
When Documentation
Release 0.9

Francesco Garosi

Jun 13, 2017

Contents

1 Introduction 3

2 Installation 5
2.1 Requirements . 5
2.2 Package Based Install . 6
2.3 Install from a PPA . 6
2.4 Install from the Source . 7
2.5 The --install Switch . 7
2.6 Removal . 8

3 User Manual 9
3.1 Overview . 9
3.2 The Applet . 11
3.3 Tasks . 12
3.4 Conditions . 13
3.5 Configuration . 15
3.6 The History Window . 18
3.7 Reset Condition Tests . 19
3.8 Command Line Interface . 19

4 Advanced Features 21
4.1 File and Directory Notifications . 21
4.2 DBus Signal Handlers . 22
4.3 Environment Variables . 23
4.4 Item Definition File . 23
4.5 Exporting and Importing Items . 28

5 The When Wizard 31
5.1 Installation . 33
5.2 Defining Actions . 35
5.3 Managing Actions . 37
5.4 Other Uses for the When Wizard Manager . 38

6 Tutorial 41
6.1 Assumptions . 41
6.2 The Examples . 42
6.3 The Tutorial is an Ongoing Task . 57

i

7 Credits and Resources 59
7.1 Resources . 59
7.2 Bugs and Errors . 60

8 License (BSD) 61

ii

When Documentation, Release 0.9

Contents:

Contents 1

When Documentation, Release 0.9

2 Contents

CHAPTER 1

Introduction

When is a configurable user task scheduler for modern Gnome environments. It interacts with the user through a GUI,
where the user can define tasks and conditions, as well as relationships of causality that bind conditions to tasks. When
a condition is bound to a task, it is said to trigger a task.

When is available in source or packaged form on GitHub.

3

https://github.com/almostearthling/when-command
https://github.com/almostearthling/when-command/releases
https://github.com/

When Documentation, Release 0.9

The purpose of this small utility is to provide the user, possibly without administrative credentials, the ability to define
conditions that do not only depend on time, but also on a particular state of the session (e.g. the result of a command
run in a shell). The same result could be achieved with scripts that periodically run commands, check the results and
react accordingly, but such a simple task could result in complex sets of scripts and settings that would be harder
to maintain. When was born out of need: I have been a (happy) Ubuntu user for years now, and couldn’t think of
having a different desktop environment than the one provided by Ubuntu. In 14.04 LTS (the release I’m using now)
the environment is consistent and pleasant. One thing I’ve noticed that has evolved in Windows is the Task Scheduler:
in fact it looks more useful and usable than the usual cron daemon, at least because it allows some more options
to schedule tasks than just the system time. I needed such an utility to perform some file synchronizations when
the workstation is idle, and decided to write my own task scheduler targeted to Ubuntu. The scheduler runs in the
background, and displays an indicator applet icon for user interaction.

It is not generally intended as a replacement to cron and the Gnome Task Scheduler, although to some extent these
utilities might overlap. When is intended to be more flexible, although less precise, and to provide an alternative to
more complicated solutions – such as the implementation of cron jobs that check for a particular condition and execute
commands when the condition is verified. In such spirit, When is not as fine-grained in terms of doing things on a
strict time schedule: the When approach is that “when a certain condition is met, then something has to be done”. The
condition is checked periodically, and the countermeasure is taken subsequently in a relaxed fashion – this means that
it might not occur immediately in most cases. In fact and with the default configuration, the delay could also consist
of a couple of minutes in the worst case.

4 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Cron
http://gnome-schedule.sourceforge.net/

CHAPTER 2

Installation

When supports several installation types. The easiest way to install it is using one of the packages provided for
Ubuntu, that may also be suitable for other Debian based Linux distributions. However, if a different setup is needed
(for instance in a per-user based installation), it is possible to install When directly from a source archive or from a
clone of the Git repository.

This chapter covers the installation process and the additional actions that should be performed to get When up and
running for an user. Information is also provided on how to remove the applet from the system or for an user.

Requirements

For the applet to function and before unpacking it to the destination directory, make sure that Python 3.x, PyGObject
for Python 3.x and the xprintidle utility are installed. Optionally, to enable file and directory monitoring, the
pyinotify package can be installed. For example, not all of these are installed by default on Ubuntu: in this case
the following commands can be used.

$ sudo apt-get install python3-gi
$ sudo apt-get install xprintidle
$ sudo apt-get install gir1.2-appindicator3-0.1
$ sudo apt-get install python3-pyinotify

The gir1.2-appindicator3-0.1 package may not be needed on all systems, but some Linux distributions
do not install it by default. python3-pyinotify is normally considered optional but it is mandatory to enable
conditions based on changes to the file system.1

After the requirements have been fulfilled, the methods below can be used to set up the applet.

1 Package based installations depend on this: the installation fails if it is not installed.

5

https://github.com/almostearthling/when-command/releases
https://github.com/almostearthling/when-command.git

When Documentation, Release 0.9

Package Based Install

As said above, a package provides the quickest and easiest way to have a working installation of When. Packages are
provided for Ubuntu, although they might work (at least partially) with other Debian based Linux distributions. When
packages come in two flavors:

1. when-command: this is a LSB structured package, especially suitable for Ubuntu and derivatives, that in-
stalls the applet in a way similar to other standard Ubuntu packages. The actual file name has the form
when-command_VERSIONSPEC-N_all.deb where VERSIONSPEC is a version specification, and N is
a number. Pros of this package are mostly that it blends with the rest of the operating environment and that the
when-command command-line utility is available on the system path by default. Cons are that this setup may
conflict with environments that are very different from Ubuntu.

2. when-command-opt: this version installs When in /opt/when-command, and should be suitable for
.deb based distributions that differ from Ubuntu. The advantage of this method is that the applet is installed
separately from the rest of the operating environment and does not clutter the host system. The main drawback is
that the when-command utility is not in the system path by default and, unless the PATH variable is modified,
it has to be invoked using the full path, that is as /opt/when-command/when-command. The package file
name has the form: when-command-opt-VERSIONSPEC.deb.

To install a downloaded package, run

sudo dpkg --install when-command_VERSIONSPEC-N_all.deb

or

sudo dpkg --install when-command-opt-VERSIONSPEC.deb

depending on the chosen version. After installation, each user who desires to run When has to
launch when-command --install (or /opt/when-command/when-command --install if the second
method was chosen) in order to find the applet icon in Dash and to be able to set it up as a startup application (via the
Settings dialog box).23

Warning: The two package types are seen as different by apt and dpkg: this means that one package type will not
be installed over the other. When switching package type, the old package must be uninstalled before. This also
yields when upgrading from packages up to release 0.9.1, however removal of user data and desktop shortcuts is not
required. After a package type switch or an upgrade from release 0.9.1 or older, when-command --install
should be invoked again, using the full path to the command if appropriate.

Install from a PPA

It is possible to install When on recent Ubuntu series from a PPA. This has the advantage of automatically resolving
dependencies and to directly set up a fairly stable release with the recommended layout, and to let the user automati-
cally update the software in the ordinary way.

To add the repository, you can simply issue

$ sudo add-apt-repository ppa:franzg/when-command

and accept to import the related key. Then refresh the packages and install the applet by running

2 The first method is the preferred one, and it is the one usually referred to throughout the documentation: when-command is considered to be
in the path, and in the examples and instructions is invoked directly, omitting the full path prefix.

3 Although an autostart entry is created, it remains inactive by default if the configuration is not modified in the applet settings.

6 Chapter 2. Installation

When Documentation, Release 0.9

$ sudo apt-get update
$ sudo apt-get install when-command

from the command line. The other common methods of setting up a PPA using the Software & Updates page in System
Settings and the Ubuntu Software Center also work.

Running when-command --install is still needed for each user to add When to the desktop when installing for
the first time.

Install from the Source

A source archive or a Git clone can be used to install the package in a directory of choice, but some additional opera-
tions are required. However this can be done almost mechanically. In the following example we will suppose that the
source has been downloaded in the form of a when-command-master.zip archive located in ~/Downloads,
and that the user wants to install When in ~/Applications/When. The required steps are the below:

$ cd ~/Applications
$ unzip ~/Downloads/when-command-master.zip
$ mv when-command-master When
$ cd When
$ rm -Rf po scripts .temp .git* setup.* MANIFEST.in stdeb.*
$ for x in applications doc icons man ; do rm -Rf share/$x ; done
$ chmod a+x share/when-command/when-command.py
$ ln -s share/when-command/when-command.py when-command
$ $HOME/Applications/When/when-command --install

The rm and for statements are not mandatory: they are only used to remove stuff that is not used by the installed
applet and to avoid a cluttered setup. Also, with this installation method, When can only be invoked from the
command line using the full path ($HOME/Applications/When/when-command in the example): to use the
when-command shortcut, $HOME/Applications/When has to be included in the PATH variable in .bashrc.
This means for instance that the creation of a symbolic link in a directory already in the user path can cause malfunc-
tions to When on command line invocation.4

This installation method is useful in several cases: it can be used for testing purposes (it can supersede an exist-
ing installation, using the --install switch with the appropriate script), to run the applet directly from a cloned
repository or to restrict installation to a single user.

The --install Switch

When will try to recognize the way it has been set up the first time it’s invoked: the --install switch creates the
desktop entries and icons for each user that opts in to use the applet, as well as the required directories that When
needs to run correctly and an active autostart entry, that is:

• ~/.config/when-command where it will store all configuration

• ~/.local/share/when-command where it stores resources and logs (in the log subdirectory).

Note that the full path to the command has to be used on the first run if the /opt based package or the manual
installation were chosen: in this way When can recognize the installation type and set up the icons and shortcuts
properly.

4 A .tar.gz archive is provided along with packaged releases, which is the result of a source-based installation: it extracts all the required
files in a directory named When, but the extraction directory can be moved before the when-command --install step.

2.4. Install from the Source 7

When Documentation, Release 0.9

Removal

When can be uninstalled via apt-get remove when-command or apt-get remove
when-command-opt if a package distribution was used, or by deleting the newly created applet directory
(~/Applications/When in the above example) if the source was unpacked from an archive or cloned from Git.

Also, desktop shortcut symbolic links can be removed as follows:

$ rm -f ~/.local/share/applications/when-command.desktop
$ rm -f ~/.config/autostart/when-command-startup.desktop

while the following commands can be used to remove applet data and an extra CLI link (if present):

$ rm -f ~/.local/bin/when-command
$ rm -Rf ~/.local/share/when-command
$ rm -Rf ~/.config/when-command

where the last line can be skipped if When is presumed to be reinstalled at a later time.5

Of course it has to be shut down before, for example by killing it via when-command --kill.

Note: Removal of user data is not required when switching package type or changing installation style, provided that
the newly installed when-command is invoked with the --install switch before using the applet. If user data is
removed, all tasks and conditions and other items will have to be recreated from scratch after reinstalling, unless an
export file exists.

5 Not all rm operations shown here will actually have effect: the instructions follow the most generic case, and some of the files listed for
deletion could be missing.

8 Chapter 2. Installation

CHAPTER 3

User Manual

Overview

When deals mainly with two types of entities, Tasks and Conditions. These entity types are used to define items
using the applet configuration dialog boxes. Unlike similar applications, since items do not only represent checks or
commands, they are referenced by name throughout the user interface of the applet. Item names must:

• begin with either a letter or a number

• contain only letters, numbers, underscores or dashes (no spaces)

and are case sensitive. A Task consists of a command, which will run in the default shell, along with an environment
and some hints on how to consider it successful or not. Tasks correspond to a single command line each: this means
that they can consist of several shell commands each, as long as they can fit on a single shell line – for instance using
shell separators (such as semicolons, ;) or other conjunctions or disjunctions. A Condition consists of an inherent
test or associated event, a set of Tasks and instructions on how tasks should run in case the test succeeds or the event
occurs. There is no concept of failure in conditions: a condition can either occur or not.

The relationship between Tasks and Conditions consists in the possibility for a condition to trigger a task: if the tests
or events that determine the condition are positive, then the tasks associated with that condition are very likely to run
– execution of a task may be prevented either by the When applet itself, if a previously run task in the same condition
occurrence1 has failed (or succeeded) and the condition is set to break in such an event, or by the underlying system if
there is something wrong with the task itself. The latter case is however normally interpreted as a task failure.

More than one task can be associated to a condition: if tasks in a set that is associated to a condition can be considered
as independent, then the user can choose to run the tasks simultaneously in multiple threads2 otherwise such tasks
can run in sequence, and the sequence can be interrupted, at user’s choice, either on first task failure or on first task
success.

This shows how a single condition can be associated to multiple tasks. However a task can be “reused” in more than
one condition: this is particularly useful when a certain action is required to be triggered under different circumstances

1 Here a condition occurrence refers to an instant in time when the condition prerequisites are verified and, in case of success, the associated
task set is scheduled to run, either immediately or shortly after.

2 There is a limit nevertheless in the number of tasks that can be simultaneously executed, but this limit can be increased in the applet settings.

9

When Documentation, Release 0.9

– say, at certain times and when an event occurs – in which case both involved conditions may trigger the same task,
possibly within different task sets.

Note: Most of the tokens that decide whether or not a condition is verified are enqueued to be checked at intervals,
which in the case of relatively “inexpensive” checks is at every clock tick, while in other cases is at longer intervals
defined in the skip seconds configuration parameter. For example, conditions that depend on outcome of external
commands are checked at longer intervals. Also, most3 system and session events cause the associated condition to be
verified at the next clock tick instead of immediately. If such events occur again when the task set for the associated
condition is already enqueued to be run, it is executed only once – further attempts to enqueue it are simply skipped.

The When applet can be thought of as a main loop that incorporates a clock and an event listener. Whenever the clock
ticks, conditions are evaluated, and when an event is caught a token is issued for the associated condition to evaluate
to true, so that the task set that it surrounds can be run. Conditions that do not receive a token or whose test evaluates
to false are skipped for further evaluation.

Conditions can also be marked as recurring: if a condition has not been instructed to repeat checks, the corresponding
tests (and received tokens) are skipped after the first time the associated task set has been triggered, until the When
applet is restarted – either in a new session or by direct intervention. Enabling the repeat checks feature, on the other
side, allows the condition to be recurring, or even periodic in the case of interval based conditions.

There is another type of entity that can be defined, for which the naming convention is the same as for Tasks and
Conditions, that is Signal Handlers: these can be used to define special events to be caught by Conditions when certain
DBus Signals are emitted. This advanced feature is intended for users with a background on DBus specification and is
not for general use.4

3 Most events are deferred, although there are some whose associated conditions are immediately evaluated: startup, shutdown, and suspend
events will cause the respective conditions to immediately trigger their task sets. This choice was necessary because it is virtually impossible to
defer events that should occur when the system is shutting down or being suspended, and because the user might expect that tasks that should occur
at session startup should be run as soon as possible. The only other type of condition that are validated immediatly on event occurrences are the
command-line enabled ones that are forced to do so via the -r (or --run-condition) switch.

4 This is an advanced feature and is not available by default. It has to be enabled in the program settings to be accessible. Refer to the appropriate
chapter for more information.

10 Chapter 3. User Manual

When Documentation, Release 0.9

The Applet

The applet will show up in the indicator tray at startup, which would normally occur at login if the user chose to
add When to the startup applications. It will read its configuration and start the scheduler in an unattended fashion.
Whenever one of the user defined conditions is met, the associated tasks are executed. A small alarm clock icon will
display in the indicator tray, to show that the applet is running: by default it turns to an attention sign when the applet
requires attention. Also, the icon changes its shape when the applet is paused (the clock is crossed by a slash) and
when a configuration dialog is open (the alarm clock shows a plus sign inside the circle).

The icon grants access to the main menu, which allows the following basic operations:

• open the Task editing dialog box

• open the Condition editing dialog box

• open the Settings dialog box

• show the Task History window

• pause and resume the scheduler

• reset condition tests

• show the About box

• quit the applet.

Where the Task and Condition editing boxes, the Settings dialog and the Task History window might need some
more detailed explanation, the other operations should be pretty straightforward: the Pause entry pauses the scheduler
(preventing any condition to occur), About... shows information about the applet and Quit shuts the applet down,
removing the icon from the top panel.

Some useful features can also be accessed from the Command Line Interface, including advanced tools: by default,
when the applet is invoked with no arguments, it just starts an instance showing the icon in the top panel (if configured
to do so), while the CLI allows operations on either a running instance or the applet configuration. The following
paragraphs illustrate the details of the applet user interface.

3.2. The Applet 11

When Documentation, Release 0.9

Tasks

Tasks are basically commands associated with an environment and checks to determine whether the execution was
successful or not. The interface lets the user configure some basic parameters (such as the startup directory and the
environment) as well as what to test after execution (exit code, stdout or stderr). The user can choose to look for
the specified text within the output and error streams (when Exact Match is unchecked, otherwise the entire output is
matched against the given value) and to perform a case sensitive test, or to match a regular expression. In case a regular
expression is chosen, the applet will try to search stdout or stderr for the given pattern. In case of regular expressions,
when Exact Match is chosen, a match test is performed at the beginning of the output text. Regular expression tests
can be case insensitive as well.

The environment in which the subprocess is run can either import the current one (at When startup time), use its own
variables or both.

The selected task (if any) can be deleted clicking the Delete button in the dialog box. However the application will
refuse to delete a task that is used in a condition: remove the task reference from the condition first. Every task must
have an unique name, if a task is named as an existing task it will replace the existing one. The name must begin with
an alphanumeric character (letter or digit) followed by alphanumerics, dashes and underscores.

How to use the “Check for” option: The applet can either ignore whatever the underlying process returns to the
caller by specifying Nothing in the Check for group, or check

• exit code

• process output (stdout)

12 Chapter 3. User Manual

When Documentation, Release 0.9

• process written errors (stderr)

to determine whether the process succeeded or failed. When the user chooses to check for Success, the operation is
considered successful if and only if the process result (exit code, output, or error) corresponds to the user provided
value. Same yields for Failure: if Failure is chosen, only the provided result will indicate a failure. For example, in
the most common case the user will choose to expect Success to correspond to an Exit Code of 0 (in fact the default
choice), all other exit codes will indicate a failure. And if the user chooses to expect Failure to be reported as the
word Error in the error messages, whatever other error messages will be ignored and the operation will turn out
successful. Please note that since all commands are executed in the default shell, expect an exit code different from 0
when the command is not found. With the /bin/sh shell used on Linux, the not found code is 127.

Conditions

There are several types of condition available:

1. Interval based: After a certain time interval the associated tasks are executed, if the condition is set to repeat
checks, the tasks will be executed again regularly after the same time interval.

2. Time based: The tasks are executed when the time specification is matched. Time definitions can be partial,
and in that case only the defined parts will be taken into account for checking: for instance, if the user only
specifies minutes, the condition is verified at the specified minute for every hour if the Repeat Checks option is
set.

3. Command based: When the execution of a specified command gives the expected result (in terms of exit code,

3.4. Conditions 13

When Documentation, Release 0.9

stdout or stderr), the tasks are executed. The way the test command is specified is similar (although simpler) to
the specification of a command in the Task definition dialog box. The command is run in the same environment
(and startup directory) as When at the moment it was started.

4. Idle time based: When the session has been idle for the specified amount of time the tasks are executed.

5. Event based: The tasks are executed when a certain session or system event occurs. The following events are
supported:

• Startup and Shutdown. These are verified when the applet (or session, if the applet is launched at startup)
starts or quits.

• Suspend and Resume, respectively match system suspension/hibernation and resume from a suspended
state.

• Session Lock and Unlock, that occur when the screen is locked or unlocked.

• Screensaver, both entering the screen saver state and exiting from it.

• Storage Device Connect and Disconnect, which take place when the user attaches or respectively detaches
a removable storage device.

• Join or Leave a Network, these are verified whenever a network is joined or lost respectively.

• Battery Charging, Discharging or Low, respectively occurring when the power cord is plugged, unplugged
or the battery is dangerously low: note that a change in power status has to arise for the condition to occur,
and the Low condition is originated from the system.

• Command Line Trigger is a special event type, that is triggered invoking the command line. The associated
condition can be scheduled to be run at the next clock tick or immediately using the appropriate switch.

6. Based on filesystem changes: The tasks are run when a certain file changes, or when the contents of a directory
or its subdirectories change, depending on what the user chose to watch – either a file or a directory. A dialog
box can be used to select what has to be watched.5

7. Based on an user defined event: The user can monitor system events by listening to DBus signals emitted on
either the system bus or the session bus.4

Also, the condition configuration interface allows to decide:

• whether or not to repeat checks even after a task set has been executed – that is, make an action recurring;

• to run the tasks in a task set concurrently or sequentially: when tasks are set to run sequentially, the user can
choose to ignore the outcome of tasks or to break the sequence on the first failure or success by selecting the
appropriate entry in the box on the right – tasks that don’t check for success or failure will never stop a sequence;

• to suspend the condition: it will not be tested, but it’s kept in the system and remains inactive until the Suspend
box is unchecked.

The selected condition (if any) can be deleted clicking the Delete button in the dialog box. Every condition must
have an unique name, if a condition is named as an existing one it will replace it. The name must begin with an
alphanumeric character (letter or digit) followed by alphanumerics, dashes and underscores.

Note:

• Shutdown Conditions. Because of the way applications are notified that the session is ending (first a TERM
signal is sent, then a KILL if the first was unsuccessful), the Shutdown event is not suitable for long running
tasks, such as file synchronizations, disk cleanup and similar actions. The system usually concedes a “grace
time” of about one second before shutting everything down. Longer running tasks will be run if the users quits

5 This is an optional feature, and could lack on some systems: to enable it the pyinotify library must be installed, refer to the instructions
below.

14 Chapter 3. User Manual

When Documentation, Release 0.9

the applet through the menu, though. Same yields for Suspend: by specification, no more than one second is
available for tasks to complete.

• Disabled Events. Some events may not be supported on every platform, even on different Ubuntu implementa-
tions. Screen Lock/Unlock for instance does not follow very strict specifications, and could be disabled on some
desktops. Thus one or more events might appear as [disabled] in the list: the user still can choose to create a
condition based on a disabled event, but the corresponding tasks will never be run.

Configuration

The program settings are available through the specific Settings dialog box, and can be manually set in the main
configuration file, which can be found in ~/.config/when-command/when-command.conf.

The options are:

1. General

• Show Icon: whether or not to show the indicator icon and menu

• Autostart: set up the applet to run automatically at login

• Notifications: whether or not to show notifications upon task failure

• Minimalistic Mode: disable menu entries for item definition dialog boxes and in part reduce memory footprint

3.5. Configuration 15

When Documentation, Release 0.9

• Icon Theme: Guess to let the application decide, otherwise one of Dark (light icons for dark themes), Light
(dark icons for light themes), and Color for colored icons that should be visible on all themes.

2. Scheduler

• Application Clock Tick Time: represents the tick frequency of the application clock, sort of a heartbeat, each
tick verifies whether or not a condition has to be checked and detects if conditions that depend on external
events have been already enqueued and are ready to trigger tasks; this option is called tick seconds in the
configuration file

• Condition Check Skip Time: conditions that require some “effort” (mainly the ones that depend on an external
command) will skip this amount of seconds from previous check to perform an actual test, should be at least the
same as Application Clock Tick Time; this is named skip seconds in the configuration file

• Preserve Pause Across Sessions: if true (the default) the scheduler will remain paused upon applet restart if it
was paused when the applet (or session) was closed. Please notice that the indicator icon gives feedback anyway
about the paused/non-paused state. Use preserve pause in the configuration file

• Reset Condition Tests on Wakeup Events: automatically restore condition checks for non recurring conditions
also on wakeup (usually from suspended state) as if the applet were restarted. The option is wakeup reset
in the configuration.

3. Advanced

• Max Concurrent Tasks: maximum number of tasks that can be run in a parallel run (max threads in the
configuration file)

• Log Level: the amount of detail in the log file

• Max Log Size: max size (in bytes) for the log file

• Number Of Log Backups: number of backup log files (older ones are erased)

• Instance History Items: max number of tasks in the event list (History window); this option is named max
items in the configuration file

• Enable User Defined Events: if set, then the user can define events using DBus (see below). Please note that
if there are any user defined events already present, this option remains set and will not be modifiable. It
corresponds to user events in the configuration file. Also, to make this option effective and to enable user
defined events in the Conditions dialog box, the applet must be restarted

• Enable File and Directory Notifications: if set, When is configured to enable conditions based on file and
directory changes. The option may result disabled if the required optional libraries are not installed. When the
setting changes, the corresponding events and conditions are enabled or disabled at next startup.

• Enable Task and Condition Environment Variables: whether or not to export specific environment variables with
task and condition names when spawning subprocesses (either in Tasks or in Command Based Conditions). The
configuration entry is environment vars.

The configuration is immediately stored upon confirmation to the configuration file, although some settings (such as
Notifications) might require a restart of the applet. The configuration file can be edited with a standard text editor, and
it follows some conventions common to most configuration files. The sections in the file might slightly differ from the
tabs in the Settings dialog, but the entries are easily recognizable.

By default the applet creates a file with the following configuration, which should be suitable for most setups:

[Scheduler]
tick seconds = 15
skip seconds = 60
preserve pause = true
wakeup reset = true

16 Chapter 3. User Manual

When Documentation, Release 0.9

[General]
show icon = true
autostart = false
notifications = true
log level = warning
icon theme = guess
user events = false
file notifications = false
environment vars = true
minimalistic mode = false

[Concurrency]
max threads = 5

[History]
max items = 100
log size = 1048576
log backups = 4

Manual configuration can be particularly useful to bring back the program icon once the user decided to hide it6 losing
access to the menu, by setting the show icon entry to true. Another way to force access to the Settings dialog box
when the icon is hidden is to invoke the applet from the command line using the --show-settings (or -s) switch
when an instance is running.

Minimalistic Mode

There is the possibility to start When in Minimalistic Mode checking the appropriate option in the General tab of the
Setting dialog box. This option is useful mainly when all necessary items are already defined (or the user chooses to
define them through Item Definition Files, see the Advanced guide) and there is no more need to clutter the GUI with
“useless” menu entries. This mode has also the side effect of saving some memory, although not a very big amount,
by avoiding to load dialog boxes that will not be shown.

The remaining menu entries are:

• Settings...

• Pause

• About...

• Quit

which can be useful to revert behavior to normal.

To effectively enter or leave Minimalistic Mode the applet must be restarted after the option was changed.

6 I was doubtful about providing the option, then just decided to implement it and provide a safety net anyway.

3.5. Configuration 17

When Documentation, Release 0.9

The History Window

Since logs aren’t always user friendly, When provides an easier interface to verify task results. Tasks failures are
also notified graphically via the attention-sign icon and badge notifications, however more precise information can be
found in the History box. This shows a list of the most recent tasks that have been launched by the running instance
(the list length can be configured), which reports:

• The start time of the task and its duration in seconds

• The task unique name

• The unique name of the condition that triggered the task

• The process exit code (as captured by the shell)

• The result (green tick mark for success, red cross mark for failure)

• A short hint on the failure reason (only in case of failure)

and when the user clicks a line in the table, the tabbed box below will possibly show the output (stdout) and errors
(stderr) reported by the underlying process. The contents of the list can also be exported to a text file, by invoking the
applet with the --export-history switch from a console window when an instance is running. The file contains
exactly the same values as the history list, with the addition of a row identifier at the beginning of the row. Start time
and duration are separate values. The first row of the file consists of column mnemonic titles and the value separator
is a semicolon: the file can be safely imported in spreadsheets, but column conversions could be needed depending on
your locale settings.

18 Chapter 3. User Manual

When Documentation, Release 0.9

Reset Condition Tests

As seen in the paragraph describing the Conditions definition dialog box, some conditions can be defined as non-
recurring: this means that if the test has been successful once in the current When session it will be skipped ever
since until the applet is restarted. In some cases it may be required by the user that such events are tested again – for
example during an unexpectedly long session. In this case it is possible to reset the applet, either using the Command
Line Interface as explained below, or using the appropriate entry in the menu.

It is also possible to configure the applet to automatically reset the tests for non-recurring events in case of a system
wakeup by setting the appropriate scheduler options in the Configuration dialog. Currently this only supports wakeup
from suspended state: this is particularly useful for notebook users that just close the lid to end a session, de facto
hibernating the PC.

Command Line Interface

This paragraph illustrates the command line options that can be used to either control the behaviour of a running
When instance or to handle its configuration or persistent state – consisting of tasks, conditions and signal han-
dlers. Some of the options are especially useful to recover when something has gone the wrong way – such as the
--show-settings switch mentioned above, or the -I (or --show-icon) switch, to recover from an unwantedly
hidden icon. There are also switches that grant access to “advanced” features, which are better covered in the next
sections.

The available options are:

-s, --show-settings show the settings dialog box of an existing instance, it requires a running instance,
which may be queried using the --query switch explained below

-l, --show-history show the history dialog box of an existing instance

-t, --show-tasks show the task dialog box of an existing instance

-c, --show-conditions show the condition dialog box of an existing instance

-d, --show-signals show the DBus signal handler editor box for an existing instance4

-R, --reset-config reset applet configuration to default, requires the applet to be shut down with an
appropriate switch

-E, --restart-conditions reset conditions to be checked as if they had not been already successful: it
allows to restore checks also for conditions that are not recurrent

-I, --show-icon show applet icon

-T, --install install or reinstall application icon and autostart icon, requires applet to be shut
down with an appropriate switch

-C, --clear clear current tasks, conditions and possibly signal handlers, requires applet to be
shut down with an appropriate switch

-Q, --query query for an existing instance (returns a zero exit status if an instance is running,
nonzero otherwise, and prints an human-readable message if the --verbose
switch is also specified)

-H file, --export-history file export the current task history (the ones shown in the history box) to the
file specified as argument in a CSV-like format

-r cond, --run-condition cond trigger a command-line associated condition and immediately run the
associated tasks; cond must be specified and has to be one of the Command Line
Trigger conditions, otherwise the command will fail and no task will be run

3.7. Reset Condition Tests 19

When Documentation, Release 0.9

-f cond, --defer-condition cond schedule a command-line associated condition to run the associated
tasks at the next clock tick; the same as above yields for cond

--shutdown close a running instance performing shutdown tasks first

--kill close a running instance abruptly, no shutdown tasks are run

--item-add file add items from a specially formatted file (see the advanced section for details); if
the specified file is - the text is read from the standard input

--item-del itemspec delete the item specified by itemspec. itemspec has the form [type:]item
where type: is optional and is is one of tasks, conditions and
sighandlers (or an abbreviation thereof) while item is the name of an item;
type can only be omitted if the name is unique

--item-list type print the list of currently managed items to the console, each prefixed with its
type; type is optional (see above for possible values) and if specified only items
of that type are listed

--export file save tasks, conditions and other items to a portable format; the file argument is
optional, and if not specified the applet tries to save these items to a default file
in ~/.config/when-command; this will especially be useful in cases where
the compatibility of the “running” versions of tasks and conditions (which are a
binary format) could be broken across releases

--import file clear tasks, conditions and other items and import them from a previously saved
file; the file argument is optional, and if not specified the applet tries to import
these items from the default file in the ~/.config/when-command directory;
the applet has to be shut down before attempting to import items.

Some trivial switches are also available:

-h, --help show a brief help message and exit

-V, --version show applet version, if --verbose is specified it also shows the About Box of
a running instance, if present

-v, --verbose show output for some options; normally the applet would not display any output
to the terminal unless -v is specified, the only exceptions being --item-list
that lists all known items to the standard output and --version that prints out
the version string anyway.

Please note that whenever a command line option is given, the applet will not “stay resident” if there is no running
instance. On the other side, if the user invokes the applet when already running, the new instance will bail out with an
error.

20 Chapter 3. User Manual

CHAPTER 4

Advanced Features

This chapter describes the advanced features of When. Some of these can be handy for everyday use too, others may
require some deeper insight in what occurs under the hood in a desktop session. Anyway these features can be enabled
or disabled in the applet settings, and can be safely ignored if not needed.

File and Directory Notifications

Monitoring file and directory changes can be enabled in the Settings dialog box. This is particularly useful to perform
tasks such as file synchronizations and backups, but since file monitoring can be resource consuming, the option is
disabled by default. File and directory monitoring is quite basic in When: a condition can be triggered by changes
either on a file or on a directory, no filter can be specified for the change type – that is, all change types are monitored
(creations, writes and deeletions), and in case of directory monitoring all files in the directory are recursively moni-
tored. These limitations are intentional, at least for the moment, in order to keep the applet as simple as possible. Also,
no more than either a file or a directory can be monitored by a condition: in order to monitor more items, multiple
conditions must be specified.

Warning: As said above, this feature is optional: to make it available the pyinotify package has to be
installed. The Ubuntu package manager can handle it (sudo apt-get install python3-pyinotify);
alternatively pip can be used to let Python install it directly: sudo pip3 install pyinotify (this will
ensure that the latest release is installed, but package updates are left to the user). If When is installed via a PPA
the package manager will take care to install all the dependencies, including the optional ones.

There are also some configuration steps at system level that might have to be performed if filesystem monitoring does
not work properly: when a monitored directory is big enough, the default inotify watches may fall short so that not
all file changes can be notified. When a directory is under control, all its subdirectories need to be watched as well
recursively, and this implies that several watches are consumed. There are many sources of information on how to
increase the amount of inotify watches, and as usual StackExchange is one of the most valuables: see Kernel inotify
watch limit reached for a detailed description. Consider that other applications and utilities, especially the ones that
synchronize files across the network – such as the cloud backup and synchronization clients – use watches intensively.
In fact When monitoring activity should not be too different from other cases.

21

http://unix.stackexchange.com/a/13757/125979
http://unix.stackexchange.com/a/13757/125979

When Documentation, Release 0.9

Conditions depending on file and directory monitoring are not synchronous, and checks occur on the next tick of the
applet clock. Depending tasks should be aware that the triggering event might have occurred some time before the
notified file or directory change.

DBus Signal Handlers

Recent versions of the applet support the possibility to define system and session events using DBus. Such events
can activate conditions which in turn trigger task sequences, just like any other condition. However, since this is not
a common use for the When scheduler as it assumes a good knowledge of the DBus interprocess communication
system and the related tools, this feature is intentionally inaccessible from the applet menu and disabled by default
in the configuration. To access the DBus Signal Handler Editor dialog, the user must invoke the applet from the
command line with the appropriate switch, while an instance is running in the same session:

$ when-command --show-signals

This is actually the only way to expose this dialog box. Unless the user defines one or more signal handlers, there will
be no User Defined Events in the corresponding box and pane in the Conditions dialog box, and When will not listen
to any other system and session events than the ones available in the Events list that can be found in the Conditions
dialog box. The possibility to define such events must be enabled in the Settings dialog box, and When has to be
restarted to make the option effective: before restart the user events are not available in the Conditions box, although
it becomes possible to show the DBus Signal Handler Editor using the command shown above. If the appropriate
setting is disabled, the above command exits without showing the editor dialog.

To define a signal to listen to, the following values must be specified in the DBus Signal Handler Editor box:

• the handler name, free for the user to define as long as it begins with an alphanumeric character (letter or digit)
followed by alphanumerics, dashes and underscores

• the bus type (either Session or System bus)

• the unique bus name in dotted form (e.g. org.freedesktop.DBus)

• the path of the object that emits the signal (e.g. /org/freedesktop/FileManager1)

• the interface name in dotted form (e.g. org.freedesktop.FileManager1)

• the signal name

• whether the scheduler must wait until the next clock tick to process the signal (checking Activate on next clock
tick)

All these values follow a precise syntax, which can be found in the DBus documentation. Moreover, if the signal
has any parameters, constraints on the parameters can be specified for the condition to be verified: given a list of
constraints, the user can choose whether to require all of them or just any to evaluate to true. The tests against signal
parameters require the following data:

• Value # is the parameter index

• Sub # (optional) is the index within the returned parameter, when it is either a list or a dictionary: in the latter
case, the index is read as a string and must match a dictionary key

• comparison (consisting of an operator, possibly negated) specifies how the value is compared to a test value: the
supported operators are

1. = (equality): the operands are converted to the same type, and the test is successful when they are identical;
notice that, in case of boolean parameters, the only possible comparison is equality (and the related not
equality): all other comparisons, if used, will evaluate to false and prevent condition activation, and the
comparison value should be either true or false

22 Chapter 4. Advanced Features

http://dbus.freedesktop.org/

When Documentation, Release 0.9

2. CONTAINS: the test evaluates to true when either the test string is a substring of the selected value, or
the parameter is a list (or struct, or dictionary: for dictionaries it only searches for values and not for keys
though), no Sub # has been specified, and the test value is in the compound value

3. MATCHES: the test value is treated as a regular expression and the selected value, which must be a string,
matches it

4. < (less-than): the selected value is less than the test value (converted to the parameter inferred or intro-
spected value type)

5. > (greater-than): the selected value is greater than the test value (converted to the parameter inferred or
introspected value type)

• Test Value is the user provided value to compare the parameter value to: in most cases it is treated as being of
the same type as the selected parameter value.

When all the needed fields for a tests are given, the test can be accepted by clicking the Update button. To remove a
test line, either specify Value # and Sub # or select the line to delete, then click the Remove button. Tests are optional:
if no test is provided, the condition will be enqueued as soon as the signal is emitted. If a test is specified in the wrong
way, or a comparison is impossible (e.g. comparing a returned list against a string), or any error arises within a test,
the test will evaluate to false and the signal will not activate any associated condition. For now the tests are pretty
basic: for instance nested compound values (e.g. lists of lists) are not treated by the testing algorithm. The supported
parameter types are booleans, strings, numerals, simple arrays, simple structures, and simple dictionaries. Supporting
more complex tests is beyond the scope of a limited scheduler: the most common expected case for the DBus signal
handler is to catch events that either do not carry parameters or carry minimal information anyway.

Note: When the system or session do not support a bus, path, interface, or signal, the signal handler registration fails:
in this case the associated event never takes place and it is impossible for any associated condition to be ever verified.

Environment Variables

By default When defines one or two environment variables when it spawns subprocesses, respectively in command
based conditions and in tasks. These variables are:

• WHEN_COMMAND_TASK containing the task name

• WHEN_COMMAND_CONDITION containing the name of the triggering or current condition

When the test subprocess of a command based condition is run, only WHEN_COMMAND_CONDITION is defined, on
the other hand when a task is run both are available. This feature can be disabled in the configuration file or in the
Settings dialog box if the user doesn’t want to clutter the environment or the variable names conflict with other ones.
Please note that in a task these variables are defined only if the task is set to import the environment (which is true by
default): if not, it will only know the variables defined in the appropriate list.1

Item Definition File

In recent releases another way to define items (tasks, conditions and especially signal handlers) has been introduced,
that uses text files whose syntax is similar (although it differs in some ways) to the one used in common configuration
files. Roughly, an item definition file has the following format:

1 This behavior is intentional, since if the user chose not to import the surrounding environment, it means that it’s expected to be as clean as
possible.

4.3. Environment Variables 23

When Documentation, Release 0.9

[NameOf_Task-01]
type: task
command: do_something
environment variables:

SOME_VAR=some appropriate value
ANOTHER_VAR=42

check for: failure, status, 2

[ThisIs_Cond02]
type: condition
based on: file_change
watched path: /home/myaccount/Documents
task names: NameOf_Task-01

[SigHandler_03]
type: signal_handler
bus: session
bus name: org.ayatana.bamf
object path: /org/ayatana/bamf/matcher
interface: org.ayatana.bamf.matcher
signal: RunningApplicationsChanged
parameters:

0:1, not equal, BoZo

this is the end of the file.

where the names in square brackets are item names, as they appear in the applet dialog boxes. Such names are
case sensitive and follow the same rules as the related Name entries in dialog boxes: only names that begin with an
alphanumeric character and continue with alphanumerics, underscores and dashes (that is, no spaces) are accepted.
Entries must be followed by colons and in case of entries that support lists the lists must be indented and span multiple
lines. Complex values are rendered using commas to separate sub-values. The value for each entry is considered to be
the string beginning with the first non-blank character after the colon.

Warning: Even a single error, be it syntactical or due to other possibly more complex discrepancies, will cause
the entire file to be rejected. The loading applet will complain with an error status and, if invoked using the
--verbose switch, a very brief error message: the actual cause of rejection can normally be found in the log
files.

For each item, the item name must be enclosed in square brackets, followed by the entries that define it. An entry that
is common to all items is type: the type must be one of task, condition or signal_handler. Every other
value will be discarded and invalidate the file. The following sections describe the remaining entries that can (or have
to) be used in item definitions, for each item type. Entry names must be written in their entirety: abbreviations are not
accepted.

Tasks

Tasks are defined by the following entries. Some are mandatory and others are optional: for the optional ones, if
omitted, default values are used. Consider that all entries correspond to entries or fields in the Task Definition Dialog
Box and the corresponding default values are the values that the dialog box shows by default.

• command: The value indicates the full command line to be executed when the task is run, it can contain every
legal character for a shell command. This entry is mandatory: omission invalidates the file.

24 Chapter 4. Advanced Features

When Documentation, Release 0.9

• environment variables: A multi-value entry that includes a variable definition on each line. Each
definition has the form VARNAME=value, must be indented and the value must not contain quotes. Everything
after the equal sign is considered part of the value, including spaces. Each line defines a single variable.

• import environment: Decide whether or not to import environment for the command that the task runs.
Must be either true or false. Defaults to true.

• startup directory: Set the startup directory for the task to be run. It should be a valid directory.

• check for: The value of this entry consists either of the word nothing or of a comma-separated list of
three values, that is outcome, source, value where

– outcome is either success or failure

– source is one of status, stdout or stderr

– value is a free form string (it can also contain commas), which should be compatible with the value
chosen for source – this means that in case status is chosen it should be a number.

By default, as in the corresponding dialog box, if this entry is omitted the task will check for success as an exit
status of 0.

• exact match: Can be either true or false. If true in the post-execution check the entire stdout or stderr
will be checked against the value, otherwise the value will be sought in the command output. By default it is
false. It is only taken into account if check for is specified and set to either stdout or stderr.

• regexp match: If true the value will be treated as a regular expression. If also exact match is set,
then the regular expression is matched at the beginning of the output. By default it is false. It is only taken into
account if check for is specified and set to either stdout or stderr.

• case sensitive: If true the comparison will be made in a case sensitive fashion. By default it is false. It
is only taken into account if check for is specified and set to either stdout or stderr.

Signal Handlers

Signal handlers are an advanced feature, and cannot be defined if they are not enabled in the configuration: read the
appropriate section on how to enable user defined events. If user events are enabled, the following entries can be used:

• bus: This value can only be one of session or system. It defaults to session, so it has to be specified if the
actual bus is not in the session bus.

• bus name: Must hold the unique bus name in dotted form, and is mandatory.

• object path: The path to the objects that can issue the signal to be caught: has a form similar to a path and
is mandatory.

• interface: It is the name of the object interface, in dotted form. Mandatory.

• signal: The name of the signal to listen to. This too is mandatory.

• defer: If set to true (the default), the signal will be caught but the related condition will be fired at the next
clock tick instead of immediately.

• parameters: This is a multiple line entry, and each parameter check must be specified on a single line. Each
check has the form: idx[:sub], compare, value where

– idx[:sub] is the parameter index per DBus specification, possibly followed by a subindex in case the
parameter is a collection. idx is always an integer number, while sub is an integer if the collection is a
list, or a string if the collection is a dictionary. The interpunction sign is a colon if the subindex is present.

– compare is always one of the following tokens: equal, gt, lt, matches or contains. It can be
preceded by the word not to negate the comparison.

4.4. Item Definition File 25

When Documentation, Release 0.9

– value is an arbitrary string (it can also contain commas), without quotes.

• verify: Can be either all or any. If set to any (the default) the parameter check evaluates to true if any of
the provided checks is positive, if set to all the check is true only if all parameter checks are verified. It is only
taken into account if parameters are verified.

If user events are not enabled and a signal handler is defined, the item definition file will be invalidated.

Conditions

Conditions are the most complex type of items that can be defined, because of the many types that are supported. Valid
entries depend on the type of condition that the file defines. Moreover, conditions depend on other items (tasks and
possibly signal handlers) and if such dependencies are not satisfied the related condition – and with it the entire file –
will be considered invalid.

The following entries are common to all types of condition:

• based on: Determines the type of condition that is being defined. It must be one of the following and is
mandatory:

– interval for conditions based on time intervals

– time for conditions that depend on a time specification

– command if the condition depends on outcome of a command

– idle_session for condition that arise when the session is idle

– event for conditions based on stock events

– file_change when file or directory changes trigger the condition

– user_event for conditions arising on user defined events: these can only be used if user events are
enabled, otherwise the definition file is discarded.

Any other value will invalidate the definition file.

• task names: A comma separated list of tasks that are executed when the condition fires up. The names must
be defined, either in the set of existing tasks for the running instance, or among the tasks defined in the file itself.

• repeat checks: If set to false the condition is never re-checked once it was found positive. By default it
is true.

• sequential: If set to true the corresponding tasks are run in sequence, otherwise all tasks will start at the
same time. True by default.

• suspended: The condition will be suspended immediately after construction if this is true. False by default.

• break on: Can be one of success, failure or nothing. In the first case the task sequence will break
on first success, in the second case it will break on the first failure. When nothing is specified or the entry is
omitted, then the task sequence will be executed regardless of task outcomes.

Other entries depend on the values assigned to the based on entry.

Interval

Interval based conditions require the following entry to be defined:

• interval minutes: An integer mandatory value that defines the number of minutes that will occur between
checks, or before the first check if the condition is not set to repeat.

26 Chapter 4. Advanced Features

When Documentation, Release 0.9

Time

All parameters are optional: if none is given, the condition will fire up every day at midnight.

• year: Integer value for the year.

• month: Integer value for month: must be between 1 and 12 included.

• day: Integer value for day: must be between 1 and 31 included.

• hour: Integer value for hour: must be between 0 and 23 included.

• minute: Integer value for minute: must be between 0 and 59 included.

• day of week: A token, one of monday, tuesday, wednesday, thursday, friday, saturday,
sunday. No abbreviations allowed.

Command

Command based conditions accept a command line and the specification of what has to be checked. The latter is not
mandatory, and defaults to expectation of a zero exit status.

• command: The full command line to run: this is mandatory.

• check for: Somewhat similar to the same entry found in Tasks, this entry must be specified as a comma-
separated pair of the form source, value, where source is one of status, stdout or stderr, and
value is an integer in the status case, or a string to look for in the other cases. Defaults to status, 0.

• match regexp: If true the test value is treated as a regular expression. Defaults to false.

• exact match: If true the test value is checked against the full output (if match regexp is true the
regular expression is matched at the beginning of the output). Defaults to false.

• case sensitive: If true the comparison will be case sensitive. Defaults to false.

Idle Session

The only parameter is mandatory:

• idle minutes: An integer value indicating the number of minutes that the machine must wait in idle state
before the condition fires.

Event

This condition type requires a sigle entry to be defined.

• event type: This must be one of the following words:

– startup

– shutdown

– suspend

– resume

– connect_storage

– disconnect_storage

– join_network

4.4. Item Definition File 27

When Documentation, Release 0.9

– leave_network

– screensaver

– exit_screensaver

– lock

– unlock

– charging

– discharging

– battery_low

– command_line

Each of them is a single word with underscores for spaces. Abbreviations are not accepted. Any other value invalidates
the condition and the file.

File and Path Modifications

Also in this case a single entry is required, indicating the file or path that When must observe.

• watched path: A path to be watched. Can be either the path to a file or to a directory. No trailing slash is
required, but it has to be a full path (it could be relative if the user is sure of where When is launched from).

User Event

In this case a single entry is required and must contain the name of an user defined event. The event can either be
defined in the same file or already known to the applet, but it must be defined otherwise the file fails to load. Names,
as usual, are case sensitive.

• event name: The name of the user defined event.

Note: Items defined in an items definition file, just as items built using the applet GUI, will overwrite items of the
same type and name.

Exporting and Importing Items

When saves tasks, conditions and signal handlers in binary form for use across sessions. It might be useful to have
a more portable format at hand to store these items and be sure, for instance, that they will be loaded correctly when
upgrading When to a newer release. While every effort will be made to avoid incompatibilities, there might be cases
where compatibility cannot be kept.

To export all items to a file, the following command can be used:

$ when-command --export [filename.dump]

where the file argument is optional. If given, all items will be saved to the specified file, otherwise in a known location
in ~/.config. The saved file is not intended to be edited by the user – it uses a JSON representation of the internal
objects.

To import items back to the applet, it has to be shut down first and the following command must be run:

28 Chapter 4. Advanced Features

When Documentation, Release 0.9

$ when-command --import [filename.dump]

where the filename.dump parameter must correspond to a file previously generated using the --export switch.
If no argument is given, When expects that items have been exported giving no file specification to the --export
switch. After import When can be restarted.

4.5. Exporting and Importing Items 29

When Documentation, Release 0.9

30 Chapter 4. Advanced Features

CHAPTER 5

The When Wizard

The When Wizard is a suite of utilities that aim at providing an easier user interface for a rich subset of When‘s
capabilities, in order to give to end users with lesser interest in programming and scripting the possibility to use the
When scheduler to perform simple but useful tasks. In fact, the use of When as it is assumes a certain knowledge of
the command shell, including its constructs and peculiarities, which is somehow in contrast with the GUI nature of the
applet itself.

Warning: This section refers to software in its early development stage: it may contain bugs and errors, and
it might be subject to changes in both appearance and functionality. The documentation will be kept as updated
as possible, however there might be a gap sometimes between updates to the software and related documentation
changes.

31

When Documentation, Release 0.9

As the name suggests, the main When Wizard application presents itself with a wizard styled interface, which allows
to define what has to be done and the circumstances under which it has to happen in a more intuitive step-by-step
fashion. When is still used to do most of the job, that is scheduling checks, listening to events and performing tasks
when the conditions are met, but the wizard instructs it on how to behave instead of requiring the user to find out what
commands and events have to be specified in its low-level interface.1

While the wizard interface is used to define tasks and conditions, there is another utility, named the When Wizard
Manager, which can be used for several tasks, including the removal of actions (tasks surrounded by circumstances)
that are no more needed, viewing the history of past actions in a simplified way and some environment tuning. Thanks
to the modular, extensible nature of the When Wizard suite, the manager application can also be used to install plugins
for actions that are not available by default in the distribution.

1 If you want to use both types of interface, avoid names beginning with the 00wiz99_ prefix for tasks, conditions and signal handlers when
using the When base interface: this sequence is used by the wizard to identify its own items. It is otherwise perfectly legal and can be used if you
plan to use When alone.

32 Chapter 5. The When Wizard

When Documentation, Release 0.9

This chapter’s intent is to give a brief introduction to the When Wizard suite: apart from some specific When Wizard
Manager configuration options the interface is designed to be as intuitive as possible, and the actions are documented
in the interface.

Installation

At the moment, there is no proper installation procedure nor distribution specific package. However getting the When
Wizard to work is quite easy anyway: it is sufficient to either clone the GitHub repository or download and unpack
the zip file from the master branch. It may be useful to move the resulting directory (and maybe rename it in case the
zip file has been used) in a folder where applications reside. Assuming that the zip file method was chosen and that
the when-wizard-master.zip file is now in ~/Downloads:

~$ mkdir Apps # or another name you might like
~$ cd Downloads
~/Downloads$ unzip when-wizard-master.zip
~/Downloads$ mv when-wizard-master ../Apps/when-wizard
~/Downloads$ cd ..
~$

or any equivalent combination of operations from the graphical shell. To start the When Wizard is now sufficient to

~$ cd Apps/when-wizard
~/Apps/when-wizard$./when-wizard start-wizard

while for the manager application, the subcommand changes:

5.1. Installation 33

https://github.com/almostearthling/when-wizard.git
https://github.com/almostearthling/when-wizard/archive/master.zip

When Documentation, Release 0.9

~$ cd Apps/when-wizard
~/Apps/when-wizard$./when-wizard start-manager

Note: The when-wizard command is already marked as executable in the repository, however, should the
shell refuse to execute the command, it is sufficient to cd to the installation directory and issue chmod a+x
when-wizard; the same yields for all the scripts stored in the share/when-wizard/scripts subdirectory.

Using the When Wizard Manager it is possible to create icons for both the wizard and the management application:
once the When Wizard Manager started, choose the Utility tab and click on the check box labeled Create or Restore
Icons for Wizard Applications, then click the Apply button:

The icons for When Wizard and for the When Wizard Manager should now be available in the Dash or whatever
menu system is used.

Of course the When Wizard suite depends on When, and both implicitly and explicitly shares the main application
dependencies. If When has been installed through a package, be it via the provided PPA or using a downloaded .deb
bundle, all dependencies for the main When Wizard applications should be already satisfied.

However some of the actions that come with the default installation (that is, excluding third party plugins), depend
on other packages that are not present, for example, in Ubuntu installations by default. At the moment the required
packages, which are however present in the standard Ubuntu repositories, are:

• mailutils for the actions that send an e-mail2

2 The mail utilities must be properly configured: when the mailutils package is installed, the package manager triggers a configuration page on
the console that was used to run apt-get. Probably the most likely configuration is the smart host based one.

34 Chapter 5. The When Wizard

When Documentation, Release 0.9

• consolekit for power management related actions.

These packages can be easily installed via the usual

$ sudo apt-get install mailutils consolekit

on Ubuntu and probably its supported derivatives.

Defining Actions

Action definition is simple, but there are many different choices for tasks and surrounding conditions to be described
in detail. However, whenever a task or a condition is chosen in the list proposed by the wizard interface, descriptive
text is provided along with the name of the item, and in the lower part of the form a longer description appears that
better specifies what has been selected:

Task and condition items are grouped in categories and types, which can be chosen from the drop-down list at the
beginning of the window. The interface proposes to decide what task has to be accomplished and then to define the
circumstances under which it should happen. Most items have to be configured and after their selection a simple
configuration page is presented to the user:

5.2. Defining Actions 35

When Documentation, Release 0.9

The configuration page depends obviously on the selected item. Once the task and circumstance have been chosen and
possibly configured, by clicking the Next button it is possible to review the action details:

36 Chapter 5. The When Wizard

When Documentation, Release 0.9

here the user is still in time to change her or his mind and either modify anything or completely abort the operation by
pressing the Esc key (or just closing the window). If the Next button is clicked, the action is registered in When.

Managing Actions

Actions can be removed through the When Wizard Manager application. On startup it shows a list containing the
actions currently defined using the wizard interface:3

3 Other actions directly defined in When are left untouched by the When Wizard Manager: of course it is advisable to choose one and only
one interface for When and avoid its base UI if the wizard approach is chosen, but in this way it is anyway possible to avoid that the wizard interface
could mess up a configuration made at lower level, for example using third party item definition files.

5.3. Managing Actions 37

When Documentation, Release 0.9

To remove an action it is sufficient to select it from the list (a more detailed description is shown under the list) and
click the Delete button. After confirmation, the action is completely removed from the system.

If the user only wants to suspend checks and consequences for an action, the first page of the manager application
also gives the possibility to just disable (and possibly reenable) a previously defined action: selecting the appropriate
line in the list (enabled actions are marked with a green circle containing a tick mark) and clicking the Disable button
causes the action to be ineffective without deleting it. It can be enabled again at a later time when needed, by just
selecting it and clicking the Enable button.

Other Uses for the When Wizard Manager

There are some more uses for the manager application, organized in pages:

• visualization of action history

• When Wizard plugin management

• third-party provided item sets management

• tuning of the underlying When scheduler instance.

History visualization is quite trivial: each history record is shown as a line in the visible list, prefixed with startup
time and duration of the related action. The tuning and utility page (the one that can be used to create or restore icons
too) also does not need a lot of explaination: it just allows to adopt a set of options for When that let it better blend
with a wizard based usage, including activation of user-defined events and file monitoring, and Minimalistic Mode
for the applet indicator icon. Settings forced through this page are permanent and can only be reset from the Settings
dialog box in the main When interface. Maybe it’s worth to mention that the so-called lazy mode is lazy indeed, and

38 Chapter 5. The When Wizard

When Documentation, Release 0.9

in some cases the time between the conditional event and its consequence can be more than six minutes: it is mainly
useful when the computer is left alone most of the time while performing tasks (for example: data collection, or very
big downloads and so on), while for other configurations normal reactivity is possibly the suitable setting – which
corresponds to the default values in When configuration.

The existence of a plugin management page reflects one important aspect of the When Wizard application: func-
tionality can be extended through add-ons. Such add-ons (or plugins, as they are named in the UI) provide ways to
encapsulate common tasks and to grant access to system events and environmental conditions in a simple way: the
user might need to configure a small number of options in many cases, and in some cases not even that. Plugins can
be downloaded in packaged form, and installed and removed from the manager interface.

Warning: Particular care must be taken when installing a plugin: plugins should only be installed from trusted
sources much in the same way as software packages. In fact, although plugin code is never run with administrator
privileges, a plugin may install scripts that have access to valuable information.

Plugins come packaged with a .wwpz extension: if the user writes by himself the path to the package in the appropriate
text entry, she or he can use whatever file specification. If the file chooser dialog box is used only files with the .wwpz
extension will be shown. Plugins can also be removed, but only if there is no action using them: to remove a plugin
one has to make sure that all related actions have been removed too.

Last but not least, the Import page of the When Wizard Manager offers the possibility to import preconfigured
When items via provided Item Definition Files. Such files can contain single items as well as item sets, and in fact
some third-party defined actions might come packaged in an Item Definition File. Files of this type should have a
.widf extension, but the same considerations yield as for the .wwpz files.

In some cases Item Definition Files might require some configuration by the user: if so, when the Execute button is
pressed, a dialog box is shown that gives the possibility to modify some parameters.

5.4. Other Uses for the When Wizard Manager 39

When Documentation, Release 0.9

The parameters should have been documented by who provided the file, and might be subject to checks to verify their
correctness at confirmation time.

Some plugins (namely, the ones that depend on user defined events) may require that the user imports an Item Definition
File. Such cases should be well documented and the developer should provide both the plugin package and the
supporting Item Definition File.

40 Chapter 5. The When Wizard

CHAPTER 6

Tutorial

This tutorial’s goal is to provide some simple examples to configure the When applet to do useful things. Since it is
a background application, the examples shown here will focus on operations that would normally take place without
user interaction, such as file synchronization, file system housekeeping and so on. However When can be used for
many other tasks, such as automated builds, gathering information, massive file conversions and so on.

Assumptions

When is explicitly aimed at Ubuntu desktops. Probably it would work on other Linux flavors too, and especially
on Ubuntu derivatives, maybe exposing full or almost full functionality. However, for the sake of this tutorial, I’ll
assume that the user is running When on Ubuntu 14.04 LTS or a more recent release. Within the document the Ubuntu
“idioms” will be constantly used, and the examples will favor utilities such as apt-get and dpkg with respect to the
corresponding yum and rpm of RPM-based distros. bash is assumed to be the main shell, and will be used in scripts
and interactive shell examples, and administrative tasks will be prefixed by sudo as the Ubuntu custom suggests.
Packages existing in standard repositories will be referenced by their Ubuntu names. Since many packagers have
followed almost the same conventions to organize common packages on Linux systems, it should not be too difficult
to find appropriate name conversions online.

I’ll also assume that the following packages have been installed:

• python3-gi

• xprintidle

• python3-pyinotify

as suggested in the documentation, as well as the When package from the provided .deb file, following the suggested
“easy” installation method, and that the when-command executable is in the path. The applet itself is assumed to be
installed in the desktop and initialized for the user via

$ when-command --install

and that the configuration still has not been modified from the default one provided at initialization time. Long story
short, I assume the user to have a working default installation of When on a recent Ubuntu desktop.

41

When Documentation, Release 0.9

Support Software

Some examples will use third-party open source software to perform tasks. For example, I wrote When to be able
to run Unison unattended on idle time. Unison is a (beautiful and) useful piece of software, that doesn’t come with
Ubuntu by default: in some examples the tutorial will also require the user to install and configure Unison and other
software.

Scripts

In some cases it’s easier to group actions in shell scripts, or even to write simple programs, instead of relying on
When‘s sequential task run ability. In such cases, apart from being embedded in the tutorial text, the scripts are
available in source form for download.

All possible effort is taken to make the scripts portable without modification, and to make unavoidable modifications
as easy as possible. In the latter case, there will be instructions on how to modify the script.

The Examples

The provided examples illustrate simple tasks that could serve as a starting point to build more complex actions. Me
too, I started developing When with very simple goals in mind. Then When ended up including more interesting
features on which I also built some tools – one of them is even used to help develop When itself. The provided
examples are about

• File Synchronization and Backup

• Housekeeping

• Automatic Import from a storage device.

The examples will try to cover the entire process of creating the tasks, their trigger conditions and all the accessory
parts and scripts needed for each example to work from scratch. In particular, the tutorial will also try to guide the
user through the configuration process when different settings from the default ones are needed.

File Synchronization and Backup

The first example illustrates how to synchronize files from a directory to a backup destination. It uses Unison to
copy the files from the source location to the destination, only in one direction, whenever the contents of the source
directory change: in other words it implements a file change condition to determine whether or not to backup the
source directory. Because such condition checks are always deferred, subsequent writes to a file in the origin directory
will not likely trigger the same amount of synchronizations, which is good for backup tasks. Here we will synchronize
the ~/Documents directory with a mounted location. We’ll assume there is a NFS disk mounted on /remote, with
a directory owned by the user and named after the user name. To prepare the environment, a proper backup location
has to be created, via

$ mkdir -p /remote/$USER/backup/Documents

in order to keep the environment as clean as possible. The path above is supposed to act as a backup directory only,
and to be left untouched unless in case of need: this ensures that synchronization will always be unidirectional.

For this example to function, the file change conditions have to be enabled. To do this, open the settings dialog box by
clicking on the applet icon in the top panel and selecting Settings....

42 Chapter 6. Tutorial

https://www.cis.upenn.edu/~bcpierce/unison/
https://gist.github.com/almostearthling/7a26d24e5975a6dc5086

When Documentation, Release 0.9

Then click the Advanced tab and check the Enable File and Directory Notifications entry. When has to be restarted
for the option to actually work: choose Quit from the applet menu, then start When from the dash.

Install and Setup Unison

A brief description follows on how to setup a simple profile in Unison for the sake of this example. This utility can do
much more, refer to the specific documentation for details.

Installation

In Ubuntu Unison is provided in the official repositories, namely in Universe. If that repository is enabled, you can
install the software using

$ sudo apt-get install -y unison unison-gtk

or via the Ubuntu Software Center. In this way you can use the Unison GUI to configure the synchronization profile:
launch Unison from dash to access its interface (logout and login might be required to find the application in dash).

Setup a Synchronization Profile

Open the Unison GUI: the main window will be presented, along with a dialog box to select the profile to run. As
there are no configured profiles, we will click the Add button, and a wizard will help us with the creation of a profile.

6.2. The Examples 43

When Documentation, Release 0.9

Click Forward and follow these easy steps:

1. Give the profile a name, DocsBackup for brevity, and a meaningful description: something like “Backup
documents to a remote location” would do the job.

2. Choose Local as synchronization kind because a NFS mounted file system appears as local to Unison.

3. Choose your main Documents folder as first directory, and browse to /remote/<your_account>/
backup/Documents for the second folder using the Other... entry in the choice box.

4. Obviously leave the option for FAT partitions unchecked.

5. Click Apply.

A basic profile is now created, which is enough for our purposes. The profile name, DocsBackup, will be used in
the command passed to When to let it perform the synchronization task.

To let When only do routine jobs, run the profile interactively by opening it (use the Open button after selecting the
profile). A dialog box appears, to show that it’s the first time that the folders are synchronized: accept it, and click Go
in the Unison main window. Now Unison can be closed.

Create a Task

Click the When clock icon on the top panel, and select Edit Tasks... in the menu. The Task creation dialog box will
open.

44 Chapter 6. Tutorial

When Documentation, Release 0.9

As the screenshot suggest, a name has to be entered in the first dialog box field: we choose SyncDocs, which is
mnemonic enough. In the Command entry, the following command line has to be entered:

unison -auto -batch -terse DocsBackup

This tells Unison (the non-graphical utility) to perform a synchronization in automatic mode, asking no questions and
with brief output. The other entries in the dialog box are left alone: the working directory is not influent, and we only
care to know whether or not the synchronization task succeeded by interpreting the command exit status. As it mostly
happens with command line utilities, Unison will return a zero exit code on success, and the other entries in the box
just tell When to consider this.

Click OK to create the task.

Setup a Condition

We are interested in propagating changes in the source directory to the backup directory. The ideal solution is to
create a condition based on file and directory changes. Click the When clock icon on the top panel, and select Edit
Conditions... in the menu. The following dialog box will let us define such a condition.

6.2. The Examples 45

When Documentation, Release 0.9

Then we will follow these steps:

1. Give the condition a meaningful name, such as SyncDocsOnChanges.

2. Select File Change in the drop-down list below.

3. Click the Choose... button and select the main documents folder (that is, ~/Documents); alternatively the full
path could be entered in the Watch Files field, which has the same effect.

4. Click the drop-down list under the list of tasks, and select SyncDocs, then click the Add button on its right.

5. Click OK to enter the new condition.

All the other fields should be left alone: in this way the checks are periodic (otherwise the synchronization would
only take place once per session), while the other options are ininfluent in this case, as there is only one task for this
condition.

Work and Let When do its Job

We are ready now: we should only check that changes in the source directory are reflected in the destination. A simple
test will consist in the creation of a file in ~/Documents:

$ cd
$ touch Documents/AnotherFile.txt
$ ls -l /remote/$USER/backup/Documents

46 Chapter 6. Tutorial

When Documentation, Release 0.9

The following screenshots show how it worked: first is before creation

and after:

6.2. The Examples 47

When Documentation, Release 0.9

To check outcome directly from the When interface, we can open the history window, by choosing History... in the
applet menu.

48 Chapter 6. Tutorial

When Documentation, Release 0.9

This dialog box also shows the (brief) output of the command, which is useful to identify task outcomes. If we click
on the list items, the panes below will show output (stdout and stderr) for the selected task.

Housekeeping

In this tutorial we will instruct When to perform some simple housekeeping in the Documents directory when the
session has been idle for a while. For the example we will use a minimal shell script that removes the files that end
in the tilde character (usually backups) and sends them to the trash can. We need to use the trash command, which
can be installed with the trash-cli package:

$ sudo apt-get install trash-cli

An alternative could be to directly remove the files, but this would be more dangerous and we want to keep some kind
of control on what is actually removed from the disk.

Write the Shell Script

Our script is essential, as said above, but nothing forbids to let it do more complex tasks. To keep the things somewhat
standard, we will put the script in the ~/.local/bin directory. At a terminal prompt, do the following:

$ mkdir ~/.local/bin
$ cd ~/.local/bin
$ gedit housekeep.sh

6.2. The Examples 49

When Documentation, Release 0.9

When the Gnome editor starts, enter the following text:

#!/bin/sh
find . -path ./.local/share/Trash -prune \

-o -type f -name '*~' \
-exec echo '{}' \; \
-exec trash -f '{}' \;

save the file, exit the editor and from the same terminal window run

$ chmod a+x housekeep.sh

to make the script executable. The reason for the line that discards stuff in ./.local/share/Trash is that we
don’t want files already in the trash bin to be handled again, and we are pretty sure that such a folder only exists in the
user home directory – so that this limitation only has effect when the startup directory is the home directory.

The housekeep.sh script is available here.

Create the Task

From the When menu select the Edit Tasks... entry. When the task editor box shows up, choose a meaningful name
for the task: DocumentsHousekeeping will do the job. Then insert the following text in the Command field:

/home/<your_account>/.local/bin/housekeep.sh

(where <your_account> should be changed to your account name). Hit the Choose... button to select the working
folder and navigate to select the ~/Documents directory. This is actually the reason why we just told the find
command to start in the current directory: When will change directory for us before starting the script, and we can use
the same script to create tasks that perform housekeeping in other directories, just changing the startup directory.

50 Chapter 6. Tutorial

When Documentation, Release 0.9

Since we really don’t care about task outcome and we don’t want When to throw an error when this task fails, we also
select to check for Nothing as outcome.

Click OK to accept the task.

Setup the Condition

We want this task to occur whenever the session has been idle for, say, three minutes. It’s not a very expensive task, so
we accept it to run more than once per session. To create the condition, select Edit Conditions... from the applet menu.
In the condition editor choose a meaningful name for the item, such as DocumentsHKeepOnIdle, and choose Idle
Session from the drop-down list. Specify 3 in the Idle Minutes field, then using the drop-down list below the task list,
choose the DocumentsHousekeeping task and click the Add button on the right. We can leave the other entries
alone.

6.2. The Examples 51

When Documentation, Release 0.9

Click OK to accept the condition, and we’re done.

Verify that Everything Worked

After three or four (When is a lazy applet, though) minutes, you can open the History box by selecting
Task History... from the applet menu. The window will show DocumentsHousekeeping triggered by
DocumentsHKeepOnIdle in the main list, possibly among other tasks.

52 Chapter 6. Tutorial

When Documentation, Release 0.9

If you click the task line, you can verify what happened in the Output and Errors tab below: because the script
writes the name of each file it deletes to stdout, the file names appear in the Output pane. Also note that the desktop
trash bin is now full, because Sample File.txt~ was moved there. As the condition from the previous example
(SyncDocsOnChanges) has not been removed, it has been triggered by the above defined task some seconds later.

Automatic Import

This example shows how to automatically import files from an external storage device, such as an USB stick, when it’s
automatically mounted by the desktop manager. Suppose we’re using an USB stick to gather data and move it from
some device to our workstation. We assume that the USB stick has been given a label (we’ll call it USB2GB in this
example) and that the device always writes to the same Data directory on the stick, with no subdirectory: this makes
things easier, because we can use cp or mv to transfer files to the hard disk.

Ubuntu always mounts external storage devices under the /media directory, using /media/<label> as the actual
mount point. So we can presume that our USB stick will be mounted on /media/<your_account>/USB2GB,
and we can also be reasonably sure that, if there is a /media/<your_account>/USB2GB/Data directory around
just after insertion of a storage device, it must be the place to gather data from. Naturally there should be better ways
to determine this. What we will do is blindly copy all files found in the device’s Data folder to ~/Documents/
Gathered, which has been created for this purpose using the following command:

$ mkdir ~/Documents/Gathered

A shell script will be used to perform the task, just because we’d like to:

6.2. The Examples 53

When Documentation, Release 0.9

• be notified by a badge reporting the operation outcome

• avoid to clutter the Command entry in the When task editor box

• have the script to unmount the USB stick if the copy succeeds.

The last step is less likely to be needed in the real world, as this would cancel any possibility to read the contents of
the device unless turning off When.

We will make use of an USB stick (labeled USB2GB through parted or GParted or any other disk labeling utility)
which has a Data directory with some crafted CSV files (ending in .csv).

Create the Shell Script

Using the same technique shown in the second example, we will create a script called gather_data.sh in ~/.
local/bin, containing the following text:

#!/bin/bash

this script expects two variables to be defined:
DEVICE_LABEL is the label given to the removable storage device
DESTINATION is the destination folder

if [-z "$DEVICE_LABEL"]; then exit 2; fi
if [-z "$DESTINATION"]; then exit 2; fi

shortcuts
SOURCE_BASE="/media/$USER/$DEVICE_LABEL"
SOURCE=$SOURCE_BASE/Data

exit if it's not the right USB key
if [! -d "$SOURCE"]; then

exit 2
fi

copy data from source base to destination
cp -f $SOURCE/*.csv $DESTINATION

if the task was successful show a badge, if not When enters an error state
if ["$?" = "0"]; then

gvfs-mount -u $SOURCE_BASE
notify-send -i info "Data Gatherer" "Files successfully transferred, remove device"

else
exit 2

fi

Once written, do a chmod a+x gather_data.sh in the same directory from a terminal window.

The gather_data.sh script is available at this location.

Note: A Tip for Photographers

Digital cameras nowadays use mostly SD cards (which contain well known directories, such as DCIM) to store pictures:
with adequate changes (such as copying *.jpg files from a different directory) this script can be helpful to transfer
photos whenever a SD card is inserted. You can also use it for storage devices different from SD cards, as long as you
correctly name the default dynamic mount point.

54 Chapter 6. Tutorial

When Documentation, Release 0.9

Create the Task

The corresponding task will need to consider the exit status of our script, since we rely on it to show a failure badge on
task failure: this is the default with When when it’s not instructed to avoid notifications on task failures. So we will
create a task with an adequate name (GatherExtStorageData) that

• defines the two needed variables: DEVICE_LABEL and DESTINATION (respectively with the label given to
the external storage device and the destination folder)

• checks that the script exit code is 0.

To do this, we must open the task editor window by selecting Edit Tasks... from the applet menu and then follow these
steps:

1. enter GatherExtStorageData in the Name field

2. enter /home/<your_account>/.local/bin/gather_data.sh in the Command field
(<your_account> has to be replaced by your account name)

3. define the two needed variables, by writing the variable name (remember that names are case sensitive!) in
the entry below the variable list, and its value in the adjacent text field and then hitting the Update button:
DEVICE_LABEL should contain USB2GB, and DESTINATION the full path to the destination directory, that
is /home/<your_account>/Documents/Gathered where <your_account> is replaced by your
account name.

The other entries must be left alone: the default task definition box is already set up to look for task success by
checking that the exit code is zero. This is how the task editor box looks like after we defined the task:

6.2. The Examples 55

When Documentation, Release 0.9

You can click the OK button to store the task item.

Setup the Condition

The most adequate condition type here is the event based one: it allows to choose a subtype that causes it to occur
on storage device connection. When is quite generic in this case, and does not actually communicate to the user any
details about the actual storage device. However, knowing the expected dynamic mount point helps in writing scripts
– like the one above – that only work when the correct device has been inserted.

To define the condition we will select Edit Conditions... entry from the applet menu and carry the following operations
when the dialog box appears:

1. give the condition a meaningful name, such as GatherDataOnInsert

2. select Event from the Type drop-down box: the dialog layout will change and a second drop-down list appears

3. select Connect Storage Device from the following drop-down list, that just appeared

4. using the combo box under the task list, choose GatherExtStorageData and hit the Add button.

This is sufficient and other entries could be left alone. Click OK to accept.

56 Chapter 6. Tutorial

When Documentation, Release 0.9

Cause Something to Happen

We just have to insert the USB key to let When work now. After a while a notification will inform us that the files
have been successfully copied to the destination directory. If we open the task history box by choosing Task history...
from the applet menu

we can check that the task actually succeeded at any time. Using ls, for instance, or Nautilus, you can also verify that
all files have been copied to the destination.

The Tutorial is an Ongoing Task

This tutorial was formerly a project by itself, and now is part of a bigger project focusing on structured documentation,
also to allow it to grow with time: for now it consists of very simple examples, but When can be also used to
automate complex tasks. It can be useful for developers, photographers, people that need to automate data gathering
or processing and so on: feel free to provide or just even suggest more examples using the issue mechanism in the
documentation repository.

6.3. The Tutorial is an Ongoing Task 57

When Documentation, Release 0.9

58 Chapter 6. Tutorial

CHAPTER 7

Credits and Resources

Open Source Software relies on collaboration, and I’m more than happy to receive help from other developers. Here
I’ll list the main contributions.

• Adolfo Jayme-Barrientos, aka fitojb for the Spanish translation

Also, I’d like to thank everyone who contributes to the development of When by commenting, filing bugs, suggesting
features and testing. Every kind of help is welcome.

The top panel icons and the emblems used in the application were selected within Google’s Material Design icon
collection.

The application icon has been created by Rafi at GraphicsFuel.

Resources

As said above, this software is designed to run mainly on Ubuntu and the chosen framework is Python 3.x with
PyGObject (GTK 3.0); the interface is developed using the Glade interface designer. The resources I found useful are:

• Python 3.x Documentation

• PyGTK 3.x Tutorial

• PyGTK 2.x Documentation

• PyGObject Documentation

• GTK 3.0 Documentation

• DBus Documentation

• pyinotify Documentation

The guidelines specified in UnityLaunchersAndDesktopFiles have been roughly followed to create the launcher from
within the application.

Many hints and valuable information have been found on StackOverflow and the other sites in the StackExchange
network.

59

https://github.com/fitojb
https://materialdesignicons.com/
http://www.graphicsfuel.com/2012/08/alarm-clock-icon-psd/
http://www.graphicsfuel.com/
https://docs.python.org/3/
http://python-gtk-3-tutorial.readthedocs.io/en/latest/index.html
https://developer.gnome.org/pygtk/stable/
https://developer.gnome.org/pygobject/stable/
http://lazka.github.io/pgi-docs/Gtk-3.0/index.html
http://www.freedesktop.org/wiki/Software/dbus/
https://github.com/seb-m/pyinotify/wiki
https://help.ubuntu.com/community/UnityLaunchersAndDesktopFiles
http://stackoverflow.com/
http://stackexchange.com/

When Documentation, Release 0.9

Bugs and Errors

When is hosted on GitHub: the repository contains the most recent stable code as well as developement and feature
branches. The master branch might include more recent code with respect to the packaged distributions. The repository
for When also gives access to the bug tracking system, in the form of the Issues mechanism. Issues can be used to
provide information on bugs or features that could make When more useful.

Before filing an issue please consider that

• in the case of a bug some data are needed:

– When version

– Linux distribution and complete version

– Python 3.x detailed version

– How When was installed (which package, or how source was obtained)

– Steps to reproduce the problem.

Before filing a bug please verify that there is no open equivalent issue, or that the issue is not a particular case
of an already open one.

• for a feature request the following should be taken into account:

– whether or not it would make the applet more useful or usable

– if the feature being requested is just a shortcut for something that can already be done via configuration
(for instance, adding an event that could be provided using a signal handler)

– how it would impact on When in terms of weight and responsiveness

– the impact that it would have on backward compatibility.

Consider that When should try to remain as small as possible, it already eats up around 20MBytes as it is: most
effort in its development should go towards simplification and extendability via external tools.

The repository is also the starting point for other forms of contributions. There is a separate documentation for
contributors, that tries to cover most possible areas.

60 Chapter 7. Credits and Resources

https://github.com/
https://github.com/almostearthling/when-command
https://github.com/almostearthling/when-command
http://contributing-to-when.readthedocs.io/

CHAPTER 8

License (BSD)

Copyright (c) 2015-2016, Francesco Garosi

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of when-command nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

61

	Introduction
	Installation
	Requirements
	Package Based Install
	Install from a PPA
	Install from the Source
	The --install Switch
	Removal

	User Manual
	Overview
	The Applet
	Tasks
	Conditions
	Configuration
	The History Window
	Reset Condition Tests
	Command Line Interface

	Advanced Features
	File and Directory Notifications
	DBus Signal Handlers
	Environment Variables
	Item Definition File
	Exporting and Importing Items

	The When Wizard
	Installation
	Defining Actions
	Managing Actions
	Other Uses for the When Wizard Manager

	Tutorial
	Assumptions
	The Examples
	The Tutorial is an Ongoing Task

	Credits and Resources
	Resources
	Bugs and Errors

	License (BSD)

