

Table of Contents

Welcome to the Whiteblock User Guide.

	Overview
	Use Cases

	Features

	Network Specifications

	Supported Clients

	Get Started
	Accessing The GUI

	Accessing The CLI Application

	Build The Network

	Configure Network Conditions

	Automate Transactions

	Examine Data

	Command Line Interface
	Available Commands

	Build
	Ethereum
	Build

	Mining

	Automate Transactions

	Rchain
	Build

	Syscoin
	Build

	Data Retrieval
	Ethereum Geth Commands

	Rchain

	Syscoin Sys Commands

	Get Commands

	Netconfig

	SSH

	Version

	Client-specific Command Lines
	Ethereum
	Build

	Mining

	Automate Transactions

	Geth

	Syscoin
	Build

	Sys

	Rchain
	Build

	References
	Command Line Interface

	Fowarding Commands

	build

	get

	netconfig

	SSH

	version

	Smart Contracts

	Ethereum

	Syscoin

Overview

Note: Please note that these documents are still being drafted and subject to change.

Whiteblock [https://whiteblock.io/] is a full-stack blockchain testing platform that helps development teams quickly test & deploy high-performing distributed ledger technologies.

The Whiteblock platform allows users to provision multiple fully-functioning nodes (>1000) within a private test network over which they have complete control. Transactions, behaviors, and other logic can be automated as nodes interact in real-time, allowing testers to observe the performance of protocols, algorithms, decentralized applications, or changes to system infrastructure prior to deployment.

Each node exists within its own Virtual Local Area Network (VLAN) and is assigned a unique IP address. This provides logical separation between nodes. The links between these nodes can be configured with latency, packet loss, and other WAN conditions according to user specification in order to replicate real-world performance that is accurate within .01 milliseconds.

Use Cases

	Simulate Live, Global Network Performance

	Configure Latency, Packet Loss, & Bandwidth.

	Real-Time Data & Statistics

	Provision & Configure Multiple Independent Nodes

	Test Fault Tolerance

	Automate Transactions By Size, Frequency, & Rate.

	Private, Integrated Development Environment

	Compile, Deploy, & Functionally Test Smart Contracts

Features

	Blockchain Agnostic - Deploy from list of supported clients with appropriate testing libraries or bring your own into the Whiteblock environment.

	Automate Genesis Ceremony - Quickly provision a functional blockchain network without the additional hassle of editing a configuration file every time a new test network is provisioned.

	Account & Wallet Creation - Indicate total number of accounts/wallets to be created within network.

	Pre-allocate Funds - Fund wallets and accounts with a specified amount of assets. Start testing right away without the need to wait for mining rewards.

	Transactional Logic - Indicate the value and volume of transactions to automate activity. Measure transactions per second (TPS) and observe the effects of various environmental conditions on throughput.

	Network Behavior - Configure Wide Area Network (WAN) conditions between nodes, including latency, packet loss, and bandwidth constraints to replicate real-world performance within a safe and controlled environment.

	Data Visualization - The Whiteblock Explorer provides insight into TPS, uncle rate, and other relevant data points and performance metrics.

	Reporting - Generate concise reports to summarize your test cases.

	Pipeline Integration - Whiteblock seamlessly integrates with your CI/CD platform of choice to reduce development overhead.

Network Specifications

	Bandwith Capabilities: Up To 1 00Gb/s

	Maximum Nodes: >20,000

	Maximum Latency: 20S I 20,000 MS

	Packet Loss: Random, Periodic, Burst, BER, Gilbert-Elliot Time Accuracy: Within .01 Milliseconds

Supported Clients

While the platform itself is blockchain agnostic, several clients are natively supported.

Some of these clients include:

	Ethereum (Geth & Parity)

	Bitcoin

	Syscoin

	EOS

	Hyperledger Fabric

	Hyperledger Sawtooth

	Quorum

	NEM

	Monero

Note: Do you have a client of your own that you would like Whiteblock to support?
Feel free to contact the team via email at hello@whiteblock.io or join our Telegram channel [https://t.me/joinchat/HsUCShLKi--lX14OSQyhMg]

Get Started

There are two primary components of the Whiteblock platform:

Graphical User Interface (GUI) - The GUI acts as a data visualization dashboard which provides insight into relevant performance metrics for the blockchain network.

Command Line Interface (CLI) - Using the CLI application, users can interface with the Whiteblock platform. It provides functionality which allows users to configure the blockchain network, provision nodes, and automate various behaviors and actions within the blockchain network. The following documentation focuses primarily on the CLI application.

Accessing The GUI

New users will be provided a custom subdomain on the Whiteblock website. You will be provided user credentials when you sign up. Simply use the specified username and password to log-in to the GUI.

Accessing The CLI Application

The Whiteblock team will provide a unique public/private keypair that will allow you to securely connect to the CLI application within a private Whiteblock environment through a Secure Shell (SSH) session.

Build The Network

In this step, we create and deploy a selected blockchain network with the specified client and number of nodes. The Whiteblock platform provisions each node as an independent participant within the blockchain network. Nodes are logically separated from one another within their own Local Area Network (LAN).

After running the build command as shown below, you will be prompted to customize the blockchain network, this includes configuring the Wide Area Network (WAN) links between each node with latency, packet loss, bandwidth constraints, and other common network characteristics. If this is your first time using the Whiteblock platform, it may be easier to stick with the default parameters provided for each option.

Command:

$ whiteblock build

Output:

blockchain (default set to: ethereum):
nodes (default set to: 10):
image (default set to: ethereum:latest):
cpus (default set to: no limit):
memory (default set to: no limit):
Use default parameters? (y/n) y
2018/12/13 20:07:50 build: Build in Progress
Building: 100.000000
Done

Configure Network Conditions

To add network latency between nodes, use the following commands:

$ whiteblock netconfig delay 1 1 200

The above commands configure the amount of latency between nodes and follows this format: delay <engine number> <path number> <amount>.

The first 1 value refers to emulation engine 1, the second 1 refers to VLAN path 1. The 200 valuerefers to the total amount of one-way latency, which translates to milliseconds.

$ whiteblock netconfig on 1

This command turns the netconfig engine on and implements latency on on engine 1.

To turn disbale netconfig, use the following command:

$ whiteblock netconfig off 1

For more advanced netconfig parameters, please visit the Command Line Reference page.

Automate Transactions

After configuring network conditions, transactional logic can be defined and automated for such purposes as throughput tests. Transaction commands adhere to the following format: whiteblock <blockchain-interface> send_transactions <tx/s> <value>. The <blockchain-interface> needs to be consistent with the relevant command used by the client that was indicated when the network was built.

The transaction engine will automate transactions according to the specified submission rate in the second argument <tx/s> and the amount of assets sent in the third parameter <value>, which is specified in hex. This will immediately begin transactions once the network is finished building, but these values can also be configured and altered once the network has already been built.

To start transactions, run the following command:

$ whiteblock geth start_transactions 100 0x545454
started

To stop the transaction, run the following command

$ whiteblock geth stop_transactions
success

Note: currently we only support geth for sending transaction through command line. To send transaction for other type of blockchains, you can use Websocket API calls. Please refer to the Generics section in the Websocket API in References for more information.

Examine Data

You may now go to the GUI and use our data visualization tools to examine the different data points that are being push directly from the blockchain.

If you want to quickly check the stats of your current blockchain network, use the following command.

Command:

$ whiteblock get stats all

Output:

{
 "blockTime": {
 "max": 70,
 "mean": 1.2978947368421072,
 "standardDeviation": 1.7608896643379766
 },
 "difficulty": {
 "max": 329333,
 "mean": 214993.2977380325,
 "standardDeviation": 56914.20143516361
 },
 "gasLimit": {
 "max": 8000000,
 "mean": 7168060.679642294,
 "standardDeviation": 1286432.4077131029
 },
 "gasUsed": {
 "max": 7917000,
 "mean": 534323.5139400318,
 "standardDeviation": 1538475.9696957779
 },
 "totalDifficulty": {
 "max": 408802259,
 "mean": 173546242.58337703,
 "standardDeviation": 117177703.83311588
 },
 "tps": {
 "max": 377,
 "mean": 18.855407894736842,
 "standardDeviation": 58.25808243503218
 },
 "transactionCount": {
 "max": 377,
 "mean": 25.443976854287218,
 "standardDeviation": 73.26076046170377
 },
 "uncleCount": {
 "max": 1,
 "mean": 0.11204629142556508,
 "standardDeviation": 0.3154233979959995
 }
}

To learn more about how to use our command line features, please visit the References page.

Command Line Interface

$ whiteblock <command> [FLAGS]

This application will deploy a blockchain, create nodes, and allow those nodes to interact in the network.

Available Commands

	
	Available Commands:

	
	build Build a blockchain using image and deploy nodes

	get Get server and network information.

	geth Run geth commands

	help Displays help page

	netconfig Network conditions

	rpc Rpc interacts with the blockchain

	ssh SSH into an existing container.

	version Display Whiteblock CLI version

	
	Flags:

	
	-h, –help : help for whiteblock

Build

whiteblock build [FLAGS]

Aliases: build, create, init

Build will create and deploy a blockchain and the specified number of nodes. Each node will be instantiated in its own container and will interact individually as a participant of the specified network.

	
	Flags:

	
	-h, –help: help for build

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

Ethereum

Build

$ whiteblock build

This application will deploy an Ethereum blockchain, create nodes, and allow those nodes to interact in the network.

Mining

For Ethereum, the command to start mining is given below. If no arguments are given, this command will have all nodes start mining. Users can specify the number of nodes to mine by giving the node numbers as arguments to this command.

$ whiteblock geth start_mining

Automate Transactions

After configuring network conditions, transactional logic can be defined and automated for such purposes as throughput tests.

In the case for Ethereum, this command will automate transactions according to the specified submission rate in the second argument <tx/s> and the amount of assets sent in the third parameter <value>, which is specified in hex. A destination can be specified, but if none is given, all nodes will send transactions to the next node (round robin).

This will immediately begin transactions once the network is finished building, but these values can also be configured and altered once the network has already been built.

To start transactions, run the following command:

$ whiteblock geth start_transactions 100 0x545454

To stop the transaction, run the following command:

$ whiteblock geth stop_transactions

To send transaction for other type of blockchains, the user can use Websocket API calls. Please refer to the Generics section in the Websocket API in References for more information.

Rchain

Build

$ whiteblock build

Build Using Default Parameters:

blockchain (default set to: rchain):
nodes (default set to: 10):
image (default set to: rchain:latest):
cpus (default set to: no limit):
memory (default set to: no limit):
Use default parameters? (y/n) y
2018/12/19 23:24:12 build: Build in Progress
Building: 100.000000
Done

To Build Without Default Parameters, Type n When Being Prompted: Use default parameters? (y/n)

blockchain (default set to: rchain):
nodes (default set to: 10): 15
image (default set to: rchain:latest):
cpus (default set to: no limit):
memory (default set to: no limit):
Use default parameters? (y/n) n
chainId (int):
networkId (int):
difficulty (int):
initBalance (string):
maxPeers (int):
gasLimit (int):
homesteadBlock (int):
eip155Block (int):
eip158Block (int):
2018/12/19 23:24:12 build: Build in Progress
Building: 100.000000
Done

Syscoin

Build

<Blank>

Data Retrieval

Ethereum Geth Commands

whiteblock geth <command> [FLAGS]

Geth will allow the user to get information and run geth commands.

	
	Available SubCommands:

	
	block_listener Get block listener

	get_accounts Get account information

	get_balance Get account balance information

	get_block Get block information

	get_block_number Get block number

	get_hash_rate Get hasg rate

	get_recent_sent_tx Get recently sent transaction

	get_transaction Get transaction information

	get_transaction_count Get transaction count

	get_transaction_receipt Get transaction receipt

	send_transaction Sends a transaction

	start_mining Start Mining

	start_transactions Start transactions

	stop_mining Stop mining

	stop_transactions Stop transactions

	
	Flags:

	
	-h, –help: help for geth

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

geth block_listener

whiteblock geth block_listener [block number] [FLAGS]

Get all blocks and continue to subscribe to new blocks

Format: [block number] Params: The block number to start at or None for all blocks Response: Will emit on eth::block_listener for every block after the given block or 0 that exists/has been created

	
	Flags:

	
	-h, –help: help for block_listener

geth get_accounts

whiteblock geth get_accounts [FLAGS]

Get a list of all unlocked accounts

Response: A JSON array of the accounts

	
	Flags:

	
	-h, –help: help for get_accounts

geth get_balance

whiteblock geth get_balance <address> [FLAGS]

Get the current balance of an account

Format: <address> Params: Account address Response: The integer balance of the account in wei

	Flags:
- -h, –help: help for get_balance

geth get_block

whiteblock geth get_block <block number> [FLAGS]

Get the data of a block

Format: <Block Number> Params: Block number

	
	Flags:

	
	-h, –help: help for get_block

geth get_block_number

whiteblock geth get_block_number [FLAGS]

Get the current highest block number of the chain

Response: The block number

	
	Flags:

	
	-h, –help: help for get_block_number

geth get_hash_rate

whiteblock geth get_hash_rate [FLAGS]

Get the current hash rate per node

Response: The hash rate of a single node in the network

	
	Flags:

	
	-h, –help: help for get_hash_rate

geth get_recent_sent_tx

whiteblock geth get_recent_sent_tx [NUMBER] [FLAGS]

Get a number of the most recent transactions sent

Format: [number] Params: The number of transactions to retrieve Response: JSON object of transaction data

	
	Flags:

	
	-h, –help: help for get_recent_sent_tx

geth get_transaction

whiteblock geth get_transaction <hash> [FLAGS]

Get a transaction by its hash

Format: <hash> Params: The transaction hash

Response: JSON representation of the transaction.

	
	Flags:

	
	-h, –help: help for get_transaction

geth get_transaction_count

whiteblock geth get_transaction_count <address> [BLOCK NUMBER] [FLAGS]

Get the transaction count sent from an address, optionally by block

Format: <address> [block number] Params: The sender account, a block number Response: The transaction count

	
	Flags:

	
	-h, –help: help for get_transaction_count

geth get_transaction_receipt

whiteblock geth get_transaction_receipt <hash> [FLAGS]

Get the transaction receipt by the tx hash

Format: <hash> Params: The transaction hash Response: JSON representation of the transaction receipt.

	
	Flags:

	
	-h, –help: help for get_transaction_receipt

geth send_transaction

whiteblock geth send_transaction <from address> <to address> <gas> <gas price> <value to send> [FLAGS]

Send a transaction between two accounts

Format: <from> <to> <gas> <gas price> <value> Params: Sending account, receiving account, gas, gas price, amount to send, transaction data, nonce Response: The transaction hash

	Flags:
- -h, –help: help for send_transaction

geth start_mining

whiteblock geth start_mining [node 1 number] [node 2 number]... [FLAGS]

Send the start mining signal to nodes, may take a while to take effect due to DAG generation

Format: [node 1 number] [node 2 number]… Params: A list of the nodes to start mining or None for all nodes Response: The number of nodes which successfully received the signal to start mining

	
	Flags:

	
	-h, –help: help for start_mining

geth start_transactions

whiteblock geth start_transactions <tx/s> <value> [DESTINATION] [FLAGS]

Start sending transactions according to the given parameters, value = -1 means randomize value.

Format: <tx/s> <value> [destination] Params: The amount of transactions to send in a second, the value of each transaction in wei, the destination for the transaction

	
	Flags:

	
	-h, –help: help for start_transactions

	geth stop_mining

geth stop_mining

whiteblock geth stop_mining [node 1 number] [node 2 number]... [FLAGS]

Send the stop mining signal to nodes

Format: [node 1 number] [node 2 number]… Params: A list of the nodes to stop mining or None for all nodes Response: The number of nodes which successfully received the signal to stop mining

	
	Flags:

	
	-h, –help: help for stop_mining

geth stop_transactions

whiteblock geth stop_transactions [FLAGS]

Stops the sending of transactions if transactions are currently being sent

	
	Flags:

	
	-h, –help: help for stop_transactions

Geth (Go-Ethereum)

Note: Any configuration option can be left out, and this entire section can even be null, the example contains all of the defaults

Options

	chainId: The chain id set in the genesis.conf

	networkId: The network id

	difficulty: The initial difficulty set in the genesis.conf file

	initBalance: The initial balance for the accounts

	maxPeers: The maximum number of peers for each node

	gasLimit: The initial gas limit

	homesteadBlock: Set in genesis.conf

	eip155Block: Set in genesis.conf

	eip158Block: Set in genesis.conf

Example (using defaults)

{
 "chainId":15468,
 "networkId":15468,
 "difficulty":100000,
 "initBalance":100000000000000000000,
 "maxPeers":1000,
 "gasLimit":4000000,
 "homesteadBlock":0,
 "eip155Block":0,
 "eip158Block":0
}

Rchain

<Blank>

Syscoin Sys Commands

Options:

	rpcUser: The username credential

	rpcPass: The password credential

	masterNodeConns: The number of connections to set up for the master nodes

	nodeConns: The number of connections to set up for the normal nodes

	percentMasternodes: The percentage of the network consisting of master nodes

	options: Options to set enabled for all nodes

	senderOptions: Options to set enabled for senders

	receiverOptions: Options to set enabled for receivers

	mnOptions: Options to set enabled for master nodes

	extras: Extra options to add to the config file for all nodes

	senderExtras: Extra options to add to the config file for senders

	receiverExtras: Extra options to add to the config file for receivers

	mnExtras: Extra options to add to the config file for master nodes

whiteblock sys <command> [FLAGS]

Alias: SYS, syscoin

Sys will allow the user to get information and run SYS commands.

	
	Available Commands:

	
	test SYS test commands.

	
	Flags:

	
	-h, –help : help for sys

sys test

whiteblock sys test <command> [FLAGS]

Available Commands: results Get results from a previous test. start Starts propagation test.

	
	Flags:

	
	-h, –help : help for test

sys test start

whiteblock sys test start <wait time> <min complete percent> <number of tx> [FLAGS]

Sys test start will start the propagation test. It will wait for the signal start time, have nodes send messages at the same time, and require to wait a minimum amount of time then check receivers with a completion rate of minimum completion percentage.

Format: <wait time> <min complete percent> <number of tx> Params: Time in seconds, percentage, number of transactions

	
	Flags:

	
	-h, –help : help for start

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

sys test results

whiteblock sys test results <test number> [FLAGS]

Sys test results pulls data from a previous test or tests and outputs as csv.

Format: <test number> Params: Test number

	
	Flags:

	
	-h, –help : help for results

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

Get Commands

whiteblock get <command> [FLAGS]

Get will ouput server and network information and statstics.

	
	Available Commands:

	
	data Data will pull data from the network and output into a file.

	nodes Nodes will show all nodes in the network.

	server Get server information.

	stats Get stastics of a blockchain

	
	Flags:

	
	-h, –help : help for get

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get data

whiteblock get data <command> [FLAGS]

Data will pull specific or all block data from the network and output into a file. You will specify the directory where the file will be downloaded.

	
	Available Commands:

	
	all All will pull data from the network and output into a file.

	block Data block will pull data from the network and output into a file.

	time Data time will pull data from the network and output into a file.

	
	Flags:

	
	-h, –help : help for data

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get data all

whiteblock get data all [PATH] [FLAGS]

Data all will pull all data from the network and output into a file. The directory where the file will be downloaded will need to be specified. If no directory is provided, default directory is set to ~/Downloads.

Response: JSON representation of network statistics

	
	Flags:

	
	-h, –help : help for all

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get data block

whiteblock get data block <start block> <end block> [PATH] [FLAGS]

Data block will pull block data from the network from a given start and end block and output into a file. The directory where the file will be downloaded will need to be specified. If no directory is provided, default directory is set to ~/Downloads.

Params: Block numbers Format: <start block number> <end block number>

Response: JSON representation of network statistics

	
	Flags:

	
	-h, –help : help for block

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get data time

whiteblock get data time <start time> <end time> [PATH] [FLAGS]

Data time will pull block data from the network from a given start and end time and output into a file. The directory where the file will be downloaded will need to be specified. If no directory is provided, default directory is set to ~/Downloads.

Params: Unix time stamps Format: <start unix time stamp> <end unix time stamp>

Response: JSON representation of network statistics

	
	Flags:

	
	-h, –help : help for time

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get nodes

whiteblock get nodes [FLAGS]

Aliases: nodes, node

Nodes will output all of the nodes in the current network.

	
	Flags:

	
	-h, –help : help for server

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get server

whiteblock get server [FLAGS]

Aliases: server, servers

Server will allow the user to get server information.

	
	Flags:

	
	-h, –help : help for server

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get stats

whiteblock get stats <command> [FLAGS]

Stats will allow the user to get statistics regarding the network.

Response: JSON representation of network statistics

	
	Available Commands:

	
	all

	block

	time

	
	Flags:

	
	-h, –help : help for stats

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get stats all

whiteblock get stats all [FLAGS]

Stats all will allow the user to get all the statistics regarding the network.

Response: JSON representation of network statistics

	
	Flags:

	
	-h, –help : help for all

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get stats block

whiteblock get stats block <start block> <end block> [FLAGS]

Stats block will allow the user to get statistics regarding the network.

Params: Block numbers Format: <start block number> <end block number>

Response: JSON representation of network statistics

	
	Flags:

	
	-h, –help : help for block

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get stats time

whiteblock get stats time <start time> <end time> [FLAGS]

Stats time will allow the user to get statistics by specifying a start time and stop time (unix time stamp).

Params: Unix time stamps Format: <start unix time stamp> <end unix time stamp>

Response: JSON representation of network statistics

	
	Flags:

	
	-h, –help : help for time

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

Netconfig

whiteblock netconfig <command> [FLAGS]

Netconfig will introduce persistnace network conditions for testing. Use ‘?’ at any time for more help on configuring the network.

Custom Command: netconfig <engine number> <path number> <command>

set delay <amount> Specifies the latency to add [ms]; set loss loss <amount> Specifies the amount of packet loss to add [%]; set bw <amount> <type> Specifies the bandwidth of the network [bps|Kbps|Mbps|Gbps];

	
	Available Commands:

	
	bandwidth Set bandwidth

	delay Set latency

	loss Set packetloss

	off Turn off emulation

	on Turn on emulation

	
	Flags:

	-h, –help: help for netconfig

netconfig bandwidth

whiteblock netconfig bandwidth <engine number> <path number> <amount> <bandwidth type> [FLAGS]

Aliases: bw

Bandwidth will constrict the network to the specified bandwidth. You will specify the amount of bandwdth and the type.

Fomat: bandwidth type: bps, Kbps, Mbps, Gbps

	
	Flags:

	
	-h, –help: help for bandwidth

netconfig delay

whiteblock netconfig delay <engine number> <path number> <amount> [FLAGS]

Aliases: delay, latancy, lat

Latency will introduce delay to the network. You will specify the amount of latency in ms.

	
	Flags:

	
	-h, –help: help for latency

netconfig loss

whiteblock netconfig loss <engine number> <path number> <percent> [FLAGS]

Aliases: packetloss

Packetloss will drop packets in the network. You will specify the amount of packet loss in %.

	
	Flags:

	
	-h, –help: help for loss

netconfig off

whiteblock netconfig off <engine number> [FLAGS]

Turn off emulation.

	
	Flags:

	
	-h, –help: help for off

netconfig on

whiteblock netconfig on <engine number> [FLAGS]

Turn on emulation.

	
	Flags:

	
	-h, –help: help for on

SSH

$ whiteblock ssh <server> <node> [FLAGS]

SSH will allow the user to go into the contianer where the specified node exists.

Response: stdout of the command

	
	Flags:

	
	-h, –help : help for ssh

	-a, –server-addr : server address with port 5000 (default “localhost:5000”)

Version

$ whiteblock version

Get whiteblock CLI client version

	Flags:

	-h, –help : help for version

Client-specific Command Lines

Ethereum

Build

Mining

Automate Transactions

Geth

Syscoin

Build

Sys

Rchain

Build

References

Note: Please note that these documents are still being drafted and subject to change. This page is particularly rough, so take it easy, buddy.

Command Line Interface

whiteblock <command> [FLAGS]

This application will deploy a blockchain, create nodes, and allow those nodes to interact in the network.

	
	Available Commands:

	
	build Build a blockchain using image and deploy nodes

	get Get server and network information.

	geth Run geth commands

	help Displays help page

	netconfig Network conditions

	rpc Rpc interacts with the blockchain

	ssh SSH into an existing container.

	version Display Whiteblock CLI version

	
	Flags:

	
	-h, –help : help for whiteblock

Fowarding Commands

	
	forward

	
	forward {“nodes”:[<node1>,…<noden>],”port”:<port>,”data”:”<data to send to all the nodes given>”}

	forward tcp data to specific nodes, pass data with c string escapes and receive data back with c string escapes, in a json array of strings

	Example: {“nodes”:[1,2],”port”:80,”data”:”GET / HTTP/1.1rnrn”}

	Response: JSON Array of the responses

	Response Example: [“HTTP/1.1 200 OKrnrn”]

build

whiteblock build [FLAGS]

Aliases: build, create, init

Build will create and deploy a blockchain and the specified number of nodes. Each node will be instantiated in its own container and will interact individually as a participant of the specified network.

	
	Flags:

	
	-h, –help: help for build

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get

whiteblock get <command> [FLAGS]

Get will ouput server and network information and statstics.

	
	Available Commands:

	
	data Data will pull data from the network and output into a file.

	nodes Nodes will show all nodes in the network.

	server Get server information.

	stats Get stastics of a blockchain

	
	Flags:

	
	-h, –help : help for get

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get data

whiteblock get data <command> [FLAGS]

Data will pull specific or all block data from the network and output into a file. You will specify the directory where the file will be downloaded.

	
	Available Commands:

	
	all All will pull data from the network and output into a file.

	block Data block will pull data from the network and output into a file.

	time Data time will pull data from the network and output into a file.

	
	Flags:

	
	-h, –help : help for data

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get data all

whiteblock get data all [PATH] [FLAGS]

Data all will pull all data from the network and output into a file. The directory where the file will be downloaded will need to be specified. If no directory is provided, default directory is set to ~/Downloads.

Response: JSON representation of network statistics

	
	Flags:

	
	-h, –help : help for all

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get data block

whiteblock get data block <start block> <end block> [PATH] [FLAGS]

Data block will pull block data from the network from a given start and end block and output into a file. The directory where the file will be downloaded will need to be specified. If no directory is provided, default directory is set to ~/Downloads.

Params: Block numbers Format: <start block number> <end block number>

Response: JSON representation of network statistics

	
	Flags:

	
	-h, –help : help for block

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get data time

whiteblock get data time <start time> <end time> [PATH] [FLAGS]

Data time will pull block data from the network from a given start and end time and output into a file. The directory where the file will be downloaded will need to be specified. If no directory is provided, default directory is set to ~/Downloads.

Params: Unix time stamps Format: <start unix time stamp> <end unix time stamp>

Response: JSON representation of network statistics

	
	Flags:

	
	-h, –help : help for time

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get nodes

whiteblock get nodes [FLAGS]

Aliases: nodes, node

Nodes will output all of the nodes in the current network.

	
	Flags:

	
	-h, –help : help for server

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get server

whiteblock get server [FLAGS]

Aliases: server, servers

Server will allow the user to get server information.

	
	Flags:

	
	-h, –help : help for server

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get stats

whiteblock get stats <command> [FLAGS]

Stats will allow the user to get statistics regarding the network.

Response: JSON representation of network statistics

	
	Available Commands:

	
	all

	block

	time

	
	Flags:

	
	-h, –help : help for stats

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get stats all

whiteblock get stats all [FLAGS]

Stats all will allow the user to get all the statistics regarding the network.

Response: JSON representation of network statistics

	
	Flags:

	
	-h, –help : help for all

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get stats block

whiteblock get stats block <start block> <end block> [FLAGS]

Stats block will allow the user to get statistics regarding the network.

Params: Block numbers Format: <start block number> <end block number>

Response: JSON representation of network statistics

	
	Flags:

	
	-h, –help : help for block

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

get stats time

whiteblock get stats time <start time> <end time> [FLAGS]

Stats time will allow the user to get statistics by specifying a start time and stop time (unix time stamp).

Params: Unix time stamps Format: <start unix time stamp> <end unix time stamp>

Response: JSON representation of network statistics

	
	Flags:

	
	-h, –help : help for time

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

netconfig

whiteblock netconfig <command> [FLAGS]

Netconfig will introduce persistnace network conditions for testing. Use ‘?’ at any time for more help on configuring the network.

Custom Command: netconfig <engine number> <path number> <command>

set delay <amount> Specifies the latency to add [ms]; set loss loss <amount> Specifies the amount of packet loss to add [%]; set bw <amount> <type> Specifies the bandwidth of the network [bps|Kbps|Mbps|Gbps];

	
	Available Commands:

	
	bandwidth Set bandwidth

	delay Set latency

	loss Set packetloss

	off Turn off emulation

	on Turn on emulation

	
	Flags:

	-h, –help: help for netconfig

netconfig bandwidth

whiteblock netconfig bandwidth <engine number> <path number> <amount> <bandwidth type> [FLAGS]

Aliases: bw

Bandwidth will constrict the network to the specified bandwidth. You will specify the amount of bandwdth and the type.

Fomat: bandwidth type: bps, Kbps, Mbps, Gbps

	
	Flags:

	
	-h, –help: help for bandwidth

netconfig delay

whiteblock netconfig delay <engine number> <path number> <amount> [FLAGS]

Aliases: delay, latancy, lat

Latency will introduce delay to the network. You will specify the amount of latency in ms.

	
	Flags:

	
	-h, –help: help for latency

netconfig loss

whiteblock netconfig loss <engine number> <path number> <percent> [FLAGS]

Aliases: packetloss

Packetloss will drop packets in the network. You will specify the amount of packet loss in %.

	
	Flags:

	
	-h, –help: help for loss

netconfig off

whiteblock netconfig off <engine number> [FLAGS]

Turn off emulation.

	
	Flags:

	
	-h, –help: help for off

netconfig on

whiteblock netconfig on <engine number> [FLAGS]

Turn on emulation.

	
	Flags:

	
	-h, –help: help for on

SSH

whiteblock ssh <server> <node> [FLAGS]

SSH will allow the user to go into the contianer where the specified node exists.

Response: stdout of the command

	
	Flags:

	
	-h, –help : help for ssh

	-a, –server-addr : server address with port 5000 (default “localhost:5000”)

version

whiteblock version

Get whiteblock CLI client version

	Flags:
- -h, –help : help for version

Smart Contracts

contractadd

whiteblock contractadd <filename> [FLAGS]

Adds the specified smart contract into the /Downloads folder.

	
	Flags:

	
	-h, –help: help for contractadd

	-p, –path string : File path where the smart contract is located

contractcompile

whiteblock contractcompile <filename> [FLAGS]

Compiles the specified smart contract.

	
	Flags:

	
	-h, –help: help for contractcompile

	-p, –path string: File path where the smart contract is located

Ethereum

	
	eth::get_block_number

	
	Description: Get the current highest block number of the chain

	Params: None

	Response: The block number e.g. 10

	
	eth::get_block

	
	Description: Get the data of a block

	Params: The block number

	Format: <Block Number>

	Example: 10

	Response: JSON Representation of the block. Example

	
	eth::get_accounts

	
	Description: Get the unlocked accounts

	Params: None

	Response: A JSON array of the accounts

	
	eth::get_balance

	
	Description: Get the current balance of an account

	Params: Account address

	Format: <address>

	Example: 0xbfa767eae64753e4c426ea42470abf7e4fc305ab

	Response: The integer balance of the account in wei

	
	eth::send_transaction

	
	Description: Send a transaction between two accounts

	Params: Sending account, receiving account, gas, gas price, amount to send, transaction data, nonce

	Format: <from> <to> <gas> <gas price> <value> [data] [nonce]

	Example: 0xbfa767eae64753e4c426ea42470abf7e4fc305ab 0x8d12a197cb00d4747a1fe03395095ce2a5cc6819 0x015f90 0x165a0bc00 0xde0b6b3a7640000

	Response: The transaction hash

	
	eth::get_transaction_count

	
	Description: Get the transaction count sent from an address, optionally by block

	Params: The sender account, a block number

	Format: <address> [block number]

	Example: 0xbfa767eae64753e4c426ea42470abf7e4fc305ab

	Response: The transaction count

	
	eth::get_transaction

	
	Description: Get a transaction by its hash

	Params: The transaction hash

	Format: <hash>

	Example: 0x402c257c85c398154b8b16fa612df13e197135f63d1be9e03b6d2d55285e8670

	Response: JSON representation of the transaction. Example

	
	eth::get_transaction_receipt

	
	Description: Get the transaction receipt by the tx hash

	Params: The transaction hash

	Format: <hash>

	Example: 0x402c257c85c398154b8b16fa612df13e197135f63d1be9e03b6d2d55285e8670

	Response: JSON representation of the transaction receipt. Example

	
	eth::get_hash_rate

	
	Description: Get the current hash rate per node

	Params: None

	Response: The hash rate of a single node in the network

	
	eth::start_transactions

	
	Description: Start sending transactions according to the given parameters, value = -1 means randomize value.

	Params: The amount of transactions to send in a second, the value of each transaction in wei, the destination for the transaction

	Format: <tx/s> <value> [destination]

	Example: 100 0xde0b6b3a7640000 0x8d12a197cb00d4747a1fe03395095ce2a5cc6819

	Response: None

	
	eth::stop_transactions

	
	Description: Stops the sending of transactions if transactions are currently being sent

	Params: None

	Response: None

	
	eth::start_mining

	
	Description: Send the start mining signal to nodes, may take a while to take effect due to DAG generation

	Params: A list of the nodes to start mining or None for all nodes

	Format: [node 1 number] [node 2 number]…

	Example: 0 1 2 3

	Response: The number of nodes which successfully received the signal to start mining

	
	eth::stop_mining

	
	Description: Send the stop mining signal to nodes

	Params: A list of the nodes to stop mining or None for all nodes

	Format: [node 1 number] [node 2 number]…

	Example: 0 1 2 3

	Response: The number of nodes which successfully received the signal to stop mining

	
	eth::block_listener

	
	Description: Get all blocks and continue to subscribe to new blocks

	Params: The block number to start at or None for all blocks

	Format: [block number]

	Example: 12

	Response: Will emit on eth::block_listener for every block after the given block or 0 that exists/has been created

	
	eth::get_recent_sent_tx

	
	Description: Get a number of the most recent transactions sent

	Params: The number of transactions to retrieve

	Format: [number]

	Example: 5

	Response: Data on the 5 last sent transactions

	Response Example:

{"results":[{"statement_id":0,"series":[{"name":"transactions","columns":["time","from","gas","gas_price","to","txid","value"],"values":[["2018-11-08T18:02:59.700086831Z","\"0x1949d6d0dfb19048563b602d9a02c06420421429\"","\"0x15f90\"","\"0x3B9ACA00\"","\"0xd9075634d9725f05a1a84343fb40a31d9964ffa5\"","\"0xaffad4a457d79448f211654be8eae1ca6fa8e005936d72528d394fe724adb903\"","0xDE0B6B3A7640000"],["2018-11-08T18:02:59.698273467Z","\"0x1949d6d0dfb19048563b602d9a02c06420421429\"","\"0x15f90\"","\"0x3B9ACA00\"","\"0xd9075634d9725f05a1a84343fb40a31d9964ffa5\"","\"0x8f08bc904c7fbf2e3c695bd71237432137e4f22a20287eda880ed8b409032580\"","0xDE0B6B3A7640000"],["2018-11-08T18:02:59.655393436Z","\"0xd9075634d9725f05a1a84343fb40a31d9964ffa5\"","\"0x15f90\"","\"0x3B9ACA00\"","\"0xe33e509fea81ea03333a3659c98108196ac438a7\"","\"0x21ed0c41959ec9aecf36461cd5b42e65505090e8dbd514ba3b123a3889a5735e\"","0xDE0B6B3A7640000"],["2018-11-08T18:02:59.651551261Z","\"0x1949d6d0dfb19048563b602d9a02c06420421429\"","\"0x15f90\"","\"0x3B9ACA00\"","\"0xd9075634d9725f05a1a84343fb40a31d9964ffa5\"","\"0xfc9b2658bdc95669ffd38e8ff02b9995d894542db52161fbe41ee5dcaed70628\"","0xDE0B6B3A7640000"],["2018-11-08T18:02:59.628233357Z","\"0xd9075634d9725f05a1a84343fb40a31d9964ffa5\"","\"0x15f90\"","\"0x3B9ACA00\"","\"0xe33e509fea81ea03333a3659c98108196ac438a7\"","\"0x15597db936fc88d8a781ea7da6dce1260a05f10070ab75cd8328659d1343390a\"","0xDE0B6B3A7640000"]]}]}]}

Starting Transactions

const io = require('socket.io-client')
const socket = io('http://localhost:5000', {
 path: '/'
})

socket.on('connect', () => {
 console.log("Starting the transactions")
 socket.emit("eth::stop_transactions")//kill any previous transaction logic
 socket.emit("eth::start_transactions","1 0xde0b6b3a7640000")//Start sending the transactions
})

socket.open();

Note: Any configuration option can be left out, and this entire section can even be null, the example contains all of the defaults.

Ethereum Options

	chainId: The chain id set in the genesis.conf

	networkId: The network id

	difficulty: The initial difficulty set in the genesis.conf file

	initBalance: The initial balance for the accounts

	maxPeers: The maximum number of peers for each node

	gasLimit: The initial gas limit

	homesteadBlock: Set in genesis.conf

	eip155Block: Set in genesis.conf

	eip158Block: Set in genesis.conf

Example (using defaults)

{
 "chainId":15468,
 "networkId":15468,
 "difficulty":100000,
 "initBalance":100000000000000000000,
 "maxPeers":1000,
 "gasLimit":4000000,
 "homesteadBlock":0,
 "eip155Block":0,
 "eip158Block":0
}

geth

whiteblock geth <command> [FLAGS]

Geth will allow the user to get infromation and run geth commands.

	
	Available SubCommands:

	
	block_listener Get block listener

	get_accounts Get account information

	get_balance Get account balance information

	get_block Get block information

	get_block_number Get block number

	get_hash_rate Get hasg rate

	get_recent_sent_tx Get recently sent transaction

	get_transaction Get transaction information

	get_transaction_count Get transaction count

	get_transaction_receipt Get transaction receipt

	send_transaction Sends a transaction

	start_mining Start Mining

	start_transactions Start transactions

	stop_mining Stop mining

	stop_transactions Stop transactions

	
	Flags:

	
	-h, –help: help for geth

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

geth block_listener

whiteblock geth block_listener [block number] [FLAGS]

Get all blocks and continue to subscribe to new blocks

Format: [block number] Params: The block number to start at or None for all blocks Response: Will emit on eth::block_listener for every block after the given block or 0 that exists/has been created

	
	Flags:

	
	-h, –help: help for block_listener

geth get_accounts

whiteblock geth get_accounts [FLAGS]

Get a list of all unlocked accounts

Response: A JSON array of the accounts

	
	Flags:

	
	-h, –help: help for get_accounts

geth get_balance

whiteblock geth get_balance <address> [FLAGS]

Get the current balance of an account

Format: <address> Params: Account address Response: The integer balance of the account in wei

	Flags:
- -h, –help: help for get_balance

geth get_block

whiteblock geth get_block <block number> [FLAGS]

Get the data of a block

Format: <Block Number> Params: Block number

	
	Flags:

	
	-h, –help: help for get_block

geth get_block_number

whiteblock geth get_block_number [FLAGS]

Get the current highest block number of the chain

Response: The block number

	
	Flags:

	
	-h, –help: help for get_block_number

geth get_hash_rate

whiteblock geth get_hash_rate [FLAGS]

Get the current hash rate per node

Response: The hash rate of a single node in the network

	
	Flags:

	
	-h, –help: help for get_hash_rate

geth get_recent_sent_tx

whiteblock geth get_recent_sent_tx [NUMBER] [FLAGS]

Get a number of the most recent transactions sent

Format: [number] Params: The number of transactions to retrieve Response: JSON object of transaction data

	
	Flags:

	
	-h, –help: help for get_recent_sent_tx

geth get_transaction

whiteblock geth get_transaction <hash> [FLAGS]

Get a transaction by its hash

Format: <hash> Params: The transaction hash

Response: JSON representation of the transaction.

	
	Flags:

	
	-h, –help: help for get_transaction

geth get_transaction_count

whiteblock geth get_transaction_count <address> [BLOCK NUMBER] [FLAGS]

Get the transaction count sent from an address, optionally by block

Format: <address> [block number] Params: The sender account, a block number Response: The transaction count

	
	Flags:

	
	-h, –help: help for get_transaction_count

geth get_transaction_receipt

whiteblock geth get_transaction_receipt <hash> [FLAGS]

Get the transaction receipt by the tx hash

Format: <hash> Params: The transaction hash Response: JSON representation of the transaction receipt.

	
	Flags:

	
	-h, –help: help for get_transaction_receipt

geth send_transaction

whiteblock geth send_transaction <from address> <to address> <gas> <gas price> <value to send> [FLAGS]

Send a transaction between two accounts

Format: <from> <to> <gas> <gas price> <value> Params: Sending account, receiving account, gas, gas price, amount to send, transaction data, nonce Response: The transaction hash

	Flags:
- -h, –help: help for send_transaction

geth start_mining

whiteblock geth start_mining [node 1 number] [node 2 number]... [FLAGS]

Send the start mining signal to nodes, may take a while to take effect due to DAG generation

Format: [node 1 number] [node 2 number]… Params: A list of the nodes to start mining or None for all nodes Response: The number of nodes which successfully received the signal to start mining

	
	Flags:

	
	-h, –help: help for start_mining

geth start_transactions

whiteblock geth start_transactions <tx/s> <value> [DESTINATION] [FLAGS]

Start sending transactions according to the given parameters, value = -1 means randomize value.

Format: <tx/s> <value> [destination] Params: The amount of transactions to send in a second, the value of each transaction in wei, the destination for the transaction

	
	Flags:

	
	-h, –help: help for start_transactions

	geth stop_mining

geth stop_mining

whiteblock geth stop_mining [node 1 number] [node 2 number]... [FLAGS]

Send the stop mining signal to nodes

Format: [node 1 number] [node 2 number]… Params: A list of the nodes to stop mining or None for all nodes Response: The number of nodes which successfully received the signal to stop mining

	
	Flags:

	
	-h, –help: help for stop_mining

geth stop_transactions

whiteblock geth stop_transactions [FLAGS]

Stops the sending of transactions if transactions are currently being sent

	
	Flags:

	
	-h, –help: help for stop_transactions

Geth (Go-Ethereum)

Note: Any configuration option can be left out, and this entire section can even be null, the example contains all of the defaults

Options

	chainId: The chain id set in the genesis.conf

	networkId: The network id

	difficulty: The initial difficulty set in the genesis.conf file

	initBalance: The initial balance for the accounts

	maxPeers: The maximum number of peers for each node

	gasLimit: The initial gas limit

	homesteadBlock: Set in genesis.conf

	eip155Block: Set in genesis.conf

	eip158Block: Set in genesis.conf

Example (using defaults)

{
 "chainId":15468,
 "networkId":15468,
 "difficulty":100000,
 "initBalance":100000000000000000000,
 "maxPeers":1000,
 "gasLimit":4000000,
 "homesteadBlock":0,
 "eip155Block":0,
 "eip158Block":0
}

Syscoin

Syscoin (RegTest)

Options:

	rpcUser: The username credential

	rpcPass: The password credential

	masterNodeConns: The number of connections to set up for the master nodes

	nodeConns: The number of connections to set up for the normal nodes

	percentMasternodes: The percentage of the network consisting of master nodes

	options: Options to set enabled for all nodes

	senderOptions: Options to set enabled for senders

	receiverOptions: Options to set enabled for receivers

	mnOptions: Options to set enabled for master nodes

	extras: Extra options to add to the config file for all nodes

	senderExtras: Extra options to add to the config file for senders

	receiverExtras: Extra options to add to the config file for receivers

	mnExtras: Extra options to add to the config file for master nodes

	
	sys::start_test

	
	Description: Start the propogation/tps test for syscoin

	Params: The max number of test results to retrieve

	Format: {“waitTime”:<seconds to wait>,”minCompletePercent”:<percentage>,”numberOfTransactions”:<number of tx>}

	Example:

{
 "waitTime":11,
 "minCompletePercent":97.7,
 "numberOfTransactions":500
}

	
	sys::get_recent_test_results

	
	Description: Get recent test results

	Params: The max number of test results to retrieve

	Format: [number]

	Example: 5

	Response: Data on the last x test results

whiteblock sys <command> [FLAGS]

Alias: SYS, syscoin

Sys will allow the user to get infromation and run SYS commands.

	
	Available Commands:

	
	test SYS test commands.

	
	Flags:

	
	-h, –help : help for sys

sys test

whiteblock sys test <command> [FLAGS]

Available Commands: results Get results from a previous test. start Starts propagation test.

	
	Flags:

	
	-h, –help : help for test

sys test start

whiteblock sys test start <wait time> <min complete percent> <number of tx> [FLAGS]

Sys test start will start the propagation test. It will wait for the signal start time, have nodes send messages at the same time, and require to wait a minimum amount of time then check receivers with a completion rate of minimum completion percentage.

Format: <wait time> <min complete percent> <number of tx> Params: Time in seconds, percentage, number of transactions

	
	Flags:

	
	-h, –help : help for start

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

sys test results

whiteblock sys test results <test number> [FLAGS]

Sys test results pulls data from a previous test or tests and outputs as csv.

Format: <test number> Params: Test number

	
	Flags:

	
	-h, –help : help for results

	-a, –server-addr string: server address with port 5000 (default “localhost:5000”)

Example (using defaults)

{
 "rpcUser":"username",
 "rpcPass":"password",
 "masterNodeConns":25,
 "nodeConns":8,
 "percentMasternodes":90,
 "options":[
 "server",
 "regtest",
 "listen",
 "rest"
],
 "senderOptions":[
 "tpstest",
 "addressindex"
],
 "mnOptions":[],
 "receiverOptions":[
 "tpstest"
],
 "extras":[],
 "senderExtras":[],
 "receiverExtras":[],
 "mnExtras":[]
}

Index

 <Intentionally left blank>

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Overview

 		
 Use Cases

 		
 Features

 		
 Network Specifications

 		
 Supported Clients

 		
 Get Started

 		
 Accessing The GUI

 		
 Accessing The CLI Application

 		
 Build The Network

 		
 Configure Network Conditions

 		
 Automate Transactions

 		
 Examine Data

 		
 Command Line Interface

 		
 Available Commands

 		
 Build

 		
 Ethereum

 		
 Rchain

 		
 Syscoin

 		
 Data Retrieval

 		
 Ethereum Geth Commands

 		
 Rchain

 		
 Syscoin Sys Commands

 		
 Get Commands

 		
 Netconfig

 		
 SSH

 		
 Version

 		
 Client-specific Command Lines

 		
 Ethereum

 		
 Build

 		
 Mining

 		
 Automate Transactions

 		
 Geth

 		
 Syscoin

 		
 Build

 		
 Sys

 		
 Rchain

 		
 Build

 		
 References

 		
 Command Line Interface

 		
 Fowarding Commands

 		
 build

 		
 get

 		
 netconfig

 		
 SSH

 		
 version

 		
 Smart Contracts

 		
 Ethereum

 		
 Syscoin

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

