools for working with Sphinx charset table files. These files are useful for doing case and accent
folding. See whoosh.analysis.CharsetTokenizer and whoosh.analysis.CharsetFilter.

whoosh.support.charset.default_charset
An extensive case- and accent folding charset table. Taken from http://speeple.com/unicode-maps.txt

whoosh.support.charset.charset_table_to_dict(tablestring)
Takes a string with the contents of a Sphinx charset table file and returns a mapping object (a defaultdict,
actually) of the kind expected by the unicode.translate() method: that is, it maps a character number to a unicode
character or None if the character is not a valid word character.

184 Chapter 1. Contents

http://speeple.com/unicode-maps.txt

Whoosh Documentation, Release 2.7.4

The Sphinx charset table format is described at http://www.sphinxsearch.com/docs/current.html#
conf-charset-table.

support.levenshtein module

Contains functions implementing edit distance algorithms.

whoosh.support.levenshtein.relative(a, b)
Returns the relative distance between two strings, in the range [0-1] where 1 means total equality.

whoosh.support.levenshtein.distance(seq1, seq2, limit=None)
Returns the Damerau-Levenshtein edit distance between two strings.

util module

whoosh.util.fib(n)
Returns the nth value in the Fibonacci sequence.

whoosh.util.make_binary_tree(fn, args, **kwargs)
Takes a function/class that takes two positional arguments and a list of arguments and returns a binary tree of
results/instances.

>>> make_binary_tree(UnionMatcher, [matcher1, matcher2, matcher3])
UnionMatcher(matcher1, UnionMatcher(matcher2, matcher3))

Any keyword arguments given to this function are passed to the class initializer.

whoosh.util.make_weighted_tree(fn, ls, **kwargs)
Takes a function/class that takes two positional arguments and a list of (weight, argument) tuples and returns a
huffman-like weighted tree of results/instances.

whoosh.util.synchronized(func)
Decorator for storage-access methods, which synchronizes on a threading lock. The parent object must have
‘is_closed’ and ‘_sync_lock’ attributes.

whoosh.util.unclosed(method)
Decorator to check if the object is closed.

writing module

Writer

class whoosh.writing.IndexWriter
High-level object for writing to an index.

To get a writer for a particular index, call writer() on the Index object.

>>> writer = myindex.writer()

You can use this object as a context manager. If an exception is thrown from within the context it calls
cancel() to clean up temporary files, otherwise it calls commit() when the context exits.

>>> with myindex.writer() as w:
... w.add_document(title="First document", content="Hello there.")
... w.add_document(title="Second document", content="This is easy!")

1.24. Whoosh API 185

http://www.sphinxsearch.com/docs/current.html#conf-charset-table
http://www.sphinxsearch.com/docs/current.html#conf-charset-table

Whoosh Documentation, Release 2.7.4

add_document(**fields)
The keyword arguments map field names to the values to index/store:

w = myindex.writer()
w.add_document(path=u"/a", title=u"First doc", text=u"Hello")
w.commit()

Depending on the field type, some fields may take objects other than unicode strings. For example, NU-
MERIC fields take numbers, and DATETIME fields take datetime.datetime objects:

from datetime import datetime, timedelta
from whoosh import index
from whoosh.fields import *

schema = Schema(date=DATETIME, size=NUMERIC(float), content=TEXT)
myindex = index.create_in("indexdir", schema)

w = myindex.writer()
w.add_document(date=datetime.now(), size=5.5, content=u"Hello")
w.commit()

Instead of a single object (i.e., unicode string, number, or datetime), you can supply a list or tuple of
objects. For unicode strings, this bypasses the field’s analyzer. For numbers and dates, this lets you add
multiple values for the given field:

date1 = datetime.now()
date2 = datetime(2005, 12, 25)
date3 = datetime(1999, 1, 1)
w.add_document(date=[date1, date2, date3], size=[9.5, 10],

content=[u"alfa", u"bravo", u"charlie"])

For fields that are both indexed and stored, you can specify an alternate value to store using a keyword
argument in the form “_stored_<fieldname>”. For example, if you have a field named “title” and you want
to index the text “a b c” but store the text “e f g”, use keyword arguments like this:

writer.add_document(title=u"a b c", _stored_title=u"e f g")

You can boost the weight of all terms in a certain field by specifying a _<fieldname>_boost keyword
argument. For example, if you have a field named “content”, you can double the weight of this document
for searches in the “content” field like this:

writer.add_document(content="a b c", _title_boost=2.0)

You can boost every field at once using the _boost keyword. For example, to boost fields “a” and “b” by
2.0, and field “c” by 3.0:

writer.add_document(a="alfa", b="bravo", c="charlie",
_boost=2.0, _c_boost=3.0)

Note that some scoring algroithms, including Whoosh’s default BM25F, do not work with term weights
less than 1, so you should generally not use a boost factor less than 1.

See also Writer.update_document().

add_field(fieldname, fieldtype, **kwargs)
Adds a field to the index’s schema.

Parameters

186 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

• fieldname – the name of the field to add.

• fieldtype – an instantiated whoosh.fields.FieldType object.

cancel()
Cancels any documents/deletions added by this object and unlocks the index.

commit()
Finishes writing and unlocks the index.

delete_by_query(q, searcher=None)
Deletes any documents matching a query object.

Returns the number of documents deleted.

delete_by_term(fieldname, text, searcher=None)
Deletes any documents containing “term” in the “fieldname” field. This is useful when you have an indexed
field containing a unique ID (such as “pathname”) for each document.

Returns the number of documents deleted.

delete_document(docnum, delete=True)
Deletes a document by number.

end_group()
Finish indexing a group of hierarchical documents. See start_group().

group()
Returns a context manager that calls start_group() and end_group() for you, allowing you to use
a with statement to group hierarchical documents:

with myindex.writer() as w:
with w.group():

w.add_document(kind="class", name="Accumulator")
w.add_document(kind="method", name="add")
w.add_document(kind="method", name="get_result")
w.add_document(kind="method", name="close")

with w.group():
w.add_document(kind="class", name="Calculator")
w.add_document(kind="method", name="add")
w.add_document(kind="method", name="multiply")
w.add_document(kind="method", name="get_result")
w.add_document(kind="method", name="close")

reader(**kwargs)
Returns a reader for the existing index.

remove_field(fieldname, **kwargs)
Removes the named field from the index’s schema. Depending on the backend implementation, this may
or may not actually remove existing data for the field from the index. Optimizing the index should always
clear out existing data for a removed field.

start_group()
Start indexing a group of hierarchical documents. The backend should ensure that these documents are all
added to the same segment:

with myindex.writer() as w:
w.start_group()
w.add_document(kind="class", name="Accumulator")
w.add_document(kind="method", name="add")
w.add_document(kind="method", name="get_result")

1.24. Whoosh API 187

Whoosh Documentation, Release 2.7.4

w.add_document(kind="method", name="close")
w.end_group()

w.start_group()
w.add_document(kind="class", name="Calculator")
w.add_document(kind="method", name="add")
w.add_document(kind="method", name="multiply")
w.add_document(kind="method", name="get_result")
w.add_document(kind="method", name="close")
w.end_group()

A more convenient way to group documents is to use the group() method and the with statement.

update_document(**fields)
The keyword arguments map field names to the values to index/store.

This method adds a new document to the index, and automatically deletes any documents with the same
values in any fields marked “unique” in the schema:

schema = fields.Schema(path=fields.ID(unique=True, stored=True),
content=fields.TEXT)

myindex = index.create_in("index", schema)

w = myindex.writer()
w.add_document(path=u"/", content=u"Mary had a lamb")
w.commit()

w = myindex.writer()
w.update_document(path=u"/", content=u"Mary had a little lamb")
w.commit()

assert myindex.doc_count() == 1

It is safe to use update_document in place of add_document; if there is no existing document to
replace, it simply does an add.

You cannot currently pass a list or tuple of values to a “unique” field.

Because this method has to search for documents with the same unique fields and delete them before
adding the new document, it is slower than using add_document.

•Marking more fields “unique” in the schema will make each update_document call slightly
slower.

•When you are updating multiple documents, it is faster to batch delete all changed documents and
then use add_document to add the replacements instead of using update_document.

Note that this method will only replace a committed document; currently it cannot replace documents
you’ve added to the IndexWriter but haven’t yet committed. For example, if you do this:

>>> writer.update_document(unique_id=u"1", content=u"Replace me")
>>> writer.update_document(unique_id=u"1", content=u"Replacement")

...this will add two documents with the same value of unique_id, instead of the second document
replacing the first.

See Writer.add_document() for information on _stored_<fieldname>,
_<fieldname>_boost, and _boost keyword arguments.

188 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

Utility writers

class whoosh.writing.BufferedWriter(index, period=60, limit=10, writerargs=None, commi-
targs=None)

Convenience class that acts like a writer but buffers added documents before dumping the buffered documents
as a batch into the actual index.

In scenarios where you are continuously adding single documents very rapidly (for example a web application
where lots of users are adding content simultaneously), using a BufferedWriter is much faster than opening and
committing a writer for each document you add. If you’re adding batches of documents at a time, you can just
use a regular writer.

(This class may also be useful for batches of update_document calls. In a normal writer,
update_document calls cannot update documents you’ve added in that writer. With BufferedWriter,
this will work.)

To use this class, create it from your index and keep it open, sharing it between threads.

>>> from whoosh.writing import BufferedWriter
>>> writer = BufferedWriter(myindex, period=120, limit=20)
>>> # Then you can use the writer to add and update documents
>>> writer.add_document(...)
>>> writer.add_document(...)
>>> writer.add_document(...)
>>> # Before the writer goes out of scope, call close() on it
>>> writer.close()

Note: This object stores documents in memory and may keep an underlying writer open, so you must explicitly
call the close() method on this object before it goes out of scope to release the write lock and make sure any
uncommitted changes are saved.

You can read/search the combination of the on-disk index and the buffered documents in memory by calling
BufferedWriter.reader() or BufferedWriter.searcher(). This allows quasi-real-time search,
where documents are available for searching as soon as they are buffered in memory, before they are committed
to disk.

Tip: By using a searcher from the shared writer, multiple threads can search the buffered documents. Of course,
other processes will only see the documents that have been written to disk. If you want indexed documents
to become available to other processes as soon as possible, you have to use a traditional writer instead of a
BufferedWriter.

You can control how often the BufferedWriter flushes the in-memory index to disk using the period and
limit arguments. period is the maximum number of seconds between commits. limit is the maximum
number of additions to buffer between commits.

You don’t need to call commit() on the BufferedWriter manually. Doing so will just flush the buffered
documents to disk early. You can continue to make changes after calling commit(), and you can call
commit() multiple times.

Parameters

• index – the whoosh.index.Index to write to.

• period – the maximum amount of time (in seconds) between commits. Set this to 0 or
None to not use a timer. Do not set this any lower than a few seconds.

1.24. Whoosh API 189

Whoosh Documentation, Release 2.7.4

• limit – the maximum number of documents to buffer before committing.

• writerargs – dictionary specifying keyword arguments to be passed to the index’s
writer() method when creating a writer.

class whoosh.writing.AsyncWriter(index, delay=0.25, writerargs=None)
Convenience wrapper for a writer object that might fail due to locking (i.e. the filedb writer). This object
will attempt once to obtain the underlying writer, and if it’s successful, will simply pass method calls on to it.

If this object can’t obtain a writer immediately, it will buffer delete, add, and update method calls in memory
until you call commit(). At that point, this object will start running in a separate thread, trying to obtain the
writer over and over, and once it obtains it, “replay” all the buffered method calls on it.

In a typical scenario where you’re adding a single or a few documents to the index as the result of a Web
transaction, this lets you just create the writer, add, and commit, without having to worry about index locks,
retries, etc.

For example, to get an aynchronous writer, instead of this:

>>> writer = myindex.writer()

Do this:

>>> from whoosh.writing import AsyncWriter
>>> writer = AsyncWriter(myindex)

Parameters

• index – the whoosh.index.Index to write to.

• delay – the delay (in seconds) between attempts to instantiate the actual writer.

• writerargs – an optional dictionary specifying keyword arguments to to be passed to
the index’s writer() method.

Exceptions

exception whoosh.writing.IndexingError

Technical notes

How to implement a new backend

Index

• Subclass whoosh.index.Index.

• Indexes must implement the following methods.

– whoosh.index.Index.is_empty()

– whoosh.index.Index.doc_count()

– whoosh.index.Index.reader()

– whoosh.index.Index.writer()

• Indexes that require/support locking must implement the following methods.

190 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

– whoosh.index.Index.lock()

– whoosh.index.Index.unlock()

• Indexes that support deletion must implement the following methods.

– whoosh.index.Index.delete_document()

– whoosh.index.Index.doc_count_all() – if the backend has delayed deletion.

• Indexes that require/support versioning/transactions may implement the following methods.

– whoosh.index.Index.latest_generation()

– whoosh.index.Index.up_to_date()

– whoosh.index.Index.last_modified()

• Index may implement the following methods (the base class’s versions are no-ops).

– whoosh.index.Index.optimize()

– whoosh.index.Index.close()

IndexWriter

• Subclass whoosh.writing.IndexWriter.

• IndexWriters must implement the following methods.

– whoosh.writing.IndexWriter.add_document()

– whoosh.writing.IndexWriter.add_reader()

• Backends that support deletion must implement the following methods.

– whoosh.writing.IndexWriter.delete_document()

• IndexWriters that work as transactions must implement the following methods.

– whoosh.reading.IndexWriter.commit() – Save the additions/deletions done with this In-
dexWriter to the main index, and release any resources used by the IndexWriter.

– whoosh.reading.IndexWriter.cancel() – Throw away any additions/deletions done with this
IndexWriter, and release any resources used by the IndexWriter.

IndexReader

• Subclass whoosh.reading.IndexReader.

• IndexReaders must implement the following methods.

– whoosh.reading.IndexReader.__contains__()

– whoosh.reading.IndexReader.__iter__()

– whoosh.reading.IndexReader.iter_from()

– whoosh.reading.IndexReader.stored_fields()

– whoosh.reading.IndexReader.doc_count_all()

– whoosh.reading.IndexReader.doc_count()

– whoosh.reading.IndexReader.doc_field_length()

1.25. Technical notes 191

Whoosh Documentation, Release 2.7.4

– whoosh.reading.IndexReader.field_length()

– whoosh.reading.IndexReader.max_field_length()

– whoosh.reading.IndexReader.postings()

– whoosh.reading.IndexReader.has_vector()

– whoosh.reading.IndexReader.vector()

– whoosh.reading.IndexReader.doc_frequency()

– whoosh.reading.IndexReader.frequency()

• Backends that support deleting documents should implement the following methods.

– whoosh.reading.IndexReader.has_deletions()

– whoosh.reading.IndexReader.is_deleted()

• Backends that support versioning should implement the following methods.

– whoosh.reading.IndexReader.generation()

• If the IndexReader object does not keep the schema in the self.schema attribute, it needs to override the
following methods.

– whoosh.reading.IndexReader.field()

– whoosh.reading.IndexReader.field_names()

– whoosh.reading.IndexReader.scorable_names()

– whoosh.reading.IndexReader.vector_names()

• IndexReaders may implement the following methods.

– whoosh.reading.DocReader.close() – closes any open resources associated with the reader.

Matcher

The whoosh.reading.IndexReader.postings() method returns a whoosh.matching.Matcher ob-
ject. You will probably need to implement a custom Matcher class for reading from your posting lists.

• Subclass whoosh.matching.Matcher.

• Implement the following methods at minimum.

– whoosh.matching.Matcher.is_active()

– whoosh.matching.Matcher.copy()

– whoosh.matching.Matcher.id()

– whoosh.matching.Matcher.next()

– whoosh.matching.Matcher.value()

– whoosh.matching.Matcher.value_as()

– whoosh.matching.Matcher.score()

• Depending on the implementation, you may implement the following methods more efficiently.

– whoosh.matching.Matcher.skip_to()

– whoosh.matching.Matcher.weight()

• If the implementation supports quality, you should implement the following methods.

192 Chapter 1. Contents

Whoosh Documentation, Release 2.7.4

– whoosh.matching.Matcher.supports_quality()

– whoosh.matching.Matcher.quality()

– whoosh.matching.Matcher.block_quality()

– whoosh.matching.Matcher.skip_to_quality()

filedb notes

TBD.

Files created

<revision_number>.toc The “master” file containing information about the index and its segments.

The index directory will contain a set of files for each segment. A segment is like a mini-index – when you add
documents to the index, whoosh creates a new segment and then searches the old segment(s) and the new segment to
avoid having to do a big merge every time you add a document. When you get enough small segments whoosh will
merge them into larger segments or a single segment.

<segment_number>.dci Contains per-document information (e.g. field lengths). This will grow linearly with the
number of documents.

<segment_number>.dcz Contains the stored fields for each document.

<segment_number>.tiz Contains per-term information. The size of file will vary based on the number of unique
terms.

<segment_number>.pst Contains per-term postings. The size of this file depends on the size of the collection and
the formats used for each field (e.g. storing term positions takes more space than storing frequency only).

<segment_number>.fvz contains term vectors (forward indexes) for each document. This file is only created if at
least one field in the schema stores term vectors. The size will vary based on the number of documents, field
length, the formats used for each vector (e.g. storing term positions takes more space than storing frequency
only), etc.

1.25. Technical notes 193

Whoosh Documentation, Release 2.7.4

194 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

195

Whoosh Documentation, Release 2.7.4

196 Chapter 2. Indices and tables

Python Module Index

w
whoosh.analysis, 89
whoosh.codec.base, 100
whoosh.collectors, 102
whoosh.columns, 107
whoosh.fields, 109
whoosh.filedb.filestore, 116
whoosh.filedb.filetables, 120
whoosh.filedb.structfile, 122
whoosh.formats, 122
whoosh.highlight, 124
whoosh.idsets, 127
whoosh.index, 129
whoosh.lang.morph_en, 132
whoosh.lang.porter, 132
whoosh.lang.wordnet, 132
whoosh.matching, 134
whoosh.qparser, 137
whoosh.query, 145
whoosh.reading, 158
whoosh.scoring, 162
whoosh.searching, 164
whoosh.sorting, 178
whoosh.spelling, 183
whoosh.support.charset, 184
whoosh.support.levenshtein, 185
whoosh.util, 185
whoosh.writing, 185

197

Whoosh Documentation, Release 2.7.4

198 Python Module Index

Index

A
accept() (whoosh.query.Query method), 146
add() (whoosh.fields.Schema method), 110
add() (whoosh.filedb.filetables.HashWriter method), 121
add() (whoosh.sorting.FacetMap method), 182
add_all() (whoosh.filedb.filetables.HashWriter method),

121
add_document() (whoosh.writing.IndexWriter method),

185
add_facet() (whoosh.sorting.Facets method), 181
add_facets() (whoosh.sorting.Facets method), 181
add_field() (whoosh.index.Index method), 130
add_field() (whoosh.sorting.Facets method), 182
add_field() (whoosh.writing.IndexWriter method), 186
add_plugin() (whoosh.qparser.QueryParser method), 138
add_plugins() (whoosh.qparser.QueryParser method),

138
add_query() (whoosh.sorting.Facets method), 182
AdditiveBiMatcher (class in whoosh.matching), 137
after() (whoosh.idsets.DocIdSet method), 127
all() (whoosh.filedb.filetables.HashReader method), 121
all_doc_ids() (whoosh.codec.base.PerDocumentReader

method), 101
all_doc_ids() (whoosh.reading.IndexReader method), 158
all_ids() (whoosh.collectors.Collector method), 102
all_ids() (whoosh.matching.Matcher method), 134
all_items() (whoosh.matching.Matcher method), 135
all_stored_fields() (whoosh.reading.IndexReader

method), 158
all_terms() (whoosh.query.Query method), 146
all_terms() (whoosh.reading.IndexReader method), 158
all_tokens() (whoosh.query.Query method), 146
Analysis, 19
And (class in whoosh.query), 150
AndGroup (class in whoosh.qparser), 144
AndMaybe (class in whoosh.query), 153
AndMaybeGroup (class in whoosh.qparser), 144
AndMaybeMatcher (class in whoosh.matching), 137
AndNot (class in whoosh.query), 153

AndNotGroup (class in whoosh.qparser), 144
AndNotMatcher (class in whoosh.matching), 137
apply() (whoosh.query.Query method), 146
as_dict() (whoosh.sorting.FacetMap method), 182
AsyncWriter (class in whoosh.writing), 190

B
BaseBitSet (class in whoosh.idsets), 128
BaseScorer (class in whoosh.scoring), 163
BasicFragmentScorer (class in whoosh.highlight), 126
before() (whoosh.idsets.DocIdSet method), 128
Best (class in whoosh.sorting), 183
BiMatcher (class in whoosh.matching), 137
BinaryGroup (class in whoosh.qparser), 144
BitColumn (class in whoosh.columns), 109
BitSet (class in whoosh.idsets), 128
BiWordFilter (class in whoosh.analysis), 98
block_quality() (whoosh.matching.Matcher method), 135
block_quality() (whoosh.scoring.BaseScorer method),

163
BM25F (class in whoosh.scoring), 163
BOOLEAN (class in whoosh.fields), 115
boolean_context() (whoosh.searching.Searcher method),

165
BoostPlugin (class in whoosh.qparser), 141
BufferedWriter (class in whoosh.writing), 189
BufferFile (class in whoosh.filedb.structfile), 122

C
cancel() (whoosh.writing.IndexWriter method), 187
Categorizer (class in whoosh.sorting), 178
categorizer() (whoosh.sorting.FacetType method), 178
CharacterBoosts (class in whoosh.formats), 124
Characters (class in whoosh.formats), 123
charset_table_to_dict() (in module

whoosh.support.charset), 184
CharsetFilter (class in whoosh.analysis), 96
CharsetTokenizer (class in whoosh.analysis), 92
ChecksumFile (class in whoosh.filedb.structfile), 122

199

Whoosh Documentation, Release 2.7.4

children() (whoosh.matching.Matcher method), 135
children() (whoosh.query.Query method), 147
ClampedNumericColumn (class in whoosh.columns),

109
clean() (whoosh.fields.FieldType method), 111
close() (whoosh.filedb.filestore.Storage method), 117
close() (whoosh.filedb.structfile.StructFile method), 122
close() (whoosh.index.Index method), 130
close() (whoosh.reading.IndexReader method), 158
Codec (class in whoosh.codec.base), 101
codec() (whoosh.reading.IndexReader method), 158
CollapseCollector (class in whoosh.collectors), 105
collect() (whoosh.collectors.Collector method), 102
collect_matches() (whoosh.collectors.Collector method),

103
Collector (class in whoosh.collectors), 102
collector() (whoosh.searching.Searcher method), 165
Column (class in whoosh.columns), 107
column_reader() (whoosh.reading.IndexReader method),

158
ColumnReader (class in whoosh.columns), 108
ColumnWriter (class in whoosh.columns), 108
CommaSeparatedTokenizer() (in module

whoosh.analysis), 93
commit() (whoosh.writing.IndexWriter method), 187
CompoundQuery (class in whoosh.query), 149
CompoundWordFilter (class in whoosh.analysis), 98
CompressedBytesColumn (class in whoosh.columns),

109
computes_count() (whoosh.collectors.Collector method),

103
ConstantScoreMatcher (class in whoosh.matching), 137
ConstantScoreQuery (class in whoosh.query), 158
context() (whoosh.searching.Searcher method), 165
ContextFragmenter (class in whoosh.highlight), 125
copy() (whoosh.fields.Schema method), 110
copy() (whoosh.matching.Matcher method), 135
copy() (whoosh.query.Query method), 147
copy() (whoosh.searching.Results method), 172
copy_storage() (in module whoosh.filedb.filestore), 120
copy_to_ram() (in module whoosh.filedb.filestore), 120
CopyFieldPlugin (class in whoosh.qparser), 142
Corpus, 20
correct_query() (whoosh.searching.Searcher method),

165
correct_query() (whoosh.spelling.QueryCorrector

method), 183
Correction (class in whoosh.spelling), 184
Corrector (class in whoosh.spelling), 183
corrector() (whoosh.reading.IndexReader method), 159
Count (class in whoosh.sorting), 182
count() (whoosh.collectors.Collector method), 103
create() (whoosh.filedb.filestore.Storage method), 117
create_file() (whoosh.codec.base.Segment method), 101

create_file() (whoosh.filedb.filestore.Storage method),
117

create_in() (in module whoosh.index), 129
create_index() (whoosh.filedb.filestore.Storage method),

117

D
DateRange (class in whoosh.query), 152
DateRangeFacet (class in whoosh.sorting), 180
DATETIME (class in whoosh.fields), 115
decode_as() (whoosh.formats.Format method), 123
decoder() (whoosh.formats.Format method), 123
default_charset (in module whoosh.support.charset), 184
default_set() (whoosh.qparser.QueryParser method), 138
default_value() (whoosh.columns.Column method), 107
delete_by_query() (whoosh.writing.IndexWriter

method), 187
delete_by_term() (whoosh.writing.IndexWriter method),

187
delete_document() (whoosh.codec.base.Segment

method), 101
delete_document() (whoosh.writing.IndexWriter

method), 187
delete_file() (whoosh.filedb.filestore.Storage method),

118
deleted_count() (whoosh.codec.base.Segment method),

101
deletion_docs() (whoosh.query.Query method), 147
DelimitedAttributeFilter (class in whoosh.analysis), 99
depth() (whoosh.matching.Matcher method), 135
destroy() (whoosh.filedb.filestore.Storage method), 118
DisjunctionMax (class in whoosh.query), 150
DisjunctionMaxMatcher (class in whoosh.matching), 137
DisMaxGroup (class in whoosh.qparser), 144
DisMaxParser() (in module whoosh.qparser), 140
distance() (in module whoosh.support.levenshtein), 185
doc_count() (whoosh.codec.base.Segment method), 101
doc_count() (whoosh.index.Index method), 130
doc_count() (whoosh.reading.IndexReader method), 159
doc_count() (whoosh.searching.Searcher method), 166
doc_count_all() (whoosh.codec.base.Segment method),

101
doc_count_all() (whoosh.index.Index method), 130
doc_count_all() (whoosh.reading.IndexReader method),

159
doc_count_all() (whoosh.searching.Searcher method),

166
doc_field_length() (whoosh.reading.IndexReader

method), 159
doc_frequency() (whoosh.reading.IndexReader method),

159
doc_frequency() (whoosh.reading.TermInfo method), 162
DocIdSet (class in whoosh.idsets), 127
docnum() (whoosh.searching.Results method), 172

200 Index

Whoosh Documentation, Release 2.7.4

docnum() (whoosh.searching.ResultsPage method), 177
docs() (whoosh.query.Query method), 147
docs() (whoosh.searching.Results method), 172
docs_for_query() (whoosh.searching.Searcher method),

167
document() (whoosh.searching.Searcher method), 167
document_number() (whoosh.searching.Searcher

method), 167
document_numbers() (whoosh.searching.Searcher

method), 167
Documents, 20
documents() (whoosh.searching.Searcher method), 167
DoubleMetaphoneFilter (class in whoosh.analysis), 99

E
EmptyIndexError, 132
end_group() (whoosh.writing.IndexWriter method), 187
ErrorNode (class in whoosh.qparser), 144
estimate_min_size() (whoosh.query.Query method), 147
estimate_size() (whoosh.query.Query method), 147
estimated_length() (whoosh.searching.Results method),

172
estimated_min_length() (whoosh.searching.Results

method), 172
Every (class in whoosh.query), 152
EveryPlugin (class in whoosh.qparser), 141
Existence (class in whoosh.formats), 123
existing_terms() (whoosh.query.Query method), 147
exists() (in module whoosh.index), 129
exists_in() (in module whoosh.index), 129
expand_prefix() (whoosh.reading.IndexReader method),

159
ExpandingTerm (class in whoosh.query), 149
extend() (whoosh.searching.Results method), 172

F
facet_names() (whoosh.searching.Results method), 172
FacetCollector (class in whoosh.collectors), 105
FacetMap (class in whoosh.sorting), 182
Facets (class in whoosh.sorting), 181
FacetType (class in whoosh.sorting), 178
FancyAnalyzer() (in module whoosh.analysis), 91
fib() (in module whoosh.util), 185
field() (whoosh.query.Query method), 147
field_length() (whoosh.index.Index method), 130
field_length() (whoosh.reading.IndexReader method),

159
field_terms() (whoosh.reading.IndexReader method), 159
FieldAliasPlugin (class in whoosh.qparser), 142
FieldConfigurationError, 116
FieldFacet (class in whoosh.sorting), 179
FieldnameNode (class in whoosh.qparser), 144
Fields, 20
fields() (whoosh.searching.Hit method), 175

fields() (whoosh.searching.Results method), 172
FieldsPlugin (class in whoosh.qparser), 141
FieldType (class in whoosh.fields), 111
FieldWriter (class in whoosh.codec.base), 101
file_exists() (whoosh.filedb.filestore.Storage method),

118
file_length() (whoosh.filedb.filestore.Storage method),

118
file_modified() (whoosh.filedb.filestore.Storage method),

118
FileIndex (class in whoosh.index), 131
FileStorage (class in whoosh.filedb.filestore), 120
filter() (whoosh.searching.Results method), 172
FilterCollector (class in whoosh.collectors), 105
filterize() (whoosh.qparser.QueryParser method), 138
FilterMatcher (class in whoosh.matching), 136
filters() (whoosh.qparser.Plugin method), 140
filters() (whoosh.qparser.QueryParser method), 138
final() (whoosh.scoring.WeightingModel method), 162
finish() (whoosh.collectors.Collector method), 103
first() (whoosh.idsets.DocIdSet method), 128
first_id() (whoosh.reading.IndexReader method), 159
FixedBytesColumn (class in whoosh.columns), 108
flush() (whoosh.filedb.structfile.StructFile method), 122
Format (class in whoosh.formats), 123
Forward index, 20
Fragment (class in whoosh.highlight), 127
fragment_matches() (whoosh.highlight.Fragmenter

method), 124
fragment_tokens() (whoosh.highlight.Fragmenter

method), 125
Fragmenter (class in whoosh.highlight), 124
FragmentScorer (class in whoosh.highlight), 126
Frequency (class in whoosh.formats), 123
Frequency (class in whoosh.scoring), 164
frequency() (whoosh.reading.IndexReader method), 159
from_file() (whoosh.lang.wordnet.Thesaurus class

method), 133
from_filename() (whoosh.lang.wordnet.Thesaurus class

method), 133
from_storage() (whoosh.lang.wordnet.Thesaurus class

method), 133
FunctionFacet (class in whoosh.sorting), 180
FunctionWeighting (class in whoosh.scoring), 164
FuzzyTerm (class in whoosh.query), 149

G
generation() (whoosh.reading.IndexReader method), 159
GenshiFormatter (class in whoosh.highlight), 127
get_parent() (whoosh.searching.Searcher method), 167
group() (whoosh.writing.IndexWriter method), 187
GroupNode (class in whoosh.qparser), 144
GroupPlugin (class in whoosh.qparser), 141
groups() (whoosh.searching.Results method), 172

Index 201

Whoosh Documentation, Release 2.7.4

GtLtPlugin (class in whoosh.qparser), 141

H
has_deletions() (whoosh.codec.base.Segment method),

101
has_deletions() (whoosh.reading.IndexReader method),

159
has_exact_length() (whoosh.searching.Results method),

173
has_matched_terms() (whoosh.searching.Results

method), 173
has_terms() (whoosh.query.Query method), 147
has_vector() (whoosh.reading.IndexReader method), 159
HashReader (class in whoosh.filedb.filetables), 121
HashWriter (class in whoosh.filedb.filetables), 120
highlight() (in module whoosh.highlight), 124
Highlighter (class in whoosh.highlight), 124
highlights() (whoosh.searching.Hit method), 175
Hit (class in whoosh.searching), 174
HtmlFormatter (class in whoosh.highlight), 126

I
ID (class in whoosh.fields), 113
id() (whoosh.matching.Matcher method), 135
IDAnalyzer() (in module whoosh.analysis), 90
idf() (whoosh.scoring.WeightingModel method), 163
idf() (whoosh.searching.Searcher method), 167
IDLIST (class in whoosh.fields), 113
IDTokenizer (class in whoosh.analysis), 92
Index (class in whoosh.index), 130
index() (whoosh.fields.FieldType method), 112
index_exists() (whoosh.filedb.filestore.Storage method),

118
indexed_field_names() (whoosh.reading.IndexReader

method), 159
IndexError, 131
Indexing, 20
IndexingError, 190
IndexReader (class in whoosh.reading), 158
IndexVersionError, 131
IndexWriter (class in whoosh.writing), 185
InfixOperator (class in whoosh.qparser), 145
IntersectionMatcher (class in whoosh.matching), 137
IntraWordFilter (class in whoosh.analysis), 97
InverseMatcher (class in whoosh.matching), 137
invert_update() (whoosh.idsets.DocIdSet method), 128
is_active() (whoosh.matching.Matcher method), 135
is_deleted() (whoosh.codec.base.Segment method), 101
is_deleted() (whoosh.reading.IndexReader method), 159
is_empty() (whoosh.index.Index method), 130
is_empty() (whoosh.searching.Results method), 173
is_last_page() (whoosh.searching.ResultsPage method),

177
is_leaf() (whoosh.query.Query method), 147

is_range() (whoosh.query.Query method), 147
is_ws() (whoosh.qparser.SyntaxNode method), 143
items() (whoosh.fields.Schema method), 110
items() (whoosh.searching.Results method), 173
items() (whoosh.sorting.Facets method), 182
items_as() (whoosh.matching.Matcher method), 135
iter_all_terms() (whoosh.query.Query method), 147
iter_docs() (whoosh.reading.IndexReader method), 159
iter_field() (whoosh.reading.IndexReader method), 160
iter_from() (whoosh.reading.IndexReader method), 160
iter_postings() (whoosh.reading.IndexReader method),

160
iter_prefix() (whoosh.reading.IndexReader method), 160

K
key_for() (whoosh.sorting.Categorizer method), 178
key_terms() (whoosh.searching.Results method), 173
key_terms() (whoosh.searching.Searcher method), 168
key_terms_from_text() (whoosh.searching.Searcher

method), 168
key_to_name() (whoosh.sorting.Categorizer method),

178
keys_for() (whoosh.sorting.Categorizer method), 178
KEYWORD (class in whoosh.fields), 113
KeywordAnalyzer() (in module whoosh.analysis), 90

L
LanguageAnalyzer() (in module whoosh.analysis), 92
last() (whoosh.idsets.DocIdSet method), 128
last_modified() (whoosh.index.Index method), 131
latest_generation() (whoosh.index.Index method), 131
leaf_readers() (whoosh.reading.IndexReader method),

160
leaves() (whoosh.query.Query method), 148
lexicon() (whoosh.reading.IndexReader method), 160
list() (whoosh.filedb.filestore.Storage method), 118
ListMatcher (class in whoosh.matching), 136
lock() (whoosh.filedb.filestore.Storage method), 118
LockError, 131
LoggingFilter (class in whoosh.analysis), 94
LowercaseFilter (class in whoosh.analysis), 94

M
make_binary_tree() (in module whoosh.util), 185
make_index() (in module whoosh.lang.wordnet), 134
make_weighted_tree() (in module whoosh.util), 185
MarkerNode (class in whoosh.qparser), 144
matched_terms() (whoosh.searching.Hit method), 176
matched_terms() (whoosh.searching.Results method),

174
Matcher (class in whoosh.matching), 134
matcher() (whoosh.query.Query method), 148
matches() (whoosh.collectors.Collector method), 103

202 Index

Whoosh Documentation, Release 2.7.4

matching_terms() (whoosh.matching.Matcher method),
135

max_field_length() (whoosh.index.Index method), 131
max_field_length() (whoosh.reading.IndexReader

method), 160
max_id() (whoosh.reading.TermInfo method), 162
max_length() (whoosh.reading.TermInfo method), 162
max_quality() (whoosh.matching.Matcher method), 135
max_quality() (whoosh.scoring.BaseScorer method), 163
max_weight() (whoosh.reading.TermInfo method), 162
merge() (whoosh.query.Span class method), 153
min_field_length() (whoosh.reading.IndexReader

method), 160
min_id() (whoosh.reading.TermInfo method), 162
min_length() (whoosh.reading.TermInfo method), 162
more_like() (whoosh.searching.Searcher method), 168
more_like_this() (whoosh.searching.Hit method), 176
most_distinctive_terms() (whoosh.reading.IndexReader

method), 160
most_frequent_terms() (whoosh.reading.IndexReader

method), 160
MultiCorrector (class in whoosh.spelling), 183
MultiFacet (class in whoosh.sorting), 180
MultifieldParser() (in module whoosh.qparser), 139
MultifieldPlugin (class in whoosh.qparser), 142
MultiFilter (class in whoosh.analysis), 94
MultiIdSet (class in whoosh.idsets), 128
MultiMatcher (class in whoosh.matching), 136
MultiReader (class in whoosh.reading), 161
MultiTerm (class in whoosh.query), 149
multitoken_query() (whoosh.qparser.QueryParser

method), 138
MultiWeighting (class in whoosh.scoring), 164
must_retokenize() (whoosh.highlight.Fragmenter

method), 125

N
names() (whoosh.fields.Schema method), 110
names() (whoosh.sorting.Facets method), 182
NestedChildren (class in whoosh.query), 157
NestedParent (class in whoosh.query), 156
next() (whoosh.matching.Matcher method), 135
NGRAM (class in whoosh.fields), 116
NgramAnalyzer() (in module whoosh.analysis), 91
NgramFilter (class in whoosh.analysis), 96
NgramTokenizer (class in whoosh.analysis), 93
NgramWordAnalyzer() (in module whoosh.analysis), 92
NGRAMWORDS (class in whoosh.fields), 116
NoQualityAvailable, 137
normalize() (whoosh.query.Query method), 148
Not (class in whoosh.query), 150
NoTermsException, 177
NotGroup (class in whoosh.qparser), 144
NullMatcher (in module whoosh.matching), 136

NullQuery (in module whoosh.query), 153
NUMERIC (class in whoosh.fields), 114
NumericColumn (class in whoosh.columns), 108
NumericRange (class in whoosh.query), 151

O
OnDiskBitSet (class in whoosh.idsets), 128
open() (whoosh.filedb.filetables.HashReader class

method), 121
open_dir() (in module whoosh.index), 129
open_file() (whoosh.codec.base.Segment method), 101
open_file() (whoosh.filedb.filestore.Storage method), 119
open_index() (whoosh.filedb.filestore.Storage method),

119
Operator (class in whoosh.qparser), 145
OperatorsPlugin (class in whoosh.qparser), 141
optimize() (whoosh.filedb.filestore.Storage method), 119
optimize() (whoosh.index.Index method), 131
Or (class in whoosh.query), 150
OrderedHashReader (class in whoosh.filedb.filetables),

121
OrderedHashWriter (class in whoosh.filedb.filetables),

121
OrderedList (class in whoosh.sorting), 182
OrGroup (class in whoosh.qparser), 144
Otherwise (class in whoosh.query), 153
OutOfDateError, 132

P
parse() (whoosh.qparser.QueryParser method), 139
parse_file() (in module whoosh.lang.wordnet), 134
parse_query() (whoosh.fields.FieldType method), 112
parse_range() (whoosh.fields.FieldType method), 112
PassFilter (class in whoosh.analysis), 94
PathTokenizer (class in whoosh.analysis), 93
PerDocumentReader (class in whoosh.codec.base), 101
PerDocumentWriter (class in whoosh.codec.base), 101
Phrase (class in whoosh.query), 150
PhrasePlugin (class in whoosh.qparser), 141
PickleColumn (class in whoosh.columns), 109
PinpointFragmenter (class in whoosh.highlight), 126
Plugin (class in whoosh.qparser), 140
PlusMinusPlugin (class in whoosh.qparser), 141
PositionBoosts (class in whoosh.formats), 124
Positions (class in whoosh.formats), 123
PostfixOperator (class in whoosh.qparser), 145
Postings, 20
postings() (whoosh.reading.IndexReader method), 160
postings() (whoosh.searching.Searcher method), 169
PostingsWriter (class in whoosh.codec.base), 101
Prefix (class in whoosh.query), 151
PrefixOperator (class in whoosh.qparser), 145
PrefixPlugin (class in whoosh.qparser), 140
prepare() (whoosh.collectors.Collector method), 103

Index 203

Whoosh Documentation, Release 2.7.4

process() (whoosh.qparser.QueryParser method), 139
process_text() (whoosh.fields.FieldType method), 112

Q
Query (class in whoosh.query), 145
query() (whoosh.qparser.SyntaxNode method), 143
QueryCorrector (class in whoosh.spelling), 183
QueryError, 158
QueryFacet (class in whoosh.sorting), 179
QueryParser (class in whoosh.qparser), 137

R
r() (whoosh.qparser.SyntaxNode method), 143
RamStorage (class in whoosh.filedb.filestore), 120
RangeFacet (class in whoosh.sorting), 179
RangeNode (class in whoosh.qparser), 144
RangePlugin (class in whoosh.qparser), 141
ranges_for_key() (whoosh.filedb.filetables.HashReader

method), 121
read_pickle() (whoosh.filedb.structfile.StructFile

method), 122
read_string() (whoosh.filedb.structfile.StructFile

method), 122
read_svarint() (whoosh.filedb.structfile.StructFile

method), 122
read_tagint() (whoosh.filedb.structfile.StructFile

method), 122
read_varint() (whoosh.filedb.structfile.StructFile

method), 122
reader() (whoosh.columns.Column method), 107
reader() (whoosh.index.Index method), 131
reader() (whoosh.searching.Searcher method), 169
reader() (whoosh.writing.IndexWriter method), 187
ReaderCorrector (class in whoosh.spelling), 183
ReadOnlyError, 120
ReadTooFar, 137
RefBytesColumn (class in whoosh.columns), 108
refresh() (whoosh.index.Index method), 131
refresh() (whoosh.searching.Searcher method), 169
Regex (class in whoosh.query), 151
RegexAnalyzer() (in module whoosh.analysis), 90
RegexPlugin (class in whoosh.qparser), 140
RegexTokenizer (class in whoosh.analysis), 92
relative() (in module whoosh.support.levenshtein), 185
remove() (whoosh.collectors.Collector method), 103
remove_field() (whoosh.index.Index method), 131
remove_field() (whoosh.writing.IndexWriter method),

187
remove_plugin() (whoosh.qparser.QueryParser method),

139
remove_plugin_class() (whoosh.qparser.QueryParser

method), 139
rename_file() (whoosh.filedb.filestore.Storage method),

119

replace() (whoosh.matching.Matcher method), 135
replace() (whoosh.query.Query method), 148
replace_plugin() (whoosh.qparser.QueryParser method),

139
Require (class in whoosh.query), 153
RequireGroup (class in whoosh.qparser), 144
RequireMatcher (class in whoosh.matching), 137
requires() (whoosh.query.Query method), 148
reset() (whoosh.matching.Matcher method), 135
Results (class in whoosh.searching), 172
results() (whoosh.collectors.Collector method), 104
ResultsPage (class in whoosh.searching), 176
Reverse index, 20
ReverseTextFilter (class in whoosh.analysis), 94
ReverseWeighting (class in whoosh.scoring), 164

S
Schema, 20
Schema (class in whoosh.fields), 109
SchemaClass (class in whoosh.fields), 110
scorable_names() (whoosh.fields.Schema method), 110
score() (whoosh.matching.Matcher method), 135
score() (whoosh.scoring.BaseScorer method), 163
score() (whoosh.searching.Results method), 174
score() (whoosh.searching.ResultsPage method), 177
scored_length() (whoosh.searching.Results method), 174
ScoredCollector (class in whoosh.collectors), 104
ScoreFacet (class in whoosh.sorting), 180
scorer() (whoosh.scoring.WeightingModel method), 163
search() (whoosh.searching.Searcher method), 169
search_page() (whoosh.searching.Searcher method), 170
search_with_collector() (whoosh.searching.Searcher

method), 171
Searcher (class in whoosh.searching), 165
searcher() (whoosh.index.Index method), 131
Segment (class in whoosh.codec.base), 101
segment() (whoosh.reading.IndexReader method), 160
self_parsing() (whoosh.fields.FieldType method), 112
SentenceFragmenter (class in whoosh.highlight), 125
separate_spelling() (whoosh.fields.FieldType method),

112
set_boost() (whoosh.qparser.SyntaxNode method), 143
set_fieldname() (whoosh.qparser.SyntaxNode method),

143
set_range() (whoosh.qparser.SyntaxNode method), 143
set_searcher() (whoosh.sorting.Categorizer method), 179
set_subsearcher() (whoosh.collectors.Collector method),

104
ShingleFilter (class in whoosh.analysis), 98
SimpleAnalyzer() (in module whoosh.analysis), 90
SimpleParser() (in module whoosh.qparser), 140
SimpleQueryCorrector (class in whoosh.spelling), 184
simplify() (whoosh.query.Query method), 149
SingleQuotePlugin (class in whoosh.qparser), 140

204 Index

Whoosh Documentation, Release 2.7.4

skip_to() (whoosh.matching.Matcher method), 135
skip_to_quality() (whoosh.matching.Matcher method),

136
sort_key() (whoosh.collectors.Collector method), 104
sortable_terms() (whoosh.fields.FieldType method), 112
SortedIntSet (class in whoosh.idsets), 128
SortingCollector (class in whoosh.collectors), 104
SpaceSeparatedTokenizer() (in module whoosh.analysis),

93
Span (class in whoosh.query), 153
SpanBefore (class in whoosh.query), 156
SpanCondition (class in whoosh.query), 156
SpanContains (class in whoosh.query), 155
SpanFirst (class in whoosh.query), 153
SpanNear (class in whoosh.query), 154
SpanNear2 (class in whoosh.query), 154
SpanNot (class in whoosh.query), 155
SpanOr (class in whoosh.query), 155
SpanQuery (class in whoosh.query), 153
spans() (whoosh.matching.Matcher method), 136
spellable_words() (whoosh.fields.FieldType method), 112
spelling_fieldname() (whoosh.fields.FieldType method),

112
StandardAnalyzer() (in module whoosh.analysis), 90
start_group() (whoosh.writing.IndexWriter method), 187
stem() (in module whoosh.lang.porter), 132
StemFilter (class in whoosh.analysis), 95
StemmingAnalyzer() (in module whoosh.analysis), 90
StopFilter (class in whoosh.analysis), 95
Storage (class in whoosh.filedb.filestore), 117
storage() (whoosh.reading.IndexReader method), 160
STORED (class in whoosh.fields), 113
stored_fields() (whoosh.reading.IndexReader method),

160
stored_names() (whoosh.fields.Schema method), 110
StoredFieldFacet (class in whoosh.sorting), 181
stores_lists() (whoosh.columns.Column method), 107
StripFilter (class in whoosh.analysis), 94
StructColumn (class in whoosh.columns), 109
StructFile (class in whoosh.filedb.structfile), 122
subfields() (whoosh.fields.FieldType method), 112
SubstitutionFilter (class in whoosh.analysis), 99
suggest() (whoosh.searching.Searcher method), 171
suggest() (whoosh.spelling.Corrector method), 183
supports() (whoosh.fields.FieldType method), 112
supports() (whoosh.formats.Format method), 123
supports() (whoosh.matching.Matcher method), 136
supports_block_quality() (whoosh.matching.Matcher

method), 136
supports_block_quality() (whoosh.scoring.BaseScorer

method), 163
synchronized() (in module whoosh.util), 185
synonyms() (in module whoosh.lang.wordnet), 134

synonyms() (whoosh.lang.wordnet.Thesaurus method),
134

SyntaxNode (class in whoosh.qparser), 143

T
tag() (whoosh.qparser.QueryParser method), 139
taggers() (whoosh.qparser.Plugin method), 140
taggers() (whoosh.qparser.QueryParser method), 139
TeeFilter (class in whoosh.analysis), 94
temp_storage() (whoosh.filedb.filestore.Storage method),

119
Term (class in whoosh.query), 149
Term vector, 20
term() (whoosh.matching.Matcher method), 136
term_info() (whoosh.reading.IndexReader method), 161
term_matchers() (whoosh.matching.Matcher method),

136
term_query() (whoosh.qparser.QueryParser method), 139
TermInfo (class in whoosh.reading), 162
TermNotFound, 162
TermRange (class in whoosh.query), 151
terms() (whoosh.query.Query method), 149
terms_from() (whoosh.reading.IndexReader method),

161
terms_within() (whoosh.reading.IndexReader method),

161
TermsCollector (class in whoosh.collectors), 106
TermsReader (class in whoosh.codec.base), 101
TEXT (class in whoosh.fields), 113
TextNode (class in whoosh.qparser), 144
TF_IDF (class in whoosh.scoring), 164
Thesaurus (class in whoosh.lang.wordnet), 132
TimeLimit, 177
TimeLimitCollector (class in whoosh.collectors), 106
to_bytes() (whoosh.fields.FieldType method), 113
to_column_value() (whoosh.fields.FieldType method),

113
to_storage() (whoosh.lang.wordnet.Thesaurus method),

134
Token (class in whoosh.analysis), 100
tokenize() (whoosh.fields.FieldType method), 113
tokens() (whoosh.query.Query method), 149
TopCollector (class in whoosh.collectors), 104

U
unclosed() (in module whoosh.util), 185
UnionMatcher (class in whoosh.matching), 137
UnknownFieldError, 116
UnlimitedCollector (class in whoosh.collectors), 104
UnorderedList (class in whoosh.sorting), 182
unstopped() (in module whoosh.analysis), 100
up_to_date() (whoosh.index.Index method), 131
up_to_date() (whoosh.searching.Searcher method), 172

Index 205

Whoosh Documentation, Release 2.7.4

update_document() (whoosh.writing.IndexWriter
method), 188

upgrade() (whoosh.searching.Results method), 174
upgrade_and_extend() (whoosh.searching.Results

method), 174
UppercaseFormatter (class in whoosh.highlight), 126

V
value() (whoosh.matching.Matcher method), 136
value_as() (whoosh.matching.Matcher method), 136
VarBytesColumn (class in whoosh.columns), 108
Variations (class in whoosh.query), 149
variations() (in module whoosh.lang.morph_en), 132
vector() (whoosh.reading.IndexReader method), 161
vector_as() (whoosh.reading.IndexReader method), 161
version() (in module whoosh.index), 130
version_in() (in module whoosh.index), 129

W
weight() (whoosh.matching.Matcher method), 136
weight() (whoosh.reading.TermInfo method), 162
WeightingModel (class in whoosh.scoring), 162
WeightLengthScorer (class in whoosh.scoring), 163
WeightScorer (class in whoosh.scoring), 163
WholeFragmenter (class in whoosh.highlight), 125
whoosh.analysis (module), 89
whoosh.codec.base (module), 100
whoosh.collectors (module), 102
whoosh.columns (module), 107
whoosh.fields (module), 109
whoosh.filedb.filestore (module), 116
whoosh.filedb.filetables (module), 120
whoosh.filedb.structfile (module), 122
whoosh.formats (module), 122
whoosh.highlight (module), 124
whoosh.idsets (module), 127
whoosh.index (module), 129
whoosh.lang.morph_en (module), 132
whoosh.lang.porter (module), 132
whoosh.lang.wordnet (module), 132
whoosh.matching (module), 134
whoosh.qparser (module), 137
whoosh.query (module), 145
whoosh.reading (module), 158
whoosh.scoring (module), 162
whoosh.searching (module), 164
whoosh.sorting (module), 178
whoosh.spelling (module), 183
whoosh.support.charset (module), 184
whoosh.support.levenshtein (module), 185
whoosh.util (module), 185
whoosh.writing (module), 185
Wildcard (class in whoosh.query), 151
WildcardPlugin (class in whoosh.qparser), 140

with_boost() (whoosh.query.Query method), 149
word_values() (whoosh.formats.Format method), 123
WordNode (class in whoosh.qparser), 144
WrappingCollector (class in whoosh.collectors), 104
WrappingMatcher (class in whoosh.matching), 136
WrappingQuery (class in whoosh.query), 149
write_byte() (whoosh.filedb.structfile.StructFile method),

122
write_pickle() (whoosh.filedb.structfile.StructFile

method), 122
write_string() (whoosh.filedb.structfile.StructFile

method), 122
write_svarint() (whoosh.filedb.structfile.StructFile

method), 122
write_tagint() (whoosh.filedb.structfile.StructFile

method), 122
write_varint() (whoosh.filedb.structfile.StructFile

method), 122
writer() (whoosh.columns.Column method), 108
writer() (whoosh.index.Index method), 131
written() (whoosh.codec.base.PostingsWriter method),

101

206 Index

	Contents
	Release notes
	Quick start
	Introduction to Whoosh
	Glossary
	Designing a schema
	How to index documents
	How to search
	Parsing user queries
	The default query language
	Indexing and parsing dates/times
	Query objects
	About analyzers
	Stemming, variations, and accent folding
	Indexing and searching N-grams
	Sorting and faceting
	How to create highlighted search result excerpts
	Query expansion and Key word extraction
	``Did you mean... ?'' Correcting errors in user queries
	Field caches
	Tips for speeding up batch indexing
	Concurrency, locking, and versioning
	Indexing and searching document hierarchies
	Whoosh recipes
	Whoosh API
	Technical notes

	Indices and tables
	Python Module Index

